WorldWideScience

Sample records for acid dehydrogenase activity

  1. 15-hydroxyprostaglandin dehydrogenase activity in vitro in lung and kidney of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Toft, B.S.

    1978-01-01

    Weanling rats were fed for 6 months on a diet deficient in essential fatty acids: either fat-free, or with 28% (w/w) partially hydrogenated fish oil. Control rats were fed a diet with 28% (w/w) arachis oil for 6 months. 15-Hydroxyprostaglandin dehydrogenase activity was determined as initial rates...... of the two groups on diets deficient in essential fatty acids as compared to the control group. No difference was observed in dehydrogenase activity in the kidneys. The dehydrogenase may be of importance for the regulation of the level of endogenous prostaglandins and, thus, a decrease in activity could...

  2. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    DEFF Research Database (Denmark)

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L-phenylalanine...... nor L-serine methyl ester, stimulate insulin secretion. In the presence of L-glutamine, however, the effect of L-serine was additive, while the methyl esters of L-serine and L-phenylalanine as well as native L-phenylalanine, potentiated the glucose-stimulated release of insulin. Measurements of islet...... glutamate dehydrogenase activity showed that only the two methyl esters of L-phenylalanine and L-serine activated the enzyme. It is concluded that the mechanism by which methyl esters of amino acids potentiate insulin release is most likely to be mediated by the activation of pancreatic beta-cell glutamate...

  3. L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea.

    Science.gov (United States)

    Deutch, Charles E

    2013-11-01

    The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.

  4. Genetic analysis of central carbon metabolism unveils an amino acid substitution that alters maize NAD-dependent isocitrate dehydrogenase activity.

    Directory of Open Access Journals (Sweden)

    Nengyi Zhang

    Full Text Available BACKGROUND: Central carbon metabolism (CCM is a fundamental component of life. The participating genes and enzymes are thought to be structurally and functionally conserved across and within species. Association mapping utilizes a rich history of mutation and recombination to achieve high resolution mapping. Therefore, applying association mapping in maize (Zea mays ssp. mays, the most diverse model crop species, to study the genetics of CCM is a particularly attractive system. METHODOLOGY/PRINCIPAL FINDINGS: We used a maize diversity panel to test the CCM functional conservation. We found heritable variation in enzyme activity for every enzyme tested. One of these enzymes was the NAD-dependent isocitrate dehydrogenase (IDH, E.C. 1.1.1.41, in which we identified a novel amino-acid substitution in a phylogenetically conserved site. Using candidate gene association mapping, we identified that this non-synonymous polymorphism was associated with IDH activity variation. The proposed mechanism for the IDH activity variation includes additional components regulating protein level. With the comparison of sequences from maize and teosinte (Zea mays ssp. Parviglumis, the maize wild ancestor, we found that some CCM genes had also been targeted for selection during maize domestication. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the efficacy of association mapping for dissecting natural variation in primary metabolic pathways. The considerable genetic diversity observed in maize CCM genes underlies heritable phenotypic variation in enzyme activities and can be useful to identify putative functional sites.

  5. Protein engineering of alcohol dehydrogenase--1. Effects of two amino acid changes in the active site of yeast ADH-1.

    Science.gov (United States)

    Murali, C; Creaser, E H

    1986-01-01

    One of the promises held out by protein engineering is the ability to alter predictably the properties of an enzyme to enable it to find new substrates or catalyse existing substrates more efficiently, such manipulations being of interest both enzymologically and, potentially, industrially. It has been postulated that in yeast alcohol dehydrogenase (YADH-1) certain amino acids such as Trp 93 and Thr 48 constrict the active site due to their bulky side chains and thus impede catalysis of molecules larger than ethanol. To study effects of enlarging the active site we have made two changes into YADH-1, replacing Trp 93 with Phe and Thr 48 with Ser. Kinetic experiments showed that this enzyme had marked increases in reaction velocity for the n-alcohols propanol, butanol, pentanol, hexanol, heptanol, octanol and cinnamyl alcohol compared to the parent, agreeing with the prediction that expanding the active site should facilitate the oxidation of larger alcohols. The substrate affinities were slightly reduced in the altered enzyme, possibly due to its having reduced hydrophobicity at Phe 93.

  6. Inhibition of snowshoe hare succinate dehydrogenase activity as a mechanism of deterrence for papyriferic acid in birch.

    Science.gov (United States)

    Forbey, Jennifer Sorensen; Pu, Xinzhu; Xu, Dong; Kielland, Knut; Bryant, John

    2011-12-01

    The plant secondary metabolite papyriferic acid (PA) deters browsing by snowshoe hares (Lepus americanus) on the juvenile developmental stage of the Alaska paper birch (Betula neoalaskana). However, the physiological mechanism that reduces browsing remains unknown. We used pharmacological assays and molecular modeling to test the hypothesis that inhibition of succinate dehydrogenase (SDH) is a mode of action (MOA) of toxicity of PA in snowshoe hares. We tested this hypothesis by measuring the effect of PA on the activity of SDH in liver mitochondria isolated from wild hares. In addition, we used molecular modeling to determine the specific binding site of PA on SDH. We found that PA inhibits SDH from hares by an uncompetitive mechanism in a dose-dependent manner. Molecular modeling suggests that inhibition of SDH is a result of binding of PA at the ubiquinone binding sites in complex II. Our results provide a MOA for toxicity that may be responsible for the concentration-dependent anti-feedant effects of PA. We propose that snowshoe hares reduce the dose-dependent toxic consequences of PA by relying on efflux transporters and metabolizing enzymes that lower systemic exposure to dietary PA.

  7. R-lipoic acid inhibits mammalian pyruvate dehydrogenase kinase.

    Science.gov (United States)

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S

    2004-10-01

    The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects. PMID:15512796

  8. Regulation of human class I alcohol dehydrogenases by bile acids

    OpenAIRE

    Langhi, Cédric; Pedraz-Cuesta, Elena; Haro, Diego; Marrero, Pedro F; Rodríguez, Joan C.

    2013-01-01

    Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver . Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and ...

  9. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    Science.gov (United States)

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor. PMID:27266631

  10. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    Science.gov (United States)

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  11. Retinoic acid response element in the human alcohol dehydrogenase gene ADH3: implications for regulation of retinoic acid synthesis.

    OpenAIRE

    Duester, G; Shean, M L; McBride, M S; Stewart, M J

    1991-01-01

    Retinoic acid regulation of one member of the human class I alcohol dehydrogenase (ADH) gene family was demonstrated, suggesting that the retinol dehydrogenase function of ADH may play a regulatory role in the biosynthetic pathway for retinoic acid. Promoter activity of human ADH3, but not ADH1 or ADH2, was shown to be activated by retinoic acid in transient transfection assays of Hep3B human hepatoma cells. Deletion mapping experiments identified a region in the ADH3 promoter located between...

  12. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  13. STUDIES CONCERNING THE INFLUENCE OF SOME AMINO ACIDS ON THE DYNAMICS OF KREBS CYCLE DEHYDROGENASES ACTIVITY AT MONILINIA LAXA (ADERH.& RUHL. HONEY PARASITE ON PLUM TREES

    Directory of Open Access Journals (Sweden)

    Elena Tutu

    2011-11-01

    Full Text Available As ubiquitous organisms, fungi grow on a large number of organic substrate, alive or dead, confronting therefore with a wide variety of carbohydrates and various physical factors, and their versatility to adapt and be able to use a large number of these compounds could provide them the chance to survive. Given that, these fungi have a rich enzyme equipment that allows them to operate on different metabolic pathways, this study aims to monitor the dynamics activity of some Krebs cycle dehydrogenases in Monilinia laxa (Aderh & Ruhl. Honey species parasitic on various species of plum trees. To this end, the fungus was cultivated in vitro on media enriched with different carbohydrates and the isocitrate dehydrogenase, �-cetoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase activity in the fungus mycelium was followed, at 7, respectively, 14 days after the inoculation of the culture medium and determined using the spectrophotometric Sîsoev and Krasna method (Cojocaru, D.C., 2009. Data revealed obvious differences depending on the type of carbohydrate introduced into the medium and the age of the culture mycelia.

  14. Cloning and expression of bacterial genes coding amino acid dehydrogenases (oxidoreductases)

    International Nuclear Information System (INIS)

    Full text: The synthesis of 15N-labeled amino acids from the corresponding α-ketoacids can be accomplished in vitro using bacterial NAD-dependent amino acid dehydrogenases. The example of alanine dehydrogenase (AlaDH) and leucine dehydrogenase (LeuDH) will be presented here. Both enzymes belong to NAD dependent oxidoreductase family. AlaDH or L-alanine NAD-oxidoreductase (EC 1.4.1.1) promotes the reversible oxidative deamination of L-alanine to pyruvate (pyruvic acid). LeuDH or L-leucine NAD-oxidoreductase (EC 1.4.1.9) catalyses the reversible oxidative deamination of many related L-amino acids to corresponding α-ketoacids. The bacterial genes encoding AlaDH from Bacillus subtilis and LeuDH from Bacillus stearothermophilus were cloned separately in pET21b vector, and overexpressed in Escherichia coli BL21(DE3) strain. The [15N]L-alanine was synthesized by reductive amination of pyruvate, in the presence of 15NH4Cl, NADH, AlaDH and glucose dehydrogenase. The [15N]L-leucine, [15N]L-isoleucine, [15N]L-norleucine, [15N]L-valine and [15N]L-norvaline were produced in the same conditions using LeuDH, as a catalyst, and α- ketoisocaproate, DL-α-keto-β-methyl-n-valerate, α-ketocaproate, α-ketoisovalerate and α-ketovalerate, respectively, as substrates. In all cases, the reaction mixtures included glucose dehydrogenase for NADH regeneration with glucose as electron donor. The NADH renewal is more convenient with glucose dehydrogenase than other methods described before using formate dehydrogenase or alcohol dehydrogenase. The glucose dehydrogenase is very active and do not inhibit 15N-labeled amino acid synthesis. As determined by mass spectroscopy, the 15N-labeled amino acids were synthesized with yields between 60% and 95%. Our results demonstrate the usefulness of recombinant amino acid dehydrogenases for in vitro synthesis of 15N-labeled amino acids. (author)

  15. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.;

    2006-01-01

    with pyruvate metabolism, and they comprised 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism......During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... at 3 h 23 min ± 11 min). Femoral arterial and venous blood, blood flow measurements, and muscle samples were obtained hourly during exercise and recovery (3 h). Carbohydrate oxidation peaked at 30 min of exercise and subsequently decreased for the remainder of the exercise bout (P

  16. Butachlor impact on protein, free amino acid and glutamine contents, and on activity levels of aminotransferases, glutamate dehydrogenase and glutamine synthetase in the fresh water snail, Pila globosa (Swainson).

    Science.gov (United States)

    Rajyalakshmi, T; Srinivas, T; Swamy, K V; Mohan, P M

    1996-08-01

    Biochemical changes followed in the freshwater snail Pila globosa (Swainson) during exposure to sublethal concentrations of the herbicide butachlor (26.6 ppm) in the ambient medium, at 3,6,12,24 and 48 h intervals, were marked by a significant decrease in total and soluble proteins, and an increase in free amino acids in foot and hepatopancreas up to 12 h before gradually recovering. Aminotransferase activities and glutamine content decreased during the early periods of exposure, while glutamate dehydrogenase activity increased. After an initial elevation, glutamate synthetase activity decreased at later intervals. Maximum effect of butachlor on the enzymes was seen after 12 h exposure. The extent of increase or decrease in different parameters examined varied between the two tissues studied. These changes are discussed in relation to the toxic stress of butachlor.

  17. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    Science.gov (United States)

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  18. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum.

    Science.gov (United States)

    Tesfaye, M; Temple, S J; Allan, D L; Vance, C P; Samac, D A

    2001-12-01

    Al toxicity is a severe impediment to production of many crops in acid soil. Toxicity can be reduced through lime application to raise soil pH, however this amendment does not remedy subsoil acidity, and liming may not always be practical or cost-effective. Addition of organic acids to plant nutrient solutions alleviates phytotoxic Al effects, presumably by chelating Al and rendering it less toxic. In an effort to increase organic acid secretion and thereby enhance Al tolerance in alfalfa (Medicago sativa), we produced transgenic plants using nodule-enhanced forms of malate dehydrogenase and phosphoenolpyruvate carboxylase cDNAs under the control of the constitutive cauliflower mosaic virus 35S promoter. We report that a 1.6-fold increase in malate dehydrogenase enzyme specific activity in root tips of selected transgenic alfalfa led to a 4.2-fold increase in root concentration as well as a 7.1-fold increase in root exudation of citrate, oxalate, malate, succinate, and acetate compared with untransformed control alfalfa plants. Overexpression of phosphoenolpyruvate carboxylase enzyme specific activity in transgenic alfalfa did not result in increased root exudation of organic acids. The degree of Al tolerance by transformed plants in hydroponic solutions and in naturally acid soil corresponded with their patterns of organic acid exudation and supports the concept that enhancing organic acid synthesis in plants may be an effective strategy to cope with soil acidity and Al toxicity. PMID:11743127

  19. In vitro inhibition of 10-formyltetrahydrofolate dehydrogenase activity by acetaldehyde

    OpenAIRE

    Mun, Ju-Ae; Doh, Eunjin; Min, Hyesun

    2008-01-01

    Alcoholism has been associated with folate deficiency in humans and laboratory animals. Previous study showed that ethanol feeding reduces the dehydrogenase and hydrolase activity of 10-formyltetrahydrofolate dehydrogenase (FDH) in rat liver. Hepatic ethanol metabolism generates acetaldehyde and acetate. The mechanisms by which ethanol and its metabolites produce toxicity within the liver cells are unknown. We purified FDH from rat liver and investigated the effect of ethanol, acetaldehyde an...

  20. Structural basis for the dysfunctioning of human 2-oxo acid dehydrogenase complexes

    NARCIS (Netherlands)

    Hengeveld, A.F.; Kok, de A.

    2002-01-01

    2-oxo acid dehydrogenase complexes are a ubiquitous family of multienzyme systems that catalyse the oxidative decarboxylation of various 2-oxo acid substrates. They play a key role in the primary energy metabolism: in glycolysis (pyruvate dehydrogenase complex), the citric acid cycle (2-oxoglutarate

  1. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis.

    Science.gov (United States)

    Long, Michael C; Nagegowda, Dinesh A; Kaminaga, Yasuhisa; Ho, Kwok Ki; Kish, Christine M; Schnepp, Jennifer; Sherman, Debra; Weiner, Henry; Rhodes, David; Dudareva, Natalia

    2009-07-01

    Benzoic acid (BA) is an important building block in a wide spectrum of compounds varying from primary metabolites to secondary products. Benzoic acid biosynthesis from L-phenylalanine requires shortening of the propyl side chain by two carbons, which can occur via a beta-oxidative pathway or a non-beta-oxidative pathway, with benzaldehyde as a key intermediate. The non-beta-oxidative route requires benzaldehyde dehydrogenase (BALDH) to convert benzaldehyde to BA. Using a functional genomic approach, we identified an Antirrhinum majus (snapdragon) BALDH, which exhibits 40% identity to bacterial BALDH. Transcript profiling, biochemical characterization of the purified recombinant protein, molecular homology modeling, in vivo stable isotope labeling, and transient expression in petunia flowers reveal that BALDH is capable of oxidizing benzaldehyde to BA in vivo. GFP localization and immunogold labeling studies show that this biochemical step occurs in the mitochondria, raising a question about the role of subcellular compartmentalization in BA biosynthesis.

  2. NAD(H recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available A chimeric bifunctional enzyme composing of galactose dehydrogenase (galDH; from Pseudomonas fluorescens and lactate dehydrogenase (LDH; from Bacillus stearothermophilus was successfully constructed. The chimeric galDH/LDH possessed dual characteristics of both galactose dehydrogenase and lactate dehydrogenase activities while exhibiting hexameric rearrangement with a molecular weight of approximately 400 kDa. In vitro observations showed that the chimeric enzyme was able to recycle NAD with a continuous production of lactate without any externally added NADH. Two fold higher recycling rate (0.3 mM/h than that of the native enzyme was observed at pH values above 8.5. Proximity effects became especially pronounced during the recycling assay when diffusion hindrance was induced by polyethylene glycol. All these findings open up a high feasibility to apply the NAD(H recycling system for metabolic engineering purposes e.g. as a model to gain a better understanding on the molecular proximity process and as the routes for synthesizing of numerous high-value-added compounds.

  3. RECIPIENT PRETRANSPLANT INOSINE MONOPHOSPHATE DEHYDROGENASE ACTIVITY IN NONMYELOABLATIVE HCT

    Science.gov (United States)

    Bemer, Meagan J.; Risler, Linda J.; Phillips, Brian R.; Wang, Joanne; Storer, Barry E.; Sandmaier, Brenda M.; Duan, Haichuan; Raccor, Brianne S.; Boeckh, Michael J.; McCune, Jeannine S.

    2014-01-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5’- monophosphate (IMP) to xanthosine 5’-monophosphate (XMP). We developed a highly sensitive liquid chromatography–mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNC) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T-cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation, but not with chronic GVHD, relapse, non-relapse mortality, or overall mortality. We conclude that quantitation of the recipient’s pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient’s sensitivity to MMF, but confirmatory studies are needed. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients. PMID:24923537

  4. Purification of a branched-chain keto acid dehydrogenase from Pseudomonas putida.

    OpenAIRE

    Sokatch, J R; McCully, V; Roberts, C M

    1981-01-01

    We purified branched-chain keto acid dehydrogenase to a specific activity of 10 mumol/min per mg of protein from Pseudomonas putida grown on valine. The purified enzyme was active with 2-ketoisovalerate, 2-ketoisocaproate, and 2-keto-3-methylvalerate in a ratio of 1.0:0.8:0.7 but showed no activity with either pyruvate or 2-ketoglutarate. There were four polypeptides in the purified enzyme (molecular weights, 49,000, 46,000, 39,000, and 37,000). The purified enzyme was deficient in the specif...

  5. Interaction of carbohydrates with alcohol dehydrogenase: Effect on enzyme activity.

    Science.gov (United States)

    Jadhav, Swati B; Bankar, Sandip B; Granström, Tom; Ojamo, Heikki; Singhal, Rekha S; Survase, Shrikant A

    2015-09-01

    Alcohol dehydrogenase was covalently conjugated with three different oxidized carbohydrates i.e., glucose, starch and pectin. All the carbohydrates inhibited the enzyme. The inhibition was studied with respect to the inhibition rate constant, involvement of thiol groups in the binding, and structural changes in the enzyme. The enzyme activity decreased to half of its original activity at the concentration of 2 mg/mL of pectin, 4 mg/mL of glucose and 10 mg/mL of starch within 10 min at pH 7. This study showed oxidized pectin to be a potent inhibitor of alcohol dehydrogenase followed by glucose and starch. Along with the aldehyde-amino group interaction, thiol groups were also involved in the binding between alcohol dehydrogenase and carbohydrates. The structural changes occurring on binding of alcohol dehydrogenase with oxidized carbohydrates was also confirmed by fluorescence spectrophotometry. Oxidized carbohydrates could thus be used as potential inhibitors of alcohol dehydrogenase.

  6. Cloning of the rat pyruvate dehydrogenase kinase 4 gene promoter: activation of pyruvate dehydrogenase kinase 4 by the peroxisome proliferator-activated receptor gamma coactivator.

    Science.gov (United States)

    Ma, Ke; Zhang, Yi; Elam, Marshall B; Cook, George A; Park, Edwards A

    2005-08-19

    The pyruvate dehydrogenase complex catalyzes the conversion of pyruvate to acetyl-CoA in mitochondria and is a key regulatory enzyme in the metabolism of glucose to acetyl-CoA. Phosphorylation of pyruvate dehydrogenase by the pyruvate dehydrogenase kinases (PDK) inhibits pyruvate dehydrogenase complex activity. There are four PDK isoforms, and expression of PDK4 and PDK2 genes is elevated in starvation and diabetes, allowing glucose to be conserved while fatty acid oxidation is increased. In these studies we have investigated the transcriptional mechanisms by which the expression of the PDK4 gene is increased. The peroxisome proliferator-activated receptor gamma coactivator (PGC-1alpha) stimulates the expression of genes involved in hepatic gluconeogenesis and mitochondrial fatty acid oxidation. We have found that PGC-1alpha will induce the expression of both the PDK2 and PDK4 genes in primary rat hepatocytes and ventricular myocytes. We cloned the promoter for the rat PDK4 gene. Hepatic nuclear factor 4 (HNF4), which activates many genes in the liver, will induce PDK4 expression. Although HNF4 and PGC-1alpha interact to stimulate several genes encoding gluconeogenic enzymes, the induction of PDK4 does not involve interactions of PGC-1alpha with HNF4. Using the chromatin immunoprecipitation assay, we have demonstrated that HNF4 and PGC-1alpha are associated with the PDK4 gene in vivo. Our data suggest that by inducing PDK genes PGC-1alpha will direct pyruvate away from metabolism into acetyl-CoA and toward the formation of oxaloacetate and into the gluconeogenic pathway. PMID:15967803

  7. The activity of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the sera of patients with brain cancer.

    Science.gov (United States)

    Jelski, Wojciech; Laniewska-Dunaj, Magdalena; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2014-12-01

    Human brain tissue contains various alcohol dehydrogenase (ADH) isoenzymes and possess also aldehyde dehydrogenase (ALDH) activity. In our last experiments we have shown that ADH and ALDH are present also in the brain tumour cells. Moreover the activities of total ADH and class I isoenzymes were significantly higher in cancer tissue than healthy cells. It can suggests that these changes may be reflected by enzyme activity in the serum of patients with brain cancer. Serum samples were taken for routine biochemical investigation from 62 patients suffering from brain cancer (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. A statistically significant increase of class I alcohol dehydrogenase isoenzymes was found in the sera of patients with brain cancer. The median activity of this class isoenzyme in the patients group increased about 24 % in the comparison to the control level. The total alcohol dehydrogenase activity was also significantly higher (26 %) among patients with brain tumour than healthy ones. The activities of other tested ADH isoenzymes and total ALDH were unchanged. The increase of the activity of total ADH and class I alcohol dehydrogenase isoenzyme in the sera of patients with brain cancer seems to be caused by the release of this isoenzyme from tumour's cells.

  8. Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily

    Directory of Open Access Journals (Sweden)

    Kristan Katja

    2005-12-01

    Full Text Available Abstract Background 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl is a member of the short-chain dehydrogenase/reductase (SDR superfamily. SDR proteins usually function as dimers or tetramers and 17β-HSDcl is also a homodimer under native conditions. Results We have investigated here which secondary structure elements are involved in the dimerization of 17β-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the αE-helices interact with the Asp121, Glu117 and Asp187 residues from the αE and αF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17β-HSDcl monomeric, while the mutant 17β-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. Conclusion We have shown by site-directed mutagenesis and structure/function analysis that 17β-HSDcl dimerization involves the αE and αF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.

  9. Regulation of pyruvate dehydrogenase kinase activity by protein thiol-disulfide exchange.

    OpenAIRE

    Pettit, F H; Humphreys, J; Reed, L J

    1982-01-01

    Endogenous kinase activity of highly purified pyruvate dehydrogenase complex from bovine kidney is markedly inhibited by N-ethylmaleimide and by certain disulfides. Inhibition by disulfides is highly specific and is reversed by thiols. 5,5'-Dithiobis(2-nitrobenzoate) is the most potent inhibitor, showing significant inhibition at a concentration as low as 1 microM. Cystamine, oxidized glutathione, pantethine, lipoic acid, lipoamide, ergothionine, insulin, oxytocin, and vasopressin were ineffe...

  10. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains.

    Science.gov (United States)

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  11. Determination of dehydrogenase activities involved in D-glucose oxidation in Gluconobacter and Acetobacter strains

    Directory of Open Access Journals (Sweden)

    Florencia Sainz

    2016-08-01

    Full Text Available Acetic acid bacteria (AAB are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane bound dehydrogenases. In the present study, the enzyme activity of the membrane bound dehydrogenases (membrane-bound PQQ-glucose dehydrogenase (mGDH, D-gluconate dehydrogenase (GADH and membrane-bound glycerol dehydrogenase (GLDH involved in the oxidation of D-glucose and D-gluconic acid (GA was determined in six strains of three different species of AAB (three natural and three type strains. Moreover, the effect of these activities on the production of related metabolites (GA, 2-keto-D-gluconic acid (2KGA and 5-keto-D-gluconic acid (5KGA was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the A. malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h, which coincided with glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of G. oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition.Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter were

  12. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains

    Science.gov (United States)

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  13. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase.

    Science.gov (United States)

    Li, Changhong; Chen, Pan; Palladino, Andrew; Narayan, Srinivas; Russell, Laurie K; Sayed, Samir; Xiong, Guoxiang; Chen, Jie; Stokes, David; Butt, Yasmeen M; Jones, Patricia M; Collins, Heather W; Cohen, Noam A; Cohen, Akiva S; Nissim, Itzhak; Smith, Thomas J; Strauss, Arnold W; Matschinsky, Franz M; Bennett, Michael J; Stanley, Charles A

    2010-10-01

    The mechanism of insulin dysregulation in children with hyperinsulinism associated with inactivating mutations of short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) was examined in mice with a knock-out of the hadh gene (hadh(-/-)). The hadh(-/-) mice had reduced levels of plasma glucose and elevated plasma insulin levels, similar to children with SCHAD deficiency. hadh(-/-) mice were hypersensitive to oral amino acid with decrease of glucose level and elevation of insulin. Hypersensitivity to oral amino acid in hadh(-/-) mice can be explained by abnormal insulin responses to a physiological mixture of amino acids and increased sensitivity to leucine stimulation in isolated perifused islets. Measurement of cytosolic calcium showed normal basal levels and abnormal responses to amino acids in hadh(-/-) islets. Leucine, glutamine, and alanine are responsible for amino acid hypersensitivity in islets. hadh(-/-) islets have lower intracellular glutamate and aspartate levels, and this decrease can be prevented by high glucose. hadh(-/-) islets also have increased [U-(14)C]glutamine oxidation. In contrast, hadh(-/-) mice have similar glucose tolerance and insulin sensitivity compared with controls. Perifused hadh(-/-) islets showed no differences from controls in response to glucose-stimulated insulin secretion, even with addition of either a medium-chain fatty acid (octanoate) or a long-chain fatty acid (palmitate). Pull-down experiments with SCHAD, anti-SCHAD, or anti-GDH antibodies showed protein-protein interactions between SCHAD and GDH. GDH enzyme kinetics of hadh(-/-) islets showed an increase in GDH affinity for its substrate, α-ketoglutarate. These studies indicate that SCHAD deficiency causes hyperinsulinism by activation of GDH via loss of inhibitory regulation of GDH by SCHAD.

  14. Toxicity of Nitrification Inhibitors on Dehydrogenase Activity in Soils

    Directory of Open Access Journals (Sweden)

    Ferisman Tindaon

    2011-01-01

    Full Text Available The objective of this research was to determine the effects of nitrification inhibitors (NIs such as 3,4-dimethylpyrazolephosphate=DMPP, 4-Chlor-methylpyrazole phosphate=ClMPP and dicyandiamide,DCD which might be expected to inhibit microbial activity, on dehydrogenase activity (DRA,in three different soils in laboratory conditions. Dehydrogenase activity were assessed via reduction of 2-p-Iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride (INT. The toxicity and dose response curve of three NIs were quantified under laboratory conditions using a loamy clay, a sandy loam and a sandy soil. The quantitative determination of DHA was carried out spectrophotometrically. In all experiments, the influence of 5-1000 times the base concentration were examined. To evaluate the rate of inhibition with the increasing NI concentrations, dose reponse curves were presented and no observable effect level =NOEL, as well as effective dose ED10 and ED 50(10% and 50% inhibition were calculated. The NOEL for common microbial activity such as DHA was about 30–70 times higher than base concentration in all investigated soils. ClMPP exhibited the strongest influence on the non target microbial processes in the three soils if it compare to DMPP and DCD. The NOEL,ED10 and ED50 values higher in clay than in loamy or sandy soil. The NIs were generally most effective in sandy soils. The three NIs considered at the present state of knowledge as environmentally safe in use.

  15. Orthodontic Force Application in Correlation with Salivary Lactate Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Erik Husin

    2013-07-01

    Full Text Available Orthodontic tooth movement generate mechanical forces to periodontal ligament and alveolar bone. The forces correlate with initial responses of periodontal tissues and involving many metabolic changes. One of the metabolic changes detected in saliva is lactate dehydrogenase (LDH activity. Objectives: To evaluate the correlation between orthodontic interrupted force application, lactate dehydrogenase activity and the distance of tooth movement. Methods: upper premolar, pre-retraction of upper canine and 1, 7, 14, 21 and 28 days post-retraction of upper canine with 100g interrupted orthodontic force. Results: duration of force (F=11.926 p 14 and 28 days post-retraction of canine. The region of retraction correlated with the distance of tooth movement (F=7.377 p=0.007. The duration of force correlated with the distance of tooth movement (F=66.554 p=0.000. retraction of canine. Conclusion: This study concluded that orthodontic interrupted force application on canine could increase the distance of tooth movement and LDH activity in saliva.

  16. Efficient production of (R-2-hydroxy-4-phenylbutyric acid by using a coupled reconstructed D-lactate dehydrogenase and formate dehydrogenase system.

    Directory of Open Access Journals (Sweden)

    Binbin Sheng

    Full Text Available (R-2-hydroxy-4-phenylbutyric acid [(R-HPBA] is a key precursor for the production of angiotensin-converting enzyme inhibitors. However, the product yield and concentration of reported (R-HPBA synthetic processes remain unsatisfactory.The Y52L/F299Y mutant of NAD-dependent D-lactate dehydrogenase (D-nLDH in Lactobacillus bulgaricus ATCC 11842 was found to have high bio-reduction activity toward 2-oxo-4-phenylbutyric acid (OPBA. The mutant D-nLDHY52L/F299Y was then coexpressed with formate dehydrogenase in Escherichia coli BL21 (DE3 to construct a novel biocatalyst E. coli DF. Thus, a novel bio-reduction process utilizing whole cells of E. coli DF as the biocatalyst and formate as the co-substrate for cofactor regeneration was developed for the production of (R-HPBA from OPBA. The biocatalysis conditions were then optimized.Under the optimum conditions, 73.4 mM OPBA was reduced to 71.8 mM (R-HPBA in 90 min. Given its high product enantiomeric excess (>99% and productivity (47.9 mM h(-1, the constructed coupling biocatalysis system is a promising alternative for (R-HPBA production.

  17. Histochemical investigations on the in vivo effects of fluoride on tricarboxylic acid cycle dehydrogenases from Pelargonium zonale. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Lovelace, C.J.; Miller, G.W.

    1967-01-01

    In vivo effects of fluoride on tricarboxylic acid (TCA) cycle dehydrogenase enzymes of Pelargonium zonale were studied using p-nitro blue tetrazoleum chloride. Plants were exposed to 17 ppb HF, and enzyme activities in treated plants were compared to those in controls. Leaves of control plants were incubated in 5 x 10/sup -3/ M sodium fluoride. Injuries observed in fumigation and solution experiments were similar. Leaf tissue subjected to HF or sodium fluoride evidenced less succinic p-nitro blue tetrazoleum reductase activity than did control tissue. Other TCA cycle dehydrogenase enzymes were not observably affected by the fluoride concentrations used in these experiments. Excised leaves cultured in 5 x 10/sup -3/ M sodium fluoride exhibited less succinic p-nitro blue tetrazoleum reductase activity after 24 hr than did leaves cultured in 5 x 10/sup -3/ M sodium chloride. 8 references, 8 figures.

  18. Evaluation of Serum Lactate Dehydrogenase Activity in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    V.M.T. Trindade

    2013-05-01

    Full Text Available Introduction: Lactate dehydrogenase is a citosolic enzyme involved in reversible transformation of pyruvate to lactate. It participates in anaerobic glycolysis of skeletal muscle and red blood cells, in liver gluconeogenesis and in aerobic metabolism of heart muscle. The determination of its activity helps in the diagnosis of various diseases, because it is increased in serum of patients suffering from myocardial infarction, acute hepatitis, muscular dystrophy and cancer. This paper presents a learning object, mediated by computer, which contains the simulation of the laboratory determination serum lactate dehydrogenase activity measured by the spectrophotometric method, based in the decrease of absorbance at 340 nm. Materials and Methods: Initially, pictures and videos were obtained recording the procedure of the methodology. The most representative images were selected, edited and inserted into an animation developed with the aid of the tool Adobe ® Flash ® CS3. The validation of the object was performed by the students of Biochemistry I (Pharmacy-UFRGS from the second semester of 2009 and both of 2010. Results and Discussion: The analysis of students' answers revealed that 80% attributed the excellence of the navigation program, the display format and to aid in learning. Conclusion: Therefore, this software can be considered an adequate teaching resource as well as an innovative support in the construction of theoretical and practical knowledge of Biochemistry. Available at: http://www6.ufrgs.br/gcoeb/LDH

  19. 11 beta-Hydroxysteroid dehydrogenase activity in hypothalamic obesity.

    Science.gov (United States)

    Tiosano, Dov; Eisentein, Israel; Militianu, Daniela; Chrousos, George P; Hochberg, Ze'ev

    2003-01-01

    After extensive suprasellar operations for hypothalamic tumor removal, some patients develop Cushing-like morbid obesity while they receive replacement doses of glucocorticoids. In this study, we examined the hypothesis that target tissue conversion of inactive 11-ketosteroids to active 11 beta-OH glucocorticoids might explain the obesity of some patients with hypothalamic lesions. Toward this aim, we studied 10 patients with hypothalamic obesity and secondary adrenal insufficiency and 6 control Addisonian patients while they were on glucocorticoid replacement therapy. Pituitary hormone deficiencies were replaced when medically indicated. Twenty-four-hour urine was collected after a single oral dose of 12 mg/m(2) hydrocortisone acetate. The ratios of free and conjugated cortisol (F) to cortisone (E) and their metabolites, [tetrahydrocortisol (THF)+5 alpha THF]/tetrahyrdocortisone (THE), dihydrocortisols/dihydrocortisones, cortols/cortolones, and (F+E)/(THF+THE+5 alpha THF), were considered to represent 11 beta-hydroxysteroid dehydrogenase (HSD) activity. The 11-OH/11-oxo ratios were significantly higher in the urine of patients with hypothalamic obesity. The 11-OH/11-oxo ratios, however, did not correlate with the degree of obesity, yet a significant correlation was found between conjugated F/E and the ratio of visceral fat to sc fat measured by computerized tomography at the umbilical level. The consequence of increased 11 beta-HSD1 activity and the shift of the interconversion toward cortisol may contribute to the effects of the latter in adipose tissue. We propose that deficiency of hypothalamic messengers after surgical injury induces a paracrine/autocrine effect of enhanced glucocorticoid activity due to up-regulated 11 beta-HSD1 activity. PMID:12519880

  20. Furosemide and 11beta-hydroxysteroid dehydrogenase activity, in man.

    Science.gov (United States)

    Palermo, M; Armanini, D; Shackleton, C H L; Sorba, G; Cossu, M; Roitman, E; Scaroni, C; Delitala, G

    2002-09-01

    Mineralocorticoid receptors possess the same affinity for aldosterone and for cortisol and preferential binding of aldosterone is modulated by the 11 beta-hydroxysteroid dehydrogenase (11 beta-OHSD) enzyme, which converts cortisol to its inactive metabolite cortisone. Several endogenous or exogenous compounds able to inhibit the enzyme have been described and, as a consequence, produce the syndrome of apparent mineralocorticoid excess (AME) characterized by hypertension, hypokalemia, volume repletion and suppression of the renin-angiotensin-aldosterone system. High doses of furosemide, a diuretic that works in the luminal surface of the thick ascending limb of Henle's loop, have been reported to inhibit 11 beta-OHSD activity to the same extent as licorice in vivo and in vitro, in rat. The aim of our study was to verify the effect of the drug on 11 beta-OHSD activity in man at the doses currently used in clinical practice. We tested the activity of 11 beta-OHSD following both acute and protracted administration of furosemide. In the acute study, the drug was administered at low (40 mg i.v. in bolo) and high doses (infusion of 10 mg/kg bw i.v for six hours); the protracted furosemide administration consisted in 50 mg/day for 20 days, by mouth. The ratios between the cortisol metabolites tetrahydrocortisol plus allo-tetrahydrocortisol to tetra-hydrocortisone and urinary free cortisol to urinary free cortisone were used to measure the activity of 11 beta-OHSD. Urinary cortisol, cortisone and their metabolites were tested by a gas-chromatographic/mass spectrometric method. Neither acute nor prolonged administration of furosemide did affect the activity of 11 beta-OHSD although the drug was able to modify plasma aldosterone and PRA secretion and to determine hypokalemia. Our results suggest that furosemide does not play a significant role in 11 beta-OHSD modulation in humans, at least at the dosage used in clinical practice. PMID:12373630

  1. Sjögren-Larsson syndrome. Deficient activity of the fatty aldehyde dehydrogenase component of fatty alcohol:NAD+ oxidoreductase in cultured fibroblasts.

    OpenAIRE

    Rizzo, W B; Craft, D A

    1991-01-01

    Sjögren-Larsson syndrome (SLS) is an inherited disorder associated with impaired fatty alcohol oxidation due to deficient activity of fatty alcohol:NAD+ oxidoreductase (FAO). FAO is a complex enzyme which consists of two separate proteins that sequentially catalyze the oxidation of fatty alcohol to fatty aldehyde and fatty acid. To determine which enzymatic component of FAO was deficient in SLS, we assayed fatty aldehyde dehydrogenase (FALDH) and fatty alcohol dehydrogenase in cultured fibrob...

  2. Effect of different mulch materials on the soil dehydrogenase activity (DHA) in an organic pepper crop

    Science.gov (United States)

    Moreno, Marta M.; Peco, Jesús; Campos, Juan; Villena, Jaime; González, Sara; Moreno, Carmen

    2016-04-01

    The use biodegradable materials (biopolymers of different composition and papers) as an alternative to conventional mulches has increased considerably during the last years mainly for environmental reason. In order to assess the effect of these materials on the soil microbial activity during the season of a pepper crop organically grown in Central Spain, the soil dehydrogenase activity (DHA) was measured in laboratory. The mulch materials tested were: 1) black polyethylene (PE, 15 μm); black biopolymers (15 μm): 2) Mater-Bi® (corn starch based), 3) Sphere 4® (potato starch based), 4) Sphere 6® (potato starch based), 5) Bioflex® (polylactic acid based), 6) Ecovio® (polylactic acid based), 7) Mimgreen® (black paper, 85 g/m2). A randomized complete block design with four replications was adopted. The crop was drip irrigated following the water demand of each treatment. Soil samples (5-10 cm depth) under the different mulches were taken at different dates (at the beginning of the crop cycle and at different dates throughout the crop season). Additionally, samples of bare soil in a manual weeding and in an untreated control were taken. The results obtained show the negative effect of black PE on the DHA activity, mainly as result of the higher temperature reached under the mulch and the reduction in the gas interchange between the soil and the atmosphere. The values corresponding to the biodegradable materials were variable, although highlighting the low DHA activity observed under Bioflex®. In general, the uncovered treatments showed higher values than those reached under mulches, especially in the untreated control. Keywords: mulch, biodegradable, biopolymer, paper, dehydrogenase activity (DHA). Acknowledgements: the research was funded by Project RTA2011-00104-C04-03 from the INIA (Spanish Ministry of Economy and Competitiveness).

  3. Blending foundry sands with soil: Effect on dehydrogenase activity.

    Science.gov (United States)

    Dungan, Robert S; Kukier, Urzsula; Lee, Brad

    2006-03-15

    Each year U.S. foundries landfill several million tons of sand that can no longer be used to make metalcasting molds and cores. A possible use for these materials is as an ingredient in manufactured soils; however, potentially harmful metals and resin binders (used to make cores) may adversely impact the soil microbial community. In this study, the dehydrogenase activity (DHA) of soil amended with molding sand (clay-coated sand known as "green sand") or core sands at 10%, 30%, and 50% (dry wt.) was determined. The green sands were obtained from iron, aluminum, and brass foundries; the core sands were made with phenol-formaldehyde or furfuryl alcohol based resins. Overall, incremental additions of these sands resulted in a decrease in the DHA which lasted throughout the 12-week experimental period. A brass green sand, which contained high concentrations of Cu, Pb, and Zn, severely impacted the DHA. By week 12 no DHA was detected in the 30% and 50% treatments. In contrast, the DHA in soil amended with an aluminum green sand was 2.1 times higher (all blending ratios), on average, at week 4 and 1.4 times greater (30% and 50% treatments only) than the controls by week 12. In core sand-amended soil, the DHA results were similar to soils amended with aluminum and iron green sands. Increased activity in some treatments may be a result of the soil microorganisms utilizing the core resins as a carbon source. The DHA assay is a sensitive indicator of environmental stress caused by foundry sand constituents and may be useful to assess which foundry sands are suitable for beneficial use in the environment. PMID:15975632

  4. [Possible ways of regulating detoxifying processes in the alcohol dehydrogenase reaction with pantothenic acid derivatives].

    Science.gov (United States)

    Chernikevich, I P; Dorofeev, B F; Moĭseenok, A G

    1993-01-01

    Oxidation of derivatives and precursors of pantothenic acid was studied in alcohol dehydrogenase reactions. Despite the presence of free hydroxymethyl groups in a number of pantothenic acid derivatives only panthenol with Km = 8 x 10(-3) M was shown to serve as a substrate for alcohol dehydrogenase from horse liver tissue (EC 1.1.1.1) Pantethine, sodium phosphopantothenate, CoA and acetyl-CoA decreased the rate of ethanol oxidation, where pantethine and sodium phosphopantothenate were competitive inhibitors, while CoA and acetyl-CoA inhibited the enzyme noncompetitively Ki = 1.2 x 10(-2) M, 2.1 x 10(-2) M, 4.4 x 10(-4) M and 5.1 x 10(-4) M, respectively. Metabolic precursors, which were different from pantothenic acid in their structure, were not involved in the alcohol dehydrogenase reaction. Possible regulation of alcohol intoxication using derivatives and precursors of vitamin B3 is discussed. PMID:8511887

  5. Differential inhibition of PDKs by phenylbutyrate and enhancement of pyruvate dehydrogenase complex activity by combination with dichloroacetate.

    Science.gov (United States)

    Ferriero, Rosa; Iannuzzi, Clara; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2015-09-01

    Pyruvate dehydrogenase complex (PDHC) is a key enzyme in metabolism linking glycolysis to tricarboxylic acid cycle and its activity is tightly regulated by phosphorylation catalyzed by four pyruvate dehydrogenase kinase (PDK) isoforms. PDKs are pharmacological targets for several human diseases including cancer, diabetes, obesity, heart failure, and inherited PDHC deficiency. We investigated the inhibitory activity of phenylbutyrate toward PDKs and found that PDK isoforms 1-to-3 are inhibited whereas PDK4 is unaffected. Moreover, docking studies revealed putative binding sites of phenylbutyrate on PDK2 and 3 that are located on different sites compared to dichloroacetate (DCA), a previously known PDK inhibitor. Based on these findings, we showed both in cells and in mice that phenylbutyrate combined to DCA results in greater increase of PDHC activity compared to each drug alone. These results suggest that therapeutic efficacy can be enhanced by combination of drugs increasing PDHC enzyme activity. PMID:25601413

  6. Glutamate 190 is a general acid catalyst in the 6-phosphogluconate-dehydrogenase-catalyzed reaction.

    Science.gov (United States)

    Karsten, W E; Chooback, L; Cook, P F

    1998-11-10

    Site-directed mutagenesis was used to change E190 of sheep liver 6-phosphogluconate dehydrogenase to A, D, H, K, Q, and R to probe its possible role as a general acid catalyst. Each of the mutant proteins was characterized with respect to the pH dependence of kinetic parameters. Mutations that eliminate a titrable group at position 190, result in pH-rate profiles with no observable pK on the basic side of the V/K6PG profile. Mutations that change the pK of the group at position 190 result in the expected pK perturbations in the V/K6PG profile. Kinetic parameters obtained at the pH optimum in the pH-rate profiles are consistent with a rate-limiting tautomerization of the 1,2-enediol of ribulose 5-phosphate consistent with the proposed role of E190. Data are also consistent with some participation of E190 in an isomerization required to form the active Michaelis complex.

  7. Characterization of the major dehydrogenase related to d-lactic acid synthesis in Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293.

    Science.gov (United States)

    Li, Ling; Eom, Hyun-Ju; Park, Jung-Mi; Seo, Eunyoung; Ahn, Ji Eun; Kim, Tae-Jip; Kim, Jeong Hwan; Han, Nam Soo

    2012-10-10

    Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 is a lactic acid bacterium that converts pyruvate mainly to d-(-)-lactic acid by using d-(-)-lactate dehydrogenase (ldhD). The aim of this study was to identify the gene responsible for d-lactic acid formation in this organism and to characterize the enzyme to facilitate the production of optically pure d-lactic acid. A genomic analysis of L. mesenteroides ATCC 8293 revealed that 7 genes encode lactate-related dehydrogenase. According to transcriptomic, proteomic, and phylogenetic analyses, LEUM_1756 was the major gene responsible for the production of d-lactic acid. The LEUM_1756 gene, of 996bp and encoding 332 amino acids (36.5kDa), was cloned and overexpressed in Escherichia coli BL21(DE3) Star from an inducible pET-21a(+) vector. The enzyme was purified by Ni-NTA column chromatography and showed a specific activity of 4450U/mg, significantly higher than those of other previously reported ldhDs. The gel permeation chromatography analysis showed that the purified enzyme exists as tetramers in solution and this was the first report among lactic acid bacteria. The pH and temperature optima were pH 8.0 and 30°C, respectively, for the pyruvate reduction reaction, and pH 11.0 and 20°C, respectively, for the lactate oxidation reaction. The K(m) kinetic parameters for pyruvate and lactate were 0.58mM and 260mM, respectively. In addition, the k(cat) values for pyruvate and lactate were 2900s(-1) and 2280s(-1), respectively. The enzyme was not inhibited by Ca(2+), Co(2+), Cu(2+), Mg(2+), Mn(2+), Na(+), or urea, but was inhibited by 1mM Zn(2+) and 1mM SDS. PMID:22975125

  8. Lack of Skeletal Muscle IL-6 Affects Pyruvate Dehydrogenase Activity at Rest and during Prolonged Exercise

    Science.gov (United States)

    Gudiksen, Anders; Schwartz, Camilla Lindgren; Bertholdt, Lærke; Joensen, Ella; Knudsen, Jakob G.; Pilegaard, Henriette

    2016-01-01

    Pyruvate dehydrogenase (PDH) plays a key role in the regulation of skeletal muscle substrate utilization. IL-6 is produced in skeletal muscle during exercise in a duration dependent manner and has been reported to increase whole body fatty acid oxidation, muscle glucose uptake and decrease PDHa activity in skeletal muscle of fed mice. The aim of the present study was to examine whether muscle IL-6 contributes to exercise-induced PDH regulation in skeletal muscle. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) completed a single bout of treadmill exercise for 10, 60 or 120 min, with rested mice of each genotype serving as basal controls. The respiratory exchange ratio (RER) was overall higher (Putilization during prolonged exercise via effects on PDH. PMID:27327080

  9. Pyruvate Dehydrogenase Kinase 4

    OpenAIRE

    Cadoudal, Thomas; Distel, Emilie; Durant, Sylvie; Fouque, Françoise; Blouin, Jean-Marc; Collinet, Martine; Bortoli, Sylvie; Forest, Claude; Benelli, Chantal

    2008-01-01

    OBJECTIVE—Pyruvate dehydrogenase complex (PDC) serves as the metabolic switch between glucose and fatty acid utilization. PDC activity is inhibited by PDC kinase (PDK). PDC shares the same substrate, i.e., pyruvate, as glyceroneogenesis, a pathway controlling fatty acid release from white adipose tissue (WAT). Thiazolidinediones activate glyceroneogenesis. We studied the regulation by rosiglitazone of PDK2 and PDK4 isoforms and tested the hypothesis that glyceroneogenesis could be controlled ...

  10. Brain pyruvate and 2-oxoglutarate dehydrogenase complexes are mitochondrial targets of the CoA ester of the Refsum disease marker phytanic acid.

    Science.gov (United States)

    Bunik, Victoria I; Raddatz, Günter; Wanders, Ronald J A; Reiser, Georg

    2006-06-12

    Pyruvate and 2-oxoglutarate dehydrogenase complexes are strongly inhibited by phytanoyl-CoA (IC(50) approximately 10(-6)-10(-7) M). Palmitoyl-CoA is 10-fold less potent. Phytanic or palmitic acids have no inhibitory effect up to 0.3 mM. At the substrate saturation, the acyl-CoA's affect the first and second enzymatic components of the 2-oxoglutarate dehydrogenase complex, while the third component is inhibited only at a low saturation with its substrate dihydrolipoamide. Thus, key regulatory branch points of mitochondrial metabolism are targets of a cellular derivative of phytanic acid. Decreased activity of the complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease.

  11. The oxyanion hole of Pseudomonas fluorescens mannitol 2-dehydrogenase: a novel structural motif for electrostatic stabilisation in alcohol dehydrogenase active sites

    OpenAIRE

    Klimacek, Mario; Nidetzky, B

    2009-01-01

    Abstract The side chains of Asn-191 and Asn-300 constitute a characteristic structural motif of the active site of Pseudomonas fluorescens mannitol 2-dehydrogenase that lacks precedent in known alcohol dehydrogenases and resembles the canonical oxyanion binding pocket of serine proteases. We have used steady-state and transient kinetic studies of the effects of varied pH and deuterium isotopic substitutions in substrates and solvent on the enzymatic rates to delineate catalytic con...

  12. Dye-linked D-amino acid dehydrogenases: biochemical characteristics and applications in biotechnology.

    Science.gov (United States)

    Satomura, Takenori; Sakuraba, Haruhiko; Suye, Shin-Ichiro; Ohshima, Toshihisa

    2015-11-01

    Dye-linked D-amino acid dehydrogenases (Dye-DADHs) catalyze the dehydrogenation of free D-amino acids in the presence of an artificial electron acceptor. Although Dye-DADHs functioning in catabolism of L-alanine and as primary enzymes in electron transport chains are widely distributed in mesophilic Gram-negative bacteria, biochemical and biotechnological information on these enzymes remains scanty. This is in large part due to their instability after isolation. On the other hand, in the last decade, several novel types of Dye-DADH have been found in thermophilic bacteria and hyperthermophilic archaea, where they contribute not only to L-alanine catabolism but also to the catabolism of other amino acids, including D-arginine and L-hydroxyproline. In this minireview, we summarize recent developments in our understanding of the biochemical characteristics of Dye-DADHs and their specific application to electrochemical biosensors.

  13. The carboxy-terminal tail of pyruvate dehydrogenase kinase 2 is required for the kinase activity.

    Science.gov (United States)

    Klyuyeva, Alla; Tuganova, Alina; Popov, Kirill M

    2005-10-18

    Pyruvate dehydrogenase kinase 2 (PDK2) is a prototypical mitochondrial protein kinase that regulates the activity of the pyruvate dehydrogenase complex. Recent structural studies have established that PDK2 consists of a catalytic core built of the B and K domains and the relatively long amino and carboxyl tails of unknown function. Here, we show that the carboxy-terminal truncation variants of PDK2 display a greatly diminished capacity for phosphorylation of holo-PDC. This effect is due largely to the inability of the transacetylase component of PDC to promote the phosphorylation reaction catalyzed by the truncated PDK2 variants. Furthermore, the truncated forms of PDK2 bind poorly to the lipoyl-bearing domain(s) provided by the transacetylase component. Taken together, these data strongly suggest that the carboxyl tails of PDK isozymes contribute to the lipoyl-bearing domain-binding site of the kinase molecule. We also show that the carboxyl tails derived from isozymes PDK1, PDK3, and PDK4 are capable of supporting the kinase activity of the kinase core derived from PDK2 as well as binding of the respective PDK2 chimeras to the lipoyl-bearing domain. Furthermore, the chimera carrying the carboxyl tail of PDK3 displays a stronger response to the addition of the transacetylase component along with a better binding to the lipoyl-bearing domain, suggesting that, at least in part, the differences in the amino acid sequences of the carboxyl tails account for the differences between PDK isozymes. PMID:16216081

  14. PHARMACOKINETIC AND PHARMACODYNAMIC ANALYSIS OF INOSINE MONOPHOSPHATE DEHYDROGENASE (IMPDH) ACTIVITY IN MMF-TREATED HCT RECIPIENTS

    Science.gov (United States)

    Li, Hong; Mager, Donald E.; Sandmaier, Brenda M.; Storer, Barry E.; Boeckh, Michael J.; Bemer, Meagan J.; Phillips, Brian R.; Risler, Linda J.; McCune, Jeannine S.

    2014-01-01

    A novel approach to personalizing postgrafting immunosuppression in hematopoietic cell transplant (HCT) recipients is evaluating inosine monophosphate dehydrogenase (IMPDH) activity as a drug-specific biomarker of mycophenolic acid (MPA)-induced immunosuppression. This prospective study evaluated total MPA, unbound MPA, and total MPA glucuronide plasma concentrations and IMPDH activity in peripheral blood mononuclear cells (PMNC) at five time points after the morning dose of oral mycophenolate mofetil (MMF) on day +21 in 56 nonmyeloablative HCT recipients. Substantial interpatient variability in the pharmacokinetics and pharmacodynamics was observed and accurately characterized by the population pharmacokinetic/dynamic model. IMPDH activity decreased with increasing MPA plasma concentration, with maximum inhibition coinciding with maximum MPA concentration in most patients. The overall relationship between MPA concentration and IMPDH activity was described by a direct inhibitory Emax model with an IC50 = 3.23 mg/L total MPA and 57.3 ng/mL unbound MPA. The day +21 IMPDH area under the effect curve (AUEC) was associated with cytomegalovirus reactivation, non-relapse mortality, and overall mortality. In conclusion, a pharmacokinetic/dynamic model was developed that relates plasma MPA concentrations with PMNC IMPDH activity after an MMF dose in HCT recipients. Future studies should validate this model and confirm that day +21 IMPDH AUEC is a predictive biomarker. PMID:24727337

  15. Recipient pretransplant inosine monophosphate dehydrogenase activity in nonmyeloablative hematopoietic cell transplantation.

    Science.gov (United States)

    Bemer, Meagan J; Risler, Linda J; Phillips, Brian R; Wang, Joanne; Storer, Barry E; Sandmaier, Brenda M; Duan, Haichuan; Raccor, Brianne S; Boeckh, Michael J; McCune, Jeannine S

    2014-10-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5'-monophosphate to xanthosine 5'-monophosphate (XMP). We developed a highly sensitive liquid chromatography-mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNCs) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation but not with chronic GVHD, relapse, nonrelapse mortality, or overall mortality. We conclude that quantitation of the recipient's pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient's sensitivity to MMF. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients.

  16. The relationship between human skeletal muscle pyruvate dehydrogenase phosphatase activity and muscle aerobic capacity.

    Science.gov (United States)

    Love, Lorenzo K; LeBlanc, Paul J; Inglis, J Greig; Bradley, Nicolette S; Choptiany, Jon; Heigenhauser, George J F; Peters, Sandra J

    2011-08-01

    Pyruvate dehydrogenase (PDH) is a mitochondrial enzyme responsible for regulating the conversion of pyruvate to acetyl-CoA for use in the tricarboxylic acid cycle. PDH is regulated through phosphorylation and inactivation by PDH kinase (PDK) and dephosphorylation and activation by PDH phosphatase (PDP). The effect of endurance training on PDK in humans has been investigated; however, to date no study has examined the effect of endurance training on PDP in humans. Therefore, the purpose of this study was to examine differences in PDP activity and PDP1 protein content in human skeletal muscle across a range of muscle aerobic capacities. This association is important as higher PDP activity and protein content will allow for increased activation of PDH, and carbohydrate oxidation. The main findings of this study were that 1) PDP activity (r(2) = 0.399, P = 0.001) and PDP1 protein expression (r(2) = 0.153, P = 0.039) were positively correlated with citrate synthase (CS) activity as a marker for muscle aerobic capacity; 2) E1α (r(2) = 0.310, P = 0.002) and PDK2 protein (r(2) = 0.229, P =0.012) are positively correlated with muscle CS activity; and 3) although it is the most abundant isoform, PDP1 protein content only explained ∼ 18% of the variance in PDP activity (r(2) = 0.184, P = 0.033). In addition, PDP1 in combination with E1α explained ∼ 38% of the variance in PDP activity (r(2) = 0.383, P = 0.005), suggesting that there may be alternative regulatory mechanisms of this enzyme other than protein content. These data suggest that with higher muscle aerobic capacity (CS activity) there is a greater capacity for carbohydrate oxidation (E1α), in concert with higher potential for PDH activation (PDP activity). PMID:21596918

  17. L-lactic acid production from D-xylose with Candida sonorensis expressing a heterologous lactate dehydrogenase encoding gene

    OpenAIRE

    Koivuranta, Kari T; Ilmén, Marja; Wiebe, Marilyn G.; Ruohonen, Laura; Suominen, Pirkko; Penttilä, Merja

    2014-01-01

    Background Bioplastics, like polylactic acid (PLA), are renewable alternatives for petroleum-based plastics. Lactic acid, the monomer of PLA, has traditionally been produced biotechnologically with bacteria. With genetic engineering, yeast have the potential to replace bacteria in biotechnological lactic acid production, with the benefits of being acid tolerant and having simple nutritional requirements. Lactate dehydrogenase genes have been introduced to various yeast to demonstrate this pot...

  18. Expression of a Heterologous Glutamate Dehydrogenase Gene in Lactococcus lactis Highly Improves the Conversion of Amino Acids to Aroma Compounds

    OpenAIRE

    Rijnen, Liesbeth; Courtin, Pascal; Gripon, Jean-Claude; Yvon, Mireille

    2000-01-01

    The first step of amino acid degradation in lactococci is a transamination, which requires an α-keto acid as the amino group acceptor. We have previously shown that the level of available α-keto acid in semihard cheese is the first limiting factor for conversion of amino acids to aroma compounds, since aroma formation is greatly enhanced by adding α-ketoglutarate to cheese curd. In this study we introduced a heterologous catabolic glutamate dehydrogenase (GDH) gene into Lactococcus lactis so ...

  19. Single amino-acid substitution in the N-terminal arm altered the tetramer stability of rat muscle lactate dehydrogenase A

    Institute of Scientific and Technical Information of China (English)

    YUAN; Chong; (

    2001-01-01

    [1]Price, N. C., Assembly of multi-subunit structures, in Mechanisms of Protein Folding (ed. Pain, R. H.), New York: Oxford University Press, 1994, 160-193.[2]Casal, J. I., Ahern, T. J., Davenport, R. C. et al., Subunit interface of triosephosphate isomerase: Site-directed mutagenesis and characterization of the altered enzyme, Biochemistry, 1987, 26: 1258-1264.[3]Chakerian, A. E., Matthews, K. S., Characterization of mutations in oligomerization domain of lac repressor protein, J. Biol. Chem., 1991, 266: 22206-22214.[4]Mandelman, D., Schwarz, F. P., Li, H. Y. et al., The role of quaternary interactions on the stability and activity of ascorbate peroxidase, Protein Sci., 1998, 7: 2089-2098.[5]Thomas, M. C., Ballantine, S. P., Bethell, S. S. et al., Single amino acid substitutions disrupt tetramer formation in the dihydroneopterin aldolase enzyme of Pneumocystis carinii, Biochemistry, 1998, 37: 11629-11636.[6]Holbrook, J. J., Liljas, A., Steindel, S. J. et al., Lactate dehydrogenase, in The Enzymes (ed. Boyer, P. D.), Vol. 11, 3rd ed., New York: Academic Press, 1975, 191-292.[7]Zettlmeissl, G., Rudolph, R., Jaenicke, R., Reconstitution of lactic dehydrogenase after acid dissociation, Eur. J. Biochem., 1981, 121: 169-175.[8]Zettlmeissl, G., Rudolph, R., Jaenicke, R., Rate-determining folding and association reactions on the reconstitution pathway of porcine skeletal muscle lactic dehydrogenase after denaturation by guanidine hydrochloride, Biochemistry, 1982, 21: 3946-3950.[9]Hermann, R., Jaenicke, R., Rudolph, R., Analysis of the reconstitution of oligomeric enzymes by cross-linking with glutaraldehyde: Kinetics of reassociation of lactic dehydrogenase, Biochemistry, 1981, 20: 5195-5201.[10]Jaenicke, R., Folding and association of protein, Prog. Biophys. Mol. Biol., 1987, 49: 117-237.[11]Opitz, U., Rudolph, R., Jaenicke, R. et al., Proteolytic dimeric of porcine muscle lactate dehydrogenase: Characterization, folding, and

  20. Semi-Rational Design of Geobacillus stearothermophilus L-Lactate Dehydrogenase to Access Various Chiral α-Hydroxy Acids.

    Science.gov (United States)

    Aslan, Aşkın Sevinç; Birmingham, William R; Karagüler, Nevin Gül; Turner, Nicholas J; Binay, Barış

    2016-06-01

    Chiral α-hydroxy acids (AHAs) are rapidly becoming important synthetic building blocks, in particular for the production of pharmaceuticals and other fine chemicals. Chiral compounds of a variety of functionalities are now often derived using enzymes, and L-lactate dehydrogenase from the thermophilic organism Geobacillus stearothermophilus (bsLDH) has the potential to be employed for the industrial synthesis of chiral α-hydroxy acids. Despite the thorough characterization of this enzyme, generation of variants with high activity on non-natural substrates has remained difficult and therefore limits the use of bsLDH in industry. Here, we present the engineering of bsLDH using semi-rational design as a method of focusing screening in a small and smart library for novel biocatalysts. In this study, six mutant libraries were designed in an effort to expand the substrate range of bsLDH. The eight variants identified as having enhanced activity toward the selected α-keto acids belonged to the same library, which targeted two positions simultaneously. These new variants now may be useful biocatalysts for chiral synthesis of α-hydroxy acids.

  1. Growth hormone-induced insulin resistance in human subjects involves reduced pyruvate dehydrogenase activity

    DEFF Research Database (Denmark)

    Nellemann, B.; Vendelbo, M.H.; Nielsen, Thomas Svava;

    2014-01-01

    Insulin resistance induced by growth hormone (GH) is linked to promotion of lipolysis by unknown mechanisms. We hypothesized that suppression of the activity of pyruvate dehydrogenase in the active form (PDHa) underlies GH-induced insulin resistance similar to what is observed during fasting....

  2. Angiotensin administration stimulates renal 11 beta-hydroxysteroid dehydrogenase activity in healthy men

    NARCIS (Netherlands)

    Kerstens, MN; van der Kleij, FGH; Boonstra, AH; Sluiter, WJ; van der Molen, JC; Navis, G; Dullaart, RPF

    2004-01-01

    Background. We examined whether acute administration of angiotensin modulates the activity of 11beta-hydroxysteroid dehydrogenase (11betaHSD), the intracellular enzyme catalyzing the interconversion between the hormonally active cortisol and inactive cortisone. Methods. Twenty-one male healthy subje

  3. Production of l-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases

    OpenAIRE

    Ilmén, Marja; Koivuranta, Kari; Ruohonen, Laura; Rajgarhia, Vineet; Suominen, Pirkko; Penttilä, Merja

    2013-01-01

    Background Polylactic acid is a renewable raw material that is increasingly used in the manufacture of bioplastics, which offers a more sustainable alternative to materials derived from fossil resources. Both lactic acid bacteria and genetically engineered yeast have been implemented in commercial scale in biotechnological production of lactic acid. In the present work, genes encoding l-lactate dehydrogenase (LDH) of Lactobacillus helveticus, Bacillus megaterium and Rhizopus oryzae were expre...

  4. Exercise-induced pyruvate dehydrogenase activation is not affected by 7 days of bed rest

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Jørgensen, Stine Ringholm; Biensø, Rasmus Sjørup;

    2011-01-01

    To test the hypothesis that physical inactivity impairs the exercise-induced modulation of pyruvate dehydrogenase (PDH), 6 healthy normally physically active male subjects completed 7 days of bed rest. Before and immediately after the bed rest, the subjects completed an OGTT and a one-legged knee...

  5. Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds

    Directory of Open Access Journals (Sweden)

    Gideon C. Okpokwasili

    2010-04-01

    Full Text Available The toxicity of phenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol on Pseudomonas, Bacillus and Escherichia species isolated from petroleum refinery wastewater was assessed via inhibition of dehydrogenase enzyme activity. At low concentrations, 2-nitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol stimulated dehydrogenase activity and at sufficient concentrations, phenolic compounds inhibited dehydrogenase activities. Generally, phenol is less toxic than substituted phenols. Estimations of the degree of inhibition/stimulation of dehydrogenase activities showed significant dose-dependent responses that are describable by logistic functions. The toxicity thresholds varied significantly (P < 0.05 among the bacterial strains and phenolic compounds. The median inhibitory concentrations (IC50s ranged from 4.118 ± 0.097 mg.L-1 for 4-nitrophenol against Pseudomonas sp. DAF1 to 1407.997 ± 7.091 mg.L-1 for phenol against Bacillus sp. DISK1. This study suggested that the organisms have moderate sensitivity to phenols and have the potential to be used as indicators for assessment of chemical toxicity. They could also be used as catalysts for degradation of phenols in effluents.

  6. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers

    Science.gov (United States)

    Nemeria, Natalia S.; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank

    2010-01-01

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4′-aminopyrimidine N1′ atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu571, Glu235, and Glu237) and Arg606 resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. 1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. 2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. 3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. 4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu235 makes no direct contact with the cofactor. The role of the conserved Glu571 residue in both catalysis and cofactor orientation is revealed by the combined results for the first time. PMID:20106967

  7. Effects of synthetic detergents on in vivo activity of tissue phosphatases and succinic dehydrogenase from Mystus vittatus

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, D.; Verma, S.R.

    1981-05-01

    African catfish (Mystus vittatus) were exposed to three sub-lethal concentrations of Swascofix E45 (13.8, 9.2 and 4.6 mg/l) and Swascol 3L (69.3, 46.2 and 23.1 mg/l) for 15 and 30 days, and their effects on alkaline and acid phosphatase, and succinic dehydrogenase in liver, kidney and intestine were measured. The enzymes were found to be inhibited in all the tissues. Maximum inhibition (38.44%) was observed in liver alkaline phosphatase activity after 30 days with the highest concentration of Swascofix E45 and the lowest inhibition (0.118%) was found in kidney acid phosphatase activity with the lowest concentration of Swascol 3L after 15 days. Insignificant enzyme stimulation in some cases was also observed.

  8. The activity of class I, II, III and IV of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in brain cancer.

    Science.gov (United States)

    Laniewska-Dunaj, Magdalena; Jelski, Wojciech; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2013-07-01

    The brain being highly sensitive to the action of alcohol is potentially susceptible to its carcinogenic effects. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the main enzymes involved in ethanol metabolism, which leads to the generation of carcinogenic acetaldehyde. Human brain tissue contains various ADH isoenzymes and possess also ALDH activity. The purpose of this study was to compare the capacity for ethanol metabolism measured by ADH isoenzymes and ALDH activity in cancer tissues and healthy brain cells. The samples were taken from 62 brain cancer patients (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. The total activity of ADH, and activity of class I ADH were significantly higher in cancer cells than in healthy tissues. The other tested classes of ADH and ALDH did not show statistically significant differences of activity in cancer and in normal cells. Analysis of the enzymes activity did not show significant differences depending on the location of the tumor. The differences in the activity of total alcohol dehydrogenase, and class I isoenzyme between cancer tissues and healthy brain cells might be a factor for metabolic changes and disturbances in low mature cancer cells and additionally might be a reason for higher level of acetaldehyde which can intensify the carcinogenesis.

  9. NAD(P-DEPENDENT DEHYDROGENASE ACTIVITY IN PERIPHERAL BLOOD LYMPHOCYTES OF INFANTS WITH ENLARGEMENT OF PHARYNGEAL TONSILS

    Directory of Open Access Journals (Sweden)

    L. M. Kurtasova

    2014-01-01

    Full Text Available We have observed and examined 57 children 1 to 3 years old diagnosed with enlargement of pharyngeal tonsils. A control group was presented by 35 healthy children. Bioluminescence technique was applied for studying NAD(P-dependent dehydrogenase activity in peripheral blood lymphocytes. Activation of aerobic respiration and increasing activity of pentose phosphate cycle-dependent plastic processes were registered in blood lymphocytes of children with hypertrophic pharyngeal tonsils; along with decreased function of malate-aspartate shunt in energy metabolism of the cells, diminished anaerobic reaction of NADHdependent LDH, lower interaction between Krebs cycle and reactions of amino acid metabolism, and reduced activity of glutathione reductase.

  10. Cloning and characterization of a gene (msdA) encoding methylmalonic acid semialdehyde dehydrogenase from Streptomyces coelicolor.

    OpenAIRE

    Zhang, Y. X.; Tang, L.; Hutchinson, C R

    1996-01-01

    A homolog of the mmsA gene of Pseudomonas aeruginosa, which encodes methylmalonic acid semialdehyde dehydrogenase (MSDH) and is involved in valine catabolism in pseudomonads and mammals, was cloned and sequenced from Streptomyces coelicolor. Of the two open reading frames (ORFs) found, which are convergently transcribed and separated by a 62-nucleotide noncoding region, the deduced amino acid sequence of the msdA ORF (homologous to mmsA) is similar to a variety of prokaryotic and eukaryotic a...

  11. Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases.

    Science.gov (United States)

    Sugden, Mary C; Holness, Mark J

    2006-07-01

    The mechanisms that control mammalian pyruvate dehydrogenase complex (PDC) activity include its phosphorylation (inactivation) by a family of pyruvate dehydrogenase kinases (PDKs 1 - 4). Here we review new developments in the regulation of the activities and expression of the PDKs, in particular PDK2 and PDK4, in relation to glucose and lipid homeostasis. This review describes recent advances relating to the acute and long-term modes of regulation of the PDKs, with particular emphasis on the regulatory roles of nuclear receptors including peroxisome proliferator-activated receptor (PPAR) alpha and Liver X receptor (LXR), PPAR gamma coactivator alpha (PGC-1alpha) and insulin, and the impact of changes in PDK activity and expression in glucose and lipid homeostasis. Since PDK4 may assist in lipid clearance when there is an imbalance between lipid delivery and oxidation, it may represent an attractive target for interventions aimed at rectifying abnormal lipid as well as glucose homeostasis in disease states. PMID:17132539

  12. Nuclear Magnetic Resonance Approaches in the Study of 2-Oxo Acid Dehydrogenase Multienzyme Complexes—A Literature Review

    Directory of Open Access Journals (Sweden)

    Mulchand S. Patel

    2013-09-01

    Full Text Available The 2-oxoacid dehydrogenase complexes (ODHc consist of multiple copies of three enzyme components: E1, a 2-oxoacid decarboxylase; E2, dihydrolipoyl acyl-transferase; and E3, dihydrolipoyl dehydrogenase, that together catalyze the oxidative decarboxylation of 2-oxoacids, in the presence of thiamin diphosphate (ThDP, coenzyme A (CoA, Mg2+ and NAD+, to generate CO2, NADH and the corresponding acyl-CoA. The structural scaffold of the complex is provided by E2, with E1 and E3 bound around the periphery. The three principal members of the family are pyruvate dehydrogenase (PDHc, 2-oxoglutarate dehydrogenase (OGDHc and branched-chain 2-oxo acid dehydrogenase (BCKDHc. In this review, we report application of NMR-based approaches to both mechanistic and structural issues concerning these complexes. These studies revealed the nature and reactivity of transient intermediates on the enzymatic pathway and provided site-specific information on the architecture and binding specificity of the domain interfaces using solubilized truncated domain constructs of the multi-domain E2 component in its interactions with the E1 and E3 components. Where studied, NMR has also provided information about mobile loops and the possible relationship of mobility and catalysis.

  13. Coordination environment of the active-site metal ion of liver alcohol dehydrogenase.

    OpenAIRE

    Makinen, M W; Yim, M B

    1981-01-01

    The coordination environment of the catalytically active metal ion of horse liver alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) has been investigated by electron paramagnetic resonance (EPR) methods with use of the active-site-specific Co2+-reconstituted enzyme. The EPR absorption spectrum of the metal-substituted enzyme is characteristic of a rhombically distorted environment. The spectrum of the enzyme--NAD+ complex shows approximate axial symmetry of the metal ion site, i...

  14. Multichannel Simultaneous Determination of Activities of Lactate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L.

    2000-09-12

    It is very important to find the best conditions for some enzymes to do the best catalysis in current pharmaceutical industries. Based on the results above, we could say that this set-up could be widely used in finding the optimal condition for best enzyme activity of a certain enzyme. Instead of looking for the best condition for enzyme activity by doing many similar reactions repeatedly, we can complete this assignment with just one run if we could apply enough conditions.

  15. Certain enzymatic activities in brain and liver mitochondria of rats treated with pantothenic acid after irradiation

    International Nuclear Information System (INIS)

    Whole body caesium-137 gamma irradiation of rats with single dose of 5 Gy induced significant decrease in the activities of glutamate dehydrogenase, isocitrate dehydrogenase and succunate dehydrogenase in mitochondria of brain and liver. Intraperitoneal administration of pantothenic acid (20 mg/Kg body weight/day) for 5 consecutive days after irradiation resulted of detectable improvement in the radiation-induced decrease inactivities of mitochondrial enzymes. It is postulated that pantothenic acid administered to rats after irradiation might play a role in the regulation of certain mitochondrial enzymes activities

  16. Stability and activity of alcohol dehydrogenases in W/O-microemulsions: enantioselective reduction including cofactor regeneration.

    Science.gov (United States)

    Orlich, B; Berger, H; Lade, M; Schomäcker, R

    2000-12-20

    Microemulsions provide an interesting alternative to classical methods for the conversion of less water-soluble substrates by alcohol dehydrogenase, but until now stability and activity were too low for economically useful processes. The activity and stability of the enzymes are dependent on the microemulsion composition, mostly the water and the surfactant concentration. Therefore, it is necessary to know the exact phase behavior of a given microemulsion reaction system and the corresponding enzyme behavior therein. Because of their economic and ecologic suitability polyethoxylated fatty alcohols were investigated concerning their phase behavior and their compatibility with enzymes in ternary mixtures. The phase behavior of Marlipal O13-60 (C13EO6 in industrial quality)/cyclohexane/water and its effect on the activity and stability of alcohol dehydrogenase from Yeast (YADH) and horse liver (HLADH) and the carbonyl reductase from Candida parapsilosis (CPCR) is presented in this study. Beside the macroscopic phase behavior of the reaction system, the viscosity of the system indicates structural changes of aggregates in the microemulsion. The changes of the enzyme activities with the composition are discussed on the basis of transitions from reverse micelles to swollen reverse micelles and finally, the transition to the phase separation. The formate dehydrogenase from Candida boidinii was used for the NADH-regeneration during reduction reactions. While the formate dehydrogenase did not show any kinetic effect on the microemulsion composition, the other enzymes show significant changes of activity and stability varying the water or surfactant concentration of the microemulsion. Under certain conditions, stability could be maintained with HLADH for several weeks. Successful experiments with semi-batch processes including cofactor regeneration and product separation were performed.

  17. FERROFLUIDS INFLUENCE ON DEHYDROGENASES ACTIVITY IN CELLULOLYTIC FUNGUS CHAETOMIUM GLOBOSUM

    OpenAIRE

    Alexandru Manoliu; Lacramioara Oprica; Zenovia Olteanu; Dorina Creanga

    2003-01-01

    he activity of dehy drogenases was studied after ferrofluids supply ing in the culture medium of Chaetomium globosum. Spectral measurements were carried out after 7 and, respectively , 11 day s of growth. Different results were noticed for different ferrofluids concentrations: 20, 40, 60, 80 and 100 μl/L. Inhibitory or stimulatory ferrofluids effect was obtained depending on the nature of the investigated enzyme.

  18. Differential pulse voltammetric studies on the effects of Al(Ⅲ) on the lactate dehydrogenase activity

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, differential pulse voltammetry (DPV) was applied to study the effects of aluminum Al(Ⅲ) on the lactate dehydrogenase (LDH) activity. Michaelis-Menten constant (KNADHm) and maximum velocity (vmax) in the enzyme promoting catalytic reaction of "pyruvate(Pyr) + NADH + H+ LDH(=) lactate + NAD+" under different conditions by monitoring DPV reduction current of NAD+ were reported.(C) 2007 Shu Ping Bi. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  19. Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells.

    Science.gov (United States)

    McFate, Thomas; Mohyeldin, Ahmed; Lu, Huasheng; Thakar, Jay; Henriques, Jeremy; Halim, Nader D; Wu, Hong; Schell, Michael J; Tsang, Tsz Mon; Teahan, Orla; Zhou, Shaoyu; Califano, Joseph A; Jeoung, Nam Ho; Harris, Robert A; Verma, Ajay

    2008-08-15

    High lactate generation and low glucose oxidation, despite normal oxygen conditions, are commonly seen in cancer cells and tumors. Historically known as the Warburg effect, this altered metabolic phenotype has long been correlated with malignant progression and poor clinical outcome. However, the mechanistic relationship between altered glucose metabolism and malignancy remains poorly understood. Here we show that inhibition of pyruvate dehydrogenase complex (PDC) activity contributes to the Warburg metabolic and malignant phenotype in human head and neck squamous cell carcinoma. PDC inhibition occurs via enhanced expression of pyruvate dehydrogenase kinase-1 (PDK-1), which results in inhibitory phosphorylation of the pyruvate dehydrogenase alpha (PDHalpha) subunit. We also demonstrate that PDC inhibition in cancer cells is associated with normoxic stabilization of the malignancy-promoting transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha) by glycolytic metabolites. Knockdown of PDK-1 via short hairpin RNA lowers PDHalpha phosphorylation, restores PDC activity, reverts the Warburg metabolic phenotype, decreases normoxic HIF-1alpha expression, lowers hypoxic cell survival, decreases invasiveness, and inhibits tumor growth. PDK-1 is an HIF-1-regulated gene, and these data suggest that the buildup of glycolytic metabolites, resulting from high PDK-1 expression, may in turn promote HIF-1 activation, thus sustaining a feed-forward loop for malignant progression. In addition to providing anabolic support for cancer cells, altered fuel metabolism thus supports a malignant phenotype. Correction of metabolic abnormalities offers unique opportunities for cancer treatment and may potentially synergize with other cancer therapies. PMID:18541534

  20. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  1. Structure of d-lactate dehydrogenase from Aquifex aeolicus complexed with NAD+ and lactic acid (or pyruvate)

    OpenAIRE

    Antonyuk, Svetlana V.; Strange, Richard W.; Ellis, Mark J.; Bessho, Yoshitaka; Kuramitsu, Seiki; Inoue, Yumiko; Yokoyama, Shigeyuki; Hasnain, S. Samar

    2009-01-01

    The structure of d-lactate dehydrogenase from Aquifex aeolicus has been determined with each subunit of the homodimer in a ‘closed’ conformation and with the NAD+ cofactor and lactate (or pyruvate) bound at the inter-domain active-site cleft.

  2. Behaviour of mesotrione in maize and soil system and its influence on soil dehydrogenase activity.

    Science.gov (United States)

    Kaczynski, Piotr; Lozowicka, Bozena; Hrynko, Izabela; Wolejko, Elzbieta

    2016-11-15

    The aim of this study was to investigate the dissipation of mesotrione and effect on dehydrogenase activity (DHA) in maize and soil system. The paper for the first time describes behaviour of this herbicide applied at various doses (separately or in mixture with other herbicide) in acidic and alkaline environment. The experiments were conducted using the method randomized blocks in four repetition cycles. Chemical application in seven variants at recommended doses of herbicide were performed. The sample preparation was performed by a modified QuEChERS method and the concentrations of mesotrione in maize and soil were determined by the liquid chromatography with tandem mass spectrometry (LC-MS/MS). The limit of detection was 0.0005mgkg(-1) and quantification 0.001mgkg(-1). The dissipation of mesotrione were described according to first-order (FO) kinetics equation with R(2) were between 0.8794 and 0.9934. The initial deposit of herbicide in soil and maize was higher in an acidic environment (0.06-0.18mgkg(-1)). A positive correlation between an alkaline pH and the rate of dissipation in soil was observed. The results showed that the time after which 50% (DT50) of substance has been degraded was different for both plant and soil. DT50 for soil was within the range 3.2-6.0days and 2.9-4.4days, for the maize 3.9-4.8days and 3.4-4.5days in an alkaline and an acidic environment, respectively. Concentration of mesotrione at applicable MRL level of 0.05mgkg(-1) in maize was achieved at 0.5-5.9days and at proposed MRL of 0.01mgkg(-1) at 8.8-15.8days. The results indicate that the application of mesotrione affected on DHA in the soil. One day after application this herbicide, concentration of DHA in soil was lower than in control plots, but after 21days was observed trend of increasing DHA. PMID:27492351

  3. Dehydrogenase activity of liver parenchyma in mice exposed to arsenic in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Bencko, V.; Rossner, P.; Mokry, M.

    1975-01-01

    The objective was to detect changes in dehydrogenase activity (DHA) of liver parenchyma in mice exposed to arsenic in drinking water (for 2, 4, 8, 16, 32 and 64 days). The concentrations used guaranteed threshold, above-threshold and toxic doses of arsenic. A concentration of 5 mg/l produced no significant difference (in comparison with control), a concentration of 250 mg/l caused a deep decline in DHA activity. A concentration of 50 mg/l reduced DHA solely in the first exposure interval. It was found that DHA activity was substantially less altered by arsenic than the metabolic consumption of oxygen under identical conditions.

  4. Dehydrogenase activity of technogenic soils of former sulphur mines (Yavoriv and Nemyriv, Ukraine)

    OpenAIRE

    T. Włodarczyk; M. Brzezińska; Maryskevych, O.; V. Levyk

    2007-01-01

    The dehydrogenase activity (an index of the total soil biological activity), sulphur content, pH and Corg were determined in technogenic soils of the former (1954-1994) sulphur mines in Ukraine (open pit and underground sulphur melting, Yavoriv and Nemyriv, respectively). The soils were neither managed nor reclaimed, and underwent natural self-restoration processes. Soils of former open pit sulphur mine showed Corg of 0.07-1.29%, pH of 7-7.9 and a high SO4-S content (1.7-14.7 g kg-1). Dehydro...

  5. New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid?

    Science.gov (United States)

    Van Kuilenburg, André B P; Stroomer, Alida E M; Van Lenthe, Henk; Abeling, Nico G G M; Van Gennip, Albert H

    2004-04-01

    DPD (dihydropyrimidine dehydrogenase) constitutes the first step of the pyrimidine degradation pathway, in which the pyrimidine bases uracil and thymine are catabolized to beta-alanine and the R-enantiomer of beta-AIB (beta-aminoisobutyric acid) respectively. The S-enantiomer of beta-AIB is predominantly derived from the catabolism of valine. It has been suggested that an altered homoeostasis of beta-alanine underlies some of the clinical abnormalities encountered in patients with a DPD deficiency. In the present study, we demonstrated that only a slightly decreased concentration of beta-alanine was present in the urine and plasma, whereas normal levels of beta-alanine were present in the cerebrospinal fluid of patients with a DPD deficiency. Therefore the metabolism of beta-alanine-containing peptides, such as carnosine, may be an important factor involved in the homoeostasis of beta-alanine in patients with DPD deficiency. The mean concentration of beta-AIB was approx. 2-3-fold lower in cerebrospinal fluid and urine of patients with a DPD deficiency, when compared with controls. In contrast, strongly decreased levels (10-fold) of beta-AIB were present in the plasma of DPD patients. Our results demonstrate that, under pathological conditions, the catabolism of valine can result in the production of significant amounts of beta-AIB. Furthermore, the observation that the R-enantiomer of beta-AIB is abundantly present in the urine of DPD patients suggests that significant cross-over exists between the thymine and valine catabolic pathways. PMID:14705962

  6. Ethylmalonic aciduria is associated with an amino acid variant of short chain acyl-coenzyme A dehydrogenase

    DEFF Research Database (Denmark)

    Corydon, M J; Gregersen, N; Lehnert, W;

    1996-01-01

    population, respectively. One hundred and thirty-five patients from Germany, Denmark, the Czech Republic, Spain, and the United States were selected for this study on the basis of abnormal EMA excretion ranging from 18 to 1185 mmol/mol of creatinine (controls ...Ethylmalonic aciduria is a common biochemical finding in patients with inborn errors of short chain fatty acid beta-oxidation. The urinary excretion of ethylmalonic acid (EMA) may stem from decreased oxidation by short chain acyl-CoA dehydrogenase (SCAD) of butyryl-CoA, which is alternatively...

  7. Alcohol and Aldehyde Dehydrogenases: Retinoid Metabolic Effects in Mouse Knockout Models

    OpenAIRE

    Kumar, Sandeep; Sandell, Lisa L.; Trainor, Paul A; Koentgen, Frank; Duester, Gregg

    2011-01-01

    Retinoic acid (RA) is the active metabolite of vitamin A (retinol) that controls growth and development. The first step of RA synthesis is controlled by enzymes of the alcohol dehydrogenase (ADH) and retinol dehydrogenase (RDH) families that catalyze oxidation of retinol to retinaldehyde. The second step of RA synthesis is controlled by members of the aldehyde dehydrogenase (ALDH) family also known as retinaldehyde dehydrogenase (RALDH) that further oxidize retinaldehyde to produce RA. RA fun...

  8. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies

    Science.gov (United States)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem

    2016-02-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  9. Lactic dehydrogenase isozyme patterns and alpha-hydroxybutyrate dehydrogenase activities in serum from newborns, patients with ovarian cancer or myocardial infarction.

    Science.gov (United States)

    Kikuchi, Y; Kita, T; Furuya, K; Kato, K

    1988-11-01

    Lactic dehydrogenase (LDH) and alpha-hydroxybutyrate dehydrogenase (HBD) and LDH isozyme patterns were studied in serum from newborns and patients with ovarian cancer or myocardial infarction. LDH and HBD activities from newborns and patients with ovarian cancer or myocardial infarction were significantly increased, compared with those from patients with benign ovarian tumor. These increases were accompanied with a decrease of LDH-H and an increase of LDH-M in serum from newborns and patients with ovarian cancer, while an increase of LDH-H in serum from patients with myocardial infarction was dominant. However, the raised HBD activities in serum from patients with benign ovarian tumor did not affect the LDH isozyme patterns. From analysis of linear regression, a negative correlation between LDH-1 or -2 and HBD activity in serum from patients with ovarian cancer was observed while there was a positive correlation between LDH-4 and HBD activity. Similar patterns in serum from newborns were observed. On the other hand, a positive correlation between LDH-1 and HBD activity and a negative correlation between LDH-4 and HBD activity were found in serum from patients with myocardial infarction.

  10. Effects of Al(III and Nano-Al13 Species on Malate Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Rong Fu Chen

    2011-05-01

    Full Text Available The effects of different aluminum species on malate dehydrogenase (MDH activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT modified glass carbon electrode (GCE. The results showed that Al(III and Al13 can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III and Al13 concentration increase. Our study also found that the effects of Al(III and Al13 on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules.

  11. [Activity of liver mitochondrial NAD+-dependent dehydrogenases of the krebs cycle in rats with acetaminophen-induced hepatitis developed under conditions of alimentary protein deficiency].

    Science.gov (United States)

    Voloshchuk, O N; Kopylchuk, G P

    2016-01-01

    Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD(+)/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deprivation. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD(+)/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein caused a more pronounced decrease in the activity of NAD(+)-dependent dehydrogenases studied and a 2.2-fold increase of the mitochondrial NAD(+)/NADН ratio. This suggests that alimentary protein deprivation potentiated drug-induced liver damage.

  12. Scanning mutagenesis of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Directory of Open Access Journals (Sweden)

    Nagib eAhsan

    2012-07-01

    Full Text Available The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1α subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated Ser-residue and the sequences of the flanking amino acids are highly conserved. We have used the synthetic peptide-based kinase client assay plus recombinant pyruvate dehydrogenase E1α and E1α-kinase to perform scanning mutagenesis of the residues flanking the site of phosphorylation. Consistent with the results from phylogenetic analysis of the flanking sequences, the direct peptide-based kinase assays tolerated very few changes. Even conservative changes such as Leu, Ile, or Val for Met, or Glu for Asp, gave very marked reductions in phosphorylation. Overall the results indicate that regulation of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation is an extreme example of multiple, interdependent instances of co-evolution.

  13. Comparative study of the activity of lactate dehydrogenase (LDH) in different forms of disease

    International Nuclear Information System (INIS)

    The activity of lactate dehydrogenase (LDH) was determined in the fluid gingival crevicular (FGC) from different sites of the anterior sector of the oral cavity in a clinically healthy subjects, and other with moderate gingivitis and with chronic severe generalized periodontists. Patients were treated and followed for three months, after the which has proceeded to make measurements of activity in the same sites discussed above. The results have showed statistically significant differences when comparing the activity of LDH in healthy individuals, and in other patients, treated by the pathology that presenting. On the other hand, were found without statistically significant differences between patients treated with clinically healthy subjects. The conclusion has been that the activity of LDH could be a quantitative marker for assessing cellular damage and evolution of treatment. (author)

  14. Pharmacokinetic and pharmacodynamic analysis of inosine monophosphate dehydrogenase activity in hematopoietic cell transplantation recipients treated with mycophenolate mofetil.

    Science.gov (United States)

    Li, Hong; Mager, Donald E; Sandmaier, Brenda M; Storer, Barry E; Boeckh, Michael J; Bemer, Meagan J; Phillips, Brian R; Risler, Linda J; McCune, Jeannine S

    2014-08-01

    A novel approach to personalizing postgrafting immunosuppression in hematopoietic cell transplantation (HCT) recipients is evaluating inosine monophosphate dehydrogenase (IMPDH) activity as a drug-specific biomarker of mycophenolic acid (MPA)-induced immunosuppression. This prospective study evaluated total MPA, unbound MPA, and total MPA glucuronide plasma concentrations and IMPDH activity in peripheral blood mononuclear cells (PMNCs) at 5 time points after the morning dose of oral mycophenolate mofetil (MMF) on day +21 in 56 nonmyeloablative HCT recipients. Substantial interpatient variability in pharmacokinetics and pharmacodynamics was observed and accurately characterized by the population pharmacokinetic-dynamic model. IMPDH activity decreased with increasing MPA plasma concentration, with maximum inhibition coinciding with maximum MPA concentration in most patients. The overall relationship between MPA concentration and IMPDH activity was described by a direct inhibitory maximum effect model with an IC50 of 3.23 mg/L total MPA and 57.3 ng/mL unbound MPA. The day +21 IMPDH area under the effect curve (AUEC) was associated with cytomegalovirus reactivation, nonrelapse mortality, and overall mortality. In conclusion, a pharmacokinetic-dynamic model was developed that relates plasma MPA concentrations with PMNC IMPDH activity after an MMF dose in HCT recipients. Future studies should validate this model and confirm that day +21 IMPDH AUEC is a predictive biomarker.

  15. Glutathione metabolism and glucose 6-phosphate dehydrogenase activity in experimental liver injury.

    Directory of Open Access Journals (Sweden)

    Watanabe,Akiharu

    1983-12-01

    Full Text Available Increased activities of liver glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49 and 6-phosphogluconate dehydrogenase (6PGD, EC 1.1.1.44 in the pentose phosphate cycle were accompanied with a depletion of reduced glutathione (GSH following an intragastric administration of carbon tetrachloride (CCl4 to rats. Oxidized glutathione (GSSG also decreased remarkably, keeping the GSSG: GSH ratio constant. No significant alteration of glutathione reductase (EC 1.6.4.2., glutathione peroxidase (EC 1.11.1.9 and malic enzyme (EC 1.1.1.40 activities in the supernatant and gamma-glutamyl transpeptidase (gamma-GTP, EC 2.3.2.2 activity in the homogenate of the injured liver were observed. Furthermore, no marked difference in the GSH-synthesizing activity was found between control and CCl4-intoxicated liver. An intraperitoneal injection of GSH produced a significant increase in liver GSH content in control rats but not in CCl4-treated rats; G6PD activity was not affected. Intraperitoneal injections of diethylmaleate resulted in continuously diminished levels of liver GSH without any alteration of liver G6PD activity. In vitro disappearance of GSH added to the liver homogenate from CCl4-treated rats occurred enzymatically and could not be prevented by the addition of a NADPH-generating system. The results suggest that increased G6PD activity in CCl4-injured liver does not play an important role in the maintenance of glutathione in the reduced form and that the decreased GSH content in the injured liver might be caused by enhanced GSH catabolism not due to gamma-GTP.

  16. Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex.

    Science.gov (United States)

    Chinopoulos, Christos

    2013-08-01

    The citric acid cycle forms a major metabolic hub and as such it is involved in many disease states involving energetic imbalance. In spite of the fact that it is being branded as a "cycle", during hypoxia, when the electron transport chain does not oxidize reducing equivalents, segments of this metabolic pathway remain operational but exhibit opposing directionalities. This serves the purpose of harnessing high-energy phosphates through matrix substrate-level phosphorylation in the absence of oxidative phosphorylation. In this Mini-Review, these segments are appraised, pointing to the critical importance of the α-ketoglutarate dehydrogenase complex dictating their directionalities.

  17. A new class of IMP dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi

    Directory of Open Access Journals (Sweden)

    Mortensen Uffe H

    2011-09-01

    Full Text Available Abstract Background Many secondary metabolites produced by filamentous fungi have potent biological activities, to which the producer organism must be resistant. An example of pharmaceutical interest is mycophenolic acid (MPA, an immunosuppressant molecule produced by several Penicillium species. The target of MPA is inosine-5'-monophosphate dehydrogenase (IMPDH, which catalyses the rate limiting step in the synthesis of guanine nucleotides. The recent discovery of the MPA biosynthetic gene cluster from Penicillium brevicompactum revealed an extra copy of the IMPDH-encoding gene (mpaF embedded within the cluster. This finding suggests that the key component of MPA self resistance is likely based on the IMPDH encoded by mpaF. Results In accordance with our hypothesis, heterologous expression of mpaF dramatically increased MPA resistance in a model fungus, Aspergillus nidulans, which does not produce MPA. The growth of an A. nidulans strain expressing mpaF was only marginally affected by MPA at concentrations as high as 200 μg/ml. To further substantiate the role of mpaF in MPA resistance, we searched for mpaF orthologs in six MPA producer/non-producer strains from Penicillium subgenus Penicillium. All six strains were found to hold two copies of IMPDH. A cladistic analysis based on the corresponding cDNA sequences revealed a novel group constituting mpaF homologs. Interestingly, a conserved tyrosine residue in the original class of IMPDHs is replaced by a phenylalanine residue in the new IMPDH class. Conclusions We identified a novel variant of the IMPDH-encoding gene in six different strains from Penicillium subgenus Penicillium. The novel IMPDH variant from MPA producer P. brevicompactum was shown to confer a high degree of MPA resistance when expressed in a non-producer fungus. Our study provides a basis for understanding the molecular mechanism of MPA resistance and has relevance for biotechnological and pharmaceutical applications.

  18. Activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micelles.

    Science.gov (United States)

    Sarcar, S; Jain, T K; Maitra, A

    1992-02-20

    The activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micellar droplets have been investigated spectrophotometrically. Various physical parameters, e.g., water pool size, w(0), pH, and temperature, were optimized for YADH in water/AOT/isooctane reverse micelles. It was found that the enzyme exhibits maximum activity at w(0) = 28 and pH 8.1. It was more active in reverse micelles than in aqueous buffers at a particular temperature and was denatured at about 307 degrees C in both the systems. At a particular temperature YADH entrapped in reverse micelles was less stable than when it was dissolved in aqueous buffer.

  19. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Durand, Fabien [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Stines-Chaumeil, Claire [Universite de Bordeaux, CNRS, Institut de Biochimie et de Genetique Cellulaires, 1 rue Camille Saint Saens, 33077 Bordeaux Cedex (France); Flexer, Victoria [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Andre, Isabelle [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); CNRS, UMR5504, F-31400 Toulouse (France); INRA, UMR 792 Ingenierie des Systemes Biologiques et des Procedes, F-31400 Toulouse (France); Mano, Nicolas, E-mail: mano@crpp-bordeaux.cnrs.fr [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France)

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  20. Activity of formaldehyde dehydrogenase on titanium dioxide films with different crystallinities

    Science.gov (United States)

    Nakamura, Hitomi; Kato, Katsuya; Masuda, Yoshitake; Kato, Kazumi

    2015-02-01

    Many biosensors have been developed and used in recent years, and to enhance the sensitivity and stability of enzyme biosensors, immobilization of the enzymes on material surfaces is a necessary and important step. Therefore, there has been considerable interest in understanding how material interfaces affect enzyme adsorption. In this study, the influence of the crystallinity of titanium dioxide (TiO2) films on the quantity and activity of the immobilized enzyme, i.e., formaldehyde dehydrogenase (FDH), was investigated. It was found that TiO2 films with high crystallinity, which were annealed at 550 °C, showed higher enzyme immobilization and activity compared with the non-annealed TiO2 film. These results suggest that the activity of enzymes could be affected by the crystallinity of surface materials.

  1. Substitution of valine for histidine 265 in carbon monoxide dehydrogenase from Rhodospirillum rubrum affects activity and spectroscopic states.

    Science.gov (United States)

    Spangler, N J; Meyers, M R; Gierke, K L; Kerby, R L; Roberts, G P; Ludden, P W

    1998-02-13

    In carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum, histidine 265 was replaced with valine by site-directed mutagenesis of the cooS gene. The altered form of CODH (H265V) had a low nickel content and a dramatically reduced level of catalytic activity. Although treatment with NiCl2 and CoCl2 increased the activity of H265V CODH by severalfold, activity levels remained more than 1000-fold lower than that of wild-type CODH. Histidine 265 was not essential for the formation and stability of the Fe4S4 clusters. The Km and KD for CO as well as the KD for cyanide were relatively unchanged as a result of the amino acid substitution in CODH. The time-dependent reduction of the [Fe4S4]2+ clusters by CO occurred on a time scale of hours, suggesting that, as a consequence of the mutation, a rate-limiting step had been introduced prior to the transfer of electrons from CO to the cubanes in centers B and C. EPR spectra of H265V CODH lacked the gav = 1.86 and gav = 1.87 signals characteristic of reduced forms of the active site (center C) of wild-type CODH. This indicates that the electronic properties of center C have been modified possibly by the disruption or alteration of the ligand-mediated interaction between the nickel site and Fe4S4 chromophore. PMID:9461598

  2. Uric acid substantially enhances the free radical-induced inactivation of alcohol dehydrogenase.

    Science.gov (United States)

    Kittridge, K J; Willson, R L

    1984-05-01

    Lactate dehydrogenase (LDH) and yeast alcohol dehydrogenase ( YADH ) are inactivated when attacked by hydroxy free radicals (OH). Organic molecules with a high rate constant of reaction with OH such as ascorbate or urate can compete with the enzymes for these strongly oxidising radicals. However, although 10(-3)M ascorbate can substantially protect both LDH and YADH from OH attack, in the presence of 10(-3)M urate only LDH is protected. In the case of YADH an even greater degree of inactivation than with OH occurs. The extent of inactivation is considerably reduced when oxygen is absent, in agreement with a urate peroxy radical perhaps being partly responsible for the increased inactivation of the enzyme.

  3. Effects of water activity and aqueous solvent ordering on thermal stability of lysozyme, alpha-chymotrypsinogen A, and alcohol dehydrogenase.

    Science.gov (United States)

    Matsue, S; Fujii, T; Miyawaki, O

    2001-06-12

    Effects of water activity (aW) and solvent ordering were separately analyzed on the thermal unfolding of lysozyme and alpha-chymotrypsinogen A, and also on the thermal deactivation of yeast alcohol dehydrogenase (YADH) in aqueous solutions with various additives. With the coexistence of additives, water activity was the determinant of the extent of the change in the thermal stability of proteins while solvent ordering was the determinant of the direction of the change. The parameter alpha, determined from the activity coefficient of water, representing the deviation of aW from that of the ideal solution, was useful as a quantitative index of the solvent ordering showing good correlations with the unfolding temperature and enthalpy of lysozyme and alpha-chymotrypsinogen A and also with the thermal deactivation rate constant of YADH at a constant aW. Solvent ordering seemed to affect the thermal stability of proteins mainly through its effect on the intramolecular hydrophobic interaction among amino acid residues in a protein molecule but the contribution of the electrostatic interaction including hydrogen bonding through the change in permittivity of solution was also suggested.

  4. Pyruvate dehydrogenase kinase isoform 2 activity stimulated by speeding up the rate of dissociation of ADP.

    Science.gov (United States)

    Bao, Haiying; Kasten, Shane A; Yan, Xiaohua; Hiromasa, Yasuaki; Roche, Thomas E

    2004-10-26

    Pyruvate dehydrogenase kinase 2 (PDK2) activity is stimulated by NADH and NADH plus acetyl-CoA via the reduction and reductive acetylation of the lipoyl groups of the dihydrolipoyl acetyltransferase (E2) component. Elevated K(+) and Cl(-) were needed for significant stimulation. Stimulation substantially increased both k(cat) and the K(m) for ATP; the fractional stimulation increased with the level of ATP. With an E2 structure lacking the pyruvate dehydrogenase (E1) binding domain, stimulation of PDK2 was retained, the K(m) for E1 decreased, and the equilibrium dissociation constant for ATP increased but remained much lower than the K(m) for ATP. Stimulation of PDK2 activity greatly reduced the fraction of bound ADP. These results fit an ordered reaction mechanism with ATP binding before E1 and stimulation increasing the rate of dissociation of ADP. Conversion of all of the lipoyl groups in the E2 60mer to the oxidized form (E2(ox)) greatly reduced k(cat) and the K(m) of PDK2 for ATP. Retention over an extended period of time of a low portion of reduced lipoyl groups maintains E2 in a state that supported much higher PDK2 activity than short-term (5 min) reduction of a large portion of lipoyl groups of E2(ox), but reduction of E2(ox) produced a larger fold stimulation. Reduction and to a greater extent reductive acetylation increased PDK2 binding to E2; conversion to E2(ox) did not significantly hinder binding. We suggest that passing even limited reducing equivalents among lipoyl groups maintains E2 lipoyl domains in a conformation that aids kinase function. PMID:15491151

  5. Lactate dehydrogenase-elevating virus induces systemic lymphocyte activation via TLR7-dependent IFNalpha responses by plasmacytoid dendritic cells.

    Directory of Open Access Journals (Sweden)

    Christoph G Ammann

    Full Text Available BACKGROUND: Lactate dehydrogenase-elevating virus (LDV is a natural infectious agent of mice. Like several other viruses, LDV causes widespread and very rapid but transient activation of both B cells and T cells in lymphoid tissues and the blood. The mechanism of this activation has not been fully described and is the focus of the current studies. PRINCIPAL FINDINGS: A known inducer of early lymphocyte activation is IFNalpha, a cytokine strongly induced by LDV infection. Neutralization of IFNalpha in the plasma from infected mice ablated its ability to activate lymphocytes in vitro. Since the primary source of virus-induced IFNalpha in vivo is often plasmacytoid dendritic cells (pDC's, we depleted these cells prior to LDV infection and tested for lymphocyte activation. Depletion of pDC's in vivo eradicated both the LDV-induced IFNalpha response and lymphocyte activation. A primary receptor in pDC's for single stranded RNA viruses such as LDV is the toll-like receptor 7 (TLR7 pattern recognition receptor. Infection of TLR7-knockout mice revealed that both the IFNalpha response and lymphocyte activation were dependent on TLR7 signaling in vivo. Interestingly, virus levels in both TLR7 knockout mice and pDC-depleted mice were indistinguishable from controls indicating that LDV is largely resistant to the systemic IFNalpha response. CONCLUSION: Results indicate that LDV-induced activation of lymphocytes is due to recognition of LDV nucleic acid by TLR7 pattern recognition receptors in pDC's that respond with a lymphocyte-inducing IFNalpha response.

  6. Structure of Cryptosporidium IMP dehydrogenase bound to an inhibitor with in vivo antiparasitic activity.

    Science.gov (United States)

    Kim, Youngchang; Makowska-Grzyska, Magdalena; Gorla, Suresh Kumar; Gollapalli, Deviprasad R; Cuny, Gregory D; Joachimiak, Andrzej; Hedstrom, Lizbeth

    2015-05-01

    Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment of Cryptosporidium infections. Here, the structure of C. parvum IMPDH (CpIMPDH) in complex with inosine 5'-monophosphate (IMP) and P131, an inhibitor with in vivo anticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO2 moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is a new strategy for the further optimization of C. parvum inhibitors for both antiparasitic and antibacterial applications. PMID:25945705

  7. Glutaric acid and its metabolites cause apoptosis in immature oligodendrocytes: a novel mechanism of white matter degeneration in glutaryl-CoA dehydrogenase deficiency.

    Science.gov (United States)

    Gerstner, Bettina; Gratopp, Alexander; Marcinkowski, Monika; Sifringer, Marco; Obladen, Michael; Bührer, Christoph

    2005-06-01

    Glutaryl-CoA dehydrogenase deficiency is an inherited metabolic disease characterized by elevated concentrations of glutaric acid (GA) and its metabolites glutaconic acid (GC) and 3-hydroxy-glutaric acid (3-OH-GA). Its hallmarks are striatal and cortical degeneration, which have been linked to excitotoxic neuronal cell death. However, magnetic resonance imaging studies have also revealed widespread white matter disease. Correspondingly, we decided to investigate the effects of GA, GC, and 3-OH-GA on the rat immature oligodendroglia cell line, OLN-93. For comparison, we also exposed the neuroblastoma line SH-SY5Y and the microglia line BV-2 to GA, GC, and 3-OH-GA. Cell viability was measured by metabolism of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium. Flow cytometry was used to assess apoptosis via annexin-V, anti-active caspase-3 antibody, and propidium iodide staining. GA, GC, and 3-OH-GA reduced OLN-93 oligodendroglia cell viability in a dose-dependent manner. Toxicity of GA, GC, and 3-OH-GA was abrogated by preincubation with the pan-caspase inhibitor z-VAD-fmk. Apoptosis but not necrosis was detected at various stages (early: annexin-V; effector: caspase-3) after 24-48 h of incubation with GA, GC, or 3-OH-GA in OLN-93 but not in neuroblastoma or microglia cells. OLN-93 lacked expression of N-methyl-d-aspartate receptors, making classical glutamatergic excitotoxicity an unlikely explanation for the selective toxicity of GA, GC, and 3-OH-GA for OLN-93 cells. GA, GC, and 3-OH-GA directly initiate the apoptotic cascade in oligodendroglia cells. This mechanism may contribute to the white matter damage observed in glutaryl-CoA dehydrogenase deficiency.

  8. Lovastatin changes activities of lactate dehydrogenase A and B genes in rat myocardial cells

    Institute of Scientific and Technical Information of China (English)

    GUO Wei-zao; JI Hong; YAN Zhi-hong; LI Lin; LI Di; LU Cui-lian

    2011-01-01

    Background Lactate dehydrogenase (LDH) is a crucial regulator of energy metabolism in many organs including the heart. Lovastatin is widely used in prevention and treatment of coronary heart disease and is a drug with substantial metabolic influences. Our study aimed to determine the activities of the lactate dehydrogenase A and B (LDHA and LDHB)genes following lovastatin treatment.Methods The rat myocardial cell line H9c2(2-1) in culture was exposed to 100 nmol/L lovastatin for 24 hours or for five days. The functions of the LDHA and LDHB genes were examined at the transcriptional (mRNA) level with quantitative real-time polymerase chain reaction (Q-RT-PCR), and at the translational (protein) level with immunoblotting.Results When compared with control levels, the LDHA mRNA went up by (151.65±16.72)% (P=0.0132) after 24 hours and by (175.28±56.54)% (P=0.0366) after five days of lovastatin treatment. Although 24 hours of lovastatin treatment had no significant effects on LDHB mRNA levels, when the treatment was extended to five days, LDHB mRNA levels were significantly down-regulated to (63.65±15.21)% of control levels (P=0.0117). After 24 hours of treatment with lovastatin,there were no significant changes in protein levels of either LDHA or LDHB. When treatment time was extended to five days, the protein levels of LDHA were up-regulated by (148.65±11.81)% (P=0.00969), while the protein levels of LDHB were down-regulated to (64.91±5.47)% of control levels (P=0.0192).Conclusions Lovastatin affects gene activities of LDHA and LDHB differently, which may reveal novel pharmacological effects of lovastatin.

  9. Effect of various chemicals on the aldehyde dehydrogenase activity of the rat liver cytosol.

    Science.gov (United States)

    Marselos, M; Vasiliou, V

    1991-01-01

    The cytosolic activity of aldehyde dehydrogenase (ALDH) was studied in the rat liver, after acute administration of various carcinogenic and chemically related compounds. Male Wistar rats were treated with 27 different chemicals, including polycyclic aromatic hydrocarbons, aromatic amines, nitrosamines, azo dyes, as well as with some known direct-acting carcinogens. The cytosolic ALDH activity of the liver was determined either with propionaldehyde and NAD (P/NAD), or with benzaldehyde and NADP (B/NADP). The activity of ALDH remained unaffected after treatment with 1-naphthylamine, nitrosamines and also with the direct-acting chemical carcinogens tested. On the contrary, polycyclic aromatic hydrocarbons, polychlorinated biphenyls (Arochlor 1254) and 2-naphthylamine produced a remarkable increase of ALDH. In general, the response to the effectors was disproportionate between the two types of enzyme activity, being much in favour for the B/NADP activity. This fact resulted to an inversion of the ratio B/NADP vs. P/NAD, which under constitutive conditions is lower than 1. In this respect, the most potent compounds were found to be polychlorinated biphenyls, 3-methylcholanthrene, benzo(a)pyrene and 1,2,5,6-dibenzoanthracene. Our results suggest that the B/NADP activity of the soluble ALDH is greatly induced after treatment with compounds possessing aromatic ring(s) in their molecule. It is not known, if this response of the hepatocytes is related with the process of chemical carcinogenesis. PMID:2060039

  10. EFFECTS OF AMARANTHS’ SEEDS ON DEHYDROGENASE ACTIVITY AND GASES EMISSION IN METHANOGENIC BIOREACTORS

    Directory of Open Access Journals (Sweden)

    Victor COVALIOV

    2015-12-01

    Full Text Available The influence of amaranths‘ seeds as the source of squalene on the dehydrogenase activity and efficiency of methane production were investigated in methanogenic bench-scale (5000 ml bioreactors used to treat the mixture of distillery wastes and farmyard manure. The adding of amaranth seeds to the methanogenic bioreactor has an inhibitory effect on the dehydrogenase activity and stimulates the process of methanogenesis. Dehydrogenase activity decreased with the increase of doses of squalene and its trend had a close connection with doses (R2=0.77-0.78. The methane content in the total amount of gases is 65.3-71.3% in a bioreactor with the additive of amaranth seeds in a dose of 50 mg l-1, which is 22.1% higher than in the the control bioreactor without additives. The increase in squalene concentration higher than 0.0005% is not rational because its stimulating effect on the methanogenic process decreases. Anaerobic digestion of alcohol distillery industry wastes with manure is a complex nonlinear time-varying microbiological process. Dehydrogenase activity trends in the experiment are described by the power function for 5 hours observations and by the logarithmic function for 120 hours of observations. Trends of CH4 are described by the polynomial function in all periods of testing. Correlation coefficients are 0.37 and 0.70 for CH4 after 5 and 120 hours of the anaerobic digestion. Dehydrogenase activity is in the close negative connection with the amount of gases, including methane. Correlation analysis between dehydrogenase activity and the release of gases has revealed the moderate and strongly negative link during 24 hours after the start of the experiment.EFECTUL SEMINŢELOR DE AMARANT ASUPRA ACTIVITĂŢII DEHIDROGENAZEI ŞI EMISIEI GAZELOR ÎN BIOREACTOARELE METANOGENEÎn bioreactoare metanogene unite consecutiv, cu volum de 5000 ml, utilizate pentru tratarea amestecului de borhot de la distilarea alcoolului cu gunoi de grajd, a fost

  11. MFE1, a Member of the Peroxisomal Hydroxyacyl Coenzyme A Dehydrogenase Family, Affects Fatty Acid Metabolism Necessary for Morphogenesis in Dictyostelium spp.

    OpenAIRE

    Matsuoka, Satomi; Saito, Tamao; Kuwayama, Hidekazu; Morita, Naoki; Ochiai, Hiroshi; Maeda, Mineko

    2003-01-01

    β-Oxidation of long-chain fatty acids and branched-chain fatty acids is carried out in mammalian peroxisomes by a multifunctional enzyme (MFE) or d-bifunctional protein, with separate domains for hydroxyacyl coenzyme A (CoA) dehydrogenase, enoyl-CoA hydratase, and steroid carrier protein SCP2. We have found that Dictyostelium has a gene, mfeA, encoding MFE1 with homology to the hydroxyacyl-CoA dehydrogenase and SCP2 domains. A separate gene, mfeB, encodes MFE2 with homology to the enoyl-CoA h...

  12. Vitality Improvement of the Mediterranean Fruit Fly, Ceratitis capitata Wied 1- Measured by using dehydrogenase Enzyme Activities

    International Nuclear Information System (INIS)

    The present study searches for the improvement vitality of the Mediterranean fruit fly, Ceratitis capitata Wied. Through the induction of a specific variance (mutation) in the genetic material. Several types of treatments that were thought to cause this mutation were used, as IGR's, temperature, formaldehyde, colchicine, alcohols, several types of larval rearing media and gamma-rays. Generally, the activities of the energy enzymes alpha-glycerophosphate dehydrogenase (alpha-GPDH) enzyme lactate dehydrogenase (LDH) enzyme and malate dehydrogenase (MDH) enzyme, when used as a direct measure for the fly vitality, increased due to treatments of the egg stage by the previously mentioned treatments specially by the usage of rice hulls in the larval rearing medium alone or followed by irradiation of the pupal stage with 90 Gy

  13. In Vitro and In Vivo Effects and Safety Assessment of Corn Peptides on Alcohol Dehydrogenase Activities

    Institute of Scientific and Technical Information of China (English)

    LI Hong-mei; WEN Lian-kui; LI Shi-jun; ZHANG Da-li; LIN Bai-song

    2011-01-01

    The in vitro and in vivo effects of corn peptides(CPs) prepared from corn gluten meal by proteolysis with an alkaline protease and fractions of CPs from Sephadex G-15 and G-10 columns on activities of alcohol dehydrogenase(ADH) were studied.The results show that CPs and fraction 3 of CPs from Sephadex G-10 column enhance in vitro ADH activity.Furthermore,the in vitro accelerating effect of the fraction 3 of CPs on ADH activity was superior to that of glutathione,which was also found even in the presence of ADH inhibitor,such as pyrazole.In the in vivo experiments,the animals were fed with different dosages of CPs and with a dose of Chinese distilled spirit orally,and sacrificed for the measurement of ADH activity.In vivo experimental results indicate that CPS enhanced hepatic ADH activities.To test the safety of CPs as health food,30 d feeding test was performed.No obvious toxic effects were detected in treated Wistar rats.

  14. Influence of spaceflight on succinate dehydrogenase activity and soma size of rat ventral horn neurons

    Science.gov (United States)

    Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.

    1996-01-01

    Succinate dehydrogenase (SDH) activities and soma cross-sectional areas (CSA) of neurons in the dorsolateral region of the ventral horn at the L5 segmental level of the spinal cord in the rat were determined after 14 days of spaceflight and after 9 days of recovery on earth. The results were compared to those in age-matched ground-based control rats. Spinal cords were quick-frozen, and the SDH activity and CSA of a sample of neurons with a visible nucleus were determined using a digitizer and a computer-assisted image analysis system. An inverse relationship between CSA and SDH activity of neurons was observed in all groups of rats. No change in mean CSA or mean SDH activity or in the size distribution of neurons was observed following spaceflight or recovery. However, there was a selective decrease in the SDH activity of neurons with soma CSA between 500 and 800 microns2 in the flight rats, and this effect persisted for at least 9 days following return to 1 g. It remains to be determined whether the selected population of motoneurons or the specific motor pools affected by spaceflight may be restricted to specific muscles.

  15. Exercise training induces similar elevations in the activity of oxoglutarate dehydrogenase and peak oxygen uptake in the human quadriceps muscle

    DEFF Research Database (Denmark)

    Blomstrand, Eva; Krustrup, Peter; Søndergaard, Hans;

    2011-01-01

    During exercise involving a small muscle mass, peak oxygen uptake is thought to be limited by peripheral factors, such as the degree of oxygen extraction from the blood and/or mitochondrial oxidative capacity. Previously, the maximal activity of the Krebs cycle enzyme oxoglutarate dehydrogenase h...

  16. The Spatial Variability of Soil Dehydrogenase Activity: A Survey in Urban Soils

    Directory of Open Access Journals (Sweden)

    Ridvan Kizilkaya

    2007-03-01

    Full Text Available Information on soil microorganisms and their activity used to determine microbiological characteristics are very important for soil quality and productivity. Studies of enzyme activities provide information on the biochemical processes occurring in soil. There is growing evidence that soil biological parameters may be potential and sensitive indicators of soil ecological conditions and soil management. Soil microbiological parameters may be evaluated statistically due to application of geostatistical methods to soil science. Measurement of soil dehydrogenase activity (DHA has been used to establish indices of soil microbiological activity. The objective of this study was to assess the spatial variability of the DHA using the geostatistics in the topsoils of an urban area. DHA along a transect in an urban area was determined using 39 soil samples from the upper 20 cm of soil varied from 10.7-258.4 μg TPF g-1 soil respectively. The spherical model fits the best semivariogram model for DHA and exhibited spatial dependence with range of influence of approximately 48.2 km.

  17. Alcohol dehydrogenase (ADH activity in soybean (Glycine max [L.] Merr. under flooding stress

    Directory of Open Access Journals (Sweden)

    Govinda Rizal and Shanta Karki

    2011-03-01

    Full Text Available Sowing time of soybean (Glycine max [L.] Merr. often coincides with the early onset of rainy season. Germinating seedsencounter a transient to prolonged period of water-logging that causes anoxia (absence of oxygen and hypoxia (insufficientoxygen resulting in poor germination. This reduces crop stability and yield. One of the factors responsible for flood tolerance isactivity of alcohol dehydrogenase (ADH during flood. The effect of ADH activity during flooding and difference in floodtolerance level were investigated using two soybean cultivars, Peking and Tamahomare, and their F9 recombinant inbred lines(RILs. Tamahomare showed higher ADH activity than Peking. There was a great variation in ADH activity among the RILs.QTL analysis detected five QTLs for ADH activity (qAas1-5 on five linkage groups, LG_A2, D1a, F, K and L. The QTL qAas4was close to a QTL for shoot damage and conductivity of germinating seeds after flooding treatment.

  18. Lactate dehydrogenase activity in Bacteroides fragilis group strains with induced resistance to metronidazole.

    Science.gov (United States)

    Presečki Stanko, Aleksandra; Sóki, Jozsef; Varda Brkić, Dijana; Plečko, Vanda

    2016-06-01

    The aims of this study were to induce in vitro metronidazole resistance in nim-negative Bacteroides fragilis group strains and to determine the lactate dehydrogenase (LDH) activity of the induced strains. A collection of B. fragilis group strains were identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Minimum inhibitory concentrations (MICs) for metronidazole were determined by the agar dilution technique. The presence of nim genes was screened by PCR. A sample of 52 nim-negative metronidazole-susceptible strains were selected at random and were exposed to metronidazole in the resistance induction experiment. LDH activity was measured by spectrophotometry. Of the 52 selected strains, 12 (23.1%) acquired resistance to metronidazole. MICs ranged from 8mg/L to 96mg/L. Eight of the twelve induced strains displayed decreased LDH activity, whilst only one expressed a significant increase in LDH activity with LDH values of 49.1U/mg and 222.0U/mg, respectively. In conclusion, in vitro induction of metronidazole resistance could be selected in nim-negative B. fragilis group strains. A statistically significant decrease in LDH activity was in contrast to previous findings in which, underlying higher metronidazole MICs, an increase in LDH activity compensated for the decreased activity of pyruvate-ferredoxin oxidoreductase (PFOR). These findings could be explained if the induction caused only physiological and not genetic changes. We believe that genetic mutations in the B. fragilis strain that demonstrated an emergent increase in LDH activity were responsible for the increased activity. PMID:27436459

  19. Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Corydon, M J;

    2001-01-01

    Mutation analysis of metabolic disorders, such as the fatty acid oxidation defects, offers an additional, and often superior, tool for specific diagnosis compared to traditional enzymatic assays. With the advancement of the structural part of the Human Genome Project and the creation of mutation...... of mitochondrial fatty acid oxidation: very-long chain acyl-CoA dehydrogenase (VLCAD, also ACADVL), medium-chain acyl-CoA dehydrogenase (MCAD, also ACADM), and short-chain acyl-CoA dehydrogenase (SCAD, also ACADS) deficiencies. On the basis of this knowledge we discuss current understanding of the structural...... systems may help to assess the balance between genetic and environmental factors in the clinical expression of a given mutation. The realization that the effect of the monogene, such as disease-causing mutations in the VLCAD, MCAD, and SCAD genes, may be modified by variations in other genes presages...

  20. Increased expression of hepatic pyruvate dehydrogenase kinases 2 and 4 in young and middle-aged Otsuka Long-Evans Tokushima Fatty rats: induction by elevated levels of free fatty acids.

    Science.gov (United States)

    Bajotto, Gustavo; Murakami, Taro; Nagasaki, Masaru; Qin, Bolin; Matsuo, Yoshiyuki; Maeda, Ken; Ohashi, Masayo; Oshida, Yoshiharu; Sato, Yuzo; Shimomura, Yoshiharu

    2006-03-01

    The activity of the pyruvate dehydrogenase complex (PDC) is regulated by covalent modification of its E1 component, which is catalyzed by specific pyruvate dehydrogenase kinases (PDKs) and phosphatases. In the liver, PDK2 and PDK4 are the most abundant PDK isoforms, which are responsible for inactivation of PDC when glucose availability is scarce in the body. In the present study, regulatory mechanisms of hepatic PDC were examined before and after the onset of type 2 diabetes mellitus in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, using Long-Evans Tokushima Otsuka (LETO) rats as controls. Plasma glucose and insulin concentrations were at normal levels in rats aged 8 weeks, but were significantly higher in OLETF than in LETO rats aged 25 weeks, indicating insulin resistance in OLETF rats. Plasma free fatty acids (FFAs) were 1.6-fold concentrated, and the liver PDC activity was significantly lower in OLETF than in LETO rats at both ages, suggesting suppression of pyruvate oxidative decarboxylation in OLETF rats before and after the onset of diabetes. Pyruvate dehydrogenase kinase activity and abundance of PDK2 and PDK4 proteins, as well as mRNAs, were greater in OLETF rats at both ages. These results suggest that persistently elevated levels of circulating free fatty acid in normal and diabetic OLETF rats play an important role in stimulating PDK2 and PDK4 expression in liver. PMID:16483874

  1. Efficient synthesis of D-branched-chain amino acids and their labeled compounds with stable isotopes using D-amino acid dehydrogenase.

    Science.gov (United States)

    Akita, Hironaga; Suzuki, Hirokazu; Doi, Katsumi; Ohshima, Toshihisa

    2014-02-01

    D-Branched-chain amino acids (D-BCAAs) such as D-leucine, D-isoleucine, and D-valine are known to be peptide antibiotic intermediates and to exhibit a variety of bioactivities. Consequently, much effort is going into achieving simple stereospecific synthesis of D-BCAAs, especially analogs labeled with stable isotopes. Up to now, however, no effective method has been reported. Here, we report the establishment of an efficient system for enantioselective synthesis of D-BCAAs and production of D-BCAAs labeled with stable isotopes. This system is based on two thermostable enzymes: D-amino acid dehydrogenase, catalyzing NADPH-dependent enantioselective amination of 2-oxo acids to produce the corresponding D-amino acids, and glucose dehydrogenase, catalyzing NADPH regeneration from NADP(+) and D-glucose. After incubation with the enzymes for 2 h at 65°C and pH 10.5, 2-oxo-4-methylvaleric acid was converted to D-leucine with an excellent yield (>99 %) and optical purity (>99 %). Using this system, we produced five different D-BCAAs labeled with stable isotopes: D-[1-(13)C,(15)N]leucine, D-[1-(13)C]leucine, D-[(15)N]leucine, D-[(15)N]isoleucine, and D-[(15)N]valine. The structure of each labeled D-amino acid was confirmed using time-of-flight mass spectrometry and nuclear magnetic resonance analysis. These analyses confirmed that the developed system was highly useful for production of D-BCAAs labeled with stable isotopes, making this the first reported enzymatic production of D-BCAAs labeled with stable isotopes. Our findings facilitate tracer studies investigating D-BCAAs and their derivatives. PMID:23661083

  2. Novel Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Anti-malarial Activity in the Mouse Model

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Michael L.; Bastos, Cecilia M.; Kramer, Martin L.; Barker, Jr., Robert H.; Skerlj, Renato; Sidhu, Amar Bir; Deng, Xiaoyi; Celatka, Cassandra; Cortese, Joseph F.; Guerrero Bravo, Jose E.; Crespo Llado, Keila N.; Serrano, Adelfa E.; Angulo-Barturen, Iñigo; Jiménez-Díaz, María Belén; Viera, Sara; Garuti, Helen; Wittlin, Sergio; Papastogiannidis, Petros; Lin, Jing-wen; Janse, Chris J.; Khan, Shahid M.; Duraisingh, Manoj; Coleman, Bradley; Goldsmith, Elizabeth J.; Phillips, Margaret A.; Munoz, Benito; Wirth, Dyann F.; Klinger, Jeffrey D.; Wiegand, Roger; Sybertz, Edmund (Leiden-MC); (Puerto Rico); (STPHI); (Harvard); (GSK); (Genzyme); (UTSMC)

    2010-11-22

    Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED{sub 50} values in the 4-day murine P. berghei efficacy model of 13-21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.

  3. Green Tea Polyphenols Control Dysregulated Glutamate Dehydrogenase in Transgenic Mice by Hijacking the ADP Activation Site

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M.; Bennett, Michael J.; Stanley, Charles A.; Smith, Thomas J. (CH-PA); (UPENN); (Danforth)

    2012-05-09

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic {beta}-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  4. Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site.

    Science.gov (United States)

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M; Bennett, Michael J; Stanley, Charles A; Smith, Thomas J

    2011-09-30

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic β-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  5. A new high phenyl lactic acid-yielding Lactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene.

    Science.gov (United States)

    Zhang, Xiqing; Zhang, Shuli; Shi, Yan; Shen, Fadi; Wang, Haikuan

    2014-07-01

    Phenyl lactic acid (PLA) has been widely reported as a new natural antimicrobial compound. In this study, 120 Lactobacillus plantarum strains were demonstrated to produce PLA using high-performance liquid chromatography. Lactobacillus plantarum IMAU10124 was screened with a PLA yield of 0.229 g L(-1) . Compared with all previous reports, this is the highest PLA-producing lactic acid bacteria (LAB) when grown in MRS broth without any optimizing conditions. When 3.0 g L(-1) phenyl pyruvic acid (PPA) was added to the medium as substrate, PLA production reached 2.90 g L(-1) , with the highest 96.05% conversion rate. A lowest PLA-yielding L. plantarum IMAU40105 (0.043 g L(-1) ) was also screened. It was shown that the conversion from PPA to PLA by lactic dehydrogenase (LDH) is the key factor in the improvement of PLA production by LAB. Comparing the LDH gene of two strains, four amino acid mutation sites were found in this study in the LDH of L. plantarum IMAU10124.

  6. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Chihiro Moriya

    2016-01-01

    Full Text Available We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD or a 60% high-fat diet (HFD with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects.

  7. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats.

    Science.gov (United States)

    Moriya, Chihiro; Satoh, Hiroaki

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects. PMID:27652270

  8. Activity and Conformation of Yeast Alcohol Dehydrogenase (YADH) Entrapped in Reverse Micelles.

    Science.gov (United States)

    Das; Mozumdar; Maitra

    2000-10-15

    Yeast alcohol dehydrogenase (YADH) solubilized in reverse micelles of aerosol OT (i.e., AOT or sodium bis (2-ethyl hexyl) sulfosuccinate) in isooctane has been shown to be catalytically more active than that in aqueous buffer under optimum conditions of pH, temperature, and water content in reverse micelles. Studies of the secondary structure conformational changes of the enzyme in reverse micelles have been made from circular dichroism spectroscopy. It has been seen that the conformation of YADH in reverse micelles is extremely sensitive to pH, temperature, and water content. A comparison has been made between the catalytic activity of the enzyme and the alpha-helix content in the conformation and it has been observed that the enzyme is most active at the maximum alpha-helix content. While the beta-sheet content in the conformation of the entrapped enzyme was found to be dependent on the enzyme-micelle interface interaction, the alpha-helix and random coil conformations are governed by the degree of entrapment and the extent of rigidity provided by the micelle core to the enzyme structure. Copyright 2000 Academic Press.

  9. Myricetin is a novel inhibitor of human inosine 5'-monophosphate dehydrogenase with anti-leukemia activity.

    Science.gov (United States)

    Pan, Huiling; Hu, Qian; Wang, Jingyuan; Liu, Zehui; Wu, Dang; Lu, Weiqiang; Huang, Jin

    2016-09-01

    Human inosine 5'-monophosphate dehydrogenase (hIMPDH) is a rate-limiting enzyme in the de novo biosynthetic pathway of purine nucleotides, playing crucial roles in cellular proliferation, differentiation, and transformation. Dysregulation of hIMPDH expression and activity have been found in a variety of human cancers including leukemia. In this study, we found that myricetin, a naturally occurring phytochemical existed in berries, wine and tea, was a novel inhibitor of human type 1 and type 2 IMPDH (hIMPDH1/2) with IC50 values of 6.98 ± 0.22 μM and 4.10 ± 0.14 μM, respectively. Enzyme kinetic analysis using Lineweaver-Burk plot revealed that myricetin is a mix-type inhibitor for hIMPDH1/2. Differential scanning fluorimetry and molecular docking simulation data demonstrate that myricetin is capable of binding with hIMPDH1/2. Myricetin treatment exerts potent anti-proliferative and pro-apoptotic effects on K562 human leukemia cells in a dose-dependent manner. Importantly, cytotoxicity of myricetin on K562 cells were markedly attenuated by exogenous addition of guanosine, a salvage pathway of maintaining intracellular pool of guanine nucleotides. Taking together, these results indicate that natural product myricetin exhibits potent anti-leukemia activity by interfering with purine nucleotides biosynthetic pathway through the suppression of hIMPDH1/2 catalytic activity. PMID:27378425

  10. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies.

    Directory of Open Access Journals (Sweden)

    Julia Penna-Coutinho

    Full Text Available The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH all exhibit ∼90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2. The IC(50 values for each drug in both tests were similar, were lowest for posaconazole (<5 µM and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use.

  11. 2-ketogluconic acid secretion by incorporation of Pseudomonas putida KT 2440 gluconate dehydrogenase (gad) operon in Enterobacter asburiae PSI3 improves mineral phosphate solubilization.

    Science.gov (United States)

    Kumar, Chanchal; Yadav, Kavita; Archana, G; Naresh Kumar, G

    2013-09-01

    Enterobacter asburiae PSI3 is known to efficiently solubilize rock phosphate by secretion of approximately 50 mM gluconic acid in Tris-buffered medium in the presence of 75 mM glucose and in a mixture of seven aldosugars each at 15 mM concentration, mimicking alkaline vertisol soils. Efficacy of this bacterium in the rhizosphere requires P release in the presence of low amount of sugars. To achieve this, E. asburiae PSI3 has been manipulated to express gluconate dehydrogenase (gad) operon of Pseudomonas putida KT 2440 to produce 2-ketogluconic acid. E. asburiae PSI3 harboring gad operon had 438 U of GAD activity, secreted 11.63 mM 2-ketogluconic and 21.65 mM gluconic acids in Tris-rock phosphate-buffered medium containing 45 mM glucose. E. asburiae PSI3 gad transformant solubilized 0.84 mM P from rock phosphate in TRP-buffered liquid medium. In the presence of a mixture of seven sugars each at 12 mM, the transformant brought about a drop in pH to 4.1 and released 0.53 mM P. PMID:23666029

  12. Optimization of enzyme assisted extraction of Fructus Mori polysaccharides and its activities on antioxidant and alcohol dehydrogenase.

    Science.gov (United States)

    Deng, Qingfang; Zhou, Xin; Chen, Huaguo

    2014-10-13

    In the present study, enzyme assisted extraction of Fructus Mori polysaccharides (FMPS) from F. mori using four kinds of enzymes and three compound enzymes were examined. Research found that glucose oxidase offered a better performance in enhancement of the extraction yields of FMPS, antioxidant and activate alcohol dehydrogenase activities. The glucose oxidase assisted extraction process was further optimized by using response surface method (RSM) to obtain maximum yield of crude FMPS. The results showed that optimized extraction conditions were ratio of enzyme amount 0.40%, enzyme treated time 38 min, treated temperature 58 °C and liquid-solid radio 11.0. Under these conditions, the mean experimental value of extraction yield (16.16 ± 0.14%) corresponded well with the predicted values and increased 160% than none enzyme treated ones. Pharmacological verification tests showed that F. mori crude polysaccharides had good antioxidant and activate alcohol dehydrogenase activities in vitro.

  13. Effect of Three Pesticides on Soil Dehydrogenase and Fluorescein Diacetate Activities in Vegetable Garden in Burkina Faso

    Directory of Open Access Journals (Sweden)

    R.W.A. Naré

    2014-03-01

    Full Text Available Many studies have shown that pesticides use have some effect on soil biology. However little information is available concerning the effect of pesticides on soil enzyme activities in semi arid zone of Africa. The aim of this study was to investigate the effect of three pesticides usually used (endosulfan, deltamethrin and profenofos, on soil Fluorescein Diacetate (FDA and dehydrogenase activities from cultivated and fallow plot. Enzyme activities were followed in 5 days incubated soil, containing 200 mg/kg of each pesticide. The results showed that endosulfan, deltamethrin and profenofos significantly decreased soil dehydrogenase activity (p0.005. These results clearly show the impacts of these pesticides on soils enzyme activites.

  14. Hypoxic repression of pyruvate dehydrogenase activity is necessary for metabolic reprogramming and growth of model tumours

    Science.gov (United States)

    Golias, Tereza; Papandreou, Ioanna; Sun, Ramon; Kumar, Bhavna; Brown, Nicole V.; Swanson, Benjamin J.; Pai, Reetesh; Jaitin, Diego; Le, Quynh-Thu; Teknos, Theodoros N.; Denko, Nicholas C.

    2016-01-01

    Tumour cells fulfil the bioenergetic and biosynthetic needs of proliferation using the available environmental metabolites. Metabolic adaptation to hypoxia causes decreased mitochondrial function and increased lactate production. This work examines the biological importance of the hypoxia-inducible inhibitory phosphorylations on the pyruvate dehydrogenase E1α subunit. Pancreatic cancer cell lines were genetically manipulated to alter the net phosphorylation of PDH E1α through reduced kinase expression or enhanced phosphatase expression. The modified cells were tested for hypoxic changes in phosphorylated E1α, mitochondrial metabolism and growth as xenografted tumours. Even though there are four PDHK genes, PDHK1 is essential for inhibitory PDH phosphorylation of E1α at serine 232, is partially responsible for modification of serines 293 and 300, and these phosphorylations are necessary for model tumour growth. In order to determine the clinical relevance, a cohort of head and neck cancer patient biopsies was examined for phosphorylated E1α and expression of PDHK1. Patients with detectable 232 phosphorylation or expression of PDHK1 tend to have worse clinical outcome. These data show that PDHK1 activity is unique and non-redundant in the family of PHDK enzymes and a PDHK1 specific inhibitor would therefore have anti-cancer activity with reduced chance of side effects from inhibition of other PDHKs. PMID:27498883

  15. Characterization of 10-hydroxygeraniol dehydrogenase from Catharanthus roseus reveals cascaded enzymatic activity in iridoid biosynthesis.

    Science.gov (United States)

    Krithika, Ramakrishnan; Srivastava, Prabhakar Lal; Rani, Bajaj; Kolet, Swati P; Chopade, Manojkumar; Soniya, Mantri; Thulasiram, Hirekodathakallu V

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)(+) dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-oxogeraniol or 10-hydroxygeranial. This work describes the cloning and functional characterization of Cr10HGO from C. roseus and its role in the iridoid biosynthesis. Substrate specificity studies indicated that, Cr10HGO has good activity on substrates such as 10-hydroxygeraniol, 10-oxogeraniol or 10-hydroxygeranial over monohydroxy linear terpene derivatives. Further it was observed that incubation of 10-hydroxygeraniol with Cr10HGO and iridoid synthase (CrIDS) in the presence of NADP(+) yielded a major metabolite, which was characterized as (1R, 4aS, 7S, 7aR)-nepetalactol by comparing its retention time, mass fragmentation pattern, and co-injection studies with that of the synthesized compound. These results indicate that there is concerted activity of Cr10HGO with iridoid synthase in the formation of (1R, 4aS, 7S, 7aR)-nepetalactol, an important intermediate in iridoid biosynthesis. PMID:25651761

  16. Gossypol enantiomers potently inhibit human placental 3β-hydroxysteroid dehydrogenase 1 and aromatase activities.

    Science.gov (United States)

    Dong, Yaoyao; Mao, Baiping; Li, Linxi; Guan, Hongguo; Su, Ying; Li, Xiaoheng; Lian, Qingquan; Huang, Ping; Ge, Ren-Shan

    2016-03-01

    Gossypol is a chemical isolated from cotton seeds. It exists as (+) or (-) enantiomer and has been tested for anticancer, abortion-inducing, and male contraception. Progesterone formed from pregnenolone by 3β-hydroxysteroid dehydrogenase 1 (HSD3B1) and estradiol from androgen by aromatase (CYP19A1) are critical for the maintenance of pregnancy or associated with some cancers. In this study we compared the potencies of (+)- and (-)-gossypol enantiomers in the inhibition of HSD3B1 and aromatase activities as well as progesterone and estradiol production in human placental JEG-3 cells. (+) Gossypol showed potent inhibition on human placental HSD3B1 with IC50 value of 2.3 μM, while (-) gossypol weakly inhibited it with IC50 over 100 μM. In contrast, (-) gossypol moderately inhibited CYP19A1 activity with IC50 of 23 μM, while (+) gossypol had no inhibition when the highest concentration (100 μM) was tested. (+) Gossypol enantiomer competitively inhibited HSD3B1 against substrate pregnenolone and showed mixed mode against NAD(+). (-) Gossypol competitively inhibited CYP19A1 against substrate testosterone. Gossypol enantiomers showed different potency related to their inhibition on human HSD3B1 and CYP19A1. Whether gossypol enantiomer is used alone or in combination relies on its application and beneficial effects. PMID:26709042

  17. Hypoxia and anoxia effects on alcohol dehydrogenase activity and hemoglobin content in Chironomus riparius Meigen, 1804

    Directory of Open Access Journals (Sweden)

    Valentina Grazioli

    2016-02-01

    Full Text Available The metabolic effects of low oxygen content on alcohol-dehydrogenase (ADH activity and hemoglobin (Hb concentration were investigated in IV-instar larvae of Chironomus riparius (Diptera: Chironomidae from an Italian stream. Two series of short-term (48 h experiments were carried out: exposure to (1 progressive hypoxia (95 to 5% of oxygen saturation and (2 anoxia (at <5% of oxygen saturation. In (1, Hb amount increased with increasing oxygen depletion up to a critical value of oxygenation (about 70% of oxygen saturation. Below this percentage, the Hb amount declined to values comparable with those present in the control. The respiration rate (R remained almost constant at oxygen saturation >50% and decreased significantly only after 48 h of treatment (= <5% of oxygen saturation reaching values <100 mmolO2 gAFDW-1 h-1. ADH activity showed two phases of growth, within the first 14 h and over 18 h of exposure. Overall, we inferred that i Hb might function as short-term oxygen storage, enabling animals to delay the on-set of anaerobiosis; and ii alcoholic fermentation co-occurs for a short time with aerobic respiration, becoming the prevalent metabolic pathway below 5% of oxygen saturation (<1 mg L-1. These considerations were supported also by results from anoxia exposure (2. In such condition, larvae were visibly stressed, becoming immobile after few minutes of incubation, and ADH reached higher values than in the hypoxia treatment (2.03±0.15 UADH mg prot-1. Overall, this study showed a shift from aerobic to anaerobic activity in C. riparius larvae exposed to poorly oxygenated water with an associated alteration of ADH activity and the Hb amount. Such metabolites might be valid candidate biomarkers for the environmental monitoring of running waters.

  18. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    Science.gov (United States)

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase. PMID:27054466

  19. A new bianthron glycoside as inhibitor of Trypanosoma cruzi glyceraldehyde 3-phosphate dehydrogenase activity

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Edangelo M.S. de; Silva, Maria G.V. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica; Wiggers, Helton J.; Montanari, Carlos A. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, (Brazil). Setor de Quimica de Produtos Naturais; Andricopulo, Adriano D. [Universidade de Sao Paulo (USP), Sao Carlos SP (Brazil). Inst. de Fisica

    2009-07-01

    A phytochemical investigation of the ethanolic extract of stalks of Senna martiana Benth. (Leguminoseae), native specie of northeast Brazil, resulted in the isolation and spectroscopic characterization of a new bianthrone glycoside, martianine 1 (10,10'-il-chrysophanol-10-oxi- 10,10'-bi-glucosyl). Its identification was established by HRMS, IR and 2D NMR experiments. The evaluation of martianine trypanocidal activity was carried out against gliceraldehyde 3-phosphate dehydrogenase enzyme from Trypanosoma cruzi. Its inhibitory constant (K{sub i}) is in the low micromolar concentration and it was determined by isothermal titration calorimetry to be 27.3 +-2.47 {mu}mol L{sup -1}. The non-competitive mechanism is asserted to be putative of the mode of action martianine displays against T. cruzi GAPDH. Results show that martianine has a great potential to become new lead molecule by inhibiting this key enzyme and for the development of new drugs against Chagas disease. (author)

  20. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  1. Estimating the number of viable animal cells in multi-well cultures based on their lactate dehydrogenase activities.

    Science.gov (United States)

    Haslam, G; Wyatt, D; Kitos, P A

    2000-01-01

    A method is described for estimating the numbers ofanimal cells in multi-well culture by simultaneouslymeasuring the lactate dehydrogenase activity of thetotal culture and the medium. The difference betweenthe two reflects the dehydrogenase content of thecells and correlates with cell number. This LDH/INTmethod was tested using several lines of normal andtransformed suspension and adherent cells. Thelactate dehydrogenase activities of duplicate cultureswere determined colourimetrically using reactioncocktails containing lactate, NAD(+), diaphorase,and p-iodonitrotetrazolium violet, with and withoutTriton X-100. The difference in absorbance at 490 nm(DeltaA(490) = A(490, test) - A(490, control)) was used to calculate the lactatedehydrogenase activity of the total culture (+ Triton)and the medium (- Triton). The cellular lactatedehydrogenase activity (difference between totaland medium dehydrogenaseactivities) was proportional to viable cell number. The effects on cell growth of four metabolicinhibitors, sodium azide, actinomycin D,cycloheximide, and taxol, were determined using theLDH/INT assay and direct cell counting. The inhibitorconcentrations that caused decreases in the LDHactivity and cell number by 50% were similar. TheLDH/INT assay is quick and sensitive, works equallywell for adherent and suspension cells, and providesinformation about LDH activities of both the mediumand cells. It is particularly useful for screeningpotential cell-growth inhibitors. PMID:19002967

  2. Effects of silver nanoparticle on lactate dehydrogenase activity and histological changes of heart tissue in male wistar rats

    Directory of Open Access Journals (Sweden)

    Noushin Naghsh

    2013-03-01

    Full Text Available Background & Objective: The silver nanoparticles are important in many applications of nanoparticles on human health . The toxicity of silver nanoparticles are not well documented yet. The aim of this study was to investigate the effect of silver nanoparticles on lactate dehydrogenase activity and histological changes in heart tissue.   Materials &Methods: In this study, 40 adult male wistar rats of 220±20gr were divided in to five groups including control and four experimental groups. The latter groups were injected intraperitoneally spherical nano silver particles of 50, 100, 200 and 400 ppm respectively for five consecutive days. Then three, eight and twelve days after the last injection, blood samples were collected and lactate dehydrogenase (LDH activity was assayed . Also, tissue samples from the heart muscle were prepared and studied after staining with Hematoxiline-Eosine. Data of LDH activity was analyzed by One way- ANOVA- test and P-value of ≤ 0.05 were considered as significant.   Results : The result showed that different concentrations of silver nanoparticles have no significant effect on the lactate dehydrogenase (p=0.192 . T he histological study of the tissue after exposure to 400 ppm concentration of silver nanoparticles showed the start of primary apoptosis in heart tissue.   Conclusion: The LDH activity was not changed significantly after exposure to different concentration of silver nanoparticles, which shows the safety of these particles on LDH activity.

  3. Effect of soil contamination with azadirachtin on dehydrogenase and catalase activity of soil

    Directory of Open Access Journals (Sweden)

    Rıdvan Kızılkaya

    2012-07-01

    Full Text Available nsecticides are used in modern agriculture in large quantities to control pests and increase crop yield. Their use, however, has resulted in the disruption of ecosystems because of the effects on non-target soil microorganisms, some environmental problems, and decreasing soil fertility. These negative effects of synthetic pesticides on the environment have led to the search for alternative means of pest control. One such alternative is use of natural plant products such as azadirachtin that have pesticidal activity. The aim of this experiment was to study the effect of soil contamination by azadirachtin (C35H44O16 on dehydrogenase (DHA and catalase activity (CA of soil under field conditions in Perm, Russia. The tests were conducted on loamy soil (pHH2O 6.7, ECH2O 0.213 dSm-1, organic carbon 0.99%, to which the following quantities of azadirachtin were added: 0, 15, 30 and 60 mL da-1 of soil. Experimental design was randomized plot design with three replications. The DHA and CA analyses were performed 7, 14 and 21 days after the field experiment was established. The results of field experiment showed that azadirachtin had a positive influence on the DHA and CA at different soil sampling times. The increased doses of azadirachtin applied resulted in the higher level of DHA and CA in soil. The soil DHA and CA showed the highest activity on the 21th day after 60 mL azadirachtin da-1 application doses.

  4. Death mode-dependent reduction in succinate dehydrogenase activity in hair cells of aging rat cochleae

    Institute of Scientific and Technical Information of China (English)

    YANG Wei-ping; HU Bo-hua; SUN Jian-he; ZHAI Suo-qiang; Donald Henderson

    2010-01-01

    Background Our previous studies have shown that both apoptosis and necrosis are involved in hair cell (HC) pathogenesis in aging cochleae. To better understand the biological mechanisms responsible for the regulation of HC death, we examined the activity of succinate dehydrogenase (SDH), a mitochondrial bioenergetic enzyme, in the HCs of aging cochleae.Methods The auditory brainstem response thresholds elicited by tone bursts at 4, 10 and 20 kHz were measured in both young (2-3 months) and aging (22-23 months) Wistar rats. SDH activity was evaluated with a colorimetric assay using nitroblue tetrazolium monosodium salt. The SDH-labeled organs of Corti were double stained with propidium iodide, a DNA intercalating fluorescent probe for illustration of HC nuclei. All the specimens were examined with fluorescence microscopy and confocal microscopy.Results Aging rats exhibited a significant elevation of ABR thresholds with threshold shifts being 34 dB at 20 kHz, 28 dB at 10 kHz, and 25 dB at 4 kHz. Consistent with the reduction in the cochlear function, aging cochleae exhibited the reduction of SDH staining intensity in the apical and the basal ends of the cochleae, where a large number of apoptotic, necrotic, and missing HCs were evident. The reduction in SDH staining appeared in a cell-death-mode dependent fashion. Specifically, SDH labeling remained in apoptotic HCs. In contrast, SDH staining was markedly reduced or absent in necrotic HCs.Conclusions In the aging cochlea, SDH activity is preserved in HCs undergoing apoptosis, but is substantially reduced in necrosis. These results suggest that mitochondrial energetic function is involved in the regulation of cell death pathways in the pathogenesis of aging cochleae.

  5. Aldehyde dehydrogenase activity selects for the holoclone phenotype in prostate cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Isolated ALDHHi PC3 cells preferentially form primitive holoclone-type colonies. ► Primitive holoclone colonies are predominantly ALDHLo but contain rare ALDHHi cells. ► Holoclone-forming cells are not restricted to the ALDHHi population. ► ALDH phenotypic plasticity occurs in PC3 cells (ALDHLo to ALDHHi and vice versa). ► ALDHHi cells are observed but very rare in PC3 spheroids grown in stem cell medium. -- Abstract: Aldehyde dehydrogenase 1 (ALDH) activity is considered to be a marker of cancer stem cells (CSCs) in many tumour models, since these cells are more proliferative and tumourigenic than ALDHLo cells in experimental models. However it is unclear whether all CSC-like cells are within the ALDHHi population, or whether all ALDHHi cells are highly proliferative and tumourigenic. The ability to establish a stem cell hierarchy in vitro, whereby sub-populations of cells have differing proliferative and differentiation capacities, is an alternate indication of the presence of stem cell-like populations within cell lines. In this study, we have examined the interaction between ALDH status and the ability to establish a stem cell hierarchy in PC3 prostate cancer cells. We demonstrate that PC3 cells contain a stem cell hierarchy, and isolation of ALDHHi cells enriches for the most primitive holoclone population, however holoclone formation is not restricted to ALDHHi cells. In addition, we show that ALDH activity undergoes phenotypic plasticity, since the ALDHLo population can develop ALDHHi populations comparable to parental cells within 2 weeks in culture. Furthermore, we show that the majority of ALDHHi cells are found within the least primitive paraclone population, which is circumvented by culturing PC3 cells as spheroids in defined medium favouring stem cell characteristics. Although ALDHHi status enriches for holoclone formation, this activity may be mediated by a minority of ALDHHi cells.

  6. Studies on Electrolyte Conductivity and Activity of Dehydrogenase of Chinese Fir and Masson Pine Bare-Root Seedling under Water and Cold Stress

    Institute of Scientific and Technical Information of China (English)

    Yu Fangyuan; Xu Xizeng; Guo Xinbao

    2003-01-01

    The electrolyte conductivity and activity of dehydrogenase of bare-root seedlings of both Chinese fir (Cunningha-mia lanceolata (Lamb.) Hook.) and Masson pine (Pinus massoniana Lamb.) under freezing and desiccation treatments were studied.The results showed that needle electrolyte conductivity of both species increase significantly after freezing treatment and there are nosignificant differences in needle electrolyte conductivity between the two species. The dehydrogenase activity (ARD) of fine roots ofboth Chinese fir and Masson pine was negatively correlated with increasing freezing and desiccation. The results suggest that bothelectrolyte conductivity and dehydrogenase activity could be used as quick indicators of Chinese fir and Masson pine bare-root seed-ling quality.

  7. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury

    Directory of Open Access Journals (Sweden)

    de Reggi Max

    2010-04-01

    Full Text Available Abstract Background The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. Results We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. Conclusions These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.

  8. Effect of Follicular Fluid and Platelet-Activating Factor on Lactate Dehydrogenase C Expression in Human Asthenozoospermic Samples

    OpenAIRE

    Tahereh Esmaeilpour; Mohmmad-Reza Zarei; Soghra Bahmanpour; Elham Aliabadi; Ahmad Hosseini; Mansooreh Jaberipour

    2014-01-01

    Background: Application of follicular fluid (FF) and platelet-activating factor (PAF) in artificial insemination improves sperm motility. Lactate dehydrogenase C (LDH-C) is a key enzyme for sperm motility. In this study, the effects of FF and PAF on the sperm motility index and LDH-C expression were investigated. Moreover, LDH-C expression was compared between asthenozoospermic and normozoospermic samples. Methods: The expression of LDH-C was examined by quantitative real-time polymerase ...

  9. Bioinformatics based structural characterization of glucose dehydrogenase (gdh) gene and growth promoting activity of Leclercia sp. QAU-66

    OpenAIRE

    Muhammad Naveed; Iftikhar Ahmed; Nauman Khalid; Abdul Samad Mumtaz

    2014-01-01

    Glucose dehydrogenase (GDH; EC 1.1. 5.2) is the member of quinoproteins group that use the redox cofactor pyrroloquinoline quinoine, calcium ions and glucose as substrate for its activity. In present study, Leclercia sp. QAU-66, isolated from rhizosphere of Vigna mungo, was characterized for phosphate solubilization and the role of GDH in plant growth promotion of Phaseolus vulgaris. The strain QAU-66 had ability to solubilize phosphorus and significantly (p ≤ 0.05) promoted the shoot and roo...

  10. Effects of silver nanoparticle on lactate dehydrogenase activity and histological changes of heart tissue in male wistar rats

    OpenAIRE

    Noushin Naghsh; Amir Masoud Mashayekh; Samaneh Khodadadi

    2013-01-01

    Background & Objective: The silver nanoparticles are important in many applications of nanoparticles on human health . The toxicity of silver nanoparticles are not well documented yet. The aim of this study was to investigate the effect of silver nanoparticles on lactate dehydrogenase activity and histological changes in heart tissue.   Materials &Methods: In this study, 40 adult male wistar rats of 220±20gr were divided in to five groups including control and four experimental groups. The la...

  11. Characterization of Cardiac-Resident Progenitor Cells Expressing High Aldehyde Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Marc-Estienne Roehrich

    2013-01-01

    Full Text Available High aldehyde dehydrogenase (ALDH activity has been associated with stem and progenitor cells in various tissues. Human cord blood and bone marrow ALDH-bright (ALDHbr cells have displayed angiogenic activity in preclinical studies and have been shown to be safe in clinical trials in patients with ischemic cardiovascular disease. The presence of ALDHbr cells in the heart has not been evaluated so far. We have characterized ALDHbr cells isolated from mouse hearts. One percent of nonmyocytic cells from neonatal and adult hearts were ALDHbr. ALDHvery-br cells were more frequent in neonatal hearts than adult. ALDHbr cells were more frequent in atria than ventricles. Expression of ALDH1A1 isozyme transcripts was highest in ALDHvery-br cells, intermediate in ALDHbr cells, and lowest in ALDHdim cells. ALDH1A2 expression was highest in ALDHvery-br cells, intermediate in ALDHdim cells, and lowest in ALDHbr cells. ALDH1A3 and ALDH2 expression was detectable in ALDHvery-br and ALDHbr cells, unlike ALDHdim cells, albeit at lower levels compared with ALDH1A1 and ALDH1A2. Freshly isolated ALDHbr cells were enriched for cells expressing stem cell antigen-1, CD34, CD90, CD44, and CD106. ALDHbr cells, unlike ALDHdim cells, could be grown in culture for more than 40 passages. They expressed sarcomeric α-actinin and could be differentiated along multiple mesenchymal lineages. However, the proportion of ALDHbr cells declined with cell passage. In conclusion, the cardiac-derived ALDHbr population is enriched for progenitor cells that exhibit mesenchymal progenitor-like characteristics and can be expanded in culture. The regenerative potential of cardiac-derived ALDHbr cells remains to be evaluated.

  12. Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens.

    Science.gov (United States)

    Krishnaraj, P U; Goldstein, A H

    2001-12-18

    Serratia marcescens ER2 was isolated from an endorhizosphere sample based on its high level of mineral phosphate solubilizing (MPS) activity. This phenotype was correlated with expression of the direct oxidation pathway. An ER2 plasmid library constructed in Escherichia coli strain DH5alpha was screened for MPS activity. A recombinant clone DH5alpha (pKG3791) was capable of gluconic acid (GA) production and tricalcium phosphate solubilization but only in the presence of stationary phase ER2 cells. GA production in DH5alpha (pKG3791) was apparently the result of the quinoprotein glucose dehydrogenase activity because AG121 (a Tn5 knockout of gcd) carrying pKG3791 did not produce GA under the same conditions. GA production by DH5alpha (pKG3791) was not observed when ER2 was replaced by another PQQ-producing strain bacterium. These data add to a growing body of evidence that E. coli contains some type of PQQ biosynthesis pathway distinct from those previously characterized in Gram-negative bacteria and that these genes may be induced under appropriate conditions.

  13. Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone.

    Science.gov (United States)

    Holness, Mark J; Bulmer, Karen; Smith, Nicholas D; Sugden, Mary C

    2003-02-01

    Liver contains two pyruvate dehydrogenase kinases (PDKs), namely PDK2 and PDK4, which regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Starvation increases hepatic PDK2 and PDK4 protein expression, the latter occurring, in part, via a mechanism involving peroxisome proliferator-activated receptor-alpha (PPARalpha). High-fat feeding and hyperthyroidism, which increase circulating lipid supply, enhance hepatic PDK2 protein expression, but these increases are insufficient to account for observed increases in hepatic PDK activity. Enhanced expression of PDK4, but not PDK2, occurs in part via a mechanism involving PPAR-alpha. Heterodimerization partners for retinoid X receptors (RXRs) include PPARalpha and thyroid-hormone receptors (TRs). We therefore investigated the responses of hepatic PDK protein expression to high-fat feeding and hyperthyroidism in relation to hepatic lipid delivery and disposal. High-fat feeding increased hepatic PDK2, but not PDK4, protein expression whereas hyperthyroidism increased both hepatic PDK2 and PDK4 protein expression. Both manipulations decreased the sensitivity of hepatic carnitine palmitoyltransferase I (CPT I) to suppression by malonyl-CoA, but only hyperthyrodism elevated plasma fatty acid and ketone-body concentrations and CPT I maximal activity. Administration of the selective PPAR-alpha activator WY14,643 significantly increased PDK4 protein to a similar extent in both control and high-fat-fed rats, but WY14,643 treatment and hyperthyroidism did not have additive effects on hepatic PDK4 protein expression. PPARalpha activation did not influence hepatic PDK2 protein expression in euthyroid rats, suggesting that up-regulation of PDK2 by hyperthyroidism does not involve PPARalpha, but attenuated the effect of hyperthyroidism to increase hepatic PDK2 expression. The results indicate that hepatic PDK4 up-regulation can be achieved by heterodimerization of either PPARalpha or

  14. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.

    Science.gov (United States)

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan

    2016-07-01

    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.

  15. PHARMACOLOGICAL ACTIVITIES OF PROTOCATECHUIC ACID.

    Science.gov (United States)

    Khan, Abida Kalsoom; Rashid, Rehana; Fatima, Nighat; Mahmood, Sadaf; Mir, Sadullah; Khan, Sara; Jabeen, Nyla; Murtaza, Ghulam

    2015-01-01

    Protocatechuic acid (3,4-dihydroxybenzoic acid, PCA) is a simple phenolic acid. It is found in a large variety of edible plants and possesses various pharmacological activities. This article aims to review the modern trends in phytochemical isolation and extraction of PCA from plants and other natural resources. Moreover, this article also encompasses pharmacological and biological activities of PCA. It is well known to have anti-inflammatory, antioxidant, anti-hyperglycemia, antibacterial, anticancer, anti-ageing, anti-athro- genic, anti-tumoral, anti-asthma, antiulcer, antispasmodic and neurological properties. PMID:26647619

  16. Lactate dehydrogenase activity of rat epididymis and spermatozoa: Effect of constant light

    Directory of Open Access Journals (Sweden)

    RH Ponce

    2009-12-01

    Full Text Available During its passage through the epididymis, the gamete undergoes a process of “maturation” leading to the acquisition of its fertilizing ability. The epididymis displays regional variations in the morphology and metabolic properties of its epithelium which are relevant for the progressive development of mature sperm characteristics. The epididymis has spontaneous peristaltic contractions and receives sympathetic innervation that is modulated by melatonin, a hormone synthesized and released by the pineal gland. Constant lighting disrupts melatonin synthesis and secretion. We have studied the effect of constant light on lactate dehydrogenase (LDH; EC 1.1.1.27 and its isozyme C4 activities and protein content in whole epididymis, epididymal tissue and in spermatozoa from caput and cauda segments. Animals were exposed from birth to an illumination schedule of 14 h light: 10 h dark (group L:D. At 60 days of age one group of animals was submitted to constant light over 50 days (group L:L. In order to test the fertilizing ability, the rats of each group were mated with soliciting estrous females. The percentage of pregnancies in females mated with males maintained in L:L was remarkably lower than those in females mated with males maintained in the L:D photoperiod (44% and 88% respectively. Constant light increased protein concentration and LDH activity in caput as well as in cauda of total epididymis. On the contrary, in epididymal tissue, the protein content decreased in both epididymal sections compared with controls. When enzymatic activity was expressed in Units per spermatozoa, constant light induced a significant reduction of total LDH and LDHC4 in caput and cauda spermatozoa while LDH activity of epididymal tissue was not affected. In spite of the decrease in LDH per sperm cell when rats were exposed to constant light, in total epididymis (epididymis tissue plus sperm cells content and in spermatozoa, values of enzyme activities expressed per

  17. Electrochemical Studies of the Inhibition and Activation Effects of Al (III on the Activity of Bovine Liver Glutamate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Shuping Bi

    2005-04-01

    Full Text Available Since the study of Al3+ ion on the enzyme activity by using of electrochemical techniques was rarely found in available literatures, the differential-pulse polarography (DPP technique was applied to study the effects of Al3+ ion on the glutamate dehydrogenase (GDH activity in the catalytical reaction of α-KG +NADH+NH4 + ⇔ L-Glu+NAD++H2O by monitoring the DPP reduction current of NAD+. At the plant and animal physiologically relevant pH values (pH=6.5 and 7.5, the GDH enzyme activities were strongly depended on the concentrations of the metal ion in the assay mixture solutions. In the lower Al (III concentration solutions (80μM, the inhibition effects of Al (III were shown again. The cyclic voltammetry of NAD+ and NAD+-GDH in the presence of Al (III can help to explain some biological phenomena. According to the differential-pulse polarography and cyclic voltammetry experiments, the present research confirmed that the electrochemical technique is a convenient and reliable sensor for accurate determination of enzyme activity in biological and environmental samples.

  18. Active site of Zn2+-dependent sn-glycerol-1-phosphate dehydrogenase from Aeropyrum pernix K1

    Directory of Open Access Journals (Sweden)

    Jin-Suk Han

    2005-01-01

    Full Text Available The enzyme sn-glycerol-1-phosphate dehydrogenase (Gro1PDH, EC 1.1.1.261 is key to the formation of the enantiomeric configuration of the glycerophosphate backbone (sn-glycerol-1-phosphate of archaeal ether lipids. This enzyme catalyzes the reversible conversion between dihydroxyacetone phosphate and glycerol-1-phosphate. To date, no information about the active site and catalytic mechanism of this enzyme has been reported. Using the sequence and structural information for glycerol dehydrogenase, we constructed six mutants (D144N, D144A, D191N, H271A, H287A and D191N/H271A of Gro1PDH from Aeropyrum pernix K1 and examined their characteristics to clarify the active site of this enzyme. The enzyme was found to be a zinc-dependent metalloenzyme, containing one zinc ion for every monomer protein that was essential for activity. Site-directed mutagenesis of D144 increased the activity of the enzyme. Mutants D144N and D144A exhibited low affinity for the substrates and higher activity than the wild type, but their affinity for the zinc ion was the same as that of the wild type. Mutants D191N, H271A and H287A had a low affinity for the zinc ion and a low activity compared with the wild type. The double mutation, D191N/ H271A, had no enzyme activity and bound no zinc. From these results, it was clarified that residues D191, H271 and H287 participate in the catalytic activity of the enzyme by binding the zinc ion, and that D144 has an effect on substrate binding. The structure of the active site of Gro1PDH from A. pernix K1 seems to be similar to that of glycerol dehydrogenase, despite the differences in substrate specificity and biological role.

  19. Single amino-acid substitution in the N-terminal arm altered the tetramer stability of rat muscle lactate dehydrogenase A

    Institute of Scientific and Technical Information of China (English)

    袁翀; 胡红雨; 许根俊

    2001-01-01

    Lactate dehydrogenase A (LDHA) is a well-characterized tetrameric enzyme. Its N-terminal arm, comprised of an (-helix and a (-strand, was suggested to be essential for subunit interactions. To examine the critical amino acid residues in the N-terminus involved in the subunit association, two single-point mutants, Leu3Pro (L3P) and Ile8Glu (I8E), have been constructed. We compared the stability of WT-LDHA (WT) and its variants by unfolding experiments. For WT, a dimeric but inactive intermediate was observed by size-exclusion chromatography at 0.6-0.8 mol/L GdmCl. Leu3Pro exists in an active tetrameric structure in aqueous solution as WT does, but it dissociates into dimers under lower concentration of GdmCl (0.2 mol/L). In aqueous solution, the Ile8Glu variant exists predominantly in the dimeric form with increased KM and decreased kcat as compared with those of WT and L3P. However, the activity of Ile8Glu increases significantly in the presence of sodium sulfate. In conclusion, two mutants are less stable than WT in oligomer structure. Results also support the fact that some residues in the N-terminal arm, especially the Leu8 in the (-structure, contribute the important binding energies to the dimerization of dimers, which might affect the assembly of the enzyme as well as the catalytic function.

  20. Influence of physical activity of racehorses on lactate dehydrogenase and creatine kinase activities, and protein synthesis

    Directory of Open Access Journals (Sweden)

    Jović Slavoljub

    2013-01-01

    Full Text Available The aim of the research was to assess the effects of physical activity of various intensity on the degree of damage to certain organs resulting from increased free radical production, as well as the adaptability of the organism to physical exercise. Two groups of healthy 3-5-year-old full-blooded racehorses were assessed. The first one ran a 2400-meter gallop race, which is considered a short-lasting, intense physical activity; lipid status was assessed prior to, and 48 and 72 h after the race. The second group ran a forty-kilometer endurance ride, which is a long-lasting moderate physical activity; the lipid status was assessed immediately before, on finishing and 48, 72, 96, 120 and 144 h after the race. The total activity of LDH changed 72 h and 96 h following the gallop race (p>0.05, whilst the maximum activity was measured immediately after the endurance ride. By means of electrophoresis LDH in all the horses 5 isoforms were detected. The activity of LDH1 72 h after the gallop race significantly rose in comparison to the one before the race (p0.05. Following the endurance ride LDH1 activity rose at all sampling times, reaching the maximum at 96 h and 144 h in comparison to the values both before and on finishing the ride (p<0.01. The increase in the activity of LDH2 was significantly higher 48 h, 72 h, 96 h and 120 h (p<0.05 after the race in comparison to that before the race, and at 48 h, 72 h, 96 h, 120 h and 144 h (p<0.05 in comparison to the values on finishing the race. LDH3 activity significantly decreased and LDH5 rose immediately after the endurance ride (p<0.01, whilst LDH4 significantly rose at all times following the endurance ride (p<0.01. The CK activity pointed to high, medium and low degree of adaptation of horses to physical activity. The concentrations of total proteins, albumins and globulins remained within the physiological range at all sampling times, with the exception of 96 h after the endurance ride, when the fall

  1. A new class of IMP dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi

    DEFF Research Database (Denmark)

    Hansen, Bjarne Gram; Genee, Hans Jasper; Kaas, Christian Schrøder;

    2011-01-01

    BACKGROUND: Many secondary metabolites produced by filamentous fungi have potent biological activities, to which the producer organism must be resistant. An example of pharmaceutical interest is mycophenolic acid (MPA), an immunosuppressant molecule produced by several Penicillium species. The ta...

  2. Structural and Functional Studies of WlbA: A Dehydrogenase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Thoden, James B.; Holden, Hazel M. (UW)

    2010-09-08

    2,3-Diacetamido-2,3-dideoxy-D-mannuronic acid (ManNAc3NAcA) is an unusual dideoxy sugar first identified nearly 30 years ago in the lipopolysaccharide of Pseudomonas aeruginosa O:3a,d. It has since been observed in other organisms, including Bordetella pertussis, the causative agent of whooping cough. Five enzymes are required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetyl-D-glucosamine. Here we describe a structural study of WlbA, the NAD-dependent dehydrogenase that catalyzes the second step in the pathway, namely, the oxidation of the C-3{prime} hydroxyl group on the UDP-linked sugar to a keto moiety and the reduction of NAD{sup +} to NADH. This enzyme has been shown to use {alpha}-ketoglutarate as an oxidant to regenerate the oxidized dinucleotide. For this investigation, three different crystal structures were determined: the enzyme with bound NAD(H), the enzyme in a complex with NAD(H) and {alpha}-ketoglutarate, and the enzyme in a complex with NAD(H) and its substrate (UDP-N-acetyl-D-glucosaminuronic acid). The tetrameric enzyme assumes an unusual quaternary structure with the dinucleotides positioned quite closely to one another. Both {alpha}-ketoglutarate and the UDP-linked sugar bind in the WlbA active site with their carbon atoms (C-2 and C-3{prime}, respectively) abutting the re face of the cofactor. They are positioned {approx}3 {angstrom} from the nicotinamide C-4. The UDP-linked sugar substrate adopts a highly unusual curved conformation when bound in the WlbA active site cleft. Lys 101 and His 185 most likely play key roles in catalysis.

  3. Activation of PPARα by Fatty Acid Accumulation Enhances Fatty Acid Degradation and Sulfatide Synthesis.

    Science.gov (United States)

    Yang, Yang; Feng, Yuyao; Zhang, Xiaowei; Nakajima, Takero; Tanaka, Naoki; Sugiyama, Eiko; Kamijo, Yuji; Aoyama, Toshifumi

    2016-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the first reaction in the mitochondrial fatty acid β-oxidation pathway. VLCAD deficiency is associated with the accumulation of fat in multiple organs and tissues, which results in specific clinical features including cardiomyopathy, cardiomegaly, muscle weakness, and hepatic dysfunction in infants. We speculated that the abnormal fatty acid metabolism in VLCAD-deficient individuals might cause cell necrosis by fatty acid toxicity. The accumulation of fatty acids may activate peroxisome proliferator-activated receptor (PPAR), a master regulator of fatty acid metabolism and a potent nuclear receptor for free fatty acids. We examined six skin fibroblast lines, derived from VLCAD-deficient patients and identified fatty acid accumulation and PPARα activation in these cell lines. We then found that the expression levels of three enzymes involved in fatty acid degradation, including long-chain acyl-CoA synthetase (LACS), were increased in a PPARα-dependent manner. This increased expression of LACS might enhance the fatty acyl-CoA supply to fatty acid degradation and sulfatide synthesis pathways. In fact, the first and last reactions in the sulfatide synthesis pathway are regulated by PPARα. Therefore, we also measured the expression levels of enzymes involved in sulfatide metabolism and the regulation of cellular sulfatide content. The levels of these enzymes and cellular sulfatide content both increased in a PPARα-dependent manner. These results indicate that PPARα activation plays defensive and compensative roles by reducing cellular toxicity associated with fatty acids and sulfuric acid. PMID:27644403

  4. Liposomal encapsulation of yeast alcohol dehydrogenase with cofactor for stabilization of the enzyme structure and activity.

    Science.gov (United States)

    Yoshimoto, Makoto; Sato, Mami; Yoshimoto, Noriko; Nakao, Katsumi

    2008-01-01

    Yeast alcohol dehydrogenase (YADH) with its cofactor nicotinamide adenine dinucleotide (NAD+) could be stably encapsulated in liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine). The YADH- and NAD+-containing liposomes (YADH-NADL) were 100 nm in mean diameter. The liposomal YADH and NAD+ concentrations were 2.3 mg/mL and 3.9 mM, respectively. A synergistic effect of the liposomal encapsulation and the presence of NAD+ was examined on the thermal stability of YADH at 45 and 50 degrees C. The enzyme stability of the YADH-NADL was compared to the stabilities of the liposomal YADH (YADHL) containing 3.3 mg/mL YADH without NAD+ as well as the free YADH with and without NAD+. Free YADH was increasingly deactivated during its incubation at 45 degrees C for 2 h with decrease of the enzyme concentration from 3.3 to 0.01 mg/mL because of the dissociation of tetrameric YADH into its subunits. At that temperature, the coexistence of free NAD+ at 3.9 mM improved the stability of free YADH at 2.3 mg/mL through forming their thermostable complex, although the stabilization effect of NAD+ was lowered at 50 degrees C. The turbidity measurements for the above free YADH solution with and without NAD+ revealed that the change in the enzyme tertiary structure was much more pronounced at 50 degrees C than at 45 degrees C even in the presence of NAD+. This suggests that YADH was readily deactivated in free solution due to a decrease in the inherent affinity of YADH with NAD+. On the other hand, both liposomal enzyme systems, YADH-NADL and YADHL, showed stabilities at both 45 and 50 degrees C much higher than those of the above free enzyme systems, YADH/NAD+ and YADH. These results imply that the liposome membranes stabilized the enzyme tertiary and thus quaternary structures. Furthermore, the enzyme activity of the YADH-NADL showed a stability higher than that of the YADHL with a more remarkable effect of NAD+ at 50 degrees C than at 45 degrees C. This was

  5. Examining the anti-candidal activity of 10 selected Indian herbs and investigating the effect of Lawsonia inermis extract on germ tube formation, protease, phospholipase, and aspartate dehydrogenase enzyme activity in Candida albicans

    Science.gov (United States)

    Ravichandran, Sripathy; Muthuraman, Sundararaman

    2016-01-01

    Objective: The objective of the study is to identify potential anti-candidal agents from natural resources and elucidate the effect of Lawsonia inermis extract on major virulent factors of Candida albicans. Materials and Methods: Plants, the most abundant and readily available resource of diverse bioactives, were chosen for the anti-candidal screening study. Ten different plants that were proven to have antimicrobial activity but not explored much for anti-candidal activity were chosen for this study. Ethyl acetate extract of these plant leaves were tested for the anti-candidal activity. Extracts with good anti-candidal activity were further screened for its effect in C. albicans germ tube formation and enzyme (protease, phospholipase, and aspartate dehydrogenase) activity. Results: Among 10 plants screened, L. inermis extract showed complete inhibition of C. albicans. On further evaluation, this extract completely inhibited C. albicans germ tube formation in serum until the end of incubation period (3 h). This extract also exhibited dose-dependent inhibitory activity against two major virulent enzymes of C. albicans, proteases (27–33%) and phospholipases (44.5%). In addition to it, this extract completely inhibited both the isoforms of constitutive candidal enzyme aspartate dehydrogenase, thereby affecting amino acid biosynthesis. Conclusion: Thus, this study confirms the anti-candidal potential of L. inermis and hence can be considered further for development of anti-candidal drug. PMID:26997722

  6. Acid-induced folding of yeast alcohol dehydrogenase under low pH conditions.

    Science.gov (United States)

    Le, W P; Yan, S X; Zhang, Y X; Zhou, H M

    1996-04-01

    Under conditions of low pH, the conformational states of holo-YADH and apo-YADH were examined by protein intrinsic fluorescence, ANS fluorescence, and far-UV CD measurements. The results obtained show that a low ionic strength, with the addition of HCl, the holo- and apo- YADH denatured gradually to reach the ultimate unfolded conformation in the vicinity of pH 2.0 and 2.5, respectively. With the decrease of pH from 7.0 to 2.0, the fluorescence emission decreased markedly, with its emission maximum red-shifting from 335 to 355 nm, indicating complete exposure of the buried tryptophan residues to the solvent. The far-UV CD spectra show the loss of the arrayed secondary structure, though the acid-denatured enzyme still maintained a partially arrayed secondary structure. A further decrease in pH by increasing the concentration of HClO4 induced a cooperative folding of the denatured enzyme to a compact conformation with the properties of a molten globule, described previously by Goto et al. [Proc. Natl. Acad. Sci. USA 87, 573-577 (1990)]. More extensive studies showed that although apo-YADH and holo-YADH exhibited similar behavior, the folding cooperative ability of apo-YADH was lower than that of the holo-enzyme. From the above results, it is suggested that the zinc ion plays an important role in the proper folding of YADH and in stabilizing its native conformation.

  7. Novel Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Anti-malarial Activity in the Mouse Model*

    OpenAIRE

    Booker, Michael L.; Bastos, Cecilia M.; Kramer, Martin L.; Barker, Robert H.; Skerlj, Renato; Sidhu, Amar Bir; Deng, Xiaoyi; Celatka, Cassandra; Cortese, Joseph F.; Guerrero Bravo, Jose E.; Crespo Llado, Keila N.; Serrano, Adelfa E.; Angulo-Barturen, Iñigo; Jiménez-Díaz, María Belén; Viera, Sara

    2010-01-01

    Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low ...

  8. Characterization of 10-Hydroxygeraniol Dehydrogenase from Catharanthus roseus Reveals Cascaded Enzymatic Activity in Iridoid Biosynthesis

    OpenAIRE

    Ramakrishnan Krithika; Prabhakar Lal Srivastava; Bajaj Rani; Kolet, Swati P.; Manojkumar Chopade; Mantri Soniya; Hirekodathakallu V. Thulasiram

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)+ dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-...

  9. Isoniazid acetylating phenotype in patients with paracoccidioidomycosis and its relationship with serum sulfadoxin levels, glucose-6-phosphate dehydrogenase and glutathione reductase activities

    OpenAIRE

    Benedito Barraviera; Paulo Câmara Marques Pereira; Jussara Marcondes Machado; Maria Julia de Souza; Carlos Roberto G. Lima; Paulo Roberto Curi; Rinaldo Poncio Mendes; Domingos Alves Meira

    1991-01-01

    The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females) aged 17 to 58 years. Twenty one (53.84%) of the patients presented a slow acetylatingphenotype and 18(46.16%) a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD) acti vity was decreased in 5(23.80%) slow acetylator...

  10. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Yuxun Zhang

    Full Text Available SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD, a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the active site. Further, we show that VLCAD binds strongly to cardiolipin and isolated mitochondrial membranes via a domain near the C-terminus containing lysines K482, K492, and K507. Acetylation or succinylation of these residues eliminates binding of VLCAD to cardiolipin. SIRT3 deacetylates K507 while SIRT5 desuccinylates K482, K492, and K507. Sirtuin deacylation of recombinant VLCAD rescues membrane binding. Endogenous VLCAD from SIRT3 and SIRT5 knockout mouse liver shows reduced binding to cardiolipin. Thus, SIRT3 and SIRT5 promote fatty acid oxidation by converging upon VLCAD to promote its activity and membrane localization. Regulation of cardiolipin binding by reversible lysine acylation is a novel mechanism that is predicted to extrapolate to other metabolic proteins that localize to the inner mitochondrial membrane.

  11. Gastric alcohol dehydrogenase activity in man: influence of gender, age, alcohol consumption and smoking in a caucasian population

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Billinger, M. H.; Bode, C.;

    2002-01-01

    is negatively associated with consumption of larger quantities of alcohol. The question of whether ADH activity is higher in males or females can only be answered with respect to age. The gastric ADH activity in young men is distinctly higher compared to young women, but the opposite holds true in middle......AIMS: The stomach is involved in first-pass metabolism of alcohol in humans. As conflicting data were published regarding the influence of age and gender on the activity of alcohol dehydrogenase (ADH) in human gastric mucosa, the present study aimed at the investigation of these and other...... potentially confounding factors (alcohol consumption, smoking, drug intake) on its activity in a Caucasian population. METHODS: ADH activity was assessed in endoscopic gastric biopsy specimens from 111 Caucasian subjects aged 20-80 years, of whom 51 were females. RESULTS: Highest ADH activity was measured...

  12. Molecular, biochemical, and functional characterization of a nudix hydrolase protein that stimulates the activity of a nicotinoprotein alcohol dehydrogenase

    OpenAIRE

    Kloosterman, H; Vrijbloed, JW; Dijkhuizen, L.

    2002-01-01

    The cytoplasmic coenzyme NAD(+)-dependent alcohol (methanol) dehydrogenase (MDH) employed by Bacillus methanolicus during growth on C-1-C-4 primary alcohols is a decameric protein with 1 Zn2+-ion and 1-2 Mg2+-ions plus a tightly bound NAD(H) cofactor per subunit (a nicotinoprotein). Mg2+-ions are essential for binding of NAD(H) cofactor in MDH protein expressed in Escherichia coli. The low coenzyme NAD(+)-dependent activity of MDH with C-1-C-4 primary alcohols is strongly stimulated by a seco...

  13. A single amino acid change (Y318F) in the L-arabitol dehydrogenase (LadA) from Aspergillus niger results in a significant increase in affinity for D-sorbitol

    NARCIS (Netherlands)

    Rutten, L.; Ribot, C.; Trejo-Aguilar, B.; Wosten, H.A.; De Vries, R.P.

    2009-01-01

    BACKGROUND: L-arabitol dehydrogenase (LAD) and xylitol dehydrogenase (XDH) are involved in the degradation of L-arabinose and D-xylose, which are among the most abundant monosaccharides on earth. Previous data demonstrated that LAD and XDH not only differ in the activity on their biological substrat

  14. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers: EVIDENCE FOR A “DIRECT PATHWAY” BETWEEN THE 4′-AMINOPYRIMIDINE N1′ ATOMS*

    OpenAIRE

    Nemeria, Natalia S.; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank

    2010-01-01

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4′-aminopyrimidine N1′ atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu571, Glu235, and Glu237) and Arg606 resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway...

  15. Pyruvate dehydrogenase kinase-4 structures reveal a metastable open conformation fostering robust core-free basal activity.

    Science.gov (United States)

    Wynn, R Max; Kato, Masato; Chuang, Jacinta L; Tso, Shih-Chia; Li, Jun; Chuang, David T

    2008-09-12

    Human pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core. PDK4 binds the L3 lipoyl domain, but its activity is not significantly stimulated by any individual lipoyl domains or the core of PDC. The 2.0-A crystal structures of the PDK4 dimer with bound ADP reveal an open conformation with a wider active-site cleft, compared with that in the closed conformation epitomized by the PDK2-ADP structure. The open conformation in PDK4 shows partially ordered C-terminal cross-tails, in which the conserved DW (Asp(394)-Trp(395)) motif from one subunit anchors to the N-terminal domain of the other subunit. The open conformation fosters a reduced binding affinity for ADP, facilitating the efficient removal of product inhibition by this nucleotide. Alteration or deletion of the DW-motif disrupts the C-terminal cross-tail anchor, resulting in the closed conformation and the nearly complete inactivation of PDK4. Fluorescence quenching and enzyme activity data suggest that compounds AZD7545 and dichloroacetate lock PDK4 in the open and the closed conformational states, respectively. We propose that PDK4 with bound ADP exists in equilibrium between the open and the closed conformations. The favored metastable open conformation is responsible for the robust basal activity of PDK4 in the absence of the PDC core. PMID:18658136

  16. Pyruvate dehydrogenase kinase isoform 2 activity limited and further inhibited by slowing down the rate of dissociation of ADP.

    Science.gov (United States)

    Bao, Haiying; Kasten, Shane A; Yan, Xiaohua; Roche, Thomas E

    2004-10-26

    Pyruvate dehydrogenase kinase 2 (PDK2) activity is enhanced by the dihydrolipoyl acetyltransferase core (E2 60mer) that binds PDK2 and a large number of its pyruvate dehydrogenase (E1) substrate. With E2-activated PDK2, K(+) at approximately 90 mM and Cl(-) at approximately 60 mM decreased the K(m) of PDK2 for ATP and competitive K(i) for ADP by approximately 3-fold and enhanced pyruvate inhibition. Comparing PDK2 catalysis +/- E2, E2 increased the K(m) of PDK2 for ATP by nearly 8-fold (from 5 to 39 microM), increased k(cat) by approximately 4-fold, and decreased the requirement for E1 by at least 400-fold. ATP binding, measured by a cold-trapping technique, occurred at two active sites with a K(d) of 5 microM, which equals the K(m) and K(d) of PDK2 for ATP measured in the absence of E2. During E2-aided catalysis, PDK2 had approximately 3 times more ADP than ATP bound at its active site, and the pyruvate analogue, dichloroacetate, led to 16-fold more ADP than ATP being bound (no added ADP). Pyruvate functioned as an uncompetitive inhibitor versus ATP, and inclusion of ADP transformed pyruvate inhibition to noncompetitive. At high pyruvate levels, pyruvate was a partial inhibitor but also induced substrate inhibition at high ATP levels. Our results indicate that, at physiological salt levels, ADP dissociation is a limiting step in E2-activated PDK2 catalysis, that PDK2.[ADP or ATP].pyruvate complexes form, and that PDK2.ATP.pyruvate.E1 reacts with PDK2.ADP.pyruvate accumulating. PMID:15491150

  17. Radioprotective activity of folic acid

    International Nuclear Information System (INIS)

    The radioprotective activity of folic acid has been studied using rat liver mitochondria membrane, protein and superoxide dismutase (SOD) as well as pBR 322 plasmid DNA as the model in vitro systems. The vitamin could effectively prevent the γ-ray induced lipid peroxidation as assessed by measuring thiobarbituric acid reactive substrates and protein carbonyl formation effectively. It also could also prevent radiation-induced damage of mitochondrial SOD and restore its level to normalcy Likewise; it prevented radiation-induced DNA strand breaks in a concentration dependent manner. The radioprotective activity could be attributed to its ability to scavenge the hydroxyl and superoxide radicals wherein its pseudo-phenolic moiety and C-9 methylene group play the key role. Radioprotective activity of a polysaccharide preparation from the Indian medicinal plant, Tinospora cordifolia Miers has been established using Saccharomyces cerevisiae X2180 strain as the in vivo test model. The entire activity could be attributed to the radical scavenging capacity of the preparation, as it did not enhance the expression of the protective enzymes, catalase and superoxide dismutase in the yeast cells. (author)

  18. Taraxerone enhances alcohol oxidation via increases of alcohol dehyderogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities and gene expressions.

    Science.gov (United States)

    Sung, Chang-Keun; Kim, Seung-Mi; Oh, Chang-Jin; Yang, Sun-A; Han, Byung-Hee; Mo, Eun-Kyoung

    2012-07-01

    The present study, taraxerone (d-friedoolean-14-en-3-one) was isolated from Sedum sarmentosum with purity 96.383%, and its enhancing effects on alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities were determined: EC(50) values were 512.42 ± 3.12 and 500.16 ± 3.23 μM for ADH and ALDH, respectively. In order to obtain more information on taraxerone related with the alcohol metabolism, 40% ethanol (5 mL/kg body weight) with 0.5-1mM of taraxerone were administered to mice. The plasma alcohol and acetaldehyde concentrations of taraxerone-treated groups were significantly lowered than those of the control group (p<0.01): approximately 20-67% and 7-57% lowered for plasma alcohol and acetaldehyde, respectively. Compare to the control group, the ADH and ALDH expressions in the liver tissues were abruptly increased in the taraxerone-treated groups after ethanol exposure. In addition, taraxerone prevented catalase, superoxide dismutase, and reduced glutathione concentrations from the decrease induced by ethanol administration with the concentration dependent manner.

  19. Effects of Macromolecular Crowding on Alcohol Dehydrogenase Activity Are Substrate-Dependent.

    Science.gov (United States)

    Wilcox, A E; LoConte, Micaela A; Slade, Kristin M

    2016-06-28

    Enzymes operate in a densely packed cellular environment that rarely matches the dilute conditions under which they are studied. To better understand the ramifications of this crowding, the Michaelis-Menten kinetics of yeast alcohol dehydrogenase (YADH) were monitored spectrophotometrically in the presence of high concentrations of dextran. Crowding decreased the maximal rate of the reaction by 40% for assays with ethanol, the primary substrate of YADH. This observation was attributed to slowed release of the reduced β-nicotinamide adenine dinucleotide product, which is rate-limiting. In contrast, when larger alcohols were used as the YADH substrate, the rate-limiting step becomes hydride transfer and crowding instead increased the maximal rate of the reaction by 20-40%. This work reveals the importance of considering enzyme mechanism when evaluating the ways in which crowding can alter kinetics.

  20. Experimentally increased codon bias in the Drosophila Adh gene leads to an increase in larval, but not adult, alcohol dehydrogenase activity.

    Science.gov (United States)

    Hense, Winfried; Anderson, Nathan; Hutter, Stephan; Stephan, Wolfgang; Parsch, John; Carlini, David B

    2010-02-01

    Although most amino acids can be encoded by more than one codon, the synonymous codons are not used with equal frequency. This phenomenon is known as codon bias and appears to be a universal feature of genomes. The translational selection hypothesis posits that the use of optimal codons, which match the most abundant species of isoaccepting tRNAs, results in increased translational efficiency and accuracy. Previous work demonstrated that the experimental reduction of codon bias in the Drosophila alcohol dehydrogenase (Adh) gene led to a significant decrease in ADH protein expression. In this study we performed the converse experiment: we replaced seven suboptimal leucine codons that occur naturally in the Drosophila melanogaster Adh gene with the optimal codon. We then compared the in vivo ADH activities imparted by the wild-type and mutant alleles. The introduction of optimal leucine codons led to an increase in ADH activity in third-instar larvae. In adult flies, however, the introduction of optimal codons led to a decrease in ADH activity. There is no evidence that other selectively constrained features of the Adh gene, or its rate of transcription, were altered by the synonymous replacements. These results are consistent with translational selection for codon bias being stronger in the larval stage and suggest that there may be a selective conflict over optimal codon usage between different developmental stages.

  1. STUDIES ON THE DYNAMICS OF DEHYDROGENASES KREBS CYCLE ACTIVITY AT MONILINIA LAXA (ADERH. & RUHL. HONEY FUNGUS GROWN ON MEDIA WITH DIFFERENT CARBOHYDRATES

    Directory of Open Access Journals (Sweden)

    Elena Ciornea

    2011-11-01

    Full Text Available As ubiquitous organisms, fungi grow on a large number of organic substrate, alive or dead, confronting therefore with a wide variety of carbohydrates and various physical factors, and their versatility to adapt and be able to use a large number of these compounds could provide them the chance to survive. Given that, these fungi have a rich enzyme equipment that allows them to operate on different metabolic pathways, this study aims to monitor the dynamics activity of some Krebs cycle dehydrogenases in Monilinia laxa (Aderh & Ruhl. Honey species parasitic on various species of plum trees. To this end, the fungus was cultivated in vitro on media enriched with different carbohydrates and the isocitrate dehydrogenase, �-cetoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase activity in the fungus mycelium was followed, at 7, respectively, 14 days after the inoculation of the culture medium and determined using the spectrophotometric Sîsoev and Krasna method (Cojocaru, D.C., 2009. Data revealed obvious differences depending on the type of carbohydrate introduced into the medium and the age of the culture mycelia.

  2. STUDIES ON THE DYNAMICS OF DEHYDROGENASES KREBS CYCLE ACTIVITY AT MONILINIA LAXA (ADERH. & RUHL. HONEY FUNGUS GROWN ON MEDIA WITH DIFFERENT CARBOHYDRATES

    Directory of Open Access Journals (Sweden)

    Elena Ciornea

    2010-09-01

    Full Text Available As ubiquitous organisms, fungi grow on a large number of organic substrate, alive or dead, confronting therefore with a wide variety of carbohydrates and various physical factors, and their versatility to adapt and be able to use a large number of these compounds could provide them the chance to survive. Given that, these fungi have a rich enzyme equipment that allows them to operate on different metabolic pathways, this study aims to monitor the dynamics activity of some Krebs cycle dehydrogenases in Monilinia laxa (Aderh & Ruhl. Honey species parasitic on various species of plum trees. To this end, the fungus was cultivated in vitro on media enriched with different carbohydrates and the isocitrate dehydrogenase, �-cetoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase activity in the fungus mycelium was followed, at 7, respectively, 14 days after the inoculation of the culture medium and determined using the spectrophotometric Sîsoev and Krasna method (Cojocaru, D.C., 2009. Data revealed obvious differences depending on the type of carbohydrate introduced into the medium and the age of the culture mycelia.

  3. Sorbitol dehydrogenase is a zinc enzyme.

    OpenAIRE

    Jeffery, J; Chesters, J; C. Mills; P.J. Sadler; Jörnvall, H

    1984-01-01

    Evidence is given that tetrameric sorbitol dehydrogenase from sheep liver contains one zinc atom per subunit, most probably located at the active site, and no other specifically bound zinc or iron atom. In alcohol dehydrogenases that are structurally related to sorbitol dehydrogenase, more than one zinc atom per subunit can complicate investigations of zinc atom function. Therefore, sorbitol dehydrogenase will be particularly valuable for defining the precise roles of zinc in alcohol and poly...

  4. Amino acid residues involved in the catalytic mechanism of NAD-dependent glutamate dehydrogenase from Halobacterium salinarum.

    Science.gov (United States)

    Pérez-Pomares, F; Ferrer, J; Camacho, M; Pire, C; LLorca, F; Bonete, M J

    1999-02-01

    The pH dependence of kinetic parameters for a competitive inhibitor (glutarate) was determined in order to obtain information on the chemical mechanism for NAD-dependent glutamate dehydrogenase from Halobacterium salinarum. The maximum velocity is pH dependent, decreasing at low pHs giving a pK value of 7.19+/-0.13, while the V/K for l-glutamate at 30 degrees C decreases at low and high pHs, yielding pK values of 7.9+/-0.2 and 9.8+/-0.2, respectively. The glutarate pKis profile decreases at high pHs, yielding a pK of 9. 59+/-0.09 at 30 degrees C. The values of ionization heat calculated from the change in pK with temperature are: 1.19 x 10(4), 5.7 x 10(3), 7 x 10(3), 6.6 x 10(3) cal mol-1, for the residues involved. All these data suggest that the groups required for catalysis and/or binding are lysine, histidine and tyrosine. The enzyme shows a time-dependent loss in glutamate oxidation activity when incubated with diethyl pyrocarbonate (DEPC). Inactivation follows pseudo-first-order kinetics with a second-order rate constant of 53 M-1min-1. The pKa of the titratable group was pK1=6.6+/-0.6. Inactivation with ethyl acetimidate also shows pseudo-first-order kinetics as well as inactivation with TNM yielding second-order constants of 1.2 M-1min-1 and 2.8 M-1min-1, and pKas of 8.36 and 9.0, respectively. The proposed mechanism involves hydrogen binding of each of the two carboxylic groups to tyrosyl residues; histidine interacts with one of the N-hydrogens of the l-glutamate amino group. We also corroborate the presence of a conservative lysine that has a remarkable ability to coordinate a water molecule that would act as general base.

  5. E. coli histidine triad nucleotide binding protein 1 (ecHinT is a catalytic regulator of D-alanine dehydrogenase (DadA activity in vivo.

    Directory of Open Access Journals (Sweden)

    Sanaa Bardaweel

    Full Text Available Histidine triad nucleotide binding proteins (Hints are highly conserved members of the histidine triad (HIT protein superfamily. Hints comprise the most ancient branch of this superfamily and can be found in Archaea, Bacteria, and Eukaryota. Prokaryotic genomes, including a wide diversity of both gram-negative and gram-positive bacteria, typically have one Hint gene encoded by hinT (ycfF in E. coli. Despite their ubiquity, the foundational reason for the wide-spread conservation of Hints across all kingdoms of life remains a mystery. In this study, we used a combination of phenotypic screening and complementation analyses with wild-type and hinT knock-out Escherichia coli strains to show that catalytically active ecHinT is required in E. coli for growth on D-alanine as a sole carbon source. We demonstrate that the expression of catalytically active ecHinT is essential for the activity of the enzyme D-alanine dehydrogenase (DadA (equivalent to D-amino acid oxidase in eukaryotes, a necessary component of the D-alanine catabolic pathway. Site-directed mutagenesis studies revealed that catalytically active C-terminal mutants of ecHinT are unable to activate DadA activity. In addition, we have designed and synthesized the first cell-permeable inhibitor of ecHinT and demonstrated that the wild-type E. coli treated with the inhibitor exhibited the same phenotype observed for the hinT knock-out strain. These results reveal that the catalytic activity and structure of ecHinT is essential for DadA function and therefore alanine metabolism in E. coli. Moreover, they provide the first biochemical evidence linking the catalytic activity of this ubiquitous protein to the biological function of Hints in Escherichia coli.

  6. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Jeppsson, M.; Johansson, B.; Jensen, Peter Ruhdal;

    2003-01-01

    Disruption of the ZWF1 gene encoding glucose-6-phosphate dehydrogenase (G6PDH) has been shown to reduce the xylitol yield and the xylose consumption in the xylose-utilizing recombinant Saccharomyces cerevisiae strain TMB3255. In the present investigation we have studied the influence of different...... consumption, respectively, compared with the ZWF1-disrupted strain. Both strains exhibited decreased xylitol yields (0.13 and 0.19 g/g xylose) and enhanced ethanol yields (0.36 and 0.34 g/g xylose) compared with the control strain TMB3001 (0.29 g xylitol/g xylose, 0.31 g ethanol/g xylose). Cytoplasmic...... transhydrogenase (TH) from Azotobacter vinelandii has previously been shown to transfer NADPH and NAD(+) into NADP(+) and NADH, and TH-overproduction resulted in lower xylitol yield and enhanced glycerol yield during xylose utilization. Strains with low G6PDH-activity grew slower in a lignocellulose hydrolysate...

  7. Aspirin inhibits glucose‑6‑phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites.

    Science.gov (United States)

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Alfonso, Lloyd F; Marimuthu, Srinivasan; Bhat, G Jayarama

    2016-08-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer, and has been implicated in cancer cell growth. Our previous study demonstrated that exposure of HCT 116 human colorectal cancer cells to aspirin caused acetylation of G6PD, and this was associated with a decrease in its enzyme activity. In the present study, this observation was expanded to HT‑29 colorectal cancer cells, in order to compare aspirin‑mediated acetylation of G6PD and its activity between HCT 116 and HT‑29 cells. In addition, the present study aimed to determine the acetylation targets of aspirin on recombinant G6PD to provide an insight into the mechanisms of inhibition. The results demonstrated that the extent of G6PD acetylation was significantly higher in HCT 116 cells compared with in HT‑29 cells; accordingly, a greater reduction in G6PD enzyme activity was observed in the HCT 116 cells. Mass spectrometry analysis of aspirin‑acetylated G6PD (isoform a) revealed that aspirin acetylated a total of 14 lysine residues, which were dispersed throughout the length of the G6PD protein. One of the important amino acid targets of aspirin included lysine 235 (K235, in isoform a) and this corresponds to K205 in isoform b, which has previously been identified as being important for catalysis. Acetylation of G6PD at several sites, including K235 (K205 in isoform b), may mediate inhibition of G6PD activity, which may contribute to the ability of aspirin to exert anticancer effects through decreased synthesis of ribose sugars and NADPH.

  8. Chronic inhibition of 11 β -hydroxysteroid dehydrogenase type 1 activity decreases hypertension, insulin resistance, and hypertriglyceridemia in metabolic syndrome.

    Science.gov (United States)

    Schnackenberg, Christine G; Costell, Melissa H; Krosky, Daniel J; Cui, Jianqi; Wu, Charlene W; Hong, Victor S; Harpel, Mark R; Willette, Robert N; Yue, Tian-Li

    2013-01-01

    Metabolic syndrome is a constellation of risk factors including hypertension, dyslipidemia, insulin resistance, and obesity that promote the development of cardiovascular disease. Metabolic syndrome has been associated with changes in the secretion or metabolism of glucocorticoids, which have important functions in adipose, liver, kidney, and vasculature. Tissue concentrations of the active glucocorticoid cortisol are controlled by the conversion of cortisone to cortisol by 11 β -hydroxysteroid dehydrogenase type 1 (11 β -HSD1). Because of the various cardiovascular and metabolic activities of glucocorticoids, we tested the hypothesis that 11 β -HSD1 is a common mechanism in the hypertension, dyslipidemia, and insulin resistance in metabolic syndrome. In obese and lean SHR/NDmcr-cp (SHR-cp), cardiovascular, metabolic, and renal functions were measured before and during four weeks of administration of vehicle or compound 11 (10 mg/kg/d), a selective inhibitor of 11 β -HSD1. Compound 11 significantly decreased 11 β -HSD1 activity in adipose tissue and liver of SHR-cp. In obese SHR-cp, compound 11 significantly decreased mean arterial pressure, glucose intolerance, insulin resistance, hypertriglyceridemia, and plasma renin activity with no effect on heart rate, body weight gain, or microalbuminuria. These results suggest that 11 β -HSD1 activity in liver and adipose tissue is a common mediator of hypertension, hypertriglyceridemia, glucose intolerance, and insulin resistance in metabolic syndrome.

  9. Chronic Inhibition of 11β-Hydroxysteroid Dehydrogenase Type 1 Activity Decreases Hypertension, Insulin Resistance, and Hypertriglyceridemia in Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Christine G. Schnackenberg

    2013-01-01

    Full Text Available Metabolic syndrome is a constellation of risk factors including hypertension, dyslipidemia, insulin resistance, and obesity that promote the development of cardiovascular disease. Metabolic syndrome has been associated with changes in the secretion or metabolism of glucocorticoids, which have important functions in adipose, liver, kidney, and vasculature. Tissue concentrations of the active glucocorticoid cortisol are controlled by the conversion of cortisone to cortisol by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1. Because of the various cardiovascular and metabolic activities of glucocorticoids, we tested the hypothesis that 11β-HSD1 is a common mechanism in the hypertension, dyslipidemia, and insulin resistance in metabolic syndrome. In obese and lean SHR/NDmcr-cp (SHR-cp, cardiovascular, metabolic, and renal functions were measured before and during four weeks of administration of vehicle or compound 11 (10 mg/kg/d, a selective inhibitor of 11β-HSD1. Compound 11 significantly decreased 11β-HSD1 activity in adipose tissue and liver of SHR-cp. In obese SHR-cp, compound 11 significantly decreased mean arterial pressure, glucose intolerance, insulin resistance, hypertriglyceridemia, and plasma renin activity with no effect on heart rate, body weight gain, or microalbuminuria. These results suggest that 11β-HSD1 activity in liver and adipose tissue is a common mediator of hypertension, hypertriglyceridemia, glucose intolerance, and insulin resistance in metabolic syndrome.

  10. The Arabidopsis KS-type dehydrin recovers lactate dehydrogenase activity inhibited by copper with the contribution of His residues.

    Science.gov (United States)

    Hara, Masakazu; Monna, Shuhei; Murata, Takae; Nakano, Taiyo; Amano, Shono; Nachbar, Markus; Wätzig, Hermann

    2016-04-01

    Dehydrin, which is one of the late embryogenesis abundant (LEA) proteins, is involved in the ability of plants to tolerate the lack of water. Although many reports have indicated that dehydrins bind heavy metals, the physiological role of this metal binding has not been well understood. Here, we report that the Arabidopsis KS-type dehydrin (AtHIRD11) recovered the lactate dehydrogenase (LDH) activity denatured by Cu(2+). The LDH activity was partially inhibited by 0.93 μM Cu(2+) but totally inactivated by 9.3 μM Cu(2+). AtHIRD11 recovered the activity of LDH treated with 9.3 μM Cu(2+) in a dose-dependent manner. The recovery activity of AtHIRD11 was significantly higher than those of serum albumin and lysozyme. The conversion of His residues to Ala in AtHIRD11 resulted in the loss of the Cu(2+) binding of the protein as well as the disappearance of the conformational change induced by Cu(2+) that is observed by circular dichroism spectroscopy. The mutant protein showed lower recovery activity than the original AtHIRD11. These results indicate that AtHIRD11 can reactivate LDH inhibited by Cu(2+) via the His residues. This function may prevent physiological damage to plants due to heavy-metal stress. PMID:26940498

  11. In Silico Identification and in Vitro Activity of Novel Natural Inhibitors of Trypanosoma brucei Glyceraldehyde-3-phosphate-dehydrogenase

    Directory of Open Access Journals (Sweden)

    Fabian C. Herrmann

    2015-09-01

    Full Text Available As part of our ongoing efforts to identify natural products with activity against pathogens causing neglected tropical diseases, we are currently performing an extensive screening of natural product (NP databases against a multitude of protozoan parasite proteins. Within this project, we screened a database of NPs from a commercial supplier, AnalytiCon Discovery (Potsdam, Germany, against Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH, a glycolytic enzyme whose inhibition deprives the parasite of energy supply. NPs acting as potential inhibitors of the mentioned enzyme were identified using a pharmacophore-based virtual screening and subsequent docking of the identified hits into the active site of interest. In a set of 700 structures chosen for the screening, 13 (1.9% were predicted to possess significant affinity towards the enzyme and were therefore tested in an in vitro enzyme assay using recombinant TbGAPDH. Nine of these in silico hits (69% showed significant inhibitory activity at 50 µM, of which two geranylated benzophenone derivatives proved to be particularly active with IC50 values below 10 µM. These compounds also showed moderate in vitro activity against T. brucei rhodesiense and may thus represent interesting starting points for further optimization.

  12. Effects of 14 days of spaceflight and nine days of recovery on cell body size and succinate dehydrogenase activity of rat dorsal root ganglion neurons

    Science.gov (United States)

    Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.

    1997-01-01

    The cross-sectional areas and succinate dehydrogenase activities of L5 dorsal root ganglion neurons in rats were determined after 14 days of spaceflight and after nine days of recovery. The mean and distribution of the cross-sectional areas were similar to age-matched, ground-based controls for both the spaceflight and for the spaceflight plus recovery groups. The mean succinate dehydrogenase activity was significantly lower in spaceflight compared to aged-matched control rats, whereas the mean succinate dehydrogenase activity was similar in age-matched control and spaceflight plus recovery rats. The mean succinate dehydrogenase activity of neurons with cross-sectional areas between 1000 and 2000 microns2 was lower (between 7 and 10%) in both the spaceflight and the spaceflight plus recovery groups compared to the appropriate control groups. The reduction in the oxidative capacity of a subpopulation of sensory neurons having relatively large cross-sectional areas immediately following spaceflight and the sustained depression for nine days after returning to 1 g suggest that the 0 g environment induced significant alterations in proprioceptive function.

  13. Communication between thiamin cofactors in the Escherichia coli pyruvate dehydrogenase complex E1 component active centers: evidence for a "direct pathway" between the 4'-aminopyrimidine N1' atoms.

    Science.gov (United States)

    Nemeria, Natalia S; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank

    2010-04-01

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4'-aminopyrimidine N1' atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu(571), Glu(235), and Glu(237)) and Arg(606) resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. 1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. 2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. 3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. 4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu(235) makes no direct contact with the cofactor. The role of the conserved Glu(571) residue in both catalysis and cofactor orientation is revealed by the combined results for the first time. PMID:20106967

  14. Aldehyde dehydrogenase 1A1 stabilizes transcription factor Gli2 and enhances the activity of Hedgehog signaling in hepatocellular cancer.

    Science.gov (United States)

    Yan, Zhengwei; Xu, Liyao; Zhang, Junyan; Lu, Quqin; Luo, Shiwen; Xu, Linlin

    2016-03-18

    The Gli transcription factors are primary transcriptional regulators that mediate the activation of Hedgehog (Hh) signaling. Recent studies have revealed that Gli proteins are also regulated transcriptionally and post-translationally through noncanonical mechanisms, independent of Hh signaling. However, the precise mechanisms involved in the regulation of Gli proteins remain unclear. Using a differential mass-spectrometry approach, we found that aldehyde dehydrogenase 1A1 (ALDH1A1) is associated with transcription factor Gli2. Overexpression of ALDH1A1 increased Gli2 protein levels; in contrast, ALDH1A1 depletion facilitated Gli2 degradation. In addition, Gli2 mRNA expression was not affected by ectopic expression of ALDH1A1, indicating the role of ALDH1A1 in the stabilization of Gli2. Further investigation showed that ALDH1A1 prolonged the stability of Gli2 protein in a catalytic-independent manner. Finally, we showed that overexpression of ALDH1A1 activated the Hh signaling pathway and promoted cell growth, migration and invasion in hepatocellular cancer cells. Together, these results illustrate regulatory roles of ALDH1A1 in the activation of the Hh signaling pathway and highlight a novel mechanism for the aberrant activation of the Hh signaling pathway in hepatocellular cancer cells. PMID:26896768

  15. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility

    OpenAIRE

    Zhang, Shuai; Hulver, Matthew W.; McMillan, Ryan P.; Cline, Mark A.; Gilbert, Elizabeth R

    2014-01-01

    Abstract Metabolic flexibility is the capacity of a system to adjust fuel (primarily glucose and fatty acids) oxidation based on nutrient availability. The ability to alter substrate oxidation in response to nutritional state depends on the genetically influenced balance between oxidation and storage capacities. Competition between fatty acids and glucose for oxidation occurs at the level of the pyruvate dehydrogenase complex (PDC). The PDC is normally active in most tissues in the fed state,...

  16. Conversion of inactive (phosphorylated) pyruvate dehydrogenase complex into active complex by the phosphate reaction in heart mitochondria is inhibited by alloxan-diabetes or starvation in the rat.

    Science.gov (United States)

    Hutson, N J; Kerbey, A L; Randle, P J; Sugden, P H

    1978-08-01

    1. The conversion of inactive (phosphorylated) pyruvate dehydrogenase complex into active (dephosphorylated) complex by pyruvate dehydrogenase phosphate phosphatase is inhibited in heart mitochondria prepared from alloxan-diabetic or 48h-starved rats, in mitochondria prepared from acetate-perfused rat hearts and in mitochondria prepared from normal rat hearts incubated with respiratory substrates for 6 min (as compared with 1 min). 2. This conclusion is based on experiments with isolated intact mitochondria in which the pyruvate dehydrogenase kinase reaction was inhibited by pyruvate or ATP depletion (by using oligomycin and carbonyl cyanide m-chlorophenylhydrazone), and in experiments in which the rate of conversion of inactive complex into active complex by the phosphatase was measured in extracts of mitochondria. The inhibition of the phosphatase reaction was seen with constant concentrations of Ca2+ and Mg2+ (activators of the phosphatase). The phosphatase reaction in these mitochondrial extracts was not inhibited when an excess of exogenous pig heart pyruvate dehydrogenase phosphate was used as substrate. It is concluded that this inhibition is due to some factor(s) associated with the substrate (pyruvate dehydrogenase phosphate complex) and not to inhibition of the phosphatase as such. 3. This conclusion was verified by isolating pyruvate dehydrogenase phosphate complex, free of phosphatase, from hearts of control and diabetic rats an from heart mitochondria incubed for 1min (control) or 6min with respiratory substrates. The rates of re-activation of the inactive complexes were then measured with preparations of ox heart or rat heart phosphatase. The rates were lower (relative to controls) with inactive complex from hearts of diabetic rats or from heart mitochondria incubated for 6min with respiratory substrates. 4. The incorporation of 32Pi into inactive complex took 6min to complete in rat heart mitocondria. The extent of incorporation was consistent with

  17. Assessment of lactate dehydrogenase, alkaline phosphatase and aspartate aminotransferase activities in cow's milk as an indicator of subclinical mastitis.

    Science.gov (United States)

    Babaei, H; Mansouri-Najand, L; Molaei, M M; Kheradmand, A; Sharifan, M

    2007-05-01

    This study examined the activities of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in the milk of lactating Holstein cows in association with subclinical mastitis (SCM). A total of 94 milk samples were collected from 58 lactating dairy cows representing stages of lactation from the second to the tenth week after calving. Those which were classified as positive by California mastitis test (CMT) were deemed to have subclinical mastitis. All the milk samples were skimmed by centrifugation at 10 000g at 0 degrees C and were used for enzyme activities estimations. The mean activities of LDH and ALP were higher in the milk from udders with SCM than in the milk from healthy udders (p CMT results and LDH and ALP values were seen at thresholds of > 180 IU/L and > 40 IU/L respectively (kappa values 0.65 and 0.79, respectively). However, the sensitivity of the tests for identifying SCM at these thresholds was higher for ALP (96.4%) than for LDH (68.5%). In this study, LDH and ALP tests were standardized for cow's milk and results showed that only the ALP test was reliable in the early diagnosis of subclinical mastitis. PMID:17268916

  18. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in...

  19. [Enzyme activity of an actinomycete producer of carotenes and macrotetrolides].

    Science.gov (United States)

    Nefelova, M V; Sverdlova, A N

    1982-01-01

    The activity of pyruvate dehydrogenase and dehydrogenases of the tricarboxylic acid cycle was assayed in the mycelium of Streptomyces chrysomallus var. Carotenoides growing under different conditions of the medium. The activity of the enzymes increased when acetic, citric and succinic acids were added at different periods of the growth. Moreover, addition of the acids increased the time of intensive functioning of the dehydrogenases whose activity abruptly decreased after 60 h of the growth under the control conditions.

  20. Acid Rain: Activities for Science Teachers.

    Science.gov (United States)

    Johnson, Eric; And Others

    1983-01-01

    Seven complete secondary/college level acid rain activities are provided. Activities include overview; background information and societal implications; major concepts; student objectives; vocabulary/material lists; procedures; instructional strategies; and questions/discussion and extension suggestions. Activities consider effects of acid rain on…

  1. Comparison of Activity of Four Dehydrogenases in Ginseng from Different Origins%不同产地人参中4种脱氢酶活力比较

    Institute of Scientific and Technical Information of China (English)

    杨菲; 赵雨; 王思明; 刘美辰; 李晓华

    2012-01-01

    The aim was to provide theoretical basis for the cultivation and optimization of ginseng.Adopt neutral buffer solution to extract the enzyme solution of Radix Ginseng.The activities of malate dehydrogenase (MDH), lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH) and glucose-6-phosphate dehydrogenase (G6PDH) were detected by spectrophotometry, and compared.The clustering analysis was performed using the software SPSS 13.0 to system for 15 batch sample.There were obvious differences of the activities dehydrogenase of ginseng from different origin.The activities of four dehydrogenases from the same origin were basically same.In Antu County Wanbao Town, MDH, LDH and G6PDH had the highest activities, 124.58 LV(g·FW), 129.88 U/(g·FW) and 109.84 U/(g·FW) respectively.The four kinds of enzymes activity of two origins in Heilongjiang Province were generally low.The sample was divided into four categories.The activities of MDH, LDH, ADH and G6PDH could provide theoretical basis for the cultivation and optimization of ginseng.%为了给人参的培育和优选提供理论依据,采用中性缓冲液提取粗酶液,应用分光光度法对15个不同产地的人参中苹果酸脱氢酶(malate dehydrogenase,MDH)、乳酸脱氢酶(lactate dehydrogenase,LDH)、乙醇脱氢酶(alcohol dehydrogenase,ADH)、葡萄糖-6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase,G6PDH)4种脱氢酶活力进行比较.运用SPSS 13.0软件对15批样品进行系统聚类分析.结果表明不同产地人参脱氢酶活力差别明显,同一产地4种脱氢酶活力趋势基本相同.其中安图县万宝镇的人参样品的MDH、LDH、G6PDH 3种酶活力均是最高值,分别为124.58 U/(g· FW)、129.88 U/(g·FW)、109.84U/(g·FW);黑龙江2个产地的4种酶活力普遍比较低.聚类分析的结果将样品分为4类.MDH、LDH、ADH、G6PDH的活力可以作为人参培育和优选提供理论依据.

  2. Preparation of 15N-labeled L-alanine by coupling the alanine dehydrogenase and alcohol dehydrogenase reactions

    International Nuclear Information System (INIS)

    A simple enzymatic procedure for the preparation of L-[15N]alanine, one of the metabolically most active amino acids in all types of cells, is reported. The procedure is based on the coupling of two reactions, one catalyzed by bacterial alanine dehydrogenase, the second catalyzed by yeast alcohol dehydrogenase. An impediment in the use of this procedure could be the high cost of commercial AlaDH. However, the enzyme is widespread in the Bacillus species and partially purified samples, adequate preparative purposes, could be obtained relatively easily by chromatography on blue-Sepharose. (Auth.)

  3. Biological activities of substituted trichostatic acid derivatives

    Indian Academy of Sciences (India)

    Cédric Charrier; Joëlle Roche; Jean-Pierre Gesson; Philippe Bertrand

    2009-07-01

    New substituted trichostatic acid derivatives have been synthesized and evaluated for their biological activities towards the H661 non-small lung cancer cell line. These syntheses were achieved by alkylation of propiophenones to introduce the side chain with a terminal precursor of hydroxamic acid and aminobenzamide derivatives. The first fluorinated derivatives of trichostatic acid are described, such as 6-fluoro trichostatin A, with antiproliferative activities in the micromolar range and with histone deacetylase inhibitory activity.

  4. ANTIMICROBIAL ACTIVITY OF LACTIC ACID BACTERIAL ISOLATES

    Directory of Open Access Journals (Sweden)

    Utkarsha S. Shivsharan

    2013-08-01

    Full Text Available Micro-organisms have tendency to produce antimicrobial substances which show biological activity against other kind of micro-organisms. This phenomenon of bacterial antagonism is observed in lactic acid bacteria with competitive advantages. The lactic acid bacteria are commonly present in many fermented products, fruits and milk products. The variety of antimicrobial substances produced by lactic acid bacteria showing good inhibition capacity include production of lactic acid, acetic acid, hydrogen peroxide, carbon dioxide, diacetyl and bacteriocin. Bacteriocins produced by lactic acid bacteria are the subject of intense research because of their antimicrobial activity against food born bacteria such as Listeria monocytogenes, staphylococcus aureus, Bacillus cereus, Clostridium botulinum and several others .Bacteriocins may be bacteriostatic or bactericidal with narrow or broad range of activity. The main of the study was to study the antimicrobial activity of such lactic acid bacterial isolates.

  5. Effects of methoxychlor and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane on 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase-3 activities in human and rat testes.

    Science.gov (United States)

    Hu, G-X; Zhao, B; Chu, Y; Li, X-H; Akingbemi, B T; Zheng, Z-Q; Ge, R S

    2011-04-01

    Human and rat testis microsomes were used to investigate direct inhibitory activities of methoxychlor (MXC) and its metabolite 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) on 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3). The 3β-HSD and 17β-HSD3 enzymes are involved in the reactions that culminate in androgen biosynthesis in Leydig cells. The results demonstrated that MXC and HPTE inhibited human 3β-HSD activity at a concentration of 10 nm. The half maximal inhibitory concentration (IC(50) ) for MXC inhibition of 3β-HSD was 53.21 ± 15.52 μm (human) and 46.15 ± 17.94 μm (rat), and for HPTE, it was 8.29 ± 2.49 μm (human) and 13.82 ± 2.26 μm (rat). At the higher concentration of 100 μm, MXC did not affect human and rat 17β-HSD3 activity. However, the IC(50) for HPTE inhibition of 17β-HSD3 was 12.1 ± 1.9 μm (human) and 32 .0 ± 8.6 μm (rat). The mode of action of MXC and HPTE on 3β-HSD activity was non-competitive with the substrate pregnenolone, but was competitive with the cofactor NAD(+) . The mode of HPTE inhibition of 17β-HSD3 was non-competitive with the substrate androstenedione, but was competitive with the cofactor NADPH. In summary, our results showed that HPTE, which is the biologically active metabolite of MXC, has the capacity for direct inhibition of 3β-HSD and 17β-HSD3 enzyme activity. Inhibition of enzyme activity is presumably associated with suppression of steroidogenesis in gonadal tissues and has implications for testis function.

  6. Enzymic and structural studies on Drosophila alcohol dehydrogenase and other short-chain dehydrogenases/reductases

    NARCIS (Netherlands)

    Smilda, T; Kamminga, AH; Reinders, P; Baron, W; Vlieg, JETV; Beintema, JJ

    2001-01-01

    Enzymic and structural studies on Drosophila alcohol dehydrogenases and other short-chain dehydrogenases/reductases (SDRs) are presented. Like alcohol dehydrogenases from other Drosophila species, the enzyme from D, simulans is more active on secondary than on primary alcohols, although ethanol is i

  7. Constitutive NADPH-Dependent Electron Transferase Activity of the Nox4 Dehydrogenase Domain†

    OpenAIRE

    Nisimoto, Yukio; Jackson, Heather M.; Ogawa, Hisamitsu; Kawahara, Tsukasa; Lambeth, J. David

    2010-01-01

    NADPH oxidase 4 (Nox4) is constitutively active, while Nox2 requires the cytosolic regulatory subunits p47 phox and p67 phox and activated Rac with activation by phorbol 12-myristate 13-acetate (PMA). This study was undertaken to identify the domain on Nox4 that confers constitutive activity. Lysates from Nox4-expressing cells exhibited constitutive NADPH- but not NADH-dependent hydrogen peroxide production with a K m for NADPH of 55 ± 10 μM. The concentration of Nox4 in cell lysates was esti...

  8. Mixed disulfide formation at Cys141 leads to apparent unidirectional attenuation of Aspergillus niger NADP-glutamate dehydrogenase activity.

    Directory of Open Access Journals (Sweden)

    Adhish S Walvekar

    Full Text Available NADP-Glutamate dehydrogenase from Aspergillus niger (AnGDH exhibits sigmoid 2-oxoglutarate saturation. Incubation with 2-hydroxyethyl disulfide (2-HED, the disulfide of 2-mercaptoethanol resulted in preferential attenuation of AnGDH reductive amination (forward activity but with a negligible effect on oxidative deamination (reverse activity, when monitored in the described standard assay. Such a disulfide modified AnGDH displaying less than 1.0% forward reaction rate could be isolated after 2-HED treatment. This unique forward inhibited GDH form (FIGDH, resembling a hypothetical 'one-way' active enzyme, was characterized. Kinetics of 2-HED mediated inhibition and protein thiol titrations suggested that a single thiol group is modified in FIGDH. Two site-directed cysteine mutants, C141S and C415S, were constructed to identify the relevant thiol in FIGDH. The forward activity of C141S alone was insensitive to 2-HED, implicating Cys141 in FIGDH formation. It was observed that FIGDH displayed maximal reaction rate only after a pre-incubation with 2-oxoglutarate and NADPH. In addition, compared to the native enzyme, FIGDH showed a four fold increase in K0.5 for 2-oxoglutarate and a two fold increase in the Michaelis constants for ammonium and NADPH. With no change in the GDH reaction equilibrium constant, the FIGDH catalyzed rate of approach to equilibrium from reductive amination side was sluggish. Altered kinetic properties of FIGDH at least partly account for the observed apparent loss of forward activity when monitored under defined assay conditions. In sum, although Cys141 is catalytically not essential, its covalent modification provides a striking example of converting the biosynthetic AnGDH into a catabolic enzyme.

  9. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast

    DEFF Research Database (Denmark)

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam;

    2016-01-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we de......, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering....

  10. Production of lactose-free galacto-oligosaccharide mixtures: comparison of two cellobiose dehydrogenases for the selective oxidation of lactose to lactobionic acid.

    Science.gov (United States)

    Maischberger, Thomas; Nguyen, Thu-Ha; Sukyai, Prakit; Kittl, Roman; Riva, Sergio; Ludwig, Roland; Haltrich, Dietmar

    2008-08-11

    Galacto-oligosaccharides, complex mixtures of various sugars, are produced by transgalactosylation from lactose using beta-galactosidase and are of great interest for food and feed applications because of their prebiotic properties. Most galacto-oligosaccharide preparations currently available in the market contain a significant amount of monosaccharides and lactose. The mixture of galacto-oligosaccharides (GalOS) in this study produced from lactose using recombinant beta-galactosidase from Lactobacillus reuteri contains 48% monosaccharides, 26.5% lactose and 25.5% GalOS. To remove efficiently both monosaccharides and lactose from this GalOS mixture containing significant amounts of prebiotic non-lactose disaccharides, a biocatalytic approach coupled with subsequent chromatographic steps was used. Lactose was first oxidised to lactobionic acid using fungal cellobiose dehydrogenases, and then lactobionic acid and monosaccharides were removed by ion-exchange and size-exclusion chromatography. Two different cellobiose dehydrogenases (CDH), originating from Sclerotium rolfsii and Myriococcum thermophilum, were compared with respect to their applicability for this process. CDH from S. rolfsii showed higher specificity for the substrate lactose, and only few other components of the GalOS mixture were oxidised during prolonged incubation. Since these sugars were only converted once lactose oxidation was almost complete, careful control of the CDH-catalysed reaction will significantly reduce the undesired oxidation, and hence subsequent removal, of any GalOS components. Removal of ions and monosaccharides by the chromatographic steps gave an essentially pure GalOS product, containing less than 0.3% lactose and monosaccharides, in a yield of 60.3%. PMID:18353295

  11. Mutation of isocitrate dehydrogenase 1 induces glioma cell proliferation via nuclear factor-κB activation in a hypoxia-inducible factor 1-α dependent manner.

    Science.gov (United States)

    Wang, Guoliang; Sai, Ke; Gong, Fanghe; Yang, Qunying; Chen, Furong; Lin, Jian

    2014-05-01

    Recently, mutations of the isocitrate dehydrogenase (IDH) 1 gene, which specifically occur in the majority of low-grade and secondary high-grade gliomas, have drawn particular attention of neuro-oncologists. Mutations of the IDH1 gene have been proposed to have significant roles in the tumorigenesis, progression and prognosis of gliomas. However, the molecular mechanism of the role of IDH1 mutants in gliomagenesis remains to be elucidated. The present study, showed that forced expression of an IDH1 mutant, of which the 132th amino acid residue arginine is substituted by histidine (IDH1R132H), promoted cell proliferation in cultured cells, while wild-type IDH1 overexpression had no effect on cell proliferation. Consistent with previous studies, it was also observed that expression of hypoxia-inducible factor 1-α (HIF1-α) was upregulated in IDH1R132H expressing cells with the induction of vascular endothelial growth factor (VEGF) expression. However, knockdown of VEGF via small RNA interference had no significant influence on the cell proliferation induced by overexpression of IDH1R132H, implying that another signaling pathway may be involved. Next, forced expression of IDH1R132H was found to activate nuclear factor-κB (NF-κB), since the inhibitory IκB protein (IκBα) was highly phosphorylated and the NF-κB p65 subunit was translocated into the nucleus. Notably, knockdown of HIF1-α significantly blocked NF-κB activation, which was induced by the overexpression of IDH1 mutants. In addition, expression of IDH1 mutants markedly induced the NF-κB target gene expression, including cyclin D1 and E and c-myc, which were involved in the regulation of cell proliferation. In conclusion, it was demonstrated that the IDH1 mutant activated NF-κB in a HIF1-α‑dependent manner and was involved in the regulation of cell proliferation.

  12. Glycyrrhetinic acid, the active principle of licorice, can reduce the thickness of subcutaneous thigh fat through topical application.

    Science.gov (United States)

    Armanini, Decio; Nacamulli, Davide; Francini-Pesenti, Francesco; Battagin, Giuliana; Ragazzi, Eugenio; Fiore, Cristina

    2005-07-01

    Cortisol is involved in the distribution and deposition of fat, and its action is regulated by the activity of 11beta-hydroxysteroid dehydrogenase. Glycyrrhetinic acid, the active principle of licorice root, blocks 11beta-hydroxysteroid dehydrogenase type 1, thus reducing the availability of cortisol at the level of adipocytes. We evaluated the effect of topical application of a cream containing glycyrrhetinic acid in the thickness of fat at the level of the thigh. Eighteen healthy women (age range 20-33 years) with normal BMI were randomly allocated to treatment, at the level of the dominant thigh, with a cream containing 2.5% glycyrrhetinic acid (n=9) or with a placebo cream containing the excipients alone (n=9). Before and after 1 month of treatment both the circumference and the thickness of the superficial fat layer of the thighs (by ultrasound analysis) were measured. The circumference and the thickness of the superficial fat layer were significantly reduced in comparison to the controlateral untreated thigh and to control subjects treated with the placebo cream. No changes were observed in blood pressure, plasma renin activity, plasma aldosterone or cortisol. The effect of glycyrrhetinic acid on the thickness of subcutaneous fat was likely related to a block of 11beta-hydroxysteroid dehydrogenase type 1 at the level of fat cells; therefore, glycyrrhetinic acid could be effectively used in the reduction of unwanted local fat accumulation. PMID:15894038

  13. In vivo ethanol elimination in man, monkey and rat: A lack of relationship between the ethanol metabolism and the hepatic activities of alcohol and aldehyde dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Zorzano, A. (Universidad de Barcelona (Spain)); Herrera, E. (Universidad de Madrid (Spain))

    1990-01-01

    The in vivo ethanol elimination in human subjects, monkeys and rats was investigated after an oral ethanol dosage. After 0.4 g. ethanol/kg of body weight, ethanol elimination was much slower in human subjects than in monkeys. In order to detect a rise in monkey plasma ethanol concentrations as early as observed in human subjects, ethanol had to be administered at a dose of 3 g/kg body weight. Ethanol metabolism in rats was also much faster than in human subjects. However, human liver showed higher alcohol dehydrogenase activity and higher low Km aldehyde dehydrogenase activity than rat liver. Thus, our data suggest a lack of relationship between hepatic ethanol-metabolizing activities and the in vivo ethanol elimination rate.

  14. Effects of Polybrominated Diphenyl Ethers on Rat and Human 11β-Hydroxysteroid Dehydrogenase 1 and 2 Activities.

    Science.gov (United States)

    Chen, Xiaomin; Dong, Yaoyao; Cao, Shuyan; Li, Xiaoheng; Wang, Zhe; Chen, Ruijie; Ge, Ren-Shan

    2016-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants. PBDEs have been widely used in textiles, flexible polyurethane foams, electronic components, electrical components, and plastics. 11β-Hydroxysteroid dehydrogenases, isoform 1 (HSD11B1) and isoform 2 (HSD11B2), have been demonstrated to be the regulators of local glucocorticoid levels. In this study, the potencies of 4 different PBDEs (BDE-3, BDE-47, BDE-100, and BDE-153) with 1-6 bromine atoms attached in inhibition of rat and human HSD11B1 and HSD11B2 activities were compared to 4-bromobiphenyl (BBP), a structurally similar compound. All 4 PBDEs and BBP did not inhibit rat and human HSD11B1. BDE-3 and BDE-47 potently inhibited rat HSD11B2, and BDE-47 and BDE-153 potently inhibited human HSD11B2, with the half maximal inhibitory concentration values of 12.42, 5.95, 11.97, and 4.41 µmol/l, respectively. All PBDEs noncompetitively inhibited HSD11B2 when a steroid substrate was used. However, PBDEs exerted uncompetitive inhibition when the cofactor NAD+ was used. In conclusion, some PBDEs are selective inhibitors of HSD11B2, possibly causing excessive glucocorticoid action in local tissues. PMID:27198750

  15. Regulation of enzyme activity of alcohol dehydrogenase through its interactions with pyruvate-ferredoxin oxidoreductase in Thermoanaerobacter tengcongensis.

    Science.gov (United States)

    Wang, Qian; Wang, Quanhui; Tong, Wei; Bai, Xue; Chen, Zhen; Zhao, Jingjing; Zhang, Jiyuan; Liu, Siqi

    2012-01-20

    Alcohol dehydrogenases (ADHs) from thermophilic microorganisms are interesting enzymes that have their potential applications in biotechnology and potentially provide insight into the mechanisms of action of thermo-tolerant proteins. The molecular mechanisms of ADHs under thermal stress in vivo have yet to be explored. Herein, we employed a proteomic strategy to survey the possible interactions of secondary-ADH (2-ADH) with other proteins in Thermoanaerobacter tengcongensis (T. tengcongensis) cultured at 75°C and found that 2-ADH, pyruvate-ferredoxin oxidoreductase (PFOR) and several glycolytic enzymes coexisted in a protein complex. Using anion exchange chromatography, the elution profile indicated that the native 2-ADH was present in two forms, PFOR-bound and PFOR-free. Immuno-precipitation and pull down analysis further validated the interactions between 2-ADH and PFOR. The kinetic behaviours of 2-ADH either in the recombinant or native form were evaluated with different substrates. The enzyme activity of 2-ADH was inhibited in a non-competitive mode by PFOR, implying the interaction of 2-ADH and PFOR negatively regulated alcohol formation. In T. tengcongensis, PFOR is an enzyme complex located at the upstream of 2-ADH in the alcohol generation pathway. These findings, therefore, offered a plausible mechanism for how alcohol metabolism is regulated by hetero-interactions between 2-ADH and PFOR, especially in anaerobic thermophiles. PMID:22222371

  16. Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato.

    Science.gov (United States)

    Liao, Yangwenke; Tian, Miaoying; Zhang, Huan; Li, Xin; Wang, Yu; Xia, Xiaojian; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Shi, Kai; Klessig, Daniel F

    2015-02-01

    Salicylic acid (SA) plays a critical role in plant defense against pathogen invasion. SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense and involves a specific pathway mediated by mitochondria; however, the underlying mechanisms remain largely unknown. The SA-binding activity of the recombinant tomato (Solanum lycopersicum) alpha-ketoglutarate dehydrogenase (Slα-kGDH) E2 subunit of the tricarboxylic acid (TCA) cycle was characterized. The biological role of this binding in plant defenses against tobacco mosaic virus (TMV) was further investigated via Slα-kGDH E2 silencing and transient overexpression in plants. Slα-kGDH E2 was found to bind SA in two independent assays. SA treatment, as well as Slα-kGDH E2 silencing, increased resistance to TMV. SA did not further enhance TMV defense in Slα-kGDH E2-silenced tomato plants but did reduce TMV susceptibility in Nicotiana benthamiana plants transiently overexpressing Slα-kGDH E2. Furthermore, Slα-kGDH E2-silencing-induced TMV resistance was fully blocked by bongkrekic acid application and alternative oxidase 1a silencing. These results indicated that binding by Slα-kGDH E2 of SA acts upstream of and affects the mitochondrial electron transport chain, which plays an important role in basal defense against TMV. The findings of this study help to elucidate the mechanisms of SA-induced viral defense.

  17. In vitro evidence that phytanic acid compromises Na(+),K(+)-ATPase activity and the electron flow through the respiratory chain in brain cortex from young rats.

    Science.gov (United States)

    Busanello, Estela Natacha Brandt; Viegas, Carolina Maso; Moura, Alana Pimentel; Tonin, Anelise Miotti; Grings, Mateus; Vargas, Carmen R; Wajner, Moacir

    2010-09-17

    Phytanic acid (Phyt) tissue concentrations are increased in Refsum disease and other peroxisomal disorders characterized by neurologic damage and brain abnormalities. The present work investigated the in vitro effects of Phyt, at concentrations found in these peroxisomal disorders, on important parameters of energy metabolism in brain cortex of young rats. The parameters analyzed were CO(2) production from labeled acetate and glucose, the activities of the citric acid cycle enzymes citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, fumarase and malate dehydrogenase, as well as of the respiratory chain complexes I-IV, creatine kinase and Na(+),K(+)-ATPase. Our results show that Phyt did not alter citric acid cycle enzyme activities, or CO(2) production from acetate, reflecting no impairment of the functionality of the citric acid cycle. In contrast, respiratory chain activities were reduced at complexes I, II, I-III, II-III and IV. Membrane synaptical Na(+),K(+)-ATPase activity was also reduced by Phyt, with no alteration of creatine kinase activity. Considering the importance of the electron flow through the respiratory chain for brain energy metabolism (oxidative phosphorylation) and of Na(+),K(+)-ATPase activity for maintaining membrane potential necessary for neurotransmission, the data indicate that Phyt impairs brain bioenergetics at the level of energy formation, as well as neurotransmission. It is presumed that Phyt-induced impairment of these important systems may be involved at least in part in the neurological damage found in patients affected by disorders in which brain Phyt concentrations are increased.

  18. The complex structures of isocitrate dehydrogenase from Clostridium thermocellum and Desulfotalea psychrophila suggest a new active site locking mechanism.

    Science.gov (United States)

    Leiros, Hanna-Kirsti S; Fedøy, Anita-Elin; Leiros, Ingar; Steen, Ida Helene

    2012-01-01

    Isocitrate dehydrogenase (IDH) catalyzes the oxidative NAD(P)(+)-dependent decarboxylation of isocitrate into α-ketoglutarate and CO2 and is present in organisms spanning the biological range of temperature. We have solved two crystal structures of the thermophilic Clostridium thermocellum IDH (CtIDH), a native open apo CtIDH to 2.35 Å and a quaternary complex of CtIDH with NADP(+), isocitrate and Mg(2+) to 2.5 Å. To compare to these a quaternary complex structure of the psychrophilic Desulfotalea psychrophila IDH (DpIDH) was also resolved to 1.93 Å. CtIDH and DpIDH showed similar global thermal stabilities with melting temperatures of 67.9 and 66.9 °C, respectively. CtIDH represents a typical thermophilic enzyme, with a large number of ionic interactions and hydrogen bonds per residue combined with stabilization of the N and C termini. CtIDH had a higher activity temperature optimum, and showed greater affinity for the substrates with an active site that was less thermolabile compared to DpIDH. The uncompensated negative surface charge and the enlarged methionine cluster in the hinge region both of which are important for cold activity in DpIDH, were absent in CtIDH. These structural comparisons revealed that prokaryotic IDHs in subfamily II have a unique locking mechanism involving Arg310, Asp251' and Arg255 (CtIDH). These interactions lock the large domain to the small domain and direct NADP(+) into the correct orientation, which together are important for NADP(+) selectivity.

  19. Effects of Betaine Aldehyde Dehydrogenase-Transgenic Soybean on Phosphatase Activities and Rhizospheric Bacterial Community of the Saline-Alkali Soil

    Directory of Open Access Journals (Sweden)

    Ying Nie

    2016-01-01

    Full Text Available The development of transgenic soybean has produced numerous economic benefits; however the potential impact of root exudates upon soil ecological systems and rhizospheric soil microbial diversity has also received intensive attention. In the present study, the influence of saline-alkali tolerant transgenic soybean of betaine aldehyde dehydrogenase on bacterial community structure and soil phosphatase during growth stages was investigated. The results showed that, compared with nontransgenic soybean as a control, the rhizospheric soil pH of transgenic soybean significantly decreased at the seedling stage. Compared to HN35, organic P content was 13.5% and 25.4% greater at the pod-filling stage and maturity, respectively. The acid phosphatase activity of SRTS was significantly better than HN35 by 12.74% at seedling, 14.03% at flowering, and 59.29% at podding, while alkaline phosphatase achieved maximum activity in the flowering stage and was markedly lower than HN35 by 13.25% at pod-filling. The 454 pyrosequencing technique was employed to investigate bacterial diversity, with a total of 25,499 operational taxonomic units (OTUs obtained from the 10 samples. Notably, the effect of SRTS on microbial richness and diversity of rhizospheric soil was marked at the stage of podding and pod-filling. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla among all samples. Compared with HN35, the relative abundance of Proteobacteria was lower by 2.01%, 2.06%, and 5.28% at the stage of seedling, at pod-bearing, and at maturity. In genus level, the relative abundance of Gp6, Sphingomonas sp., and GP4 was significantly inhibited by SRTS at the stage of pod-bearing and pod-filling.

  20. Interceptive Activities of Some New 3β-Hydroxysteroid Dehydrogenase Inhibitors

    Institute of Scientific and Technical Information of China (English)

    刘昌官; 马如鸿; 王忠兴; 林中明

    1995-01-01

    Fourteen compounds of azastene and epostane derivatives (from YG101 to YG114) have been studied. Results showed that only YG102 and YG103 were found to be positive in interceptive activities, although they were less potent than their parent compound-azasfene, Levels of progesterone in plasma were decreased significantly after administration of YG102, 103 and 106. Only YG107 possessed an interceptive activity approximately as potent as that of its parent compound-eposfane. Epostane is a mixture of its enol and keto forms and the percentage of both forms depends on various conditions. Since YG107 exists only in one form, we believe this derivative of epostane might be useful in the future work.

  1. EFFECT OF TRIGONELLA FOENUM GRAECUM ON LACTATE DEHYDROGENASE (LDH ACTIVITY OF BLOOD, LIVER AND PANCREAS IN NORMAL AND ALLOXAN- INDUCED DIABETIC MICE

    Directory of Open Access Journals (Sweden)

    Sekaran Sridhar et al.

    2012-02-01

    Full Text Available The effect of aqueous seeds extract of Trigonella foenum graecum Linn was studied on Lactate dehydrogenase (LDH activity of blood, liver and pancreas in normal and alloxan- induced diabetic mice. Our study showed that aqueous seeds extract, Oral administration of 50 mg/animal (0.5 ml of extract in alternative days up to 7 days (1st, 3rd, 5th & 7th day. In alloxan induced diabetic mice, there was a significant increase in LDH activity of all the three tissues. The enzyme Lactate dehydrogenase showed significant decrease in the diabetic group treated with aqueous extract of tested plant when compared with the diabetic group. It is clear from the current data in this study that ginseng aqueous extract was the most efficient of the tested plant.

  2. Lipoxygenase inhibitory activity of anacardic acids.

    Science.gov (United States)

    Ha, Tae Joung; Kubo, Isao

    2005-06-01

    6[8'(Z)-pentadecenyl]salicylic acid, otherwise known as anacardic acid (C15:1), inhibited the linoleic acid peroxidation catalyzed by soybean lipoxygenase-1 (EC 1.13.11.12, type 1) with an IC50 of 6.8 microM. The inhibition of the enzyme by anacardic acid (C15:1) is a slow and reversible reaction without residual activity. The inhibition kinetics analyzed by Dixon plots indicates that anacardic acid (C15:1) is a competitive inhibitor and the inhibition constant, KI, was obtained as 2.8 microM. Although anacardic acid (C15:1) inhibited the linoleic acid peroxidation without being oxidized, 6[8'(Z),11'(Z)-pentadecadienyl]salicylic acid, otherwise known as anacardic acid (C15:2), was dioxygenated at low concentrations as a substrate. In addition, anacardic acid (C15:2) was also found to exhibit time-dependent inhibition of lipoxygenase-1. The alk(en)yl side chain of anacardic acids is essential to elicit the inhibitory activity. However, the hydrophobic interaction alone is not enough because cardanol (C15:1), which possesses the same side chain as anacardic acid (C15:1), acted neither as a substrate nor as an inhibitor. PMID:15913294

  3. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    Science.gov (United States)

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing. PMID:26284828

  4. Dehydrogenase activity and quality of leachates in Technosols with gossan and sulfide materials from the São Domingos mine

    Science.gov (United States)

    Santos, Erika; Abreu, Manuela; Macías, Felipe; de Varennes, Amarílis

    2014-05-01

    Wastes produced by mining activity in São Domingos (Portuguese Iberian Pyrite Belt) were disposed over a large area. To speed up the ecological rehabilitation in this mine, an integrative strategy using different amendments+mine wastes was used to produce Technosols with enhanced soil functions. To evaluate the efficiency of these Technosols the dehydrogenase activity and chemical quality of leachates were monitored. Technosols were composed of different mine wastes (gossan and sulfide materials), collected at the São Domingos mine, and mixtures of amendments applied at 30 and 75 Mg/ha (rockwool+agriculture wastes+wastes from liquors distillation of strawberry tree fruits (Arbutus unedo L.) and/or carobs (Ceratonia siliqua L. fruits)). Three assays, under controlled conditions, were carried out: (1 and 2) Sulfide or gossan materials with/without amendments; (3) Sulfide wastes, with/without amendments, incubated during four months and then with application of an overlayer of gossan (~3 cm thick) with/without the same amendments. Dehydrogenase activity (DHA) and chemical characteristics of leachates (multielemental concentration, pH, and electric conductivity) were determined after four/seven/thirteen months of incubation. Sulfide wastes had more hazardous characteristics (pH~2 and total concentrations (g/kg) of Al (58.1), As (1.1), Cu (2.1), Fe (107.3), Pb (11.7), S (65.3) and Zn (1.1) than the gossan materials (pH=4.3; g/kg, Al: 24.8, As: 3.0, Cu: 0.2, Fe: 129, Pb: 9.2, S: 13.7, Zn: 0.04). Amendments application to gossan (assay 2) enhanced DHA in both sampling periods (µg TPF g dry weight 16 h-1, Control: 0,72-1,78; Amended treatments: 2.49-16.36 depending on mixture/application rate/sampling period). Greater application rates stimulated DHA (more than 1.5-fold with 75 Mg/ha). No differences were observed in DHA in the gossan layer with/without amendments (assay 3) suggesting a negative impact on gossan microrganisms from sulfide materials located below. In

  5. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis)

    OpenAIRE

    Guha, Anirban; Gera, Sandeep; Sharma, Anshu

    2012-01-01

    Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis ...

  6. Effects of L-carnitine and Pentoxifylline on the Activity of Lactate Dehydrogenase C4 isozyme and Motility of Testicular Spermatozoa in Mice

    OpenAIRE

    Aliabadi, Elham; Karimi, Fatemeh; Rasti, Mozhgan; Akmali, Masoumeh; Esmaeilpour, Tahereh

    2013-01-01

    Background Extracted sperm from the testis have poor motility. Moreover, their motility changes during their journey through epidydimis. Meanwhile, they face high concentration of L-carnitin. In addition, lactate dehydrogenase C4 (LDH-C4) gene disorders has been shown to cause impaired sperm motility, leading to infertility in male mice. The aim of this study was to evaluate sperm motility and LDH-C4 enzyme activity upon L-carnitine (LC) and Pentoxifylline (PTX) administrations in mice. Metho...

  7. Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer

    Directory of Open Access Journals (Sweden)

    Iniesta Pilar

    2011-08-01

    Full Text Available Abstract Background Mortality rates for advanced lung cancer have not declined for decades, even with the implementation of novel chemotherapeutic regimens or the use of tyrosine kinase inhibitors. Cancer Stem Cells (CSCs are thought to be responsible for resistance to chemo/radiotherapy. Therefore, targeting CSCs with novel compounds may be an effective approach to reduce lung tumor growth and metastasis. We have isolated and characterized CSCs from non-small cell lung cancer (NSCLC cell lines and measured their telomerase activity, telomere length, and sensitivity to the novel telomerase inhibitor MST312. Results The aldehyde dehydrogenase (ALDH positive lung cancer cell fraction is enriched in markers of stemness and endowed with stem cell properties. ALDH+ CSCs display longer telomeres than the non-CSC population. Interestingly, MST312 has a strong antiproliferative effect on lung CSCs and induces p21, p27 and apoptosis in the whole tumor population. MST312 acts through activation of the ATM/pH2AX DNA damage pathway (short-term effect and through decrease in telomere length (long-term effect. Administration of this telomerase inhibitor (40 mg/kg in the H460 xenograft model results in significant tumor shrinkage (70% reduction, compared to controls. Combination therapy consisting of irradiation (10Gy plus administration of MST312 did not improve the therapeutic efficacy of the telomerase inhibitor alone. Treatment with MST312 reduces significantly the number of ALDH+ CSCs and their telomeric length in vivo. Conclusions We conclude that antitelomeric therapy using MST312 mainly targets lung CSCs and may represent a novel approach for effective treatment of lung cancer.

  8. Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractaic acid on human keratinocyte growth.

    Science.gov (United States)

    Kumar, K C; Müller, K

    1999-06-01

    The sensitivity of the human keratinocyte cell line HaCaT to several lichen metabolites isolated from Parmelia nepalensis and Parmelia tinctorum was evaluated. The tridepside gyrophoric acid (6), the dibenzofuran derivative (+)-usnic acid (1), and the didepside diffractaic acid (5) were potent antiproliferative agents and inhibited cell growth, with IC50 values of 1.7, 2.1, and 2.6 microM, respectively. Methyl beta-orcinolcarboxylate (2), ethyl hematommate (3), the didepside atranorin (4), and (+)-protolichesterinic acid (7) did not influence keratinocyte growth at concentrations of 5 microM. Keratinocytes were further tested for their susceptibility to the action of the potent antiproliferative agents on plasma membrane integrity. The release of lactate dehydrogenase activity into the culture medium was unchanged as compared to controls, documenting that the activity of gyrophoric acid (6), (+)-usnic acid (1), and diffractaic acid (5) was due to cytostatic rather than cytotoxic effects. PMID:10395495

  9. Enhanced enzymatic activity of glycerol-3-phosphate dehydrogenase from the cryophilic Saccharomyces kudriavzevii.

    Directory of Open Access Journals (Sweden)

    Bruno M Oliveira

    Full Text Available During the evolution of the different species classified within the Saccharomyces genus, each one has adapted to live in different environments. One of the most important parameters that have influenced the evolution of Saccharomyces species is the temperature. Here we have focused on the study of the ability of certain species as Saccharomyces kudriavzevii to grow at low temperatures, in contrast to Saccharomyces cerevisiae. We observed that S. kudriavzevii strains isolated from several regions are able to synthesize higher amounts of glycerol, a molecule that has been shown to accumulate in response to freeze and cold stress. To explain this observation at the molecular level we studied the expression of glycerol biosynthetic pathway genes and we observed a higher expression of GPD1 gene in S. kudriavzevii compared to S. cerevisiae in micro-vinification conditions. We observed higher enzymatic activity of Gpd1p in S. kudriavzevii in response to osmotic and cold stress. Also, we determined that S. kudriavzevii Gpd1p enzyme presents increased catalytic properties that will contribute to increase glycerol production. Finally, we evaluated the glycerol production with S. cerevisiae, S. kudriavzevii or a recombinant Gpd1p variant in the same background and observed that the S. kudriavzevii enzyme produced increased glycerol levels at 12 or 28°C. This suggests that glycerol is increased in S. kudriavzevii mainly due to increased V max of the Gpd1p enzyme. All these differences indicate that S. kudriavzevii has changed the metabolism to promote the branch of the glycolytic pathway involved in glycerol production to adapt to low temperature environments and maintain the NAD(+/NADH ratio in alcoholic fermentations. This knowledge is industrially relevant due to the potential use, for example, of S. cerevisiae-S. kudriavzevii hybrids in the wine industry where glycerol content is an important quality parameter.

  10. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency.

    Science.gov (United States)

    Jia, Fan; Cui, Mingxue; Than, Minh T; Han, Min

    2016-02-01

    Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD.

  11. Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan

    International Nuclear Information System (INIS)

    Arsenic ingestion has been linked to increasing global prevalence of and mortality from cardiovascular disease (CVD); arsenic can be removed from drinking water to reduce related health effects. Lactate dehydrogenase (LDH) is used for the evaluation of acute arsenic toxicity in vivo and in vitro, but it is not validated for the evaluation of long-term, chronic arsenic exposure. The present study examined the long-term effect of chronic arsenic exposure on CVD and serum LDH levels, after consideration of arsenic metabolism capacity. A total of 380 subjects from an arseniasis-endemic area and 303 from a non-endemic area of southwestern Taiwan were recruited in 2002. Various urinary arsenic species were analyzed using high-performance liquid chromatography (HPLC) and hydride generation systems. Fasting serum was used for quantitative determination of the total LDH activity. A significant dose–response relationship was observed between arsenic exposure and LDH elevation, independent of urinary arsenic profiles (P < 0.001). Furthermore, abnormal LDH elevation was associated with CVD mortality after adjustment for Framingham risk scores for 10-year CVD and arsenic exposure (hazard ratio, 3.98; 95% confidence interval, 1.07–14.81). LDH was elevated in subjects with arsenic exposure in a dose-dependent manner. LDH is a marker of arsenic toxicity associated with CVD mortality. Results of this study have important implications for use in ascertaining long-term arsenic exposure risk of CVD. -- Highlights: ► We showed that arsenic exposure was correlated with LDH elevation. ► LDH elevation was related to arsenic methylation capacity. ► Abnormal LDH elevation can be a marker of susceptibility to CVD mortality.

  12. Effect of Follicular Fluid and Platelet-Activating Factor on Lactate Dehydrogenase C Expression in Human Asthenozoospermic Samples

    Directory of Open Access Journals (Sweden)

    Tahereh Esmaeilpour

    2014-01-01

    Full Text Available Background: Application of follicular fluid (FF and platelet-activating factor (PAF in artificial insemination improves sperm motility. Lactate dehydrogenase C (LDH-C is a key enzyme for sperm motility. In this study, the effects of FF and PAF on the sperm motility index and LDH-C expression were investigated. Moreover, LDH-C expression was compared between asthenozoospermic and normozoospermic samples. Methods: The expression of LDH-C was examined by quantitative real-time polymerase chain reaction (q-RT PCR and western blotting after it was treated with optimized concentrations of FF and PAF in twenty asthenozoospermic samples. Also, LDH-C expression was evaluated in five normozoospermic samples. Results: Samples with 75% FF and 100 nM of PAF had an increase in their percentages of progressive and slowly motile sperms and a decrease in their percentages of non-progressive and non-motile sperms. Moreover, LDH-C mRNA transcripts were not changed following PAF and FF treatment, and LDH-C protein was detected in highly progressive motile specimens treated with FF in the asthenozoospermic samples. Furthermore, LDH-C expression was more detectable in the normal sperms. Conclusion: Our results indicated that PAF had more beneficial effects than FF on sperm motility in the asthenozoospermic samples (P=0.0001, although the LDH-C expressions of the sperms were not changed significantly in both groups. We found no association between LDH-C expression and sperm motility after FF and PAF actions. This finding, however, requires further investigation. The fact that LDH-C protein was detected in the normozoospermic, but not asthenozoospermic, samples could be cited as a reason for the infertility in these patients.

  13. Active site cysteine-null glyceraldehyde-3-phosphate dehydrogenase (GAPDH) rescues nitric oxide-induced cell death.

    Science.gov (United States)

    Kubo, Takeya; Nakajima, Hidemitsu; Nakatsuji, Masatoshi; Itakura, Masanori; Kaneshige, Akihiro; Azuma, Yasu-Taka; Inui, Takashi; Takeuchi, Tadayoshi

    2016-02-29

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a homotetrameric enzyme involved in a key step of glycolysis, also has a role in mediating cell death under nitrosative stress. Our previous reports suggest that nitric oxide-induced intramolecular disulfide-bonding GAPDH aggregation, which occurs through oxidation of the active site cysteine (Cys-152), participates in a mechanism to account for nitric oxide-induced death signaling in some neurodegenerative/neuropsychiatric disorders. Here, we demonstrate a rescue strategy for nitric oxide-induced cell death accompanied by GAPDH aggregation in a mutant with a substitution of Cys-152 to alanine (C152A-GAPDH). Pre-incubation of purified wild-type GAPDH with C152A-GAPDH under exposure to nitric oxide inhibited wild-type GAPDH aggregation in a concentration-dependent manner in vitro. Several lines of structural analysis revealed that C152A-GAPDH extensively interfered with nitric oxide-induced GAPDH-amyloidogenesis. Overexpression of doxycycline-inducible C152A-GAPDH in SH-SY5Y neuroblastoma significantly rescued nitric oxide-induced death, concomitant with the decreased formation of GAPDH aggregates. Further, both co-immunoprecipitation assays and simulation models revealed a heterotetramer composed of one dimer each of wild-type GAPDH and C152A-GAPDH. These results suggest that the C152A-GAPDH mutant acts as a dominant-negative molecule against GAPDH aggregation via the formation of this GAPDH heterotetramer. This study may contribute to a new therapeutic approach utilizing C152A-GAPDH against brain damage in nitrosative stress-related disorders.

  14. Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ya-Tang [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan (China); Genomics Research Center, Academia Sinica, Taiwan (China); Chen, Chien-Jen [Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan (China); Genomics Research Center, Academia Sinica, Taiwan (China); Li, Wan-Fen [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Hsu, Ling-I [Genomics Research Center, Academia Sinica, Taiwan (China); Tsai, Li-Yu; Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Taiwan (China); Sun, Chien-Wen [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Chen, Wei J., E-mail: wjchen@ntu.edu.tw [Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan (China); Genetic Epidemiology Core Laboratory, National Taiwan University Center for Genomic Medicine, Taiwan (China); Wang, Shu-Li, E-mail: slwang@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan (China)

    2012-08-01

    Arsenic ingestion has been linked to increasing global prevalence of and mortality from cardiovascular disease (CVD); arsenic can be removed from drinking water to reduce related health effects. Lactate dehydrogenase (LDH) is used for the evaluation of acute arsenic toxicity in vivo and in vitro, but it is not validated for the evaluation of long-term, chronic arsenic exposure. The present study examined the long-term effect of chronic arsenic exposure on CVD and serum LDH levels, after consideration of arsenic metabolism capacity. A total of 380 subjects from an arseniasis-endemic area and 303 from a non-endemic area of southwestern Taiwan were recruited in 2002. Various urinary arsenic species were analyzed using high-performance liquid chromatography (HPLC) and hydride generation systems. Fasting serum was used for quantitative determination of the total LDH activity. A significant dose–response relationship was observed between arsenic exposure and LDH elevation, independent of urinary arsenic profiles (P < 0.001). Furthermore, abnormal LDH elevation was associated with CVD mortality after adjustment for Framingham risk scores for 10-year CVD and arsenic exposure (hazard ratio, 3.98; 95% confidence interval, 1.07–14.81). LDH was elevated in subjects with arsenic exposure in a dose-dependent manner. LDH is a marker of arsenic toxicity associated with CVD mortality. Results of this study have important implications for use in ascertaining long-term arsenic exposure risk of CVD. -- Highlights: ► We showed that arsenic exposure was correlated with LDH elevation. ► LDH elevation was related to arsenic methylation capacity. ► Abnormal LDH elevation can be a marker of susceptibility to CVD mortality.

  15. Role of 11β-hydroxysteroid dehydrogenase 2 renal activity in potassium homeostasis in rats with chronic renal failure

    Directory of Open Access Journals (Sweden)

    N.L. Yeyati

    2010-01-01

    Full Text Available Aldosterone concentrations vary in advanced chronic renal failure (CRF. The isozyme 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2, which confers aldosterone specificity for mineralocorticoid receptors in distal tubules and collecting ducts, has been reported to be decreased or normal in patients with renal diseases. Our objective was to determine the role of aldosterone and 11β-HSD2 renal microsome activity, normalized for glomerular filtration rate (GFR, in maintaining K+ homeostasis in 5/6 nephrectomized rats. Male Wistar rats weighing 180-220 g at the beginning of the study were used. Rats with experimental CRF obtained by 5/6 nephrectomy (N = 9 and sham rats (N = 10 were maintained for 4 months. Systolic blood pressure and plasma creatinine (Pcr concentration were measured at the end of the experiment. Sodium and potassium excretion and GFR were evaluated before and after spironolactone administration (10 mg·kg-1·day-1 for 7 days and 11β-HSD2 activity on renal microsomes was determined. Systolic blood pressure (means ± SEM; Sham = 105 ± 8 and CRF = 149 ± 10 mmHg and Pcr (Sham = 0.42 ± 0.03 and CRF = 2.53 ± 0.26 mg/dL were higher (P < 0.05 while GFR (Sham = 1.46 ± 0.26 and CRF = 0.61 ± 0.06 mL/min was lower (P < 0.05 in CRF, and plasma aldosterone (Pald was the same in the two groups. Urinary sodium and potassium excretion was similar in the two groups under basal conditions but, after spironolactone treatment, only potassium excretion was decreased in CRF rats (sham = 0.95 ± 0.090 (before vs 0.89 ± 0.09 µEq/min (after and CRF = 1.05 ± 0.05 (before vs 0.37 ± 0.07 µEq/min (after; P < 0.05. 11β-HSD2 activity on renal microsomes was lower in CRF rats (sham = 0.807 ± 0.09 and CRF = 0.217 ± 0.07 nmol·min-1·mg protein-1; P < 0.05, although when normalized for mL GFR it was similar in both groups. We conclude that K+ homeostasis is maintained during CRF development despite normal Pald levels. This adaptation may be mediated by

  16. Structural characterization of a β-hydroxyacid dehydrogenase from Geobacter sulfurreducens and Geobacter metallireducens with succinic semialdehyde reductase activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Zheng, Yi; Qin, Ling; Wang, Shihua; Buchko, Garry W.; Garavito, Michael R.

    2014-07-30

    Beta-hydroxyacid dehydrogenase (β-HAD) genes have been identified in all sequenced genomes of eukaryotes and prokaryotes. Their gene products catalyze the NAD+- or NADP+-dependent oxidation of various β-hydroxy acid substrates into their corresponding semialdehyde. In many fungal and bacterial genomes, multiple β-HAD genes are observed leading to the hypothesis that these gene products may have unique, uncharacterized metabolic roles specific to their species. The genomes of Geobacter sulfurreducens and Geobacter metallireducens each contain two potential β-HAD genes. The protein sequences of one pair of these genes, Gs-βHAD (Q74DE4) and Gm-βHAD (Q39R98), have 65% sequence identity and 77% sequence similarity with each other. Both proteins reduce succinic semialdehyde, a metabolite of the GABA shunt. To further explore the structural and functional characteristics of these two β-HADs with a potentially unique substrate specificity, crystal structures for Gs-βHAD and Gm-βHAD in complex with NADP+ were determined to a resolution of 1.89 Å and 2.07 Å, respectively. The structure of both proteins are similar, composed of 14 α-helices and nine β-strands organized into two domains. Domain One (1-165) adopts a typical Rossmann fold composed of two α/β units: a six-strand parallel β-sheet surrounded by six α-helices (α1 – α6) followed by a mixed three-strand β-sheet surrounded by two α-helices (α7 and α8). Domain Two (166-287) is composed of a bundle of seven α-helices (α9 – α14). Four functional regions conserved in all β-HADs are spatially located near each other at the interdomain cleft in both Gs-βHAD and Gm-βHAD with a buried molecule of NADP+. The structural features of Gs-βHAD and Gm-βHAD are described in relation to the four conserved consensus sequences characteristic of β-HADs and the potential biochemical importance of these enzymes as an alternative pathway for the degradation of succinic semialdehyde.

  17. Molecular, biochemical, and functional characterization of a nudix hydrolase protein that stimulates the activity of a nicotinoprotein alcohol dehydrogenase

    NARCIS (Netherlands)

    Kloosterman, H; Vrijbloed, JW; Dijkhuizen, L

    2002-01-01

    The cytoplasmic coenzyme NAD(+)-dependent alcohol (methanol) dehydrogenase (MDH) employed by Bacillus methanolicus during growth on C-1-C-4 primary alcohols is a decameric protein with 1 Zn2+-ion and 1-2 Mg2+-ions plus a tightly bound NAD(H) cofactor per subunit (a nicotinoprotein). Mg2+-ions are es

  18. Active-site structure of the soluble quinoprotein glucose dehydrogenase complexed with methylhydrazine : A covalent cofactor-inhibitor complex

    NARCIS (Netherlands)

    Oubrie, Arthur; Rozeboom, Henriëtte J.; Dijkstra, Bauke W.

    1999-01-01

    Soluble glucose dehydrogenase (s-GDH) from the bacterium Acinetobacter calcoaceticus is a classical quinoprotein. It requires the cofactor pyrroloquinoline quinone (PQQ) to catalyze the oxidation of glucose to gluconolactone, The precise catalytic role of PQQ in s-GDH and several other PQQ-dependent

  19. Characterization of 17α-hydroxysteroid dehydrogenase activity (17α-HSD and its involvement in the biosynthesis of epitestosterone

    Directory of Open Access Journals (Sweden)

    Breton Rock

    2005-07-01

    Full Text Available Abstract Background Epi-testosterone (epiT is the 17α-epimer of testosterone. It has been found at similar level as testosterone in human biological fluids. This steroid has thus been used as a natural internal standard for assessing testosterone abuse in sports. EpiT has been also shown to accumulate in mammary cyst fluid and in human prostate. It was found to possess antiandrogenic activity as well as neuroprotective effects. So far, the exact pathway leading to the formation of epiT has not been elucidated. Results In this report, we describe the isolation and characterization of the enzyme 17α-hydroxysteroid dehydrogenase. The name is given according to its most potent activity. Using cells stably expressing the enzyme, we show that 17α-HSD catalyzes efficienty the transformation of 4-androstenedione (4-dione, dehydroepiandrosterone (DHEA, 5α-androstane-3,17-dione (5α-dione and androsterone (ADT into their corresponding 17α-hydroxy-steroids : epiT, 5-androstene-3β,17α-diol (epi5diol, 5α-androstane-17α-ol-3-one (epiDHT and 5α-androstane-3α,17α-diol (epi3α-diol, respectively. Similar to other members of the aldo-keto reductase family that possess the ability to reduce the keto-group into hydroxyl-group at different position on the steroid nucleus, 17α-HSD could also catalyze the transformation of DHT, 5α-dione, and 5α-pregnane-3,20-dione (DHP into 3α-diol, ADT and 5α-pregnane-3α-ol-20-one (allopregnanolone through its less potent 3α-HSD activity. We also have over-expressed the 17α-HSD in Escherichia coli and have purified it by affinity chromatography. The purified enzyme exhibits the same catalytic properties that have been observed with cultured HEK-293 stably transfected cells. Using quantitative Realtime-PCR to study tissue distribution of this enzyme in the mouse, we observed that it is expressed at very high levels in the kidney. Conclusion The present study permits to clarify the biosynthesis pathway of epiT. It

  20. Glucose-6-phosphate dehydrogenase and glutathione reductase activity in methemoglobin reduction by methylene blue and cyst amine: study on glucose-6-phosphate dehydrogenase-deficient individuals, on normal subjects and on riboflavin-treated subjects

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1988-10-01

    Full Text Available The authors have standardized methods for evaluation of the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The general principle of the first method was based on methemoglobin formation by sodium nitrite followed by stimulation of the glucose-6-phosphate dehydrogenase with methylene blue. Forty six adults (23 males and 23 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. The results showed that methemoglobin reduction by methylene blue was 154.40 and 139.90 mg/min (p<0.05 for males and females, respectively, in whole blood, and 221.10 and 207.85 mg/min (n.s., respectively, in washed red cells. These data showed that using washed red cells and 0.7g% sodium nitrite concentration produced no differences between sexes and also shortened reading time for the residual amount of methemoglobin to 90 minutes. Glutathione reductase activity was evaluated on the basis of the fact that cystamine (a thiol agent binds to the SH groups of hemoglobin, forming complexes. These complexes are reversed by the action of glutathione reductase, with methemoglobin reduction occurring simultaneously with this reaction. Thirty two adults (16 males and 16 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. Methemoglobin reduction by cystamine was 81.27 and 91.13 mg/min (p<0.01 for males and females, respectively. These data showed that using washed red cells and 0.1 M cystamine concentration permits a reading of the residual amount of methemoglobin at 180 minutes of incubation. Glutathione reductase activity was evaluated by methemoglobin reduction by cystamine in 14 females before and after treatment with 10 mg riboflavin per day for 8 days. The results were 73.69 and 94.26 jug/min (p<0.01 before and after treatment, showing that riboflavin treatment increase glutathione reductase activity even in normal individuals. Three Black G6PD-deficient individuals (2 males and 1

  1. Retinol dehydrogenase 10 is indispensible for spermatogenesis in juvenile males

    OpenAIRE

    Tong, Ming-Han; Yang, Qi-En; Davis, Jeffrey C.; Griswold, Michael D.

    2012-01-01

    Retinoic acid (RA), an active vitamin A derivative, is essential for mammalian spermatogenesis. Genetic studies have revealed that oxidation of vitamin A to retinal by retinol dehydrogenase 10 (RDH10) is critical for embryonic RA biosynthesis. However, physiological roles of RDH10 in postnatal RA synthesis remain unclear, given that Rdh10 loss-of-function mutations lead to early embryonic lethality. We conducted in vivo genetic studies of Rdh10 in postnatal mouse testes and found that an RDH1...

  2. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  3. Effect of repeated pesticide applications on soil properties in cotton fields: II. Insecticide residues and impact on dehydrogenase and arginine deaminase activities

    International Nuclear Information System (INIS)

    Insecticides were applied sequentially at recommended dosages post crop emergence in cotton fields and soil was sampled at regular intervals after each treatment. Soil was analysed for insecticide residues and activity of the enzymes dehydrogenase and arginine deaminase. Insecticide residues detected in the soil were in small quantities and they did not persist for long. Only endosulfan leached below 15 cm. Insecticides had only temporary effects on enzyme activities which disappeared either before the next insecticide treatment or by the end of the experimental period. (author)

  4. Influence of long-term hyper-gravity on the reactivity of succinic acid dehydrogenase and NADPH-diaphorase in the central nervous system of fish: a histochemical study

    Science.gov (United States)

    Anken, R. H.; Rahmann, H.

    In the course of a densitometric evaluation, the histochemically demonstrated reactivity of succinic acid dehydrogenase (SDH) and of NADPH-diaphorase (NADPHD) was determined in different brain nuclei of two teleost fish (cichlid fish Oreochromis mossambicus, swordtail fish Xiphophorus helleri), which had been kept under 3g hyper-gravity for 8 days. SDH was chosen since it is a rate limiting enzyme of the Krebs cycle and therefore it is regarded as a marker for metabolic and neuronal activity. NADPHD reactivity reflects the activity of nitric oxide synthase. Nitric oxide (NO) is a gaseous intercellular messenger that has been suggested to play a major role in several different in vivo models of neuronal plasticity including learning. Within particular vestibulum-connected brain centers, significant effects of hyper-gravity were obtained, e.g., in the magnocellular nucleus, a primary vestibular relay ganglion of the brain stem octavolateralis area, in the superior rectus subdivision of the oculomotoric nucleus and within cerebellar eurydendroid cells, which in teleosts possibly resemble the deep cerebellar nucleus of higher vertebrates. Non-vestibulum related nuclei did not respond to hypergravity in a significant way. The effect of hyper-gravity found was much less distinct in adult animals as compared to the circumstances seen in larval fish (Anken et al., Adv. Space Res. 17, 1996), possibly due to a development correlated loss of neuronal plasticity.

  5. The role of hydration in enzyme activity and stability: 2. Alcohol dehydrogenase activity and stability in a continuous gas phase reactor.

    Science.gov (United States)

    Yang, F; Russell, A J

    1996-03-20

    The degree of enzyme hydration is the one of the most important factors which can affect enzyme activity and stability in water-limited environments. Alcohol dehydrogenase from baker's yeast (YADH) has been used as a model enzyme to study the effects of hydration on activity, stability, and cofactor stability with gas phase substrates. In all cases, the enzyme is essentially inactive until a temperature-independent degree of surface coverage by water molecules has been reached. The critical water content corresponds to 40-50% of a single monolayer. Careful control of the degree of hydration, by adjustments to gas humidity and temperature, enables the enzyme to be stabilized for periods exceeding 1 month, whereas in water the half-life of the enzyme is 30 min. The reaction with gas phase substrates follows a pseudo-first-order mechanism with an activation energy of 7.5 +/- kcal/mol, which is almost half of that in aqueous solution. (c) 1996 John Wiley & Sons, Inc.

  6. Diagnostic Value of Serum Lactate Dehydrogenase Isoenzyme and Amino Acid Patterns in Several Schistosomal and Non-Schistosomal Disorders as Compared to other Biochemical Parameters

    Directory of Open Access Journals (Sweden)

    Samia A. Ahmed

    1996-01-01

    Full Text Available Serum lactate dehydrogenase (LDH isoenzyme and amino acid (a. a patterns were evaluated in comparison to several other biochemical parameters for liver and renal function with the objective of clarifying the differential diagnosis of hepatic disorders and predicting the outcome of schistosomal infection in Egyptian patients. Patients examined included those with complicated hepatic disorders and others with different stages of schistosomal infestation, hepatoma or bladder cancer, in addition to a normal control group. Several biochemical parameters appeared to be useful in establishing consistent differences or similarities between the studied groups. Examples are; elevated serum AST/ AL T ratio and methionine content in chronic schistosomiasis, elevated serum urea/creatinine ratio and leucine content in all schistosomal patients and extremely high levels of N-acetyl-β-D-glucosaminidase (NAG in the urine of non-schistosomal bladder cancer patients. In addition, characteristic LDH isoenzyme profiles distinguish between the studied groups, in particular separating chronic schistosomiasis from schistosomal bladder cancer and hepatoma from other hepatic disorders.

  7. Glucose-stimulated insulin secretion does not require activation of pyruvate dehydrogenase: impact of adenovirus-mediated overexpression of PDH kinase and PDH phosphate phosphatase in pancreatic islets.

    Science.gov (United States)

    Nicholls, Linda I; Ainscow, Edward K; Rutter, Guy A

    2002-03-01

    Glucose-stimulated increases in mitochondrial metabolism are generally thought to be important for the activation of insulin secretion. Pyruvate dehydrogenase (PDH) is a key regulatory enzyme, believed to govern the rate of pyruvate entry into the citrate cycle. We show here that elevated glucose concentrations (16 or 30 vs 3 mM) cause an increase in PDH activity in both isolated rat islets, and in a clonal beta-cell line (MIN6). However, increases in PDH activity elicited with either dichloroacetate, or by adenoviral expression of the catalytic subunit of pyruvate dehydrogenase phosphatase, were without effect on glucose-induced increases in mitochondrial pyridine nucleotide levels, or cytosolic ATP concentration, in MIN6 cells, and insulin secretion from isolated rat islets. Similarly, the above parameters were unaffected by blockade of the glucose-induced increase in PDH activity by adenovirus-mediated over-expression of PDH kinase (PDK). Thus, activation of the PDH complex plays an unexpectedly minor role in stimulating glucose metabolism and in triggering insulin release.

  8. 4-Dihydromethyltrisporate dehydrogenase, an enzyme of the sex hormone pathway in Mucor mucedo, is constitutively transcribed but its activity is differently regulated in (+) and (-) mating types.

    Science.gov (United States)

    Schimek, Christine; Petzold, Annett; Schultze, Kornelia; Wetzel, Jana; Wolschendorf, Frank; Burmester, Anke; Wöstemeyer, Johannes

    2005-09-01

    4-Dihydromethyltrisporate dehydrogenase (TDH) converts the (+) mating type sex pheromone 4-dihydromethyltrisporate into methyltrisporate. In Mucor mucedo, this conversion is required only in the (-) mating type. Expression of the TDH encoding TSP1 gene was analyzed qualitatively using reverse-transcribed PCR. TSP1 is constitutively transcribed in the (+) and in the (-) mating type, irrespective of the mating situation. By immunodetection, the translation product is also formed constitutively. In contrast to gene expression, TDH enzyme activity depends on the sexual status of the mycelium. Activity is restricted to the sexually stimulated (-) mating type. Non-stimulated (-), as well as stimulated and non-stimulated (+) mycelia exhibit no activity and do not influence activity in stimulated (-) mycelia. Time course analysis shows strongly increased enzyme activity at 80 min after stimulation. Low activity exists from the onset of stimulation, indicating that additional regulation mechanisms are involved in TDH function.

  9. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (Michigan); (UCSF)

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  10. Activation of AMP-activated protein kinase stimulates the nuclear localization of glyceraldehyde 3-phosphate dehydrogenase in human diploid fibroblasts

    OpenAIRE

    Kwon, Hyun Jin; Rhim, Ji Heon; Jang, Ik-Soon; Kim, Go-Eun; Park, Sang Chul; Yeo, Eui-Ju

    2010-01-01

    In addition to its well-known glycolytic activity, GAPDH displays multiple functions, such as nuclear RNA export, DNA replication and repair, and apoptotic cell death. This functional diversity depends on its intracellular localization. In this study, we explored the signal transduction pathways involved in the nuclear translocation of GAPDH using confocal laser scanning microscopy of immunostained human diploid fibroblasts (HDFs). GAPDH was present mainly in the cytoplasm when cultured wi...

  11. Impaired Glucose Tolerance and Insulin Resistance Are Associated With Increased Adipose 11β-Hydroxysteroid Dehydrogenase Type 1 Expression and Elevated Hepatic 5α-Reductase Activity

    OpenAIRE

    Tomlinson, Jeremy W.; Finney, Joanne; Gay, Christopher; Hughes, Beverly A.; Hughes, Susan V.; Stewart, Paul M.

    2008-01-01

    OBJECTIVE—The precise molecular mechanisms contributing to the development of insulin resistance, impaired glucose tolerance (IGT), and type 2 diabetes are largely unknown. Altered endogenous glucocorticoid metabolism, including 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which generates active cortisol from cortisone, and 5α-reductase (5αR), which inactivates cortisol, has been implicated. RESEARCH DESIGN AND METHODS—A total of 101 obese patients (mean age 48 ± 7 years, BMI 34.4 ± 4....

  12. Often Ignored Facts about the Control of the 2-Oxoglutarate Dehydrogenase Complex

    Science.gov (United States)

    Strumilo, Slawomir

    2005-01-01

    Information about the control of the activity of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme in the citric acid cycle, is not well covered in the biochemical education literature, especially as it concerns the allosteric regulation of OGDHC by adenine nucleotide and ortophosphate. From experimental work published during the last…

  13. Comprehensive analysis of 5-aminolevulinic acid dehydrogenase (ALAD variants and renal cell carcinoma risk among individuals exposed to lead.

    Directory of Open Access Journals (Sweden)

    Dana M van Bemmel

    Full Text Available BACKGROUND: Epidemiologic studies are reporting associations between lead exposure and human cancers. A polymorphism in the 5-aminolevulinic acid dehydratase (ALAD gene affects lead toxicokinetics and may modify the adverse effects of lead. METHODS: The objective of this study was to evaluate single-nucleotide polymorphisms (SNPs tagging the ALAD region among renal cancer cases and controls to determine whether genetic variation alters the relationship between lead and renal cancer. Occupational exposure to lead and risk of cancer was examined in a case-control study of renal cell carcinoma (RCC. Comprehensive analysis of variation across the ALAD gene was assessed using a tagging SNP approach among 987 cases and 1298 controls. Occupational lead exposure was estimated using questionnaire-based exposure assessment and expert review. Odds ratios (OR and 95% confidence intervals (CI were calculated using logistic regression. RESULTS: The adjusted risk associated with the ALAD variant rs8177796(CT/TT was increased (OR = 1.35, 95%CI = 1.05-1.73, p-value = 0.02 when compared to the major allele, regardless of lead exposure. Joint effects of lead and ALAD rs2761016 suggest an increased RCC risk for the homozygous wild-type and heterozygous alleles ((GGOR = 2.68, 95%CI = 1.17-6.12, p = 0.01; (GAOR = 1.79, 95%CI = 1.06-3.04 with an interaction approaching significance (p(int = 0.06. No significant modification in RCC risk was observed for the functional variant rs1800435(K68N. Haplotype analysis identified a region associated with risk supporting tagging SNP results. CONCLUSION: A common genetic variation in ALAD may alter the risk of RCC overall, and among individuals occupationally exposed to lead. Further work in larger exposed populations is warranted to determine if ALAD modifies RCC risk associated with lead exposure.

  14. Improvement of the fermentative activity of lactic acid bacteria starter culture by the addition of Mn²⁺.

    Science.gov (United States)

    Cheng, Xin; Dong, Ying; Su, Ping; Xiao, Xiang

    2014-11-01

    Production of lactic acid bacteria (LAB) starter with raw material has received much scientific investigation, but little information is available on the influences of some trace elements on the growth and fermentative activity of LAB. Based on this fact, this paper aimed to investigate the effects of Mn(2+) on the performance of Lactobacillus plantarum CX-15 starter with Jerusalem artichoke (JA) as the main medium substrate. The results showed that Mn(2+) addition had a significant beneficial affect on the fermentative activity of L. plantarum CX-15 starter. In contrast, the lack of Mn(2+) would cause the subsequent fermentation significantly slower, whether the cell density in starter culture was higher or lower. The possible mechanism of these phenomenons was further elucidated by the time course analysis of the specific activities of metabolism key enzymes during the culture processes of L. plantarum CX-15 starter. Compared to the fermentation processes without Mn(2+) addition, it was found that Mn(2+) addition would enhance the lactate dehydrogenase (LDH) activity but reduce the activities of pyruvate dehydrogenase (PDH) and ATPase activity. Therefore, it could be concluded that the improvement of L. plantarum starter fermentative activity was probably a consequence of Mn(2+) acting as "metabolic switch," which regulated the metabolic flux from pyruvic acid to lactic acid and other metabolism pathway. PMID:25146195

  15. Amino acid substitutions in malate dehydrogenases of piezophilic bacteria isolated from intestinal contents of deep-sea fishes retrieved from the abyssal zone.

    Science.gov (United States)

    Saito, Rie; Kato, Chiaki; Nakayama, Akihiko

    2006-02-01

    To examine the occurrence in other deep-sea bacteria of two amino acid substitutions (Ala-180 and His-229) in malate dehydrogenase (MDH) found previously in the deep-sea piezophilic Moritella sp. strain 2D2, we cloned and sequenced MDH genes of deep-sea piezophilic Moritella and Shewanella strains isolated from intestinal contents of deep-sea fishes, as well as other Moritella species from deep-sea water and sediments: M. marina, M. japonica, and M. yayanosii. The piezophilic Moritella strains had a Val residue or an Ala residue at position 180 and all the Moritella strains except for one had a His residue at position 229. However, four piezophilic-strain-specific substitutions at positions 103, 111, 229, and 283 were found to be completely conserved in the MDH of the intestinal Moritella strains of deep-sea fishes, indicating the substitutions may be habitat-specific. The piezophilic Shewanella strains had a Val residue and a Gln residue at positions 180 and 229, respectively. However, the MDHs of the Shewanella strains had five piezophilic-strain-specific substitutions at positions 61, 65, 107, 161, and 202. Therefore, the enzymatic strategies for responding to deep-sea high pressure environments of the MDHs between the genera Moritella and Shewanella are potentially different. Moreover, homology modeling shows these substitutions found in the MDHs of both genera except for position 229 in the subunit interface are located on the exposed region of the MDH molecules, indicating the substitutions may be related to the hydration state of the molecules. PMID:16598154

  16. D(--)-lactic acid and d(--)-lactate dehydrohgenase in octopus spermatozoa.

    Science.gov (United States)

    Mann, T; Martin, A W; Thiersch, J B; Lutwak-Mann, C; Brooks, D E; Jones, R

    1974-08-01

    The spermatozoa of Octopus dofleini martini produce anaerobically D(-)-lactic acid and possess a very active D(-)-lactate dehydrogenase. In this respect, while resembling certain microorganisms, they differ strikingly from mammalian spermatozoa which produce L(+)-lactic acid and contain L(+)-lactate dehydrogenase. PMID:4366789

  17. Effect of noise exposure (85 dB ) on testicular adrenocortical steroidogenic key enzymes, acid and alkaline phosphatase activities of sex organs in mature albino rats

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Changes in the activities of △5-3β-hydroysteroid dehydrogenase (HSD) in testis and adrenal gland, 17β-hydroxysteroid dehydrogenase in testis, acid and alkaline phosphatase in testis, prostate and seminal vesicle were observed in noise exposed mature rats at the intensity of 85 dB for 8 h/day for 45 days. The results indicated that noise exposed group showed a significant diminution in the activities of androgenic key enzymes △5-3β and 17β-HSD, acid phosphatase in testis, prostate and seminal vesicle. There was a significant elevation in the activities of adrenal △5-3β-HSD, alkaline phosphatase in testis and other accessory sex organ in noise exposed group. Gonadosomatic, prostatosomatic and seminal vesiculo-somatic indexes were decreased significantly in noise exposed group. Therefore, it is evident that noise exposure at 85dB exerts a deleterious effect on testicular and adrenocortical activities.

  18. Derivatives of (phenylsulfonamido-methyl)nicotine and (phenylsulfonamido-methyl)thiazole as novel 11β-hydroxysteroid dehydrogenase type 1 inhibitors: synthesis and biological activities in vitro

    Institute of Scientific and Technical Information of China (English)

    Xu ZHANG; Yang ZHOU; Yu SHEN; Li-li DU; Jun-hua CHEN; Ying LENG; Jian-hua SHEN

    2009-01-01

    Aim: To design and synthese a novel class of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors, featuring the (phenylsul-fonamido-methyl)pyridine and (phenyisulfonamido-methyl)thiazole framework. Methods: Our initial lead 4-(phenylsulfonamido-methyl)benzamides were modified. Inhibition of human and mouse 11β-HSD1 enzy-matic activities by the new compounds was determined by a scintillation proximity assay (SPA) using microsomes containing 11β-HSD1.Results: Sixteen new compounds (6a-6h, 7a-7h) were designed, synthesized and bioassayed. In dose-response studies, several com-pounds showed strong inhibitory activities with IC_(50) values at nanomolar or low nanomolar concentrations. Structure-activity relation-ships are also discussed with respect to molecular docking results. Conclusion: This study provides two promising new templates for 11β-HSD1 inhibitors.

  19. Photoprotective Activity of Vulpinic and Gyrophoric Acids Toward Ultraviolet B-Induced Damage in Human Keratinocytes.

    Science.gov (United States)

    Varol, Mehmet; Türk, Ayşen; Candan, Mehmet; Tay, Turgay; Koparal, Ayşe Tansu

    2016-01-01

    Vulpinic and gyrophoric acids are known as ultraviolet filters for natural lichen populations because of their chemical structures. However, to the best of our knowledge, there has been no reference to their cosmetic potential for skin protection against ultraviolet B (UVB)-induced damage and, consequently, we propose to highlight their photoprotective profiles in human keratinocytes (HaCaT). Therefore, vulpinic acid and gyrophoric acid were isolated from acetone extracts of Letharia vulpina and Xanthoparmelia pokornyi, respectively. Their photoprotective activities on irradiated HaCaT cells and destructive effects on non-irradiated HaCaT cells were compared through in vitro experimentation: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays, 4',6-diamino-2-phenylindole and tetramethylrhodamine B isothiocyanate-phalloidin staining protocols. Both of the lichen substances effectively prevented cytotoxic, apoptotic and cytoskeleton alterative activities of 2.5 J/cm(2) UVB in a dose-dependent manner. Moreover, vulpinic and gyrophoric acids showed no toxic, apoptotic or cytoskeleton alterative effects on non-irradiated HaCaT cells, except at high doses (≥400 μM) of gyrophoric acid. The findings suggest that vulpinic and gyrophoric acids can be promising cosmetic ingredients to photo-protect human skin cells and should therefore be further investigated by in vitro and in vivo multiple bioassays. PMID:26463741

  20. Safety, efficacy and physiological actions of a lysine-free, arginine-rich formula to treat glutaryl-CoA dehydrogenase deficiency: focus on cerebral amino acid influx.

    Science.gov (United States)

    Strauss, Kevin A; Brumbaugh, Joan; Duffy, Alana; Wardley, Bridget; Robinson, Donna; Hendrickson, Christine; Tortorelli, Silvia; Moser, Ann B; Puffenberger, Erik G; Rider, Nicholas L; Morton, D Holmes

    2011-01-01

    Striatal degeneration from glutaryl-CoA dehydrogenase deficiency (glutaric aciduria type 1, GA1) is associated with cerebral formation and entrapment of glutaryl-CoA and its derivatives that depend on cerebral lysine influx. In 2006 we designed a lysine-free study formula enriched with arginine to selectively block lysine transport across cerebral endothelia and thereby limit glutaryl-CoA production by brain. Between 2006 and present, we treated twelve consecutive children with study formula (LYSx group) while holding all other treatment practices constant. Clinical and biochemical outcomes were compared to 25 GA1 patients (PROx group) treated between 1995 and 2005 with natural protein restriction (dietary lysine/arginine ratio of 1.7±0.3 mg:mg). We used published kinetic parameters of the y+and LAT1 blood-brain barrier transporters to model the influx of amino acids into the brain. Arginine fortification to achieve a mean dietary lysine/arginine ratio of 0.7±0.2 mg:mg was neuroprotective. All 12 LYSx patients are physically and neurologically healthy after 28 aggregate patient-years of follow up (current ages 28±21 months) and there were no adverse events related to formula use. This represents a 36% reduction of neurological risk (95% confidence interval 14-52%, p=0.018) that we can directly attribute to altered amino acid intake. During the first year of life, 20% lower lysine intake and two-fold higher arginine intake by LYSx patients were associated with 50% lower plasma lysine, 3-fold lower plasma lysine/arginine concentration ratio, 42% lower mean calculated cerebral lysine influx, 54% higher calculated cerebral arginine influx, 15-26% higher calculated cerebral influx of several anaplerotic precursors (isoleucine, threonine, methionine, and leucine), 50% less 3-hydroxyglutarate excretion, and a 3-fold lower hospitalization rate (0.8 versus 2.3 hospitalizations per patient per year). The relationship between arginine fortification and plasma lysine

  1. Acyl-CoA Dehydrogenase 9 Is Required for the Biogenesis of Oxidative Phosphorylation Complex I

    NARCIS (Netherlands)

    J. Nouws; L. Nijtmans; S.M. Houten; M. Brand; M. Huynen; H. Venselaar; S. Hoefs; J. Gloerich; J. Kronick; T. Hutchin; P. Willems; R. Rodenburg; R. Wanders; L. van den Heuvel; J. Smeitink; R.O. Vogel

    2010-01-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is a recently identified member of the acyl-CoA dehydrogenase family. It closely resembles very long-chain acyl-CoA dehydrogenase (VLCAD), involved in mitochondria! (3 oxidation of long-chain fatty acids. Contrary to its previously proposed involvement in fatty acid

  2. Transcriptional Regulation of Pyruvate Dehydrogenase Kinase

    OpenAIRE

    Ji Yun Jeong; Nam Ho Jeoung; Keun-Gyu Park; In-Kyu Lee

    2012-01-01

    The pyruvate dehydrogenase complex (PDC) activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK) isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally re...

  3. Screening of aspartate dehydrogenase of bacteria

    OpenAIRE

    Fukuda, Shoko; Okamura, Tokumitsu; Yasumasa, Izumi; Takeno, Tomomi; Ohsugi, Masahiro

    2001-01-01

    Fifty-two strains of bacteria cultured under aerobic conditions and 12 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NAD^+. Four strains of bacteria cultured under aerobic conditions and 7 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NADP^+. Seven strains of bacteria cultured under aerobic conditions and 4 strains of bacteria cultured und...

  4. 5´AMP activated protein kinase α2 controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Lundsgaard, Anne-Marie; Jeppesen, Jacob;

    2015-01-01

    after prolonged exercise and during the following six hours post exercise in 5´AMP activated protein kinase (AMPK)α2 and α1 knock-out (KO) and wild type (WT) mice with free access to food. Substrate oxidation was similar during exercise at the same relative intensity between genotypes. During post...... in muscle pyruvate dehydrogenase kinase 4 (PDK4) mRNA expression in WT and AMPKα2 KO was observed following exercise, which is consistent with AMPKα2 -deficiency not affecting the exercise-induced activation of the PDK4 transcriptional regulators, HDAC4 and SIRT1. Interestingly, PDK4 protein content...... increased (63 %, P protein content, lower (P

  5. Glucose-6-phosphate dehydrogenase (G6PD. Response of the human erythrocyte and another cells to the decrease in their activity.

    Directory of Open Access Journals (Sweden)

    Javier Fernando Bonilla

    2009-11-01

    Full Text Available Glucose-6-phosphate dehydrogenase is the first enzyme in the pentose phosphate pathway and the main intracellular source of reduced nicotidamineadenine nucleotidephosphate (NADPH, involved in diverse physiological processes such as antioxidant defense, (for instance in the erythrocyte endothelial growth modulation, erithropoyesis, vascularization and phagocitosis. G6PDH deficiency is the most common X-chromosome-linked enzymopathy in human beings. Although it is present in any type cell, its absolute deficiency is incompatible with life. According to WHO, 400 million people are affected by G6PD deficiency in the world but in Colombia, the severe form prevalence is about 3% to 7%. There are no data related to slight and moderate alterations, that also have clinical effects. This paper reviews some G6PD biomolecular aspects, its classification according to activity and electrophoretic mobility, as well as some main clinical aspects related to its activity alteration.

  6. Clinical implications of thymidylate synthetase, dihydropyrimidine dehydrogenase and orotate phosphoribosyl transferase activity levels in colorectal carcinoma following radical resection and administration of adjuvant 5-FU chemotherapy

    International Nuclear Information System (INIS)

    A number of studies have investigated whether the activity levels of enzymes involved in 5-fluorouracil (5-FU) metabolism are prognostic factors for survival in patients with colorectal carcinoma. Most reports have examined thymidylate synthetase (TS) and dihydropyrimidine dehydrogenase (DPD) in unresectable or metastatic cases, therefore it is unclear whether the activity of these enzymes is of prognostic value in colorectal cancer patients treated with radical resection and adjuvant chemotherapy with 5-FU. This study examined fresh frozen specimens of colorectal carcinoma from 40 patients who had undergone curative operation and were orally administered adjuvant tegafur/uracil (UFT) chemotherapy. TS, DPD and orotate phosphoribosyl transferase (OPRT) activities were assayed in cancer tissue and adjacent normal tissue and their association with clinicopathological variables was investigated. In addition, the relationships between TS, DPD and OPRT activities and patient survival were examined to determine whether any of these enzymes could be useful prognostic factors. While there was no clear relationship between pathological findings and TS or DPD activity, OPRT activity was significantly lower in tumors with lymph node metastasis than in tumors lacking lymph node metastasis. Postoperative survival was significantly better in the groups with low TS activity and/or high OPRT activity. TS and OPRT activity levels in tumor tissue may be important prognostic factors for survival in Dukes' B and C colorectal carcinoma with radical resection and adjuvant chemotherapy with UFT

  7. The catalytic reaction mechanism of drosophilid alcohol dehydrogenases

    Directory of Open Access Journals (Sweden)

    Imin Wushur

    2015-03-01

    Full Text Available The present review describes the current knowledge about the reaction mechanism of drosophilid alcohol dehydrogenases (DADH, a member of the short chain dehydrogenase/reductase (SDR superfamily. Included is the binding order of the substrates to the enzyme, rate limiting steps, stereochemistry of the reaction, active site topology, role of important amino acids and water molecules in the reaction and pH dependence of kinetic coefficients. We focus on the contribution from steady state kinetics where alternative substrates, dead end and product inhibitors, isotopes and mutated DADHs have been used as well as on the contributions from X-ray crystallography, NMR and theoretical calculations. Furthermore, we also raise some open questions in order to fully understand the reaction mechanism of this enzyme.

  8. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele;

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  9. Physiological regulation of isocitrate dehydrogenase and the role of 2-oxoglutarate in Prochlorococcus sp. strain PCC 9511.

    Directory of Open Access Journals (Sweden)

    María Agustina Domínguez-Martín

    Full Text Available The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42 catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus.

  10. Identification of isobutyryl-CoA dehydrogenase and its deficiency in humans

    DEFF Research Database (Denmark)

    Nguyen, Tien V; Andresen, Brage S; Corydon, Thomas J;

    2002-01-01

    The acyl-CoA dehydrogenases (ACDs) are a family of related enzymes that catalyze the alpha,beta-dehydrogenation of acyl-CoA esters. Two homologues active in branched chain amino acid metabolism have previously been identified. We have used expression in Escherichia coli to produce a previously...... targeted to mitochondria, but inactive when expressed in mammalian cells. These data confirm further the presence of a separated ACD in humans specific to valine catabolism (isobutyryl-CoA dehydrogenase, IBDH), along with the first enzymatic and molecular confirmation of a deficiency of this enzyme...

  11. Three members of the human pyruvate dehydrogenase kinase gene family are direct targets of the peroxisome proliferator-activated receptor beta/delta.

    Science.gov (United States)

    Degenhardt, Tatjana; Saramäki, Anna; Malinen, Marjo; Rieck, Markus; Väisänen, Sami; Huotari, Anne; Herzig, Karl-Heinz; Müller, Rolf; Carlberg, Carsten

    2007-09-14

    The nuclear receptors peroxisome proliferator-activated receptors (PPARs) are known for their critical role in the metabolic syndrome. Here, we show that they are direct regulators of the family of pyruvate dehydrogenase kinase (PDK) genes, whose products act as metabolic homeostats in sensing hunger and satiety levels in key metabolic tissues by modulating the activity of the pyruvate dehydrogenase complex. Mis-regulation of this tightly controlled network may lead to hyperglycemia. In human embryonal kidney cells we found the mRNA expression of PDK2, PDK3 and PDK4 to be under direct primary control of PPAR ligands, and in normal mouse kidney tissue Pdk2 and Pdk4 are PPAR targets. Both, treatment of HEK cells with PPARbeta/delta-specific siRNA and the genetic disruption of the Pparbeta/delta gene in mouse fibroblasts resulted in reduced expression of Pdk genes and abolition of induction by PPARbeta/delta ligands. These findings suggest that PPARbeta/delta is a key regulator of PDK genes, in particular the PDK4/Pdk4 gene. In silico analysis of the human PDK genes revealed two candidate PPAR response elements in the PDK2 gene, five in the PDK3 gene and two in the PDK4 gene, but none in the PDK1 gene. For seven of these sites we could demonstrate both PPARbeta/delta ligand responsiveness in context of their chromatin region and simultaneous association of PPARbeta/delta with its functional partner proteins, such as retinoidXreceptor, co-activator and mediator proteins and phosphorylated RNA polymerase II. In conclusion, PDK2, PDK3 and PDK4 are primary PPARbeta/delta target genes in humans underlining the importance of the receptor in the control of metabolism. PMID:17669420

  12. The effects of inhaled formaldehyde on the activities of some metabolic enzymes in the liver of male rats: subchronic (13-weeks) effects

    OpenAIRE

    Yılmaz, H.Ramazan; ÖZEN, O. Aslan; Özyurt, Hüseyin; Songur, Ahmet; Şahin, Şemsettin; Sarsılmaz, Mustafa

    2013-01-01

    Abstract. We aimed to investigate the effects of different formaldehyde (FA) concentrations on some enzyme activities that take part in metabolic pathways in the liver. The enzymes studied were hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), lactate dehydrogenase (LDH), and malate dehydrogenase (MDH) which are included in the three main metabolic pathways; glycolysis, citric acid cycle, and pentose phosphate pathway. Thirty male Wistar albin...

  13. Naltrexone normalizes the suppression but not the surge of delta 5-3 beta-hydroxysteroid dehydrogenase activity in Leydig cells of stressed rat fetuses.

    Science.gov (United States)

    Ward, I L; Ward, O B; Hayden, T; Weisz, J; Orth, J M

    1990-07-01

    Rat fetuses from mothers stressed chronically by immobilization and high intensity illumination beginning on day 14 of gestation have higher than normal levels of delta 5-3 beta-hydroxysteroid dehydrogenase (3 beta HSD) activity in Leydig cells on day 17 of gestation and lower than normal levels on days 18 and 19. Plasma testosterone titers in normal and stressed male fetuses closely parallel the activity of 3 beta HSD in fetal Leydig cells. In the present study quantitative cytochemistry was used to determine whether the stress-induced alterations in 3 beta HSD activity could be prevented by treating the mother with naltrexone, an opioid receptor blocker, before each stress session. Naltrexone normalized 3 beta HSD activity on days 18 and 19 of gestation, suggesting that the stress-induced suppression involves the endogenous opioid system. In contrast, naltrexone did not prevent the elevation in enzyme activity seen on day 17 in stressed fetuses. The persistence of a stress-induced surge on day 17, in spite of naltrexone therapy, suggests that some nonopioid mechanism is operational at that time. PMID:2361487

  14. N-acetyl cysteine, L-cysteine, and beta-mercaptoethanol augment selenium-glutathione peroxidase activity in glucose-6-phosphate dehydrogenase-deficient human erythrocytes.

    Science.gov (United States)

    Alicigüzel, Y; Aslan, M

    2004-09-01

    In glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes, failure to maintain normal levels of reduced glutathione (GSH) due to decreased NADPH regeneration in the hexose monophosphate pathway results in acute hemolytic anemia following exposure to oxidative insults, such as ingestion of Vicia fava beans or use of certain drugs. GSH is a source of protection against oxidative attack, used by the selenium-dependent glutathione peroxidase (Se-GSH-Px)/reductase (GR) system to detoxify hydrogen peroxide and organic peroxides, provided that sufficient GSH is made available. In this study, Se-GSH-Px activity was analyzed in G6PD-deficient patients in the presence of reducing agents such as N-Acetyl cysteine, L-cysteine, and beta-mercaptoethanol. Se-GSH-Px activity was decreased in G6PD-deficient red blood cells (RBCs). N-Acetyl cysteine, L-cysteine, and beta-mercaptoethanol increased Se-GSH-Px activity in G6PD-deficient human erythrocytes, indicating that other reducing agents can be utilized to complement Se-GSH-Px activity in G6PD deficiency. Based on the increased susceptibility of G6PD-deficient patients to oxidative stress, the reported increase in Se-GSH-Px activity can facilitate the detoxification of reactive oxygen species. PMID:15598086

  15. Mesenchymal Stem/Stromal Cells Derived From a Reproductive Tissue Niche Under Oxidative Stress Have High Aldehyde Dehydrogenase Activity.

    Science.gov (United States)

    Kusuma, Gina D; Abumaree, Mohamed H; Pertile, Mark D; Perkins, Anthony V; Brennecke, Shaun P; Kalionis, Bill

    2016-06-01

    The use of mesenchymal stem/stromal cells (MSC) in regenerative medicine often requires MSC to function in environments of high oxidative stress. Human pregnancy is a condition where the mother's tissues, and in particular her circulatory system, are exposed to increased levels of oxidative stress. MSC in the maternal decidua basalis (DMSC) are in a vascular niche, and thus would be exposed to oxidative stress products in the maternal circulation. Aldehyde dehydrogenases (ALDH) are a large family of enzymes which detoxify aldehydes and thereby protect stem cells against oxidative damage. A subpopulation of MSC express high levels of ALDH (ALDH(br)) and these are more potent in repairing and regenerating tissues. DMSC was compared with chorionic villous MSC (CMSC) derived from the human placenta. CMSC reside in vascular niche and are exposed to the fetal circulation, which is in lower oxidative state. We screened an ALDH isozyme cDNA array and determined that relative to CMSC, DMSC expressed high levels of ALDH1 family members, predominantly ALDH1A1. Immunocytochemistry gave qualitative confirmation at the protein level. Immunofluorescence detected ALDH1 immunoreactivity in the DMSC and CMSC vascular niche. The percentage of ALDH(br) cells was calculated by Aldefluor assay and DMSC showed a significantly higher percentage of ALDH(br) cells than CMSC. Finally, flow sorted ALDH(br) cells were functionally potent in colony forming unit assays. DMSC, which are derived from pregnancy tissues that are naturally exposed to high levels of oxidative stress, may be better candidates for regenerative therapies where MSC must function in high oxidative stress environments. PMID:26880140

  16. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers EVIDENCE FOR A DIRECT PATHWAY BETWEEN THE 4′-AMINOPYRIMIDINE N1′ ATOMS

    Energy Technology Data Exchange (ETDEWEB)

    Nemeria, Natalia S; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank [Pitt; (Goettingen); (VA); (Rutgers)

    2010-11-03

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4{prime}-aminopyrimidine N1{prime} atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu{sup 571}, Glu{sup 235}, and Glu{sup 237}) and Arg{sup 606} resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. (1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. (2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. (3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. (4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu{sup 235} makes no direct contact with the cofactor. The role of the conserved Glu{sup 571} residue in both catalysis and cofactor orientation is revealed by the combined results for the first time.

  17. Theoretical Calculations of the Catalytic Triad in Short-Chain Alcohol Dehydrogenases/Reductases

    OpenAIRE

    Gani, Osman A B S M; Adekoya, Olayiwola A; Giurato, Laura; Spyrakis, Francesca; Cozzini, Pietro; Guccione, Salvatore; Winberg, Jan-Olof; Sylte, Ingebrigt

    2007-01-01

    Three highly conserved active site residues (Ser, Tyr, and Lys) of the family of short-chain alcohol dehydrogenases/reductases (SDRs) were demonstrated to be essential for catalytic activity and have been denoted the catalytic triad of SDRs. In this study computational methods were adopted to study the ionization properties of these amino acids in SDRs from Drosophila melanogaster and Drosophila lebanonensis. Three enzyme models, with different ionization scenarios of the catalytic triad that...

  18. 镧对红壤转化酶、过氧化氢酶和脱氢酶活性的影响%Effects of rare earth element lanthanum on the activities of invertase, catalase and dehydrogenase in red soil.

    Institute of Scientific and Technical Information of China (English)

    褚海燕; 朱建国; 谢祖彬; 李振高; 曹志洪

    2001-01-01

    The effects of rare earth element lanthanum (La) on the activities of soil invertase, catalase and dehydrogenase in red soil were studied by room culture and pot culture experiments. La had stimulative effect on soil invertase activity in varying degrees; slightly inhibitory effect on the activity of soil catalase; strongly inhibitory effect on soil dehydrogenase activity and the inhibit ion became significant when the concentration of La was over 30 mg/kg. Its inhibition to the activities of soil catalase and dehydrogenase was strengthened continuously with increasing concentration. When incubation time was prolonged, its inhibition to soil dehydrogenase tended to decrease. Soil dehydrogenase activity is a sensitive index on assessing the environmental effects of rare earth element in soils.%通过室内培养和盆栽试验研究了稀土元素镧对红壤转化酶、过氧化氢酶和脱氢酶活性的影响.镧对土壤转化酶活性有不同程度的刺激作用;对土壤过氧化氢活性有轻微的抑制作用;对土壤脱氢酶活性有强烈的抑制作用,当镧浓度为30mg/kg时,抑制作用达到显著水平.随着浓度的升高,镧对土壤脱氢酶和过氧化氢酶活性的抑制作用不断增强.随着培养时间的延长,镧对土壤脱氢酶的抑制作用有降低的趋势.土壤脱氢酶活性是评价稀土元素污染土壤环境的敏感指标.

  19. Differential decolorization of textile dyes in mixtures and the joint effect of laccase and cellobiose dehydrogenase activities present in extracellular extracts from Funalia trogii.

    Science.gov (United States)

    Tilli, Silvia; Ciullini, Ilaria; Scozzafava, Andrea; Briganti, Fabrizio

    2011-10-10

    The largest part of the bio-decolorization investigations have been performed to date on a single dye without exploring the behavior in complex mixtures as the real dyeing baths. Therefore, mixtures of dyes belonging to azo and anthraquinonic classes, chosen among the most utilized in textile wool dyeing, were employed for comparative enzymatic decolorization studies using the extracellular extracts from the white rot fungus Funalia trogii, to understand how the concomitant presence of more than one dye could influence their degradation course and yield. Fungal extracts containing laccase activity only were capable to partially decolorize dyes mixtures from the different classes analyzed. The deconvolution of the decolorization with time allowed to monitor the degradation of the single dyes in the mixtures evidencing a time dependent differential decolorization not observed for the singles alone. Some dyes in the blend were in fact decolorized only when the most easily converted dyes were largely transformed. These experiments would allow to help the dyeing factories in the selection of the most readily degraded dyes. Since F. trogii grown on different media and activators shows diverse levels of expression of the redox enzymes laccase and cellobiose dehydrogenase (CDH), the dyes mixtures recalcitrant to decolorization by laccase activity alone, were subjected to the combined action of extracts containing laccase and CDH. The use of CDH, in support to the activity of laccase, resulted in substantial decolorization increases (>84%) for all the refractory dyes mixtures.

  20. Cloning and characterization of a ribitol dehydrogenase from Zymomonas mobilis

    DEFF Research Database (Denmark)

    Moon, Hee-Jung; Tiwari, Manish; Jeya, Marimuthu;

    2010-01-01

    Ribitol dehydrogenase (RDH) catalyzes the conversion of ribitol to D-ribulose. A novel RDH gene was cloned from Zymomonas mobilis subsp. mobilis ZM4 and overexpressed in Escherichia coli BL21(DE3). DNA sequence analysis revealed an open reading frame of 795 bp, capable of encoding a polypeptide...... of 266 amino acid residues with a calculated molecular mass of 28,426 Da. The gene was overexpressed in E. coli BL21(DE3) and the protein was purified as an active soluble form using glutathione S-transferase affinity chromatography. The molecular mass of the purified enzyme was estimated...

  1. Essential histidine residue in 3-ketosteroid-Δ1-dehydrogenase

    OpenAIRE

    Matsushita, Hiroyuki; Itagaki, Eiji; 板垣, 英治

    1992-01-01

    The variation with pH of kinetic parameters was examined for 3-ketosteroid-Δ1-dehydrogenase from Nocardia corallina. The V(max)/K(m) profile for 4-androstenedione indicates that activity is lost upon protonation of a cationic acid-type group with a pK value of 7.7. The enzyme was inactivated by diethylpyrocarbonate at pH 7.4 and the inactivation was substantially prevented by androstadienedione. Analyses of reactivation with neutral hydroxylamine, pH variation, and spectral changes of the ina...

  2. Studies on the acid activation of Brazilian smectitic clays

    OpenAIRE

    Francisco R. Valenzuela Díaz; Pérsio de Souza Santos

    2001-01-01

    Fuller's earth and acid activated smectitic clays are largely used as bleaching earth for the industrial processing of vegetable, animal and mineral oils and waxes. The paper comments about the nomenclature used for these materials, the nature of the acid activation of smectitic clays (bentonites), activation laboratory procedures and presents a review of the acid activation of bentonites from 20 deposits from several regions of Brazil. The activated clays were tested and show good decolorizi...

  3. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.

    OpenAIRE

    Göttlicher, M; Widmark, E; Q. Li; Gustafsson, J.A.

    1992-01-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate PPAR (peroxisome proliferator-activated receptor), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from the rat that is homologous to that from the mouse [Issemann, I. & Green, S. (1990) Nature (London) 347, 645-650], which encodes a 97% similar protein with a particularly well-conserved putative ligand-binding domain. To search for physiologically occurring acti...

  4. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    Science.gov (United States)

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  5. NdhV subunit regulates the activity of type-1 NAD(P)H dehydrogenase under high light conditions in cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Chen, Xin; He, Zhihui; Xu, Min; Peng, Lianwei; Mi, Hualing

    2016-01-01

    The cyanobacterial NAD(P)H dehydrogenase (NDH-1) complexes play crucial roles in variety of bioenergetic reactions. However, the regulative mechanism of NDH-1 under stressed conditions is still unclear. In this study, we detected that the NDH-1 activity is partially impaired, but the accumulation of NDH-1 complexes was little affected in the NdhV deleted mutant (ΔndhV) at low light in cyanobacterium Synechocystis sp. PCC 6803. ΔndhV grew normally at low light but slowly at high light under inorganic carbon limitation conditions (low pH or low CO2), meanwhile the activity of CO2 uptake was evidently lowered than wild type even at pH 8.0. The accumulation of NdhV in thylakoids strictly relies on the presence of the hydrophilic subcomplex of NDH-1. Furthermore, NdhV was co-located with hydrophilic subunits of NDH-1 loosely associated with the NDH-1L, NDH-1MS' and NDH-1M complexes. The level of the NdhV was significantly increased at high light and deletion of NdhV suppressed the up-regulation of NDH-1 activity, causing the lowered the photosynthetic oxygen evolution at pH 6.5 and high light. These data indicate that NdhV is an intrinsic subunit of hydrophilic subcomplex of NDH-1, required for efficient operation of cyclic electron transport around photosystem I and CO2 uptake at high lights. PMID:27329499

  6. The Isoenzyme 7 of Tobacco NAD(H)-Dependent Glutamate Dehydrogenase Exhibits High Deaminating and Low Aminating Activities in Vivo1[OA

    Science.gov (United States)

    Skopelitis, Damianos S.; Paranychianakis, Nikolaos V.; Kouvarakis, Antonios; Spyros, Apostolis; Stephanou, Euripides G.; Roubelakis-Angelakis, Kalliopi A.

    2007-01-01

    Following the discovery of glutamine synthetase/glutamate (Glu) synthase, the physiological roles of Glu dehydrogenase (GDH) in nitrogen metabolism in plants remain obscure and is the subject of considerable controversy. Recently, transgenics were used to overexpress the gene encoding for the β-subunit polypeptide of GDH, resulting in the GDH-isoenzyme 1 deaminating in vivo Glu. In this work, we present transgenic tobacco (Nicotiana tabacum) plants overexpressing the plant gdh gene encoding for the α-subunit polypeptide of GDH. The levels of transcript correlated well with the levels of total GDH protein, the α-subunit polypeptide, and the abundance of GDH-anionic isoenzymes. Assays of transgenic plant extracts revealed high in vitro aminating and low deaminating activities. However, gas chromatography/mass spectrometry analysis of the metabolic fate of 15NH4 or [15N]Glu revealed that GDH-isoenzyme 7 mostly deaminates Glu and also exhibits low ammonium assimilating activity. These and previous results firmly establish the direction of the reactions catalyzed by the anionic and cationic isoenzymes of GDH in vivo under normal growth conditions and reveal a paradox between the in vitro and in vivo enzyme activities. PMID:17932305

  7. The structure of retinal dehydrogenase type II at 2.7 A resolution: implications for retinal specificity.

    Science.gov (United States)

    Lamb, A L; Newcomer, M E

    1999-05-11

    Retinoic acid, a hormonally active form of vitamin A, is produced in vivo in a two step process: retinol is oxidized to retinal and retinal is oxidized to retinoic acid. Retinal dehydrogenase type II (RalDH2) catalyzes this last step in the production of retinoic acid in the early embryo, possibly producing this putative morphogen to initiate pattern formation. The enzyme is also found in the adult animal, where it is expressed in the testis, lung, and brain among other tissues. The crystal structure of retinal dehydrogenase type II cocrystallized with nicotinamide adenine dinucleotide (NAD) has been determined at 2.7 A resolution. The structure was solved by molecular replacement using the crystal structure of a mitochondrial aldehyde dehydrogenase (ALDH2) as a model. Unlike what has been described for the structures of two aldehyde dehydrogenases involved in the metabolism of acetaldehyde, the substrate access channel is not a preformed cavity into which acetaldehyde can readily diffuse. Retinal dehydrogenase appears to utilize a disordered loop in the substrate access channel to discriminate between retinaldehyde and short-chain aldehydes.

  8. Purification, characterization, and cDNA cloning of opine dehydrogenases from the polychaete rockworm Marphysa sanguinea.

    Science.gov (United States)

    Endo, Noriyuki; Kan-no, Nobuhiro; Nagahisa, Eizoh

    2007-06-01

    Alanopine dehydrogenase (AlDH) and three isoforms of strombine/alanopine dehydrogenase (St/AlDH) were purified from muscle tissue of the polychaete rockworm Marphysa sanguinea. The four enzymes, which can be distinguished by the isoelectric point, are monomeric 42 kDa proteins, possess similar pH-activity profiles, and display specificity for pyruvate and NAD(H). The three isoforms of St/AlDH show equivalent Km and Vmax for glycine and L-alanine and for D-strombine and meso-alanopine. Free amino acid levels in the muscle and D-strombine accumulation in vivo during muscle activity suggest that St/AlDHs function physiologically as StDH. AlDH shows specificity for L-alanine and meso-alanopine, but not for glycine or D-strombine. The amino acid sequences of AlDH and one of the St/AlDH isoforms were determined by a combination of amino acid sequence analysis and cDNA cloning. St/AlDH cDNA consisted of 1586 bp nucleotides that encode a 399-residue protein (43,346.70 Da), and AlDH cDNA consisted of 1587 bp nucleotides that encode a 399-residue protein (43,886.68 Da). The two amino acid sequences deduced from the cDNA displayed 67% amino acid identity, with greatest similarity to that of tauropine dehydrogenase from the polychaete Arabella iricolor. PMID:17350870

  9. Targeting isocitrate dehydrogenase (IDH) in cancer.

    Science.gov (United States)

    Fujii, Takeo; Khawaja, Muhammad Rizwan; DiNardo, Courtney D; Atkins, Johnique T; Janku, Filip

    2016-05-01

    Isocitrate dehydrogenase (IDH) is an essential enzyme for cellular respiration in the tricarboxylic acid (TCA) cycle. Recurrent mutations in IDH1 or IDH2 are prevalent in several cancers including glioma, acute myeloid leukemia (AML), cholangiocarcinoma and chondrosarcoma. The mutated IDH1 and IDH2 proteins have a gain-of-function, neomorphic activity, catalyzing the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG) by NADPH. Cancer-associated IDH mutations block normal cellular differentiation and promote tumorigenesis via the abnormal production of the oncometabolite 2-HG. High levels of 2-HG have been shown to inhibit α-KG dependent dioxygenases, including histone and deoxyribonucleic acid (DNA) demethylases, which play a key role in regulating the epigenetic state of cells. Current targeted inhibitors of IDH1 (AG120, IDH305), IDH2 (AG221), and pan-IDH1/2 (AG881) selectively inhibit mutant IDH protein and induce cell differentiation in in vitro and in vivo models. Preliminary results from phase I clinical trials with IDH inhibitors in patients with advanced hematologic malignancies have demonstrated an objective response rate ranging from 31% to 40% with durable responses (>1 year) observed. Furthermore, the IDH inhibitors have demonstrated early signals of activity in solid tumors with IDH mutations, including cholangiocarcinomas and low grade gliomas. PMID:27355333

  10. Rapid inhibition of pyruvate dehydrogenase: an initiating event in high dietary fat-induced loss of metabolic flexibility in the heart.

    Science.gov (United States)

    Crewe, Clair; Kinter, Michael; Szweda, Luke I

    2013-01-01

    Cardiac function depends on the ability to switch between fatty acid and glucose oxidation for energy production in response to changes in substrate availability and energetic stress. In obese and diabetic individuals, increased reliance on fatty acids and reduced metabolic flexibility are thought to contribute to the development of cardiovascular disease. Mechanisms by which cardiac mitochondria contribute to diet-induced metabolic inflexibility were investigated. Mice were fed a high fat or low fat diet for 1 d, 1 wk, and 20 wk. Cardiac mitochondria isolated from mice fed a high fat diet displayed a diminished ability to utilize the glycolytically derived substrate pyruvate. This response was rapid, occurring within the first day on the diet, and persisted for up to 20 wk. A selective increase in the expression of pyruvate dehydrogenase kinase 4 and inhibition of pyruvate dehydrogenase are responsible for the rapid suppression of pyruvate utilization. An important consequence is that pyruvate dehydrogenase is sensitized to inhibition when mitochondria respire in the presence of fatty acids. Additionally, increased expression of pyruvate dehydrogenase kinase 4 preceded any observed diet-induced reductions in the levels of glucose transporter type 4 and glycolytic enzymes and, as judged by Akt phosphorylation, insulin signaling. Importantly, diminished insulin signaling evident at 1 wk on the high fat diet did not occur in pyruvate dehydrogenase kinase 4 knockout mice. Dietary intervention leads to a rapid decline in pyruvate dehydrogenase kinase 4 levels and recovery of pyruvate dehydrogenase activity indicating an additional form of regulation. Finally, an overnight fast elicits a metabolic response similar to that induced by high dietary fat obscuring diet-induced metabolic changes. Thus, our data indicate that diet-induced inhibition of pyruvate dehydrogenase may be an initiating event in decreased oxidation of glucose and increased reliance of the heart on

  11. Rapid inhibition of pyruvate dehydrogenase: an initiating event in high dietary fat-induced loss of metabolic flexibility in the heart.

    Directory of Open Access Journals (Sweden)

    Clair Crewe

    Full Text Available Cardiac function depends on the ability to switch between fatty acid and glucose oxidation for energy production in response to changes in substrate availability and energetic stress. In obese and diabetic individuals, increased reliance on fatty acids and reduced metabolic flexibility are thought to contribute to the development of cardiovascular disease. Mechanisms by which cardiac mitochondria contribute to diet-induced metabolic inflexibility were investigated. Mice were fed a high fat or low fat diet for 1 d, 1 wk, and 20 wk. Cardiac mitochondria isolated from mice fed a high fat diet displayed a diminished ability to utilize the glycolytically derived substrate pyruvate. This response was rapid, occurring within the first day on the diet, and persisted for up to 20 wk. A selective increase in the expression of pyruvate dehydrogenase kinase 4 and inhibition of pyruvate dehydrogenase are responsible for the rapid suppression of pyruvate utilization. An important consequence is that pyruvate dehydrogenase is sensitized to inhibition when mitochondria respire in the presence of fatty acids. Additionally, increased expression of pyruvate dehydrogenase kinase 4 preceded any observed diet-induced reductions in the levels of glucose transporter type 4 and glycolytic enzymes and, as judged by Akt phosphorylation, insulin signaling. Importantly, diminished insulin signaling evident at 1 wk on the high fat diet did not occur in pyruvate dehydrogenase kinase 4 knockout mice. Dietary intervention leads to a rapid decline in pyruvate dehydrogenase kinase 4 levels and recovery of pyruvate dehydrogenase activity indicating an additional form of regulation. Finally, an overnight fast elicits a metabolic response similar to that induced by high dietary fat obscuring diet-induced metabolic changes. Thus, our data indicate that diet-induced inhibition of pyruvate dehydrogenase may be an initiating event in decreased oxidation of glucose and increased reliance

  12. Chemical composition and antioxidant activity of an acidic polysaccharide extracted from Cucurbita moschata Duchesne ex Poiret.

    Science.gov (United States)

    Yang, Xingbin; Zhao, Yan; Lv, You

    2007-06-13

    A simple and sensitive high-performance capillary electrophoresis (HPCE) method was designed for quantitative analysis of the component monosaccharides of an acidic polysaccharide extracted from pumpkin. In this method, the polysaccharide was hydrolyzed into component monosaccharides with 2.0 M trifluoroacetic acid at 100 degrees C for 6 h and then labeled with 1-phenyl-3-methyl-5-pyrazolone, and subsequently the labeled monosaccharide derivatives were separated by HPCE. As a result, glucose (21.7%) and glucuronic acid (18.9%) were identified to be the main component monosaccharides, followed by galactose (11.5%), arabinose (9.8%), xylose (4.4%), and rhamnose (2.8%). Furthermore, the pumpkin polysaccharide was also demonstrated to effectively inhibit the H2O2-caused decrease of cell viability, lactate dehydrogenase leakage, and malondialdehyde formation, and also reduced the H2O2-caused decline of superoxide dismutase activity and glutathione depletion in cultured mouse peritoneal macrophages, indicating that pumpkin polysaccharide possessed significant cytoprotective effect and antioxidative activity.

  13. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    Science.gov (United States)

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil.

  14. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    Science.gov (United States)

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil. PMID:26286803

  15. A novel glutamate dehydrogenase from bovine brain: purification and characterization.

    Science.gov (United States)

    Lee, J; Kim, S W; Cho, S W

    1995-08-01

    A soluble form of novel glutamate dehydrogenase has been purified from bovine brain. The preparation was homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and composed of six identical subunits having a subunit size of 57,500 Da. The biochemical properties of glutamate dehydrogenase such as N-terminal amino acids sequences, kinetic parameters, amino acids analysis, and optimum pH were examined in both reductive amination of alpha-ketoglutarate and oxidative deamination of glutamate. N-terminal amino acid sequences of the bovine brain enzyme showed the significant differences in the first 5 amino acids compared to other glutamate dehydrogenases from various sources. These results indicate that glutamate dehydrogenase isolated from bovine brain is a novel polypeptide.

  16. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis).

    Science.gov (United States)

    Guha, Anirban; Gera, Sandeep; Sharma, Anshu

    2012-03-01

    Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM) with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC) was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (pbenchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology. PMID:25049573

  17. Effects of methoxychlor and its metabolite 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane on 11β-hydroxysteroid dehydrogenase activities in vitro.

    Science.gov (United States)

    Guo, Jingjing; Deng, Haiyun; Li, Hongzhi; Zhu, Qiqi; Zhao, Binghai; Chen, Bingbing; Chu, Yanhui; Ge, Ren-Shan

    2013-03-27

    Methoxychlor (MXC) is primarily used as a pesticide and widely present in the environment. The objective of the present study is to investigate the direct effects of MXC and its metabolite 2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) on two isoforms of 11β-hydroxysteroid dehydrogenase (11β-HSD1 and 11β-HSD2) in vitro. Human liver microsome, rat testis microsome and adult Leydig cells were used for the measurement of 11β-HSD1 activity. Human placental and rat kidney microsomes were used for 11β-HSD2 activity. The IC(50) values on human 11β-HSD1 by MXC and HPTE were 1.91±0.07 and 8.88 ± 0.08 μM, respectively. HPTE inhibited rat 11β-HSD1 with IC(50) of 9.15±0.05μM, while MXC did not inhibit the enzyme. MXC and HPTE were competitive inhibitors of 11β-HSD1. HPTE also inhibited human and rat 11β-HSD2 with IC(50) values of 55.57 ± 0.08 and 12.96 ± 0.11 μM, respectively, while MXC did not inhibit 11β-HSD2. In summary, our results showed that MXC and its metabolite HPTE inhibited both isoforms of 11β-HSD in a species- and chemical structure-dependent manner.

  18. Isoniazid acetylating phenotype in patients with paracoccidioidomycosis and its relationship with serum sulfadoxin levels, glucose-6-phosphate dehydrogenase and glutathione reductase activities

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1991-06-01

    Full Text Available The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females aged 17 to 58 years. Twenty one (53.84% of the patients presented a slow acetylatingphenotype and 18(46.16% a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD acti vity was decreased in 5(23.80% slow acetylators and in 4(22.22% fast acetylators. Glutathione reductase activity was decreased in 14 (66.66% slow acetylators and in 12 (66.66% fast acetylators. Serum levels of free and total sulfadoxin Were higher in slow acetylator (p Os autores avaliaram o fenótipo acetilador da isoniazida, hematócrito, hemoglobina, atividade da glicose-6- fosfato desidrogenase, glutationa redutase e os níveis séricos de sulfadoxina de 39 doentes com paracoccidíoidomicose, senão 33 do sexo masculino e 6 do feminino, com idades compreendidas entre 17 e 58 anos. Vinte e um (53,84% doentes apresentaram fenótipo acetilador lento e 18 (46,16% rápido. A atividade da glicose-6-fosfato desidrogenase (G6PD esteve diminuída em 5 (23,80% acetiladores lentos e 4 (22,22% rápidos. A atividade da glutationa redutase esteve diminuída em 14 (66,66% acetiladores lentos e 12 (66,66% rápidos. Os níveis séricos de sulfadoxina livre e total foram maiores nos acetiladores lentos (p < 0,02. A análise dos resultados permite concluir que os níveis séricos de sulfadoxina relaciona-se com o fenótipo acetilador. Além disso, os níveis estiveram sempre acima de 50 µg/ml, níveis estes considerados terapêuticos. Por outro lado, a deficiência de glutationa redutase pode estar relacionada com a má absorção intestinal de nutrientes, entre eles riboflavina, vitamina precursora de FAD.

  19. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility.

    Science.gov (United States)

    Zhang, Shuai; Hulver, Matthew W; McMillan, Ryan P; Cline, Mark A; Gilbert, Elizabeth R

    2014-01-01

    Metabolic flexibility is the capacity of a system to adjust fuel (primarily glucose and fatty acids) oxidation based on nutrient availability. The ability to alter substrate oxidation in response to nutritional state depends on the genetically influenced balance between oxidation and storage capacities. Competition between fatty acids and glucose for oxidation occurs at the level of the pyruvate dehydrogenase complex (PDC). The PDC is normally active in most tissues in the fed state, and suppressing PDC activity by pyruvate dehydrogenase (PDH) kinase (PDK) is crucial to maintain energy homeostasis under some extreme nutritional conditions in mammals. Conversely, inappropriate suppression of PDC activity might promote the development of metabolic diseases. This review summarizes PDKs' pivotal role in control of metabolic flexibility under various nutrient conditions and in different tissues, with emphasis on the best characterized PDK4. Understanding the regulation of PDC and PDKs and their roles in energy homeostasis could be beneficial to alleviate metabolic inflexibility and to provide possible therapies for metabolic diseases, including type 2 diabetes (T2D). PMID:24520982

  20. Decreased 11β-Hydroxysteroid Dehydrogenase 1 Level and Activity in Murine Pancreatic Islets Caused by Insulin-Like Growth Factor I Overexpression.

    Directory of Open Access Journals (Sweden)

    Subrata Chowdhury

    Full Text Available We have reported a high expression of IGF-I in pancreatic islet β-cells of transgenic mice under the metallothionein promoter. cDNA microarray analysis of the islets revealed that the expression of 82 genes was significantly altered compared to wild-type mice. Of these, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1, which is responsible for the conversion of inert cortisone (11-dehydrocorticosterone, DHC in rodents to active cortisol (corticosterone in the liver and adipose tissues, has not been identified previously as an IGF-I target in pancreatic islets. We characterized the changes in its protein level, enzyme activity and glucose-stimulated insulin secretion. In freshly isolated islets, the level of 11β-HSD1 protein was significantly lower in MT-IGF mice. Using dual-labeled immunofluorescence, 11β-HSD1 was observed exclusively in glucagon-producing, islet α-cells but at a lower level in transgenic vs. wild-type animals. MT-IGF islets also exhibited reduced enzymatic activities. Dexamethasone (DEX and DHC inhibited glucose-stimulated insulin secretion from freshly isolated islets of wild-type mice. In the islets of MT-IGF mice, 48-h pre-incubation of DEX caused a significant decrease in insulin release, while the effect of DHC was largely blunted consistent with diminished 11β-HSD1 activity. In order to establish the function of intracrine glucocorticoids, we overexpressed 11β-HSD1 cDNA in MIN6 insulinoma cells, which together with DHC caused apoptosis and a significant decrease in proliferation. Both effects were abolished with the treatment of an 11β-HSD1 inhibitor. Our results demonstrate an inhibitory effect of IGF-I on 11β-HSD1 expression and activity within the pancreatic islets, which may mediate part of the IGF-I effects on cell proliferation, survival and insulin secretion.

  1. Pro-haloacetate Nanoparticles for Efficient Cancer Therapy via Pyruvate Dehydrogenase Kinase Modulation

    Science.gov (United States)

    Misra, Santosh K.; Ye, Mao; Ostadhossein, Fatemeh; Pan, Dipanjan

    2016-06-01

    Anticancer agents based on haloacetic acids are developed for inhibition of pyruvate dehydrogenase kinase (PDK), an enzyme responsible for reversing the suppression of mitochondria-dependent apoptosis. Through molecular docking studies mono- and dihaloacetates are identified as potent PDK2 binders and matched their efficiency with dichloroacetic acid. In silico screening directed their conversion to phospholipid prodrugs, which were subsequently self-assembled to pro-haloacetate nanoparticles. Following a thorough physico-chemical characterization, the functional activity of these novel agents was established in wide ranges of human cancer cell lines in vitro and in vivo in rodents. Results indicated that the newly explored PDK modulators can act as efficient agent for cancer regression. A Pyruvate dehydrogenase (PDH) assay mechanistically confirmed that these agents trigger their activity through the mitochondria-dependent apoptosis.

  2. Acaricidal activity of usnic acid and sodium usnic acid against Psoroptes cuniculi in vitro.

    Science.gov (United States)

    Shang, Xiaofei; Miao, Xiaolou; Lv, Huiping; Wang, Dongsheng; Zhang, Jiqin; He, Hua; Yang, Zhiqiang; Pan, Hu

    2014-06-01

    Usnic acid, a major active compound in lichens, was first isolated in 1884. Since then, usnic acid and its sodium salt (sodium usnic acid) have been used in medicine, perfumery, cosmetics, and other industries due to its extensive biological activities. However, its acaricidal activity has not been studied. In this paper, we investigated the acaricidal activity of usnic acid and sodium usnic acid against Psoroptes cuniculi in vitro. After evaluating the acaricidal activity and toxicity of usnic acid and sodium usnic acid in vitro, the results showed that at doses of 250, 125, and 62.5 mg/ml, usnic acid and sodium usnic acid can kill mites with 91.67, 85.00, and 55.00% and 100, 100, and 60.00% mortality after treatment 24 h. The LT50 values were 4.208, 8.249, and 16.950 h and 3.712, 7.339, and 15.773 h for usnic acid and sodium usnic acid, respectively. Sodium usnic acid has a higher acaricidal activity than usnic acid, which may be related to the difference in their structures. PMID:24770718

  3. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    Science.gov (United States)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  4. An ethanol extract of Artemisia iwayomogi activates PPARδ leading to activation of fatty acid oxidation in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Si Young Cho

    Full Text Available Although Artemisia iwayomogi (AI has been shown to improve the lipid metabolism, its mode of action is poorly understood. In this study, a 95% ethanol extract of AI (95EEAI was identified as a potent ligand of peroxisome proliferator-activated receptorδ (PPARδ using ligand binding analysis and cell-based reporter assay. In cultured primary human skeletal muscle cells, treatment of 95EEAI increased expression of two important PPARδ-regulated genes, carnitine palmitoyl-transferase-1 (CPT1 and pyruvate dehydrogenase kinase isozyme 4 (PDK4, and several genes acting in lipid efflux and energy expenditure. Furthermore, 95EEAI stimulated fatty acid oxidation in a PPARδ-dependent manner. High-fat diet-induced obese mice model further indicated that administration of 95EEAI attenuated diet-induced obesity through the activation of fatty acid oxidation in skeletal muscle. These results suggest that a 95% ethanol extract of AI may have a role as a new functional food material for the prevention and/or treatment of hyperlipidermia and obesity.

  5. Common catabolic enzyme patterns in a microplankton community of the Humboldt Current System off northern and central-south Chile: Malate dehydrogenase activity as an index of water-column metabolism in an oxygen minimum zone

    Science.gov (United States)

    González, R. R.; Quiñones, R. A.

    2009-07-01

    An extensive subsurface oxygen minimum zone off northern and central-south Chile, associated with the Peru-Chile undercurrent, has important effects on the metabolism of the organisms inhabiting therein. Planktonic species deal with the hypoxic and anoxic environments by relying on biochemical as well as physiological processes related to their anaerobic metabolisms. Here we characterize, for the first time, the potential enzymatic activities involved in the aerobic and anaerobic energy production pathways of microplanktonic organisms (catabolic pathways in the oxygen minimum zone. Malate dehydrogenase had the highest oxidizing activity of nicotinamide adenine dinucleotide (reduced form) in the batch of catabolic enzymatic activities assayed, including potential pyruvate oxidoreductases activity, the electron transport system, and dissimilatory nitrate reductase. Malate dehydrogenase correlated significantly with almost all the enzymes analyzed within and above the oxygen minimum zone, and also with the oxygen concentration and microplankton biomass in the water column of the Humboldt Current System, especially in the oxygen minimum zone off Iquique. These results suggest a possible specific pattern for the catabolic activity of the microplanktonic realm associated with the oxygen minimum zone spread along the Humboldt Current System off Chile. We hypothesize that malate dehydrogenase activity could be an appropriate indicator of microplankton catabolism in the oxygen minimum zone and adjacent areas.

  6. Engineered PQQ-Glucose Dehydrogenase as a Universal Biosensor Platform.

    Science.gov (United States)

    Guo, Zhong; Murphy, Lindy; Stein, Viktor; Johnston, Wayne A; Alcala-Perez, Siro; Alexandrov, Kirill

    2016-08-17

    Biosensors with direct electron output hold promise for nearly seamless integration with portable electronic devices. However, so far, they have been based on naturally occurring enzymes that significantly limit the spectrum of detectable analytes. Here, we present a novel biosensor architecture based on analyte-driven intermolecular recombination and activity reconstitution of a re-engineered component of glucometers: PQQ-glucose dehydrogenase. We demonstrate that this sensor architecture can be rapidly adopted for the detection of immunosuppressant drugs, α-amylase protein, or protease activity of thrombin and Factor Xa. The biosensors could be stored in dried form without appreciable loss of activity. We further show that ligand-induced activity of the developed biosensors could be directly monitored by chronoamperometry, enabling construction of disposable sensory electrodes. We expect that this architecture could be expanded to the detection of other biochemical activities, post-translational modifications, nucleic acids, and inorganic molecules. PMID:27463000

  7. Effects of organic solvents on the enzyme activity of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase in calorimetric assays

    DEFF Research Database (Denmark)

    Wiggers, Henrik; Cheleski, J; Zottis, A;

    2007-01-01

    .0% for MeOH and up to 7.5% for DMSO. The results show that when GAPDH is assayed in the presence of DMSO (5%, v/v) using the ITC experiment, the enzyme exhibits approximately twofold higher activity than that of GAPDH with no cosolvent added. When MeOH (5%, v/v) is the cosolvent, the GAPDH activity......In drug discovery programs, dimethyl sulfoxide (DMSO) is a standard solvent widely used in biochemical assays. Despite the extensive use and study of enzymes in the presence of organic solvents, for some enzymes the effect of organic solvent is unknown. Macromolecular targets may be affected...... by the presence of different solvents in such a way that conformational changes perturb their active site structure accompanied by dramatic variations in activity when performing biochemical screenings. To address this issue, in this work we studied the effects of two organic solvents, DMSO and methanol (Me...

  8. Investigation of the Amycolatopsis sp. Strain ATCC 39116 Vanillin Dehydrogenase and Its Impact on the Biotechnical Production of Vanillin

    OpenAIRE

    Fleige, Christian; Hansen, Gunda; Kroll, Jens; Steinbüchel, Alexander

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDHATCC 39116). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vani...

  9. Mechanistic and computational studies of the reductive half-reaction of tyrosine to phenylalanine active site variants of D-arginine dehydrogenase.

    Science.gov (United States)

    Gannavaram, Swathi; Sirin, Sarah; Sherman, Woody; Gadda, Giovanni

    2014-10-21

    The flavin-mediated enzymatic oxidation of a CN bond in amino acids can occur through hydride transfer, carbanion, or polar nucleophilic mechanisms. Previous results with D-arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) using multiple deuterium kinetic isotope effects (KIEs) and computational studies established preferred binding of the substrate protonated on the α-amino group, with cleavages of the NH and CH bonds occurring in asynchronous fashion, consistent with the three possible mechanisms. The hydroxyl groups of Y53 and Y249 are ≤4 Å from the imino and carboxylate groups of the reaction product iminoarginine, suggesting participation in binding and catalysis. In this study, we have investigated the reductive half-reactions of the Y53F and Y249F variants of PaDADH using substrate and solvent deuterium KIEs, solvent viscosity and pH effects, and quantum mechanical/molecular mechanical computational approaches to gain insights into the catalytic roles of the tyrosines and evaluate whether their mutations affect the transition state for substrate oxidation. Both Y53F and Y249F enzymes oxidized D-arginine with steady-state kinetic parameters similar to those of the wild-type enzyme. Rate constants for flavin reduction (k(red)) with D-leucine, a slow substrate amenable to rapid kinetics, were 3-fold smaller than the wild-type value with similar pKa values for an unprotonated group of ∼10.0. Similar pKa values were observed for (app)Kd in the variant and wild-type enzymes. However, cleavage of the substrate NH and CH bonds in the enzyme variants occurred in synchronous fashion, as suggested by multiple deuterium KIEs on k(red). These data can be reconciled with a hydride transfer mechanism, but not with carbanion and polar nucleophilic mechanisms. PMID:25243743

  10. Mechanistic and computational studies of the reductive half-reaction of tyrosine to phenylalanine active site variants of D-arginine dehydrogenase.

    Science.gov (United States)

    Gannavaram, Swathi; Sirin, Sarah; Sherman, Woody; Gadda, Giovanni

    2014-10-21

    The flavin-mediated enzymatic oxidation of a CN bond in amino acids can occur through hydride transfer, carbanion, or polar nucleophilic mechanisms. Previous results with D-arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) using multiple deuterium kinetic isotope effects (KIEs) and computational studies established preferred binding of the substrate protonated on the α-amino group, with cleavages of the NH and CH bonds occurring in asynchronous fashion, consistent with the three possible mechanisms. The hydroxyl groups of Y53 and Y249 are ≤4 Å from the imino and carboxylate groups of the reaction product iminoarginine, suggesting participation in binding and catalysis. In this study, we have investigated the reductive half-reactions of the Y53F and Y249F variants of PaDADH using substrate and solvent deuterium KIEs, solvent viscosity and pH effects, and quantum mechanical/molecular mechanical computational approaches to gain insights into the catalytic roles of the tyrosines and evaluate whether their mutations affect the transition state for substrate oxidation. Both Y53F and Y249F enzymes oxidized D-arginine with steady-state kinetic parameters similar to those of the wild-type enzyme. Rate constants for flavin reduction (k(red)) with D-leucine, a slow substrate amenable to rapid kinetics, were 3-fold smaller than the wild-type value with similar pKa values for an unprotonated group of ∼10.0. Similar pKa values were observed for (app)Kd in the variant and wild-type enzymes. However, cleavage of the substrate NH and CH bonds in the enzyme variants occurred in synchronous fashion, as suggested by multiple deuterium KIEs on k(red). These data can be reconciled with a hydride transfer mechanism, but not with carbanion and polar nucleophilic mechanisms.

  11. Phenylbutyrate Therapy for Pyruvate Dehydrogenase Complex Deficiency and Lactic Acidosis

    Science.gov (United States)

    Ferriero, Rosa; Manco, Giuseppe; Lamantea, Eleonora; Nusco, Edoardo; Ferrante, Mariella I.; Sordino, Paolo; Stacpoole, Peter W.; Lee, Brendan; Zeviani, Massimo; Brunetti-Pierri, Nicola

    2014-01-01

    Lactic acidosis is a build-up of lactic acid in the blood and tissues, which can be due to several inborn errors of metabolism as well as nongenetic conditions. Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. Phosphorylation of specific serine residues of the E1α subunit of PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We found that phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of PDK. Phenylbutyrate given to C57B6/L wild-type mice results in a significant increase in PDHC enzyme activity and a reduction of phosphorylated E1α in brain, muscle, and liver compared to saline-treated mice. By means of recombinant enzymes, we showed that phenylbutyrate prevents phosphorylation of E1α through binding and inhibition of PDK, providing a molecular explanation for the effect of phenylbutyrate on PDHC activity. Phenylbutyrate increases PDHC activity in fibroblasts from PDHC-deficient patients harboring various molecular defects and corrects the morphological, locomotor, and biochemical abnormalities in the noam631 zebrafish model of PDHC deficiency. In mice, phenylbutyrate prevents systemic lactic acidosis induced by partial hepatectomy. Because phenylbutyrate is already approved for human use in other diseases, the findings of this study have the potential to be rapidly translated for treatment of patients with PDHC deficiency and other forms of primary and secondary lactic acidosis. PMID:23467562

  12. Relationship of lipogenic enzyme activities to the rate of rat liver fatty acid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, G.; Kelley, D.; Schmidt, P.; Virk, S.; Serrato, C.

    1986-05-01

    The mechanism by which diet regulates liver lipogenesis is unclear. Here the authors report how dietary alterations effect the activities of key enzymes of fatty acid (FA) synthesis. Male Sprague-Dawley rats, 400-500 g, were fasted for 48h and then refed a fat-free, high carbohydrate (HC) diet (75% cal. from sucrose) for 0,3,9,24 and 48h, or refed a HC diet for 48h, then fed a high-fat (HF) diet (44% cal. from corn oil) for 3,9,24 and 48h. The FA synthesis rate and the activities of acetyl CoA carboxylase (AC), fatty acid synthase (FAS), ATP citrate lyase (CL), and glucose 6-phosphate dehydrogenase (G6PDH) were determined in the livers. FA synthesis was assayed with /sup 3/H/sub 2/O, enzyme activities were measured spectrophotometrically except for AC which was assayed with /sup 14/C-bicarbonate. There was no change in the activity of AC during fasting or on the HC diet. Fasting decreased the rate of FA synthesis by 25% and the activities of FAS and CL by 50%; refeeding the HC diet induced parallel changes in FA synthesis and the activities of FAS, CL, and G6PDH. After 9h on the HF diet, FA synthesis had decreased sharply, AC activity increased significantly while no changes were detected in the other activities. Subsequently FA synthesis did not change while the activities of the enzymes decreased slowly. These enzymes did not appear to regulate FA synthesis during inhibition of lipogenesis, but FAS, CL or G6PDH may be rate limiting in the induction phase. Other key factors may regulate FA synthesis during dietary alterations.

  13. Characterization of a novel PQQ-dependent quinohemoprotein pyranose dehydrogenase from Coprinopsis cinerea classified into auxiliary activities family 12 in carbohydrate-active enzymes.

    Science.gov (United States)

    Takeda, Kouta; Matsumura, Hirotoshi; Ishida, Takuya; Samejima, Masahiro; Ohno, Hiroyuki; Yoshida, Makoto; Igarashi, Kiyohiko; Nakamura, Nobuhumi

    2015-01-01

    The basidiomycete Coprinopsis cinerea contains a quinohemoprotein (CcPDH named as CcSDH in our previous paper), which is a new type of pyrroloquinoline-quinone (PQQ)-dependent pyranose dehydrogenase and is the first found among all eukaryotes. This enzyme has a three-domain structure consisting of an N-terminal heme b containing a cytochrome domain that is homologous to the cytochrome domain of cellobiose dehydrogenase (CDH; EC 1.1.99.18) from the wood-rotting basidiomycete Phanerochaete chrysosporium, a C-terminal family 1-type carbohydrate-binding module, and a novel central catalytic domain containing PQQ as a cofactor. Here, we describe the biochemical and electrochemical characterization of recombinant CcPDH. UV-vis and resonance Raman spectroscopic studies clearly reveal characteristics of a 6-coordinated low-spin heme b in both the ferric and ferrous states, as well as intramolecular electron transfer from the PQQ to heme b. Moreover, the formal potential of the heme was evaluated to be 130 mV vs. NHE by cyclic voltammetry. These results indicate that the cytochrome domain of CcPDH possesses similar biophysical properties to that in CDH. A comparison of the conformations of monosaccharides as substrates and the associated catalytic efficiency (kcat/Km) of CcPDH indicates that the enzyme prefers monosaccharides with equatorial C-2, C-3 hydroxyl groups and an axial C-4 hydroxyl group in the 1C4 chair conformation. Furthermore, a binding study shows a high binding affinity of CcPDH for cellulose, suggesting that CcPDH function is related to the enzymatic degradation of plant cell wall. PMID:25679509

  14. Characterization of a novel PQQ-dependent quinohemoprotein pyranose dehydrogenase from Coprinopsis cinerea classified into auxiliary activities family 12 in carbohydrate-active enzymes.

    Directory of Open Access Journals (Sweden)

    Kouta Takeda

    Full Text Available The basidiomycete Coprinopsis cinerea contains a quinohemoprotein (CcPDH named as CcSDH in our previous paper, which is a new type of pyrroloquinoline-quinone (PQQ-dependent pyranose dehydrogenase and is the first found among all eukaryotes. This enzyme has a three-domain structure consisting of an N-terminal heme b containing a cytochrome domain that is homologous to the cytochrome domain of cellobiose dehydrogenase (CDH; EC 1.1.99.18 from the wood-rotting basidiomycete Phanerochaete chrysosporium, a C-terminal family 1-type carbohydrate-binding module, and a novel central catalytic domain containing PQQ as a cofactor. Here, we describe the biochemical and electrochemical characterization of recombinant CcPDH. UV-vis and resonance Raman spectroscopic studies clearly reveal characteristics of a 6-coordinated low-spin heme b in both the ferric and ferrous states, as well as intramolecular electron transfer from the PQQ to heme b. Moreover, the formal potential of the heme was evaluated to be 130 mV vs. NHE by cyclic voltammetry. These results indicate that the cytochrome domain of CcPDH possesses similar biophysical properties to that in CDH. A comparison of the conformations of monosaccharides as substrates and the associated catalytic efficiency (kcat/Km of CcPDH indicates that the enzyme prefers monosaccharides with equatorial C-2, C-3 hydroxyl groups and an axial C-4 hydroxyl group in the 1C4 chair conformation. Furthermore, a binding study shows a high binding affinity of CcPDH for cellulose, suggesting that CcPDH function is related to the enzymatic degradation of plant cell wall.

  15. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition ...

  16. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5’-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris, semiaquatic (Lontra longicaudis annectens and terrestrial (Sus scrofa

    Directory of Open Access Journals (Sweden)

    Myrna eBarjau Perez-Milicua

    2015-07-01

    Full Text Available Aquatic and semiaquatic mammals have the capacity of breath hold (apnea diving. Northern elephant seals (Mirounga angustirostris have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens can hold their breath for about 30 sec. Such periods of apnea may result in reduced oxygen concentration (hypoxia and reduced blood supply (ischemia to tissues. Production of adenosine 5’-triphosphate (ATP requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa, are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal (n=11, semiaquatic (neotropical river otter (n=4 and terrestrial (domestic pig (n=11. Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT was determined by spectrophotometry, and activity of inosine 5’-monophosphate dehydrogenase (IMPDH and the concentration of hypoxanthine (HX, inosine 5’-monophosphate (IMP, adenosine 5’-monophosphate (AMP, adenosine 5’-diphosphate (ADP, ATP, guanosine 5’-diphosphate (GDP, guanosine 5’-triphosphate (GTP, and xanthosine 5’-monophosphate (XMP were determined by high-performance liquid chromatography (HPLC. The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise, aquatic and semiaquatic mammals have less purine mobilization than their terrestrial counterparts.

  17. The thiocarbamate disulphide drug, disulfiram induces osteopenia in rats by inhibition of osteoblast function due to suppression of acetaldehyde dehydrogenase activity.

    Science.gov (United States)

    Mittal, Monika; Khan, Kainat; Pal, Subhashis; Porwal, Konica; China, Shyamsundar Pal; Barbhuyan, Tarun K; Baghel, Khemraj S; Rawat, Tara; Sanyal, Sabyasachi; Bhadauria, Smrati; Sharma, Vishnu L; Chattopadhyay, Naibedya

    2014-05-01

    Dithiocarbamates (DTC), a sulfhydryl group containing compounds, are extensively used by humans that include metam and thiram due to their pesticide properties, and disulfiram (DSF) as an alcohol deterrent. We screened these DTC in an osteoblast viability assay. DSF exhibited the highest cytotoxicity (IC50 488nM). Loss in osteoblast viability and proliferation was due to induction of apoptosis via G1 arrest. DSF treatment to osteoblasts reduced glutathione (GSH) levels and exogenous addition of GSH prevented DSF-induced reactive oxygen species generation and osteoblast apoptosis. DSF also inhibited osteoblast differentiation in vitro and in vivo, and the effect was associated with inhibition of aldehyde dehydrogenase (ALDH) activity. Out of various ALDH isozymes, osteoblasts expressed only ALDH2 and DSF downregulated its transcript as well as activity. Alda-1, a specific activator of ALDH2, stimulated osteoblast differentiation. Subcutaneous injection of DSF over the calvarium of new born rats reduced the differentiation phenotype of calvarial osteoblasts but increased the mRNA levels of Runx-2 and osteocalcin. DSF treatment at a human-equivalent dose of 30 mg/kg p.o. to adult Sprague Dawley rats caused trabecular osteopenia and suppressed the formation of mineralized nodule by bone marrow stromal cells. Moreover, DSF diminished bone regeneration at the fracture site. In growing rats, DSF diminished growth plate height, primary and secondary spongiosa, mineralized osteoid and trabecular strength. Substantial decreased bone formation was also observed in the cortical site of these rats. We conclude that DSF has a strong osteopenia inducing effect by impairing osteoblast survival and differentiation due to the inhibition of ALDH2 function. PMID:24496638

  18. Cinnamyl alcohol dehydrogenases in the mesocarp of ripening fruit of Prunus persica genotypes with different flesh characteristics: changes in activity and protein and transcript levels.

    Science.gov (United States)

    Gabotti, Damiano; Negrini, Noemi; Morgutti, Silvia; Nocito, Fabio F; Cocucci, Maurizio

    2015-07-01

    Development of fruit flesh texture quality traits may involve the metabolism of phenolic compounds. This study presents molecular and biochemical results on the possible role played by cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) during ripening [S3, S4 I (pre-climacteric) and S4 III (climacteric) stages] of peach [Prunus persica (L.) Batsch] fruit with different flesh firmness [non-melting flesh (NMF) 'Oro A'/melting flesh (MF) 'Springcrest' and 'Sanguinella'] and color (blood-flesh Sanguinella). A total of 24 putative full-length PRUPE_CAD genes were identified (in silico analysis) in the peach genome. The most abundant CAD isoforms, encoded by genes located on scaffolds 8 and 6, were probed by specifically developed anti-PRUPE_CAD sc8 and by anti-FaCAD (PRUPE_CAD sc6) polyclonal antibodies, respectively. PRUPE_CAD sc8 proteins (SDS-PAGE and native-PAGE/western blot) appeared responsible for the CAD activity (in vitro/in-gel assays) that increased with ripening (parallel to PRUPE_ACO1 transcripts accumulation and ethylene evolution) only in the mesocarp of Oro A and blood-flesh Sanguinella. Accumulation of PRUPE_CAD sc8 transcripts (semi-quantitative RT-PCR) occurred in all three cultivars, but in Oro A and Springcrest it was not always accompanied by that of the related proteins, suggesting possible post-transcriptional regulation. Flesh firmness, as well as levels of lignin, total phenolics and, where present (Sanguinella), anthocyanins, declined with ripening, suggesting that, at least in the studied peach cultivars, CAD activity is related to neither lignification nor differences in flesh firmness (NMF/MF). Further studies are necessary to clarify whether the high levels of CAD activity/expression in Sanguinella play a role in determining the characteristics of this blood-flesh fruit. PMID:25534876

  19. Disease-causing missense mutations affect enzymatic activity, stability and oligomerization of glutaryl-CoA dehydrogenase (GCDH)

    DEFF Research Database (Denmark)

    Keyser, B.; Muhlhausen, C.; Dickmanns, A.;

    2008-01-01

    revealed that all mutants were enzymatically inactive with the exception of p.Met263Val which showed 10% activity of the expressed wild-type enzyme. Western blot and pulse-chase analyses demonstrated that the amount of expressed p.Arg402Trp protein was significantly reduced compared with cells expressing...

  20. Tyrosine Phosphorylation of the UDP-Glucose Dehydrogenase of Escherichia coli Is at the Crossroads of Colanic Acid Synthesis and Polymyxin Resistance

    DEFF Research Database (Denmark)

    Lacour, S.; Bechet, E.; Cozzone, A.J.;

    2008-01-01

    -kinases have been characterized. BY-kinases have been shown to participate in various physiological processes. Nevertheless, we are at a very early stage of defining their importance in the bacterial cell. In Escherichia coli, two BY-kinases, Wzc and Etk, have been characterized biochemically. Wzc has been...... shown to phosphorylate the UDP-glucose dehydrogenase Ugd in vitro. Not only is Ugd involved in the biosynthesis of extracellular polysaccharides, but also in the production of UDP-4-amino-4-deoxy-L-arabinose, a compound that renders E. coli resistant to cationic antimicrobial peptides. Methodology....../Principal Findings: Here, we studied the role of Ugd phosphorylation. We first confirmed in vivo the phosphorylation of Ugd by Wzc and we demonstrated that Ugd is also phosphorylated by Etk, the other BY-kinase identified in E. coli. Tyrosine 71 (Tyr71) was characterized as the Ugd site phosphorylated by both Wzc...

  1. Modelling the cloud condensation nucleus activity of organic acids

    Directory of Open Access Journals (Sweden)

    Z. Varga

    2007-04-01

    Full Text Available In this study vapour pressure osmometry was used to determine water activity in solutions of organic acids. The surface tension of the solutions was also monitored in parallel and then Köhler curves were calculated for nine organic acids (oxalic, malonic, succinic, glutaric, adipic acid, maleic acid, malic acid, citric acid and pinonic acid. Surface tension depression is negligible for most of the organic acids in dilute (≤1 w/w% solutions. Therefore, these compounds affect the supersaturation only in the beginning phase of droplet formation but not necessarily at the critical size. An exception is cis-pinonic acid which remarkably depress surface tension also in dilute (0.1 w/w% solution and hence at the critical point. The surface tension of organic acid solutions is influenced by the solubility of the compound, the length of the carbon chain and also by the polar functional groups present in the molecule. Similarly to surface tension solubility plays an important role also in water activity: compounds with higher solubility (e.g. malonic, maleic, and glutaric acid reduce water activity significantly in the early phase of droplet formation while less soluble acids (e.g. succinic and adipic acid are saturated in small droplets and the solution starts diluting only in bigger droplets. As a consequence, compounds with lower solubility have a minor effect on water activity in the early phase of droplet formation. To deduce the total effect Köhler curves were calculated and critical supersaturations were determined for the organic acids using measured surface tension and water activity. It was found that critical supersaturation grew with growing carbon number. Oxalic acid had the lowest critical supersaturation in the size range studied and it was comparable to the activation of ammonium sulfate. The Sc values obtained in this study were compared to data from CCNC measurements. In most cases good agreement was found.

  2. [Dynamics of cardiac and skeletal muscle lactate dehydrogenase activity following a single exposure to an alternating magnetic field].

    Science.gov (United States)

    Udintsev, N A; Kanskaia, N V; Shchepetil'nikova, A I; Ordina, O M; Pichurina, R A

    1976-06-01

    A rise in LDH activity and a change of the enzyme distribution in the cytostructures of the heart and skeletal muscles of albino rats was revealed during the first 48 hours after a single twenty-four-hour action of an A. C. magnetic field (200 e, 50 cps). A displacement of the enzyma ratio in the direction of M-type was noted. Complete normalization occurred in the 3rd or 4th week only.

  3. Endolysosomes Are the Principal Intracellular Sites of Acid Hydrolase Activity.

    Science.gov (United States)

    Bright, Nicholas A; Davis, Luther J; Luzio, J Paul

    2016-09-12

    The endocytic delivery of macromolecules from the mammalian cell surface for degradation by lysosomal acid hydrolases requires traffic through early endosomes to late endosomes followed by transient (kissing) or complete fusions between late endosomes and lysosomes. Transient or complete fusion results in the formation of endolysosomes, which are hybrid organelles from which lysosomes are re-formed. We have used synthetic membrane-permeable cathepsin substrates, which liberate fluorescent reporters upon proteolytic cleavage, as well as acid phosphatase cytochemistry to identify which endocytic compartments are acid hydrolase active. We found that endolysosomes are the principal organelles in which acid hydrolase substrates are cleaved. Endolysosomes also accumulated acidotropic probes and could be distinguished from terminal storage lysosomes, which were acid hydrolase inactive and did not accumulate acidotropic probes. Using live-cell microscopy, we have demonstrated that fusion events, which form endolysosomes, precede the onset of acid hydrolase activity. By means of sucrose and invertase uptake experiments, we have also shown that acid-hydrolase-active endolysosomes and acid-hydrolase-inactive, terminal storage lysosomes exist in dynamic equilibrium. We conclude that the terminal endocytic compartment is composed of acid-hydrolase-active, acidic endolysosomes and acid hydrolase-inactive, non-acidic, terminal storage lysosomes, which are linked and function in a lysosome regeneration cycle. PMID:27498570

  4. The response of electron transport mediated by active NADPH dehydrogenase complexes to heat stress in the cyanobacterium Synechocystis 6803

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The electron-transport machinery in photosynthetic membranes is known to be very sensitive to heat. In this study, the rate of electron transport (ETR) driven by photosystem I (PSI) and photosystem II (PSII) during heat stress in the wild-type Synechocystis sp. strain PCC 6803 (WT) and its ndh gene inactiva-tion mutants △ndhB (M55) and △ndhD1/ndhD2 (D1/D2) was simultaneously assessed by using the novel Dual-PAM-100 measuring system. The rate of electron transport driven by the photosystems (ETRPSs) in the WT, M55, and D1/D2 cells incubated at 30℃ and at 55℃ for 10 min was compared. Incubation at 55 ℃ for 10 min significantly inhibited PSII-driven ETR (ETRPSII) in the WT, M55 and D1/D2 cells, and the ex-tent of inhibition in both the M55 and D1/D2 cells was greater than that in the WT cells. Further, PSI-driven ETR (ETRPSI) was stimulated in both the WT and D1/D2 cells, and this rate was increased to a greater extent in the D1/D2 than in the WT cells. However, ETRPSI was considerably inhibited in the M55 cells. Analysis of the effect of heat stress on ETRPSs with regard to the alterations in the 2 active NDH-1 complexes in the WT, M55, and D1/D2 cells indicated that the active NDH-1 supercomplex and medi-umcomplex are essential for alleviating the heat-induced inhibition of ETRPSII and for accelerating the heat-induced stimulation of ETRPSI, respectively. Further, it is believed that these effects are most likely brought about by the electron transport mediated by each of these 2 active NDH-1 complexes.

  5. Studies on the acid activation of Brazilian smectitic clays

    Directory of Open Access Journals (Sweden)

    Valenzuela Díaz Francisco R.

    2001-01-01

    Full Text Available Fuller's earth and acid activated smectitic clays are largely used as bleaching earth for the industrial processing of vegetable, animal and mineral oils and waxes. The paper comments about the nomenclature used for these materials, the nature of the acid activation of smectitic clays (bentonites, activation laboratory procedures and presents a review of the acid activation of bentonites from 20 deposits from several regions of Brazil. The activated clays were tested and show good decolorizing power for soybean, castor, cottonseed, corn and sunflower oils.

  6. Sulfuric acid leaching of mechanically activated manganese carbonate ore

    Directory of Open Access Journals (Sweden)

    Kenan Yıldız

    2010-06-01

    Full Text Available Acidic leaching of mechanically activated manganese ore from Denizli – Tavas was investigated. The ore was activated mechanically in a planetary mill and the amorphisation in manganese structure was analyzed with X-ray diffraction. The parameters in acidic leaching of the ore were milling time, acid concentration and time. All experiments were performed at 25°C with solid to liquid ratio: 1/10. The activation procedure led to amorphization and structural disordering in manganese ore and accelerated the dissolution of manganese in acidic media.

  7. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W;

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade...... be due to residual enzyme activity as a consequence of the two missense mutations. Treatment with L-carnitine and medium chain triglycerides in the diet did not reduce the attacks of rhabdomyolysis.......Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9...

  8. Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli.

    Science.gov (United States)

    Bzik, D J; Fox, B A; Gonyer, K

    1993-05-01

    A Plasmodium falciparum gene is described which encodes lactate dehydrogenase activity (P. falciparum LDH). The P. falciparum LDH gene contains no introns and is present in a single copy on chromosome 13. P. falciparum LDH was expressed in all asexual blood stages as a 1.6-kb mRNA. The predicted 316 amino acid protein coding region of P. falciparum LDH was inserted into the prokaryotic expression vector pKK223-3 and a 33-kDa protein having LDH activity was synthesized in Escherichia coli. P. falciparum LDH primary structure displays high amino acid similarity (50-57%) to vertebrate and bacterial LDH, but lacks the amino terminal extension observed in all vertebrate LDH. The majority of amino acid residues implicated in substrate and coenzyme binding and catalysis of other LDH are well conserved in P. falciparum LDH. However, several notable differences in amino acid composition were observed. P. falciparum LDH contained several distinctive single amino acid insertions and deletions compared to other LDH enzymes, and most remarkably, it contained a novel insertion of 5 amino acids within the conserved mobile loop region near arginine residue 109, a residue which is known to make contact with pyruvate in the ternary complex of other LDH. These results suggest that novel features of P. falciparum LDH primary structure may be correlated with previously characterized and distinctive kinetic, biochemical, immunochemical, and electrophoretic properties of P. falciparum LDH. PMID:8515777

  9. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    International Nuclear Information System (INIS)

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression

  10. Hibernation impact on the catalytic activities of the mitochondrial D-3-hydroxybutyrate dehydrogenase in liver and brain tissues of jerboa (Jaculus orientalis

    Directory of Open Access Journals (Sweden)

    Hafiani Assia

    2003-09-01

    Full Text Available Abstract Background Jerboa (Jaculus orientalis is a deep hibernating rodent native to subdesert highlands. During hibernation, a high level of ketone bodies i.e. acetoacetate (AcAc and D-3-hydroxybutyrate (BOH are produced in liver, which are used in brain as energetic fuel. These compounds are bioconverted by mitochondrial D-3-hydroxybutyrate dehydrogenase (BDH E.C. 1.1.1.30. Here we report, the function and the expression of BDH in terms of catalytic activities, kinetic parameters, levels of protein and mRNA in both tissues i.e brain and liver, in relation to the hibernating process. Results We found that: 1/ In euthemic jerboa the specific activity in liver is 2.4- and 6.4- fold higher than in brain, respectively for AcAc reduction and for BOH oxidation. The same differences were found in the hibernation state. 2/ In euthermic jerboa, the Michaelis constants, KM BOH and KM NAD+ are different in liver and in brain while KM AcAc, KM NADH and the dissociation constants, KD NAD+and KD NADH are similar. 3/ During prehibernating state, as compared to euthermic state, the liver BDH activity is reduced by half, while kinetic constants are strongly increased except KD NAD+. 4/ During hibernating state, BDH activity is significantly enhanced, moreover, kinetic constants (KM and KD are strongly modified as compared to the euthermic state; i.e. KD NAD+ in liver and KM AcAc in brain decrease 5 and 3 times respectively, while KD NADH in brain strongly increases up to 5.6 fold. 5/ Both protein content and mRNA level of BDH remain unchanged during the cold adaptation process. Conclusions These results cumulatively explained and are consistent with the existence of two BDH enzymatic forms in the liver and the brain. The apoenzyme would be subjected to differential conformational folding depending on the hibernation state. This regulation could be a result of either post-translational modifications and/or a modification of the mitochondrial membrane state

  11. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Juan David Guzman

    2014-11-01

    Full Text Available Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  12. Affinity chromatography of bacterial lactate dehydrogenases.

    Science.gov (United States)

    Kelly, N; Delaney, M; O'Carra, P

    1978-06-01

    The affinity system used was the immobilized oxamate derivative previously used to purify mammalian lactate dehydrogenases. The bacterial dehydrogenases specific for the L-stereoisomer of lactate behaved in the same way as the mammalian enzymes, binding strongly in the presence of NADH. The D-lactate-specific enzymes, however, did not show any biospecific affinity for this gel. The L-specific enzymes could be purified to homogeneity in one affinity-chromatographic step. The D-specific enzymes could be efficiently separated from the L-specific ones and could then be further purified on an immobilized NAD derivative. The mechanism of activation of the lactate dehydrogenase from Streptococcus faecalis by fructose 1,6-bisphosphate was investigated by using the immobilized oxamate gel. PMID:666726

  13. Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells.

    Science.gov (United States)

    Abbot, Emily L; McCormack, James G; Reynet, Christine; Hassall, David G; Buchan, Kevin W; Yeaman, Stephen J

    2005-06-01

    The pyruvate dehydrogenase complex occupies a central and strategic position in muscle intermediary metabolism and is primarily regulated by phosphorylation/dephosphorylation. The identification of multiple isoforms of pyruvate dehydrogenase kinase (PDK1-4) and pyruvate dehydrogenase phosphatase (PDP1-2) has raised intriguing new possibilities for chronic pyruvate dehydrogenase complex control. Experiments to date suggest that PDK4 is the major isoenzyme responsible for changes in pyruvate dehydrogenase complex activity in response to various different metabolic conditions. Using a cultured human skeletal muscle cell model system, we found that expression of both PDK2 and PDK4 mRNA is upregulated in response to glucose deprivation and fatty acid supplementation, the effects of which are reversed by insulin treatment. In addition, insulin directly downregulates PDK2 and PDK4 mRNA transcript abundance via a phosphatidylinositol 3-kinase-dependent pathway, which may involve glycogen synthase kinase-3 but does not utilize the mammalian target of rapamycin or mitogen-activated protein kinase signalling pathways. In order to further elucidate the regulation of PDK, the role of the peroxisome proliferators-activated receptors (PPAR) was investigated using highly potent subtype selective agonists. PPARalpha and PPARdelta agonists were found to specifically upregulate PDK4 mRNA expression, whereas PPARgamma activation selectively decreased PDK2 mRNA transcript abundance. PDP1 mRNA expression was unaffected by all conditions analysed. These results suggest that in human muscle, hormonal and nutritional conditions may control PDK2 and PDK4 mRNA expression via a common signalling mechanism. In addition, PPARs appear to independently regulate specific PDK isoform transcipt levels, which are likely to impart important metabolic mediation of fuel utilization by the muscle. PMID:15955060

  14. A Cladistic Analysis of Phenotypic Associations with Haplotypes Inferred from Restriction Endonuclease Mapping. I. Basic Theory and an Analysis of Alcohol Dehydrogenase Activity in Drosophila

    Science.gov (United States)

    Templeton, Alan R.; Boerwinkle, Eric; Sing, Charles F.

    1987-01-01

    Because some genes have been cloned that have a known biochemical or physiological function, genetic variation can be measured in a population at loci that may directly influence a phenotype of interest. With this measured genotype approach, specific alleles or haplotypes in the probed DNA region can be assigned phenotypic effects. In this paper we address several problems encountered in implementing the measured genotype approach with restriction site data. A number of analytical problems arise in part as a consequence of the linkage disequilibrium that is commonly encountered when dealing with small DNA regions: 1) different restriction site polymorphisms are not statistically independent, 2) the sites being measured are not likely to be the direct cause of the associated phenotypic effects, 3) haplotype classes may be phenotypically heterogeneous, and 4) the sites that are most strongly associated with phenotypic effects are not necessarily the most closely linked to the actual genetic cause of the effects. When recombination and gene conversion are rare, the primary cause of linkage disequilibrium is history (mutational origin, genetic drift, hitchhiking, etc.). We deal with historical association directly by producing a cladogram that partially reconstructs the evolutionary history of the present-day haplotype variability. The cladogram defines a nested analysis of variance that simultaneously detects phenotypic effects, localizes the effects within the cladogram, and identifies haplotypes that are potentially heterogeneous in their phenotypic associations. The power of this approach is illustrated by an analysis of the associations between alcohol dehydrogenase (ADH) activity and restriction site variability in a 13-kb fragment surrounding the ADH locus in Drosophila melanogaster. PMID:2822535

  15. Engineering of pyranose dehydrogenase for increased oxygen reactivity.

    Directory of Open Access Journals (Sweden)

    Iris Krondorfer

    Full Text Available Pyranose dehydrogenase (PDH, a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organometals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity.

  16. Purification of glucose-6-phosphate dehydrogenase and glutathione reductase enzymes from the gill tissue of Lake Van fish and analyzing the effects of some chalcone derivatives on enzyme activities.

    Science.gov (United States)

    Kuzu, Muslum; Aslan, Abdulselam; Ahmed, Ishtiaq; Comakli, Veysel; Demirdag, Ramazan; Uzun, Naim

    2016-04-01

    Glucose-6-phosphate dehydrogenase (G6PD) and glutathione reductase (GR) are metabolically quite important enzymes. Within this study, these two enzymes were purified for the first time from the gills of Lake Van fish. In the purifying process, ammonium sulfate precipitation and 2',5'-ADP Sepharose 4B affinity column chromatography techniques for glucose-6-phosphate dehydrogenase, temperature degradation and 2',5'-ADP Sepharose 4B affinity column chromatography for glutathione reductase enzyme were used. The control of the enzyme purity and determination of molecular weight were done with sodium dodecyl sulfate polyacrylamide gel electrophoresis. K(M) and V(max) values were determined with Lineweaver-Burk plot. Besides, the effects of some chalcone derivatives on the purified enzymes were analyzed. For the ones showing inhibition effect, % activity-[I] figures were drawn and IC50 values were determined. K(i) value was calculated by using Cheng-Prusoff equation.

  17. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats.

    Science.gov (United States)

    Hosomi, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-03-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or l-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis. PMID:25866749

  18. Genetic defects in fatty acid beta-oxidation and acyl-CoA dehydrogenases. Molecular pathogenesis and genotype-phenotype relationships

    DEFF Research Database (Denmark)

    Gregersen, Niels; Bross, Peter; Andresen, Brage S

    2004-01-01

    Mitochondrial fatty acid oxidation deficiencies are due to genetic defects in enzymes of fatty acid beta-oxidation and transport proteins. Genetic defects have been identified in most of the genes where nearly all types of sequence variations (mutation types) have been associated with disease...

  19. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: Enhancement of formate dehydrogenase activity for regeneration of NADH

    Directory of Open Access Journals (Sweden)

    Mädje Katharina

    2012-01-01

    Full Text Available Abstract Background Enzymatic NADH or NADPH-dependent reduction is a widely applied approach for the synthesis of optically active organic compounds. The overall biocatalytic conversion usually involves in situ regeneration of the expensive NAD(PH. Oxidation of formate to carbon dioxide, catalyzed by formate dehydrogenase (EC 1.2.1.2; FDH, presents an almost ideal process solution for coenzyme regeneration that has been well established for NADH. Because isolated FDH is relatively unstable under a range of process conditions, whole cells often constitute the preferred form of the biocatalyst, combining the advantage of enzyme protection in the cellular environment with ease of enzyme production. However, the most prominent FDH used in biotransformations, the enzyme from the yeast Candida boidinii, is usually expressed in limiting amounts of activity in the prime host for whole cell biocatalysis, Escherichia coli. We therefore performed expression engineering with the aim of enhancing FDH activity in an E. coli ketoreductase catalyst. The benefit resulting from improved NADH regeneration capacity is demonstrated in two transformations of technological relevance: xylose conversion into xylitol, and synthesis of (S-1-(2-chlorophenylethanol from o-chloroacetophenone. Results As compared to individual expression of C. boidinii FDH in E. coli BL21 (DE3 that gave an intracellular enzyme activity of 400 units/gCDW, co-expression of the FDH with the ketoreductase (Candida tenuis xylose reductase; XR resulted in a substantial decline in FDH activity. The remaining FDH activity of only 85 U/gCDW was strongly limiting the overall catalytic activity of the whole cell system. Combined effects from increase in FDH gene copy number, supply of rare tRNAs in a Rosetta strain of E. coli, dampened expression of the ketoreductase, and induction at low temperature (18°C brought up the FDH activity threefold to a level of 250 U/gCDW while reducing the XR activity by

  20. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  1. Characterization of testis-specific isoenzyme of human pyruvate dehydrogenase.

    Science.gov (United States)

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S

    2006-04-01

    Pyruvate dehydrogenase (PDH), the first component of the human pyruvate dehydrogenase complex, has two isoenzymes, somatic cell-specific PDH1 and testis-specific PDH2 with 87% sequence identity in the alpha subunit of alpha(2) beta(2) PDH. The presence of functional testis-specific PDH2 is important for sperm cells generating nearly all their energy from carbohydrates via pyruvate oxidation. Kinetic and regulatory properties of recombinant human PDH2 and PDH1 were compared in this study. Site-specific phosphorylation/dephosphorylation of the three phosphorylation sites by four PDH kinases (PDK1-4) and two PDH phosphatases (PDP1-2) were investigated by substituting serines with alanine or glutamate in PDHs. PDH2 was found to be very similar to PDH1 as follows: (i) in specific activities and kinetic parameters as determined by the pyruvate dehydrogenase complex assay; (ii) in thermostability at 37 degrees C; (iii) in the mechanism of inactivation by phosphorylation of three sites; and (iv) in the phosphorylation of sites 1 and 2 by PDK3. In contrast, the differences for PDH2 were indicated as follows: (i) by a 2.4-fold increase in binding affinity for the PDH-binding domain of dihydrolipoamide acetyltransferase as measured by surface plasmon resonance; (ii) by possible involvement of Ser-264 (site 1) of PDH2 in catalysis as evident by its kinetic behavior; and (iii) by the lower activities of PDK1, PDK2, and PDK4 as well as PDP1 and PDP2 toward PDH2. These differences between PDH2 and PDH1 are less than expected from substitution of 47 amino acids in each PDH2 alpha subunit. The multiple substitutions may have compensated for any drastic alterations in PDH2 structure thereby preserving its kinetic and regulatory characteristics largely similar to that of PDH1. PMID:16436377

  2. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.

    Science.gov (United States)

    Buchholz, Jens; Schwentner, Andreas; Brunnenkan, Britta; Gabris, Christina; Grimm, Simon; Gerstmeir, Robert; Takors, Ralf; Eikmanns, Bernhard J; Blombach, Bastian

    2013-09-01

    Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 Δpqo Δppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicum l-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products.

  3. Retinoic acid signalling is activated in the postischemic heart and may influence remodelling.

    Directory of Open Access Journals (Sweden)

    Dusan Bilbija

    Full Text Available BACKGROUND: All-trans retinoic acid (atRA, an active derivative of vitamin A, regulates cell differentiation, proliferation and cardiac morphogenesis via transcriptional activation of retinoic acid receptors (RARs acting on retinoic acid response elements (RARE. We hypothesized that the retinoic acid (RA signalling pathway is activated in myocardial ischemia and postischemic remodelling. METHODS AND FINDINGS: Myocardial infarction was induced through ligating the left coronary artery in mice. In vivo cardiac activation of the RARs was measured by imaging RARE-luciferase reporter mice, and analysing expression of RAR target genes and proteins by real time RT-PCR and western blot. Endogenous retinoids in postinfarcted hearts were analysed by triple-stage liquid chromatography/tandem mass spectrometry. Cardiomyocytes (CM and cardiofibroblasts (CF were isolated from infarcted and sham operated RARE luciferase reporter hearts and monitored for RAR activity and expression of target genes. The effect of atRA on CF proliferation was evaluated by EdU incorporation. Myocardial infarction increased thoracic RAR activity in vivo (p<0.001, which was ascribed to the heart through ex vivo imaging (p = 0.002 with the largest signal 1 week postinfarct. This was accompanied by increased cardiac gene and protein expression of the RAR target genes retinol binding protein 1 (p = 0.01 for RNA, p = 0,006 for protein and aldehyde dehydrogenase 1A2 (p = 0.04 for RNA, p = 0,014 for protein, while gene expression of cytochrome P450 26B1 was downregulated (p = 0.007. Concomitantly, retinol accumulated in the infarcted zone (p = 0.02. CM and CF isolated from infarcted hearts had higher luminescence than those from sham operated hearts (p = 0.02 and p = 0.008. AtRA inhibited CF proliferation in vitro (p = 0.02. CONCLUSION: The RA signalling pathway is activated in postischemic hearts and may play a role in regulation of damage and

  4. Design and Characterization of an Acid-Activated Antimicrobial Peptide

    OpenAIRE

    Li, Lina; He, Jian; Eckert, Randal; Yarbrough, Daniel; Lux, Renate; Anderson, Maxwell; Shi, Wenyuan

    2009-01-01

    Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/ remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals creation of an acidic environment favors growth of acid enduring and acid generating species, which causes further reduction in the plaque pH. In this study we developed a prototype antimicrobial peptide ...

  5. An L-glucitol oxidizing dehydrogenase from Bradyrhizobium japonicum USDA 110 for production of D-sorbose with enzymatic or electrochemical cofactor regeneration.

    Science.gov (United States)

    Gauer, Sabrina; Wang, Zhijie; Otten, Harm; Etienne, Mathieu; Bjerrum, Morten Jannik; Lo Leggio, Leila; Walcarius, Alain; Giffhorn, Friedrich; Kohring, Gert-Wieland

    2014-04-01

    A gene in Bradyrhizobium japonicum USDA 110, annotated as a ribitol dehydrogenase (RDH), had 87 % sequence identity (97 % positives) to the N-terminal 31 amino acids of an L-glucitol dehydrogenase from Stenotrophomonas maltophilia DSMZ 14322. The 729-bp long RDH gene coded for a protein consisting of 242 amino acids with a molecular mass of 26.1 kDa. The heterologously expressed protein not only exhibited the main enantio selective activity with D-glucitol oxidation to D-fructose but also converted L-glucitol to D-sorbose with enzymatic cofactor regeneration and a yield of 90 %. The temperature stability and the apparent K m value for L-glucitol oxidation let the enzyme appear as a promising subject for further improvement by enzyme evolution. We propose to rename the enzyme from the annotated RDH gene (locus tag bll6662) from B. japonicum USDA as a D-sorbitol dehydrogenase (EC 1.1.1.14).

  6. Synthesis and Antiviral Activity of Hydrogenated Ferulic Acid Derivatives

    OpenAIRE

    Can Cui; Zhi-Peng Wang; Xiu-jiang Du; Li-Zhong Wang; Shu-Jing Yu; Xing-Hai Liu; Zheng-Ming Li; Wei-Guang Zhao

    2013-01-01

    A series of hydrogenated ferulic acid amide derivatives 4 were synthesized. The molecular structures of the synthesized compounds were analyzed by H1 NMR and HRMS. The biological activity study showed that some of them displayed excellent protection activity and curative activity against TMV at 500 μg/mL.

  7. Characterization of xylitol dehydrogenase from Debaryomyces hansenii

    Energy Technology Data Exchange (ETDEWEB)

    Girio, F.M.; Amaral-Collaco, M.T. [INETI, Lisboa (Portugal); Pelica, F. [ITQB, Oeiras (Portugal)

    1996-01-01

    The xylitol dehydrogenase (EC 1.1.1.9) from xylose-grown cells of Debaryomyces hansenii was partially purified in two chromatographic steps, and characterization studies were carried out in order to investigate the role of the xylitol dehydrogenase-catalyzed step in the regulation of D-xylose metabolism. The enzyme was most active at pH 9.0-9.5, and exhibited a broad polyol specificity. The Michaelis constants for xylitol and NAD{sup +} were 16.5 and 0.55 mM, respectively. Ca{sup 2+}, Mg{sup 2+}, and Mn{sup 2+} did not affect the enzyme activity. Conversely, Zn{sup 2+}, Cd{sup 2+}, and Co{sup 2+} strongly inhibited the enzyme activity. It was concluded that NAD{sup +}-xylitol dehydrogenase from D. hansenii has similarities with other xylose-fermenting yeasts in respect to optimal pH, substrate specificity, and K{sub m} value for xylitol, and therefore should be named L-iditol:NAD{sup +}-5-oxidoreductase (EC 1.1.1.14). The reason D. hansenii is a good xylitol producer is not because of its value of K for xylitol, which is low enough to assure its fast oxidation by NAD{sup +}-xylitol dehydrogenase. However, a higher K{sub m} value of xylitol dehydrogenase for NAD{sup +} compared to the K{sub m} values of other xylose-fermenting yeasts may be responsible for the higher xylitol yields. 22 refs., 4 figs., 2 tabs.

  8. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals

    DEFF Research Database (Denmark)

    Falås, Per; Baillon-Dhumez, Aude; Andersen, Henrik Rasmus;

    2012-01-01

    Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct ...... bacteria to degrade or transform the target pharmaceuticals was further demonstrated by the limited pharmaceutical removal in an experiment with continuous nitritation and biofilm carriers from a partial nitritation/anammox sludge liquor treatment process....

  9. Antioxidant Activity and Mechanism of Protocatechuic Acid in vitro

    OpenAIRE

    Shuzhi Chen; Xiaozhen Wang; Xican Li; Dongfeng Chen

    2011-01-01

    Background: Protocatechuic acid (PCA) is a natural phenolic acid widely distributed in plantsand is considered as an active component of some traditional Chinese herbal medicines such as Cibotium barometz (L.) J.Sm, Stenoloma chusanum (L.) Ching, Ilex chinensis Sims. PCA was reported to possess various pharmacological effects which may be closely correlated with its antioxidant activities. However, the antioxidant of PCA has not been investigatedsystematically yet. Methods: In the study,...

  10. Research on Activators for Lead-Acid Batteries

    OpenAIRE

    Sugawara, Michio; Kozawa, Akiya

    2008-01-01

    Abstract : The ITE Battery Research group has developed a new organic battery activator for new and used lead-acid batteries. Ten years of investigation have established the validity of the ITE activator that prolongs the useful life of lead-acid batteries. It has been shown that the specific gravity of spent batteries can be restored to the original level in automotive, motive power; uninterruptible power supplies (UPS) and stationary energy storage batteries. Our results show that the disca...

  11. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    Science.gov (United States)

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  12. GROWTH-REGULATING ACTIVITY OF SOME SALTS OF 1-NAPHTHALENACETIC ACID AND 2-NAPHTHOXYACETIC ACID

    Directory of Open Access Journals (Sweden)

    Maria Laichici

    2001-01-01

    Full Text Available The salts of 1-naphthalene acetic acid and 2-naphthoxyacetic acid with ethanolamine have been synthetized. The two salts have been assessed using Tsibulskaya-Vassiliev biological test using agar-agar as the medium. Statistical processing of the data has been carried out. The good results of the bioassay indicate an auxinic growth-regulating activity of the two salts.

  13. Structural requirements for the procoagulant activity of nucleic acids.

    Directory of Open Access Journals (Sweden)

    Julia Gansler

    Full Text Available Nucleic acids, especially extracellular RNA, are exposed following tissue- or vessel damage and have previously been shown to activate the intrinsic blood coagulation pathway in vitro and in vivo. Yet, no information on structural requirements for the procoagulant activity of nucleic acids is available. A comparison of linear and hairpin-forming RNA- and DNA-oligomers revealed that all tested oligomers forming a stable hairpin structure were protected from degradation in human plasma. In contrast to linear nucleic acids, hairpin forming compounds demonstrated highest procoagulant activities based on the analysis of clotting time in human plasma and in a prekallikrein activation assay. Moreover, the procoagulant activities of the DNA-oligomers correlated well with their binding affinity to high molecular weight kininogen, whereas the binding affinity of all tested oligomers to prekallikrein was low. Furthermore, four DNA-aptamers directed against thrombin, activated protein C, vascular endothelial growth factor and nucleolin as well as the naturally occurring small nucleolar RNA U6snRNA were identified as effective cofactors for prekallikrein auto-activation. Together, we conclude that hairpin-forming nucleic acids are most effective in promoting procoagulant activities, largely mediated by their specific binding to kininogen. Thus, in vivo application of therapeutic nucleic acids like aptamers might have undesired prothrombotic or proinflammatory side effects.

  14. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  15. Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.

    Science.gov (United States)

    Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi

    2016-05-01

    Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26887328

  16. Determination of the crystal structure of EntA, a 2,3-dihydro-2,3-dihydroxybenzoic acid dehydrogenase from Escherichia coli.

    Science.gov (United States)

    Sundlov, Jesse A; Garringer, Julie A; Carney, Jill M; Reger, Albert S; Drake, Eric J; Duax, William L; Gulick, Andrew M

    2006-07-01

    The Escherichia coli enterobactin synthetic cluster is composed of six proteins, EntA-EntF, that form the enterobactin molecule from three serine molecules and three molecules of 2,3-dihydroxybenzoic acid (DHB). EntC, EntB and EntA catalyze the three-step synthesis of DHB from chorismate. EntA is a member of the short-chain oxidoreductase (SCOR) family of proteins and catalyzes the final step in DHB synthesis, the NAD+-dependent oxidation of 2,3-dihydro-2,3-dihydroxybenzoic acid to DHB. The structure of EntA has been determined by multi-wavelength anomalous dispersion methods. Here, the 2.0 A crystal structure of EntA in the unliganded form is presented. Analysis of the structure in light of recent structural and bioinformatic analysis of other members of the SCOR family provides insight into the residues involved in cofactor and substrate binding.

  17. Thyroid peroxidase activity is inhibited by amino acids

    Directory of Open Access Journals (Sweden)

    D.P. Carvalho

    2000-03-01

    Full Text Available Normal in vitro thyroid peroxidase (TPO iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml. A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml and some amino acids (cysteine, tryptophan and methionine, 50 µM each also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml, and tyrosine, phenylalanine and histidine (50 µM each inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml or any other amino acid (50 µM tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine. Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2 concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  18. Spectroscopic studies on the antioxidant activity of ellagic acid

    Science.gov (United States)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  19. Lowering of phytic acid content by enhancement of phytase and acid phosphatase activities during sunflower germination

    OpenAIRE

    Juliana da Silva Agostini; Rosicler Balduíno Nogueira; Elza Iouko Ida

    2010-01-01

    The objective of this work was to investigate the germination of hybrid sunflowers BRS191 and C11 as a means of lowering phytic acid (PA) content by enhancing the activity of endogenous phytase and acid phosphatase. The concentration of PA in hybrid sunflower achenes varied from 2.16 to 2.83g/100g of sample (p < 0.05). The phytase and acid phosphatase activities of sunflowers BRS191 and C11 were the highest on the 4th and 5th days of germination, respectively, with the release of the phosphor...

  20. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin.

    Science.gov (United States)

    Fleige, Christian; Hansen, Gunda; Kroll, Jens; Steinbüchel, Alexander

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDH(ATCC 39116)). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vanillin dehydrogenase in Amycolatopsis sp. ATCC 39116 was investigated for the first time by using data from our genome sequence analysis and further bioinformatic approaches. The vdh gene was heterologously expressed in Escherichia coli, and the encoded vanillin dehydrogenase was characterized in detail. VDH(ATCC 39116) was purified to apparent electrophoretic homogeneity and exhibited NAD(+)-dependent activity toward vanillin, coniferylaldehyde, cinnamaldehyde, and benzaldehyde. The enzyme showed its highest level of activity toward vanillin at pH 8.0 and at a temperature of 44°C. In a next step, a precise vdh deletion mutant of Amycolatopsis sp. ATCC 39116 was generated. The mutant lost its ability to grow on vanillin and did not show vanillin dehydrogenase activity. A 2.3-times-higher vanillin concentration and a substantially reduced amount of vanillic acid occurred with the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant when ferulic acid was provided for biotransformation in a cultivation experiment on a 2-liter-bioreactor scale. Based on these results and taking further metabolic engineering into account, the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant represents an optimized and industrially applicable platform for the biotechnological production of natural vanillin.

  1. Biochemical and molecular characterization of the NAD(+)-dependent isocitrate dehydrogenase from the chemolithotroph Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Inoue, Hiroyuki; Tamura, Takashi; Ehara, Nagisa; Nishito, Akira; Nakayama, Yumi; Maekawa, Makiko; Imada, Katsumi; Tanaka, Hidehiko; Inagaki, Kenji

    2002-08-27

    An isocitrate dehydrogenase (ICDH) with an unique coenzyme specificity from Acidithiobacillus thiooxidans was purified and characterized, and its gene was cloned. The native enzyme was homodimeric with a subunit of M(r) 45000 and showed a 78-fold preference for NAD(+) over NADP(+). The cloned ICDH gene (icd) was expressed in an icd-deficient strain of Escherichia coli EB106; the activity was found in the cell extract. The gene encodes a 429-amino acid polypeptide and is located between open reading frames encoding a putative aconitase gene (upstream of icd) and a putative succinyl-CoA synthase beta-subunit gene (downstream of icd). A. thiooxidans ICDH showed high sequence similarity to bacterial NADP(+)-dependent ICDH rather than eukaryotic NAD(+)-dependent ICDH, but the NAD(+)-preference of the enzyme was suggested due to residues conserved in the coenzyme binding site of the NAD(+)-dependent decarboxylating dehydrogenase.

  2. Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals

    DEFF Research Database (Denmark)

    Galuszka, P.; Frebort, I.; Sebela, M.;

    2001-01-01

    An enzyme degrading cytokinins with isoprenoid side chain, previously named cytokinin oxidase, was purified to near homogeneity from wheat and barley grains. New techniques were developed for the enzyme activity assay and staining on native electrophoretic gels to identify the protein. The purified...... wheat enzyme is a monomer 60 kDa, its N-terminal amino-acid sequence shows similarity to hypothetical cytokinin oxidase genes from Arabidopsis thaliana, but not to the enzyme from maize. N-6-isopentenyl-2-(2-hydroxyethylamino)-9-methyladenine is the best substrate from all the cytokinins tested....... Interestingly, oxygen was not required and hydrogen peroxide not produced during the catalytic reaction, so the enzyme behaves as a dehydrogenase rather than an oxidase. This was confirmed by the ability of the enzyme to transfer electrons to artificial electron acceptors, such as phenazine methosulfate and 2...

  3. Benzaldehyde dehydrogenase from chitosan-treated Sorbus aucuparia cell cultures.

    Science.gov (United States)

    Gaid, Mariam M; Sircar, Debabrata; Beuerle, Till; Mitra, Adinpunya; Beerhues, Ludger

    2009-09-01

    Cell cultures of Sorbus aucuparia respond to the addition of chitosan with the accumulation of the biphenyl phytoalexin aucuparin. The carbon skeleton of this inducible defense compound is formed by biphenyl synthase (BIS) from benzoyl-CoA and three molecules of malonyl-CoA. The formation of benzoyl-CoA proceeds via benzaldehyde as an intermediate. Benzaldehyde dehydrogenase (BD), which converts benzaldehyde into benzoic acid, was detected in cell-free extracts from S. aucuparia cell cultures. BD and BIS were induced by chitosan treatment. The preferred substrate for BD was benzaldehyde (K(m)=49 microM). Cinnamaldehyde and various hydroxybenzaldehydes were relatively poor substrates. BD activity was strictly dependent on the presence of NAD(+) as a cofactor (K(m)=67 microM).

  4. Toxicity of perfluorooctanoic acid towards earthworm and enzymatic activities in soil.

    Science.gov (United States)

    He, Wenxiang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-07-01

    Perfluorooctanoic acid (PFOA) is a widespread persistent organic contaminant in the environment that has recently raised much of regulatory and public concern. Therefore, assessment of its ecological risk is a top priority research. Hence, this study investigated the toxicity of PFOA to beneficial microbial processes in the soil such as activities of dehydrogenase, urease and potential nitrification in addition to earthworm survival, weight loss and PFOA bioaccumulation in two contrasting soils. In general, PFOA caused inhibition of all the measured microbial processes in a dose-dependent manner and the inhibition was higher in Williamtown (WT) soil than Edinburgh (EB) soil. Thus, WT soil being sandy in nature with low clay content showed higher PFOA bioavailability and hence showed higher toxicity. There was no mortality in earthworms exposed up to 100 mg PFOA/kilogram soil in both the soils; however, there was a significant weight loss from 25 mg/kg onwards. This study clearly demonstrates that soil contamination of PFOA can lead to adverse effects on soil health. PMID:27329475

  5. Antileishmanial activity of diterpene acids in copaiba oil

    Directory of Open Access Journals (Sweden)

    Adriana Oliveira dos Santos

    2013-02-01

    Full Text Available Leishmaniasis is a neglected tropical disease. According to the World Health Organization, there are approximately 1.5-two million new cases of cutaneous leishmaniasis each year worldwide. Chemotherapy against leishmaniasis is based on pentavalent antimonials, which were developed more than a century ago. The goals of this study were to investigate the antileishmanial activity of diterpene acids in copaiba oil, as well as some possible targets of their action against Leishmania amazonensis. Methyl copalate and agathic, hydroxycopalic, kaurenoic, pinifolic and polyaltic acids isolated from Copaifera officinales oleoresins were utilised. Ultrastructural changes and the specific organelle targets of diterpenes were investigated with electron microscopy and flow cytometry, respectively. All compounds had some level of activity against L. amazonensis. Hydroxycopalic acid and methyl copalate demonstrated the most activity against promastigotes and had 50% inhibitory concentration (IC50 values of 2.5 and 6.0 µg/mL, respectively. However, pinifolic and kaurenoic acid demonstrated the most activity against axenic amastigote and had IC50 values of 3.5 and 4.0 µg/mL, respectively. Agathic, kaurenoic and pinifolic acid caused significant increases in plasma membrane permeability and mitochondrial membrane depolarisation of the protozoan. In conclusion, copaiba oil and its diterpene acids should be explored for the development of new antileishmanial drugs.

  6. Antileishmanial activity of diterpene acids in copaiba oil

    Science.gov (United States)

    dos Santos, Adriana Oliveira; Izumi, Erika; Ueda-Nakamura, Tânia; Dias-Filho, Benedito Prado; da Veiga-Júnior, Valdir Florêncio; Nakamura, Celso Vataru

    2013-01-01

    Leishmaniasis is a neglected tropical disease. According to the World Health Organization, there are approximately 1.5-two million new cases of cutaneous leishmaniasis each year worldwide. Chemotherapy against leishmaniasis is based on pentavalent antimonials, which were developed more than a century ago. The goals of this study were to investigate the antileishmanial activity of diterpene acids in copaiba oil, as well as some possible targets of their action against Leishmania amazonensis. Methyl copalate and agathic, hydroxycopalic, kaurenoic, pinifolic and polyaltic acids isolated from Copaifera officinales oleoresins were utilised. Ultrastructural changes and the specific organelle targets of diterpenes were investigated with electron microscopy and flow cytometry, respectively. All compounds had some level of activity against L. amazonensis. Hydroxycopalic acid and methyl copalate demonstrated the most activity against promastigotes and had 50% inhibitory concentration (IC50) values of 2.5 and 6.0 µg/mL, respectively. However, pinifolic and kaurenoic acid demonstrated the most activity against axenic amastigote and had IC50 values of 3.5 and 4.0 µg/mL, respectively. Agathic, kaurenoic and pinifolic acid caused significant increases in plasma membrane permeability and mitochondrial membrane depolarisation of the protozoan. In conclusion, copaiba oil and its diterpene acids should be explored for the development of new antileishmanial drugs. PMID:23440116

  7. Synthesis and Fungicidal Activities of Pyrimethanil Heterocyclic Acid Salt

    Institute of Scientific and Technical Information of China (English)

    SUN,Xiao-Hong; LIU,Yuan-Fa; CHEN,Bang; JIA,Ying-Qi; YANG,Jian-Wu

    2007-01-01

    Seven pyrimethanil salts were synthesized by organic base containing nitrogen atom reacting with substituted pyridine acids. They are reported for the first time. Their structures have been confirmed by IR, 1H NMR and elemental analysis. The preliminary toxicity tests indicated that most of them exhibited excellent fungicidal activities.The relationship between the structures and the fungicidal activities of the compounds was discussed.

  8. Fatty acid content and antioxidant activity of Thai bananas.

    Directory of Open Access Journals (Sweden)

    Jirawan Banditpuritat and Rungthip Kawaree

    2007-12-01

    Full Text Available The aril extracts of three Thai banana varieties, namely “Kluai Khai”(KK, “Kluai Namwa”(KN and “Kluai Hom”(KH were analyzed by gas chromatography and mass spectrometry (GC-MS. GC-MS data were used to identify 5 methyl esters of each banana extract after transesterification. The most prominent components found in KK, KN and KH were hexadecanoic acid methyl ester (43.17, 29.18, 30.57 % respectively, 9, 12, 15-octadecatrienoic acid methyl ester (35.93, 30.46, 39.68 % respectively, 9, 12-octadecadienoic acid methyl ester (14.35, 36.10, 21.82 % respectively, 9-hexadecanoic acid methyl ester (3.76, 3.34, 3.32 % respectively and octadecanoic acid methyl ester (2.79, 0.92, 4.60 % respectively. The antioxidant activity of the crude oils was evaluated using DPPH method.

  9. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in di-chloromethane at room temperature.

  10. Design and characterization of an acid-activated antimicrobial peptide.

    Science.gov (United States)

    Li, Lina; He, Jian; Eckert, Randal; Yarbrough, Daniel; Lux, Renate; Anderson, Maxwell; Shi, Wenyuan

    2010-01-01

    Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals, creation of an acidic environment favors growth of acid-enduring and acid-generating species, which causes further reduction in the plaque pH. In this study, we developed a prototype antimicrobial peptide capable of achieving high activity exclusively at low environmental pH to target bacterial species like Streptococcus mutans that produce acid and thrive under the low pH conditions detrimental for tooth integrity. The features of clavanin A, a naturally occurring peptide rich in histidine and phenylalanine residues with pH-dependent antimicrobial activity, served as a design basis for these prototype 'acid-activated peptides' (AAPs). Employing the major cariogenic species S. mutans as a model system, the two AAPs characterized in this study exhibited a striking pH-dependent antimicrobial activity, which correlated well with the calculated charge distribution. This type of peptide represents a potential new way to combat dental caries. PMID:19878192

  11. Antibacterial Activity of Copper and Cobalt Amino Acids Complexes

    Directory of Open Access Journals (Sweden)

    ANDREEA STĂNILĂ

    2011-11-01

    Full Text Available The antibacterial properties of differently copper and cobalt amino acids complexes on agar plates was investigated in the present study. The antibacterial activity of amino acid complexes was evaluated against on three bacteria strains (Escherichia coli, Bacillus cereus, Micrococcus luteus. Generally, the amino acids complexes were mainly active against gram-positive organisms, species like Micrococcus luteus being the most susceptible strain tested. It was registered a moderate antibacterial activity against Bacillus cereus. The microorganisms Escherichia coli, which are already known to be multi-resistant to drugs, were also resistant to the amino acids complexes but also to the free salts tested. Escherichia coli were susceptible only to the CoCl2 and copper complex with phenylalanine. The complexes with leucine and histidine seem to be more active than the parent free ligand against one or more bacterial species. Moderate activity was registered in the case of complexes with methionine and phenylalanine. From the complexes tested less efficient antibacterial activity was noted in the case of complexes with lysine and valine. These results show that cobalt and copper complexes have an antibacterial activity and suggest their potential application as antibacterial agents.

  12. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    Science.gov (United States)

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  13. Enhancement of mononuclear procoagulant activity by platelet 12-hydroxyeicosatetraenoic acid.

    OpenAIRE

    Lorenzet, R; Niemetz, J; Marcus, A J; Broekman, M J

    1986-01-01

    Platelets induce generation of procoagulant tissue factor activity (TFa) by mononuclear leukocytes, and also enhance the TFa induced by endotoxin. Our present investigation demonstrated that arachidonic acid, which by itself had no effect on mononuclear TFa, greatly enhanced platelet-induced TFa. The effect was concentration dependent for both platelets and arachidonate (1-20 microM); other fatty acids tested were inactive. The enhancing effect of arachidonate was more pronounced if platelets...

  14. Autoproteolytic Cleavage and Activation of Human Acid Ceramidase*

    OpenAIRE

    Shtraizent, Nataly; Eliyahu, Efrat; Park, Jae-Ho; He, Xingxuan; Shalgi, Ruth; Schuchman, Edward H.

    2008-01-01

    Herein we report the mechanism of human acid ceramidase (AC; N-acylsphingosine deacylase) cleavage and activation. A highly purified, recombinant human AC precursor underwent self-cleavage into α and β subunits, similar to other members of the N-terminal nucleophile hydrolase superfamily. This reaction proceeded with first order kinetics, characteristic of self-cleavage. AC self-cleavage occurred most rapidly at acidic pH, but also at neutral pH. Site-directed mutagene...

  15. Antiparasitic activity of prenylated benzoic acid derivatives from Piper species.

    Science.gov (United States)

    Flores, Ninoska; Jiménez, Ignacio A; Giménez, Alberto; Ruiz, Grace; Gutiérrez, David; Bourdy, Genevieve; Bazzocchi, Isabel L

    2009-03-01

    Fractionation of dichloromethane extracts from the leaves of Piper heterophyllum and P. aduncum afforded three prenylated hydroxybenzoic acids, 3-[(2E,6E,10E)-11-carboxy-3,7,15-trimethyl-2,6,10,14-hexadecatetraenyl)-4,5-dihydroxybenzoic acid, 3-[(2E,6E,10E)-11-carboxy-13-hydroxy-3,7,15-trimethyl-2,6,10,14-hexadecatetraenyl]-4,5-dihydroxybenzoic acid and 3-[(2E,6E,10E)-11-carboxy-14-hydroxy-3,7,15-trimethyl-2,6,10,15-hexadecatetraenyl]-4,5-dihydroxybenzoic acid, along with the known compounds, 4,5-dihydroxy-3-(E,E,E-11-formyl-3,7,15-trimethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid (arieianal), 3,4-dihydroxy-5-(E,E,E-3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid, 4-hydroxy-3-(E,E,E-3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid, 3-(3,7-dimethyl-2,6-octadienyl)-4-methoxy-benzoic acid, 4-hydroxy-3-(3,7-dimethyl-2,6-octadienyl)benzoic acid and 4-hydroxy-3-(3-methyl-1-oxo-2-butenyl)-5-(3-methyl-2-butenyl)benzoic acid. Their structures were elucidated on the basis of spectroscopic data, including homo- and heteronuclear correlation NMR experiments (COSY, HSQC and HMBC) and comparison with data reported in the literature. Riguera ester reactions and optical rotation measurements established the compounds as racemates. The antiparasitic activity of the compounds were tested against three strains of Leishmania spp., Trypanosoma cruzi and Plasmodium falciparum. The results showed that 3-(3,7-dimethyl-2,6-octadienyl)-4-methoxy-benzoic acid exhibited potent and selective activity against L. braziliensis (IC(50) 6.5 microg/ml), higher that pentamidine used as control. Moreover, 3-[(2E,6E,10E)-11-carboxy-3,7,15-trimethyl- 2,6,10,14-hexadecatetraenyl)-4,5-dihydroxybenzoic acid and 4-hydroxy-3-(3-methyl-1-oxo-2-butenyl)-5-(3-methyl-2-butenyl)benzoic acid showed moderate antiplasmodial (IC(50) 3.2 microg/ml) and trypanocidal (16.5 microg/ml) activities, respectively. PMID:19361822

  16. Antibacterial and Antioxidant Activities of Ursolic Acid and Derivatives

    Directory of Open Access Journals (Sweden)

    Patrícia G.G. do Nascimento

    2014-01-01

    Full Text Available Ursolic acid, an important bioactive compound, was isolated from ethanol extract of aerial parts of Sambucus australis. In order to develop bioactive ursolic acid derivatives, two semi-synthetic compounds were obtained through modification at C-3. The antibacterial activity of the ursolic acid and its derivatives was investigated. The microdilution method was used for determination of the minimal inhibitory concentration (MIC, against twelve bacterial strains. The influence of ursolic acid and its derivatives on the susceptibility of some bacterial pathogens to the aminoglycosides antibiotics neomycin, amikacin, kanamycin and gentamicin was evaluated. The most representative synergistic effect was observed by 3β-formyloxy-urs-12-en-28-oic acid at the concentration of 64 μg/mL in combination with kanamycin against Escherichia coli (27, a multidrug-resistant clinical isolate from sputum, with reduction of MIC value from 128 μg/mL to 8 μg/mL. Ursolic acid and its derivatives were examined for their radical scavenger activity using the DPPH assay, and showed significant activity.

  17. Study on Dehydrogenase Activity of Excised Embryos of Castanea Henryi Seeds after Cryopreservation%锥栗种子离体胚超低温保存脱氢酶活性研究

    Institute of Scientific and Technical Information of China (English)

    陈礼光; 郑郁善

    2001-01-01

    运用超低温(-196 ℃)保存手段,通过对锥栗种子离体胚超低温保存后脱氢酶活性的方差分析和Q检验法多重比较分析,对其长期保存的可行性进行研究,结果表明:含水量是影响锥栗种子离体胚超低温保存的重要因素,超低温保存应进行适度脱水.无防冻剂预处理,20%含水量,缓冻缓解方式条件下,离体胚脱氢酶活性最高.%By applying cryopreservation(-196 ℃)treatment and using the methods of variance analysis and multiple comparison of Q test of TTCH content of excised embryos after cryopreservation, dehydrogenase activity of excised embryos was analysed and long-term storage feasibility was studied. The results showed moisture content(MC) was the main factors affecting the cryopreservation of C. henryi excised embryos, and the measures desiccating a little down to a medium MC should be taken in cryopreservation. Under the conditions of no cryoprotectants pretreatment, 20% MC, mild freezing, and quick thawing, the dehydrogenase activity of excised embryos was the highest.

  18. Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Smithgall, T.E.

    1986-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

  19. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Lipińska, Aneta; Wyszkowska, Jadwiga; Kucharski, Jan

    2015-12-01

    Polycyclic aromatic hydrocarbons are organic compounds with highly toxic, carcinogenic, and mutagenic properties, which adversely affect the basic biological parameters of the soil, including the count of microorganisms, and the enzymatic activity. In addition to disturbances to the biological activity of the soil, PAHs may also exhibit toxic effects on plants. In view of the above, the study involved testing aimed at the determination of the effects of polycyclic aromatic hydrocarbons in a form of naphthalene, phenanthrene, anthracene and pyrene on the count, colony development (CD) index, ecophysiological (EP) diversity index of organotrophic bacteria, and the activity of soil dehydrogenases and soil urease. Moreover, an attempt was made to determine the soil's resistance based on the activity of the above-listed enzymes, and the effect of polycyclic aromatic hydrocarbons on seed germination and root growth was assessed by Lepidium sativum, Sorghum saccharatum, and Sinapis alba. In addition, the species of bacteria found in a soil subjected to strong pressure of polycyclic aromatic hydrocarbons were isolated. The experiment was performed in a laboratory on samples of loamy sand. Polycyclic aromatic hydrocarbons were introduced into the soil in an amount of 0, 1000, 2000, and 4000 mg kg(-1) of soil dry matter. Germination and growth of cress (L. sativum), white mustard (S. alba), and sweet sorghum (S. saccharatum) were determined using Phytotoxkit tests. It was found that the tested PAHs increased the average colony counts of organotrophic soil bacteria; pyrene did so to the greatest extent (2.2-fold relative to non-contaminated soil), phenanthrene to the smallest extent (1.4-fold relative to non-contaminated soil). None of the PAHs changed the value of the bacterial colony development (CD) index, while anthracene and pyrene increased the value of the eco-physiological (EP) diversity indicator. PAHs lowered the activity of the tested enzymes. The activity of

  20. SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF OXIME ESTERS FROM DIHYDROCUMIC ACID

    Directory of Open Access Journals (Sweden)

    Yanqing Gao,

    2012-07-01

    Full Text Available Dihydrocumic acid was prepared from β-pinene through oxidation and dehydration. Then, ten oxime esters from dihydrocumic acid were synthesized. Reaction conditions of the oxime esters were adjusted and their structures were characterized by IR, 1H-NMR, MS, and elemental analysis. The antibacterial activity of these newly synthesized oxime esters against Gram-negative bacteria and Gram-positive bacteria was also investigated using the inhibition zone method. The preliminary results indicated that seven compounds displayed better antibacterial activity against Gram-negative bacteria compared with bromogeramine, a commercially available antibacterial agent.

  1. Comparison of antioxidant activities between salvianolic acid B and Ginkgo biloba extract (Egb 761 )

    Institute of Scientific and Technical Information of China (English)

    Chang-suo LIU; Yong CHENG; Jin-feng HU; Wei ZHANG; Nai-hong CHEN; Jun-tian ZHANG

    2006-01-01

    Aim: To investigate and compare the antioxidant activities of salvianolic acid B (SalB) and Ginkgo biloba extract (EGb 761) in aqueous solution, rat microsomes and the cellular system. Methods: Superoxide anion (O-·2) was generated using xanthine/xanthine oxidase system and phenazine methosulate/NADH system, and the effects of SalB and EGb 761 on the generation of (O-·2) were achieved by spectrophotometric measurement of the product formed on reduction of nitro blue tetrazolium. Two different methods were used to assess the scavenging effects of the extracts on hydroxyl radical (·OH): HPLC method was used for quantitation of ·OH by oxy-radical trapping of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) to form DMPO-OH adducts in Fe2+-EDTA-H2O2 system. To confirm the HPLC data,·OH was also measured by spectrophotometry using a commercial detection kit. The anti-lipid peroxidation effects of the extracts in microsomes of rat brain, liver and kidney induced by ascorbate-NADPH were determined by thiobarbituric acid (TBA) method. The protective effects of the extracts on peroxide hydrogen (H2O2)-induced oxidative damage in SH-SY5Y cells were investigated by assessing cell viability assay, the level of lipid peroxidation, and the lactate dehydrogenase (LDH) release. Results: Both SalB and EGb 761 were able to scavenge O-·2 and ·OH, inhibit lipid peroxidation of microsomes, and protect SH-SY5Y cells against H2O2-induced oxidative damage. However, the concentration of SalB was far lower than that of EGb 761 when a similar effect was obtained. Conclusion: The antioxidant efficiency of SalB was greater than that of EGb 761. These results suggest that SalB, like EGb 761, has promising potential in treating oxidative damagederived neurodegenerative disorders.

  2. Human liver alcohol dehydrogenase. 1. The primary structure of the beta 1 beta 1 isoenzyme.

    Science.gov (United States)

    Hempel, J; Bühler, R; Kaiser, R; Holmquist, B; de Zalenski, C; von Wartburg, J P; Vallee, B; Jörnvall, H

    1984-12-17

    Determination of the amino acid sequence of the beta 1 subunit from the class I (pyrazole-sensitive) human liver alcohol dehydrogenase isoenzyme beta 1 beta 1 revealed a 373-residue structure differing at 48 positions (including a gap) from that of the subunit of the well studied horse liver alcohol dehydrogenase EE isoenzyme. The structure deduced is compatible with known differences in composition, ultraviolet absorbance, electrophoretic mobility and catalytic properties between the horse and human enzymes. All zinc-liganding residues of the horse E subunit are strictly conserved in the human beta 1 subunit, despite an earlier report of a mutation involving Cys-46. This residue therefore remains conserved in all known alcohol dehydrogenase structures. However, the total cysteine content of the beta 1 structure is raised from 14 in the subunit of the horse enzyme to 15 by a Tyr----Cys exchange. Most exchanges are on the surface of the molecule and of a well conserved nature. Substitutions close to the catalytic centre are of interest to explain the altered substrate specificity and different catalytic activity of the beta 1 homodimer. Functionally, a Ser----Thr exchange at position 48 appears to be of special importance, since Thr-48 in beta 1 instead of Ser-48 in the horse enzyme can restrict available space. Four other substitutions also line the active-site pocket, and appear to constitute partly compensated exchanges. PMID:6391920

  3. Cloning, expression and characterization of 3-hydroxyisobutyrate dehydrogenase from Pseudomonas denitrificans ATCC 13867.

    Directory of Open Access Journals (Sweden)

    Shengfang Zhou

    Full Text Available The gene encoding an NAD(+-dependent, 3-hydroxyisobutyrate dehydrogenase (3HIBDH-IV from Pseudomonas denitrificans ATCC 13867 was cloned and expressed in Escherichia coli BL 21 (DE3 and characterized to understand its physiological relevance in the degradation of 3-hydroxypropionic acid (3-HP. The deduced amino acid sequence showed high similarity to other 3-hydroxyisobutyrate dehydrogenase isozymes (3HIBDHs of P. denitrificans ATCC 13867. A comparison of 3HIBDH-IV with its relevant enzymes along with molecular docking studies suggested that Lys171, Asn175 and Gly123 are important for its catalytic function on 3-hydroxyacids. The recombinant 3HIBDH-IV was purified to homogeneity utilizing a Ni-NTA-HP resin column in high yield. 3HIBDH-IV was very specific to (S-3-hydroxyisobutyrate, but also catalyzed the oxidation of 3-HP to malonate semialdehyde. The specific activity and half-saturation constant (K m for 3-HP at 30°C and pH 9.0 were determined to be 17 U/mg protein and 1.0 mM, respectively. Heavy metals, such as Ag(+ and Hg(2+, completely inhibited the 3HIBDH-IV activity, whereas dithiothreitol, 2-mercaptoethanol and ethylenediaminetetraacetic acid increased its activity 1.5-1.8-fold. This paper reports the characteristics of 3HIBDH-IV as well as its probable role in 3-HP degradation.

  4. Inhibitors of 17beta-hydroxysteroid dehydrogenase type 1.

    Science.gov (United States)

    Brozic, P; Lanisnik Risner, T; Gobec, S

    2008-01-01

    Carcinogenesis of hormone-related cancers involves hormone-stimulated cell proliferation, which increases the number of cell divisions and the opportunity for random genetic errors. In target tissues, steroid hormones are interconverted between their potent, high affinity forms for their respective receptors and their inactive, low affinity forms. One group of enzymes responsible for these interconversions are the hydroxysteroid dehydrogenases, which regulate ligand access to steroid receptors and thus act at a pre-receptor level. As part of this group, the 17beta-hydroxysteroid dehydrogenases catalyze either oxidation of hydroxyl groups or reduction of keto groups at steroid position C17. The thoroughly characterized 17beta-hydroxysteroid dehydrogenase type 1 activates the less active estrone to estradiol, a potent ligand for estrogen receptors. This isoform is expressed in gonads, where it affects circulating levels of estradiol, and in peripheral tissue, where it regulates ligand occupancy of estrogen receptors. Inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 are thus highly interesting potential therapeutic agents for the control of estrogen-dependent diseases such as endometriosis, as well as breast and ovarian cancers. Here, we present the review on the recent development of inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 published and patented since the previous review of 17beta-hydroxysteroid dehydrogenase inhibitors of Poirier (Curr. Med. Chem., 2003, 10, 453). These inhibitors are divided into two separate groups according to their chemical structures: steroidal and non-steroidal 17beta-hydroxysteroid dehydrogenase type 1 inhibitors. Their estrogenic/ proliferative activities and selectivities over other 17beta-hydroxysteroid dehydrogenases that are involved in local regulation of estrogen action (types 2, 7 and 12) are also presented. PMID:18220769

  5. Atomic-Resolution Structure of an N(5) Flavin Adduct in D-Arginine Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Guoxing; Yuan, Hongling; Wang, Siming; Gadda, Giovanni; Weber, Irene T. (GSU)

    2011-09-06

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 {angstrom} atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct.

  6. Atomic-resolution structure of an N5 flavin adduct in D-arginine dehydrogenase.

    Science.gov (United States)

    Fu, Guoxing; Yuan, Hongling; Wang, Siming; Gadda, Giovanni; Weber, Irene T

    2011-07-26

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 Å atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct. PMID:21707047

  7. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...... ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major...

  8. Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4 defines a new subtype of D-bifunctional protein deficiency

    Directory of Open Access Journals (Sweden)

    McMillan Hugh J

    2012-11-01

    Full Text Available Abstract Background D-bifunctional protein (DBP deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. Methods and results Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val and hydratase domain (c.1547T>C; p.Ile516Thr of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4. These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP

  9. Activation of peroxisome proliferator-activated receptor-α enhances fatty acid oxidation in human adipocytes

    International Nuclear Information System (INIS)

    Highlights: → PPARα activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. → PPARα activation also increased insulin-dependent glucose uptake in human adipocytes. → PPARα activation did not affect lipid accumulation in human adipocytes. → PPARα activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-α (PPARα) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPARα in adipocytes have been unclarified. We examined the functions of PPARα using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPARα by GW7647, a potent PPARα agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPARγ, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPARα activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPARγ is activated. On the other hand, PPARα activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPARα-dependent manner. Moreover, PPARα activation increased the production of CO2 and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPARα stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPARα agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected effects of PPARα activation are very valuable for managing diabetic conditions accompanied by obesity, because PPAR

  10. Zoosporicidal activities of anacardic acids against Aphanomyces cochlioides.

    Science.gov (United States)

    Begum, Parvin; Hashidoko, Yasuyuki; Islam, Md Tofazzal; Ogawa, Yuko; Tahara, Satoshi

    2002-01-01

    The EtOAc soluble constituents of the unripe fruits of Ginkgo biloba showed motility inhibition followed by lysis of zoospores of the phytopathogenic Aphanomyces cochlioides. We purified 22:1-omega7-anacardic acid (1), 24:1-omega9-anacardic acid (2) and 22:0-anacardic acid (3), together with other related compounds, 21:1-omega7-cardol (4) and 21:1-omega7-cardanol (5) from the crude extracts of Ginkgo fruits. Amongst them, compound 1 was a major active agent in quality and quantity, and showed potent motility inhibition (98% in 30 min) followed by lysis (55% in 3 h) of the zoospores at 1 x 10(-7) M. The 2-O-methyl derivative (1-c) of 1 displayed antibacterial activity against Bacillus subtilis, but practically inactive to Escherichia coli. A brief study on structure-activity relationships revealed that a carboxyl group on the aromatic ring and an unsaturated side chain in the anacardic acid derivative are important for strong motility inhibitory and lytic activities against the zoospore. PMID:12440727

  11. ACID RAIN AND SOIL MICROBIAL ACTIVITY: EFFECTS AND THEIR MECHANISMS

    Science.gov (United States)

    In the investigation, our aim was to determine if acid rain affects soil microbial activity and to identify possible mechanisms of observed effects. A Sierran forest soil (pH 6.4) planted with Ponderosa pine seedlings was exposed to simulated rain (pH 2.0, 3.0, 4.0 and 5.6) with ...

  12. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C), c

  13. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  14. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2014-09-30

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  15. Regulation of aflatoxin biosynthesis: effect of glucose on activities of various glycolytic enzymes.

    Science.gov (United States)

    Buchanan, R L; Lewis, D F

    1984-08-01

    Catabolism of carbohydrates has been implicated in the regulation of aflatoxin synthesis. To characterize this effect further, the activities of various enzymes associated with glucose catabolism were determined in Aspergillus parasiticus organisms that were initially cultured in peptone-mineral salts medium and then transferred to glucose-mineral salts and peptone-mineral salts media. After an initial increase in activity, the levels of glucose 6-phosphate dehydrogenase, mannitol dehydrogenase, and malate dehydrogenase were lowered in the presence of glucose. Phosphofructokinase activity was greater in the peptone-grown mycelium, but fructose diphosphatase was largely unaffected by carbon source. Likewise, carbon source had relatively little effect on the activities of pyruvate kinase, malic enzyme, isocitrate-NADP dehydrogenase, and isocitrate-NAD dehydrogenase. The results suggest that glucose may, in part, regulate aflatoxin synthesis via a carbon catabolite repression of NADPH-generating and tricarboxylic acid cycle enzymes.

  16. Metabolic control of cell division in α-proteobacteria by a NAD-dependent glutamate dehydrogenase.

    Science.gov (United States)

    Beaufay, François; De Bolle, Xavier; Hallez, Régis

    2016-01-01

    Prior to initiate energy-consuming processes, such as DNA replication or cell division, cells need to evaluate their metabolic status. We have recently identified and characterized a new connection between metabolism and cell division in the α-proteobacterium Caulobacter crescentus. We showed that an NAD-dependent glutamate dehydrogenase (GdhZ) coordinates growth with cell division according to its enzymatic activity. Here we report the conserved role of GdhZ in controlling cell division in another α-proteobacterium, the facultative intracellular pathogen Brucella abortus. We also discuss the importance of amino acids as a main carbon source for α-proteobacteria.

  17. Cloning of the Arabidopsis and Rice Formaldehyde Dehydrogenase Genes: Implications for the Origin of Plant Adh Enzymes

    Science.gov (United States)

    Dolferus, R.; Osterman, J. C.; Peacock, W. J.; Dennis, E. S.

    1997-01-01

    This article reports the cloning of the genes encoding the Arabidopsis and rice class III ADH enzymes, members of the alcohol dehydrogenase or medium chain reductase/dehydrogenase superfamily of proteins with glutathione-dependent formaldehyde dehydrogenase activity (GSH-FDH). Both genes contain eight introns in exactly the same positions, and these positions are conserved in plant ethanol-active Adh genes (class P). These data provide further evidence that plant class P genes have evolved from class III genes by gene duplication and acquisition of new substrate specificities. The position of introns and similarities in the nucleic acid and amino acid sequences of the different classes of ADH enzymes in plants and humans suggest that plant and animal class III enzymes diverged before they duplicated to give rise to plant and animal ethanol-active ADH enzymes. Plant class P ADH enzymes have gained substrate specificities and evolved promoters with different expression properties, in keeping with their metabolic function as part of the alcohol fermentation pathway. PMID:9215914

  18. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    International Nuclear Information System (INIS)

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis

  19. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Kim, Young-Il; Furuzono, Tomoya [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Ohue, Ryuji [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Nomura, Wataru [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Sugawara, Tatsuya [Laboratory of Marine Bioproducts Technology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Yu, Rina [Department of Food Science and Nutrition, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Kitamura, Nahoko [Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  20. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development

    OpenAIRE

    Sandell, Lisa L.; Sanderson, Brian W.; Moiseyev, Gennadiy; Johnson, Teri; Mushegian, Arcady; Young, Kendra; Rey, Jean-Philippe; Ma, Jian-xing; Staehling-Hampton, Karen; Trainor, Paul A

    2007-01-01

    Regulation of patterning and morphogenesis during embryonic development depends on tissue-specific signaling by retinoic acid (RA), the active form of Vitamin A (retinol). The first enzymatic step in RA synthesis, the oxidation of retinol to retinal, is thought to be carried out by the ubiquitous or overlapping activities of redundant alcohol dehydrogenases. The second oxidation step, the conversion of retinal to RA, is performed by retinaldehyde dehydrogenases. Thus, the specific spatiotempo...

  1. Properties of Lactate Dehydrogenase in a Psychrophilic Marine Bacterium

    OpenAIRE

    Mitchell, P; Yen, H. C.; Mathemeier, P. F.

    1985-01-01

    Lactate dehydrogenase (EC 1.1.1.27) from Vibrio marinus MP-1 was purified 15-fold and ammonium activated. The optimum pH for pyruvate reduction was 7.4. Maximum lactate dehydrogenase activity occurred at 10 to 15 degrees C, and none occurred at 40 degrees C. The crude-extract enzyme was stable between 15 and 20 degrees C and lost 50% of its activity after 60 min at 45 degrees C. The partially purified enzyme was stable between 8 and 15 degrees C and lost 50% of its activity after 60 min at 30...

  2. A coniferyl aldehyde dehydrogenase gene from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl aldehyde by Saccharomyces cerevisiae.

    Science.gov (United States)

    Adeboye, Peter Temitope; Olsson, Lisbeth; Bettiga, Maurizio

    2016-07-01

    The conversion of coniferyl aldehyde to cinnamic acids by Saccharomyces cerevisiae under aerobic growth conditions was previously observed. Bacteria such as Pseudomonas have been shown to harbor specialized enzymes for converting coniferyl aldehyde but no comparable enzymes have been identified in S. cerevisiae. CALDH from Pseudomonas was expressed in S. cerevisiae. An acetaldehyde dehydrogenase (Ald5) was also hypothesized to be actively involved in the conversion of coniferyl aldehyde under aerobic growth conditions in S. cerevisiae. In a second S. cerevisiae strain, the acetaldehyde dehydrogenase (ALD5) was deleted. A prototrophic control strain was also engineered. The engineered S. cerevisiae strains were cultivated in the presence of 1.1mM coniferyl aldehyde under aerobic condition in bioreactors. The results confirmed that expression of CALDH increased endogenous conversion of coniferyl aldehyde in S. cerevisiae and ALD5 is actively involved with the conversion of coniferyl aldehyde in S. cerevisiae. PMID:27070284

  3. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    Science.gov (United States)

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  4. Sunflower oil bleaching by adsorption onto acid-activated bentonite

    Directory of Open Access Journals (Sweden)

    E. L. Foletto

    2011-03-01

    Full Text Available Two bentonite clays with different mineralogical compositions from Mendoza, Argentine, were activated with H2SO4 solutions of 4 and 8 N at 90ºC for 3.5 hours. This treatment affected clay structural properties, as was shown by thermogravimetry, infrared spectrometry and chemical analysis. Bleaching efficiency for sunflower oil was strongly dependent on the acid concentration used for clay activation. The samples have bleaching capacity comparable to that observed with a commercial adsorbent standard. The mineralogical composition of natural clays influenced the properties of the activated clays.

  5. Production of gluconic acid and 2-ketogluconic acid by Klebsiella aerogenes NCTA 418.

    Science.gov (United States)

    Neijssel, O M; Tempest, D W

    1975-10-27

    2-Ketogluconic acid and, to a lesser extent, gluconic acid were found to be major products of glucose catabolism by phosphate-limited cultures of Klebsiella aerogenes NCTC 418, and together accounted for up to 46% of the glucose carbon that was metabolized. Although the concentrations of both acids increased substantially at low growth rates, their specific rates of synthesis decreased markedly, ad did the proportion of glucose converted into these products. Determination of the affinity constant, for glucose, of phosphate-limited organisms showed it ot be not significantly different from that of glucose-limited organisms (KS less than or equal to 50 muM), indicative of the phosphotransferase uptake system. And since these organisms possessed an active glucose 6-phosphate dehydrogenase, and had no detectable glucose dehydrogenase activity, it was concluded that gluconic acid and 2-keto-gluconic acid arose from their corresponding phosphorylated metabolites, and not directly from glucose.

  6. Lactic Acid Bacteria Differentially Activate Natural Killer Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    proliferation of the NK cells and induced IFN-gamma production, both to levels comparable to PHA stimulation. The proliferative response was further enhanced when autologous monocytes were present, probably because cytokines secreted by monocytes having engulfed bacteria stimulated the growth of the NK cells...... antigen presenting cells and T-cells. Bacteria translocating across the gastrointestinal mucosa are presumed to gain access to NK cell compartments, as consumption of certain strains of lactic acid bacteria has been shown to increase in vivo NK cytotoxic activity. On-going research in our lab aims...... at describing strain-dependent effects of lactic acid bacteria on regulatory functions of NK-cells. Here, we have investigated how human gut flora-derived non-pathogenic lactic acid bacteria affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human peripheral blood NK cells upon...

  7. [Features of glutamate dehydrogenase in fetal and adult rumen tissue].

    Science.gov (United States)

    Kalachniuk, H I; Fomenko, I S; Kalachniuk, L H; Kavai, Sh; Marounek, M; Savka, O H

    2001-01-01

    Glutamate dehydrogenase (GDH) from rumen mucosa of cow fetus, liver and two forms from mucosa (bacterial and tissue) of the adult animal were partly purified and characterized. The activity of the bacterial glutamate dehydrogenase was shown to depend on qualities of a biomass of microbes, adhered on surface of rumen mucosa. All enzymes from tissues (GDHTRF, TRC, TLC), revealed the hypersensibility to increase in the concentration medium of Zn2+, guanosine triphosphate (GTP), acting here in a role of negative modulators, and also adenosine monophosphate (AMP) and leucine, which acted as activators. However, in the same concentrations these effectors do not influence the activity of the bacterial glutamate dehydrogenase. And if all tissues enzymes are highly specific to coenzyme NADH, the bacterial ones almost in 3 times is more active at NADPH use. PMID:11642036

  8. Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity.

    Science.gov (United States)

    Vasquez, Yaneth; Escobar, Maria C; Neculita, Carmen M; Arbeli, Ziv; Roldan, Fabio

    2016-06-01

    Biochemical passive treatment represents a promising option for the remediation of acid mine drainage. This study determined the effect of three hydraulic retention times (1, 2, and 4 days) on changes in system efficiency, reactive mixture, and microbial activity in bioreactors under upward flow conditions. Bioreactors were sacrificed in the weeks 8, 17 and 36, and the reactive mixture was sampled at the bottom, middle, and top layers. Physicochemical analyses were performed on reactive mixture post-treatment and correlated with sulfate-reducing bacteria and cellulolytic and dehydrogenase activity. All hydraulic retention times were efficient at increasing pH and alkalinity and removing sulfate (>60%) and metals (85-99% for Fe(2+) and 70-100% for Zn(2+)), except for Mn(2+). The longest hydraulic retention time (4 days) increased residual sulfides, deteriorated the quality of treated effluent and negatively impacted sulfate-reducing bacteria. Shortest hydraulic retention time (1 day) washed out biomass and increased input of dissolved oxygen in the reactors, leading to higher redox potential and decreasing metal removal efficiency. Concentrations of iron, zinc and metal sulfides were high in the bottom layer, especially with 2 day of hydraulic retention time. Sulfate-reducing bacteria, cellulolytic and dehydrogenase activity were higher in the middle layer at 4 days of hydraulic retention time. Hydraulic retention time had a strong influence on overall performance of passive reactors.

  9. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    Directory of Open Access Journals (Sweden)

    Fabrizio Anella

    2014-12-01

    Full Text Available The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment.

  10. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats.

    Science.gov (United States)

    Macedo, Levy W; Cararo, José H; Maravai, Soliany G; Gonçalves, Cinara L; Oliveira, Giovanna M T; Kist, Luiza W; Guerra Martinez, Camila; Kurtenbach, Eleonora; Bogo, Maurício R; Hipkiss, Alan R; Streck, Emilio L; Schuck, Patrícia F; Ferreira, Gustavo C

    2016-10-01

    Carnosine (β-alanyl-L-histidine) is an imidazole dipeptide synthesized in excitable tissues of many animals, whose biochemical properties include carbonyl scavenger, anti-oxidant, bivalent metal ion chelator, proton buffer, and immunomodulating agent, although its precise physiological role(s) in skeletal muscle and brain tissues in vivo remain unclear. The aim of the present study was to investigate the in vivo effects of acute carnosine administration on various aspects of brain bioenergetics of young Wistar rats. The activity of mitochondrial enzymes in cerebral cortex was assessed using a spectrophotometer, and it was found that there was an increase in the activities of complexes I-III and II-III and succinate dehydrogenase in carnosine-treated rats, as compared to vehicle-treated animals. However, quantitative real-time RT-PCR (RT-qPCR) data on mRNA levels of mitochondrial biogenesis-related proteins (nuclear respiratory factor 1 (Nrf1), peroxisome proliferator-activated receptor-γ coactivator 1-α (Ppargc1α), and mitochondrial transcription factor A (Tfam)) were not altered significantly and therefore suggest that short-term carnosine administration does not affect mitochondrial biogenesis. It was in agreement with the finding that immunocontent of respiratory chain complexes was not altered in animals receiving carnosine. These observations indicate that acute carnosine administration increases the respiratory chain and citric acid cycle enzyme activities in cerebral cortex of young rats, substantiating, at least in part, a neuroprotector effect assigned to carnosine against oxidative-driven disorders.

  11. Impact of dietary aromatic amino acids on osteoclastic activity.

    Science.gov (United States)

    Refaey, Mona El; Zhong, Qing; Ding, Ke-Hong; Shi, Xing-Ming; Xu, Jianrui; Bollag, Wendy B; Hill, William D; Chutkan, Norman; Robbins, Richard; Nadeau, Hugh; Johnson, Maribeth; Hamrick, Mark W; Isales, Carlos M

    2014-08-01

    We had shown that aromatic amino acid (phenylalanine, tyrosine, and tryptophan) supplementation prevented bone loss in an aging C57BL/6 mice model. In vivo results from the markers of bone breakdown suggested an inhibition of osteoclastic activity or differentiation. To assess osteoclastic differentiation, we examined the effects of aromatic amino acids on early /structural markers as vitronectin receptor, calcitonin receptor, and carbonic anhydrase II as well as, late/functional differentiation markers; cathepsin K and matrix metalloproteinase 9 (MMP-9). Our data demonstrate that the aromatic amino acids down-regulated early and late osteoclastic differentiation markers as measured by real time PCR. Our data also suggest a link between the vitronectin receptor and the secreted cathepsin K that both showed consistent effects to the aromatic amino acid treatment. However, the non-attachment related proteins, calcitonin receptor, and carbonic anhydrase II, demonstrated less consistent effects in response to treatment. Our data are consistent with aromatic amino acids down-regulating osteoclastic differentiation by suppressing remodeling gene expression thus contributing initially to the net increase in bone mass seen in vivo.

  12. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5.

    Science.gov (United States)

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian; Ruoff, Peter; Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan

    2012-01-01

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation.

  13. Acetic acid treatment in S.cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of mitochondrial transcriptional complex Hap2-3-4-5.

    Directory of Open Access Journals (Sweden)

    Ana eKitanovic

    2012-09-01

    Full Text Available Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner.Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, pyruvate kinase (PYK and glucose-6-phosphate dehydrogenase (G6PDH we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation.

  14. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Alvarez, S. A. [UASLP, Doctorado Institucional en Ingenieria y Ciencia de Materiales (Mexico); Martinez-Castanon, G. A., E-mail: mtzcastanon@fciencias.uaslp.m [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Nino-Martinez, N. [UASLP, Facultad de Ciencias (Mexico); Reyes-Macias, J. F.; Patino-Marin, N.; Loyola-Rodriguez, J. P. [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Ruiz, Facundo [UASLP, Facultad de Ciencias (Mexico)

    2010-10-15

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 {mu}g/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  15. A guide to 17beta-hydroxysteroid dehydrogenases.

    Science.gov (United States)

    Adamski, J; Jakob, F J

    2001-01-22

    17beta-Hydroxysteroid dehydrogenases (17beta-HSD) are pivotal in controlling the biological potency of steroid hormones by catalyzing oxidation or reduction at position 17. Several 17beta-HSDs may as well metabolize further substrates including alcohols, bile acids, fatty acids and retinols. This review summarizes recent progress in the field of 17beta-HSD research provides an update of nomenclature. PMID:11165003

  16. Dietary modulation of erythrocyte insulin receptor interaction and the regulation of adipose tissue pyruvate dehydrogenase enzyme activity in growing rats; a mechanism of action of dietary fiber in metabolism

    International Nuclear Information System (INIS)

    The metabolic effects of graded cellulose (a dietary fiber) intake were studied at minimal (10%) and maximal (20%) protein levels in male weanling Sprague Dawley rats. The hypothesis was tested that the hypoglycemic effect of high fiber diets is partly mediated through increased tissue sensitivity to insulin at the cell receptor level. Erythrocyte insulin receptor interaction (IRI) and percent insulin stimulation of adipose tissue pyruvate dehydrogenase (PDH) activity (PDS) were used as indices of tissue sensitivity to insulin. IRI was determined by a standardized radioceptor assay PDS by the rate of oxidation of 1-14C-pyruvate to 14CO2 in epidymal fat pads and serum insulin levels by radioimmunoassay. In both protein groups, the addition of fiber in the diet resulted in a significant (P 125I-insulin binding (SIB) was higher in the 20% protein groups while in the fiber-free group, a higher SIB was observed in the 10% protein group

  17. Adsorption of naphthenic acids on high surface area activated carbons.

    Science.gov (United States)

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC. PMID:24766592

  18. Anacardic acid derivatives from Brazilian propolis and their antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.S.S.; Lima, S.G. de; Lopes, J.A.D.; Chaves, M.H.; Cito, A.M.G.L. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Dept. de Quimica]. E-mail: gracito@ufpi.br; Oliveira, E.H. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Dept. de Microbiologia e Parasitologia; Reis, F.A.M. [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Inst. de Quimica

    2008-07-01

    Propolis is a sticky, gummy, resinous substance collected by honeybees (Apis mellifera L.) from various plant sources, which has excellent medicinal properties. This paper describes the isolation and identification of triterpenoids and anacardic acid derivatives from Brazilian propolis and their antibacterial activity. Their structures were elucidated by {sup 1}H and {sup 13}C NMR, including uni- and bidimensional techniques; in addition, comparisons were made with data from academic literature. These compounds were identified as: cardanols (1a + 1b), cardols (2a + 2b), mono ene anacardic acid (3), alpha-amirine (4), beta-amirine (5), cycloartenol (6), 24-methylene-cycloartenol (7) and lupeol (8). The determination of the position of the double bond after a reaction with Dimethyl disulfide (DMDS) is described for the phenol derivatives. The ethanolic extract was tested in vitro for antimicrobial activity by using the disc diffusion method and it showed significant results against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Shigella spp. (author)

  19. The role of hydration in enzyme activity and stability: 1. Water adsorption by alcohol dehydrogenase in a continuous gas phase reactor.

    Science.gov (United States)

    Yang, F; Russell, A J

    1996-03-20

    The adsorption of water by alcohol dehydrogenase from baker's yeast (YADH) has been measured in a continuous-flow gas reactor at varying temperatures. Adsorption isotherms in the presence of gaseous organic substrates are compared to those from organic-free gas mixtures. Almost no effect of the hydrophobic molecule on total water adsorption was observed. A rarely mentioned multilayer isotherm model from the 1930s, the Huttig's isotherm, has been found to fit the experimental data with extremely good accuracy. The model enables the calculation of both the heat of adsorption of water to the enzyme and the total amount of water necessary for monolayer coverage. The heat of adsorption of water in the first layer is approximately -16 kcal/mol. This tight binding of water, which is much higher than the heat of condensation of pure water, helps to explain the kinetic properties of YADH-catalyzed reactions on vapor phase substrates. While the monolayer coverage is temperature independent, the enzyme demonstrates hysteresis when transitioning between adsorption and desorption. The hysteresis observed in water sorption studies may also explain previously reported properties of the enzyme. (c) 1996 John Wiley & Sons, Inc.

  20. Reactive oxygen species (ROS) production triggered by prostaglandin D2 (PGD2) regulates lactate dehydrogenase (LDH) expression/activity in TM4 Sertoli cells.

    Science.gov (United States)

    Rossi, Soledad P; Windschüttl, Stefanie; Matzkin, María E; Rey-Ares, Verónica; Terradas, Claudio; Ponzio, Roberto; Puigdomenech, Elisa; Levalle, Oscar; Calandra, Ricardo S; Mayerhofer, Artur; Frungieri, Mónica B

    2016-10-15

    Reactive oxygen species (ROS) regulate testicular function in health and disease. We previously described a prostaglandin D2 (PGD2) system in Sertoli cells. Now, we found that PGD2 increases ROS and hydrogen peroxide (H2O2) generation in murine TM4 Sertoli cells, and also induces antioxidant enzymes expression suggesting that defense systems are triggered as an adaptive stress mechanism that guarantees cell survival. ROS and specially H2O2 may act as second messengers regulating signal transduction pathways and gene expression. We describe a stimulatory effect of PGD2 on lactate dehydrogenase (LDH) expression via DP1/DP2 receptors, which is prevented by the antioxidant N-acetyl-L-cysteine and the PI3K/Akt pathway inhibitor LY 294002. PGD2 also enhances Akt and CREB/ATF-1 phosphorylation. Our results provide evidence for a role of PGD2 in the regulation of the oxidant/antioxidant status in Sertoli cells and, more importantly, in the modulation of LDH expression which takes place through ROS generation and the Akt-CREB/ATF-1 pathway. PMID:27329155

  1. Rational Design of Benzylidenehydrazinyl-Substituted Thiazole Derivatives as Potent Inhibitors of Human Dihydroorotate Dehydrogenase with in Vivo Anti-arthritic Activity

    Science.gov (United States)

    Li, Shiliang; Luan, Guoqin; Ren, Xiaoli; Song, Wenlin; Xu, Liuxin; Xu, Minghao; Zhu, Junsheng; Dong, Dong; Diao, Yanyan; Liu, Xiaofeng; Zhu, Lili; Wang, Rui; Zhao, Zhenjiang; Xu, Yufang; Li, Honglin

    2015-01-01

    Human dihydroorotate dehydrogenase (hDHODH) is an attractive therapeutic target for the treatment of rheumatoid arthritis, transplant rejection and other autoimmune diseases. Based on the X-ray structure of hDHODH in complex with lead compound 7, a series of benzylidenehydrazinyl-substituted thiazole derivatives as potent inhibitors of hDHODH were designed and synthesized, of which 19 and 30 were the most potent with IC50 values in the double-digit nanomolar range. Moreover, compound 19 displayed significant anti-arthritic effects and favorable pharmacokinetic profiles in vivo. Further X-ray structure and SAR analyses revealed that the potencies of the designed inhibitors were partly attributable to additional water-mediated hydrogen bond networks formed by an unexpected buried water between hDHODH and the 2-(2-methylenehydrazinyl)thiazole scaffold. This work not only elucidates promising scaffolds targeting hDHODH for the treatment of rheumatoid arthritis, but also demonstrates that the water-mediated hydrogen bond interaction is an important factor in molecular design and optimization. PMID:26443076

  2. Comparing the impact of melatonin and captopril on early effects of radiation on the heart tissue by studying glutathione, malondialdehyde, and lactate dehydrogenase enzyme activity in rats

    International Nuclear Information System (INIS)

    Prevention of secondary malignancy while the patient is receiving radiotherapy for the management of primary cancer has been an enormous challenge for biological and medical safety. The aim of the study is to compare protective effects of melatonin and captopril on early effects of radiation on the heart tissue of rats. Forty-eight adult male Wistar rats weighing 180-220 g were used. The rats were divided into six groups and the rats were exposed to 8 Gy whole body dose from Cobalt-60 sources. Thirty minutes prior to irradiation, six animals received melatonin (100 mg/kg body weight), and six animals received captopril (50 mg/kg body weight). All groups were sacrificed 10 days post-irradiation, and hearts were collected. Malondialdehyde (MDA), lactate dehydrogenase (LDH), and glutathione (GSH) were measured to evaluate cellular oxidative stress-induced injury. The biochemical data are presented as mean ± standard error of the mean, and the difference between the groups was analyzed using a two-way variance analysis. Treatment with captopril resulted in a significant increase in LDH and MDA, although the level of GSH was decreased (P < 0.01). MDA and LDH levels were decreased after melatonin treatment while GSH level was increased (P < 0.001). Melatonin has protective effects following radiation, while treatment with captopril post-irradiation seems to be radiosensitizing and does not have protective effects against radiation exposure. (author)

  3. Multi-organ abnormalities and mTORC1 activation in zebrafish model of multiple acyl-CoA dehydrogenase deficiency.

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2013-06-01

    Full Text Available Multiple Acyl-CoA Dehydrogenase Deficiency (MADD is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxa(vu463 that has an inactivating mutation in the etfa gene. dxa(vu463 recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxa(vu463 zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxa(vu463 zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1 with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity.

  4. In Vivo Antioxidant Activity of Deacetylasperulosidic Acid in Noni

    Directory of Open Access Journals (Sweden)

    De-Lu Ma

    2013-01-01

    Full Text Available Deacetylasperulosidic acid (DAA is a major phytochemical constituent of Morinda citrifolia (noni fruit. Noni juice has demonstrated antioxidant activity in vivo and in human trials. To evaluate the role of DAA in this antioxidant activity, Wistar rats were fed 0 (control group, 15, 30, or 60 mg/kg body weight per day for 7 days. Afterwards, serum malondialdehyde concentration and superoxide dismutase and glutathione peroxidase activities were measured and compared among groups. A dose-dependent reduction in malondialdehyde was evident as well as a dose-dependent increase in superoxide dismutase activity. DAA ingestion did not influence serum glutathione peroxidase activity. These results suggest that DAA contributes to the antioxidant activity of noni juice by increasing superoxide dismutase activity. The fact that malondialdehyde concentrations declined with increased DAA dose, despite the lack of glutathione peroxidase-inducing activity, suggests that DAA may also increase catalase activity. It has been previously reported that noni juice increases catalase activity in vivo but additional research is required to confirm the effect of DAA on catalase. Even so, the current findings do explain a possible mechanism of action for the antioxidant properties of noni juice that have been observed in human clinical trials.

  5. Toxocara canis: Larvicidal activity of fatty acid amides.

    Science.gov (United States)

    Mata-Santos, Taís; D'Oca, Caroline da Ros Montes; Mata-Santos, Hílton Antônio; Fenalti, Juliana; Pinto, Nitza; Coelho, Tatiane; Berne, Maria Elisabeth; da Silva, Pedro Eduardo Almeida; D'Oca, Marcelo Gonçalves Montes; Scaini, Carlos James

    2016-02-01

    Considering the therapeutic potential of fatty acid amides, the present study aimed to evaluate their in vitro activity against Toxocara canis larvae and their cytotoxicity for the first time. Linoleylpyrrolidilamide was the most potent, with a minimal larvicidal concentration (MLC) of 0.05 mg/mL and 27% cytotoxicity against murine peritoneal macrophages C57BL/6 mice, as assessed by the MTT assay. PMID:26783180

  6. Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human large bowel: association of the functional polymorphisms of ADH and ALDH genes with hemorrhoids and colorectal cancer.

    Science.gov (United States)

    Chiang, Chien-Ping; Jao, Shu-Wen; Lee, Shiao-Pieng; Chen, Pei-Chi; Chung, Chia-Chi; Lee, Shou-Lun; Nieh, Shin; Yin, Shih-Jiun

    2012-02-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are principal enzymes responsible for metabolism of ethanol. Functional polymorphisms of ADH1B, ADH1C, and ALDH2 genes occur among racial populations. The goal of this study was to systematically determine the functional expressions and cellular localization of ADHs and ALDHs in human rectal mucosa, the lesions of adenocarcinoma and hemorrhoid, and the genetic association of allelic variations of ADH and ALDH with large bowel disorders. Twenty-one surgical specimens of rectal adenocarcinoma and the adjacent normal mucosa, including 16 paired tissues of rectal tumor, normal mucosae of rectum and sigmoid colon from the same individuals, and 18 surgical mixed hemorrhoid specimens and leukocyte DNA samples from 103 colorectal cancer patients, 67 hemorrhoid patients, and 545 control subjects recruited in previous study, were investigated. The isozyme/allozyme expression patterns of ADH and ALDH were identified by isoelectric focusing and the activities were assayed spectrophotometrically. The protein contents of ADH/ALDH isozymes were determined by immunoblotting using the corresponding purified class-specific antibodies; the cellular activity and protein localizations were detected by immunohistochemistry and histochemistry, respectively. Genotypes of ADH1B, ADH1C, and ALDH2 were determined by polymerase chain reaction-restriction fragment length polymorphisms. At 33mM ethanol, pH 7.5, the activity of ADH1C*1/1 phenotypes exhibited 87% higher than that of the ADH1C*1/*2 phenotypes in normal rectal mucosa. The activity of ALDH2-active phenotypes of rectal mucosa was 33% greater than ALDH2-inactive phenotypes at 200μM acetaldehyde. The protein contents in normal rectal mucosa were in the following order: ADH1>ALDH2>ADH3≈ALDH1A1, whereas those of ADH2, ADH4, and ALDH3A1 were fairly low. Both activity and content of ADH1 were significantly decreased in rectal tumors, whereas the ALDH activity remained

  7. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    OpenAIRE

    Fabrizio Anella; Christophe Danelon

    2014-01-01

    The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristol...

  8. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Directory of Open Access Journals (Sweden)

    Sergio Arrabal

    Full Text Available Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD, a flavoprotein component (E3 of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1, 14 days on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI, triosephosphate isomerase (TPI, enolase (Eno3, lactate dehydrogenase (LDHa, glyoxalase-1 (Glo1 and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  9. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Science.gov (United States)

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  10. Functional expression of a fragment of human dihydroorotate dehydrogenase by means of the baculovirus expression vector system, and kinetic investigation of the purified recombinant enzyme.

    Science.gov (United States)

    Knecht, W; Bergjohann, U; Gonski, S; Kirschbaum, B; Löffler, M

    1996-08-15

    Human mitochondrial dihydroorotate dehydrogenase (the fourth enzyme of pyrimidine de novo synthesis) has been overproduced by means of a recombinant baculovirus that contained the human cDNA fragment for this protein. After virus infection and protein expression in Trichoplusia ni cells (BTI-Tn-5B1-4), the subcellular distribution of the recombinant dihydroorotate dehydrogenase was determined by two distinct enzyme-activity assays and by Western blot analysis with anti-(dihydroorotate dehydrogenase) Ig. The targeting of the recombinant protein to the mitochondria of the insect cells was verified. The activity of the recombinant enzyme in the mitochondria of infected cells was about 740-fold above the level of dihydroorotate dehydrogenase in human liver mitochondria. In a three-step procedure, dihydroorotate dehydrogenase was purified to a specific activity of greater than 50 U/mg. Size-exclusion chromatography showed a molecular mass of 42 kDa and confirmed the existence of the fully active enzyme as a monomeric species. Fluorimetric cofactor analysis revealed the presence of FMN in recombinant dihydroorotate dehydrogenase. By kinetics analysis, Km values for dihydroorotate and ubiquinone-50 were found to be 4 microM and 9.9 microM, respectively, while Km values for dihydroorotate and decylubiquinone were 9.4 microM and 13.7 microM, respectively. The applied expression system will allow preparation of large quantities of the enzyme for structure and function studies. Purified recombinant human dihytdroorotate dehydrogenase was tested for its sensitivity to a reported inhibitor A77 1726 (2-hydroxyethyliden-cyanoacetic acid 4-trifluoromethyl anilide), which is the active metabolite of the isoxazole derivative leflunomide [5-methyl-N-(4-trifluoromethyl-phenyl)-4-isoxazole carboximide]. An IC50 value of 1 microM was determined for A77 1726. Detailed kinetics experiments revealed uncompetitive inhibition with respect to dihydroorotate (Kiu = 0.94 microM) and non

  11. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration.

    Science.gov (United States)

    Parmentier, S; Arnaut, F; Soetaert, W; Vandamme, E J

    2003-01-01

    D-Mannitol and D-sorbitol were produced enzymatically from D-fructose using NAD-dependent polyol dehydrogenases. For the production of D-mannitol the Leuconostoc mesenteroides mannitol dehydrogenase could be used. Gluconobacter oxydans cell extract contained however both mannitol and sorbitol dehydrogenase. When this cell extract was used, the reduction of D-fructose resulted in a mixture of D-sorbitol and D-mannitol. To determine the optimal bioconversion conditions the polyol dehydrogenases were characterized towards pH- and temperature-optimum and -stability. As a compromise between enzyme activity and stability, the bioconversion reactions were performed at pH 6.5 and 25 degrees C. Since the polyol dehydrogenases are NADH-dependent, an efficient coenzyme regeneration was needed. Regeneration of NADH was accomplished by formate dehydrogenase-mediated oxidation of formate into CO2.

  12. Determination of estradiol, estrone and progesterone in serum and human endometrium in correlation to the content of steroid receptors and 17β-hydroxysteroid dehydrogenase activity during menstrual cycle

    International Nuclear Information System (INIS)

    A study has been carried out to compare the influence of estradiol estrone and progesterone on the estradiol and progesterone receptor levels and 17β-hydroxysteroid dehydrogenase (17β-HSD) activity in human endometrium. The steroid hormone concentrations were measured simultaneously in both serum and endometrial tissue. The estradiol receptor levels were highest during the early proliferative phase and were inversely correlated to the endometrial tissue and serum concentrations of estradiol and progesterone. The highest progesterone binding capacity was found in endometrical cytosol during the late proliferative phase (midcycle) of the menstrual cycle. The midcycle peak of the progesterone receptor level correlated well with the first peak of the serum and tissue concentrations of estradiol. During,the luteal phase, in contrast to the proliferative phase, the progesterone receptor level decreased whereas serum progesterone concentrations were high. Estrone concentrations were higher in secretory than proliferative endometrium and were correlated to the increase of progesterone receptor content and 17β-HSD activity during early secretory phase. The 17β-HSD activity was approximately 10-fold higher during the early secretory than during the proliferative phase. The progesterone receptor level was highly correlated to the specific 17β-HSD activity of the microsomal fraction whereas a significant inverse correlation between the enzyme activity and the estradiol receptor level was observed. (orig.)

  13. Transcriptional Regulation of Pyruvate Dehydrogenase Kinase

    Directory of Open Access Journals (Sweden)

    Ji Yun Jeong

    2012-10-01

    Full Text Available The pyruvate dehydrogenase complex (PDC activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally regulated still remains unclear. Insulin represses the expression of PDK2 and PDK4 via phosphorylation of FOXO through PI3K/Akt signaling pathway. Several nuclear hormone receptors activated due to fasting or increased fat supply, including peroxisome proliferator-activated receptors, glucocorticoid receptors, estrogen-related receptors, and thyroid hormone receptors, also participate in the up-regulation of PDK2 and PDK4; however, the endogenous ligands that bind those nuclear receptors have not been identified. It has been recently suggested that growth hormone, adiponectin, epinephrine, and rosiglitazone also control the expression of PDK4 in tissue-specific manners. In this review, we discuss several factors involved in the expressional regulation of PDK2 and PDK4, and introduce current studies aimed at providing a better understanding of the molecular mechanisms that underlie the development of metabolic diseases such as diabetes.

  14. Transcriptional regulation of pyruvate dehydrogenase kinase.

    Science.gov (United States)

    Jeong, Ji Yun; Jeoung, Nam Ho; Park, Keun-Gyu; Lee, In-Kyu

    2012-10-01

    The pyruvate dehydrogenase complex (PDC) activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK) isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally regulated still remains unclear. Insulin represses the expression of PDK2 and PDK4 via phosphorylation of FOXO through PI3K/Akt signaling pathway. Several nuclear hormone receptors activated due to fasting or increased fat supply, including peroxisome proliferator-activated receptors, glucocorticoid receptors, estrogen-related receptors, and thyroid hormone receptors, also participate in the up-regulation of PDK2 and PDK4; however, the endogenous ligands that bind those nuclear receptors have not been identified. It has been recently suggested that growth hormone, adiponectin, epinephrine, and rosiglitazone also control the expression of PDK4 in tissue-specific manners. In this review, we discuss several factors involved in the expressional regulation of PDK2 and PDK4, and introduce current studies aimed at providing a better understanding of the molecular mechanisms that underlie the development of metabolic diseases such as diabetes. PMID:23130316

  15. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  16. Oxidation of Exogenous Lactate by Lactate Dehydrogenase C in the Midpiece of Rat Epididymal Sperm is Essential for Motility and Oxidative Activity

    Directory of Open Access Journals (Sweden)

    Hideaki Yamashiro

    2009-01-01

    Full Text Available Problem statement: To identify the metabolic reaction-glycolysis or oxidative phosphorylation that is mainly involved in the production of energy required for rat sperm mobilization. Approach: Epididymal sperm were collected from Wistar rats and extended in lactate-containing or lactate-free raffinose-modified Krebs-Ringer Bicarbonate solution (mKRB-egg yolk medium supplemented with 0, 1, 2, or 3 mM 2-Deoxy-D-Glucose (2 DG and 1, 2, or 3 mM sodium Oxamate (OX. Sperm motility, straight-line velocity (VSL and oxygen consumption were evaluated. Further, immunofluorescent localization of Lactate Dehydrogenase C (LDH-C in sperm was also performed. Results: Low concentrations of 2DG (1 and 2 mM did not significantly affect motility, VSL and oxygen consumption of sperm extended in the lactate-containing medium. While sperm motility and oxygen consumption were significantly inhibited by even 1mM 2DG in sperm extended in lactate-free medium. Sperm motility significantly inhibited in the case of sperm extended in lactate-containing and free-medium with 1 mM OX. We also found that sperm motility was not maintained in the absence of lactate throughout the 3 h incubation period. Immunofluorescence study revealed that mainly LDH-C was may be localized in the intramitochondrial region of the sperm. Conclusion: These results suggest that exogenous lactate enhances lactate oxidation by LDH-C, thereby promoting mitochondrial oxidative reactions in the midpiece and maintaining the mobilization of rat epididymal sperm.

  17. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury

    OpenAIRE

    de Reggi Max; Nieoullon André; Khrestchatisky Michel; Abou-Hamdan Mhamad; Cornille Emilie; Gharib Bouchra

    2010-01-01

    Abstract Background The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasi...

  18. Influence of ethylenediamine-n,n’-disuccinic acid (EDDS) concentration on the bactericidal activity of fatty acids in vitro

    Science.gov (United States)

    The antibacterial activity of mixtures of ethylenediamine-N,N’-disuccinic acid (EDDS) and antibacterial fatty acids (FA) was examined using the agar diffusion assay. Solutions of caproic, caprylic, capric, and lauric acids dissolved in potassium hydroxide (KOH) were supplemented with 0, 5, or 10 mM ...

  19. Human liver alcohol dehydrogenase. 2. The primary structure of the gamma 1 protein chain.

    Science.gov (United States)

    Bühler, R; Hempel, J; Kaiser, R; de Zalenski, C; von Wartburg, J P; Jörnvall, H

    1984-12-17

    The primary structure of the gamma 1 subunit of human liver alcohol dehydrogenase isoenzyme gamma 1 gamma 1 was deduced by characterization of 36 tryptic and 2 CNBr peptides. The polypeptide chain is composed of 373 amino acid residues. gamma 1 differs from the beta 1 subunit of human liver alcohol dehydrogenase at 21 positions, and from the E subunit of horse liver alcohol dehydrogenase at 43 positions including a gap at position 128 as in the beta 1 subunit. All zinc-liganding residues from the E subunit of the horse protein and the beta 1 subunit of the human enzyme are conserved, but like beta 1, gamma 1 also has an additional cysteine residue at position 286 (in the positional numbering system of the horse enzyme) due to a Tyr----Cys exchange. Most amino acid exchanges preserve the properties of the residues affected and are largely located on the surface of the molecules, away from the active site and the coenzyme binding region. However, eight positions with charge differences in relation to the E subunit of the horse enzyme are noticed. These result in a net positive charge increase of one in gamma 1 versus E, explaining the electrophoretic mobilities on starch gels. Of functional significance is the conservation of Ser-48 in gamma 1 relative to E. The residue is close to the active site but different (Thr-48) in the beta 1 subunit of the human enzyme. Thus, the closer structural relationship between human gamma 1 and horse E enzyme subunit than between beta 1 and E is also reflected in functionally important residues, explaining a greater similarity between gamma 1 gamma 1 and EE than between beta 1 beta 1 and EE. PMID:6391921

  20. Deciphering molecular mechanism underlying hypolipidemic activity of echinocystic Acid.

    Science.gov (United States)

    Han, Li; Lai, Peng; Du, Jun-Rong

    2014-01-01

    Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA) and oleanolic acid (OA) at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0) to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, acyl-CoA:cholesterol acyltransferase (ACAT), and diacylglycerol acyltransferase (DGAT) in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139  μ M, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT. PMID:24669228

  1. Deciphering Molecular Mechanism Underlying Hypolipidemic Activity of Echinocystic Acid

    Directory of Open Access Journals (Sweden)

    Li Han

    2014-01-01

    Full Text Available Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA and oleanolic acid (OA at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0 to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, acyl-CoA:cholesterol acyltransferase (ACAT, and diacylglycerol acyltransferase (DGAT in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139 μM, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT.

  2. Glucose-6-Phosphate Dehydrogenase Deficiency Overview

    Science.gov (United States)

    ... Drugs GARD Information Navigator FAQs About Rare Diseases Glucose-6-phosphate dehydrogenase deficiency Title Other Names: G6PD ... G6PD deficiency Categories: Newborn Screening Summary Summary Listen Glucose 6 phosphate dehydrogenase (G6PD) deficiency is a hereditary ...

  3. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S;

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially lethal inherited defect in the beta-oxidation of fatty acids. By comparing the behaviour of five missense MCAD mutant proteins expressed in COS cells and in Escherichia coli, we can define some of these as "pure folding mutants......." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  4. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions

    Science.gov (United States)

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  5. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA in Groundwater under Acidic Conditions

    Directory of Open Access Journals (Sweden)

    Penghua Yin

    2016-06-01

    Full Text Available Perfluorooctanoic acid (PFOA is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C, persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH. The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs.

  6. RESEARCH ON THE INFLUENCE OF H+ IONS CONCENTRATION ON THE DYNAMICS OF THE ACTIVITIES OF CERTAIN DEHYDROGENASES OF THE KREBS CYCLE IN THE MONILINIA LAXA (ADERH. & RUHL. HONEY FUNGUS PARASITIC ON PLUM TREES

    Directory of Open Access Journals (Sweden)

    Tutu Elena

    2010-09-01

    Full Text Available During the process of nutrition, thus in that of their growth, microorganisms are subject to the influences of certain environmental factors that condition the microbial activity determining either the growth and reproduction, or the inhibition of activity and the inactivation of microorganisms. A well known means of expressing the H+ ions concentration in a certain environment is the pH, an important chemical factor that is closely observed when growing ascomycetes, for any alteration of its value entails conformational alterations of their enzymes, the characteristics of the substrate, such that they can no longer interact with the active site of the enzyme or be subject to catalysis. The present study comprises the results of our research on certain oxidoreductase implied in the steps of the Krebs cycle in the Monilinia laxa (Aderh.&Ruhl. Honey, a fungus that parasites the prune. The enzymatic determinations took place at 7 and 14 days from the mycelium of the fungus cultivated in Leonian media, whose pH was adjusted to values between 2.0 and 9.0 by using NaOH 1N and HCl 0,1N solutions. We registered different values of the dehydrogenasic activity, directly correlated with the physiological condition of the fungus (given its age and with the initial pH value of the culture’s environment.

  7. 重组NADH氧化酶对乳酸脱氢酶乳酸氧化活性的影响%Effects of Recombinant NADH Oxidase on the Lactate Oxidation Activity of Lactate Dehydrogenase

    Institute of Scientific and Technical Information of China (English)

    赵蕊; 霍贵成

    2013-01-01

    [目的]考察当存在其他利用NADH途径时,发酵型乳酸脱氢酶(lactate dehydrogenase,LDH)催化乳酸氧化能力的改变.[方法]PCR扩增乳酸乳球菌(Lactococcus lactis,L.lactis)中生成H2O的NADH氧化酶基因noxE,将其连接至表达载体并在大肠杆菌中过量表达;对亲和纯化的产物进行SDS-PAGE分析、光谱扫描和活性测定,考察纯化产物是否具有生物学活性;以2,4-二硝基苯肼法测定乳酸脱氢酶的乳酸氧化活性,考察添加NoxE重组蛋白对其活性的影响.[结果]重组NoxE蛋白是种黄素蛋白,具明显的生物学活性,说明noxE表达载体构建成功;添加NoxE后,LDH的乳酸氧化活性提高了3.84倍.[结论]在NADH经呼吸链代谢掉的生理条件下,LDH催化乳酸氧化的能力会明显提高.%[ Objective] To compare the lactate oxidation activity of lactate dehydrogenase (LDH) in the presence and absence of another NADH utilization pathway. [Method] The H2O-producing NADH oxidase gene (noxE) was cloned by PCR from Lactococcws lactis genome, ligated into the expression vector and expressed in E. coli. After affinity purification, the recombinant protein was analyzed by SDS-PAGE, UV-vis absorption spectrum and determination of enzyme activity. 2,4-Dinitrophenylhydrazine was used to evaluate the effect of NoxE addition on the lactate oxidation activity of LDH. [Result]NoxE was purified as a flavin protein with significant activity. When NoxE was added, the lactate oxidation activity of LDH was increased 3.84-fold. [ Conclusion]The lactate oxidation capacity of LDH will be significantly increased under physical conditions where NADH can be consumed via respiration chain.

  8. Specific biotinylation of IMP dehydrogenase

    OpenAIRE

    Hoefler, B. Christopher; Gollapalli, Deviprasad R.; Hedstrom, Lizbeth

    2011-01-01

    IMP dehydrogenase (IMPDH) catalyzes a critical step in guanine nucleotide biosynthesis. IMPDH also has biological roles that are distinct from its enzymatic function. We report a biotin-linked reagent that selectively labels IMPDH and is released by dithiothreitol. This reagent will be invaluable in elucidating the moonlighting functions of IMPDH.

  9. Synthesis and Insecticidal Activities of Novel Phthalic Acid Diamides

    Institute of Scientific and Technical Information of China (English)

    闫涛; 李玉新; 李永强; 王多义; 陈伟; 刘卓; 李正名

    2012-01-01

    In order to discover novel insecticides with the new action mode on ryanodine receptor (RyR), a series of novel phthalic acid diamide derivatives were designed and synthesized. All compounds were characterized by 1H NMR spectra and HRMS. The preliminary results of biological activity assessment indicated that some title compounds exhibited excellent insecticidal activities against Mythimna separata, Spodoptera exigua, and Plutella xylostella. The title compound 3-nitro-N-cyclopropyl-N'-[2-methyl-4-(perfluoropropan-2-yl)phenyl]phthalamidte (4a) was more efficient against diamondback moths than the control (chlorantraniliprole). The effects of some title compounds on intracellular calcium of neurons from the Spodoptera exigua proved that the title compounds were RyR activators.

  10. Spinal Fluid Lactate Dehydrogenase Level Differentiates between Structural and Metabolic Etiologies of Altered Mental Status in Children

    Directory of Open Access Journals (Sweden)

    Nahid KHOSROSHAHI

    2015-01-01

    mortality after hemispheric ischemic stroke. Crit care med 2004; 32: 241-5.Teasdale G, Jennett B. Assessment of coma and impaired consciousness: a practical scale. Lancet 1974; 2: 81-4.Wityk RJ, Stern BJ. Ischemic stroke: today and tomorrow. Crit care med 1994; 22: 1278-93.Vázquez Jorge Alejandro, Adducci Maria del Carmen, Monzón Daniel Godoy, Iserson Kenneth V. Lactic dehyrogenase in cerebrospinal fluid may differentiate between structural and non-strucfiular central nervous system lesion in patient with diminished levels of consciousness. The Journal of Emergency Medicine2009; 37(1: 93–97.Kärkelä J, Pasanen M, Kaukinen S, Mörsky P, Harmoinen A. Evaluation of hypoxic brain injury with spinal fluid enzymes, lactate, and pyruvate. Crit Care Med. 1992 Mar; 20(3:378-86. 2007: pp. 835. ISBN 0-7817-7087-4.DV Kamat, BP Chakravorty. Comparative values of CSF-LDH isoenzymes in neurological disorders. Indian Journal of Medical Sciences 1999; 53 (1: 1-6.Pollak AN, Gupton CL. Emergency Care and Transportation of the Sick and Injured. Boston: Jones and Bartlett 2002: pp. 140. ISBN 0-7637-1666-9.Nayak BS, Bhat R. Cerebrospinal fluid lactate dehydrogenase and glutamine in meningitis. Indian J Physiol Pharmacol. 2005 Jan; 49(1:108-10.A Twijnstra, A P van Zanten, A A Hart, et al. al. Serial lumbar and ventricle cerebrospinal fluid lactate dehydrogenase activities in patients with leptomeningeal metastases from solid and haematological tumours. J Neurol Neurosurg Psychiatry 1987 50: 313-320.Nussinovitch M, Finkelstein Y, Politi K, Harel D, Klinger G, Razon Y, Nussinovitch U, Nussinovitch N. Cerebrospinal fluid lactate dehydrogenase isoenzymes in children with bacterial and aseptic meningitis. Translational Research 2009. 154 (4: 214-218.Feldman William E. Cerebrospinal Fluid Lactic Acid Dehydrogenase Activity. Levels in Untreated and Partially Antibiotic-Treated Meningitis. Am J Dis Child. 1975; 129(1: 77-80.Lutsar I, Haldre S, Topman M, Talvik T. Enzymatic changes in the

  11. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Science.gov (United States)

    2010-04-01

    ... assay. 864.7360 Section 864.7360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  12. Enzyme Activities in Perfluorooctanoic Acid (PFOA)-Polluted Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; LIN Kuang-Fei; YANG Sha-Sha; ZHANG Meng

    2013-01-01

    Perfluorooctanoic acid (PFOA) is a popular additive of the chemical industry; its effect on activities of important soil enzymes is not well understood.A laboratory incubation experiment was carried out to analyze the PFOA-induced changes in soil urease,catalase,and phosphatase activities.During the entire incubation period,the activities of the three soil enzymes generally declined with increasing PFOA concentration,following certain dose-response relationships.The values of EC10,the contaminant concentration at which the biological activity is inhibited by 10%,of PFOA for the soil enzyme activity calculated from the modeling equation of the respective dose-response curve suggested a sensitivity order of phosphatase > catalase > urease.The effect of PFOA on soil enzyme activities provided a basic understanding of the eco-toxicological effect of PFOA in the environment.Results of this study supported using soil phosphatase as a convenient biomarker for ecological risk assessment of PFOA-polluted soils.

  13. Lactic Acid is Elevated in Idiopathic Pulmonary Fibrosis and Induces Myofibroblast Differentiation Via pH-Dependent Activation of Transforming Growth Factor-β

    Energy Technology Data Exchange (ETDEWEB)

    Kottman, R. M.; Kulkarni, Ajit A.; Smolnycki, Katie A.; Lyda, Elizabeth; Dahanayake, Thinesh; Salibi, Rami; Honnons, Sylvie; Jones, Carolyn; Isern, Nancy G.; Hu, Jian Z.; Nathan, Steven D.; Grant, Geraldine; Phipps, Richard P.; Sime, Patricia J.

    2012-10-15

    Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex disease for which the pathogenesis is poorly understood. In this study, we identified lactic acid as a metabolite that is elevated in the lung tissue of patients with IPF. Objectives: This study examines the effect of lactic acid on myofibroblast differentiation and pulmonary fibrosis. Methods:We used metabolomic analysis to examine cellular metabolism in lung tissuefrom patients with IPFanddeterminedthe effects of lactic acid and lactate dehydrogenase-5 (LDH5) overexpression on myofibroblast differentiation and transforming growth factor (TGF)-b activation in vitro. Measurements and Main Results: Lactic acid concentrations from healthy and IPF lung tissue were determined by nuclear magnetic resonance spectroscopy; a-smooth muscle actin, calponin, and LDH5 expression were assessed by Western blot of cell culture lysates. Lactic acid and LDH5 were significantly elevated in IPF lung tissue compared with controls. Physiologic concentrations of lactic acid induced myofibroblast differentiation via activation of TGF-b. TGF-b induced expression of LDH5 via hypoxia-inducible factor 1a (HIF1a). Importantly, overexpression of both HIF1a and LDH5 in human lung fibroblasts induced myofibroblast differentiation and synergized with low dose TGF-b to induce differentiation. Furthermore, inhibition of both HIF1a and LDH5 inhibited TGF-b–induced myofibroblast differentiation. Conclusions: We have identified the metabolite lactic acid as an important mediator of myofibroblast differentiation via a pHdependent activation of TGF-b. We propose that the metabolic milieu of the lung, and potentially other tissues, is an important driving force behind myofibroblast differentiation and potentially the initiation and progression of fibrotic disorders.

  14. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  15. Kinetics of salicylic acid adsorption on activated carbon.

    Science.gov (United States)

    Polakovic, Milan; Gorner, Tatiana; Villiéras, Frédéric; de Donato, Philippe; Bersillon, Jean Luc

    2005-03-29

    The adsorption and desorption of salicylic acid from water solutions was investigated in HPLC microcolumns packed with activated carbon. The adsorption isotherm was obtained by the step-up frontal analysis method in a concentration range of 0-400 mg/L and was well fitted with the Langmuir equation. The investigation of rate aspects of salicylic acid adsorption was based on adsorption/desorption column experiments where different inlet concentrations of salicylic acid were applied in the adsorption phase and desorption was conducted with pure water. The concentration profiles of individual adsorption/desorption cycles data were fitted using several single-parameter models of the fixed-bed adsorption to assess the influence of different phenomena on the column behavior. It was found that the effects of axial dispersion and extraparticle mass transfer were negligible. A rate-determining factor of fixed-bed column dynamics was the kinetics of pore surface adsorption. A bimodal kinetic model reflecting the heterogeneous character of adsorbent pores was verified by a simultaneous fit of the column outlet concentration in four adsorption/desorption cycles. The fitted parameters were the fraction of mesopores and the adsorption rate constants in micropores and mesopores, respectively. It was shown that the former rate constant was an intrinsic one whereas the latter one was an apparent value due to the effects of pore blocking and diffusional hindrances in the micropores. PMID:15779975

  16. Histochemical activity of 5-4-isomerase-3-B hydroxy steroid dehydrogenase in the ovary of the viviparous mexican lizardSceloporus mucronatus (Reptilia:Prhynosomatidae) and interelationship with progesterone levels during pregnancy

    Institute of Scientific and Technical Information of China (English)

    Martn Martnez-torres; E Martha Prez-armendariz; M Elena Hernndez Caballero; Juana luis; guadalupe ortz-Lpez

    2012-01-01

    Objective:To relate the histological characteristics and histochemicalΔ5-4-isomerase-3 beta hydroxy steroid dehydrogenase(Δ5-43β-HSD) activity of the corpora lutea(CL) and the atresic vitellogenic follicles(AVF) with progesterone(P4) plasma concentrations in three different times of gestation (early, medium and late) in the viviparous lizardSceloporus mucronatus (S. mucronatus).Methods:The histological characteristics as well as histochemical activity ofΔ5-43β-HSD of theCL andAVF and their relationship with plasmaP4 levels were studied during three different times of pregnancy of the viviparous lizardS. mucronatus.Results:Corpora lutea develops during the first third of gestation.In second third, the luteal tissue reaches maturity and starts the first regressive changes.The last third of gestation was characterized by a considerably advance in the luteolysis.Activity ofΔ5-43β-HSD was observed in he luteal cell mas.The activity of this enzyme were high during the first third and scantle activity was detected in the last third.Even though atresic vitellogenic follicles are found throughout the whole period of gestation,Δ5-43β-HSD activity is very low in relation with showed byCL and does not change significantly in the studied period of time.Another hand, we observed a direct relationship among the histological aspect of the corpus luteum,Δ5-43β-HSD activity and progesterone levels. Conclusions:These observations suggests that the corpus luteum is the most important source of ovarian progesterone(P4) during pregnancy and that the participation of theAVF in the production of this hormone is little or non-existent.

  17. Improvement of L(+)-Lactic Acid Production of Rhizopus Oryzae by Low-Energy Ions and Analysis of Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    GE Chunmei; YANG Yingge; FAN Yonghong; LI Wen; PAN Renrui; ZHENG Zhiming; YU Zengliang

    2008-01-01

    The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8 × 104 ~ 2.08 × 105 ions/cm2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily,Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was Changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.

  18. Untangling the glutamate dehydrogenase allosteric nightmare.

    Science.gov (United States)

    Smith, Thomas J; Stanley, Charles A

    2008-11-01

    Glutamate dehydrogenase (GDH) is found in all living organisms, but only animal GDH is regulated by a large repertoire of metabolites. More than 50 years of research to better understand the mechanism and role of this allosteric network has been frustrated by its sheer complexity. However, recent studies have begun to tease out how and why this complex behavior evolved. Much of GDH regulation probably occurs by controlling a complex ballet of motion necessary for catalytic turnover and has evolved concomitantly with a long antenna-like feature of the structure of the enzyme. Ciliates, the 'missing link' in GDH evolution, might have created the antenna to accommodate changing organelle functions and was refined in humans to, at least in part, link amino acid catabolism with insulin secretion.

  19. Activity of capryloyl collagenic acid against bacteria involved in acne.

    Science.gov (United States)

    Fourniat, J; Bourlioux, P

    1989-12-01

    Synopsis Capryloyl collagenic acid (Lipacide C8Co) has similar bacteriostatic activity in vitro to that of benzoyl peroxide towards the bacteria found in acne lesions (Staphylococcus aureus, Staphylococcus epidermidis and Propionibacterium acnes) (MIC between 1 and 4 mg ml(-1) for C8Co, and between 0.5 and 5 mg ml(-1) for benzoyl peroxide). The presence of Emulgine M8 did not affect the bacteriostatic activity of C8Co. A 4% w/v solution of C8Co (incorporating Emulgine M8) fulfilled the criteria for an antiseptic preparation as laid down by the French Pharmacopoeia (10th Edition), and had a spectrum 5 bactericidal activity according to the French Standard AFNOR NF T 72-151. The excellent cutaneous tolerance of capryloyl collagenic acid would indicate that an aqueous solution might be of value for topical treatment of the bacterial component of acne. Résumé Activité antibactérienne de l'acide capryloyl-collagénique vis à vis des bactéries impliquées dans l'etiologie de l'acné L'acide capryloyl-collagénique (Lipacide C8Co) et le peroxyde de benzoyle présentent une activité bactériostatique in-vitroéquivalente vis à vis des espèces bactériennes retrouvées au niveau des lésions acnéiques (Staphylococcus aureus, S. epidermidis et Propionibacterium acnes) (CMI comprise entre 1 et 4 mg ml(-1) pour le lipoaminoacide, et 0,5 et 5 mg ml(-1) pour le peroxyde de benzoyle). La mise en solution aqueuse de l'acide capryloyl-collagénique en présence d'Emulgine M8 ne modifie pas son activité bactériostatique. Une telle solution, à 4% m/V d'acide capryloyl-collagénique et 5% m/V d'Emulgine M8, satisfait à l'essai d'activité des préparations antiseptiques décrit à la Pharmacopée Française (Xème Ed.) (concentration minimale antiseptique: 10% v/V, pour un temps de contact de 5 min à 32 degrees C entre les germes tests et la solution diluée en eau distillée), et posséde une activité bactéricide antiseptique spectre 5 conforme à la norme AFNOR NF T

  20. Characterization of acid sphingomyelinase activity in human cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Christiane Mühle

    Full Text Available BACKGROUND: As a key enzyme in sphingolipid metabolism, acid sphingomyelinase (ASM is involved in the regulation of cell fate and signaling via hydrolysis of sphingomyelin to form ceramide. While increased activity of the lysosomal form has been associated with various pathological conditions, there are few studies on secretory ASM limited only to cell models, plasma or serum. METHODS: An optimized assay based on a fluorescent substrate was applied to measure the ASM activity in cerebrospinal fluid (CSF collected from mice and from 42 patients who were classified as controls based on normal routine CSF values. RESULTS: We have detected ASM activity in human CSF, established a sensitive quantitative assay and characterized the enzyme's properties. The enzyme resembles plasmatic ASM including protein stability and Zn(2+-dependence but the assays differ considerably in the optimal detergent concentration. Significantly increased activities in the CSF of ASM transgenic mice and undetectable levels in ASM knock-out mice prove that the measured ASM activity originates from the ASM-encoding gene SMPD1. CSF localized ASM activities were comparable to corresponding serum ASM levels at their respective optimal reaction conditions, but no correlation was observed. The large variance in ASM activity was independent of sex, age or analyzed routine CSF parameters. CONCLUSIONS: Human and mouse CSF contain detectable levels of secretory ASM, which are unrelated to serum ASM activities. Further investigations in humans and in animal models will help to elucidate the role of this enzyme in human disease and to assess its value as a potential biomarker for disease type, severity, progress or therapeutic success.

  1. Effects of thioglycolic acid on parthenogenetic activation of Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Zhuoran Wang

    Full Text Available BACKGROUND: Existing in Permanent-wave solutions (PWS, thioglycolic acid (TGA is widely used in hairdressing industry for its contribution to hair styling. However, the toxicity of TGA, especially its reproductive toxicity, gradually calls the attention of more and more researchers. METHOD: In this work, xenopus oocytes were pretreated with different concentration of TGA, and then activated by calcium ionophore A23187. During culture, the oocytes activation rates were taken note at different time after adding calcium ionophore A23187. At the end of the culture period, the nuclear status was detected under confocal microscope. In addition, some other samples were collected for Western-Blotting analysis. RESULT: TGA significantly inhibited the oocytes activation rate and pronuclear formation. It may be resulted from the inhibition of the degradation of p-ERK1, Mos and CyclinB2. CONCLUSION: TGA inhibits in vitro parthenogenetic activation of xenopus oocytes with inhibited the degradation of proteins involved in mitogenic-activated protein kinase (MAPK and maturation-promoting factor (MPF pathways.

  2. Analysis on the Dehydrogenase Activity in Cold-resistant Bacteria in the Processor of Low-temperature Wastewater%低温污水处理器中耐冷菌脱氢酶活性分析

    Institute of Scientific and Technical Information of China (English)

    姜明; 郭立萍; 曲艳娇; 曹振岭; 韩晓云

    2009-01-01

    [Objective] The aim was to supply technical support for solving the problem that the sewage was difficult to dispose in north China in winter. [Method] The influences of pH value, temperature and time on the dehydrogenase activity in 8 strains of cold-resistant bacteria isolated, purified and identified from low-temperature biofilm were analyzed by TTC method. [Result] The optimum pH value of the strains S1, S4, S5, S7 and S8 at both optimum temperature and 4 ℃ was 7.5 and that of the other 3 strains at the 2 temperatures were different, but they were in the range of 7.5-8.5. The optimum reaction temperature of the strains S1, S3, S4, S5 and S6 was 30 ℃ and that of the strains S2, S7 and S8 was 20 ℃. Except for the strain S3, the optimum reaction time of the other strains at 4 ℃ was longer than their optimum reaction time at optimum reaction temperature. At 4 ℃, the optimum pH values of the strains S3, S4 and S6 were 8.5, 7.5 and 8.0 resp., their optimum reaction time were 0.6, 12.0 and 0.5 h resp. and their highest dehydrogenase activities were 7.19, 6.73 and 7.70 mg(TF)/g(SS) resp. [Conclusion] The dehydrogenase activities of the strains S3, S4 and S6 were higher and they were suitable to be used in processing low-temperature sewage.%[目的]为解决我国北方冬季污水处理困难的问题提供技术支持.[方法]运用TTC法分析了pH值、温度和时间对从低温生物膜中分离纯化鉴定得到8株耐冷菌中脱氢酶活性的影响.[结果]菌株S1、S4、S5、S7和S8在最适温度和4 ℃下的最适pH值都是7.5,其他3株菌在2种温度下的最适pH值不同,但都在7.5~8.5的范围内.菌株S1、S3、S4、S5和S6的最适反应温度为30 ℃,菌株S2、S7和S8的最适反应温度为20 ℃.除菌株S3外,其余菌株在4 ℃下的最适反应时间比最适反应温度下的长.在4 ℃下,菌株S3、S4和S6的最适pH值和最适反应时间分别为8.5和0.6 h、7.5和12.0 h、8.0和0.5 h,其最

  3. 殊异韦荣菌中乳酸脱氢酶重组蛋白的表达、纯化及活性分析%The recombinant expression, purification and activity analysis of lactate dehydrogenase in Veillonella dispar

    Institute of Scientific and Technical Information of China (English)

    何钟勤; 钟丞; 高心; 薛莹; 孙晓宇; 刘晓红

    2012-01-01

    Objective To determine dependence lactate dehydrogenase activity in Veillonella dispar.Methods Transformed the recombinant plasmid pET-28a-LDH in BL21 (DE3) and Rosetta(DE3).Recombinant lactate dehydrogenase(LDH) protein was induced at different conditions.Induction condition was optimized to obtain proper yield of recombinant protein.After purification by HisTRAP FF column,the protein activity was determined with LDH reactive kit.Results Sodium dodecylsulfate-polyacrylamide gel electrophoresis showed that the best protein expression conditions were isopropylthio-β-D-galactoside (IPTG)end for 0.4 mmol/L concentration in 30 degrees to induce 8 hours,or IPTG end for 0.4 mmol/L concentration in 30 degrees to induce 6 hours.Through the analysis of BandScan 5.0,the expression in BL21 (DE3) was 9.0%,higher than 6.1% in Rosetta(DE3).After purification by HisTRAP FF column,the protein active value of 13.79.Conclusions Recombinant LDH protein could be induced by IPTG with an optimal condition.%目的 进一步测定殊异韦荣菌中依赖性乳酸脱氢酶(lactate dehydrogenase,LDH)的活性,以期为研究该酶的具体功能及作用机制奠定基础,并为龋病预防和治疗提供新的思路.方法 重组质粒转入大肠杆菌BL21(DE3)和Rosetta(DE3)中,采用不同时间及6种不同浓度的异丙基硫代-β-D-半乳糖苷(isopropyhhio-β-D-galactoside,IPTG)诱导乳酸脱氢酶蛋白表达,选择最佳条件诱导LDH蛋白表达.并经His-标记蛋白纯化柱(HisTRAP FF柱)提纯,用LDH活性试剂盒测定蛋白活性.结果 pET-28a-LDH转入BL21(DE3)和Rosetta(DE3)中十二烷基硫酸钠-聚丙烯酰胺凝胶电泳显示最适表达条件分别为IPTG终浓度0.4 mmol/L、30℃诱导8h,IPTG终浓度0.4 mmol/L、30 ℃诱导6h.经BandScan 5.0软件分析,pET-28a-LDH质粒转化BL21(DE3)表达相对含量为9.0%,高于Rosetta(DE3)的6.1%;LDH活性试剂盒测定的蛋白活性值为13.79.结论 本项研究获得了LDH蛋白的最适诱导条

  4. Antithrombotic activities of ferulic acid via intracellular cyclic nucleotide signaling.

    Science.gov (United States)

    Hong, Qian; Ma, Zeng-Chun; Huang, Hao; Wang, Yu-Guang; Tan, Hong-Ling; Xiao, Cheng-Rong; Liang, Qian-De; Zhang, Han-Ting; Gao, Yue

    2016-04-15

    Ferulic acid (FA) produces protective effects against cardiovascular dysfunctions. However, the mechanisms of FA is still not known. Here we examined the antithrombotic effects of FA and its potential mechanisms. Anticoagulation assays and platelet aggregation was evaluated in vitro and in vivo. Thromboxane B2 (TXB2), cyclic adenosine monophosphate(cAMP), and cyclic guanosine monophosphate (cGMP) was determined using enzyme immunoassay kits. Nitric oxide (NO) production was measured using the Griess reaction. Protein expression was detected by Western blotting analysis. Oral administration of FA prevented death caused by pulmonary thrombosis and prolonged the tail bleeding and clotting time in mice,while, it did not alter the coagulation parameters, including the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). In addition, FA (50-200µM) dose-dependently inhibited platelet aggregation induced by various platelet agonists, including adenosine diphosphate (ADP), thrombin, collagen, arachidonic acid (AA), and U46619. Further, FA attenuated intracellular Ca(2)(+) mobilization and TXB2 production induced by the platelet agonists. FA increased the levels of cAMP and cGMP and phosphorylated vasodilator-stimulated phosphoprotein (VASP) while decreased phospho-MAPK (mitogen-activated protein kinase) and phosphodiesterase (PDE) in washed rat platelets, VASP is a substrate of cyclic nucleotide and PDE is an enzyme family responsible for hydrolysis of cAMP/cGMP. These results suggest that antithrombotic activities of FA may be regulated by inhibition of platelet aggregation, rather than through inhibiting the release of thromboplastin or formation of thrombin. The mechanism of this action may involve activation of cAMP and cGMP signaling. PMID:26948317

  5. Purification and characterization of 3-isopropylmalate dehydrogenase from Thiobacillus thiooxidans.

    Science.gov (United States)

    Kawaguchi, H; Inagaki, K; Matsunami, H; Nakayama, Y; Tano, T; Tanaka, H

    2000-01-01

    3-Isopropylmalate dehydrogenase was purified to homogeneity from the acidophilic autotroph Thiobacillus thiooxidans. The native enzyme was a dimer of molecular weight 40,000. The apparent K(m) values for 3-isopropylmalate and NAD+ were estimated to be 0.13 mM and 8.7 mM, respectively. The optimum pH for activity was 9.0 and the optimum temperature was 65 degrees C. The properties of the enzyme were similar to those of the Thiobacillus ferrooxidans enzyme, expect for substrate specificity. T. thiooxidans 3-isopropylmalate dehydrogenase could not utilize malate as a substrate.

  6. Optimization of adsorptive immobilization of alcohol dehydrogenases.

    Science.gov (United States)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C; Daussmann, Thomas; Büchs, Jochen

    2005-04-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently influence the immobilization efficiency, expressed in terms of residual activity and protein loading. Residual activity of 79% was achieved with ADH from bakers' yeast (YADH) after optimizing the immobilization parameters. A step-wise drying process has been found to be more effective than one-step drying. A hypothesis of deactivation through bubble nucleation during drying of the enzyme/glass bead suspension at low drying pressure (300% residual activity was found after drying. Hyperactivation of the enzyme is probably caused by structural changes in the enzyme molecule during the drying process. ADH from Thermoanaerobacter species (ADH T) is found to be stable under drying conditions (>15 kPa) in contrast to LBADH and YADH.

  7. Anti-inflammatory effects and antioxidant activity of dihydroasparagusic acid in lipopolysaccharide-activated microglial cells.

    Science.gov (United States)

    Salemme, Adele; Togna, Anna Rita; Mastrofrancesco, Arianna; Cammisotto, Vittoria; Ottaviani, Monica; Bianco, Armandodoriano; Venditti, Alessandro

    2016-01-01

    The activation of microglia and subsequent release of toxic pro-inflammatory factors are crucially associated with neurodegenerative disease, characterized by increased oxidative stress and neuroinflammation, including Alzheimer and Parkinson diseases and multiple sclerosis. Dihydroasparagusic acid is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. It has two thiolic functions able to coordinate the metal ions, and a carboxylic moiety, a polar function, which may enhance excretion of the complexes. Thiol functions are also present in several biomolecules with important physiological antioxidant role as glutathione. The aim of this study is to evaluate the anti-inflammatory and antioxidant potential effect of dihydroasparagusic acid on microglial activation in an in vitro model of neuroinflammation. We have used lipopolysaccharide to induce an inflammatory response in primary rat microglial cultures. Our results suggest that dihydroasparagusic acid significantly prevented lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators such as nitric oxide, tumor necrosis factor-α, prostaglandin E2, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression and lipoxygenase activity in microglia cells. Moreover it effectively suppressed the level of reactive oxygen species and affected lipopolysaccharide-stimulated activation of mitogen activated protein kinase, including p38, and nuclear factor-kB pathway. These results suggest that dihydroasparagusic acid's neuroprotective properties may be due to its ability to dampen induction of microglial activation. It is a compound that can effectively inhibit inflammatory and oxidative processes that are important factors of the etiopathogenesis of neurodegenerative diseases. PMID:26592472

  8. CCN activation experiments with adipic acid: effect of particle phase and adipic acid coatings on soluble and insoluble particles

    Directory of Open Access Journals (Sweden)

    S. S. Hings

    2008-07-01

    Full Text Available Slightly soluble atmospherically relevant organic compounds may influence particle CCN activity and therefore cloud formation. Adipic acid is a frequently employed surrogate for such slightly soluble organic materials. The 11 published experimental studies on the CCN activity of adipic acid particles are not consistent with each other nor do they, in most cases, agree with the Köhler theory. The CCN activity of adipic acid aerosol particles was studied over a significantly wider range of conditions than in any previous single study. The work spans the conditions of the previous studies and also provides alternate methods for producing "wet" (deliquesced solution droplets and dry adipic acid particles without the need to produce them by atomization of aqueous solutions. The experiments suggest that the scatter in the previously published CCN measurements is most likely due to the difficulty of producing uncontaminated adipic acid particles by atomization of solutions and possibly also due to uncertainties in the calibration of the instruments. The CCN activation of the small (dm<150 nm initially dry particles is subject to a deliquescence barrier, while for the larger particles the activation follows the Köhler curve. Wet adipic acid particles follow the Köhler curve over the full range of particle diameters studied. In addition, the effect of adipic acid coatings on the CCN activity of both soluble and insoluble particles has also been studied. When a water-soluble core is coated by adipic acid, the CCN-hindering effect of particle phase is eliminated. An adipic acid coating on hydrophobic soot yields a CCN active particle. If the soot particle is relatively small (dcore≤102 nm, the CCN activity of the coated particles approaches the deliquescence line of adipic acid, suggesting that the total size of the particle determines CCN activation and the soot core acts as a scaffold.

  9. Cloning and functions analysis of a pyruvate dehydrogenase kinase in Brassica napus.

    Science.gov (United States)

    Li, Rong-Jun; Hu, Zhi-Yong; Zhang, Hua-Shan; Zhan, Gao-Miao; Wang, Han-Zhong; Hua, Wei

    2011-08-01

    Pyruvate dehydrogenase kinase (PDK) is a negative regulator of the mitochondrial pyruvate dehydrogenase complex (mtPDC), which plays a key role in intermediary metabolism. In this study, a 1,490-bp PDK in Brassica napus (BnPDK1) was isolated and cloned from Brassica cDNA library. BnPDK1 has an 1,104 open reading frame encoding 367 amino acids. Genomic DNA gel blot analysis result indicated that BnPDK1 is a multi-copy gene. RNA gel blot analysis and RNA in situ hybridization were used to determine the expression of BnPDK1 in different organs. BnPDK1 gene was ubiquitously expressed in almost all the tissues tested, having the highest expression in the stamen and the young silique. Over-expression of BnPDK1 in transgenic Arabidopsis lines would repress the PDC activity, and resulted in the decrease of seed oil content and leaf photosynthesis. These results implied that BnPDK1 was involved in the regulation of fatty acid biosynthesis in developing seeds.

  10. The roles of aldehyde dehydrogenases (ALDHs in the PDH bypass of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Lin Ming

    2009-03-01

    Full Text Available Abstract Background Eukaryotic aldehyde dehydrogenases (ALDHs, EC 1.2.1, which oxidize aldehydes into carboxylic acids, have been classified into more than 20 families. In mammals, Family 2 ALDHs detoxify acetaldehyde. It has been hypothesized that plant Family 2 ALDHs oxidize acetaldehyde generated via ethanolic fermentation, producing acetate for acetyl-CoA biosynthesis via acetyl-CoA synthetase (ACS, similar to the yeast pathway termed the "pyruvate dehydrogenase (PDH bypass". Evidence for this pathway in plants has been obtained from pollen. Results To test for the presence of the PDH bypass in the sporophytic tissue of plants, Arabidopsis plants homozygous for mutant alleles of all three Family 2 ALDH genes were fed with 14C-ethanol along with wild type controls. Comparisons of the incorporation rates of 14C-ethanol into fatty acids in mutants and wild type controls provided direct evidence for the presence of the PDH bypass in sporophytic tissue. Among the three Family 2 ALDHs, one of the two mitochondrial ALDHs (ALDH2B4 appears to be the primary contributor to this pathway. Surprisingly, single, double and triple ALDH mutants of Arabidopsis did not exhibit detectable phenotypes, even though a Family 2 ALDH gene is required for normal anther development in maize. Conclusion The PDH bypass is active in sporophytic tissue of plants. Blocking this pathway via triple ALDH mutants does not uncover obvious visible phenotypes.

  11. Acidic Properties and Structure-Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy.

    Science.gov (United States)

    Zheng, Anmin; Li, Shenhui; Liu, Shang-Bin; Deng, Feng

    2016-04-19

    Solid acid materials with tunable structural and acidic properties are promising heterogeneous catalysts for manipulating and/or emulating the activity and selectivity of industrially important catalytic reactions. On the other hand, the performances of acid-catalyzed reactions are mostly dictated by the acidic features, namely, type (Brønsted vs Lewis acidity), amount, strength, and local environment of acid sites. The latter is relevant to their location (intra- vs extracrystalline), and possible confinement and Brønsted-Lewis acid synergy effects that may strongly affect the host-guest interactions, reaction mechanism, and shape selectivity of the catalytic system. This account aims to highlight some important applications of state-of-the-art solid-state NMR (SSNMR) techniques for exploring the structural and acidic properties of solid acid catalysts as well as their catalytic performances and relevant reaction pathway invoked. In addition, density functional theory (DFT) calculations may be exploited in conjunction with experimental SSNMR studies to verify the structure-activity correlations of the catalytic system at a microscopic scale. We describe in this Account the developments and applications of advanced ex situ and/or in situ SSNMR techniques, such as two-dimensional (2D) double-quantum magic-angle spinning (DQ MAS) homonuclear correlation spectroscopy for structural investigation of solid acids as well as study of their acidic properties. Moreover, the energies and electronic structures of the catalysts and detailed catalytic reaction processes, including the identification of reaction species, elucidation of reaction mechanism, and verification of structure-activity correlations, made available by DFT theoretical calculations were also discussed. Relevant discussions will focus primarily on results obtained from our laboratories in the past decade, including (i) quantitative and qualitative acidity characterization utilizing assorted probe molecules

  12. Dietary modulation of erythrocyte insulin receptor interaction and the regulation of adipose tissue pyruvate dehydrogenase enzyme activity in growing rats; a mechanism of action of dietary fiber in metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ogunwole, J.O.A.

    1984-01-01

    The metabolic effects of graded cellulose (a dietary fiber) intake were studied at minimal (10%) and maximal (20%) protein levels in male weanling Sprague Dawley rats. The hypothesis was tested that the hypoglycemic effect of high fiber diets is partly mediated through increased tissue sensitivity to insulin at the cell receptor level. Erythrocyte insulin receptor interaction (IRI) and percent insulin stimulation of adipose tissue pyruvate dehydrogenase (PDH) activity (PDS) were used as indices of tissue sensitivity to insulin. IRI was determined by a standardized radioceptor assay PDS by the rate of oxidation of 1-/sup 14/C-pyruvate to /sup 14/CO/sub 2/ in epidymal fat pads and serum insulin levels by radioimmunoassay. In both protein groups, the addition of fiber in the diet resulted in a significant (P < 0.05) increase in food intake (FI) for calorie compensation. Fiber and protein intake had a significant (P < 0.01) effect on IRI and both basal (PDB) and PDS activities of PDH. At all fiber levels, specific percent /sup 125/I-insulin binding (SIB) was higher in the 20% protein groups while in the fiber-free group, a higher SIB was observed in the 10% protein group.

  13. A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter.

    Science.gov (United States)

    Smart, Jonathan P; Cliff, Matthew J; Kelly, David J

    2009-11-01

    The food-borne pathogen Campylobacter jejuni possesses no known tungstoenzymes, yet encodes two ABC transporters (Cj0300-0303 and Cj1538-1540) homologous to bacterial molybdate (ModABC) uptake systems and the tungstate transporter (TupABC) of Eubacterium acidaminophilum respectively. The actual substrates and physiological role of these transporters were investigated. Tryptophan fluorescence spectroscopy and isothermal titration calorimetry of the purified periplasmic binding proteins of each system revealed that while Cj0303 is unable to discriminate between molybdate and tungstate (K(D) values for both ligands of 4-8 nM), Cj1540 binds tungstate with a K(D) of 1.0 +/- 0.2 pM; 50 000-fold more tightly than molybdate. Induction-coupled plasma mass spectroscopy of single and double mutants showed that this large difference in affinity is reflected in a lower cellular tungsten content in a cj1540 (tupA) mutant compared with a cj0303c (modA) mutant. Surprisingly, formate dehydrogenase (FDH) activity was decreased approximately 50% in the tupA strain, and supplementation of the growth medium with tungstate significantly increased FDH activity in the wild type, while inhibiting known molybdoenzymes. Our data suggest that C. jejuni possesses a specific, ultra-high affinity tungstate transporter that supplies tungsten for incorporation into FDH. Furthermore, possession of two MoeA paralogues may explain the formation of both molybdopterin and tungstopterin in this bacterium. PMID:19818021

  14. A polymorphic variant in the human electron transfer flavoprotein alpha-chain (alpha-T171) displays decreased thermal stability and is overrepresented in very-long-chain acyl-CoA dehydrogenase-deficient patients with mild childhood presentation

    DEFF Research Database (Denmark)

    Bross, P; Pedersen, P; Nyholm, M;

    1999-01-01

    , whereas the two variants of the beta-M/T154 polymorphism did not differ. We wished to test the hypothesis that these polymorphisms might constitute susceptibility factors and therefore determined their allele and genotype frequencies in (i) control individuals, (ii) medium-chain acyl-CoA dehydrogenase......-deficient patients homozygous for the K304E mutation (MCAD E304), (iii) a group of patients with elevated urinary excretion of ethylmalonic acid (EMA) possibly due to decreased short-chain acyl-CoA dehydrogenase activity, and (iv) in patients with proven deficiency of very-long-chain acyl-CoA dehydrogenase (VLCAD......). No significant overrepresentations or underrepresentations were found in the first two patient groups, suggesting that the polymorphisms studied are not significant susceptibility factors in either the MCAD E304 or the EMA patient group. However, in the VLCAD deficient patients the alpha-T171 variant (decreased...

  15. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase.

    Science.gov (United States)

    Yamashita, Yuki; Ferri, Stefano; Huynh, Mai Linh; Shimizu, Hitomi; Yamaoka, Hideaki; Sode, Koji

    2013-02-01

    The FAD-dependent glucose dehydrogenase (FADGDH) from Burkholderia cepacia has several attractive features for glucose sensing. However, expanding the application of this enzyme requires improvement of its substrate specificity, especially decreasing its high activity toward maltose. A three-dimensional structural model of the FADGDH catalytic subunit was generated by homology modeling. By comparing the predicted active site with that of glucose oxidase, the two amino acid residues serine 326 and serine 365 were targeted for site-directed mutagenesis. The single mutations that produced the highest glucose specificity were combined, leading to the creation of the S326Q/S365Y double mutant, which was virtually nonreactive to maltose while retaining high glucose dehydrogenase activity. The engineered FADGDH was used to develop a direct electron transfer-type, disposable glucose sensor strip by immobilizing the enzyme complex onto a carbon screen-printed electrode. While the electrode employing wild-type FADGDH provided dangerously flawed results in the presence of maltose, the sensor employing our engineered FADGDH showed a clear glucose concentration-dependent response that was not affected by the presence of maltose. PMID:23273282

  16. Cloning and Characterization of Glyceraldehyde-3-phosphate Dehydrogenase Encoding Gene in Gracilaria/Gracilariopsis lemaneiformis

    Institute of Scientific and Technical Information of China (English)

    REN Xueying; SUI Zhenghong; ZHANG Xuecheng

    2006-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. A cytosolic GAPDH encoding gene (gpd) of Gracilaria/Gracilariopsis lemaneiformis was cloned and characterized. Deduced amino acid sequence of the enzyme of G. lemaneiformis had high homology with those of seven red algae. The 5'-untranslated regions of the GAPDHs encoding genes of these red algae varied greatly. GAPDHs of these red algae shared the highly conserved glyceraldehyde 3-phosphate dehydrogenase active site ASCTTNCL. However, such active site of Cyanidium caldarium was different from those of the other six algae at the last two residues (CL to LF), thus the spatial structure of its GAPDH active center may be different from those of the other six. Phylogenetic analysis indicated that GAPDH of G. lemaneiformis might have undergone an evolution similar to those of Porphyra yezoensis, Chondrus crispus, and Gracilaria verrucosa. C. caldarium had a closer evolutionary relationship with Cyanidioschyzon merolae than with Cyanidium sp. Virtual Northern blot analysis revealed that gpd of G. lemaneiformis expressed constitutively, which suggested that it might be house-keeping and could be adapted as an inner control in gene expression analysis of G. lemaneiformis.

  17. A novel malate dehydrogenase from Ceratonia siliqua L. seeds with potential biotechnological applications.

    Science.gov (United States)

    Muccio, Clelia; Guida, Vincenzo; Di Petrillo, Amalia; Severino, Valeria; Di Maro, Antimo

    2012-12-01

    A novel malate dehydrogenase (MDH; EC 3.1.1.1.37), hereafter MDHCs, from Ceratonia siliqua seeds, commonly known as Carob tree, was purified by using ammonium sulphate precipitation, ion exchange chromatography on SteamLine SP and gel-filtration. The molecular mass of the native protein, obtained by analytical gel-filtration, was about 65 kDa, whereas, by using SDS-PAGE analysis, with and without reducing agent, was 34 kDa. The specific activity of purified MDHCs (0.25 mg/100 g seeds) was estimated to be 188 U/mg. The optimum activity of the enzyme is at pH 8.5, showing a decrease in the presence of Ca(2+), Mg(2+) and NaCl. The N-terminal sequence of the first 20 amino acids of MDHCs revealed 95 % identity with malate dehydrogenase from Medicago sativa L. Finally, the enzymatic activity of MDHCs was preserved even after absorption onto a PVDF membrane. To our knowledge, this is the first contribution to the characterization of an enzyme from Carob tree sources.

  18. The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (-)-usnic acid, atranorin, and fumarprotocetraric acid constituents.

    Science.gov (United States)

    Yilmaz, Meral; Türk, Ayşen Ozdemir; Tay, Turgay; Kivanç, Merih

    2004-01-01

    The antimicrobial activity of the chloroform, diethyl ether, acetone, petroleum ether, and ethanol extracts of the lichen Cladonia foliacea and its (-)-usnic acid, atranorin, and fumarprotocetraric acid constituents against 9 bacteria and fungi has been investigated. The extracts and pure compounds alone were found active against the same bacteria and the same yeasts. Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis, Proteus vulgaris, Listeria monocytogenes, Aeromonas hydrophila, Candida albicans, and Candida glabrata growth were inhibited. In addition, the MICs of the extracts, (-)-usnic acid, atranorin and fumarprotocetraric acid were determined. PMID:15241936

  19. Study on determination of biofilm activity in BAF by TTC-dehydrogenase assay%优化TTC-脱氢酶还原法测定陶粒负载微生物活性

    Institute of Scientific and Technical Information of China (English)

    齐鲁青; 汪晓军; 詹德明

    2012-01-01

    利用氯化三苯基四氮唑(TTC)-脱氢酶还原法定量测定了曝气生物滤池中陶粒负载生物膜的活性,并对影响生物活性测定的因素进行了分析和优化.实验表明,经优化后得出最佳培养条件是:陶粒采用原位法制样,依次加入pH为8.0的Tris-HCl缓冲液,质量分数为0.4%的TTC溶液,0.1 mol/L葡萄糖溶液,在温度40℃下培养4h,最后生成的三苯基甲臢(TriphenylFormazone,TF)用甲苯萃取可以除去有色废水的颜色影响.采用TTC-脱氢酶还原法可以快速、方便的检测曝气生物滤池中陶粒负载生物膜的生物活性,并能很好的进行定量化测定.%The biofilms activity in Biological Aerated Filters (BAF) is quantitatively determined by 2,3,5-triphenyl tetrazolium chloride (TTC) -dehydrogenase assay and some major factors influencing the determination are studied in this paper. The optimum parameters are shown as follows: Tris-HCl buffers and 8. 0 of pH, 0. 4% ( mass fraction) of TTC and 0. 1 mol/L of dextrose solution. The incubation time and temperature are 4 h and 401 , respectively. The formazan reduction product can be efficiently extracted by methylbenzene, which can reduce the disturbance of dye color. This study demonstrates that the TTC-dehydrogenase assay can be successfully applied to the determination of biofilms activity in BAF.

  20. Regulation of synthesis and activity of NAD(+)-dependent 15-hydroxy-prostaglandin dehydrogenase (15-PGDH) by dexamethasone and phorbol ester in human erythroleukemia (HEL) cells

    International Nuclear Information System (INIS)

    Dexamethasone stimulated 15-PGDH activity in HEL cells in a time and concentration dependent manner. Increase in 15-PGDH activity by dexamethasone was found to be accompanied by an increase in enzyme synthesis as revealed by Western blot and [35S]methionine labeling studies. In addition to dexamethasone, other anti-inflammatory steroids also increased 15-PGDH activity in the order of their glucocorticoid activity. Among sex steroids only progesterone increased significantly 15-PGDH activity. 12-0-Tetradecanoylphorbol-13-acetate (TPA) also induced the synthesis of 15-PGDH but inhibited the enzyme activity. It appears that TPA caused a time dependent inactivation of 15-PGDH by a protein kinase C mediated mechanism

  1. Isolation, characterization and evaluation of the Pichia pastoris sorbitol dehydrogenase promoter for expression of heterologous proteins.

    Science.gov (United States)

    Periyasamy, Sankar; Govindappa, Nagaraj; Sreenivas, Suma; Sastry, Kedarnath

    2013-11-01

    Sorbitol is used as a non-repressive carbon source to develop fermentation process for Mut(s) recombinant clones obtained using the AOX1 promoter in Pichia pastoris. Sorbitol dehydrogenase is an enzyme in the carbohydrate metabolism that catalyzes reduction of D-fructose into D-sorbitol in the presence of NADH. The small stretch of 211bps upstream region of sorbitol dehydrogenase coding gene has all the promoter elements like CAAT box, GC box, etc. It is able to promote protein production under repressive as well as non-repressive carbon sources. In this study, the strength of the sorbitol dehydrogenase promoter was evaluated by expression of two heterologous proteins: human serum albumin and erythrina trypsin inhibitor. Sorbitol dehydrogenase promoter allowed constitutive expression of recombinant proteins in all carbon sources that were tested to grow P. pastoris and showed activity similar to GAP promoter. The sorbitol dehydrogenase promoter was active in all the growth phases of the P. pastoris.

  2. Cloning of the Arabidopsis and Rice Formaldehyde Dehydrogenase Genes: Implications for the Origin of Plant Adh Enzymes

    OpenAIRE

    Dolferus, R; Osterman, J. C.; Peacock, W. J.; Dennis, E.S.

    1997-01-01

    This article reports the cloning of the genes encoding the Arabidopsis and rice class III ADH enzymes, members of the alcohol dehydrogenase or medium chain reductase/dehydrogenase superfamily of proteins with glutathione-dependent formaldehyde dehydrogenase activity (GSH-FDH). Both genes contain eight introns in exactly the same positions, and these positions are conserved in plant ethanol-active Adh genes (class P). These data provide further evidence that plant class P genes have evolved fr...

  3. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.;

    2002-01-01

    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...

  4. An acidic sphingomyelinase Type C activity from Mycobacterium tuberculosis.

    Science.gov (United States)

    Castro-Garza, Jorge; González-Salazar, Francisco; Quinn, Frederick D; Karls, Russell K; De La Garza-Salinas, Laura Hermila; Guzmán-de la Garza, Francisco J; Vargas-Villarreal, Javier

    2016-01-01

    Sphingomyelinases (SMases) catalyze the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Sphingolipids are recognized as diverse and dynamic regulators of a multitude of cellular processes mediating cell cycle control, differentiation, stress response, cell migration, adhesion, and apoptosis. Bacterial SMases are virulence factors for several species of pathogens. Whole cell extracts of Mycobacterium tuberculosis strains H37Rv and CDC1551 were assayed using [N-methyl-(14)C]-sphingomyelin as substrate. Acidic Zn(2+)-dependent SMase activity was identified in both strains. Peak SMase activity was observed at pH 5.5. Interestingly, overall SMase activity levels from CDC1551 extracts are approximately 1/3 of those of H37Rv. The presence of exogenous SMase produced by M. tuberculosis during infection may interfere with the normal host inflammatory response thus allowing the establishment of infection and disease development. This Type C activity is different from previously identified M. tuberculosis SMases. Defining the biochemical characteristics of M. tuberculosis SMases helps to elucidate the roles that these enzymes play during infection and disease. PMID:26948102

  5. Function of C-terminal hydrophobic region in fructose dehydrogenase

    International Nuclear Information System (INIS)

    Fructose dehydrogenase (FDH) catalyzes oxidation of D-fructose into 2-keto-D-fructose and is one of the enzymes allowing a direct electron transfer (DET)-type bioelectrocatalysis. FDH is a heterotrimeric membrane-bound enzyme (subunit I, II, and III) and subunit II has a C terminal hydrophobic region (CHR), which was expected to play a role in anchoring to membranes from the amino acid sequence. We have constructed a mutated FDH lacking of CHR (ΔchrFDH). Contrary to the expected function of CHR, ΔchrFDH is expressed in the membrane fraction, and subunit I/III subcomplex (ΔcFDH) is also expressed in a similar activity level but in the soluble fraction. In addition, the enzyme activity of the purified ΔchrFDH is about one twentieth of the native FDH. These results indicate that CHR is concerned with the binding between subunit I(/III) and subunit II and then with the enzyme activity. ΔchrFDH has clear DET activity that is larger than that expected from the solution activity, and the characteristics of the catalytic wave of ΔchrFDH are very similar to those of FDH. The deletion of CHR seems to increase the amounts of the enzyme with the proper orientation for the DET reaction at electrode surfaces. Gel filtration chromatography coupled with urea treatment shows that the binding in ΔchrFDH is stronger than that in FDH. It can be considered that the rigid binding between subunit I(/III) and II without CHR results in a conformation different from the native one, which leads to the decrease in the enzyme activity in solution

  6. Catalytic mechanism of Zn2+-dependent polyol dehydrogenases: kinetic comparison of sheep liver sorbitol dehydrogenase with wild-type and Glu154→Cys forms of yeast xylitol dehydrogenase

    Science.gov (United States)

    Klimacek, Mario; Hellmer, Heidemarie; Nidetzky, Bernd

    2007-01-01

    Co-ordination of catalytic Zn2+ in sorbitol/xylitol dehydrogenases of the medium-chain dehydrogenase/reductase superfamily involves direct or water-mediated interactions from a glutamic acid residue, which substitutes a homologous cysteine ligand in alcohol dehydrogenases of the yeast and liver type. Glu154 of xylitol dehydrogenase from the yeast Galactocandida mastotermitis (termed GmXDH) was mutated to a cysteine residue (E154C) to revert this replacement. In spite of their variable Zn2+ content (0.10–0.40 atom/subunit), purified preparations of E154C exhibited a constant catalytic Zn2+ centre activity (kcat) of 1.19±0.03 s−1 and did not require exogenous Zn2+ for activity or stability. E154C retained 0.019±0.003% and 0.74±0.03% of wild-type catalytic efficiency (kcat/Ksorbitol=7800±700 M−1· s−1) and kcat (=161±4 s−1) for NAD+-dependent oxidation of sorbitol at 25 °C respectively. The pH profile of kcat/Ksorbitol for E154C decreased below an apparent pK of 9.1±0.3, reflecting a shift in pK by about +1.7–1.9 pH units compared with the corresponding pH profiles for GmXDH and sheep liver sorbitol dehydrogenase (termed slSDH). The difference in pK for profiles determined in 1H2O and 2H2O solvent was similar and unusually small for all three enzymes (≈+0.2 log units), suggesting that the observed pK in the binary enzyme–NAD+ complexes could be due to Zn2+-bound water. Under conditions eliminating their different pH-dependences, wild-type and mutant GmXDH displayed similar primary and solvent deuterium kinetic isotope effects of 1.7±0.2 (E154C, 1.7±0.1) and 1.9±0.3 (E154C, 2.4±0.2) on kcat/Ksorbitol respectively. Transient kinetic studies of NAD+ reduction and proton release during sorbitol oxidation by slSDH at pH 8.2 show that two protons are lost with a rate constant of 687±12 s−1 in the pre-steady state, which features a turnover of 0.9±0.1 enzyme equivalents as NADH was produced with a rate constant of 409±3 s−1. The

  7. Visual modeling mutants for D-lactate dehydrogenase form aquifex aeolicus and the effect of mutants on the production of phenyl lactate acid in E.coli%耐热菌D-乳酸脱氢酶突变体的可视化建模和大肠杆菌中突变体对产苯乳酸的影响

    Institute of Scientific and Technical Information of China (English)

    田晋红; 刘琦; 战丽萍; 李小丽

    2012-01-01

    Based on bioinformatics,the amino acid residues of conservative and activity center of D-lactate dehydrogenase(D-LDH),and the three-dimensional structure model of protein was analysised.The space conformation of visualization mutant had been constructed by homology modeling,the best mutant models were selected by the calculation of the distance and angle.The results showed that the 4 amino acid residues were relevant to the activity center in 20 conservative residues of D-LDH.After the models were compared,it was found that the big molecules substrates were obstructed by the benzyl of the residues of Phenylalanine(phe)or Tyrosine(try)on the 49 and 297 position.When F49A,Y279A,F49A and Y279A were mutated,the obstacles would disappear or weaken.The three mutants constructed were made a preliminary study,the results showed that IPTG or lactose could induce mutant to produce phenyl lactic acid in E.coli.The yield of phenyl lactic acid was higher in static culture than in vibration incubator,and the one of the F49A mutant(A.a.D-LDH-F49A strains)was higher than the one of the wild type(A.a.D-LDH strains)with lactose inducing.It would be a method of constructing gene engineering strain that visualization mutants models were compared and selected.%以生物信息学为基础,分析D-乳酸脱氢酶(D-LDH)的保守氨基酸残基、活性中心氨基酸残基、蛋白质三维结构和同源建模,可视化比较建模突变体空间构象,优选最佳突变体模型。结果显示,在D-LDH的20个保守氨基酸中,4个与酶活性中心有关。比较突变体模型发现,49和297位的phe或try的苯环形成空间位阻,F49A或Y279A及F49A和Y279A双突变体可解除位阻。对已构建的三个突变体初步发酵显示,IPTG和乳糖都能诱导突变体酶在大肠杆菌中产生苯乳酸,静置培养比摇振培养产量高,用乳糖诱导时,突变体F49A(A.a D-LDH-F49A株)苯乳酸的量比野生型(A.a.D-LDH株)的高。优选可视化突变体可

  8. Acid Rain: A Teacher's Guide. Activities for Grades 4 to 12.

    Science.gov (United States)

    National Wildlife Federation, Washington, DC.

    This guide on acid rain for elementary and secondary students is divided into three study areas: (1) What Causes Acid Rain; (2) What Problems Acid Rain Has Created; (3) How You and Your Students Can Help Combat Acid Rain. Each section presents background information and a series of lessons pertaining to the section topic. Activities include…

  9. Acid Rain. Activities for Grades 4 to 12. A Teacher's Guide.

    Science.gov (United States)

    Wood, David; Bryant, Jeannette

    This teacher's guide on acid rain is divided into three study areas to explain: (1) what causes acid rain; (2) what problems acid rain has created; and (3) what teachers and students can do to help combat acid rain. Instructions for activities within the study areas include suggested grade levels, objectives, materials needed, and directions for…

  10. Cloning and Expression of a Xylitol-4-Dehydrogenase Gene from Pantoea ananatis

    OpenAIRE

    Aarnikunnas, J. S.; Pihlajaniemi, A.; Palva, A; Leisola, M.; Nyyssölä, A.

    2006-01-01

    The Pantoea ananatis ATCC 43072 mutant strain is capable of growing with xylitol as the sole carbon source. The xylitol-4-dehydrogenase (XDH) catalyzing the oxidation of xylitol to l-xylulose was isolated from the cell extract of this strain. The N-terminal amino acid sequence of the purified protein was determined, and an oligonucleotide deduced from this peptide sequence was used to isolate the xylitol-4-dehydrogenase gene (xdh) from a P. ananatis gene library. Nucleotide sequence analysis ...

  11. Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40.

    Science.gov (United States)

    Kruska, Nicol; Reiser, Georg

    2011-08-01

    The accumulation of the two branched-chain fatty acids phytanic acid and pristanic acid is known to play an important role in several diseases with peroxisomal impairment, like Refsum disease, Zellweger syndrome and α-methylacyl-CoA racemase deficiency. Recent studies elucidated that the toxic activity of phytanic acid and pristanic acid is mediated by multiple mitochondrial dysfunctions, generation of reactive oxygen species and Ca2+ deregulation via the InsP3-Ca2+ signaling pathway in glial cells. However, the exact signaling mechanism through which both fatty acids mediate toxicity is still under debate. Here, we studied the ability of phytanic acid and pristanic acid to activate the free fatty acid receptor GPR40, a G-protein-coupled receptor, which was described to be involved in the Ca2+ signaling of fatty acids. We treated HEK 293 cells expressing the GPR40 receptor with phytanic acid or pristanic acid. This resulted in a significant increase in the intracellular Ca2+ level, similar to the effect seen after treatment with the synthetic GPR40 agonist GW9508. Furthermore, we demonstrate that the GPR40 activation might be due to an interaction of the carboxylate moiety of fatty acids with the receptor. Our findings indicate that the phytanic acid- and pristanic acid-mediated Ca2+ deregulation can involve the activation of GPR40. Therefore, we suppose that activation of GPR40 might be part of the signaling cascade of the toxicity of phytanic and pristanic acids.

  12. Anti-inflammatory effect of a selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor via the stimulation of heme oxygenase-1 in LPS-activated mice and J774.1 murine macrophages.

    Science.gov (United States)

    Park, Sung Bum; Park, Ji Seon; Jung, Won Hoon; Kim, Hee Youn; Kwak, Hyun Jung; Ahn, Jin Hee; Choi, Kyoung-Jin; Na, Yoon-Ju; Choi, Sunhwa; Dal Rhee, Sang; Kim, Ki Young

    2016-08-01

    11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) converts inactive cortisone to the active cortisol. 11β-HSD1 may be involved in the resolution of inflammation. In the present study, we investigate the anti-inflammatory effects of 2-(3-benzoyl)-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344), a selective 11β-HSD1 inhibitor, in lipopolysaccharide (LPS)-activated C57BL/6J mice and macrophages. LPS increased 11β-HSD1 activity and expression in macrophages, which was inhibited by KR-66344. In addition, KR-66344 increased survival rate in LPS treated C57BL/6J mice. HO-1 mRNA expression level was increased by KR-66344, and this effect was reversed by the HO competitive inhibitor, ZnPP, in macrophages. Moreover, ZnPP reversed the suppression of ROS formation and cell death induced by KR-66344. ZnPP also suppressed animal survival rate in LPS plus KR-66344 treated C57BL/6J mice. In the spleen of LPS-treated mice, KR-66344 prevented cell death via suppression of inflammation, followed by inhibition of ROS, iNOS and COX-2 expression. Furthermore, LPS increased NFκB-p65 and MAPK phosphorylation, and these effects were abolished by pretreatment with KR-66344. Taken together, KR-66344 protects against LPS-induced animal death and spleen injury by inhibition of inflammation via induction of HO-1 and inhibition of 11β-HSD1 activity. Thus, we concluded that the selective 11β-HSD1 inhibitor may provide a novel strategy in the prevention/treatment of inflammatory disorders in patients. PMID:27523796

  13. Macrophage Activation by Ursolic and Oleanolic Acids during Mycobacterial Infection

    Directory of Open Access Journals (Sweden)

    Sonia López-García

    2015-08-01

    Full Text Available Oleanolic (OA and ursolic acids (UA are triterpenes that are abundant in vegetables, fruits and medicinal plants. They have been described as active moieties in medicinal plants used for the treatment of tuberculosis. In this study, we analyzed the effects of these triterpenes on macrophages infected in vitro with Mycobacterium tuberculosis (MTB. We evaluated production of nitric oxide (NO, reactive oxygen species (ROS, and cytokines (TNF-α and TGF-β as well as expression of cell membrane receptors (TGR5 and CD36 in MTB-infected macrophages following treatment with OA and UA. Triterpenes caused reduced MTB growth in macrophages, stimulated production of NO and ROS in the early phase, stimulated TNF-α, suppressed TGF-β and caused over-expression of CD36and TGR5 receptors. Thus, our data suggest immunomodulatory properties of OA and UA on MTB infected macrophages. In conclusion, antimycobacterial effects induced by these triterpenes may be attributable to the conversion of macrophages from stage M2 (alternatively activated to M1 (classically activated.