WorldWideScience

Sample records for acid degradation progress

  1. Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Progress report, March 1992--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    McInerney M.J.

    1995-06-23

    Factors affecting the rate and extent of benzoate degradation by anaerobic syntrophic consortia were studied. Cocultures of a syntrophic benzoate degrader, strain SB, with a hydrogen/formate-using sulfate reducer degraded benzoate to a threshold that depended on the amount of substrate and acetate present. The benzoate threshold was not a function of the inhibition of benzoate degradation capacity by acetate or the toxicity of the undissociated form of acetate. Rather, a critical or minimal Gibb`s free energy value may exist where thermodynamic constraints preclude further benzoate degradation. A sensitive assay to detect low formate concentrations was developed to measure the formate levels when the benzoate threshold was reached. We showed that increased acetate concentrations, even when hydrogen and formate levels are low, affects the extent of benzoate degradation, implicating the importance of interspecies acetate transfer. In addition to benzoate, various saturated and unsaturated fatty acids, 2-methylbutyrate, and methyl esters of fatty acids supported growth in coculture with a hydrogen-using partner. SB is the only syntrophic bacterium known to use both benzoate and fatty acids. Phylogenetic analysis showed that SB clustered with sulfate reducers in the delta subclass of the Proteobacteria. SB grew well in coculture with Desulfoarculus baarsii, a sulfate reducer that uses formate but not hydrogen. This unequivocally shows that SB can grow by interspecies formate transfer.

  2. Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Progress report, November 1992--November 1993

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M.J.

    1993-11-12

    The kinetics of benzoate degradation by the anaerobic syntrophic bacterium, Syntrophus buswellii, in coculture with different sulfate reducers was studied with sulfate or nitrate as the electron acceptor. A threshold value for benzoate degradation dependent on the acetate concentration was observed with sulfate, but not nitrate, as the electron acceptor. No threshold was observed in tricultures containing an acetate-using sulfate reducer. The addition of the acetate-using sulfate reducer to cocultures that had degraded benzoate to its threshold value resulted in further degradation of benzoate to levels below the analytical detection limit (ca. 200 nM). These data are consistent with a thermodynamic explanation for the threshold, and exclude the possibility that the threshold was the result of the inhibitory action of the undissociated form of acetate.

  3. Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Progress report, November 1993--November 1994

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M.J.

    1994-12-06

    Factors influencing the rate and extent of benzoate degradation by the anaerobic syntrophic consortia were studied. Nonlinear regression analysis showed that the cause of the benzoate threshold was not a diminished benzoate degradation capacity. Analysis of cocultures with hydrogen users that differed in their hydrogen utilization capacities showed that the threshold did not depend on the kinetic properties of the syntrophic partner. These data support a thermodynamic explanation for the threshold, and exclude the possibility that a change in the affinity of the enzyme system due to acetate inhibition caused the threshold. Modeling studies showed that the threshold value could be predicted from the concentrations of the end products, assuming a critical Gibb`s free energy value. This work shows that interspecies acetate transfer is important in controlling the extent of metabolism by syntrophic organisms.

  4. Magnetic fusion: progress -> stagnation -> degradation

    Science.gov (United States)

    Zakharov, Leonid

    2012-10-01

    ``The theory of the failure of magnetic fusion,'' created in 2004 and presented to APS-2007 introduced the notion of the ``difficult'' and ``complicated'' stages of the program and described them details. At the first phase the emerging fusion science was created under strong leadership. Progress was visible on year to year basis, and the program was easy to manage. The complicated phase started in the late 1980s, when the plasma physics appeared to be incapable to implement the mission of ITER to test nuclear components of a fusion reactor. Then, the failure of TFTR (PPPL, USA) and JET (Culham, UK) in the mid 1990 to demonstrate QDT=1 and the blindness of their leaders to already visible means to resolve the problem, were a clear indication of an irreversible stagnation. In fact, right after 2007, it became clear that in the case of a large system of human ``particles'' (scientists) two phases have a continuation. The internal degrees of freedom, otherwise protected from external perturbations by a strong dedication to the scientific method, are now eroding and collapsing. The loss of science in addressing confinement, stability, power extraction, fueling, stationary regimes issues makes the current program irrelevant to fusion energy. A fresh approach should be taken.

  5. Aqueous thermal degradation of gallic acid

    Science.gov (United States)

    Snow Boles, Jennifer; Crerar, David A.; Grissom, Grady; Key, Tonalee C.

    1988-02-01

    Aqueous thermal degradation experiments show gallic acid, a naturally occurring aromatic carboxylic compound, decomposes rapidly at temperatures between 105° and 150°C, with an activation energy of 22.9 or 27.8 kcal/ mole, depending on pH of the starting solution. Pyrogallol is the primary product identified, indicating degradation via decarboxylation and a carbanion transition state. Relatively rapid degradation of vanillic, phthalic, ellagic and tannic acids has also been observed, suggesting that these and perhaps other aromatic acids could be short-lived in deep formation waters.

  6. Bounds on the Effect of Progressive Structural Degradation

    DEFF Research Database (Denmark)

    Achtziger, Wolfgang; Bendsøe, Martin P; Taylor, John E.

    1997-01-01

    Problem formulations are presented for the evaluation of upper and lower bounds on the effect of progressive structural degradation. For the purposes of this study, degradation effect is measured by an increase in global structural compliance (flexibility). Thus the stated bounds are given simply...... by the maximum and minimum values, respectively, of the increase in compliance corresponding to a specified global interval of degradation. Solutions to these optimization problems identify the particular patterns of local degradation associated with the respective 'worst case' and 'least degrading...

  7. 除草剂2,4-滴微生物降解研究进展%Research Progress of Microbial Degradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid

    Institute of Scientific and Technical Information of China (English)

    韩丽珍; 赵德刚

    2012-01-01

    高浓度2,4-滴是一种合成激素类除草剂,可有效防除阔叶杂草,微生物降解是其在环境中的主要代谢途径.综述了2,4-滴的除草作用机制、降解微生物、降解基因、矿化途径、污染物的微生物修复及抗性转基因作物的研究进展,展望了2,4-滴降解基因在环境污染修复中的应用以及抗2,4-滴转基因作物作为草甘膦抗性作物补充的前景.%2,4-Dichlorophenoxyacetic acid(2,4-D) at high concentration is a kind of synthetic auxin herbicides, which could control dicotyledonous weeds effectively. This herbicide is mostly depended on microbial degradation in a natural environment. The function mechanism of weeding, resources of degrading microorganism and metabolism genes, mineralization way of herbicide 2,4-D were reviewed in this paper. Reviewed the studying progress on microbial remediation for pollutant and 2,4-D-resistant transgenic crops. The application of 2,4-D degrading genes in pollutant bioremediation was prospected. And 2,4-D resistant genetically modified plant is suggested to become a benefical supplement of glyphosate-resistant crops.

  8. Microbial degradation of poly(amino acid)s.

    Science.gov (United States)

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  9. Bounds on the Effect of Progressive Structural Degradation

    DEFF Research Database (Denmark)

    Achtziger, W.; Bendsøe, Martin P; Taylor, John E.

    1998-01-01

    Problem formulations are presented for the evaluation of upper and lower bounds on the effect of progressive structural degradation. For the purposes of this study, degradation effect is measured by an increase in global structural compliance (flexibility). Thus the slated bounds are given simply......, increasing values for the bound in this constraint track the evolution of local degradation. While the full exposition of the paper is written specifically for trussed structures, analogues for the more useful formulations are described as well for the treatment of continuum systems. Implementation...... of methods for computational solution are described in detail, and computational results are given for the bound solutions corresponding to evolution from a starting structure through to its fully degraded form. (C) 1998 Elsevier Science Ltd. All rights reserved....

  10. Bioenergetics and pathway of acid blue 113 degradation by Staphylococcus lentus.

    Science.gov (United States)

    Sekar, Sudharshan; Mahadevan, Surianarayanan; Shanmugam, Bhuvanesh Kumar; Mandal, Asit Baran

    2012-01-01

    Bioreaction calorimetric studies of degradation of the dye acid blue 113 by Staphylococcus lentus are reported for the first time. The heat released during the dye degradation process can be successfully measured using reaction calorimeter. Power time and oxygen uptake rate (OUR) profile followed each other suggesting that heat profiles could monitor the progress of the dye degradation in biocalorimetry. The shifts observed in power-time profile indicated three distinct phases of the bioprocess indicating simultaneous utilization of glucose (primary) and dye (secondary carbon source). Secretion of azoreductase enzyme enhanced the degradation process. Optimization of aeration and agitation rates was observed to be vital to efficient dye degradation. The degradative pathway for acid blue 113 by S. lentus was delineated via high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR), and gas chromatography coupled with mass spectrometry (GC-MS) analyses. Interestingly the products of degradation were found to have low toxicity, as per cytotoxicity measurements.

  11. Degradation of hyaluronic acid, poly- and monosaccharides, and model compounds by hypochlorite

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    1998-01-01

    Degradation of hyaluronic acid by oxidants such as HO. and HOCl/CIO- is believed to be important in the progression of rheumatoid arthritis. While reaction of hyaluronic acid with HO. has been investigated extensively, reaction with HOCl/ClO- is less well defined. Thus, little is known about the ...

  12. Syntrophic degradation of fatty acids by methanogenic communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Worm, P.; Sousa, D.Z.; Alves, M.M.; Plugge, C.M.

    2012-01-01

    In methanogenic environments degradation of fatty acids is a key process in the conversion of organic matter to methane and carbon dioxide. For degradation of fatty acids with three or more carbon atoms syntrophic communities are required. This chapter describes the general features of syntrophic de

  13. Electrochemical degradation of gallic acid on a BDD anode.

    Science.gov (United States)

    Panizza, Marco; Cerisola, Giacomo

    2009-11-01

    The electrochemical oxidation of gallic acid (3,4,5-trihydroxybenzoic acid) has been studied on a boron-doped diamond anode (BDD). Cyclic voltammetries, chronoamperometries and bulk electrolyses were performed to characterise the electrochemical behaviour of gallic acid on diamond-type anode and to study the kinetics of gallic acid degradation. UV spectroscopy, HPLC analysis, COD and TOC measurements were conducted to study the reaction pathway for gallic acid mineralisation. The results showed that both direct and mediated electrochemical processes were involved in the oxidation of gallic acid. The degradation of gallic acid evidenced a pseudo first-order kinetics and the rate constant increased with applied current. Aliphatic acids were the main intermediates formed during the electrolyses and they were finally mineralised to CO(2) and water. The degradation rate on boron-doped diamond was under mass-transport control and was favoured by the increase of the flow rate of the solution into the electrochemical reactor.

  14. Evaluation on degradation of cable in nuclear power plant by boric acid

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Munhwan; Song, Geundong; Kim, Yeonku; Maeng, Wanyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Exposures to these conditions for long periods of times can cause a degradation of cable. Borated water is used in the primary systems of PWR plants to control the reactivity during normal plant operation and refueling, and under potential accident conditions. If borated water leaks from primary and secondary systems, significant corrosion problems can develop. However, little research has been carried out on the effects of cable degradation by borated water. In this experiment, TGA, indenting test, and FT-IR were performed to evaluate the degradation of cable by borated water. An evaluation of cable degradation by borated water was carried out. A TGA analysis, the measurement of cable microhardness and an FT-IR analysis before and after spraying with boric acid (B:170,000ppm). It is considered that there is no significant degradation of cables due to spraying with boric acid. More studies on long-term experiments for severe conditions are now progressing.

  15. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues

    Science.gov (United States)

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl- N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints.

  16. Mapping intermediate degradation products of poly(lactic-co-glycolic acid) in vitro.

    Science.gov (United States)

    Li, Jian; Nemes, Peter; Guo, Ji

    2017-05-17

    There is widespread interest in using absorbable polymers, such as poly(lactic-co-glycolic acid) (PLGA), as components in the design and manufacture of new-generation drug eluting stents (DES). PLGA undergoes hydrolysis to progressively degrade through intermediate chemical entities to simple organic acids that are ultimately absorbed by the human body. Understanding the composition and structure of these intermediate degradation products is critical not only to elucidate polymer degradation pathways accurately, but also to assess the safety and performance of absorbable cardiovascular implants. However, analytical approaches to determining the intermediate degradation products have yet to be established and evaluated in a standard or regulatory setting. Hence, we developed a methodology using electrospray ionization mass spectrometry to qualitatively and quantitatively describe intermediate degradation products generated in vitro from two PLGA formulations commonly used in DES. Furthermore, we assessed the temporal evolution of these degradation products using time-lapse experiments. Our data demonstrated that PLGA degradation products via heterogeneous cleavage of ester bonds are modulated by multiple intrinsic and environmental factors, including polymer chemical composition, degradants solubility in water, and polymer synthesis process. We anticipate the methodologies and outcomes presented in this work will elevate the mechanistic understanding of comprehensive degradation profiles of absorbable polymeric devices, and facilitate the design and regulation of cardiovascular implants by supporting the assessments of the associated biological response to degradation products. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  17. Progress in engineering acid stress resistance of lactic acid bacteria.

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-02-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.

  18. Biochemical degradation of soil humic acids and fungal melanins

    Energy Technology Data Exchange (ETDEWEB)

    Zavgorodnyaya, Y.A.; Demin, V.V.; Kurakov, A.V. [Moscow MV Lomonosov State University, Moscow (Russian Federation). Dept. of Soil Science

    2002-07-01

    Studies were conducted to compare properties and biodegradation of fungal melanins from Aspergillus niger and Cladosporium cladosporiodes with those of humic acids from soils and brown coal. Compared to the humic acids the fungal melanins contained more functional groups, were less hydrophilic and had relatively high molecular weights. Under the conditions of incubation the melanins were found to be more readily degradable than the humic acids studied. The changes in elemental composition, optical parameters and the decrease of molecular weight, observed for both fungal melanins during degradation, made them more similar to soil humic acids.

  19. 苯甲酸降解途径及转化生产粘康酸的研究进展%Research Progress in Benzoate Degradation Pathways and Transformation for cis,cis-Muconic Acid

    Institute of Scientific and Technical Information of China (English)

    谢能中; 黄艳燕; 李检秀; 郭铃; 李亿; 王青艳; 陈东; 杜奇石; 黄日波

    2014-01-01

    苯甲酸是多种芳香化合物生物代谢的重要中间物,对微生物降解苯甲酸的生物化学和遗传学研究,有利于阐明芳香化合物的生物降解机制,分离和培育出降解谱广和降解性能高的菌株应用于废水处理、环境修复和生物转化。苯甲酸的儿茶酚邻位裂解(ortho-cleavage)途径会产生粘康酸,后者是一种潜在的平台化合物,用于生产新型功能树脂、生物塑料、食品添加剂等产品。本文综述了微生物降解苯甲酸和转化生产粘康酸的研究和进展,并提出该领域研究今后的发展方向,为后续研究提供有价值的参考。%Benzoate is a model aromatic compound,which is also an important intermediate of a variety of aromatic compounds. Studying microbial degradation of benzoate provides knowledge on the metabolic mechanism of other aromatic compounds,facilitates the screen of efficient bacteria for wastewater treatment,environmental remediation and biotransforma-tion.Benzoate can be metabolized via catechol by means of the ortho-cleavage pathway to yield cis,cis-muconic acid,which is suggested to be an interesting platform chemical for the pro-duction of new functional resins,bio-plastics and food additives.In this paper,various benzoate degradation pathways and cis,cis-muconic acid production by biotransformation of benzoate are reviewed, and guidelines for developing high performance microbial cell factory for cis,cis-muconic acid production are also proposed.

  20. Amino Acid Degradation after Meteoritic Impact Simulation

    Science.gov (United States)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  1. Degradation mechanism and stability of 5-aminolevulinic acid.

    Science.gov (United States)

    Bunke, A; Zerbe, O; Schmid, H; Burmeister, G; Merkle, H P; Gander, B

    2000-10-01

    The physiological substance and precursor of the heme synthesis 5-aminolevulinic acid (ALA) is a promising prodrug for photodiagnosis and photodynamic therapy of epithelial tumors, particularly in urological and gynecological tissues. For the clinical use of this substance, a chemically stable and sterile drug formulation is required. In the present study, degradation mechanism of ALA in aqueous solution and possibilities to improve its stability were examined. A capillary electrophoretic method was developed that was suitable for the quantification of ALA and of two degradation products. The intermediate degradation product was 2, 5-dicarboxyethyl-3,6-dihydropyrazine, which was further oxidized to 2,5-dicarboxyethylpyrazine. The structures of the degradation products were proven by (1)H and (13)C nuclear magnetic resonance spectroscopy. ALA degradation was very efficiently inhibited by adjusting the pH of the aqueous solution to a value market introduction.

  2. Thermal degradation of polystyrene by Lewis acids in solution

    OpenAIRE

    2002-01-01

    The degradation of polystyrene in various Lewis acids [aluminum chloride, ferric chloride, borontriflouride etherate, and tin(IV) chloride] at different temperatures (75-125 degreesC) has been studied in this work. The evolution of the molecular weight distribution (MWD) has been modeled using continuous distribution kinetics with a stoichiometric kernel for random chain scission. The degradation rate was the highest in the presence of aluminum chloride. The reactions were also carried out at...

  3. A degradation study of PLLA containing lauric acid.

    Science.gov (United States)

    Renouf-Glauser, Annette C; Rose, John; Farrar, David; Cameron, Ruth E

    2005-05-01

    Addition of lauric acid to poly (L-lactide) (PLLA) has resulted in a new family of enhanced degradation biomaterials. Presented is PLLA4.5 (PLLA containing 4.5 wt% lauric acid), the fastest degrading of the family. Degradation was studied via mass changes, gel-permeation chromatography, wide- and small-angle X-ray scattering (WAXS and SAXS), simultaneous SAXS and tensile testing, and visual observation. The undegraded PLLA4.5 deformed by crazing, recognisable from the characteristic shape of the SAXS pattern. As water up-take and degradation proceeded, samples crystallised, decreasing the SAXS long period, until by 4 days the deformation mechanism had become that of crystal-mediated deformation. This resulted in a 'peanut-lemon'-shaped SAXS pattern, interpreted in terms of cavitation and fibrillated shear. Further degradation up to 12 days resulted in the same deformation mechanism at different sample displacements, with samples failing earlier during tensile testing until a ductile-brittle transition occurred. At 30-40 days water up-take and mass-loss increased significantly and global whitening of samples occurred, while the crystallinity and long period stabilised. Complete degradation had not occurred by the end of the study at 73 days. Through an understanding of how the changes in morphology during degradation affect the micromechanisms of deformation, it may be possible to design microstructures to give a tailored evolution of mechanical response in the body.

  4. Microbial Degradation of Chlorogenic Acid by a Sphingomonas sp. Strain.

    Science.gov (United States)

    Ma, Yuping; Wang, Xiaoyu; Nie, Xueling; Zhang, Zhan; Yang, Zongcan; Nie, Cong; Tang, Hongzhi

    2016-08-01

    In order to elucidate the metabolism of chlorogenic acid by environmental microbes, a strain of Sphingomonas sp. isolated from tobacco leaves was cultured under various conditions, and chlorogenic acid degradation and its metabolites were investigated. The strain converting chlorogenic acid was newly isolated and identified as a Sphingomonas sp. strain by 16S rRNA sequencing. The optimal conditions for growth and chlorogenic acid degradation were 37 °C and pH 7.0 with supplementation of 1.5 g/l (NH4)2SO4 as the nitrogen source and 2 g/l chlorogenic acid as the sole carbon source. The maximum chlorogenic acid tolerating capability for the strain was 5 g/l. The main metabolites were identified as caffeic acid, shikimic acid, and 3,4-dihydroxybenzoic acid based on gas chromatography-mass spectrometry analysis. The analysis reveals the biotransformation mechanism of chlorogenic acid in microbial cells isolated from the environment.

  5. Glycolic acid modulates the mechanical property and degradation of poly(glycerol, sebacate, glycolic acid).

    Science.gov (United States)

    Sun, Zhi-Jie; Wu, Lan; Huang, Wei; Chen, Chang; Chen, Yan; Lu, Xi-Li; Zhang, Xiao-Lan; Yang, Bao-Feng; Dong, De-Li

    2010-01-01

    The development of biodegradable materials with controllable degradation properties is beneficial for a variety of applications. Poly(glycerol-sebacate) (PGS) is a promising candidate of biomaterials; so we synthesize a series of poly(glycerol, sebacate, glycolic acid) (PGSG) with 1:2:0, 1:2:0.2, 1:2:0.4, 1:2:0.6, 1:2:1 mole ratio of glycerol, sebacate, and glycolic acid to elucidate the relation of doped glycolic acid to the degradation rate and mechanical properties. The microstructures of the polymers with different doping of glycolic acid were dissimilar. PGSG with glycolic acid in the ratio of 0.2 displayed an integral degree of ordering, different to those with glycolic acid in the ratio of 0, 0.4, 0.6, and 1, which showed mild phase separation structure. The number, DeltaH(m), and temperature of the PGSG melting peaks tended to decrease with the increasing ratio of doped glycolic acid. In vitro and in vivo degradation tests showed that the degradation rate of PGSG with glycolic acid in the ratio of 0.2 was slowest, but in the ratio range of 0, 0.4, and 0.6, the degradation rate increased with the increase of glycolic acid. All PGSG samples displayed good tissue response and anticoagulant effects. Our data suggest that doping glycolic acid can modulate the microstructure and degree of crosslinking of PGS, thereby control the degradation rate of PGS.

  6. Tannic acid degradation by Klebsiella strains isolated from goat feces

    Directory of Open Access Journals (Sweden)

    Arezoo Tahmourespour

    2016-03-01

    Full Text Available Background and Objectives: Tannins are toxic polyphenols that either bind and precipitate or condense proteins. The high tannin content of some plants is the preliminary limitation of using them as a ruminant feed. So, the aim of this study was the isolation and characterization of tannic acid degrading bacterial strains from goat feces before and after feeding on Pis- tachio-Soft Hulls as tannin rich diet (TRD.Materials and Methods: Bacterial strains capable of utilizing tannic acid as sole carbon and energy source were isolated and characterized from goat feces before and after feeding on TRD. Tannase activity, maximum tolerable concentration and biodegradation potential were assessed.Results: Four tannase positive isolates were identified as Klebsiella pneumoniae. Isolated strains showed the maximum tolerable concentration of 64g/L of tannin. The tannic acid degradation percentage at a concentration of 15.0 g/L reached a maximum of 68% after 24 h incubation, and more than 98% after 72 h incubation. The pH of the medium also decreased along with tannic acid utilization.Conclusions: It is obvious that TRD induced adaptive responses. Thus, while the bacteria were able to degrade and detoxify the tannic acids, they had to adapt in the presence of high concentrations of tannic acid. So, these isolates have an amazing potential for application in bioremediation, waste water treatment, also reduction of tannins antinutritional effects in animal feeds.Keywords: Biodegradation; Goat feces; Klebsiella strains; Tannic acid

  7. Polarography of an acidic degradation product from cephalexin.

    Science.gov (United States)

    Nuñez-Vergara, L J; Squella, J A; Silva, M M

    1982-02-01

    2-Hydroxy-3-phenyl-6-methylpyrazine is identified as the product obtained by acidic degradation of cephalexin in the presence of formaldehyde. In 5M hydrochloric acid this product gives a well-defined reduction wave with a half-wave potential of -0.45 V vs. SCE. The wave is irreversible and diffusion-controlled. The diffusion current shows a linear relation with the cephalexin concentration and can be used for determination of cephalexin in plasma.

  8. Varying Conditions for Hexanoic Acid Degradation with BioTiger™

    Energy Technology Data Exchange (ETDEWEB)

    Foreman, Koji [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Milliken, Charles [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brigmon, Robin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    BioTiger™ (BT) is a consortium of 12 bacteria designed for petroleum waste biodegradation. BT is currently being studied and could be considered for bioremediation of the Athabasca oil sands refineries in Canada and elsewhere. The run off ponds from the petroleum extraction processes, called tailings ponds, are a mixture of polycyclic aromatic hydrocarbons, naphthenic acids, hydrocarbons, toxic chemicals like heavy metals, water, and sand. Due to environmental regulations the oil industry would like to separate and degrade the hazardous chemical species from the tailings ponds while recycling the water. It has been shown that BT at 30 C° is able to completely degrade 10 mM hexanoic acid (HA) cometabolically with 0.2% yeast extract (w/v) in 48 hours when starting at 0.4 OD 600nm. After establishing this stable degradation capability, variations were tested to explore the wider parameters of BT activity in temperature, pH, intermediate degradation, co-metabolic dependence, and transfer stability. Due to the vast differences in temperature at various points in the refineries, a wide range of temperatures were assessed. The results indicate that BT retains the ability to degrade HA, a model surrogate for tailings pond contaminants, at temperatures ranging from 15°C to 35°C. Hexanamide (HAM) was shown to be an intermediate generated during the degradation of HA in an earlier work and HAM is completely degraded after 48 hours, indicating that HAM is not the final product of HA degradation. Various replacements for yeast extract were attempted. Glucose, a carbon source; casein amino acids, a protein source; additional ammonia, mimicking known media; and additional phosphate with Wolffe’s vitamins and minerals all showed no significant degradation of HA compared to control. Decreasing the yeast extract concentration (0.05%) demonstrated limited but significant degradation. Finally, serial inoculations of BT were performed to determine the stability of degradation

  9. Varying Conditions for Hexanoic Acid Degradation with BioTiger™

    Energy Technology Data Exchange (ETDEWEB)

    Foreman, Koji [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Milliken, Charles [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brigmon, Robin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    BioTiger™ (BT) is a consortium of 12 bacteria designed for petroleum waste biodegradation. BT is currently being studied and could be considered for bioremediation of the Athabasca oil sands refineries in Canada and elsewhere. The run-off ponds from the petroleum extraction processes, called tailings ponds, are a mixture of polycyclic aromatic hydrocarbons, naphthenic acids, hydrocarbons, toxic chemicals like heavy metals, water, and sand. Due to environmental regulations the oil industry would like to separate and degrade the hazardous chemical species from the tailings ponds while recycling the water. It has been shown that BT at 30 C° is able to completely degrade 10 mM hexanoic acid (HA) co-metabolically with 0.2% yeast extract (w/v) in 48 hours when starting at 0.4 OD 600nm. After establishing this stable degradation capability, variations were tested to explore the wider parameters of BT activity in temperature, pH, intermediate degradation, co-metabolic dependence, and transfer stability. Due to the vast differences in temperature at various points in the refineries, a wide range of temperatures were assessed. The results indicate that BT retains the ability to degrade HA, a model surrogate for tailings pond contaminants, at temperatures ranging from 15°C to 35°C. Hexanamide (HAM) was shown to be an intermediate generated during the degradation of HA in an earlier work and HAM is completely degraded after 48 hours, indicating that HAM is not the final product of HA degradation. Various replacements for yeast extract were attempted. Glucose, a carbon source; casein amino acids, a protein source; additional ammonia, mimicking known media; and additional phosphate with Wolffe’s vitamins and minerals all showed no significant degradation of HA compared to control. Decreasing the yeast extract concentration (0.05%) demonstrated limited but significant degradation. Finally, serial inoculations of BT were performed to determine the stability of degradation

  10. Ultrasonic Monitoring of the Progress of Lactic Acid Fermentation

    Science.gov (United States)

    Masuzawa, Nobuyoshi; Kimura, Akihiro; Ohdaira, Etsuzo

    2003-05-01

    Promotion of lactic acid fermentation by ultrasonic irradiation has been attempted. It is possible to determine the progress of fermentation and production of a curd, i.e., yoghurt and or kefir, by measuring acidity using a pH meter. However, this method is inconvenient and indirect for the evaluation of the progress of lactic acid fermentation under anaerobic condition. In this study, an ultrasonic monitoring method for evaluating the progress of lactic acid fermentation was examined.

  11. Mild MPP(+) exposure impairs autophagic degradation through a novel lysosomal acidity-independent mechanism.

    Science.gov (United States)

    Miyara, Masatsugu; Kotake, Yaichiro; Tokunaga, Wataru; Sanoh, Seigo; Ohta, Shigeru

    2016-10-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but its underlying cause remains unknown. Although recent studies using PD-related neurotoxin MPP(+) suggest autophagy involvement in the pathogenesis of PD, the effect of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of PD, remains largely unclear. We examined the effect of mild MPP(+) exposure (10 and 200 μM for 48 h), which induces a more slowly developing cell death, on autophagic processes and the mechanistic differences with acute MPP(+) toxicity (2.5 and 5 mM for 24 h). In SH-SY5Y cells, mild MPP(+) exposure predominantly inhibited autophagosome degradation, whereas acute MPP(+) exposure inhibited both autophagosome degradation and basal autophagy. Mild MPP(+) exposure reduced lysosomal hydrolase cathepsin D activity without changing lysosomal acidity, whereas acute exposure decreased lysosomal density. Lysosome biogenesis enhancers trehalose and rapamycin partially alleviated mild MPP(+) exposure induced impaired autophagosome degradation and cell death, but did not prevent the pathogenic response to acute MPP(+) exposure, suggesting irreversible lysosomal damage. We demonstrated impaired autophagic degradation by MPP(+) exposure and mechanistic differences between mild and acute MPP(+) toxicities. Mild MPP(+) toxicity impaired autophagosome degradation through novel lysosomal acidity-independent mechanisms. Sustained mild lysosomal damage may contribute to PD. We examined the effects of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of Parkinson's disease, in SH-SY5Y cells. This study demonstrated impaired autophagic degradation through a reduction in lysosomal cathepsin D activity without altering lysosomal acidity by mild MPP(+) exposure. Mechanistic differences between acute and mild MPP(+) toxicity were also observed. Sustained mild damage of lysosome may be an underlying cause

  12. Humic Acid Degradation by ZnO Photocatalyst

    Directory of Open Access Journals (Sweden)

    Sekartaji Putri A.

    2016-01-01

    Full Text Available Humic acid (HA is universally present in soils and natural water resources in a yellow-brown form. HA can react with chlorine during drinking water treatment and produce disinfection byproducts (DBPs, such as trihalomethanes (THMs and haloacetic acids (HAAs, which are harmful for health. Therefore, HA has to be eliminated from water environment. The photocatalysis is an effective alternative solution for the degradation of HA in a water environment. This research aims to degrade HA from water environment. The rapid degradation of HA, using zinc oxide nanoparticles, irradiated by ultraviolet light (ZnO/UV, is investigated. The optimum conditions of pertinent factors, which include the light wavelength (UV-A and UV-C, and light intensity, HA concentration, ZnO dose, and contact time are investigated at neutral pH conditions, considered for drinking water treatment. HA degradation efficiency reached more than 80% after 60 min for both types of irradiation in optimum conditions of 0.3 g/L ZnO dose in 180 min of contact time. Comparisons for degradation efficiency under UV-A and UV-C irradiation indicate that UV-C has higher efficiency, up to 150 min of contact time. The reusability of catalyst is performed for three reuses and still revealed effective for beneficial commercial applications.

  13. Luminescence imaging of polymer solar cells: visualization of progressing degradation

    Energy Technology Data Exchange (ETDEWEB)

    Seeland, Marco; Roesch, Roland; Hoppe, Harald [Institute of Physics, Ilmenau University of Technology, Ilmenau (Germany)

    2011-07-01

    We apply luminescence imaging as tool for the non-destructive visualization of degradation processes within bulk heterojunction polymer solar cells. The imaging technique is based on luminescence detection with a highly sensitive silicon-ccd camera and is able to visualize the with time advancing degradation patterns of polymer solar cells. The devices investigated have been aged under defined conditions and were characterized periodically with current-voltage-sweeps. This allows determining the time evolution of the photovoltaic parameters and - in combination with the luminescence images - understanding differences in the observed degradation behaviour. The versatile usability of the method is demonstrated in a correlation between local reduction of lateral luminescence and a fast decrease of the short-circuit-current due to the loss of active area. Differences in the degradation of photovoltaic parameters under varied aging conditions are discussed.

  14. Research Progress in Microbiological Degradation of Bensulfuron-Methyl Herbicide

    Institute of Scientific and Technical Information of China (English)

    XIONG Minghua; LI Chunyan

    2009-01-01

    This paper reviewed the strategies and methods of screening for microorganisms having strong ability to remove bensulfuron-methyl (BSM), and discussed BSM degradation pathways and factors affecting its microbial metabolism. Finally, it prospected the research emphasis in the future.

  15. Molecular screening of wine lactic acid bacteria degrading hydroxycinnamic acids.

    Science.gov (United States)

    de las Rivas, Blanca; Rodríguez, Héctor; Curiel, José Antonio; Landete, José María; Muñoz, Rosario

    2009-01-28

    The potential to produce volatile phenols from hydroxycinnamic acids was investigated for lactic acid bacteria (LAB) isolated from Spanish grape must and wine. A PCR assay was developed for the detection of LAB that potentially produce volatile phenols. Synthetic degenerate oligonucleotides for the specific detection of the pdc gene encoding a phenolic acid decarboxylase were designed. The pdc PCR assay amplifies a 321 bp DNA fragment from phenolic acid decarboxylase. The pdc PCR method was applied to 85 strains belonging to the 6 main wine LAB species. Lactobacillus plantarum, Lactobacillus brevis, and Pediococcus pentosaceus strains produce a positive response in the pdc PCR assay, whereas Oenococcus oeni, Lactobacillus hilgardii, and Leuconostoc mesenteroides strains did not produce the expected PCR product. The production of vinyl and ethyl derivatives from hydroxycinnamic acids in culture media was determined by high-performance liquid chromatography. A relationship was found between pdc PCR amplification and volatile phenol production, so that the LAB strains that gave a positive pdc PCR response produce volatile phenols, whereas strains that did not produce a PCR amplicon did not produce volatile phenols. The proposed method could be useful for a preliminary identification of LAB strains able to produce volatile phenols in wine.

  16. Poly(lactic acid) degradable plastics, coatings, and binders

    Energy Technology Data Exchange (ETDEWEB)

    Bonsignore, P.V.; Coleman, R.D.; Mudde, J.P.

    1992-01-01

    Biochemical processes to derive value from the management of high carbohydrate food wastes, such as potato starch, corn starch, and cheese whey permeate, have typically been limited to the production of either ethanol or methane. Argonne National Laboratory (ANL) believes that lactic acid presents an attractive option for an alternate fermentation end product, especially in light of lactic acids' being a viable candidate for conversion to environmentally safe poly(lactic acid) (PLA) degradable plastics, coatings, and binders. Technology is being developed at ANL to permit a more cost effective route to modified high molecular weight PLA. Preliminary data on the degradation behavior of these modified PLAs shows the retention to the inherent hydrolytic degradability of the PLA modified, however, by introduced compositional variables. A limited study was done on the hydrolytic stability of soluble oligomers of poly(L-lactic acid). Over a 34 day hold period, water-methanol solutions of Pl-LA oligomers in the 2-10 DP range retained some 75% of their original molecular weight.

  17. Poly(lactic acid) degradable plastics, coatings, and binders

    Energy Technology Data Exchange (ETDEWEB)

    Bonsignore, P.V.; Coleman, R.D.; Mudde, J.P.

    1992-05-01

    Biochemical processes to derive value from the management of high carbohydrate food wastes, such as potato starch, corn starch, and cheese whey permeate, have typically been limited to the production of either ethanol or methane. Argonne National Laboratory (ANL) believes that lactic acid presents an attractive option for an alternate fermentation end product, especially in light of lactic acids` being a viable candidate for conversion to environmentally safe poly(lactic acid) (PLA) degradable plastics, coatings, and binders. Technology is being developed at ANL to permit a more cost effective route to modified high molecular weight PLA. Preliminary data on the degradation behavior of these modified PLAs shows the retention to the inherent hydrolytic degradability of the PLA modified, however, by introduced compositional variables. A limited study was done on the hydrolytic stability of soluble oligomers of poly(L-lactic acid). Over a 34 day hold period, water-methanol solutions of Pl-LA oligomers in the 2-10 DP range retained some 75% of their original molecular weight.

  18. Electrochemical degradation of clofibric acid in water by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Sires, Ignasi [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Cabot, Pere Lluis [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Centellas, Francesc [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Garrido, Jose Antonio [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rodriguez, Rosa Maria [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Arias, Conchita [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)]. E-mail: brillas@ub.edu

    2006-10-05

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical ({center_dot}OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl{sub 2}. Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with {center_dot}OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO{sub 2} with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed.

  19. Changes in fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols.

    Science.gov (United States)

    Nowak, Agnieszka; Greń, Izabela; Mrozik, Agnieszka

    2016-12-01

    The changes in the cellular fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols in the presence of phenol as well as its adaptive mechanisms to these compounds were studied. It was found that bacteria were capable of degrading 4-chlorophenol (4-CP) completely in the presence of phenol, while 2-chlorophenol (2-CP) and 3-chlorophenol (3-CP) they degraded partially. The analysis of the fatty acid profiles indicated that adaptive mechanisms of bacteria depended on earlier exposure to phenol, which isomer they degraded, and on incubation time. In bacteria unexposed to phenol the permeability and structure of their membranes could be modified through the increase of hydroxylated and cyclopropane fatty acids, and straight-chain and hydroxylated fatty acids under 2-CP, 3-CP and 4-CP exposure, respectively. In the exposed cells, regardless of the isomer they degraded, the most important changes were connected with the increase of the contribution of branched fatty acid on day 4 and the content of hydroxylated fatty acids on day 7. The changes, particularly in the proportion of branched fatty acids, could be a good indicator for assessing the progress of the degradation of monochlorophenols by S. maltophilia KB2. In comparison, in phenol-degrading cells the increase of cyclopropane and straight-chain fatty acid content was established. These findings indicated the degradative potential of the tested strain towards the co-metabolic degradation of persistent chlorophenols, and extended the current knowledge about the adaptive mechanisms of these bacteria to such chemicals.

  20. Degradation of 3-phenoxybenzoic acid by a Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Shaohua Chen

    Full Text Available 3-Phenoxybenzoic acid (3-PBA is of great environmental concern with regards to endocrine disrupting activity and widespread occurrence in water and soil, yet little is known about microbial degradation in contaminated regions. We report here that a new bacterial strain isolated from soil, designated DG-02, was shown to degrade 95.6% of 50 mg·L(-1 3-PBA within 72 h in mineral salt medium (MSM. Strain DG-02 was identified as Bacillus sp. based on the morphology, physio-biochemical tests and 16S rRNA sequence. The optimum conditions for 3-PBA degradation were determined to be 30.9°C and pH 7.7 using response surface methodology (RSM. The isolate converted 3-PBA to produce 3-(2-methoxyphenoxy benzoic acid, protocatechuate, phenol, and 3,4-dihydroxy phenol, and subsequently transformed these compounds with a q(max, K(s and K(i of 0.8615 h(-1, 626.7842 mg·L(-1 and 6.7586 mg·L(-1, respectively. A novel microbial metabolic pathway for 3-PBA was proposed on the basis of these metabolites. Inoculation of strain DG-02 resulted in a higher degradation rate on 3-PBA than that observed in the non-inoculated soil. Moreover, the degradation process followed the first-order kinetics, and the half-life (t(1/2 for 3-PBA was greatly reduced as compared to the non-inoculated control. This study highlights an important potential application of strain DG-02 for the in situ bioremediation of 3-PBA contaminated environments.

  1. Degradation and Isotope Source Tracking of Glyphosate and Aminomethylphosphonic Acid.

    Science.gov (United States)

    Li, Hui; Joshi, Sunendra R; Jaisi, Deb P

    2016-01-27

    Glyphosate [N-(phosphonomethyl) glycine], an active ingredient of the herbicide Roundup, and its main metabolite, aminomethylphosphonic acid (AMPA), have been frequently reported to be present in soils and other environments and thus have heightened public concerns on their potential adverse effects. Understanding the fate of these compounds and differentiating them from other naturally occurring compounds require a toolbox of methods that can go beyond conventional methods. Here, we applied individual isotope labeling technique whereby each compound or mineral involved in the glyphosate and AMPA degradation reaction was either synthesized or chosen to have distinct (18)O/(16)O ratios so that the source of incorporated oxygen in the orthophosphate generated and corresponding isotope effect during C-P bond cleavage could be identified. Furthermore, we measured original isotope signatures of a few commercial glyphosate sources to identify their source-specific isotope signatures. Our degradation kinetics results showed that the rate of glyphosate degradation was higher than that of AMPA in all experimental conditions, and both the rate and extent of degradation were lowest under anoxic conditions. Oxygen isotope ratios (δ(18)OP) of orthophosphate generated from glyphosate and AMPA degradation suggested that one external oxygen atom from ambient water, not from dissolved oxygen or mineral, was incorporated into orthophosphate with the other three oxygen atoms inherited from the parent molecule. Interestingly, δ(18)OP values of all commercial glyphosate products studied were found to be the lightest among all orthophosphates known so far. Furthermore, isotope composition was found to be unaffected due to variable degradation kinetics, light/dark, and oxic/anoxic conditions. These results highlight the importance of phosphate oxygen isotope ratios as a nonconventional tool to potentially distinguish glyphosate sources and products from other organophosphorus compounds

  2. Photolytic and photocatalytic degradation of 6-chloronicotinic acid.

    Science.gov (United States)

    Zabar, Romina; Dolenc, Darko; Jerman, Tina; Franko, Mladen; Trebše, Polonca

    2011-10-01

    This work describes for the first time the photolytic and photocatalytic degradation of 6-chloronicotinic acid (6CNA) in double deionised water, which is a degradation product of neonicotinoid insecticides imidacloprid and acetamiprid, and it is known to appear in different environmental matrices. Photolytic experiments were performed with three UVA (ultraviolet A) polychromatic fluorescent lamps with broad maximum at 355 nm, while photocatalytic experiments were performed using immobilised titanium dioxide (TiO₂) on six glass slides in the spinning basket inside a photocatalytic quartz cell under similar irradiation conditions. Photolytic degradation revealed no change in concentration of 6CNA within 120 min of irradiation, while the photocatalytic degradation within 120 min, obeyed first-order kinetics. The observed disappearance rate constant was k=0.011 ± 0.001 min⁻¹ and t½ was 63.1 ± 5.5 min. Mineralisation rate was estimated through total organic carbon (TOC) and measurements revealed no carbon removal in case of photolysis after 120 min of exposure. However in photocatalytic experiments 46 ± 7% mineralisation was achieved within 120 min of irradiation. Nevertheless, the removal of total nitrogen (TN) was not observed across all experiments. Ion chromatographic analyses indicated transformation of chlorine atoms to chloride and increase of nitrate(V) ions only via photocatalytic experiments. Efficiency of selected advanced oxidation process (AOP) was investigated through toxicity assessment with Vibrio fischeri luminescent bacteria and revealed higher adverse effects of treated samples on bacteria following photocatalytic degradation in spite of the fact that higher mineralisation was achieved. New hydroxylated product generated in photocatalytic experiments with TiO₂, was confirmed with liquid chromatography-electro spray ionisation mass spectrometry (LC-ESI-MS/MS) analyses, gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic

  3. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates.

    Science.gov (United States)

    Fritsch, Caroline; Heinrich, Veronika; Vogel, Rudi F; Toelstede, Simone

    2016-08-01

    Sunflower flour provides a high content of protein with a well-balanced amino acid composition and is therefore regarded as an attractive source for protein. The use for human nutrition is hindered by phenolic compounds, mainly chlorogenic acid, which can lead under specific circumstances to undesirable discolorations. In this study, growth behavior and degradation ability of chlorogenic acid of four lactic acid bacteria were explored. Data suggested that significant higher fermentation performances on sunflower flour as compared to sunflower protein concentrate were reached by Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus gasseri and Bifidobacterium animalis subsp. lactis. In fermentation with the latter two strains reduced amounts of chlorogenic acid were observed in sunflower flour (-11.4% and -19.8%, respectively), which were more pronounced in the protein concentrate (-50.7% and -95.6%, respectively). High tolerances against chlorogenic acid and the cleavage product quinic acid with a minimum inhibitory concentration (MIC) of ≥20.48 mg/ml after 48 h were recorded for all strains except Bifidobacterium animalis subsp. lactis, which was more sensitive. The second cleavage compound, caffeic acid revealed a higher antimicrobial potential with MIC values of 0.64-5.12 mg/ml. In this proof of concept study, degradation versus inhibitory effect suggest the existence of basic mechanisms of interaction between phenolic acids in sunflower and lactic acid bacteria and a feasible way to reduce the chlorogenic acid content, which may help to avoid undesired color changes.

  4. Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine.

    Science.gov (United States)

    Raghavendra, Ponnala; Halami, Prakash M

    2009-07-31

    This study was undertaken to screen and select potent phytate degrading lactic acid bacteria and to evaluate their additional characteristic features. Forty lactic acid bacterial strains were isolated from different sources and screened for their ability to degrade myo-inositol hexaphosphate or IP(6) by cobalt chloride staining (plate assay) method, using calcium or sodium salt of phytic acid as substrate. All the forty isolates were able to degrade calcium phytate. However, only two Pediococcus pentosaceus strains (CFR R38 and CFR R35) were found to degrade sodium phytate. These strains showed phytase activity of 213 and 89 U at 50 degrees C, respectively and poor acid phosphatase activity. These strains were further evaluated for additional characteristic features. At pH 2, P. pentosaceus strains CFR R38 and CFR R35 showed 50.7 and 48.5 percentage survivability after 2 h of incubation respectively and they could also withstand 0.3% ox-bile. These cultures exhibited 54.6 and 44.8% of hydrophobicity to xylene, antibacterial activity against food borne pathogens and possessed beta-galactosidase activity. The resistance pattern to several antibiotics was also analyzed. The present study indicates that these strains, having phytate degrading ability and other characteristic features can be exploited as starter cultures in fermented foods to improve the mineral bioavailability.

  5. The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater

    Science.gov (United States)

    Cozzarelli, I.M.; Baedecker, M.J.; Eganhouse, R.P.; Goerlitz, D.F.

    1994-01-01

    The geochemical evolution of low-molecular-weight organic acids in groundwater downgradient from a crude-oil spill near Bemidji, Minnesota, was studied over a five year period (1986-1990). The organic acids are metabolic intermediates of the degradation of components of the crude oil and are structurally related to hydrocarbon precursors. The concentrations of organic acids, particularly aliphatic acids, increase as the microbial alteration of hydrocarbons progresses. The organic-acid pool changes in composition and concentration over time and in space as the degradation processes shift from Fe(III) reduction to methanogenesis. Over time, the aquifer system evolves into one in which the groundwater contains more oxidized products of hydrocarbon degradation and the reduced forms of iron, manganese, and nitrogen. Laboratory microcosm experiments with aquifer material support the hypothesis that organic acids observed in the groundwater originate from the microbial degradation of aromatic hydrocarbons under anoxic conditions. The geochemistry of two other shallow aquifers in coastal plain sediments, one contaminated with creosote waste and the other with gasoline, were compared to the Bemidji site. The geochemical evolution of the low-molecular-weight organic acid pool in these systems is controlled, in part, by the presence of electron acceptors available for microbially mediated electron-transfer reactions. The depletion of electron acceptors in aquifers leads to the accumulation of aliphatic organic acids in anoxic groundwater. ?? 1994.

  6. Effect of Polylactic Acid-Degradable Film Mulch on Soil Temperature and Cotton Yield

    Directory of Open Access Journals (Sweden)

    ZHANG Ni

    2016-03-01

    Full Text Available Concern on biodegradable plastic film is increasing because of pollution problems caused by the plastic films currently used. The objective of this field experiment is to evaluate the effect of two thicknesses of polyactic acid-degradable film on soil temperature and cotton yield. The results showed that small holes appeared in the polyactic acid-degradable film at 17~22 d after it was installed. Burst period appeared about 60 d after installation. Splits were observed in the polyactic acid-degradable film at 130 d after installation. Soil temperatures rose slowly under polyactic acid-degradable film during the cotton seedling stage. Daytime soil temperatures were 0.8℃ and 6.2℃ lower under 18μm and 15μm thick polyactic acid-degradable film than non-degradable plastic film(CK, respectively. Nighttime soil temperatures under the polyactic acid-degradable film were about 1℃ warmer than CK. There was no significant difference in cotton yields between the 18μm polyactic acid degradable film treatment and CK. In contrast, yields in the 15μm degradable plastic film treatment were 8.9% less than that in CK. This study indicated that 18μm polyactic acid degradable plastic film had good degradability and no negative effect on cotton growth. The 18μm polyactic acid degradable plastic film can replace ordinary plastic film in agricultural production.

  7. Acid-degradable and bioerodible modified polyhydroxylated materials

    Energy Technology Data Exchange (ETDEWEB)

    Frechet, Jean M. J.; Bachelder, Eric M.; Beaudette, Tristan T.; Broaders, Kyle E.

    2017-05-09

    Compositions and methods of making a modified polyhydroxylated polymer comprising a polyhydroxylated polymer having reversibly modified hydroxyl groups, whereby the hydroxyl groups are modified by an acid-catalyzed reaction between a polydroxylated polymer and a reagent such as acetals, aldehydes, vinyl ethers and ketones such that the modified polyhydroxylated polymers become insoluble in water but freely soluble in common organic solvents allowing for the facile preparation of acid-sensitive materials. Materials made from these polymers can be made to degrade in a pH-dependent manner. Both hydrophobic and hydrophilic cargoes were successfully loaded into particles made from the present polymers using single and double emulsion techniques, respectively. Due to its ease of preparation, processability, pH-sensitivity, and biocompatibility, of the present modified polyhydroxylated polymers should find use in numerous drug delivery applications.

  8. Formation of volatile chemicals from thermal degradation of less volatile coffee components: quinic acid, caffeic acid, and chlorogenic acid.

    Science.gov (United States)

    Moon, Joon-Kwan; Shibamoto, Takayuki

    2010-05-12

    The less volatile constituents of coffee beans (quinic acid, caffeic acid, and chlorogenic acid) were roasted under a stream of nitrogen, air, or helium. The volatile degradation compounds formed were analyzed by gas chromatography and gas chromatography-mass spectrometry. Caffeic acid produced the greatest amount of total volatiles. Quinic acid and chlorogenic acid produced a greater number of volatiles under the nitrogen stream than under the air stream. These results suggest that the presence of oxygen does not play an important role in the formation of volatile compounds by the heat degradation of these chemicals. 2,5-Dimethylfuran formed in relatively large amounts (59.8-2231.0 microg/g) in the samples obtained from quinic acid and chlorogenic acid but was not found in the samples from caffeic acid. Furfuryl alcohol was found in the quinic acid (259.9 microg/g) and caffeic acid (174.4 microg/g) samples roasted under a nitrogen stream but not in the chlorogenic sample. The three acids used in the present study do not contain a nitrogen atom, yet nitrogen-containing heterocyclic compounds, pyridine, pyrrole, and pyrazines, were recovered. Phenol and its derivatives were identified in the largest quantities. The amounts of total phenols ranged from 60.6 microg/g (quinic acid under helium) to 89893.7 microg/g (caffeic acid under helium). It was proposed that phenol was formed mainly from quinic acid and that catechols were formed from caffeic acid. Formation of catechol from caffeic acid under anaerobic condition indicates that the reaction participating in catechol formation was not oxidative degradation.

  9. Coupled Metabolic and Photolytic Pathway for Degradation of Pyridinedicarboxylic Acids, Especially Dipicolinic Acid

    OpenAIRE

    Amador, José A.; Taylor, Barrie F.

    1990-01-01

    Three isomers of pyridinedicarboxylic acid (PDCA) (2,3-, 2,5-, and 2,6-PDCA) were partially oxidized by marine bacteria when grown aerobically on the corresponding phthalate analogs. The metabolites, unlike the parent PDCAs, absorbed light in the solar actinic range (wavelengths greater than 300 nm) and were readily degraded in sunlight. The principal product from 2,6-PDCA (dipicolinic acid) metabolism was extracted from a culture fluid, purified by column chromatography, and analyzed by UV-v...

  10. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, March 1-August 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. I.C.

    1980-09-01

    Progress is reported in this coordinated research program to effect the microbiological degradation of cellulosic biomass by anaerobic microorganisms possessing cellulolytic enzymes. Three main areas of research are discussed: increasing enzyme levels through genetics, mutations, and genetic manipulation; the direct conversion of cellulosic biomass to liquid fuel (ethanol); and the production of chemical feedstocks from biomass (acrylic acid, acetone/butanol, and acetic acid). (DMC)

  11. Degradation and compatibility behaviors of poly(glycolic acid) grafted chitosan.

    Science.gov (United States)

    Zhang, Luzhong; Dou, Sufeng; Li, Yan; Yuan, Ying; Ji, Yawei; Wang, Yaling; Yang, Yumin

    2013-07-01

    The films of poly(glycolic acid) grafted chitosan were prepared without using a catalyst to improve the degradable property of chitosan. The films were characterized by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). The degradation of the poly(glycolic acid) grafted chitosan films were investigated in the lysozyme solution. In vitro degradation tests revealed that the degradation rate of poly(glycolic acid) grafted chitosan films increased dramatically compared with chitosan. The degradation rate of poly(glycolic acid) grafted chitosan films gradually increased with the increasing of the molar ratio of glycolic acid to chitosan. Additionally, the poly(glycolic acid) grafted chitosan films have good biocompatibility, as demonstrated by in vitro cytotoxicity of the extraction fluids. The biocompatible and biodegradable poly(glycolic acid) grafted chitosan would be an effective material with controllable degradation rate to meet the diverse needs in biomedical fields.

  12. Molecular products from the thermal degradation of glutamic acid.

    Science.gov (United States)

    Kibet, Joshua K; Khachatryan, Lavrent; Dellinger, Barry

    2013-08-14

    The thermal behavior of glutamic acid was investigated in N2 and 4% O2 in N2 under flow reactor conditions at a constant residence time of 0.2 s, within a total pyrolysis time of 3 min at 1 atm. The identification of the main pyrolysis products has been reported. Accordingly, the principal products for pyrolysis in order of decreasing abundance were succinimide, pyrrole, acetonitrile, and 2-pyrrolidone. For oxidative pyrolysis, the main products were succinimide, propiolactone, ethanol, and hydrogen cyanide. Whereas benzene, toluene, and a few low molecular weight hydrocarbons (propene, propane, 1-butene, and 2-butene) were detected during pyrolysis, no polycyclic aromatic hydrocarbons (PAHs) were detected. Oxidative pyrolysis yielded low molecular weight hydrocarbon products in trace amounts. The mechanistic channels describing the formation of the major product succinimide have been explored. The detection of succinimide (major product) and maleimide (minor product) from the thermal decomposition of glutamic acid has been reported for the first time in this study. Toxicological implications of some reaction products (HCN, acetonitrile, and acyrolnitrile), which are believed to form during heat treatment of food, tobacco burning, and drug processing, have been discussed in relation to the thermal degradation of glutamic acid.

  13. Urinary collagen degradation products as early markers of progressive renal fibrosis

    DEFF Research Database (Denmark)

    Hijmans, Ryanne S.; Rasmussen, Daniel Guldager Kring; Yazdani, Saleh

    2017-01-01

    Background: Renal fibrogenesis is associated with increased ECM remodeling and release of collagen fragments in urine in progressive renal disease. We investigated the diagnostic value of urinary collagen degradation products in a proteinuria-driven fibrosis rat model with and without anti-fibrot...

  14. Enzymatic oxalic acid regulation correlated with wood degradation in four brown-rot fungi

    Science.gov (United States)

    Anne Christine Steenkjær Hastrup; Frederick Green III; Patricia K. Lebow; Bo Jensen

    2012-01-01

    Oxalic acid is a key component in the initiation of brown-rot decay and it has been suggested that it plays multiple roles during the degradation process. Oxalic acid is accumulated to varying degrees among brown-rot fungi; however, details on active regulation are scarce. The accumulation of oxalic acid was measured in this study from wood degraded by the four brown-...

  15. In vitro Degradation of Butanediamine-Grafted Poly(DL-Lactic acids)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The degradation of butanediamine-grafted poly(DL-lactic acid) polymers (BDPLAs) in vitro together with PDLLA and maleic anhydride-grafted poly(DL-lactic acid) polymers (MPLAs) was investigated by observation of the changes of the pH value of incubation media, and weight loss ratio during degradation duration of 12 weeks. The results reveal that the acidity of PDLLA degradation products was weakened or neutralized by grafting butanediamine onto PDLLA. A uniform degradation of BDPLAs was observed in comparison with an acidity-induced auto-accelerating degradation featured by PDLLA and MPLAs. The biodegradation behaviors of BDPLAs can be adjusted by controlling the content of BDA. BDPLAs might be a new derivative of PDLLA-based biodegradable materials for medical applications without acidity-caused irritations and acidity-induced auto-accelerating degradation behavior as that of PDLLA.

  16. Screening of oxalate degrading lactic acid bacteria of food origin

    Directory of Open Access Journals (Sweden)

    Nicoletta Murru

    2017-04-01

    Full Text Available A screening for oxalate degrading abilities was initially carried on within Lactic Acid Bacteria cultures of different food origin. Seventy-nine strains were drop-inoculated onto MRS agar plates containing calcium oxalate. By comparing colonies diameters, 31 strains were used to inoculate, in parallel, MRS and MRS modified by sodium oxalate addition. Differences in the strains’ growth were assessed by colony forming unit counts. For two strains, the growth in oxalate enriched medium was significantly higher; while, for eleven strains an opposite behaviour was recorded. Two strains – probiotic Lactobacillus rhamnosus LbGG and Enterococcus faecalis 59 – were chosen. The first strain appeared to be able to metabolize oxalate more efficiently than the other tested cultures, while strain 59 appeared unable to gather advantage by oxalates and, indeed, appeared to be inhibited by the salt presence in the medium. Outcomes revealed that higher glucose concentrations may favour oxalates utilization. In MRS with oxalate, but without glucose, citrate was completely metabolized. Evaluation along time confirmed that the oxalate degradation is more significant in presence of glucose. Outcomes may represent a good start for the development of a safe and even probiotic culture able to lower the oxalates content of food.

  17. Degradation of acid orange 7 in an aerobic biofilm.

    Science.gov (United States)

    Coughlin, Michael F; Kinkle, Brian K; Bishop, Paul L

    2002-01-01

    A stable microbial biofilm community capable of completely mineralizing the azo dye acid orange 7 (AO7) was established in a laboratory scale rotating drum bioreactor (RDBR) using waste liquor from a sewage treatment plant. A broad range of environmental conditions including pH (5.8-8.2), nitrification (0.0-4.0 mM nitrite), and aeration (0.2-6.2 mg O2 l(-1)) were evaluated for their effects on the biodegradation of AO7. Furthermore the biofilm maintained its biodegradative ability for over a year while the effects of these environmental conditions were evaluated. Reduction of the azo bond followed by degradation of the resulting aromatic amine appears to be the mechanism by which this dye is biodegraded. Complete loss of color, sulfanilic acid, and chemical oxygen demand (COD) indicate that AO7 is mineralized. To our knowledge this is the first reported occurrence of a sulfonated phenylazonaphthol dye being completely mineralized under aerobic conditions. Two bacterial strains (ICX and SAD4i) originally isolated from the RDBR were able to mineralize, in co-culture, up to 90% of added AO7. During mineralization of AO7, strain ICX reduces the azo bond under aerobic conditions and consumes the resulting cleavage product 1-amino-2-naphthol. Strain SAD4i consumes the other cleavage product, sulfanilic acid. The ability of the RDBR biofilm to aerobically mineralize an azo dye without exogenous carbon and nitrogen sources suggests that this approach could be used to remediate industrial wastewater contaminated with spent dye.

  18. Acid attack on hydrated cement — Effect of mineral acids on the degradation process

    Energy Technology Data Exchange (ETDEWEB)

    Gutberlet, T.; Hilbig, H.; Beddoe, R.E., E-mail: robin.beddoe@tum.de

    2015-08-15

    During acid attack on concrete structural components, a degraded layer develops whose properties as a protective barrier are decisive for durability. {sup 29}Si NMR spectroscopy and {sup 27}Al NMR spectroscopy were used with XRD to investigate the degraded layer on hardened cement paste exposed to HCl and H{sub 2}SO{sub 4}. The layer comprises an amorphous silica gel with framework silicates, geminate and single silanol groups in which Si is substituted by Al. Amorphous Al(OH){sub 3} and Fe(OH){sub 3} are present. The gel forms by polycondensation and cross-linking of C-A-S-H chains at AlO{sub 4} bridging tetrahedra. In the transition zone between the degraded layer and the undamaged material, portlandite dissolves and Ca is removed from the C-A-S-H phases maintaining their polymer structure at first. With HCl, monosulphate in the transition zone is converted into Friedel's salt and ettringite. With H{sub 2}SO{sub 4}, gypsum precipitates near the degradation front reducing the thickness of the transition zone and the rate of degradation.

  19. Degradation and compatibility behaviors of poly(glycolic acid) grafted chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Luzhong; Dou, Sufeng [Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001 (China); Li, Yan [College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Yuan, Ying; Ji, Yawei [Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001 (China); Wang, Yaling [College of Chemistry and Chemical Engineering, Nantong University, Nantong 226001 (China); Yang, Yumin, E-mail: yangym@ntu.edu.cn [Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001 (China)

    2013-07-01

    The films of poly(glycolic acid) grafted chitosan were prepared without using a catalyst to improve the degradable property of chitosan. The films were characterized by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). The degradation of the poly(glycolic acid) grafted chitosan films were investigated in the lysozyme solution. In vitro degradation tests revealed that the degradation rate of poly(glycolic acid) grafted chitosan films increased dramatically compared with chitosan. The degradation rate of poly(glycolic acid) grafted chitosan films gradually increased with the increasing of the molar ratio of glycolic acid to chitosan. Additionally, the poly(glycolic acid) grafted chitosan films have good biocompatibility, as demonstrated by in vitro cytotoxicity of the extraction fluids. The biocompatible and biodegradable poly(glycolic acid) grafted chitosan would be an effective material with controllable degradation rate to meet the diverse needs in biomedical fields. - Highlights: ► Chitosan-g-poly(glycolic acid) copolymer was prepared without using a catalyst. ► Degradation rate of copolymer increased dramatically compared with that of chitosan. ► Degradation rate was controlled by the molar ratio of glycolic acid to chitosan. ► In vitro cytotoxicity tests revealed that the copolymer has good biocompatibility. ► The copolymer has a great potential to meet diverse needs in biomedical fields.

  20. Heterogeneous photocatalytic degradation of gallic acid under different experimental conditions.

    Science.gov (United States)

    Quici, Natalia; Litter, Marta I

    2009-07-01

    UV/TiO(2)-heterogeneous photocatalysis was tested as a process to degrade gallic acid (Gal) in oxygenated solutions at pH 3. In the absence of oxidants other than oxygen, decay followed a zero order rate at different concentrations and was slow at concentrations higher than 0.5 mM. Addition of Fe(3+), H(2)O(2) and the combination Fe(3+)/H(2)O(2) improved Gal degradation. In the absence of H(2)O(2), an optimal Fe : Gal molar ratio of 0.33 : 1 was found for the photocatalytic decay, beyond which addition of Fe(3+) was detrimental and even worse in comparison with the system in the absence of Fe(3+). TiO(2) addition was beneficial compared with the same system in the absence of the photocatalyst if Fe(3+) was added at low concentration (0.33 : 1 Fe : Gal molar ratio), while at high concentration (1 : 1 Fe : Gal molar ratio) TiO(2) did not exert any significant effect. H(2)O(2) addition (1 : 0.33 Gal : H(2)O(2) molar ratio, absence of Fe(iii)) also enhanced the heterogeneous photocatalytic reaction. Simultaneous addition of Fe(3+) and H(2)O(2) was more effective than the addition of the separate oxidants. This system was compared with Fenton and photo-Fenton systems. At low H(2)O(2) concentration (0.33 : 1 : 0.2 Fe : Gal : H(2)O(2) molar ratio), the presence of TiO(2) also enhanced the reaction. The influence of the thermal charge transfer reaction between Gal and Fe(iii), which leads to an important Gal depletion in the dark with formation of quinones, was analysed. The mechanisms taking place in these complex systems are proposed, paying particular attention to the important charge transfer reaction of the Fe(iii)-Gal complex operative in dark conditions.

  1. Phytic acid degrading lactic acid bacteria in tef-injera fermentation.

    Science.gov (United States)

    Fischer, Maren M; Egli, Ines M; Aeberli, Isabelle; Hurrell, Richard F; Meile, Leo

    2014-11-03

    Ethiopian injera, a soft pancake, baked from fermented batter, is preferentially prepared from tef (Eragrostis tef) flour. The phytic acid (PA) content of tef is high and is only partly degraded during the fermentation step. PA chelates with iron and zinc in the human digestive tract and strongly inhibits their absorption. With the aim to formulate a starter culture that would substantially degrade PA during injera preparation, we assessed the potential of microorganisms isolated from Ethiopian household-tef fermentations to degrade PA. Lactic acid bacteria (LAB) were found to be among the dominating microorganisms. Seventy-six isolates from thirteen different tef fermentations were analyzed for phytase activity and thirteen different isolates of seven different species were detected to be positive in a phytase screening assay. In 20-mL model tef fermentations, out of these thirteen isolates, the use of Lactobacillus (L.) buchneri strain MF58 and Pediococcus pentosaceus strain MF35 resulted in lowest PA contents in the fermented tef of 41% and 42%, respectively of its initial content. In comparison 59% of PA remained when spontaneously fermented. Full scale tef fermentation (0.6L) and injera production using L. buchneri MF58 as culture additive decreased PA in cooked injera from 1.05 to 0.34±0.02 g/100 g, representing a degradation of 68% compared to 42% in injera from non-inoculated traditional fermentation. The visual appearance of the pancakes was similar. The final molar ratios of PA to iron of 4 and to zinc of 12 achieved with L. buchneri MF58 were decreased by ca. 50% compared to the traditional fermentation. In conclusion, selected LAB strains in tef fermentations can degrade PA, with L. buchneri MF58 displaying the highest PA degrading potential. The 68% PA degradation achieved by the application of L. buchneri MF58 would be expected to improve human zinc absorption from tef-injera, but further PA degradation is probably necessary if iron absorption has to

  2. Convergent synthesis of degradable dendrons based on L-malic acid

    DEFF Research Database (Denmark)

    Meyhoff, Ulrich; Riber, Ulla; Boas, Ulrik

    2015-01-01

    New degradable polyester dendrons based on the cellular tricarboxylic acid cycle component L-malic acid were synthesized up to the third generation by convergent synthesis. The dendron wedges could be introduced in a stepwise, highly regioselective fashion. HMBC-NMR revealed that the C1-carbonyl...... on malic acid was exclusively esterified, before the reaction of the second dendron wedge at C4 took place. Degradation studies on a first generation dendron analyzed by HPLC showed that hydrolytic degradation of the dendron most profoundly takes place at pH 4 and pH 9 with the highest degradation rate...

  3. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyejeong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Department of Food Science and Technology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lim, Sangyong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Jo, Cheorun [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Chung, Jinwoo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Kim, Soohyun [Glycomics Team, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Kwon, Joong-Ho [Department of Food Science and Technology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Dongho [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2008-06-15

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent.

  4. Characterization of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid-degrading fungi in Vietnamese soils.

    Science.gov (United States)

    Itoh, Kazuhito; Kinoshita, Masahiro; Morishita, Shigeyuki; Chida, Masateru; Suyama, Kousuke

    2013-04-01

    Sixty-nine fungal strains were isolated countrywide from 10 Vietnamese soils, in areas both with and without a history of exposure to Agent Orange, and their degrading activities on the phenoxy acid herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), as well as related compounds, were examined. Among taxonomically various fungi, 45, 12 and 4% of the isolates degraded phenoxyacetic acid (PA), 2,4-D and 2,4,5-T, respectively. While the PA-degrading fungi were distributed to all sites and among many genera, the 2,4-D-degraders were found only in order Eurotiales in class Eurotiomycetes. All of the 2,4,5-T-degrading fungal strains were phylogenetically close to Eupenicillium spp. and were isolated from southern Vietnam. As a degradation intermediate, the corresponding phenol compounds were detected in some strains. The degradation substrate spectrum for 26 compounds of Eupenicillium spp. strains including 2,4,5-T-degraders and -non-degraders seemed to be related to phylogenetic similarity and soil sampling location of the isolates. These results suggest that the heavily contaminated environments enhanced the adaptation of the phylogenetic group of Eupenicillium spp. toward to obtain the ability to degrade 2,4,5-T. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. [Catalytic ozonation by ceramic honeycomb for the degradation of oxalic acid in aqueous solution].

    Science.gov (United States)

    Zhao, Lei; Sun, Zhi-Zhong; Ma, Jun

    2007-11-01

    Comparative experiments for the degradation of oxalic acid in aqueous solution were carried out in the three processes of ozonation alone, ceramic honeycomb-catalyzed ozonation and ceramic honeycomb adsorption. The results show that the degradation rates of oxalic acid in the ceramic honeycomb-catalyzed ozonation, ozonation alone and ceramic honeycomb adsorption systems are 37.6%, 2.2% and 0.4%, and the presence of ceramic honeycomb catalyst significantly improves the degradation rate of oxalic acid compared to the results from non-catalytic ozonation and adsorption. With the addition of tert-butanol, the degradation rates of oxalic acid in catalytic ozonation system decrease by 24.1%, 29.0% and 30.1%, respectively, at the concentration of 5, 10 and 15 mg x L(-1). This phenomenon indicates that ceramic honeycomb-catalyzed ozonation for the degradation of oxalic acid in aqueous solution follows the mechanism of *OH oxidation, namely the heterogeneous surface of catalyst enhances the initiation of *OH. The results of TOC analysis demonstrate that the process of ceramic honeycomb-catalyzed ozonation can achieve the complete mineralization level without the formation of intermediary degradation products. The experimental results suggest that the reaction temperature has positive relationship with the degradation rate of oxalic acid. The degradation rates of oxalic acid in the ceramic honeycomb-catalyzed ozonation system are 16.4%, 37.6%, 61.3% and 68.2%, at the respective reaction temperature of 10, 20, 30 and 40 degrees C.

  6. Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases.

    Science.gov (United States)

    Lambertz, Camilla; Ece, Selin; Fischer, Rainer; Commandeur, Ulrich

    2016-04-01

    Lignin is 1 of the 3 major components of lignocellulose. Its polymeric structure includes aromatic subunits that can be converted into high-value-added products, but this potential cannot yet been fully exploited because lignin is highly recalcitrant to degradation. Different approaches for the depolymerization of lignin have been tested, including pyrolysis, chemical oxidation, and hydrolysis under supercritical conditions. An additional strategy is the use of lignin-degrading enzymes, which imitates the natural degradation process. A versatile set of enzymes for lignin degradation has been identified, and research has focused on the production of recombinant enzymes in sufficient amounts to characterize their structure and reaction mechanisms. Enzymes have been analyzed individually and in combinations using artificial substrates, lignin model compounds, lignin and lignocellulose. Here we consider progress in the production of recombinant lignin-degrading peroxidases, the advantages and disadvantages of different expression hosts, and obstacles that must be overcome before such enzymes can be characterized and used for the industrial processing of lignin.

  7. Thermal degradation kinetics of polylactic acid/acid fabricated cellulose nanocrystal based bionanocomposites.

    Science.gov (United States)

    Monika; Dhar, Prodyut; Katiyar, Vimal

    2017-11-01

    Cellulose nanocrystals (CNC) are fabricated from filter paper (as cellulosic source) by acid hydrolysis using different acids such as sulphuric (H2SO4), phosphoric (H3PO4), hydrochloric (HCl) and nitric (HNO3) acid. The resulting acid derived CNC are melt mixed with Polylactic acid (PLA) using extruder at 180°C. Thermogravimetric (TGA) result shows that increase in 10% and 50% weight loss (T10, T50) temperature for PLA-CNC film fabricated with HNO3, H3PO4 and HCl derived CNC have improved thermal stability in comparison to H2SO4-CNC. Nonisothermal kinetic studies are carried out with modified-Coats-Redfern (C-R), Ozawa-Flynn-Wall (OFW) and Kissinger method to predict the kinetic and thermodynamic parameters. Subsequently prediction of these parameter leads to the proposal of thermal induced degradation mechanism of nanocomposites using Criado method. The distribution of Ea calculated from OFW model are (PLA-H3PO4-CNC: 125-139 kJmol(-1)), (PLA-HNO3-CNC: 126-145 kJmol(-1)), (PLA-H2SO4-CNC: 102-123 kJmol(-1)) and (PLA-HCl-CNC: 140-182 kJmol(-1)). This difference among Ea for the decomposition of PLA-CNC bionanocomposite is probably due to various acids used in this study. The Ea calculated by these two methods are found in consonance with that observed from Kissinger method. Further, hyphenated TG-Fourier transform infrared spectroscopy (FTIR) result shows that gaseous products such as CO2, CO, lactide, aldehydes and other compounds are given off during the thermal degradation of PLA-CNC nanocomposite. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Separation and recovery of nucleic acids with improved biological activity by acid-degradable polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Kim, Yoon Kyung; Kwon, Young Jik

    2010-05-01

    One of the fundamental challenges in studying biomacromolecules (e.g. nucleic acids and proteins) and their complexes in a biological system is isolating them in their structurally and functionally intact forms. Electrophoresis offers convenient and efficient separation and analysis of biomacromolecules but recovery of separated biomacromolecules is a significant challenge. In this study, DNAs of various sizes were separated by electrophoresis in an acid-degradable polyacrylamide gel. Almost 100% of the nucleic acids were recovered after the identified gel bands were hydrolyzed under a mildly acidic condition and purified using anion exchange resin. Further concentration by centrifugal filtration and a second purification using ion exchange column chromatography yielded 44-84% of DNA. The second conventional (non-degradable) gel electrophoresis confirmed that the nucleic acids recovered from acid-degradable gel bands preserved their electrophoretic properties through acidic gel hydrolysis, purification, and concentration processes. The plasmid DNA recovered from acid-degradable gel transfected cells significantly more efficiently than the starting plasmid DNA (i.e. improved biological activity via acid-degradable PAGE). Separation of other types of nucleic acids such as small interfering RNA using this convenient and efficient technique was also demonstrated.

  9. Τhe effect of silica nanoparticles on the thermomechanical properties and degradation behavior of polylactic acid.

    Science.gov (United States)

    Georgiopoulos, P; Kontou, E; Meristoudi, A; Pispas, S; Chatzinikolaidou, M

    2014-11-01

    In this work a series of polylactic acid/SiO2 nanocomposites have been prepared by a melt mixing procedure. The dispersion quality was examined by scanning electron microscopy. To study the degradation behavior of the polylactic acid/nanocomposites prepared, the samples were immersed in a buffer solution at a temperature of 37℃ with a pH of 7.4 for a time period of up to 23 weeks. These conditions simulate those in the human body, appropriate in medical applications. In order to assess their suitability in biomedical applications, we investigated the biocompatibility of these materials in terms of cell viability, growth, and morphology. A good initial cell adhesion has been detected, supporting their potential use in bone tissue engineering applications. The hydrolytic degradation of polylactic acid, under the prescribed conditions, was studied by the molecular weight reduction in terms of size exclusion chromatography, whereas the progress of thermal stability of polylactic acid and polylactic acid/nanocomposites during aging was tested by thermogravimetric analysis. The evolution of the materials' thermomechanical properties during aging was studied by differential scanning calorimetry, dynamic mechanical analysis, and tensile testing. The crystallization behavior in polylactic acid and the way it is affected by the presence of nanofillers during degradation procedure has been studied and values of 44% crystallinity increment have been found. At the specific aging conditions studied, silica nanoparticles accelerate the degradability of polylactic acid, having a higher impact on Young's modulus, under the specified aging conditions, for 7 weeks and hereafter this acceleration is retarded, due to the crystallinity increment, as a result of the molecular weight reduction.

  10. Identification of the primary mechanism for fungal lignin degradation. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Many lignin-degrading fungi appear to lack lignin peroxidase (LiP), an enzyme generally thought important for fungal ligninolysis. The authors are working with one of these fungi, Ceriporiopsis subvermispora, an aggressive white-rotter that selectively removes lignin from wood. During this project period, they have obtained the following principal results: new polymeric lignin model compounds were developed to assist in the elucidation of fungal ligninolytic mechanisms; experiments with one of the polymeric lignin models showed that C. subvermispora cultures which express no detectable LiP activity are nevertheless able to degrade nonphenolic lignin structures, this result is significant because LiPs were previously considered essential for fungal attack on these recalcitrant structures, which constitute about 90% of lignin; manganese peroxidases (MnPs), which C. subvermispora does produce, catalyze the peroxidation of unsaturated fatty acids to give fatty acid hydroperoxides, fatty acid hydroperoxides are also used by MnP as oxidants (in place of H{sub 2}O{sub 2}) that support the MnP catalytic cycle, these results indicate that MnP turnover in the presence of unsaturated lipids generates reactive lipid oxyradicals that could act as oxidant of other molecules; MnP-mediated lipid peroxidation results in the co-oxidative cleavage of nonphenolic lignin structures, the MnP/lipid peroxidation system may therefore provide C. subvermispora and other LiP-negative fungi with a mechanism to degrade the principal structures of lignin.

  11. Comparison of pH-sensitive degradability of maleic acid amide derivatives.

    Science.gov (United States)

    Kang, Sunyoung; Kim, Youngeun; Song, Youngjun; Choi, Jin Uk; Park, Euddeum; Choi, Wonmin; Park, Jeongseon; Lee, Yan

    2014-05-15

    We synthesized five maleic acid amide derivatives (maleic, citraconic, cis-aconitic, 2-(2'-carboxyethyl) maleic, 1-methyl-2-(2'-carboxyethyl) maleic acid amide), and compared their degradability for the future development of pH-sensitive biomaterials with tailored kinetics of the release of drugs, the change of charge density, and the degradation of scaffolds. The degradation kinetics was highly dependent upon the substituents on the cis-double bond. Among the maleic acid amide derivatives, 2-(2'-carboxyethyl) maleic acid amide with one carboxyethyl and one hydrogen substituent showed appropriate degradability at weakly acidic pH, and the additional carboxyl group can be used as a pH-sensitive linker.

  12. Main chain acid-degradable polymers for the delivery of bioactive materials

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Standley, Stephany M [Evanston, IL; Jain, Rachna [Milpitas, CA; Lee, Cameron C [Cambridge, MA

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  13. TiO2 BEADS FOR PHOTOCATALYTIC DEGRADATION OF HUMIC ACID IN PEAT WATER

    Directory of Open Access Journals (Sweden)

    Winarti Andayani

    2011-12-01

    Full Text Available Degradation of humic acid in aqueous solution containing TiO2 coated on ceramics beads under irradiation of 254 nm UV light has been conducted in batch reactor. The aim of this experiment was to study photocatalytic degradation of humic acid in peat water. The irradiation of the humic acid in aqueous solution was conducted in various conditions i.e solely uv, in the presence of TiO2-slurry and TiO2 beads. The color intensity, humic acid residue, conductivity and COD (chemical oxygen demand of the solution were analyzed before and after irradiation.  The compounds produced during photodegradation were identified using HPLC. The results showed that after photocatalytic degradation, the color intensity and the COD value of the solution decreased, while the conductivity of water increased indicating mineralization of the peat water occurred. In addition, oxalic acid as the product of degradation was observed.

  14. Influence of water solubility, side chain degradability and side chain configuration on the degradation of phthalic acid esters under methanogenic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Alnervik, M.

    1996-12-31

    Water solubility and degradability of side chains estrifying phthalic acid are factors possible to influence the degradation of phthalic acid esters (PAEs). To investigate the importance of these factors degradation of butyl 2-ethylhexyl phthalate (BEHP), bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), dihexyl phthalate (DHP), dioctyl phthalate (DOP) and didecyl phthalate (DDP) were examined under methanogenic conditions as well as was the degradability of the alcohols estrifying these PAEs. We also investigated if the degradation of resistant PAEs could be stimulated by the addition of a degradable PAE. Synthesis of degradation intermediates and two methods for PAE analyses are presented. The investigation showed that all alcohols were degraded to methane and carbon dioxide and that the degradation of PAE occurred in incubations amended with BBP, BEHP, DHP and DBP, whilst DEHP, DOP and DDP were unaffected throughout the experimental period. BBP added to incubations with DEHP, could not stimulate DEHP degradation. In conclusion, the degradability of alcohols estrifying phthalic acid in this study does not affect the anaerobic degradability of PAEs. Water solubility of a PAE can not be rejected as a factor limiting phthalate degradation under methanogenic conditions. Anaerobic degradation of persistent PAEs can not be stimulated by mixing it with a degradable phthalate. 23 refs, 11 figs, 2 tabs

  15. Constitutive uptake and degradation of fatty acids by Yersinia pestis.

    OpenAIRE

    Moncla, B. J.; Hillier, S L; Charnetzky, W T

    1983-01-01

    Yersinia pestis was found to utilize palmitic acid as a primary carbon and energy source. No inhibition of growth by palmitic acid was observed. Comparison of palmitic acid uptake by cells pregrown either with or without palmitic acid demonstrated that fatty acid uptake was constitutive. High basal levels of two enzymes of beta-oxidation, beta-hydroxyacyl-coenzyme A dehydrogenase and thiolase, and the two enzymes of the glyoxylate shunt, isocitrate lyase and malate synthase, were found in cel...

  16. Studies on the sonic degradation of deoxyribonucleic acid.

    Science.gov (United States)

    FREIFELDER, D; DAVISON, P F

    1962-05-01

    T7 DNA was partially degraded by x-rays, DNAase, and sonic irradiation. The molecular weight distributions were calculated from sedimentation velocity studies on the resulting preparations. Comparison with the theoretical curve derived by Montroll and Simha showed that the first two degradative methods act grossly at random, whereas sonication is a non-random process resulting in the preferential halving of the DNA molecules in solution.

  17. Thermal degradation of Lewis acid complexed LDPE films

    Science.gov (United States)

    Sreelatha, K.; Predeep, P.

    2017-06-01

    The study highlights the thermal behavior of the semiconducting LDPE films synthesized by SbCl5 doping. The structural peculiarities and the responses of the structure to energetic modifications are studied. TGA and DTG curves are used to determine the thermal stability of the material. Degradation kinetics is elucidated. Activation energy and the entropy of activation for the degradation of the samples are calculated using Coats-Redfern plots and the samples show appreciable thermal stability.

  18. Identification of major degradation products of 5-aminosalicylic acid formed in aqueous solutions and in pharmaceuticals

    DEFF Research Database (Denmark)

    Jensen, J.; Cornett, Claus; Olsen, C. E.

    1992-01-01

    The formation of four major degradation products of 5-aminosalicylic acid (5-ASA) in buffered solutions at pH 7.0 was demonstrated by gradient HPLC analysis. The isolation and structural elucidation of the resulting degradation products showed that the degradation of 5-ASA led to the formation of......-containing pharmaceuticals, which had not been stored as prescribed, but in diffuse daylight for up to 2 years....

  19. THERMAL DEGRADATION OF THERMOTROPIC LIQUID CRYSTALLINE TERPOLYESTERS BASED ON VANILLIC ACID, p-HYDROXYBENZOIC ACID AND POLY(ETHYLENE TEREPHTHALATE)

    Institute of Scientific and Technical Information of China (English)

    LI Xingui; HUANG Meirong; GUAN Guihe; SUN Tong

    1993-01-01

    Nine thermotropic liquid crystalline terpolyesters based on vanillic acid(V), p-hydroxybenzoic acid(H) and poly(ethylene terephthalate)(E) were investigated by thermogravimetry to ascertain their thermostability and the kinetic parameters for thermal degradation. Overall activation energy data of the degradation had been calculated over the range 5~70% weight loss. The temperatures and the activation energy of the degradation lie in the ranges of 384~394 ℃ at a heating rate of 1 ℃/min and 176~205 KJ/mol at the weight loss of 5%, respectively, which suggests that the terpolyesters have good thermostability.

  20. New Biocompatible Polyesters Derived from α-Amino Acids: Hydrolytic Degradation Behavior

    Directory of Open Access Journals (Sweden)

    Jeoshua Katzhendler

    2010-10-01

    Full Text Available New polymers were synthesized from α-hydroxy acids derived from the natural amino acids Ile, Leu, Phe, and Val, combined with lactic acid, glycolic acid and 6-hydroxyhexanoic acid by direct condensation. The toxicity was determined and the degradation process of these polyesters was investigated under physiological conditions by analyzing the composition of the degraded polymers and the oligomers cleaved in the buffer medium. The polymers were found to be non toxic to two cell lines. Polymers displayed a biphasic degradation behavior. In most cases, a linear relationship was found between the weight loss constant and the hydrophobicity of the polymers, Log P. Regarding the second stage of weight loss, it is apparent that polymers derived from α-hydroxy(Lisoleucine ((LHOIle and α-hydroxy(LValine ((LHOVal degraded much faster than those derived from α-hydroxy(Lleucine ((LHOLeu and α-hydroxy(Lphenylalanine ((LHOPhe, probably due to different spatial orientation of the side chains. Copolymers of 6-hydroxyhexanoic acid displayed slow degradation rates as expected, whereas the degradation profile of copolymers of lactic acid was similar to the other homopolymers. These new polyesters may serve as potential biocompatible materials for medical applications.

  1. Muscle protein degradation and amino acid metabolism during prolonged knee-extensor exercise in humans

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Saltin, B; Wagenmakers, A J

    1999-01-01

    to a substantial increase in net muscle protein degradation, and that a lowering of the starting muscle glycogen content leads to a further increase. The carbon atoms of the branched-chain amino acids (BCAA), glutamate, aspartate and asparagine, liberated by protein degradation, and the BCAA and glutamate...

  2. In situ ruminal degradation of phytic acid in formaldehyde treated rice bran

    NARCIS (Netherlands)

    Martin-Tereso, J.; Gonzalez, A.; Laar, van H.; Burbara, C.; Pedrosa, M.; Mulder, K.; Hartog, den L.A.; Verstegen, M.W.A.

    2009-01-01

    Rice bran has a very high content of phytic acid (IP6), which is a nutritional antagonist of Ca. Microbial phytase degrades IP6, but ruminal degradation of nutrients can be reduced by formaldehyde treatment. Milk fever in dairy cows can be prevented by reducing available dietary Ca to stimulate Ca

  3. In situ ruminal degradation of phytic acid in formaldehyde treated rice bran

    NARCIS (Netherlands)

    Martin-Tereso, J.; Gonzalez, A.; Laar, van H.; Burbara, C.; Pedrosa, M.; Mulder, K.; Hartog, den L.A.; Verstegen, M.W.A.

    2009-01-01

    Rice bran has a very high content of phytic acid (IP6), which is a nutritional antagonist of Ca. Microbial phytase degrades IP6, but ruminal degradation of nutrients can be reduced by formaldehyde treatment. Milk fever in dairy cows can be prevented by reducing available dietary Ca to stimulate Ca h

  4. From Labdanes to Drimanes. Degradation of the Side Chain of Dihydrozamoranic Acid.

    Directory of Open Access Journals (Sweden)

    Pedro M. Rocha

    2004-04-01

    Full Text Available A new route for the degradation of the saturated side chain of dihydrozamoranic acid has been devised, giving an advanced intermediate, compound 14, useful for the synthesis of insect antifeedants such as warburganal and polygodial.

  5. From labdanes to drimanes. Degradation of the side chain of dihydrozamoranic acid.

    Science.gov (United States)

    Rodilla, Jesús M L; Díez, D; Urones, J G; Rocha, Pedro M

    2004-04-30

    A new route for the degradation of the saturated side chain of dihydrozamoranic acid has been devised, giving an advanced intermediate, compound 14, useful for the synthesis of insect antifeedants such as warburganal and polygodial.

  6. Degradation of h-acid by free and immobilized cells of Alcaligenes latus

    Directory of Open Access Journals (Sweden)

    M.S. Usha

    2010-12-01

    Full Text Available Alcaligenes latus, isolated from industrial effluent, was able to grow in mineral salts medium with 50 ppm (0.15 mM of H-acid as a sole source of carbon. Immobilization of Alcaligenes latus in Ca-alginate and polyurethane foam resulted in cells embedded in the matrices. When free cells and immobilized cells were used for biodegradation studies at concentration ranging from 100 ppm (0.3 mM to 500 ppm (1.15 mM degradation rate was enhanced with immobilized cells. Cells immobilized in polyurethane foam showed 100% degradation up to 350 ppm (1.05 mM and 57% degradation at 500 ppm (1.5 mM. Degradation rate of Ca-alginate immobilized cells was less as compared to that of polyurethane foam immobilized cells. With Ca-alginate immobilized cells 100% degradation was recorded up to 200 ppm (0.6 mM of H-acid and only 33% degradation was recorded at 500 ppm (1.5 mM of H-acid. Spectral analysis of the products after H-acid utilization showed that the spent medium did not contain any aromatic compounds indicating H-acid degradation by A. latus.

  7. [Screening and identification of hemicellulose degrading microorganisms in acid soil].

    Science.gov (United States)

    Gu, Wenjie; Xu, Youquan; Xu, Peizhi; Xie, Kaizhi; Lu, Yusheng; Tang, Shuanhu; Zhang, Fabao

    2012-10-04

    The aim of this study was to screen hemicellulose degrading microorganisms. The methods used to screen the effective strains included hydrolysis spot diameter measurement of hemicellulose plate and extracellular enzyme activity. The methods used to identify the strains included culture characteristics, morphological, physiological-biochemical characteristics and molecular biological methods. We isolated 4 actinomycetes (NA9, NA10, NA12 and NA13), 2 fungi (NF1 and NF7) with hemicellulose degrading ability and no antagonistic effect among them. The hemicellulose degrading activity of 4 actinomyces (NA9, NA10, NA12 and NA13) was 217.6, 229.8, 221.1 and 211.8 U/mL. The hemicellulose degrading activity of 2 fungi (NF1 and NF7) was 217.7 and 244.2 U/mL. The hemicellulose degrading activity of complex microbial system was 299.0 U/mL. NA9, NA10, NA12 and NA13 were Streptomyces costaricanus; NF1 was Aspergillus candidus and NF7 was Tarlaromyces flavus. the 4 actinomyces and 2 fungi screened have high hemicelluloses enzyme activity. These strains have good application value and more research value.

  8. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    Science.gov (United States)

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide.

  9. Early diagnostic of concurrent gear degradation processes progressing under time-varying loads

    Science.gov (United States)

    Guilbault, Raynald; Lalonde, Sébastien

    2016-08-01

    This study develops a gear diagnostic procedure for the detection of multi- and concurrent degradation processes evolving under time-varying loads. Instead of a conventional comparison between a descriptor and an alarm level, this procedure bases its detection strategy on a descriptor evolution tracking; a lasting descriptor increase denotes the presence of ongoing degradation mechanisms. The procedure works from time domain residual signals prepared in the frequency domain, and accepts any gear conditions as reference signature. To extract the load fluctuation repercussions, the procedure integrates a scaling factor. The investigation first examines a simplification assuming a linear connection between the load and the dynamic response amplitudes. However, while generally valuable, the precision losses associated with large load variations may mask the contribution of tiny flaws. To better reflect the real non-linear relation, the paper reformulates the scaling factor; a power law with an exponent value of 0.85 produces noticeable improvements of the load effect extraction. To reduce the consequences of remaining oscillations, the procedure also includes a filtering phase. During the validation program, a synthetic wear progression assuming a commensurate relation between the wear depth and friction assured controlled evolutions of the surface degradation influence, whereas the fillet crack growth remained entirely determined by the operation conditions. Globally, the tested conditions attest that the final strategy provides accurate monitoring of coexisting isolated damages and general surface deterioration, and that its tracking-detection capacities are unaffected by severe time variations of external loads. The procedure promptly detects the presence of evolving abnormal phenomena. The tests show that the descriptor curve shapes virtually describe the constant wear progression superimposed on the crack length evolution. At the tooth fracture, the mean values of

  10. Degradation of 2,4-dichlorophenoxyacetic acid in water by ozone-hydrogen peroxide process

    Institute of Scientific and Technical Information of China (English)

    YU Ying-hui; MA Jun; HOU Yan-jun

    2006-01-01

    This study reports an investigation into the degradation of 2,4-dichlorophenoxyacetic acid in bubble contactor column by O3/H2O2 process, which is widely used as a principal advanced oxidation process. The degradation of 2,4-dichlorophenoxyacetic acid was studied under different H2O2/O3 molar ratio and pH value. Meanwhile, TOC removal was investigated both in distilled water and tap water. The influences of ozone transfer and consumed hydrogen peroxide were also discussed. The degradation products and oxidation intermediates were identified by GC-MS and LC-MS. A possible reaction mechanism was thus proposed.

  11. DENTINE CARIES: ACID-TOLERANT MICROORGANISMS AND ASPECTS ON COLLAGEN DEGRADATION.

    Science.gov (United States)

    Lager, Anders Hedenbjörk

    2014-01-01

    Dental caries is a common disease all over the world, despite the fact that it can be both effectively prevented and treated. It is driven by acids produced by oral microorganisms as a consequence of their metabolism of dietary carbohydrates. Given enough acid challenge, eventually the tooth enamel barrier will be broken down, and the carious lesion will extend into underlying hard tissue, forming a macroscopic cavity in the dentine. In comparison to biofilm on enamel, a dentine carious lesion provides a vastly different environment for the residing microorganisms. The environment influences the types and numbers of microorganisms that can colonize the dentine caries lesion. The overall aims for this thesis are to enumerate and further study microorganisms found in established dentine caries lesions and also to illuminate how host-derived proteolytic enzymes might contribute to this degradation, not only to better understand the caries process in dentine but also to find incitements for new methods to influence the natural progression of caries lesions. In Paper I, the numbers of remaining viable microorganisms after completed excavation using two excavation methods were investigated. Samples of carious dentine tissue were collected before and after excavation and cultivated on different agar media in different atmospheres. Analysis was performed by counting the number of colony-forming units (CFUs). Key findings: The number of remaining microorganisms after excavation was low for both methods, but some microorganisms always remained in the cavity floors even when the cavities were judged as caries free using normal clinical criteria. In Paper II, the acid tolerant microbiota in established dentine caries lesions was investigated. Samples were taken as in Paper I, but on three levels (superficial, center of lesion, floor of lesion after completed excavation). The samples were cultivated in anaerobic conditions on solid pH-selective agar media of different acidity

  12. Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis

    Science.gov (United States)

    Lim, Sangyong; Choi, Jong-il; Park, Hyun

    2015-04-01

    Low molecular weight fucoidan, prepared by radical degradation using gamma ray was investigated for its antioxidant activities with different assay methods. As the molecular weight of fucoidan decreased with a higher absorbed dose, ferric-reducing antioxidant power values increased, but β-carotene bleaching inhibition did not change significantly. The antioxidant activity of acid-degraded fucoidan was also examined to investigate the effect of different degradation methods. At the same molecular weight, fucoidan degraded by gamma irradiation showed higher 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity than that observed with the acidic method. This result reveals that in addition to molecular weight, the degradation method affects the antioxidant activity of fucoidan.

  13. Influence of amino acids, buffers, and ph on the γ-irradiation-induced degradation of alginates.

    Science.gov (United States)

    Ulset, Ann-Sissel T; Mori, Hideki; Dalheim, Marianne Ø; Hara, Masayuki; Christensen, Bjørn E

    2014-12-08

    Alginate-based biomaterials and medical devices are commonly subjected to γ-irradiation as a means of sterilization, either in the dry state or the gel (hydrated) state. In this process the alginate chains degrade randomly in a dose-dependent manner, altering alginates' material properties. The addition of free radical scavenging amino acids such as histidine and phenylalanine protects the alginate significantly against degradation, as shown by monitoring changes in the molecular weight distributions using SEC-MALLS and determining the pseudo first order rate constants of degradation. Tris buffer (0.5 M), but not acetate, citrate, or phosphate buffers had a similar effect on the degradation rate. Changes in pH itself had only marginal effects on the rate of alginate degradation and on the protective effect of amino acids. Contrary to previous reports, the chemical composition (M/G profile) of the alginates, including homopolymeric mannuronan, was unaltered following irradiation up to 10 kGy.

  14. Stress degradation studies and stability-indicating TLC-densitometric method of glycyrrhetic acid.

    Science.gov (United States)

    Musharraf, Syed Ghulam; Kanwal, Nayab; Arfeen, Qamar Ul

    2013-01-17

    Glycyrrhetic acid, a pentacyclic triterpenoid, possesses a broad range of pharmacological activities and serves as template to synthesize many bioactive drugs. This paper describes a simple, accurate, and sensitive stability-indicating TLC densitometric method for the determination of glycyrrhetic acid and its degradation product as per the ICH guidelines. Separation was carried out on TLC aluminium sheet pre-coated with silica gel 60F254 using chloroform, methanol and formic acid (9:0.9:0.1, v/v). Compact spot for glycyrrhetic acid was found at Rf value of 0.42 ± 0.03. Densitometric analysis was carried out in the absorbance mode at λmax 254 nm. Glycyrrhetic acid was found to be stable to the exposure of base, neutral, oxidation, dry heating treatment and wet heating treatment, but showed degradation under acidic and photochemical conditions. Moreover, fragmentation pattern of glycyrrhetic acid was developed by using a positive ion electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QqTOF-MS/MS) hybrid instrument. A photo-degraded product was characterized through comparison of mass spectrometric studies with glycyrrhetic acid. The developed stability-indicating TLC-densitometric method can be applied for routine analysis of glycyrrhetic acid in the presence of its degradation products.

  15. [Degradation of Acid Orange 7 with Persulfate Activated by Silver Loaded Granular Activated Carbon].

    Science.gov (United States)

    Wang, Zhong-ming; Huang, Tian-yin; Chen, Jia-bin; Li, Wen-wei; Zhang, Li-ming

    2015-11-01

    Granular activated carbon with silver loaded as activator (Ag/GAC) was prepared using impregnation method. N2 adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were adopted to characterize the Ag/GAC, showing that silver was successfully loaded on granular activated carbon. The oxidation degradation of acid orange 7 (AO7) by the Ag/GAC activated by persulfate (PS) was investigated at ambient temperature. The influences of factors such as Ag loading, PS or Ag/GAC dosages and initial pH on the degradation of AO7 were evaluated. The results demonstrated that the degradation rate of AO7 could reach more than 95.0% after 180 min when the Ag loading content, PS/AO7 molar ratio, the Ag/GAC dosage were 12.7 mg x g(-1), 120: 1, 1.0 g x L(-1), respectively. The initial pH had significant effect on the AO7 degradation, with pH 5.0 as the optimal pH for the degradation of AO7. The possible degradation pathway was proposed for the AO7 degradation by using UV-visible spectroscopy and gas chromatography-mass spectrometry (GG/MS). The azo bond and naphthalene ring in the AO7 were destroyed during the degradation, with phthalic acid and acetophenone as the main degradation products.

  16. Relationship between uric acid levels and progressive supranuclear palsy.

    Science.gov (United States)

    Brody, David M; Litvan, Irene; Warner, Steve; Riley, David E; Hall, Deborah A; Kluger, Benzi M; Shprecher, David R; Cunningham, Christopher R

    2016-05-01

    The pathophysiology of both PD and PSP is characterized by a pro-oxidant state. Uric acid is an oxidative stress marker. High uric acid blood levels have been associated with a reduced risk of PD and a decreased rate of disease progression. We investigated whether a low serum concentration of uric acid is also associated with PSP. We measured serum uric acid concentrations in a subsample of the ENGENE PSP Cohort that included 75 cases and 75 frequency-matched-by-sex healthy controls (69 spouses, 6 in-laws) from four centers willing to participate (Case Western, Rush University, University of Utah, and University of Louisville). Case severity was characterized using the total PSP-Rating Scale, UPDRS, and Mattis Dementia Rating Scale. Unconditional logistic regression, Pearson's chi-squared test, and analysis of variance were used, as appropriate. The mean uric acid level among cases (4.0 mg/dL) was not significantly lower than that of controls (4.1 mg/dL). When controlling for sex, there were no between-group statistical differences in uric acid levels. Uric acid levels were not correlated with disease severity. The results of this study do not provide evidence of uric acid having a protective role in PSP, even if oxidative injury is important in the pathophysiology of this disorder. The lack of statistical significance suggests that there is no direct association between uric acid levels and PSP. However, a small inverse association cannot be excluded. © 2016 Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  17. Evaluation of non-thermal effects of electricity on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating.

    Science.gov (United States)

    Jaeschke, Débora Pez; Marczak, Ligia Damasceno Ferreira; Mercali, Giovana Domeneghini

    2016-05-15

    The effect of electric field on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating was evaluated. Ascorbic acid kinetic degradation was evaluated at 80, 85, 90 and 95°C during 60 min of thermal treatment by ohmic and conventional heating. Carotenoid degradation was evaluated at 90 and 95°C after 50 min of treatment. The different temperatures evaluated showed the same effect on degradation rates. To investigate the influence of oxygen concentration on the degradation process, ohmic heating was also carried out under rich and poor oxygen modified atmospheres at 90°C. Ascorbic acid and carotenoid degradation was higher under a rich oxygen atmosphere, indicating that oxygen is the limiting reagent of the degradation reaction. Ascorbic acid and carotenoid degradation was similar for both heating technologies, demonstrating that the presence of the oscillating electric field did not influence the mechanisms and rates of reactions associated with the degradation process.

  18. Characterization of Degradation Progressive in Composite Laminates Subjected to Thermal Fatigue and Moisture Diffusion by Lamb Waves

    Directory of Open Access Journals (Sweden)

    Weibin Li

    2016-02-01

    Full Text Available Laminate composites which are widely used in the aeronautical industry, are usually subjected to frequency variation of environmental temperature and excessive humidity in the in-service environment. The thermal fatigue and moisture absorption in composites may induce material degradation. There is a demand to investigate the coupling damages mechanism and characterize the degradation evolution of composite laminates for the particular application. In this paper, the degradation evolution in unidirectional carbon/epoxy composite laminates subjected to thermal fatigue and moisture absorption is characterized by Lamb waves. The decrease rate of Lamb wave velocity is used to track the degradation evolution in the specimens. The results show that there are two stages for the progressive degradation of composites under the coupling effect of thermal cyclic loading and moisture diffusion. The present work provides an alternative to monitoring the degradation evolution of in-service aircraft composite Laminates.

  19. Characterization of Degradation Progressive in Composite Laminates Subjected to Thermal Fatigue and Moisture Diffusion by Lamb Waves.

    Science.gov (United States)

    Li, Weibin; Xu, Chunguang; Cho, Younho

    2016-01-01

    Laminate composites which are widely used in the aeronautical industry, are usually subjected to frequency variation of environmental temperature and excessive humidity in the in-service environment. The thermal fatigue and moisture absorption in composites may induce material degradation. There is a demand to investigate the coupling damages mechanism and characterize the degradation evolution of composite laminates for the particular application. In this paper, the degradation evolution in unidirectional carbon/epoxy composite laminates subjected to thermal fatigue and moisture absorption is characterized by Lamb waves. The decrease rate of Lamb wave velocity is used to track the degradation evolution in the specimens. The results show that there are two stages for the progressive degradation of composites under the coupling effect of thermal cyclic loading and moisture diffusion. The present work provides an alternative to monitoring the degradation evolution of in-service aircraft composite Laminates.

  20. Energetics and kinetics of anaerobic aromatic and fatty acid degradation

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M.J.

    1992-11-16

    The kinetics of benzoate degradation by the anaerobic syntrophic bacterium, Syntrophus buswellii, was studied in coculture with Desulfovibrio strain G11. The threshold value for benzoate degradation was dependent on the acetate concentration with benzoate threshold values ranging from 2.4 [mu]M at 20 mM acetate to 30.0 [mu]M at 65 mM acetate. Increasing acetate concentrations also inhibited the rate of benzoate degradation with a apparent K[sub i] for acetate inhibition of 7.0 mM. Lower threshold values were obtained when nitrate rather than sulfate was the terminal electron acceptor. These data are consistent with a thermodynamic explanation for the threshold, and suggest that there is a minimum Gibbs free energy value required for the degradation of benzoate. An acetoacetyl-CoA thiolase has been isolated from Syntrophomonas wolfei; it is apparently a key enzyme controlling the synthesis of poly-B-hydroxyalkanoate from acetyl-CoA in this organism. Kinetic characterization of the acetoacetyl-CoA thiolase from S. wolfei showed that it is similar in its structural, kinetic, and apparent regulatory properties to other biosynthetic acetoacetyl-CoA thiolases from phylogenetically distinct bacteria that synthesize PHA. Intracellular concentrations of CoA and acetyl-CoA are believed to be critical factors regulating the activity of the acetoacetyl-CoA thiolase in S. wolfei. We have also isolated and characterized several new halophilic anaerobic fermentative anaerobes. Phylogenetic analysis indicates that one of these bacteria is a new species in the genus, Haloanaerobium. Two other species appear to be members of the genus, Halobacteroides. Several halophilic acetoclastic methanogenic bacteria have also been isolated and their physiological properties are currently under investigation. We have also isolated an acetate-using dissimilatory iron-reducing bacterium.

  1. Characterisation of a 1,4-ß-fucoside hydrolase degrading colanic acid

    NARCIS (Netherlands)

    Verhoef, R.P.; Beldman, G.; Schols, H.A.; Siika-aho, M.; Ratto, M.; Buchert, J.; Voragen, A.G.J.

    2005-01-01

    A novel colanic acid-degrading enzyme was isolated from a mixed culture filtrate obtained by enrichment culturing of a compost sample using colanic acid as carbon source. The enzyme was partially purified resulting in a 17-fold increase in specific activity. Further purification by Native PAGE revea

  2. A study on degradation kinetics of ascorbic acid in amla (Phyllanthus emblica L.) during cooking.

    Science.gov (United States)

    Nisha, P; Singhal, Rekha S; Pandit, Aniruddha B

    2004-08-01

    The kinetics of ascorbic acid degradation in amla (Phyllanthus emblica L.) as well as in pure ascorbic acid solutions at initial concentrations present in amla over a temperature range of 50-120 degrees C (steady-state temperature) has been studied. The ascorbic acid degradation followed first-order reaction kinetics where the rate constant increased with an increase in temperature. The temperature dependence of degradation was adequately modeled by the Arrhenius equation. The activation energies were found to be 4.09 kcal/mole for amla and 4.49 kcal/mole for pure vitamin solution. The degradation kinetics of ascorbic acid was also evaluated in normal open pan cooking, pressure-cooking and a newly developed and patented fuel-efficient EcoCooker (unsteady state heating process). A mathematical model was developed using the steady-state kinetic parameters obtained to predict the losses of ascorbic acid from the time-temperature data of the unsteady state heating processing method. The results obtained indicate the ascorbic acid degradation is of a similar order of magnitude in all the methods of cooking.

  3. An investigation about the solid state thermal degradation of acetylsalicylic acid: polymer formation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edna M. de A; Melo, Dulce M. de A; Moura, Maria de F.V. de; Farias, Robson F. de

    2004-05-06

    An investigation about the thermal degradation of acetylsalicylic acid (ASA) is performed. It is verified that the thermal degradation of ASA produces not only salicylic acid (SA) and acetic acid (AA) as products but also an ASA polymer, which is transparent and solid. And also verified that the temperature in which the polymer is obtained influences its physical consistence (solid or semi-solid). Furthermore, the ASA polymer is very stable from a thermic point of view, as verified by TG and DSC analysis. X-ray diffraction patterns obtained for the ASA polymer show that it exhibits a low crystallinity.

  4. How Do Undergraduate Students Conceptualize Acid-Base Chemistry? Measurement of a Concept Progression

    Science.gov (United States)

    Romine, William L.; Todd, Amber N.; Clark, Travis B.

    2016-01-01

    We developed and validated a new instrument, called "Measuring Concept progressions in Acid-Base chemistry" (MCAB) and used it to better understand the progression of undergraduate students' understandings about acid-base chemistry. Items were developed based on an existing learning progression for acid-base chemistry. We used the Rasch…

  5. Electrochemical assisted photocatalytic degradation of salicylic acid with highly ordered TiO2 nanotube electrodes

    Science.gov (United States)

    Zhang, Qian; Zhu, Jinwei; Wang, Ying; Feng, Jiangtao; Yan, Wei; Xu, Hao

    2014-07-01

    To explore the kinetics of photoelectrocatalytic degradation of salicylic acid, one of the important PPCPs, highly ordered TiO2 nanotube arrays (NTs) were prepared by the electrochemical anodization and characterized with scanning electron microscopy and X-ray diffraction techniques. The effect of TiO2 NTs properties, bias potential, initial salicylic acid concentration and solution pH on the degradation efficiency was studied and carefully analyzed. The results revealed that the salicylic acid degradation follows quasi-first order kinetics in the photoelectrocatalytic process, and the fastest decay kinetics was achieved in acidic environment (pH 2). The result was further interpreted through the electrochemical impedance spectroscopy. It is confirmed that the electrochemical assisted photocatalysis is a synergetic approach to combat stable organic substances with improved efficiency.

  6. Determination of the Acid-Base Dissociation Constant of Acid-Degradable Hexamethylenetetramine by Capillary Zone Electrophoresis.

    Science.gov (United States)

    Takayanagi, Toshio; Shimakami, Natsumi; Kurashina, Masashi; Mizuguchi, Hitoshi; Yabutani, Tomoki

    2016-01-01

    The acid-base equilibrium of hexamethylenetetramine (hexamine) was analyzed with its effective electrophoretic mobility by capillary zone electrophoresis. Although hexamine is degradable in a weakly acidic aqueous solution, and the degraded products of ammonia and formaldehyde can be formed, the effective electrophoretic mobility of hexamine was measured in the pH range between 2.8 and 6.9. An acid-base dissociation equilibrium of the protonated hexamine was analyzed based on the mobility change, and an acid dissociation constant of pKa = 4.93 ± 0.01 (mean ± standard error, ionic strength: 0.020 mol dm(-3)) was determined. The monoprotic acid-base equilibrium of hexamine was confirmed through comparisons of its electrophoretic mobility with the N-ethylquinolinium ion and with the monocationic N-ethyl derivative of hexamine, as well as a slope analysis of the dissociation equilibrium.

  7. Citric Acid Fuctionalized Magnetic Ferrite Nanoparticles for Photocatalytic Degradation of Azo Dye.

    Science.gov (United States)

    Mahto, Triveni Kumar; Roy, Anurag; Sahoo, Banalata; Sahu, Sumanta Kumar

    2015-01-01

    In this study different magnetic ferrite nanoparticles (MFe2O4, where M = Fe, Mn, Zn) were synthesized through an aqueous coprecipitation method and then functionalized with citric acid for the degradation of azo dye present in industrial waste water. Here we evaluated the role of citric acid for photocatalytic application. The synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and the catalytic activity in degradation of methyl orange (MO) was evaluated. The rate of MO degradation in different magnetic systems was determined by UV-Vis spectroscopy. The effect of active parameters (pH, initial MO concentration and effect of sunlight) on degradation performance was investigated. For the first time, citric acid chemistry is successfully exploited to develop a photocatalyst that can successfully degrade the dyes. This citric acid functionalized magnetic ferrite nanoparticles are very much effective for photocalytic degradation of dye and also these can be recollected with the help of permanent magnet for successive uses.

  8. Characterization of bacterial diversity in an atrazine degrading enrichment culture and degradation of atrazine, cyanuric acid and biuret in industrial wastewater.

    Science.gov (United States)

    Dutta, Anirban; Vasudevan, Venugopal; Nain, Lata; Singh, Neera

    2016-01-01

    An enrichment culture was used to study atrazine degradation in mineral salt medium (MSM) (T1), MSM+soil extract (1:1, v/v) (T2) and soil extract (T3). Results suggested that enrichment culture required soil extract to degrade atrazine, as after second sequential transfer only partial atrazine degradation was observed in T1 treatment while atrazine was completely degraded in T2 and T3 treatments even after fourth transfer. Culture independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique confirmed selective enrichment of genus Bacillus along with Pseudomonas and Burkholderia. Degradation of atrazine/metabolites in the industrial wastewater was studied at different initial concentrations of the contaminants [wastewater-water (v/v) ratio: T1, 1:9; T2, 2:8; T3, 3:7; T4, 5:5 and T5, undiluted effluent]. The initial concentrations of atrazine, cyanuric acid and biuret ranged between 5.32 and 53.92 µg mL(-1), 265.6 and 1805.2 µg mL(-1) and 1.85 and 16.12 µg mL(-1), respectively. The enrichment culture was able to completely degrade atrazine, cyanuric acid and biuret up to T4 treatment, while no appreciable degradation of contaminants was observed in the undiluted effluent (T5). Inability of enrichment culture to degrade atrazine/metabolites might be due to high concentrations of cyanuric acid. Therefore, a separate study on cyanuric acid degradation suggested: (i) no appreciable cyanuric acid degradation with accumulation of an unidentified metabolite in the medium where cyanuric acid was supplemented as the sole source of carbon and nitrogen; (ii) partial cyanuric acid degradation with accumulation of unidentified metabolite in the medium containing additional nitrogen source; and (iii) complete cyanuric acid degradation in the medium supplemented with an additional carbon source. This unidentified metabolite observed during cyanuric acid degradation and also detected in the enrichment culture inoculated wastewater samples

  9. Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Mosier, N.S.; Scott, E.L.; Beeftink, H.H.; Sanders, J.P.M.

    2009-01-01

    Sugar degradation occurs during acid-catalyzed pretreatment of lignocellulosic biomass at elevated temperatures, resulting in degradation products that inhibit microbial fermentation in the ethanol production process. Arabinose, the second most abundant pentose in grasses like corn stover and wheat

  10. [Degradation of urea and ethyl carbamate in Chinese Rice wine by recombinant acid urease].

    Science.gov (United States)

    Zhou, Jianli; Kang, Zhen; Liu, Qingtao; Du, Guocheng; Chen, Jian

    2016-01-01

    Ethyl carbamate (EC) as a potential carcinogen commonly exists in traditional fermented foods. It is important eliminate urea that is the precursors of EC in many fermented foods, including Chinese Rice wine. On the basis of achieving high-level overexpression of food-grade ethanol-resistant acid urease, we studied the hydrolysis of urea and EC with the recombinant acid urease. Recombinant acid urease showed degraded urea in both the simulated system with ethanol and Chinese Rice wine (60 mg/L of urea was completely degraded within 25 h), indicating that the recombinant enzyme is suitable for the elimination of urea in Chinese Rice wine. Although recombinant acid urease also has degradation catalytic activity on EC, no obvious degradation of EC was observed. Further investigation results showed that the Km value for urea and EC of the recombinant acid urease was 0.7147 mmol/L and 41.32 mmol/L, respectively. The results provided theoretical foundation for realizing simultaneous degradation of urea and EC.

  11. Degradation of 4-chlorobenzoic acid by Arthrobacter sp

    Energy Technology Data Exchange (ETDEWEB)

    Marks, T.S.; Smith, A.R.W.; Quirk, A.V.

    1984-11-01

    A mixed population, enriched and established in a defined medium, from a sewage sludge inoculum was capable of complete mineralization of 4-chlorobenzoate. An organism, identified as Arthrobacter sp., was isolated from the consortium and shown to be capable of utilizing 4-chlorobenzoate as the sole carbon and energy source in pure culture. This organism (strain TM-1), dehalogenated 4-chlorobenzoate as the initial step in the degradative pathway. The production, 4-hydroxybenzoate, was further metabolized via protocatechuate. The ability of strain TM-1 to degrade 4-chlorobenzoate in liquid medium at 25/sup 0/C was improved by the use of continuous culture and repeated sequential subculturing. Other chlorinated benzoates and the parent compound benzoate did not support growth of strain TM-1. An active cell extract was prepared and shown to dehalogenate 4-chloro-, 4-fluoro-, and 4-bromobenzoate. Dehalogenase activity had an optimum pH of 6.8 and an optimum temperature of 20/sup 0/C and was inhibited by dissolved oxygen and stimulated by manganese (Mn/sup 2 +/). Strain improvement resulted in an increase in the specific activity of the cell extract from 0.09 to 0.85 nmol of 4-hydroxybenzoate per min per mg of protein and a decrease in the doubling time of the organism from 50 to 1.6 h. 18 references, 3 figures, 2 tables.

  12. Messenger Ribonucleic Acid Synthesis and Degradation in Escherichia coli During Inhibition of Translation

    Science.gov (United States)

    Pato, Martin L.; Bennett, Peter M.; Von Meyenburg, Kaspar

    1973-01-01

    Various aspects of the coupling between the movement of ribosomes along messenger ribonucleic acids (mRNA) and the synthesis and degradation of mRNA have been investigated. Decreasing the rate of movement of ribosomes along an mRNA does not affect the rate of movement of some, and possibly most, of the RNA polymerases transcribing the gene coding for that mRNA. Inhibiting translation with antibiotics such as chloramphenicol, tetracycline, or fusidic acid protects extant mRNA from degradation, presumably by immobilizing ribosomes, whereas puromycin exposes mRNA to more rapid degradation than normal. The promoter distal (3′) portion of mRNA, synthesized after ribosomes have been immobilized by chloramphenicol on the promoter proximal (5′) portion of the mRNA, is subsequently degraded. PMID:4583248

  13. Trichloroacetic acid in Norway spruce/soil-system. II. Distribution and degradation in the plant.

    Science.gov (United States)

    Forczek, S T; Uhlírová, H; Gryndler, M; Albrechtová, J; Fuksová, K; Vágner, M; Schröder, P; Matucha, M

    2004-07-01

    Independently from its origin, trichloroacetic acid (TCA) as a phytotoxic substance affects coniferous trees. Its uptake, distribution and degradation were thus investigated in the Norway spruce/soil-system using 14C labeling. TCA is distributed in the tree mainly by the transpiration stream. As in soil, TCA seems to be degraded microbially, presumably by phyllosphere microorganisms in spruce needles. Indication of TCA biodegradation in trees is shown using both antibiotics and axenic plants.

  14. Synthesis and characterization of hydrolytically degradable copolyester biomaterials based on glycolic acid, sebacic acid and ethylene glycol.

    Science.gov (United States)

    Simitzis, J; Soulis, S; Triantou, D; Zoumpoulakis, L; Zotali, P

    2011-12-01

    Copolyesters of glycolic acid (G) combined with sebacic acid (S) and ethylene glycol were synthesized in different molar ratios (G: 0-100% and S: 100-0%) and their hydrolytic degradation was studied and correlated with their structures. Based on the FTIR spectra of the homopolyesters and copolyesters and the normalized peak intensity of the I(2918), I(2848) and I(1087) for the corresponding wavenumbers, it is concluded that the I(2918) and the I(2848) are in accordance with the mean number degree of polymerization of ethylene sebacate units and the I(1087) is in accordance with the mean number degree of polymerization of glycolate units. Based on the XRD diffractograms, poly(ethylene sebacate) and poly(glycolic acid) belong to the monoclinic and the orthorhombic crystal system, respectively and both have higher crystallinity than the copolyesters. The experimental data of the hydrolytic degradation were fitted with exponential rise to maximum type functions using two-parameter model and four-parameter model. Three regions can been distinguished for the hydrolytic degradation by decreasing the molar feed ratio of sebacic acid, which are correlated with the changes of crystallinity. Two copolyesters are proposed: first the copolyester with high amount of glycolate units (S10G90) having higher hydrolytic degradation than G100 and second the copolyester with equal amount of glycolate and ethylene sebacate units (S50G50), having lower hydrolytic degradation than G100. These hydrolytically degradable copolyesters are soluble in common organic solvents, opposite to poly(glycolic acid) and could have perspectives for biomedical applications.

  15. Syntrophic degradation of amino acids by thermophilic methanogenic consortia

    NARCIS (Netherlands)

    Plugge, C.M.

    2001-01-01

    Waste water usually contains large amounts of different organic compounds. A variety of microbial processes are involved in the anaerobic methanogenic treatment of waste water, such as hydrolysis of lipids, polysaccharides and proteins, fermentation of sugars and amino acids, acetogenic conversion o

  16. Kinetic and mechanistic study of microcystin-LR degradation by nitrous acid under ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qingwei; Ren, Jing [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Huang, Honghui [Key Laboratory of Fisheries Ecology Environment, Ministry of Agriculture, Guangzhou 510300 (China); Wang, Shoubing [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Wang, Xiangrong, E-mail: xrxrwang@vip.sina.com [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Fan, Zhengqiu, E-mail: zhqfan@fudan.edu.cn [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer For the first time, degradation of MC-LR by nitrous acid under UV 365 nm was discovered. Black-Right-Pointing-Pointer The effects of factors on MC-LR degradation were analyzed based on kinetic study. Black-Right-Pointing-Pointer Mass spectrometry was applied for identification of intermediates and products. Black-Right-Pointing-Pointer Special intermediates involved in this study were identified. Black-Right-Pointing-Pointer Degradation mechanisms were proposed according to the results of LC-MS analysis. - Abstract: Degradation of microcystin-LR (MC-LR) in the presence of nitrous acid (HNO{sub 2}) under irradiation of 365 nm ultraviolet (UV) was studied for the first time. The influence of initial conditions including pH value, NaNO{sub 2} concentration, MC-LR concentration and UV intensity were studied. MC-LR was degraded in the presence of HNO{sub 2}; enhanced degradation of MC-LR was observed with 365 nm UV irradiation, caused by the generation of hydroxyl radicals through the photolysis of HNO{sub 2}. The degradation processes of MC-LR could well fit the pseudo-first-order kinetics. Mass spectrometry was applied for identification of the byproducts and the analysis of degradation mechanisms. Major degradation pathways were proposed according to the results of LC-MS analysis. The degradation of MC-LR was initiated via three major pathways: attack of hydroxyl radicals on the conjugated carbon double bonds of Adda, attack of hydroxyl radicals on the benzene ring of Adda, and attack of nitrosonium ion on the benzene ring of Adda.

  17. Effects of ultrasonic processing on degradation of salvianolic acid B in aqueous solution.

    Science.gov (United States)

    Guo, Y X; Zhang, L; Lu, L; Liu, E H; Shi, C Z

    2016-09-10

    To evaluate the stability of salvianolic acid B (Sal B) under ultrasound-assisted extraction in the pharmaceutical industry, degradation of Sal B under ultrasonic irradiation was investigated as the function of buffer concentration, pH, and temperature. With regard to Sal-B concentration, a first-order degradation process was determined, with 10% change in assay from its initial concentration as t90=4.81h, under maximum stability acidic conditions (pH 2.0) and at 25°C. The logkpH-pH profile described by specific acid-base catalysis and water molecules supported the experimental results. Liquid chromatography-mass spectrometry (LC-MS) analyses revealed 7 major degradation products whose structures were characterized by electrospray ionization/mass spectrometry. A primary degradation pathway involved cleavage of the ester bond and ring-opening of benzofuran in Sal B was proposed. The complete degradation pathway of Sal B was also proposed. Results showed that ultrasonic irradiation leads to degradation of Sal B in aqueous solution.

  18. Inhibition by all-trans retinoic acid of collagen degradation mediated by corneal fibroblasts.

    Science.gov (United States)

    Kimura, Kazuhiro; Zhou, Hongyan; Orita, Tomoko; Kobayashi, Shinya; Wada, Tomoyuki; Nakamura, Yoshikuni; Nishida, Teruo; Sonoda, Koh-Hei

    2016-08-01

    We examined the effect of all-trans retinoic acid on collagen degradation mediated by corneal fibroblasts. Rabbit corneal fibroblasts were cultured with or without all-trans retinoic acid in a three-dimensional collagen gel, and the extent of collagen degradation was determined by measurement of hydroxyproline in acid hydrolysates of culture supernatants. Matrix metalloproteinase expression was examined by immunoblot analysis and gelatin zymography. The abundance and phosphorylation state of the endogenous nuclear factor-kappaB inhibitor IκB-α were examined by immunoblot analysis. Corneal ulceration was induced by injection of lipopolysaccharide into the central corneal stroma of rabbits and was assessed by observation with a slitlamp microscope. All-trans retinoic acid inhibited interleukin-1β-induced collagen degradation by corneal fibroblasts in a concentration- and time-dependent manner. It also attenuated the release and activation of matrix metalloproteinases as well as the phosphorylation and degradation of IκB-α induced by interleukin-1β in these cells. Topical application of all-trans retinoic acid suppressed corneal ulceration induced by injection of lipopolysaccharide into the corneal stroma. All-trans retinoic acid inhibited collagen degradation mediated by corneal fibroblasts exposed to interleukin-1β, with this effect being accompanied by suppression of nuclear factor-kappaB signalling as well as of matrix metalloproteinase release and activation in these cells. All-trans retinoic acid also attenuated lipopolysaccharide-induced corneal ulceration in vivo. Our results therefore suggest that all-trans retinoic acid might prove effective for the treatment of patients with corneal ulceration. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  19. [Degradation of L-phenylalanine and of aromatic carboxylic acids by chloridazon-degrading bacteria. Combination of side chain degradation and dioxygenase pathway].

    Science.gov (United States)

    Wegst, W; Lingens, F

    1981-09-01

    Strain N of Chloridazon-degrading bacteria degrades phenylalanine via cis-2,3-dihydro-2,3-dihydroxyphenylalanine,2,3-dihydroxyphenylalanine aspartate and 4-hydroxy-2-oxovalerate [Hoppe-Seyler's Z. Physiol. Chem. 360, 957--969, (1979); Biochem. J. 194, 679--684 (1981)]. cis-2,3-Dihydro-2,3-dihydroxyphenylalanine and 2,3-dihydroxyphenylalanine as well as phenylpyruvate, cis-2,3-dihydro-2,3-dihydroxyphenylpyruvate, 2,3-dihydroxyphenylpyruvate, cis-2,3-dihydro-2,3-dihydroxyphenylacetate, 2,3-dihydroxyphenylacetate and 2,3-dihydroxybenzaldehyde are detectable in the medium of strain E during growth on phenylalanine. Incubation with phenylacetate, 3-phenylpropionate or 4-phenylbutyrate leads to the accumulation of the corresponding cis-2,3-dihydro-2,3-dihydroxyphenyl derivatives. These compounds are transformed with dihydrodiol dehydrogenase to 2,3-dihydroxyphenylacetate, 3-(2,3-dihydroxyphenyl)propionate and 4-(2,3-dihydroxyphenyl)-butyrate, 3-(2,3-dihydroxyphenyl)propionate is attacked by a catechol 2,3-dioxygenase and the meta-cleavage product is again cleaved by a hydrolase yielding succinate. In a similar reaction sequence the degradation of 4-phenylbutyrate leads to the formation of glutarate. From the growth medium of strain E on phenylacetate also small amounts of 2-, 3- and 4-hydroxyphenylacetate were isolated. Resting cells were shown to metabolize 3- and 4-hydroxyphenylacetate via homogentisate and 3,4-dihydroxyphenylacetate. In the culture medium of strain K2AP benzoate could be detected. Pathways for the degradation of phenylalanine and aromatic carboxylic acids in chloridazon degrading bacteria are proposed.

  20. Glycerol-plasticised silk membranes made using formic acid are ductile, transparent and degradation-resistant.

    Science.gov (United States)

    Allardyce, Benjamin J; Rajkhowa, Rangam; Dilley, Rodney J; Redmond, Sharon L; Atlas, Marcus D; Wang, Xungai

    2017-11-01

    Regenerated silk fibroin membranes tend to be brittle when dry. The use of plasticisers such as glycerol improve membrane ductility, but, when combined with aqueous processing, can lead to a higher degradation rate than solvent-annealed membranes. This study investigated the use of formic acid as the solvent with glycerol to make deformable yet degradation-resistant silk membranes. Here we show that membranes cast using formic acid had low light scattering, with a diffuse transmittance of less than 5% over the visible wavelengths, significantly lower than the 20% transmittance of aqueous derived silk/glycerol membranes. They had 64% β-sheet content and lost just 30% of the initial silk weight over 6h when tested with an accelerated enzymatic degradation assay, in comparison the aqueous membranes completely degraded within this timeframe. The addition of glycerol also improved the maximum elongation of formic acid derived membranes from under 3% to over 100%. They also showed good cytocompatibility and supported the adhesion and migration of human tympanic membrane keratinocytes. Formic acid based, silk/glycerol membranes may be of great use in medical applications such as repair of tympanic membrane perforation or ocular applications where transparency and resistance to enzymatic degradation are important. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Rapid degradation of 2,4-dichlorophenoxyacetic acid facilitated by acetate under methanogenic condition.

    Science.gov (United States)

    Yang, Zhiman; Xu, Xiaohui; Dai, Meng; Wang, Lin; Shi, Xiaoshuang; Guo, Rongbo

    2017-05-01

    Acetate can be used as an electron donor to stimulate 2,4-dichlorophenoxyacetic acid (2,4-D), which has not been determined under methanogenic condition. This study applied high-throughput sequencing and methanogenic inhibition approaches to investigate the 2,4-D degradation process using the enrichments obtained from paddy soil. Acetate addition significantly promoted 2,4-D degradation, which was 5-fold higher than in the acetate-unsupplemented enrichments in terms of the 2,4-D degradation rate constant. Dechloromonas and Pseudomonas were the dominant 2,4-D degraders. Methanogenic inhibition experiments indicated that the 2,4-D degradation was independent of methanogenesis. It was proposed that the accelerated 2,4-D degradation in the acetate-supplemented enrichment involved an unusual interaction, where members of the acetate oxidizers primarily oxidized acetate and produced H2. H2 was utilized by the 2,4-D degraders to degrade 2,4-D, but also partially consumed by the hydrogenotrophic methanogens to produce methane. The findings presented here provide a new strategy for the remediation of 2,4-D-polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review.

    Science.gov (United States)

    Paszko, Tadeusz; Muszyński, Paweł; Materska, Małgorzata; Bojanowska, Monika; Kostecka, Małgorzata; Jackowska, Izabella

    2016-02-01

    The primary aim of the present review on phenoxyalkanoic acid herbicides-2-(2,4-dichlorophenoxy) acetic acid (2,4-D), 2-(4-chloro-2-methylphenoxy) acetic acid (MCPA), (2R)-2-(2,4-dichlorophenoxy) propanoic acid (dichlorprop-P), (2R)-2-(4-chloro-2-methylphenoxy) propanoic acid (mecoprop-P), 4-(2,4-dichlorophenoxy) butanoic acid (2,4-DB), and 4-(4-chloro-2-methylphenoxy) butanoic acid (MCPB)-was to compare the extent of their adsorption in soils and degradation rates to assess their potential for groundwater contamination. The authors found that adsorption decreased in the sequence of 2,4-DB > 2,4-D > MCPA > dichlorprop-P > mecoprop-P. Herbicides are predominantly adsorbed as anions-on organic matter and through a water-bridging mechanism with adsorbed Fe cations-and their neutral forms are adsorbed mainly on organic matter. Adsorption of anions of 2,4-D, MCPA, dichlorprop-P, and mecoprop-P is inversely correlated with their lipophilicity values, and modeling of adsorption of the compounds based on this relationship is possible. The predominant dissipation mechanism of herbicides in soils is bacterial degradation. The contribution of other mechanisms, such as degradation by fungi, photodegradation, or volatilization from soils, is much smaller. The rate of bacterial degradation decreased in the following order: 2,4-D > MCPA > mecoprop-P > dichlorprop-P. It was found that 2,4-D and MCPA have the lowest potential for leaching into groundwater and that mecoprop-P and dichlorprop-P have slightly higher potential. Because of limited data on adsorption and degradation of 2,4-DB and MCPB, estimation of their leaching potential was not possible.

  3. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Wang

    Full Text Available Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.

  4. Photocatalytic degradation of L-acid by TiO2 supported on the activated carbon

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-ping; WANG Lian-jun; PENG Pan-ying

    2006-01-01

    TiO2 sol was prepared by sol-gel technique with tetrabutyl titanate as precursor. Supported TiO2 catalysts on activated carbon were prepared by soak and sintering method. The aggregation of nano-TiO2 particles can be effectively suppressed by added polyethylene glycol (PEG) as a surface modifier. The average particle diameter of TiO2, specific surface area and absorbability of catalyst can be modified. Based on characteristics of the TiO2 photocatalyst with XRD, specific surface area, adsorption valves of methylene blue and the amount of TiO2 supported on the activated carbon, the photocatalytic degradation of L-acid was studied. The effect of the factors, such as pH of the solution, the initial concentration of L-acid on the photocatalytic degradation of L-acid, were studied also. It was found that when the pH of the solution is 1.95, the amount ofphotocatalyst is 0.5 g, the concentration of the L-acid solution is 1.34 × 10-3 mol/L and the illumination time is 7 h, the photocatalytic degradation efficiency of L-acid can reach 89.88%.The catalyst was reused 6 times and its degradation efficiency hardly changed.

  5. [Photocatalytic Degradation of Perfluorooctanoic Acid by Pd-TiO2 Photocatalyst].

    Science.gov (United States)

    Liu, Qing; Yu, Ze-bin; Zhang, Rui-han; Li, Ming-jie; Chen, Ying; Wang, Li; Kuang, Yu; Zhang, Bo; Zhu, You-hui

    2015-06-01

    Perfluorooctanoic acid (PFOA) is a new persistent organic pollutant which has got global concern for its wide distribution, high bioaccumulation and strong biological toxicity. In present study, the photocatalytic degradation of PFOA using palladium doped TiO2 (Pd-TiO2) prepared by chemical reduction method was investigated. The photocatalysts were characterized by XRD, FESEM and UV-vis DRS and were used for PFOA degradation under 365 nm UV irradiation. The results indicated that the grain size of TiO2 was smaller while the specific surface area increased and the absorption of ultraviolet light also enhanced after using chemical reduction method, but all these changes had no influence on PFOA degradation. However, the degradation was significantly enhanced because of the deposition of Pd, the fluoride concentration of PFOA was 6.62 mg x L(-1) after 7 h irradiation which was 7.3 times higher than that of TiO2 (P25). Experiments with the addition of trapping agent and nitrogen indicated that *OH played an important role in PFOA degradation while the presence of O2 accelerated the degradation. The main intermediate products of photocatalytic degradation of PFOA were authenticated by an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry systems (UPLC-QTOF-MS). The probable photocatalytic degradation mechanism involves h+ attacking the carboxyl of PFOA and resulting in decarboxylation. The produced *CnF(2n +1) was oxidized by *OH underwent defluorinetion to form shorter-chain perfluorinated carboxylic acids. The significant enhancement of PFOA degradation can be ascribed to the palladium deposits, acting as electron traps on the Pd-TiO2 surface, which facilitated the transfer of photogenerated electrons and retarded the accumulation of electrons.

  6. Growth, induction, and substrate specificity of dehydroabietic acid-degrading bacteria isolated from a kraft mill effluent enrichment.

    Science.gov (United States)

    Bicho, P A; Martin, V; Saddler, J N

    1995-09-01

    We investigated resin acid degradation in five bacteria isolated from a bleach kraft mill effluent enrichment. All of the bacteria grew on dehydroabietic acid (DHA), a resin acid routinely detected in pulping effluents, or glycerol as the sole carbon source. None of the strains grew on acetate or methanol. Glycerol-grown, high-density, resting-cell suspensions were found to undergo a lag for 2 to 4 h before DHA degradation commenced, suggesting that this activity was inducible. This was further investigated by spiking similar cultures with tetracycline, a protein synthesis inhibitor, at various times during the DHA disappearance curve. Cultures to which the antibiotic was added prior to the lag did not degrade DHA. Those that were spiked with the antibiotic after the lag phase (4 h) degraded DHA at the same rate as did controls with no added tetracycline. Therefore, de novo protein synthesis was required for DHA biodegradation, confirming that this activity is inducible. The five strains were also evaluated for their ability to degrade other resin acids. All strains behaved in a similar fashion. Unchlorinated abietane-type resin acids (abietic acid, DHA, and 7-oxo-DHA) were completely degraded within 7 days, whereas pimarane resin acids (sandaracopimaric acid, isopimaric acid, and pimaric acid) were poorly degraded (25% or less). Chlorination of DHA affected biodegradation, with both 12,14-dichloro-DHA and 14-chloro-DHA showing resistance to degradation. However, 50 to 60% of the 12-chloro-DHA was consumed within the same period.

  7. Characterization of the Complete Uric Acid Degradation Pathway in the Fungal Pathogen Cryptococcus neoformans

    Science.gov (United States)

    Lee, I. Russel; Yang, Liting; Sebetso, Gaseene; Allen, Rebecca; Doan, Thi H. N.; Blundell, Ross; Lui, Edmund Y. L.; Morrow, Carl A.; Fraser, James A.

    2013-01-01

    Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase), URO2 (HIU hydrolase), URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein), and URE1 (urease). All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed. PMID:23667704

  8. Research on Controllable Degradation of Novel Sulfonylurea Herbicides in Acidic and Alkaline Soils.

    Science.gov (United States)

    Zhou, Shaa; Hua, Xue-Wen; Wei, Wei; Gu, Yu-Cheng; Liu, Xiao-Qing; Chen, Jing-Huo; Chen, Ming-Gui; Xie, Yong-Tao; Zhou, Sha; Meng, Xiang-De; Zhang, Yan; Li, Yong-Hong; Wang, Bao-Lei; Song, Hai-Bin; Li, Zheng-Ming

    2017-09-06

    The degradation issue of sulfonylurea (SU) has become one of the biggest challenges that hamper the development and application of this class of herbicides, especially in the alkaline soils of northern China. On the basis of the previous discovery that some substituents on the fifth position of the benzene ring in Chlorsulfuron could hasten its degradation rate, apparently in acidic soil, this work on Metsulfuron-methyl showed more convincing results. Two novel compounds (I-1 and I-2) were designed and synthesized, and they still retained potent herbicidal activity in tests against both dicotyledons and monocotyledons. The half-lives of degradation (DT50) assay revealed that I-1 showed an accelerated degradation rate in acidic soil (pH 5.59). Moreover, we delighted to find that the degradation rate of I-1 was 9-10-fold faster than that of Metsulfuron-methyl and Chlorsulfuron when in alkaline soil (pH 8.46), which has more practical value. This research suggests that a modified structure that has potent herbicidal activity as well as accelerated degradation rate could be realized and this approach may provide a way to improve the residue problem of SUs in farmlands with alkaline soil.

  9. Degradation Kinetics of Xylose and Glucose in Hydrolysate Containing Dilute Sulfuric Acid

    Institute of Scientific and Technical Information of China (English)

    亓伟; 张素平; 许庆利; 任铮伟; 颜涌捷

    2008-01-01

    In preparation of fuel alcohol from biomass as feedstock,hydrolysis with dilute acid as catalyst iS one way to produce fermentable saccharide,xylose and glucose.However,the acid is also the catalyst in degradation of xylose and glucose and the yield of sacchride is dependent on the kinetic behaviors of saccharide.The degradation kinetics of xylose and glucose in the hydrolysate Was investigated under the conventional process conditions of hydrogen ion concentration from O.05 to 0.2 mol/L and temperature from 150 to 200℃.With a numerical calculation method,the kinetic parameters Were estimated,and the activation energy of xylose and glucose in the degradation reaction was obtained.The kinetic equations correlating the effect of hydrogen ion concentration on the rate constants of degradation reaction were established.Comparison between the calculated results from the equations and experimental ones proved that the established kinetic model could satisfactorily predict the degradation behavior of xylose and glucose in the acidic hydrolysate.

  10. Nitrite attenuated hypochlorous acid-mediated heme degradation in hemoglobin.

    Science.gov (United States)

    Lu, Naihao; Li, Jiayu; Ren, Xiaoming; Tian, Rong; Peng, Yi-Yuan

    2015-08-05

    Hypochlorous acid (HOCl) is elevated in many inflammatory diseases and causes the accumulation of free iron. Through the Fenton reaction, free iron has the ability to generate free radicals and subsequently is toxic. Recent studies have demonstrated that HOCl participates in heme destruction of hemoglobin (Hb) and free iron release. In this study, it was showed that nitrite (NO2(-)) could prevent HOCl-mediated Hb heme destruction and free iron release. Also, NO2(-) prevented HOCl-mediated loss of Hb peroxidase activity. After the NO2(-)/HOCl treatment, Tyr 42 in α-chain was found to be nitrated in Hb, attenuating the electron transferring abilities of phenolic compounds. The protective effects of NO2(-) on HOCl-induced heme destruction were attributed to its reduction of ferryl Hb and/or direct scavenging of HOCl. Therefore, NO2(-) could show protective effects in some inflammatory diseases by preventing HOCl-mediated heme destruction of hemoproteins and free iron release.

  11. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products-A gamma radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Krimmel, Birgit; Swoboda, Friederike [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Solar, Sonja, E-mail: sonja.solar@univie.ac.a [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Reznicek, Gottfried [Department of Pharmacognosy, Althanstrasse 14, A-1090 Vienna (Austria)

    2010-12-15

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH{sub 3} by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  12. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    Science.gov (United States)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  13. Heterogeneous photocatalytic degradation of p-toluenesulfonic acid using concentrated solar radiation in slurry photoreactor

    Energy Technology Data Exchange (ETDEWEB)

    Kamble, Sanjay P. [Environmental Materials Unit, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 400020 (India); Sawant, Sudhir B. [Chemical Engineering Department, Institute of Chemical Technology, University of Mumbai, Matunga, Mumbai 400019 (India); Pangarkar, Vishwas G. [Chemical Engineering Department, Institute of Chemical Technology, University of Mumbai, Matunga, Mumbai 400019 (India)]. E-mail: vgp@udct.org

    2007-02-09

    In this work, the photocatalytic degradation (PCD) of p-toluenesulfonic acid (p-TSA) in batch reactor using concentrated solar radiation was investigated. The effect of the various operating parameters such as initial concentration of substrate, catalyst loading, solution pH and types of ions on photocatalytic degradation has been studied in a batch reactor to derive the optimum conditions. The rate of photocatalytic degradation was found to be maximum at the self pH (pH 3.34) of p-TSA. It was also observed that in the presence of anions and cations, the rate of PCD decreases drastically. The kinetics of photocatalytic degradation of p-TSA was studied. The PCD of p-TSA was also carried at these optimized conditions in a bench scale slurry bubble column reactor using concentrated solar radiation.

  14. Associations of Pseudomonas species and forage grasses enhance degradation of chlorinated benzoic acids in soil

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, S. D.

    1998-12-01

    Using chlorinated benzoic acid (CBA) as a model compound, this study attempted to show that microorganisms and plants can be used as bioremediation agents to clean up contaminated soil sites in a cost effective and environmentally friendly manner. CBA was used because it is present in soils contaminated with polychlorinated biphenyls (PCBs), or chlorinated pesticides. Sixteen forage grasses were screened in combination with 12 bacterial inoculants for their ability to promote the degradation of CBA in soil. Five associations of plants and bacteria were found to degrade CBA to a greater extent than plants without bacterial inoculants. Bacterial inoculants were shown to stimulate CBA degradation by altering the microbial community present on the root surface and thereby increasing the ability of this community to degrade CBA.

  15. Photochemical degradation of environmentally persistent perfluorooctanoic acid (PFOA) in the presence of Fe(III)

    Institute of Scientific and Technical Information of China (English)

    Yuan Wang; Peng Yi Zhang; Gang Pan; Hao Chen

    2008-01-01

    Environmentally persistent and bioaccumulative perfluorooctanic acid (PFOA) was difficult to be decomposed under the irradiation of 254 nm UV light. However, in the presence of 80μmol /L Fe(III), 80% of PFOA with initial concentration of 48μmol/L (20 mg/L) was effectively degraded and 47.8% of fluorine atoms in PFOA molecule were transformed into inorganic fluoride ion after 4 h reaction. Shorter chain perfluorocarboxylic acids bearing C3-C7 and fluoride ion were detected and identified by LC/MS and IC as the degradation products in the aqueous solution. It was proposed that complexes of PFOA with Fe(III) initiated degradation of PFOA irradiated with 254 nm UV light.

  16. Degradation kinetic modelling of ascorbic acid and colour intensity in pasteurised blood orange juice during storage.

    Science.gov (United States)

    Remini, Hocine; Mertz, Christian; Belbahi, Amine; Achir, Nawel; Dornier, Manuel; Madani, Khodir

    2015-04-15

    The stability of ascorbic acid and colour intensity in pasteurised blood orange juice (Citrus sinensis [L.] Osbeck) during one month of storage was investigated at 4-37 °C. The effects of ascorbic acid fortification (at 100, 200 mg L(-1)) and deaeration, temperature/time storage on the kinetic behaviour were determined. Ascorbic acid was monitored by HPLC-DAD and colour intensity by spectrophotometric measurements. Degradation kinetics were best fitted by first-order reaction models for both ascorbic acid and colour intensity. Three models (Arrhenius, Eyring and Ball) were used to assess the temperature-dependent degradation. Following the Arrhenius model, activation energies were ranged from 51 to 135 kJ mol(-1) for ascorbic acid and from 49 to 99 kJ mol(-1) for colour intensity. The effect of storage temperature and deaeration are the most influent factors on kinetics degradation, while the fortification revealed no significant effect on ascorbic acid content and colour intensity.

  17. Study of kinetics of degradation of cyclohexane carboxylic acid by acclimated activated sludge.

    Science.gov (United States)

    Wang, Chunhua; Shi, Shuian; Chen, Hongyan

    2016-01-01

    Activated sludge contains complex microorganisms, which are highly effective biodegrading agents. In this study, the kinetics of biodegradation of cyclohexane carboxylic acid (CHCA) by an acclimated aerobic activated sludge were investigated. The results showed that after 180 days of acclimation, the activated sludge could steadily degrade >90% of the CHCA in 120 h. The degradation of CHCA by the acclimated activated sludge could be modeled using a first-order kinetics equation. The equations for the degradation kinetics for different initial CHCA concentrations were also obtained. The kinetics constant, kd, decreased with an increase in the CHCA concentration, indicating that, at high concentrations, CHCA had an inhibiting effect on the microorganisms in the activated sludge. The effects of pH on the degradation kinetics of CHCA were also investigated. The results showed that a pH of 10 afforded the highest degradation rate, indicating that basic conditions significantly promoted the degradation of CHCA. Moreover, it was found that the degradation efficiency for CHCA increased with an increase in temperature and concentration of dissolved oxygen under the experimental conditions.

  18. Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation

    Institute of Scientific and Technical Information of China (English)

    Ruttapol Lertsirisopon; Satoshi Soda; Kazunari Sei; Michihiko Ike

    2009-01-01

    Abiotic degradability of four phthalic acid esters (PAEs) in the aquatic phase was evaluated over the wide pH range (5-9). The PAE solutions in glass test tubes were placed in the dark and under natural sunlight irradiation for evaluating the degradation rate via hydrolysis and photolysis plus hydrolysis, respectively, at ambient temperature for 140 d from autumn to winter in Osaka, Japan. The efficiency of abiotic degradation of the PAEs with relatively short alkyl chain, butylbenzyl phthalate (BBP) and di-n-butyl phthalate (DBP) at neutral pH was significant less than that in the acidic or alkaline condition. Photolysis was considered to mainly contribute to total abiotic degradation at any pH. Neither hydrolysis nor photolysis of di-ethylhexyl phthalate (DEHP) proceeded significantly at any pH, especially hydrolysis at neutral pH was negligible. On the other hand, the degradation rate of di-isononyl phthalate (DINP) mainly catalyzed by photolysis was much higher compared with that of the other PAEs, and almost complete removal was observed during the experimental period at pH 5.0 and 9.0. As a whole, according to the half-life (t1/2) obtained in the experiments, the abiotic degradability of the PAEs was in the sequence, DINP (32-140 d) > DBP (50-360 d), BBP (58-480 d) > DEHP (390-1600 d) under sunlight irradiation (via photolysis plus hydrolysis). Although the abiotic degradation rate for BBP, DBP, and DEHP are much lower than their biodegradation rate reported, the photolysis rate for DINP is comparable to its biodegradation rate in the acidic or alkaline condition.

  19. Microbial dynamics in anaerobic enrichment cultures degrading di-n-butyl phthalic acid ester

    DEFF Research Database (Denmark)

    Trably, Eric; Batstone, Damien J.; Christensen, Nina

    2008-01-01

    in enrichment cultures degrading phthalic acid esters under methanogenic conditions. A selection pressure was applied by adding DBP at 10 and 200 mg L(-1) in semi-continuous anaerobic reactors. The microbial dynamics were monitored using single strand conformation polymorphism (SSCP). While only limited abiotic...

  20. Diurnal variation in degradation of phytic acid by plant phytase in the pig stomach

    NARCIS (Netherlands)

    Kemme, P.A.; Jongbloed, A.W.; Mroz, Z.; Beynen, A.C.

    1998-01-01

    The effects of plant phytase on the gastric degradation of phytic acid and digestibilities of DM and P, and their diurnal variation were evaluated in pigs from 90 to 115 kg BW fitted with simple duodenal T-cannulas. Three diets were fed to three pigs in four collection periods according to a cross-o

  1. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells

    DEFF Research Database (Denmark)

    Huang, Liping; Angelidaki, Irini

    2008-01-01

    Pentose and humic acids (HA) are the main components of hydrolysates, the liquid fraction produced during thermohydrolysis of lignocellulosic material. Electricity generation integrated with xylose (typical pentose) degradation as well as the effect of HA on electricity production in microbial fu...

  2. Intraocular degradation behavior of crosslinked and linear poly(trimethylene carbonate) and poly(D,L-lactic acid)

    NARCIS (Netherlands)

    Jansen, Janine; Koopmans, Steven A.; Los, Leonoor I.; van der Worp, Roelofje J.; Podt, Johanna G.; Hooymans, Johanna M. M.; Feijen, Jan; Grijpma, Dirk W.

    2011-01-01

    The intraocular degradation behavior of poly(trimethylene carbonate) (PTMC) networks and poly(-D,L-lactic acid) (PDLLA) networks and of linear high molecular weight PTMC and PDLLA was evaluated. PTMC is known to degrade by enzymatic surface erosion in vivo, whereas PDLLA degrades by hydrolytic bulk

  3. Using gas chromatography/mass spectroscopy fingerprint analyses to document process and progress of oil degradation

    Energy Technology Data Exchange (ETDEWEB)

    Roques, D.E.; Overton, E.B.; Henry, C.B. [Louisiana State Univ., Baton Rouge, LA (United States)

    1994-07-01

    One of the challenges in testing the effectiveness of bioremediation products is the lack of a standardized testing protocol. One requirement of any such evaluation is baseline and benchmark analyses of the oil and its degradation processes. The method described uses high resolution gas chromatography maw spectroscopy (GC/MS). This method has been adapted from oil fingerprinting techniques used by our group for oil spill response to major spills such as T/V Exxon Valdez and T/V Megaborg. It results in a high degree of chemical and spectral resolution from a single analysis that allows quantification of saturated hydrocarbons, polynuclear aromatic hydrocarbons (PAHs), sulfur heterocycles and selected biomarkers such as hopanes and steranes. High resolution GC/MS and compound specific analyses are a viable and efficient method of analyzing the extent and progress of oil bioremediation and that it should be possible to standardize the method for monitoring the biodegradation of oil. Data are also presented that show increased useful information obtained from this method and suggest possible future uses for this expanded database. 14 refs., 4 figs., 1 tab.

  4. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Francisco J., E-mail: fjcervantes@ipicyt.edu.mx [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Mancilla, Ana Rosa; Toro, E. Emilia Rios-del [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico)

    2011-11-15

    Highlights: {yields} Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. {yields} Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. {yields} Several species from classes {beta}-, {delta}- and {gamma}-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 {mu}M of benzene were degraded, which corresponds to 279 {+-} 27 micro-electron equivalents ({mu}Eq) L{sup -1}, linked to the reduction of 619 {+-} 81 {mu}Eq L{sup -1} of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two {gamma}-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes {beta}-, {delta}- and {gamma}-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  5. Glutamic acid modified fenton system for degradation of BTEX contamination

    Energy Technology Data Exchange (ETDEWEB)

    Yehia, Fatma Z.; Badawi, Abdelfatah M.; Mady, Amr H. [Department of Petrochemicals, Egyptian Petroleum Research Institute, Nasr City, Cairo (Egypt); Kandile, Nadia G. [Faculty of Women, Department of Chemistry, Ain Shams University, Heliopolis, Cairo (Egypt)

    2012-07-15

    The present study employed a modified Fenton system that aims to extend the optimum pH range towards neutral conditions for studying the oxidation of benzene, toluene, ethyl benzene, xylenes (BTEX) using glutamic acid (Glu) as an iron chelator. Addition of 20 mM Glu greatly enhanced the oxidation rate of BTEX in modified Fenton system at pH 5-7. A rapid mass destruction (>97% after 1 h) of BTEX as a water contaminant carried out in the presence of 500 mM H{sub 2}O{sub 2}, 10 mM Fe{sup 2+}, and 20 mM Glu at pH 5 could be shown. The efficiency of this modified Fenton's system for mass destruction of BTEX in contaminated water was measured to estimate the impact of the major process variables that include initial concentrations of soluble Fe, H{sub 2}O{sub 2}, Glu (as metal chelating agent), and reaction time. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Mechanistic Study of the Acid Degradation of Lignin Model Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, M.; Kim, S.; Chmely, S. C.; Foust, T. D.; Beckham, G. T.

    2012-01-01

    Lignin is a major constituent of biomass, which remains underutilized in selective biomass conversion strategies to renewable fuels and chemicals. Here we are interested in understanding the mechanisms related to the acid deconstruction of lignin with a combined theoretical and experimental approach. Two model dimers with a b-O-4 aryl ether linkage (2-phenoxy-1-phenethanol and 2-phenoxy-1-phenyl-1,3 propanediol) and model dimmers with an a-O-4 aryl ether linkage were synthesized and deconstructed in H2SO4. The major products of the acidolysis of the b-O-4 compounds consisted of phenol and two aldehydes, phenylacetaldehyde and benzaldehyde. Quantum mechanical calculations were employed to elucidate possible deconstruction mechanisms with transition state theory. To confirm proposed mechanisms several possible intermediates were studied under similar acidolysis conditions. Although the resonance time for cleavage was on the order several hours, we have shown that the cleavage of the aryl ether linkage affords phenol and aldehydes. We would next like to utilize our mechanism of aryl ether cleavage in actual lignin.

  7. Degradation network reconstruction in uric acid and ammonium amendments in oil-degrading marine microcosms guided by metagenomic data

    Directory of Open Access Journals (Sweden)

    Rafael eBargiela

    2015-11-01

    Full Text Available Biostimulation with different nitrogen sources is often regarded as a strategy of choice in combating oil spills in marine environments. Such environments are typically depleted in nitrogen, therefore limiting the balanced microbial utilization of carbon-rich petroleum constituents. It is fundamental, yet only scarcely accounted for, to analyse the catabolic consequences of application of biostimulants. Here, we examined such alterations in enrichment microcosms using sediments from chronically crude oil-contaminated marine sediment at Ancona harbor (Italy amended with natural fertilizer, uric acid (UA, or ammonium (AMM. We applied the web-based AromaDeg resource using as query Illumina HiSeq meta-sequences (UA: 27,893 open reading frames; AMM: 32,180 to identify potential catabolic differences. A total of 45 (for UA and 65 (AMM gene sequences encoding key catabolic enzymes matched AromaDeg, and their participation in aromatic degradation reactions could be unambiguously suggested. Genomic signatures for the degradation of aromatics such as 2-chlorobenzoate, indole-3-acetate, biphenyl, gentisate, quinoline and phenanthrene were common for both microcosms. However, those for the degradation of orcinol, ibuprofen, phenylpropionate, homoprotocatechuate and benzene (in UA and 4-aminobenzene-sulfonate, p-cumate, dibenzofuran and phthalate (in AMM, were selectively enriched. Experimental validation was conducted and good agreement with predictions was observed. This suggests certain discrepancies in action of these biostimulants on the genomic content of the initial microbial community for the catabolism of petroleum constituents or aromatics pollutants. In both cases, the emerging microbial communities were phylogenetically highly similar and were composed by very same proteobacterial families. However, examination of taxonomic assignments further revealed different catabolic pathway organization at the organismal level, which should be considered

  8. Degradation Network Reconstruction in Uric Acid and Ammonium Amendments in Oil-Degrading Marine Microcosms Guided by Metagenomic Data

    KAUST Repository

    Bargiela, Rafael

    2015-11-24

    Biostimulation with different nitrogen sources is often regarded as a strategy of choice in combating oil spills in marine environments. Such environments are typically depleted in nitrogen, therefore limiting the balanced microbial utilization of carbon-rich petroleum constituents. It is fundamental, yet only scarcely accounted for, to analyze the catabolic consequences of application of biostimulants. Here, we examined such alterations in enrichment microcosms using sediments from chronically crude oil-contaminated marine sediment at Ancona harbor (Italy) amended with natural fertilizer, uric acid (UA), or ammonium (AMM). We applied the web-based AromaDeg resource using as query Illumina HiSeq meta-sequences (UA: 27,893 open reading frames; AMM: 32,180) to identify potential catabolic differences. A total of 45 (for UA) and 65 (AMM) gene sequences encoding key catabolic enzymes matched AromaDeg, and their participation in aromatic degradation reactions could be unambiguously suggested. Genomic signatures for the degradation of aromatics such as 2-chlorobenzoate, indole-3-acetate, biphenyl, gentisate, quinoline and phenanthrene were common for both microcosms. However, those for the degradation of orcinol, ibuprofen, phenylpropionate, homoprotocatechuate and benzene (in UA) and 4-aminobenzene-sulfonate, p-cumate, dibenzofuran and phthalate (in AMM), were selectively enriched. Experimental validation was conducted and good agreement with predictions was observed. This suggests certain discrepancies in action of these biostimulants on the genomic content of the initial microbial community for the catabolism of petroleum constituents or aromatics pollutants. In both cases, the emerging microbial communities were phylogenetically highly similar and were composed by very same proteobacterial families. However, examination of taxonomic assignments further revealed different catabolic pathway organization at the organismal level, which should be considered for designing

  9. Degradation characteristics of 2,4-dichlorophenoxyacetic acid in electro-biological system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, JingLi, E-mail: jinglizhangczp@126.com [Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Institute of Urban Construction, Tianjin 300384 (China); Cao, ZhanPing; Zhang, HongWei [School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, LianMei [Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Institute of Urban Construction, Tianjin 300384 (China); Sun, XuDong; Mei, Feng [School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2013-11-15

    Highlights: • The 2,4-D reductive degradation was studied in an electro-biological system. • The electric auxiliary accelerates 2,4-D microbial degradation. • A electron transfer is achieved between the electrode, bacteria and the pollutants. • The paper provides a promising way for the degradation of persistent organics. -- Abstract: The reductive degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in an electro-biological system, a biological system and an electric catalytic system, respectively. Electrochemical characteristics were monitored by cyclic voltammetry and the intermediate products of 2,4-D degradation were determined by high speed liquid chromatography (HPLC). The results showed that all 2,4-D degradations in the three systems conformed to the kinetics characteristics of one-order reaction, and the degradation kinetics constants were 28.74 × 10{sup −2} h{sup −1}, 19.73 × 10{sup −2} h{sup −1} and 3.54 × 10{sup −2} h{sup −1}, respectively. The kinetics constant in the electro-biological system was higher than the sum in the other two systems by 19%. The electrochemical assistance provided the electrons and accelerated the electron transfer rate in the microbial degradation of 2,4-D. The degradation resulted from the microbial reduction strengthened by the electrochemical assistance. The electron transfer existed between the electrode, cytochrome, NAD and the pollutants. A long-range electron transfer process could be achieved on the multi-phase interfaces between the electrode, bacteria and the pollutants.

  10. Experimental investigation of coating degradation during simultaneous acid and erosive particle exposure

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria

    When used in industrial processes, such as stirred acid leaching in the mineral industry, thermoset coatings are exposed to a combination of aggressive chemicals and erosive particlewear. While each exposure condition has been studied separately, no research has been presented on the effects...... of a simultaneous exposure. To investigate this, a pilot-scale stirred acid leaching tank, containing erosive particles and acidic solutions, has been designed and constructed. Resin types considered are amine-cured novolac epoxy and vinyl ester. Transient coating degradation is mapped through visual inspection...

  11. Mass spectrometry of oil sands naphthenic acids : degradation in OSPW and wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Headley, J. [Environment Canada, Saskatoon, SK (Canada). Water Science and Technology Directorate

    2009-07-01

    This presentation discussed mass spectrometry of oil sands naphthenic acids and the degradation in OSPW and wetland plants. It presented background information on the Athabasca oil sands and naphthenic acids which involve a mixture of alkanes and cycloalkane carboxylic acids with aliphatic side chains. The presentation also discussed mass spectrometry with electrospray operating in negative ion modes. Loop injection, external standard methods and solid phase extraction were reviewed along with improved analysis by removing background ions. Other topics that were presented included hydroponic test systems and wetland plant toxicity, growth and transpiration. It was concluded that dissipation included species containing oxygen, ozone, O{sub 4}, and O{sub 5}. tabs., figs.

  12. Influence of humic acid addition on the degradation of pharmaceuticals by biofilms in effluent wastewater

    DEFF Research Database (Denmark)

    Tang, Kai; Escola Casas, Monica; Ooi, Gordon Tze Hoong

    2017-01-01

    in relation to the biodegradation of pharmaceuticals by suspended biofilm carriers adapted to polishing effluent water from a tertiary sewage treatment plant. Twelve out of 22 investigated pharmaceuticals were significantly biodegradable. The biodegradation rate constants of ten of those compounds were...... increasing with increased humic acid concentrations. At the highest humic acid concentration (30. mgC/L), the biodegradation rate constants were four times higher than the biodegradation rate constants without added humic acid. This shows that the presence of complex substrate stimulates degradation via a co......-metabolism-like mechanism and competitive inhibition does not occur. Increases of rate constant per mgC/L are tentatively calculated....

  13. Reaction of a sterically hindered iron(III porphyrin with peroxyacetic acid: degradation kinetics

    Directory of Open Access Journals (Sweden)

    P. PRAKASH

    2005-09-01

    Full Text Available A kinetic analysis of the reaction between peracetic acid (AcOOH, and tetrakis (pentafluorophenyl - 21H, 23H-porphine iron(III chloride, Fe(F20TPPCl, in acetonitrile showed that the peracetic acid oxidatively destroys Fe(F20TPPCl. This is in contrast to an assumption that the oxidative degradation of metalloporphyrins can be prevented by the introduction of electron-withdrawing substituents into the phenyl groups of the porphyrin ligand. A UV-visible spectroscopic study showed a degree of macro cycle destruction of the tetrapyrrole conjucation of the metalloporphyrin. The degradation takes place via oxoperferryl species. The first step of the reaction mechanism is the reversible formation of an adduct ’X’(k1/k-1 between Fe(F20TPPCl and peracetic acid, followed by an irreversible step (k2 for the formation of oxoperferryl species.

  14. Degradation of triclosan in the presence of p-aminobenzoic acid under simulated sunlight irradiation.

    Science.gov (United States)

    Zhai, Pingping; Chen, Xuan; Dong, Wenbo; Li, Hongjing; Chovelon, Jean-Marc

    2017-01-01

    This study aimed to investigate the degradation of triclosan (TCS) in the presence of p-aminobenzoic acid (PABA) under simulated sunlight irradiation (λ ≥ 290 nm). The effect of PABA concentration, pH, dissolved organic matter (DOM), and DOM-hydrolytic Fe(III) species complexes on the photodegradation of TCS in the presence of PABA (TCS-PABA) was also studied. The photolysis of TCS-PABA obeyed pseudo-first-order kinetics well, and the degradation of TCS-PABA enhanced with increasing solution pH (from 3.0 to 11.0). The presence of PABA inhibited the degradation of TCS-PABA, and the weakest inhibitory effect was observed while the concentration of PABA was 5 mg L(-1). The addition of DOM (Suwannee River fulvic acid standard I [SRFA], Suwannee River HA standard II [SRHA], and Suwannee River natural organic matter [SRNOM]) showed different inhibition effects on TCS-PABA degradation. However, higher Fe(III) concentration at the DOM concentration of 5 mg L(-1) could favor the formation of DOM-hydrolytic Fe(III) species complexes, further accelerating the degradation of TCS-PABA. In comparison with deionized water (DI water), TCS-PABA could be better photodegraded in river water nearby the effluent of a wastewater treatment plant. This study provides useful information for understanding the natural behavior of TCS in the presence of other organic contaminants.

  15. Efficiency of uronic acid uptake in marine alginate-degrading fungi

    Science.gov (United States)

    Schaumann, K.; Weide, G.

    1995-03-01

    Despite the fact that many marine fungi, including phycomycetes, yeasts, ascomycetes and hyphomycetes, have been recorded from living and/or dead phaeophytes, only a few of these have been shown to be capable of degrading alginic acid or alginates. The degradation is achieved by the action of an exoenzyme complex, comprising alginate lyase, as well as alginate hydrolase activities. The latter was detected only recently by the authors. In this study, the growth of two marine sodiumalginate-degrading deuteromycetes, Asteromyces cruciatus and Dendryphiella salina, was investigated, and the assimilation efficiency of sodiumalginate and its uronic acid degradation products, respectively, was estimated from the economic coefficient (E). E is calculated from the mycelial dry weight, divided by the weight of substrate consumed for this production. The economic coefficient for A. cruciatus was 48.6%, and that of D. salina 38.9%. This indicates that the former species uses the alginate degradation products more efficiently than the latter. The observed E-values for the marine deuteromycetes agree with those from other fungi, e.g. terrestrial species. In general, it is concluded that the marine fungi appear to play a more important role in kelp-based ecosystems than was realized previously.

  16. Microwave-assisted degradation of acid orange using a conjugated polymer, polyaniline, as catalyst

    Directory of Open Access Journals (Sweden)

    Ufana Riaz

    2014-01-01

    Full Text Available Microwave-assisted photocatalytic degradation of dyes is one of the emerging technologies for waste water remediation. Microwave effectively accelerates photocatalytic degradation, when microwave electrodeless lamp (MEL substitutes traditional UV lamp as light source. This setup can be extremely simplified if MEL and photocatalyst can be replaced by a catalyst which can work under microwave irradiation in the absence of any light source. The present work reports for the first time degradation of acid orange 7 (AO under microwave irradiation using polyaniline (PANI as catalyst in the absence of any UV lamp as light source. The degradation/decolourization was carried out in neutral acidic and basic media and was monitored spectrophotometrically to evaluate the ability of microwave irradiation to degrade AO. Microwave irradiation showed excellent performance as it completely decolourizes AO dye solution in 10 min. With the advantages of low cost and rapid processing, this novel catalyst is expected to gain promising application in the treatment of various dyestuff wastewaters on a large scale.

  17. Urinary collagen degradation products as early markers of progressive renal fibrosis.

    Science.gov (United States)

    Hijmans, Ryanne S; Rasmussen, Daniel Guldager Kring; Yazdani, Saleh; Navis, Gerjan; van Goor, Harry; Karsdal, Morten Asser; Genovese, Federica; van den Born, Jacob

    2017-03-20

    Renal fibrogenesis is associated with increased ECM remodeling and release of collagen fragments in urine in progressive renal disease. We investigated the diagnostic value of urinary collagen degradation products in a proteinuria-driven fibrosis rat model with and without anti-fibrotic S1P-receptor modulator FTY720 treatment. Proteinuria was induced in male Wistar rats by Adriamycin (ADR) injection (n = 16). Healthy rats served as controls (n = 12). Six weeks post-injection, all underwent renal biopsy, and FTY720-treatment started in ADR-rats (n = 8) and controls (n = 6). Others remained untreated. Rats were sacrificed after 12 weeks. Collagen type I (C1M) and III (C3M) degradation fragments were measured in blood and urine using ELISA. Kidneys were stained for various inflammatory and fibrotic markers. Six weeks post-injection proteinuria increased (versus controls, P < 0.001) and although no accumulation of interstitial renal collagen type III (iColl3) was observed at this time, urinary C3M (uC3M) and C1M (uC1M) were significantly increased (both P < 0.001). At 12 weeks, uC3M (P < 0.001) and uC1M (P < 0.01) further increased in ADR-rats versus controls, just as fibronectin, PDGF-β receptor, hyaluronan (all P < 0.01), iColl3, PAS, myofibroblasts, macrophages and T-cells (all P < 0.05). FTY720-treatment reduced accumulation of immune cells, α-SMA+ myofibroblasts and PAS-score, but not iColl3 and uC3M. Correlation analyses indicated that uC3M and uC1M reflected and predicted tubulointerstitial fibrogenesis. These data displayed urinary collagen breakdown products as sensitive early markers of interstitial fibrosis, preceding histological fibrotic changes, which might replace the invasive renal biopsy procedure to assess fibrosis. Anti-fibrotic FTY720 intervention reduced some fibrotic markers without affecting collagen type III metabolism.

  18. Studies on photo-electro-chemical catalytic degradation of acid scarlet 3R dye

    Institute of Scientific and Technical Information of China (English)

    LI Mingyu; XIONG Lin; CHEN Yunyun; ZHANG Na; ZHANG Yuanming; YIN Hua

    2005-01-01

    A new type of photo-electro-chemical catalytic reactor was designed.Cathode and anode of the new reactor were made of high-purity graphite and titanium dioxide electrode respectively.A saturated calomel electrode (SCE) was used as the reference electrode.Under the condition of ultraviolet radiation and anodic bias-voltage, acid scarlet 3R was degraded by the process of photoelectrocatalysis with titanium dioxide electrode in anodic compartment, while it was degraded by electrogenerated Fenton's reagent and hydrogen peroxide through reducing dissolved oxygen with graphite electrode in catholyte.The new reactor made the best use of photogenerated holes and photogenerated charge on the anode of the new reactor, which achieved the purpose of degrading acid scarlet 3R in the cathodic and anodic compartments simultaneously, I.e."two electrodes and double effect".The experimental results showed that, compared with other photoelectrocatalysis reactors ("two electrodes and single effect" reactor), the new reactor has obviously enhanced the degradation of acid scarlet 3R dye.With the concentration of the dye being 30 mg·L-1 in water, under the operating conditions that when the inert supporting electrolyte concentration was 0.02 mol·L-1 sodium sulfate, initial solution pH=3, and cathodic potential -Ec=0.66 V, the highest decolorizing efficiency of 92% was accomplished in cathodic compartment,and that of 60% in anodic compartment.

  19. Degradation characteristics of 2,4-dichlorophenoxyacetic acid in electro-biological system.

    Science.gov (United States)

    Zhang, Jingli; Cao, Zhanping; Zhang, Hongwei; Zhao, Lianmei; Sun, Xudong; Mei, Feng

    2013-11-15

    The reductive degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in an electro-biological system, a biological system and an electric catalytic system, respectively. Electrochemical characteristics were monitored by cyclic voltammetry and the intermediate products of 2,4-D degradation were determined by high speed liquid chromatography (HPLC). The results showed that all 2,4-D degradations in the three systems conformed to the kinetics characteristics of one-order reaction, and the degradation kinetics constants were 28.74 × 10(-2) h(-1), 19.73 × 10(-2) h(-1) and 3.54 × 10(-2) h(-1), respectively. The kinetics constant in the electro-biological system was higher than the sum in the other two systems by 19%. The electrochemical assistance provided the electrons and accelerated the electron transfer rate in the microbial degradation of 2,4-D. The degradation resulted from the microbial reduction strengthened by the electrochemical assistance. The electron transfer existed between the electrode, cytochrome, NAD and the pollutants. A long-range electron transfer process could be achieved on the multi-phase interfaces between the electrode, bacteria and the pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Nanomechanical properties of poly(lactic-co-glycolic) acid film during degradation.

    Science.gov (United States)

    Shirazi, Reyhaneh Neghabat; Aldabbagh, Fawaz; Erxleben, Andrea; Rochev, Yury; McHugh, Peter

    2014-11-01

    Despite the potential applications of poly(lactic-co-glycolic) acid (PLGA) coatings in medical devices, the mechanical properties of this material during degradation are poorly understood. In the present work, the nanomechanical properties and degradation of PLGA film were investigated. Hydrolysis of solvent-cast PLGA film was studied in buffer solution at 37 °C. The mass loss, water uptake, molecular weight, crystallinity and surface morphology of the film were tracked during degradation over 20 days. Characterization of the surface hardness and Young's modulus was performed using the nanoindentation technique for different indentation loads. The initially amorphous films were found to remain amorphous during degradation. The molecular weight of the film decreased quickly during the initial days of degradation. Diffusion of water into the film resulted in a reduction in surface hardness during the first few days, followed by an increase that was due to the surface roughness. There was a significant delay between the decrease in the mechanical properties of the film and the decrease in the molecular weight. A sudden decline in mechanical properties indicated that significant bulk degradation had occurred.

  1. Degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid nanocomposite in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Liuyun, Jiang, E-mail: jlytxg@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Chengdong, Xiong [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Lixin, Jiang; Lijuan, Xu [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Graduated School of Chinese Academy of Sciences, Beijing 100039 (China)

    2013-10-15

    Graphical abstract: In this manuscript, we initiated a systematic study to investigate the effect of HA on thermal properties, inner structure, reduction of mechanical strength, surface morphology and the surface deposit of n-HA/PLGA composite with respect to the soaking time. The results showed that n-HA played an important role in improving the degradation behavior of n-HA/PLGA composite, which can accelerate the degradation of n-HA/PLGA composite and endow it with bioactivity, after n-HA was detached from PLGA during the degradation, so that n-HA/PLGA composite may have a more promising prospect of the clinical application than pure PLGA as bone fracture internal fixation materials, and the results would be of reference significance to predict the in vivo degradation and biological properties. - Highlights: • Effect of n-HA on degradation behavior of n-HA/PLGA composite was investigated. • Degradation behaviors of n-HA/PLGA and PLGA were carried out in SBF for 6 months. • Viscosity, thermal properties, inner structure and bending strength were tested. • n-HA can accelerate the degradation and endows it with bioactivity. - Abstract: To investigate the effect of hydroxyapatite(HA) on the degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid (HA/PLGA) nanocomposite, the degradation experiment of n-HA/PLGA composite and pure PLGA were carried out by soaking in simulated body fluid(SBF) at 37 °C for 1, 2, 4 and 6 months. The change of intrinsic viscosity, thermal properties, inner structure, bending strength reduction, surface morphology and the surface deposit of n-HA/PLGA composite and pure PLGA with respect to the soaking time were investigated by means of UbbeloHde Viscometer, differential scanning calorimeter (DSC), scanning electron microscope(SEM), electromechanical universal tester, a conventional camera and X-ray diffraction (XRD). The results showed that n-HA played an important role in improving the degradation behavior of n

  2. Degradation and contamination of perfluorinated sulfonic acid membrane due to swelling-dehydration cycles

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Morgen, Per; Skou, Eivind Morten

    Formation of sulfonic anhydride S-O-S (from the condensation of sulfonic acids) was known one of the important degradation mechanisms [i] for Nafion membrane under hydrothermal aging condition, which is especially critical for hydrogen fuel cells. Similar mechanism would also have be desirable...... to the membrane degradation in direct methanol fuel cells (DMFCs), where liquid water has direct contact with the electrolyte. An ex-situ experiment was established with swelling-dehydration cycles on the membrane. However, formation of sulfonic anhydride was not detected during the entire treatment; instead...

  3. Phytate degrading activities of lactic acid bacteria isolated from traditional fermented food

    Science.gov (United States)

    Damayanti, Ema; Ratisiwi, Febiyani Ndaru; Istiqomah, Lusty; Sembiring, Langkah; Febrisiantosa, Andi

    2017-03-01

    The objective of this study was to determine the potential of LAB with phytate degrading activity from fermented traditional food grain-based and legume-based. Lactic acid bacteria were isolated from different sources of traditional fermented food from Gunungkidul Yogyakarta Indonesia such as gembus tempeh (tofu waste), soybean tempeh, lamtoro tempeh (Leucaena bean) and kara tempeh. Isolation of LAB was performed using Total Plate Count (TPC) on de Man Rogosa Sharpe Agar (MRSA) medium supplemented with CaCO3. They were screened for their ability to degrade myo-inositol hexaphosphate or IP6 by using qualitative streak platemethod with modified de Man Rogosa-MorpholinoPropanesulfonic Acid Sharpe (MRS-MOPS) medium contained sodium salt of phytic acid as substrate and cobalt chloride staining (plate assay) method. The selected isolates were further assayed for phytase activities using quantitative method with spectrophotometer and the two selected isolates growth were optimized. Furthermore, thhe isolates that shown the highest phytase activity was characterized and identified using API 50 CH kitand 16S rRNA gene sequencing. The results showed that there were 18 LAB isolates obtained from samplesand 13 isolates were able to degrade sodium phytate based on qualitative screening. According to quantitative assay, the highest phytate degrading activities were found in TG-2(23.562 U/mL) and TG-1 (19.641 U/mL) isolated from gembus tempeh. The phytate activity of TG-2 was optimum at 37 °C with agitation, while the phytate activity of TG-1 was optimum at 45 °C without agitation. Characterization and identification of TG-2 isolate with the highest phytate degrading activity using API 50 CH and 16S rRNA showed that TG-2had homology with Lactobacillus fermentum. It could be concluded that LAB from from fermented traditional food grain-based and legume-based produced the extracellular phytase. Keywords: lactic acid bacteria, tempeh, phytatedegrading activity

  4. Degradation of amino acids to short-chain fatty acids in humans. An in vitro study

    DEFF Research Database (Denmark)

    Rasmussen, H S; Holtug, K; Mortensen, P B

    1988-01-01

    Short-chain fatty acids (SCFA) originate mainly in the colon through bacterial fermentation of polysaccharides. To test the hypothesis that SCFA may originate from polypeptides as well, the production of these acids from albumin and specific amino acids was examined in a faecal incubation system....... Albumin was converted to all C2-C5-fatty acids, whereas amino acids generally were converted to specific SCFA, most often through the combination of a deamination and decarboxylation of the amino acids, although more complex processes also took place. This study indicates that a part of the intestinal...

  5. Effects of environmental conditions on aerobic degradation of a commercial naphthenic acid.

    Science.gov (United States)

    Kinley, Ciera M; Gaspari, Daniel P; McQueen, Andrew D; Rodgers, John H; Castle, James W; Friesen, Vanessa; Haakensen, Monique

    2016-10-01

    Naphthenic acids (NAs) are problematic constituents in energy-derived waters, and aerobic degradation may provide a strategy for mitigating risks to aquatic organisms. The overall objective of this study was to determine the influence of concentrations of N (as ammonia) and P (as phosphate), and DO, as well as pH and temperatures on degradation of a commercial NA in bench-scale reactors. Commercial NAs provided replicable compounds necessary to compare influences of environmental conditions on degradation. NAs were quantified using high performance liquid chromatography. Microbial diversity and relative abundance were measured in treatments as explanatory parameters for potential effects of environmental conditions on microbial populations to support analytically measured NA degradation. Environmental conditions that positively influenced degradation rates of Fluka NAs included nutrients (C:N 10:1-500:1, C:P 100:1-5000:1), DO (4.76-8.43 mg L(-1)), pH (6-8), and temperature (5-25 °C). Approximately 50% removal of 61 ± 8 mg L(-1) was achieved in less than 2 d after NA introduction, achieving the method detection limit (5 mg L(-1)) by day 6 of the experiment in treatments with a C:N:P ratio of 100:10:1, DO > 8 mg L(-1), pH ∼8-9, and temperatures >23 °C. Microbial diversity was lowest in lower temperature treatments (6-16 °C), which may have resulted in observed slower NA degradation. Based on results from this study, when macro- and micronutrients were available, DO, pH, and temperature (within environmentally relevant ranges) influenced rates of aerobic degradation of Fluka NAs. This study could serve as a model for systematically evaluating environmental factors that influence NA degradation in field scenarios.

  6. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, March 1, 1977--May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1977-06-01

    The degradation of cellulosic biomass continues to focus on the anaerobic thermophile Clostridium thermocellum. When grown on crystalline cellulose (MN300) in batch culture, there is an initial rapid accumulation of reducing sugars but the sugars are rapidly metabolized in later times during the fermentation. When grown on Solka floc with periodic addition of the substrate, there is a continual accumulation of reducing sugars (xylose, glucose, and cellobiose) as well as ethanol and acetic acid during the entire course of the fermentation. In the presence of surfactant in the growth medium, there is an increased appearance of extracellular cellulases. A chemically defined medium is being developed for growth Cl. thermocellum in order to study the enzyme regulations. Lastly, a trinitrophenyl-carboxylmethyl cellulose substrate for determining cellulose activity appears to be a promising and rapid assay. Progress in the genetic manipulations has been cautious but promising. Preliminary evidence leads to optimistic projection on the presence of plasmids and bacteriophage in Cl. thermocellum. The production of chemical feedstocks continues to focus on acrylic acid, acetone/butanol and acetic acid. Studies with cell free extracts of Clostridium propionicum have shown the production and accumulation of acrylic acid from lactic acid. The use of electron acceptor in cell-free systems has shown effective prevention on the reduction of acrylic acid to propionic acid. Medium development and strain selection using available acetone/butanol producing Cl. acetobutylicum have been initiated. There is every indication that these strains are capable to produce mixed solvents close to the theoretical maximum yield. An accurate and rapid method for quantifying acetic acid was developed. This technique is being used to examine the pertinent parameters on the production of acetic acid by Clostridium thermoaceticum.

  7. The role of nanoparticulate agglomerates in TiO2 photocatalysis: degradation of oxalic acid

    Science.gov (United States)

    Ivanova, Irina; Mendive, Cecilia B.; Bahnemann, Detlef

    2016-07-01

    The simultaneous bimodal study of the photocatalytic oxalic acid degradation by aqueous TiO2 suspensions revealed that particular systems possess the capacity to protect a certain amount of oxalic acid from oxidation, thus hindering, to some extent, the photocatalytic reaction. While measurements of the oxalic acid concentration in the bulk liquid phase indicated full photocatalytic degradation; in situ pH-stat measurements allowed the quantification of the amount of oxalic acid remaining in the part of the nanoparticulate agglomerates where light could apparently not access. An explanation for this phenomenon takes into account the possibility of the formation of TiO2 agglomerates in which these molecules are hidden from the effect of the light, thus being protected from photocatalytic degradation. Studies of different TiO2 materials with different particle sizes allowed a deeper exploration of this phenomenon. In addition, because this property of encapsulating pollutant molecules by photocatalytic systems is found to be a reversible phenomenon, P25 appears to be more convenient and advantageous as compared to the use of large surface area photocatalysts.

  8. Mechanism of Calcium Lactate Facilitating Phytic Acid Degradation in Soybean during Germination.

    Science.gov (United States)

    Hui, Qianru; Yang, Runqiang; Shen, Chang; Zhou, Yulin; Gu, Zhenxin

    2016-07-13

    Calcium lactate facilitates the growth and phytic acid degradation of soybean sprouts, but the mechanism is unclear. In this study, calcium lactate (Ca) and calcium lactate with lanthanum chloride (Ca+La) were used to treat soybean sprouts to reveal the relevant mechanism. Results showed that the phytic acid content decreased and the availability of phosphorus increased under Ca treatment. This must be due to the enhancement of enzyme activity related to phytic acid degradation. In addition, the energy metabolism was accelerated by Ca treatment. The energy status and energy metabolism-associated enzyme activity also increased. However, the transmembrane transport of calcium was inhibited by La(3+) and concentrated in intercellular space or between the cell wall and cell membrane; thus, Ca+La treatment showed reverse results compared with those of Ca treatment. Interestingly, gene expression did not vary in accordance with their enzyme activity. These results demonstrated that calcium lactate increased the rate of phytic acid degradation by enhancing growth, phosphorus metabolism, and energy metabolism.

  9. Degradation of fructans and production of propionic acid by Bacteroides thetaiotaomicron are enhanced by shortage of amino acids

    Directory of Open Access Journals (Sweden)

    Signe eAdamberg

    2014-12-01

    Full Text Available Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by the catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory and levan (synthesized using levansucrase from Pseudomonas syringae, two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (DP > 3. Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h, followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of D-lactate (82 ± 33 mmol/gDW occurred in parallel with extensive consumption (up to 17 mmol/gDW of amino acids, especially Ser, Thr and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will be studied in

  10. Degradation of Fructans and Production of Propionic Acid by Bacteroides thetaiotaomicron are Enhanced by the Shortage of Amino Acids.

    Science.gov (United States)

    Adamberg, Signe; Tomson, Katrin; Vija, Heiki; Puurand, Marju; Kabanova, Natalja; Visnapuu, Triinu; Jõgi, Eerik; Alamäe, Tiina; Adamberg, Kaarel

    2014-01-01

    Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory) and levan (synthesized using levansucrase from Pseudomonas syringae), two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (degree of polymerization > 3). Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h), followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of d-lactate (82 ± 33 mmol/gDW) occurred in parallel with extensive consumption (up to 17 mmol/gDW) of amino acids, especially Ser, Thr, and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will

  11. Comparison of the hydrolytic degradation and deformation properties of a PLLA-lauric acid based family of biomaterials.

    Science.gov (United States)

    Renouf-Glauser, Annette C; Rose, John; Farrar, David F; Cameron, Ruth Elizabeth

    2006-02-01

    Addition of lauric acid to PLLA results in a significantly increased rate of hydrolytic degradation, with the time-to-loss of tensile strength directly related to the concentration of lauric acid. In this study, the hydrolytic degradation profiles of four materials were studied: amorphous PLLA, amorphous PLLA containing 1.8 wt % lauric acid, amorphous PLLA containing 4.5 wt % lauric acid, and pre-crystallized PLLA containing 1.8 wt % lauric acid. Hydrolytic degradation was monitored through mass profiles, molecular weight profiles, crystallinity and the development of mechanical properties and deformation mechanisms (through simultaneous small-angle X-ray scattering and tensile testing), and a "phase diagram" of properties suggested. The key factor in determining the development of properties was found to be the time at which crystallization occurred in relation to the loss of molecular weight, with the two factors most affecting this being the lauric acid content and the pre-degradation annealing treatment.

  12. Performance Degradation Tests of Phosphoric Acid Doped PBI Membrane Based High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2014-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation. Continuous tests with H2 and simulated reformate which was composed...... of H2, water steam and methanol as the fuel were performed on both single cells. 12-h-startup/12-h-shutdown dynamic tests were performed on the first single cell with pure dry H2 as the fuel and on the second single cell with simulated reformate as the fuel. Along with the tests electrochemical...... techniques such as polarization curves and electrochemical impedance spectroscopy (EIS) were employed to study the degradation mechanisms of the fuel cells. Both single cells showed an increase in the performance in the H2 continuous tests, because of a decrease in the ORR kinetic resistance probably due...

  13. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng;

    2013-01-01

    Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...... and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...... contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also...

  14. Cullin 3 mediates SRC-3 ubiquitination and degradation to control the retinoic acid response.

    Science.gov (United States)

    Ferry, Christine; Gaouar, Samia; Fischer, Benoit; Boeglin, Marcel; Paul, Nicodeme; Samarut, Eric; Piskunov, Aleksandr; Pankotai-Bodo, Gabriella; Brino, Laurent; Rochette-Egly, Cecile

    2011-12-20

    SRC-3 is an important coactivator of nuclear receptors including the retinoic acid (RA) receptor α. Most of SRC-3 functions are facilitated by changes in the posttranslational code of the protein that involves mainly phosphorylation and ubiquitination. We recently reported that SRC-3 is degraded by the proteasome in response to RA. Here, by using an RNAi E3-ubiquitin ligase entry screen, we identified CUL-3 and RBX1 as components of the E3 ubiquitin ligase involved in the RA-induced ubiquitination and subsequent degradation of SRC-3. We also show that the RA-induced ubiquitination of SRC-3 depends on its prior phosphorylation at serine 860 that promotes binding of the CUL-3-based E3 ligase in the nucleus. Finally, phosphorylation, ubiquitination, and degradation of SRC-3 cooperate to control the dynamics of transcription. In all, this process participates to the antiproliferative effect of RA.

  15. Highly solar active Fe(III) immobilised alumina for the degradation of Acid Violet 7

    Energy Technology Data Exchange (ETDEWEB)

    Muthuvel, Inbasekaran; Swaminathan, Meenakshisundaram [Department of Chemistry, Annamalai University, Annamalainagar 608 002 (India)

    2008-08-15

    The hetero-Fenton catalyst Fe(III)-Al{sub 2}O{sub 3} was prepared and characterised by ICP-AES, FT-IR and SEM-EDX. A detailed investigation of photocatalytic degradation of Acid Violet 7 (AV 7) using this Fenton immobilised Al{sub 2}O{sub 3} catalyst was carried out. The optimal reaction conditions for the photodegradation of AV 7 with this catalyst are reported. Higher efficiency of the catalyst in solar light than in UV light makes this heterophoto-Fenton degradation, a green technological process. The catalyst is found to be stable and reusable. The completion of degradation has also been confirmed by chemical oxygen demand (COD) measurements. (author)

  16. Culturing oil sands microbes as mixed species communities enhances ex situ model naphthenic acid degradation.

    Science.gov (United States)

    Demeter, Marc A; Lemire, Joseph A; Yue, Gordon; Ceri, Howard; Turner, Raymond J

    2015-01-01

    Oil sands surface mining for bitumen results in the formation of oil sands process water (OSPW), containing acutely toxic naphthenic acids (NAs). Potential exists for OSPW toxicity to be mitigated by aerobic degradation of the NAs by microorganisms indigenous to the oil sands tailings ponds, the success of which is dependent on the methods used to exploit the metabolisms of the environmental microbial community. Having hypothesized that the xenobiotic tolerant biofilm mode-of-life may represent a feasible way to harness environmental microbes for ex situ treatment of OSPW NAs, we aerobically grew OSPW microbes as single and mixed species biofilm and planktonic cultures under various conditions for the purpose of assaying their ability to tolerate and degrade NAs. The NAs evaluated were a diverse mixture of eight commercially available model compounds. Confocal microscopy confirmed the ability of mixed and single species OSPW cultures to grow as biofilms in the presence of the NAs evaluated. qPCR enumeration demonstrated that the addition of supplemental nutrients at concentrations of 1 g L(-1) resulted in a more numerous population than 0.001 g L(-1) supplementation by approximately 1 order of magnitude. GC-FID analysis revealed that mixed species cultures (regardless of the mode of growth) are the most effective at degrading the NAs tested. All constituent NAs evaluated were degraded below detectable limits with the exception of 1-adamantane carboxylic acid (ACA); subsequent experimentation with ACA as the sole NA also failed to exhibit degradation of this compound. Single species cultures degraded select few NA compounds. The degradation trends highlighted many structure-persistence relationships among the eight NAs tested, demonstrating the effect of side chain configuration and alkyl branching on compound recalcitrance. Of all the isolates, the Rhodococcus spp. degraded the greatest number of NA compounds, although still less than the mixed species cultures

  17. Photocatalytic degradation of commercially sourced naphthenic acids by TiO2-graphene composite nanomaterial.

    Science.gov (United States)

    Liu, Juncheng; Wang, Lin; Tang, Jingchun; Ma, Jianli

    2016-04-01

    Naphthenic acids (NAs) are a major contributor to the toxicity in oil sands process-affected water (OSPW), which is produced by hot water extraction of bitumen. NAs are extremely difficult to be degraded due to its complex ring and side chain structure. Photocatalysis is recognized as a promising technology in the removal of refractory organic pollutants. In this work, TiO2-graphene (P25-GR) composites were synthesized by means of solvothermal method. The results showed that P25-GR composite exhibited better photocatalytic activity than pure P25. The removal efficiency of naphthenic acids in acid solution was higher than that in neutral and alkaline solutions. It was the first report ever known on the photodegradation of NAs based on graphene, and this process achieved a higher removal rate than other photocatalysis degradation of NAs in a shorter reaction time. LC/MS analysis showed that macromolecular NAs (carbon number 17-22, z value -2) were easy to be degraded than the micromolecular ones (carbon number 11-16, z value -2). Furthermore, the reactive oxygen species that play the main role in the photocatalysis system were studied. It was found that holes and ·OH were the main reactive species in the UV/P25-GR photocatalysis system. Given the high removal efficiency of refractory organic pollutants and the short degradation time, photodegradation based on composite catalysts has a broad and practical prospect. The study on the photodegradation of commercially sourced NAs may provide a guidance for the degradation of OSPW NAs by this method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Photoelectrocatalytic Degradation of Humic Acids Using Codoped TiO2 Film Electrodes under Visible Light

    Directory of Open Access Journals (Sweden)

    Xiao Zhou

    2014-01-01

    Full Text Available Cu/N codoped TiO2 films on Ti substrates were successfully prepared by electrochemical method with the goal of enhancing the photoelectrocatalytic activity under visible light. The morphology and composition of the Cu/N codoped films were characterized using field emission scanning electron microscopy (FESEM, X-ray diffraction (XRD, energy dispersive X-ray (EDX, and UV-Vis diffusion reflection spectroscopy (UV-Vis DRS. The photocatalytic activities of the Cu/N codoped TiO2 films were evaluated by the degradation of humic acid. The visible light photocatalytic degradation of humic acid (HA was tested and Cu/N codoped TiO2 films showed the highest degradation efficiency up to 41.5% after 210 minutes of treatment. It showed that Cu2+ and NH4+ codoped TiO2 film significantly improved the photocatalytic efficiency under the visible light. When +5.0 V anodic bias potential and visible light were simultaneously applied, the degradation efficiency of HA over the Cu/N codoped TiO2 films significantly improved to 93.5% after 210 minutes of treatment.

  19. Chemical composition and ruminal degradation kinetics of crude protein and amino acids, and intestinal digestibility of amino acids from tropical forages

    Directory of Open Access Journals (Sweden)

    Lidia Ferreira Miranda

    2012-03-01

    Full Text Available The objective of this research was to determine the chemical composition and ruminal degradation of the crude protein (CP, total and individual amino acids of leaves from tropical forages: perennial soybean (Neonotonia wightii, cassava (Manihot esculenta, leucaena (Leucaena leucocephala and ramie (Boehmeria nivea, and to estimate the intestinal digestibility of the rumen undegradable protein (RUDP and individual amino acids of leaves from the tropical forages above cited, but including pigeon pea (Cajanus cajan. Three nonlactating Holstein cows were used to determine the in situ ruminal degradability of protein and amino acids from leaves (6, 18 and 48 hours of ruminal incubation. For determination of the intestinal digestibility of RUDP, the residue from ruminal incubation of the materials was used for 18 hours. A larger concentration of total amino acids for ramie and smaller for perennial soybean were observed; however, they were very similar in leucaena and cassava. Leucine was the essential amino acid of greater concentration, with the exception of cassava, which exhibited a leucine concentration 40.45% smaller. Ramie showed 14.35 and 22.31% more lysine and methionine, respectively. The intestinal digestibility of RUDP varied from 23.56; 47.87; 23.48; 25.69 and 10.86% for leucaena, perennial soybean, cassava, ramie and pigeon pea, respectively. The individual amino acids of tropical forage disappeared in different extensions in the rumen. For the correct evaluation of those forages, one should consider their composition of amino acids, degradations and intestinal digestibility, once the amino acid composition of the forage does not reflect the amino acid profiles that arrived in the small intestine. Differences between the degradation curves of CP and amino acids indicate that degradation of amino acids cannot be estimated through the degradation curve of CP, and that amino acids are not degraded in a similar degradation profile.

  20. Kinetics and Quantitative Structure—Activity Relationship Study on the Degradation Reaction from Perfluorooctanoic Acid to Trifluoroacetic Acid

    Directory of Open Access Journals (Sweden)

    Chen Gong

    2014-08-01

    Full Text Available Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure–activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure–activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure–activity model shows, the bond length and energy of C1–C2 (RC1–C2 and EC1–C2 are positively correlated to rate constants, while the volume (V, the energy difference between EHOMO and ELUMO (ΔE, and the net atomic charges on atom C2 (QC2 are negatively correlated.

  1. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    Science.gov (United States)

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  2. Plasmid as a measure of microbial degradation capacity for 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Chong, Nyuk-Min; Chang, Hung-Wei

    2009-02-01

    The purpose of this research was to pursuit the quantification of microbial degradation capacity for 2,4-dichlorophenoxyacetic acid (2,4-D) by detecting and quantifying a prominent 2,4-D degradation encoding plasmid. Batch reactor acclimation, de-acclimation, and re-acclimation tests were conducted during which periods the courses of 2,4-D dissipation and plasmid evolution were quantitatively measured. Pure cultures of bacterial strains were detected to give rise to a plasmid approximately the size of 90 kb after acclimation. The 90 kb plasmid content of Arthrobacter sp. increased when degradation occurred after acclimation, with a rate that corresponded closely to the degradation rate. During de-acclimation, plasmid content declined exponentially at a half-life of approximately 3.5 days. Re-acclimation saw a renewed induction of plasmid, but substrate consumption limited the rise of plasmid to a level much lower than after the first acclimation. This research recommends a method for measuring the microbial degradation capability for a xenobiotic.

  3. Oxidation of 2,4-dichlorophenoxyacetic acid by ionizing radiation: degradation, detoxification and mineralization

    Science.gov (United States)

    Zona, Robert; Solar, Sonja

    2003-02-01

    The gamma-radiation-induced degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in aerated (A) and in during irradiation air saturated (AS) solutions. Whereas the decomposition rates were not influenced by AS, chloride elimination, detoxification as well as mineralization were significantly enhanced. In the range 50-500 μmol dm -3 2,4-D, degradation showed proportionality to concentration, while chloride formation was successively retarded. The ratios of the pseudo first-order rate constants for degradation and chloride formation, kde/ kCl, increase in AS solutions from 1.4 (50 μmol dm -3) to 2.7 (500 μmol dm -3) and in A solutions from 1.4 to 3.3. In AS for total chloride release 0.7 kGy (50 μmol dm -3) to 10 kGy (500 μmol dm -3) were required, the reduction of organic carbon at 10 kGy was 95% (50 μmol dm -3) and 50% (500 μmol dm -3). Increase and decrease of toxicity during irradiation correlated well with formation and degradation of intermediate phenolic products. The doses for detoxification corresponded to those of total dehalogenation. The oxygen uptake was ˜1.1 ppm 100 Gy -1. The presence of the inorganic components of Vienna drinking water affect the degradation parameters insignificantly.

  4. Catalytic Potential of Nano-Magnesium Oxide on Degradation of Humic Acids From Aquatic Solutions

    Directory of Open Access Journals (Sweden)

    Ghorban Asgari

    2014-12-01

    Full Text Available Catalytic ozonation is a new and promising process used to remove the contaminants from drinking water and wastewater. This study aimed to evaluate the catalytic potential of nano-magnesium oxide (nano-MgO for the removal of humic acids (HA from water. Mg (NO32 solution was used to prepare MgO powder by the calcination method. In a semi-batch reactor, the catalytic ozonation was carried out. The effects of the various operating parameters, including pH, reaction time, T-butyl alcohol (TBA and phosphate on HA degradation were evaluated. Experimental results indicated that degradation of HA was increased as the pH solution and reaction time were increased. Maximum HA degradation was obtained at pH = 10 and the reaction time of 10 minutes in the catalytic process. The calculated catalytic potential of nano-MgO on ozonation of HA was 60%. Moreover, catalytic ozonation process was not affected by TBA and the main reaction on HA degradation HA have effect take place on MgO surface. According to the results of this study, the developed MgO catalyst is the active and proficient catalyst in HA degradation using the catalytic ozonation process.

  5. Effect of nitrogen on the degradation of cypermethrin and its metabolite 3-phenoxybenzoic acid in soil

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Jun; ZHOU Jian-Min; WANG Huo-Yan; CHEN Xiao-Qin

    2008-01-01

    Increasing use of pyrethroid insecticides has resulted in concerns regarding potential effects on human health and ecosystems.Cypermethrin and its metabolite 3-phenoxybenzoic acid (PBA) have exerted adverse biological impacts on the environment; therefore,it is critically important to develop different methods to enhance their degradation.In this study,incubation experiments were conducted using samples of an Aquic Inceptisol supplied with nitrogen (N) in the form of NH4NO3 at different levels to investigate the effect of nitrogen on the degradation of cypermethrin and PBA in soil.The results indicated that appropriate N application can promote the degradation of cypermethrin and PBA in soil.The maximum degradation rates were 80.0% for cypermethrin after 14 days of incubation in the treatment with N at a rate of 122.1 kg ha-1 and 41.0% for PBA after 60 days of incubation in the treatment with N at a rate of 182.7 kg ha-1.The corresponding rates in the treatments without nitrogen were 62.7% for cypermethrin and 27.8% for PBA.However,oversupplying N significantly reduced degradation of these compounds.Enhancement of degradation could be explained by the stimulation of microbial activity after the addition of N.In particular,dehydrogenase activities in the soil generally increased with the addition of N,except in the soil where N was applied at the highest level.The lower degradation rate measured in the treatment with an oversupply of N may be attributed to the microbial metabolism shifts induced by high N.

  6. The Fault tree analysis of the lead acid battery’s degradation

    Directory of Open Access Journals (Sweden)

    K. BRIK

    2008-06-01

    Full Text Available In this paper the authors present an approach of reliability to analyze lead-acid battery’s degradation. The construction of causal tree analysis offers a framework privileged to the deductive analysis which consists in seeking the various possible combinations of events leading to the loss of batteries capacity. The description of the causality chain is completed by a fault tree analysis (FTA established from the equivalent electric circuit of battery.

  7. The Fault tree analysis of the lead acid battery’s degradation

    OpenAIRE

    K. BRIK; F. BEN AMMAR

    2008-01-01

    In this paper the authors present an approach of reliability to analyze lead-acid battery’s degradation. The construction of causal tree analysis offers a framework privileged to the deductive analysis which consists in seeking the various possible combinations of events leading to the loss of batteries capacity. The description of the causality chain is completed by a fault tree analysis (FTA) established from the equivalent electric circuit of battery.

  8. Preparation, Cell Compatibility and Degradability of Collagen-Modified Poly(lactic acid)

    OpenAIRE

    Miaomiao Cui; Leili Liu; Ning Guo; Ruixia Su; Feng Ma

    2015-01-01

    Poly(lactic acid) (PLA) was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA) was prepared by the reaction between the reactive acylchlorided group and amino/hydroxyl groups on collagen. Subsequently, the structure of collagen-PLA was confirmed by Fourier t...

  9. Effects of Calcium Lignosulfonate and Silicic Acid on Ammonium Nitrate Degradation

    Directory of Open Access Journals (Sweden)

    Ahmet Ozan Gezerman

    2014-01-01

    Full Text Available Ammonium nitrate salts are the most commonly used nitrogenous fertilizers in industry. However, storage of ammonium nitrate is problematic, since its initial properties can decline because of environmental factors, leading to large economic losses. In this study, in order to prevent the caking and degradation of ammonium nitrate, an alternative composition with additional calcium lignosulfonate and silicic acid was studied. The resulting fertilizer was analyzed by screening analysis, ion chromatography, and electron microscopy methods.

  10. Catalytic Degradation of Methylphosphonic Acid Using Iron Powder/Iron Oxides

    Science.gov (United States)

    2005-11-01

    aluminium/ aluminium oxide on the degradation of methylphosphonic acid (MPA), the final hydrolysis product of most nerve agents. EGA-FTIR provides... ALUMINIUM OXIDE ) UNDER AIR (BOTTOM). .................. 37 DSTO-TR-1849 1 1. Introduction The Convention on the Prohibition of the...as well as aluminium/ aluminium oxide , using temperature programmed EGA-FTIR. Since MPA is a Schedule II chemical the above requirement can only be

  11. In situ rumen degradation of amino acids from different feeds corrected for microbial contamination

    OpenAIRE

    González, Javier; Centeno, Carmen; Lamrani, Farida; Rodríguez, Carlos

    2001-01-01

    International audience; Variations of the amino acid profile produced by rumen actions were established for fish meal (FM), corn grain (CG), corn gluten feed (GF), dehydrated beet pulp (DBP), and lucerne hay (LH), using the nylon bag technique. The effects of degradation of soluble or insoluble proteins were measured by rumen incubations at 0 h (washout value) and 16 h, respectively. Rumen incubations were performed on four cannulated wethers and the microbial contamination of incubated resid...

  12. Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production.

    Science.gov (United States)

    Ferreira-Guedes, Sumaya; Mendes, Benilde; Leitão, Ana Lúcia

    2012-01-01

    The extensive use of pesticides in agriculture has prompted intensive research on chemical and biological methods in order to protect contamination of water and soil resources. In this paper the degradation of the pesticide 2,4-dichlorophenoxyacetic acid by a Penicillium chrysogenum strain previously isolated from a salt mine was studied in batch cultures. Co-degradation of 2,4-dichlorophenoxyacetic acid with additives such as sugar and intermediates of pesticide metabolism was also investigated. Penicillium chrysogenum in solid medium was able to grow at concentrations up to 1000 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) with sucrose. Meanwhile, supplementation of the solid medium with glucose and lactose led to fungal growth at concentrations up to 500 mg/L of herbicide. Batch cultures of 2,4-D at 100 mg/L were developed under aerobic conditions with the addition of glucose, lactose and sucrose, showing sucrose as the best additional carbon source. The 2,4-D removal was quantified by liquid chromatography. The fungus was able to use 2,4-D as the sole carbon and energy source under 0%, 2% and 5.9% NaCl. The greatest 2,4-D degradation efficiency was found using alpha-ketoglutarate and ascorbic acid as co-substrates under 2% NaCl at pH 7. Penicillin production was evaluated in submerged cultures by bioassay, and higher amounts of beta-lactam antibiotic were produced when the herbicide was alone. Taking into account the ability of P. chrysogenum CLONA2 to degrade aromatic compounds, this strain could be an interesting tool for 2,4-D herbicide remediation in saline environments.

  13. Bone substitute biomedical material of multi-(amino acid) copolymer: in vitro degradation and biocompatibility.

    Science.gov (United States)

    Li, Hong; Yan, Yonggang; Wei, Jie; Ma, Jian; Gong, Min; Luo, Xiaoman; Zhang, Yunfei

    2011-11-01

    Degradable polymers with good mechanical strength as bone repair biomaterials have been paid more attention in biomedical application. In this study, a multi-(amino acid) copolymer consisting of 6-aminocaproic acid and five natural amino acids was prepared by a reaction of acid-catalyzed condensation. The results revealed that the copolymer could be slowly degradable in Tris-HCl solution, and lost its initial weight of 31.9 wt% after immersion for 12 weeks, and the changes of pH value of Tris-HCl solution were in range from 6.9 to 7.4 during soaking. The compressive strength of the copolymer decreased from 107 to 68 MPa after immersion for 12 weeks. The proliferation and differentiation of MG-63 cells on the copolymer significantly increased with time, and the cells with normal phenotype extended and spread well on the copolymer surfaces. When the copolymer was implanted in muscle and bone defects of femoral cortex of dogs for 12 weeks, the histological evaluation confirmed that the copolymer exhibited excellent biocompatibility and more effective osteogenesis in vivo. When implanted into cortical bone defects of dogs, the copolymer could be combined directly with the natural bone without fibrous capsule tissue between implants and host bone. The results indicated that the multi-(amino acid) copolymer with sufficient strength, good biocompatibility and osteoconductivity had clinical potential for load-bearing bone repair or substitution.

  14. Oxidative degradation of salicylic acid by sprayed WO{sub 3} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Mohite, S.V.; Rajpure, K.Y., E-mail: rajpure@yahoo.com

    2015-10-15

    Highlights: • The photoactivity of sprayed WO{sub 3} thin film. • Photoelectrocatalytic degradation of salicylic acid. • Reaction kinetics and mineralization of pollutants by COD. - Abstract: The WO{sub 3} thin films were deposited using spray pyrolysis technique. The prepared WO{sub 3} thin films were characterized using photoelectrochemical (PEC), X-ray diffraction, atomic force microscopy (AFM), and UV–vis absorbance spectroscopy techniques. PEC measurements of WO{sub 3} films deposited at different deposition temperatures were carried out to study photoresponse. The maximum photocurrent (I{sub ph} = 261 μA/cm{sup 2}) was observed for the film deposited at the 225 °C. The monoclinic crystal structure of WO{sub 3} has been confirmed from X-ray diffraction studies. AFM studies were used to calculate particle size and average roughness of the films. Optical absorbance was studied to estimate the bandgap energy of WO{sub 3} thin film which was about 2.65 eV. The photoelectrocatalytic activity of WO{sub 3} film was studied by degradation of salicylic acid with reducing concentrations as function of reaction time. The WO{sub 3} photocatalyst degraded salicylic acid to about 67.14% with significant reduction in chemical oxygen demand (COD) value.

  15. Hydrothermal synthesis spherical TiO2 and its photo-degradation property on salicylic acid

    Science.gov (United States)

    Guo, Wenlu; Liu, Xiaolin; Huo, Pengwei; Gao, Xun; Wu, Di; Lu, Ziyang; Yan, Yongsheng

    2012-07-01

    Anatase TiO2 spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO2 consisted of well-defined spheres with size of 3-5 μm. The photocatalytic activity of spherical TiO2 was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO2 which was processed at 150 °C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S-1 of the salicylic acid onto TiO2 (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg-1 of the salicylic acid onto TiO2 (temperature: 150, time: 48 h).

  16. Free fatty acids degradation in grease trap purification using ozone bubbling and sonication

    Science.gov (United States)

    Piotr Kwiatkowski, Michal; Satoh, Saburoh; Fukuda, Shogo; Yamabe, Chobei; Ihara, Satoshi; Nieda, Masanori

    2013-02-01

    The oil and fat were treated at first by only ozone bubbling and it was confirmed that the collection efficiency of them became 98.4% when the aeration was used. It showed that the aeration method in a grease trap cleared the standard value of 90% and there was no worry on the oil and fat outflow from a grease trap. The characteristics of sonication process were studied for free fatty acids degradation. The free saturated fatty acids are the most hard-degradable compounds of the fats, oils and greases (FOGs) in the grease trap. The influence of various parameters such as immersion level of an ultrasound probe in the liquid and bubbling of various gases (Ar, O2, air, O3) on the sonochemical and energy efficiency of the sonication process was investigated. The most effective degradation treatment method for saturated free fatty acids was the combination of sonication and low flow rate argon bubbling. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  17. Effect of the Electric Field Frequency on Ascorbic Acid Degradation during Thermal Treatment by Ohmic Heating

    Science.gov (United States)

    Mercali, Giovana Domeneghini; Schwartz, Steven; Marczak, Ligia Damasceno Ferreira; Tessaro, Isabel Cristina; Sastry, Sudhir

    2014-01-01

    In this work, the influence of the electric field frequency and solids content on the degradation kinetics of ascorbic acid during ohmic heating of acerola pulp and acerola serum was investigated. The degradation percentage of ascorbic acid in the pulp after 120 min of heating varied between 12 and 17%. For the serum, the degradation percentage was in the range of 13 and 18%. The results were fitted to the first-order model, and the kinetic rate constants ranged from 1.1 to 1.6 × 10−3 min−1 and from 1.1 to 1.5 × 10−3 min−1 for pulp and serum, respectively. D values ranged between 1480 and 2145 min for the pulp and between 1524 and 1951 min for the serum. A distinct behavior between the kinetic parameters of the pulp and serum in electric field frequencies ranging from 10 to 1000 Hz indicates that the presence of distinct amounts and types of solids might affect the rate of the electron transfer in electrochemical reactions. These variables may also affect the polarization process stimulated by the oscillating electric field. The non-achievement of the equilibrium of the polarization process may have an influence on oxidation reactions, affecting the predisposition to hydrogen donation from the ascorbic acid molecule. PMID:24892902

  18. Effect of the electric field frequency on ascorbic acid degradation during thermal treatment by ohmic heating.

    Science.gov (United States)

    Mercali, Giovana Domeneghini; Schwartz, Steven; Marczak, Ligia Damasceno Ferreira; Tessaro, Isabel Cristina; Sastry, Sudhir

    2014-06-25

    In this work, the influence of the electric field frequency and solids content on the degradation kinetics of ascorbic acid during ohmic heating of acerola pulp and acerola serum was investigated. The degradation percentage of ascorbic acid in the pulp after 120 min of heating varied between 12 and 17%. For the serum, the degradation percentage was in the range of 13 and 18%. The results were fitted to the first-order model, and the kinetic rate constants ranged from 1.1 to 1.6×10(-3) min(-1) and from 1.1 to 1.5×10(-3) min(-1) for pulp and serum, respectively. D values ranged between 1480 and 2145 min for the pulp and between 1524 and 1951 min for the serum. A distinct behavior between the kinetic parameters of the pulp and serum in electric field frequencies ranging from 10 to 1000 Hz indicates that the presence of distinct amounts and types of solids might affect the rate of the electron transfer in electrochemical reactions. These variables may also affect the polarization process stimulated by the oscillating electric field. The non-achievement of the equilibrium of the polarization process may have an influence on oxidation reactions, affecting the predisposition to hydrogen donation from the ascorbic acid molecule.

  19. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    Science.gov (United States)

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  20. Impact of folic acid supplementation on single- and double-stranded RNA degradation in human colostrum and mature milk.

    Science.gov (United States)

    Kocic, Gordana; Bjelakovic, Ljiljana; Bjelakovic, Bojko; Jevtoci-Stoimenov, Tatjana; Sokolovic, Dusan; Cvetkovic, Tatjana; Kocic, Hristina; Stojanovic, Svetlana; Langerholc, Tomaz; Jonovic, Marina

    2014-07-01

    Sufficient intake of folic acid is necessary for normal embryogenesis, fetal, and neonatal development. Folic acid facilitates nucleic acid internalization, and protects cellular DNA from nuclease degradation. Human milk contains enzymes, antimicrobial proteins, and antibodies, along with macrophages, that protect against infections and allergies. However, little to no information is available on the effects of folic acid supplementation on degradation of nucleic acids in human milk. In the present study, we aimed to determine the RNase activity (free and inhibitor-bound) in colostrum and mature milk, following folic acid supplementation. The study design included a total of 59 women, 27 of whom received 400 μg of folic acid daily periconceptionally and after. Folic acid supplementation increased the free RNase and polyadenylase activity following lactation. However, the increased RNase activity was not due to de novo enzyme synthesis, as the inhibitor-bound (latent) RNase activity was significantly lower and disappeared after one month. Folic acid reduced RNase activity by using double-stranded RNA as substrate. Data suggests that folic acid supplementation may improve viral RNAs degradation and mRNA degradation, but not dsRNA degradation, preserving in this way the antiviral defense.

  1. Raman spectroscopy and capillary zone electrophoresis for the analysis of degradation processes in commercial effervescent tablets containing acetylsalicylic acid and ascorbic acid.

    Science.gov (United States)

    Neuberger, Sabine; Jooß, Kevin; Flottmann, Dirk; Scriba, Gerhard; Neusüß, Christian

    2017-02-05

    In order to ensure the stability of pharmaceutical products appropriate manufacturing and storage conditions are required. In general, the degradation of active pharmaceutical ingredients (APIs) and subsequent formation of degradation products affect the pharmaceutical quality. Thus, a fast and effective detection and characterization of these substances is mandatory. Here, the applicability of Raman spectroscopy and CZE for the characterization of the degradation of effervescent tablets containing acetylsalicylic acid (ASA) and ascorbic acid (AA) was evaluated. Therefore, a degradation study was performed analyzing tablets from two different manufacturers at varying conditions (relative humidity (RH) 33%, 52% and 75% at 30°C). Raman spectroscopy combined with principal component analysis could be successfully applied for the fast and easy discrimination of non-degraded and degraded effervescent tablets after a storage period of approximately 24h (RH 52%). Nevertheless, a clear identification or quantification of APIs and degradation products within the analyzed tablets was not possible, i.a. due to missing reference materials. CZE-UV enabled the quantification of the APIs (ASA, AA) and related degradation products (salicylic acid (SA); semi-quantitative also mono- and diacetylated AA) within the complex tablet mixtures. The higher the RH, the faster the degradation of ASA and AA as well as the formation of the degradation products. Mono- and diacetylated AA are major primary degradation products of AA for the applied effervescent tablets. A significant degradation of the APIs was detected earlier by CZE (6-12h, RH 52%) than by Raman spectroscopy. Summarized, Raman spectroscopy is well-suited as quick test to detect degradation of these tablets and CZE can be utilized for further detailed characterization and quantification of specific APIs and related degradation products.

  2. Degradation and miscibility of poly(DL-lactic acid)/poly(glycolic acid) composite films: Effect of poly(DL-lactic-co-glycolic acid)

    Indian Academy of Sciences (India)

    Zhigang Ma; Na Zhao; Chengdong Xiong

    2012-08-01

    The in vitro degradation behaviour of poly(glycolic acid) (PGA) and its composite films containing poly(DL-lactic acid) (PDLLA) and poly(DL-lactic-co-glycolic acid) (PDLGA) were investigated via mass loss, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). All the films were prepared by solution casting, using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. Since the degradation rate of PDLLA is lower than that of PGA, those of the PDLLA/PGA composite films decreased. As a compatibilizer, PDLGA improved the compatibility and hydrolytic stability of PDLLA/PGA composite films. Changes in the composite films indicate that this kind of PGA-based composite biomaterial may be applicable to device design for clinical application in the future.

  3. Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions.

    Directory of Open Access Journals (Sweden)

    Javier García-Hidalgo

    Full Text Available The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R-3-hydroxybutyrate (PHB degrader. The fkbU gene, encoding a PHB depolymerase (PhaZ Sa , has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZ Sa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZ Sa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser(131-Asp(209-His(269, were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZ Sa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt. The features shown by PhaZ Sa make it an interesting candidate for industrial applications involving PHB degradation.

  4. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics.

    Science.gov (United States)

    Mateker, William R; McGehee, Michael D

    2016-12-22

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

  5. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics

    KAUST Repository

    Mateker, William R.

    2016-12-23

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

  6. Evaluate the role of organic acids in the protection of ligands from radiolytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Anneka Miller; Stehpen Mezyk; Dean Peterman

    2016-08-01

    In the Advanced TALSPEAK process, the bis(2-ethylhexyl)phosphoric acid (HDEHP) extractant used in the traditional TALSPEAK process is replaced by the extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]). In addition, the aqueous phase complexant and buffer used in traditional TALSPEAK is replaced with the combination of N-(2-hydroxyethyl)ethylenediamine-N,N’,N’-triacetic acid (HEDTA) and citric acid. In order to evaluate the possible impacts of gamma radiolysis upon the efficacy of the Advanced TALSPEAK flowsheet, aqueous and organic phases corresponding to the extraction section of the proposed flowsheet were irradiated in the INL test loop under an ambient atmosphere. The results of these studies conducted at INL, led INL researchers to conclude that the scarcity of values of rate constants for the reaction of hydroxyl radical with the components of the Advanced TALSPEAK process chemistry was severely limiting the interpretation of the results of radiolysis studies performed at the INL. In this work, the rate of reaction of hydroxyl radical with citric acid at several pH values was measured using a competitive pulse radiolysis technique. This report describes those results and is written in completion of milestone M3FT-16IN030102028, the goal of which was to evaluate the role of organic acids in the protection of ligands from radiolytic degradation. The results reported here demonstrate the importance of obtaining hydroxyl radical reaction rate data for the conditions that closely resemble actual solution conditions expected to be used in an actual solvent extraction process. This report describes those results and is written in completion of milestone M3FT-16IN030102028, the goal of which was to evaluate the role of organic acids in the protection of ligands from radiolytic degradation.

  7. Degradation of reactive dyes by ozonation and oxalic acid-assimilating bacteria isolated from soil.

    Science.gov (United States)

    Kurosumi, Akihiro; Kaneko, Erika; Nakamura, Yoshitoshi

    2008-07-01

    Ozonation and treatment of wastewaters with oxalic acid-assimilating bacterium was attempted for the complete degradation of reactive dyes. Oxalic acid-assimilating bacterium, Pandoraea sp. strain EBR-01, was newly isolated from soil under bamboo grove and was identified to be a member of the genus Pandoraea by physicochemical and biochemical tests including 16S rDNA sequence analysis. The bacterium was grown optimally at pH 7 and temperature of 30 degrees C under the laboratory conditions. Reactive Red 120 (RR120), Reactive Green 19 (RG19), Reactive Black 5 (RB5) and Remazol Brilliant Blue R (RBBR) were used in degradation experiments. At the initial reactive dye concentrations of 500 mg/l and the ozonation time of 80 min, it was confirmed that 75-90 mg/l oxalic acid was generated from reactive dyes by ozonation. Microbial treatment using EBR-01 greatly decreased the amount of oxalic acid in the mixture after 48 h, but it was not removed completely. TOC/TOC(0) of reactive dye solutions was also decreased to 80-90% and 20-40% by ozonation and microbial treatment using EBR-01, respectively. The study confirmed that consecutive treatments by ozone and microorganisms are efficient methods to mineralize reactive dyes.

  8. Influence of volatile fatty acid concentration stability on anaerobic degradation of linear alkylbenzene sulfonate.

    Science.gov (United States)

    Okada, Dagoberto Y; Delforno, Tiago P; Esteves, Andressa S; Polizel, Juliana; Hirasawa, Julia S; Duarte, Iolanda C S; Varesche, Maria B A

    2013-10-15

    Linear alkylbenzene sulfonate (LAS) is an anionic surfactant used in cleaning products, which is usually found in wastewaters. Despite the greater LAS removal rate related to a lower concentrations of volatile fatty acids (VFA), the influence of different ranges of VFA on LAS degradation is not known. LAS degradation was evaluated in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors at different ranges of VFA concentrations. The reactors were fed with a synthetic wastewater containing LAS (14 mg/L). A greater LAS removal rate (40-80%) was related to the lower and narrower range of acetic acid concentration (1-22 mg/L) in the EGSB reactor. In the UASB reactor, the acetic acid concentrations presented a wider range (2-45 mg/L), and some low LAS removal rates (around 20-25%) were observed even at low acetic acid concentrations (<10 mg/L). The high recirculation rate in the EGSB reactor improved substrate-biomass contact, which resulted in a narrower range of VFA and greater LAS removal rate.

  9. Isolation and characterization of a diverse group of phenylacetic acid degrading microorganisms from pristine soil.

    Science.gov (United States)

    O'Connor, Kevin E; O'Leary, Niall P; Marchesi, Julian R; Dobson, Alan D W; Duetz, Wouter

    2005-11-01

    A diverse range of microorganisms capable of growth on phenylacetic acid as the sole source of carbon and energy were isolated from soil. Sixty six different isolates were identified and grouped according to 16S rRNA gene RFLP analysis. Subsequent sequencing of 16S rDNA from selected strains allowed further characterization of the phenylacetic acid degrading population isolated from soil. Nearly half (30) of the isolates are Bacillus species while the rest of the isolates are strains from a variety of genera namely, Arthrobacter, Pseudomonas, Rhodococcus, Acinetobacter, Enterobacter, Flavobacterium, and Paenibacillus. Sixty-one of the sixty-six strains reproducibly grew in defined minimal liquid culture medium (E2). All strains isolated grew when at least one hydroxylated derivative of phenylacetic acid was supplied as the carbon source, while 59 out of the 61 strains tested, accumulated ortho-hydroxyphenylacetic acid in the assay buffer; when pulsed with phenylacetic acid. Oxygen consumption experiments failed to indicate a clear link between phenylacetic acid and hydroxy-substituted phenylacetic acid in isolates from a broad range of genera.

  10. Tyrosol degradation via the homogentisic acid pathway in a newly isolated Halomonas strain from olive processing effluents

    OpenAIRE

    Liebgott, Pierre-Pol; Labat, Marc; Amouric, Agnès; Tholozan, Jean-Luc; Lorquin, Jean

    2008-01-01

    To isolate a new Halomonas sp. strain capable of degrading tyrosol, a toxic compound present in olive mill wastewater, through the homogentisic acid (HGA) pathway. A moderately halophilic Gram-negative bacterium belonging to the Halomonas genus and designated strain TYRC17 was isolated from olive processing effluents. This strain was able to completely degrade tyrosol (2-(p-hydroxyphenyl)-ethanol), a toxic compound found in such effluent. Tyrosol degradation begins by an oxidation to 4-hydrox...

  11. Degradation of the herbicide 2, 4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt by gamma radiation from cobalt-60 in aqueous solution containing humic acid

    Science.gov (United States)

    Campos, Sandro X.; Vieira, Eny M.; Cordeiro, Paulo J. M.; Rodrigues-Fo, Edson; Murgu, Michael

    2003-12-01

    In this study, gamma radiation from cobalt-60 was used to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt in water in the presence of humic acid. The 2,4-D dimethylamine salt 1.13×10 -4 mol dm -3 solution was irradiated with different doses. HPLC was used as an analytical technique to determine the degradation rate of herbicide studied. The results showed that the herbicide was completely degraded at an absorbed dose of 3 kGy. Degradation decreased when humic acid was added to all the doses. ESI/MS and MS/MS were used to identify the radiolytic degradation products. A fragmentation path for production of 4.6-dichlororesorcinol, is suggested. The radiolytic yields ( G) were calculated.

  12. Degradation of trans-ferulic acid in acidic aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Nelly; Sirés, Ignasi; Garrido, José Antonio; Centellas, Francesc; Rodríguez, Rosa María; Cabot, Pere Lluís; Brillas, Enric, E-mail: brillas@ub.edu

    2016-12-05

    Highlights: • trans-Ferulic acid degradation by EAOPs using a stirred BDD/air-diffusion cell. • Slow substrate abatement and poor mineralization by AO-H{sub 2}O{sub 2}. • 98% Mineralization by PEF, but with rapid and similar substrate decay than by EF. • Quicker degradation by SPEF due to the more potent photolytic action of sunlight. • Reaction pathway with four primary aromatic products and three final carboxylic acids. - Abstract: Solutions of pH 3.0 containing trans-ferulic acid, a phenolic compound in olive oil mill wastewater, have been comparatively degraded by anodic oxidation with electrogenerated H{sub 2}O{sub 2} (AO-H{sub 2}O{sub 2}), electro-Fenton (EF) and photoelectro-Fenton (PEF). Trials were performed with a BDD/air-diffusion cell, where oxidizing ·OH was produced from water discharge at the BDD anode and/or in the solution bulk from Fenton’s reaction between cathodically generated H{sub 2}O{sub 2} and added catalytic Fe{sup 2+}. The substrate was very slowly removed by AO-H{sub 2}O{sub 2}, whereas it was very rapidly abated by EF and PEF, at similar rate in both cases, due to its fast reaction with ·OH in the bulk. The AO-H{sub 2}O{sub 2} process yielded a slightly lower mineralization than EF, which promoted the accumulation of barely oxidizable products like Fe(III) complexes. In contrast, the fast photolysis of these latter species under irradiation with UVA light in PEF led to an almost total mineralization with 98% total organic carbon decay. The effect of current density and substrate concentration on the performance of all treatments was examined. Several solar PEF (SPEF) trials showed its viability for the treatment of wastewater containing trans-ferulic acid at larger scale. Four primary aromatic products were identified by GC–MS analysis of electrolyzed solutions, and final carboxylic acids like fumaric, acetic and oxalic were detected by ion-exclusion HPLC. A reaction sequence for trans-ferulic acid mineralization

  13. [Recent progress on analytical chemistry and biochemistry of D-amino acids].

    Science.gov (United States)

    Imai, K; Kato, M; Huang, Y; Ichihara, H; Fukushima, T; Santa, T; Homma, H

    1997-11-01

    Recent findings that D-amino acids, especially D-aspartic acid and D-serine, exist in vivo in the mammalian tissues (brain and peripheries), prompted us now to investigate their biological and pathological roles in mammals. In this review, the overview of the progress of analytical chemistry and biochemistry of D-amino acids is described.

  14. Oxalate-Degrading Capacities of Gastrointestinal Lactic Acid Bacteria and Urinary Tract Stone Formation

    Directory of Open Access Journals (Sweden)

    Mohammad Kargar

    2013-10-01

    Full Text Available Background: Calcium oxalate is one the most significant causes of human kidney stones. Increasing oxalate uptake results in increased urinary oxalate. Elevated urinary oxalate is one the most important causes of kidney stone formation. This study aims to evaluate oxalate-degrading capacity of lactic acid bacteria and its impact on incidence of kidney stone.Materials and Methods: This case-control study was conducted on serum, urinary, and fecal samples. The research population included a total of 200 subjects divided in two equal groups. They were selected from the patients with urinary tract stones, visiting urologist, and also normal people. The level of calcium, oxalate, and citrate in the urinary samples, parathyroid and calcium in the serum samples, and degrading activity of fecal lactobacillus strains of all the subjects were evaluated. Then, data analysis was carried out using SPSS-11.5, χ2 test, Fisher’s exact test, and analysis of variance. Results: The results revealed that the patients had higher urinary level of oxalate and calcium, as well as higher serum level of parathyroid hormone than normal people. In contrast, urinary level of citrate was higher in normal people. In addition, there was a significant difference between the oxalate-degrading capacities of lactobacillus isolated from the patients and their normal peers.Conclusion: Reduction of digestive lactobacillus-related oxalate-degrading capacity and increased serum level of parathyroid hormone can cause elevated urinary level of oxalate and calcium in people with kidney stone.

  15. Evidence for Interspecies Gene Transfer in the Evolution of 2,4-Dichlorophenoxyacetic Acid Degraders

    Science.gov (United States)

    McGowan, Catherine; Fulthorpe, Roberta; Wright, Alice; Tiedje, J. M.

    1998-01-01

    Small-subunit ribosomal DNA (SSU rDNA) from 20 phenotypically distinct strains of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria was partially sequenced, yielding 18 unique strains belonging to members of the alpha, beta, and gamma subgroups of the class Proteobacteria. To understand the origin of 2,4-D degradation in this diverse collection, the first gene in the 2,4-D pathway, tfdA, was sequenced. The sequences fell into three unique classes found in various members of the beta and gamma subgroups of Proteobacteria. None of the α-Proteobacteria yielded tfdA PCR products. A comparison of the dendrogram of the tfdA genes with that of the SSU rDNA genes demonstrated incongruency in phylogenies, and hence 2,4-D degradation must have originated from gene transfer between species. Only those strains with tfdA sequences highly similar to the tfdA sequence of strain JMP134 (tfdA class I) transferred all the 2,4-D genes and conferred the 2,4-D degradation phenotype to a Burkholderia cepacia recipient. PMID:9758850

  16. Enhanced photocatalytic–biological degradation of 2,4 dichlorophenoxyacetic acid

    Directory of Open Access Journals (Sweden)

    Reham Samir

    2015-12-01

    Full Text Available 2,4-Dichlorophenoxyacetic acid (2,4-D is the third most commonly used herbicide all over the world. There is a contradicted opinion about its toxicity and its half life in the environment. In this study the most effective method of its degradation and bioremediation has been studied. Two microbial consortia capable of utilizing 2,4-D as a sole source of carbon were isolated from the Egyptian environment. One of the microbial consortia interestingly contained a certain kind of protozoa as one of the mixed consortia members. Degradation of 2,4-D by the microbial consortia was affected by 2,4-D initial concentration, agitation, pH of the medium and temperature. The two consortia were able to degrade up to 700 mg l−1 of 2,4-D. Pre-treatment with UV radiations in the presence of photocatalyst such as TiO2 accelerates the biodegradation process. The toxic non biodegradable concentration of 2,4-D which was found to be the 800 mg l−1, was degraded by pre-treatment with UV/TiO2 and a subsequent microbial inoculation. The combined treatment proved to be an efficient mean of biodegradation and detoxification of toxic non biodegradable concentrations of 2,4-D.

  17. Mechanism and Kinetics Study for Photocatalytic Oxidation Degradation: A Case Study for Phenoxyacetic Acid Organic Pollutant

    Directory of Open Access Journals (Sweden)

    Kian Mun Lee

    2015-01-01

    Full Text Available Photocatalysis is a rapidly expanding technology for wastewater treatment, including a wide range of organic pollutants. Thus, understanding the kinetics and mechanism of the photocatalytic oxidation (PCO for degradation of phenoxyacetic acid (PAA is an indispensable component of risk assessment. In this study, we demonstrated that the central composite design (CCD coupled with response surface methodology (RSM was successfully employed to probe the kinetics and mechanism of PCO degradation for PAA using an efficient zinc oxide (ZnO photocatalyst. In our current case study, four independent factors such as ZnO dosage, initial concentration of PAA, solution pH, and reaction time on the PCO degradation for PAA were examined in detail. Based on our results obtained from RSM analyses, an efficient pathway leading to the high degradation rate (>90% was applying 0.4 g/L of ZnO dosage with 16 mg/L of concentration of PAA at pH 6.73 for 40 minutes. The experimental results were fitted well with the derived response model with R2 = 0.9922. This study offers a cost-effective way for probing our global environmental water pollution issue.

  18. Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available Hydrolytic degradations of polylactic acid/rice hulls (PLA/RH composites with various rice hulls contents due to water absorptions at 23, 51 and 69°C were investigated by studying the thermal properties, chemical composition, molecular weight, and morphology of the degraded products. The results have attested that the stability of PLA/RH composites in water depends slightly on rice hulls contents but it is significantly influenced by water temperature. Water absorption in 30 days at 23°C was between 0.87 and 9.25% depending on rice hull contents. However, at thermophilic temperatures, the water absorption and degradation of these products were increased significantly. Saturations were achieved in less than 25 and 9 days at 51°C and 69°C, respectively, while hydrolytic degradation was demonstrated by an increase in fragility and development of crystallinity. At 69°C, there were significant reductions of the decomposition and glass transition temperatures of the polymer by 13°C. These changes were associated with the reduction of the molecular weight of PLA from 153.1 kDa to ~10.7 kDa due to hydrolysis of its ester group.

  19. Effect of acidic solutions on the surface degradation of a micro-hybrid composite resin.

    Science.gov (United States)

    Münchow, Eliseu A; Ferreira, Ana Cláudia A; Machado, Raissa M M; Ramos, Tatiana S; Rodrigues-Junior, Sinval A; Zanchi, Cesar H

    2014-01-01

    Composite resins may undergo wear by the action of chemical substances (e.g., saliva, alcohol, bacterial acids) of the oral environment, which may affect the material's structure and surface properties. This study evaluated the effect of acidic substances on the surface properties of a micro-hybrid composite resin (Filtek Z-250). Eighty specimens were prepared, and baseline hardness and surface roughness (KMN0 and Ra0, respectively) were measured. The specimens were subjected to sorption (SO) and solubility (SL) tests according to ISO 4049:2009, but using different storage solutions: deionized water; 75/25 vol% ethanol/water solution; lactic acid; propionic acid; and acetic acid. The acids were used in two concentrations: PA and 0.02 N. pH was measured for all solutions and final hardness (KMN1) and surface roughness (Ra1) were measured. Data were analyzed with paired t-tests and one-way ANOVA and Tukey's test (a=5%). All solutions decreased hardness and increased the Ra values, except for the specimens stored in water and 0.02 N lactic acid, which maintained the hardness. All solutions produced similar SO and SL phenomena, except for the 0.02 N lactic acid, which caused lower solubility than the other solutions. Ethanol showed the highest pH (6.6) and the 0.02 N lactic acid the lowest one (2.5). The solutions affected negatively the surface properties of the composite resin; in addition, an acidic pH did not seem to be a significant factor that intensifies the surface degradation phenomena.

  20. Degradation of cyanoacrylic acid-based organic sensitizers in dye-sensitized solar cells.

    Science.gov (United States)

    Chen, Cheng; Yang, Xichuan; Cheng, Ming; Zhang, Fuguo; Sun, Licheng

    2013-07-01

    Organic dyes have become widely used in dye-sensitized solar cells (DSSCs) because of their good performance, flexible structural modifications, and low costs. To increase the photostability of organic dye-based DSSCs, we conducted a full study on the degradation mechanism of cyanoacrylic acid-based organic sensitizers in DSSCs. The results showed that with the synergy between water and UV light, the sensitizer could desorb from the TiO2 surface and the cyanoacrylic acid unit of the sensitizer was transformed into the aldehyde group. It was also observed that the water content had a great effect on the degradation process. Our experiments conducted using (18) O-labeled water demonstrated that the oxygen atom of the aldehyde group identified in the degraded dye came from the solvent water in the DSSCs. Therefore, controlling the water content during DSSC fabrication, good sealing of cells, and filtering the UV light are crucial to produce DSSCs that are more durable and robust.

  1. Glycolic Acid-Catalyzed Deamidation of Asparagine Residues in Degrading PLGA Matrices: A Computational Study

    Directory of Open Access Journals (Sweden)

    Noriyoshi Manabe

    2015-03-01

    Full Text Available Poly(lactic-co-glycolic acid (PLGA is a strong candidate for being a drug carrier in drug delivery systems because of its biocompatibility and biodegradability. However, in degrading PLGA matrices, the encapsulated peptide and protein drugs can undergo various degradation reactions, including deamidation at asparagine (Asn residues to give a succinimide species, which may affect their potency and/or safety. Here, we show computationally that glycolic acid (GA in its undissociated form, which can exist in high concentration in degrading PLGA matrices, can catalyze the succinimide formation from Asn residues by acting as a proton-transfer mediator. A two-step mechanism was studied by quantum-chemical calculations using Ace-Asn-Nme (Ace = acetyl, Nme = NHCH3 as a model compound. The first step is cyclization (intramolecular addition to form a tetrahedral intermediate, and the second step is elimination of ammonia from the intermediate. Both steps involve an extensive bond reorganization mediated by a GA molecule, and the first step was predicted to be rate-determining. The present findings are expected to be useful in the design of more effective and safe PLGA devices.

  2. Hyaluronic acid abrogates nitric oxide-dependent stimulation of collagen degradation in cultured human chondrocytes.

    Science.gov (United States)

    Surazynski, Arkadiusz; Miltyk, Wojciech; Czarnomysy, Robert; Grabowska, Joanna; Palka, Jerzy

    2009-07-01

    Experimental inflammation induced in cultured chondrocytes by inflammatory cytokine IL-1 beta stimulates collagen degradation by metalloproteinases. We propose that nitric oxide (NO) may represent down stream signaling molecule of IL-1-induced collagen degradation in chondrocytes. It was found that IL-1 beta induced the activity of MMP-2 and MMP-9 during the 48 h time course of the experiment, especially after 24h incubation, while DETA/NO, donor of NO, stimulated the process at 12h incubation. The mechanism of IL-1-dependent stimulation of NO production was found at the level of iNOS expression and activation of NF-kappaB. We found that hyaluronic acid (HA) counteracted IL-induced degradation of collagen in chondrocytes. Although, HA by itself had no effect on the metaloproteinases activity, when added to IL-1 beta or DETA/NO treated chondrocytes it contributed to the restoration of the MMPs activity to the control level. The mechanism of this phenomenon involves inhibition of NF-kappaB activation. The data suggest that NO may represent a target molecule for protective effect of hyaluronic acid on interleukin-1-induced stimulation of metaloproteinases activity in cultured human chondrocytes.

  3. Degradation of Acid Orange 7 in an Atmospheric-Pressure Plasma-Solution System (Gliding Discharge)

    Science.gov (United States)

    NI, Mingjiang; YANG, Huan; CHEN, Tong; ZHANG, Hao; WU, Angjian; DU, Changming; LI, Xiaodong

    2015-03-01

    In this work, a plasma-solution system was applied to the degradation of Acid Orange 7 (AO7). The effects of initial concentration and type of feed gases (air, oxygen, nitrogen or argon) were studied. As the initial concentration increased from 100 mg/L to 160 mg/L, the discolouration rate of AO7 decreased from 99.3% to 95.9%, whereas the COD removal rate decreased from 37.9% to 22.6%. Air provided the best discolouration and COD removal rates (99.3% and 37.9%, respectively). In the presence of a zero-valent iron (ZVI) catalyst, the AO7 COD removal rate increased to 76.4%. The degradation products were analysed by a GC-MS, revealing that the degradation of the dye molecule was initiated through the cleavage of the -N=N- bond before finally being converted to organic acids. supported by National Natural Science Foundation of China (Nos. 50908237, 51076142) and the Open Foundation of the State Key Laboratory of Clean Energy Utilization of China (No. ZJUCEU2009008)

  4. The effect of sorption on the degradation of aromatic acids and bases

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, C.C.; Fredrickson, J.K.; Smith, S.C.

    1992-10-01

    The availability and degradation of selected ionizable organic compounds sorbed to pure mineral phases are discussed. Substrates sorbed to mineral surfaces may or may not be protected from microbial attack; the degree of protection appears to be dependent on the type and cell density of the microorganism involved. The currently available data, however, demonstrate that there is little, if any, consensus on the types of reactions or interactions that facilitate sorbed substrate utilization. Rates of degradation of organic bases and cations that sorb to clay minerals via an exchange reaction are suggested to be directly related to substrate binding intensity and conformation on the clay surface. Similarly, rates of degradation of organic acids sorbed to the surface of oxides are suggested to be related to their interaction with the surface and the type of oxide sorbent. Although the rate-limiting step in microbial utilization of sorbed acids and bases is apparently a desorption process, the rate of desorption is itself linked to the compound's binding intensities on a given sorbent. Thus, as the binding intensities of compounds increase, chemical kinetic reactions, rather than mass-transfer processes, appear to limit the rate of desorption.

  5. The effect of sorption on the degradation of aromatic acids and bases

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, C.C.; Fredrickson, J.K.; Smith, S.C.

    1992-10-01

    The availability and degradation of selected ionizable organic compounds sorbed to pure mineral phases are discussed. Substrates sorbed to mineral surfaces may or may not be protected from microbial attack; the degree of protection appears to be dependent on the type and cell density of the microorganism involved. The currently available data, however, demonstrate that there is little, if any, consensus on the types of reactions or interactions that facilitate sorbed substrate utilization. Rates of degradation of organic bases and cations that sorb to clay minerals via an exchange reaction are suggested to be directly related to substrate binding intensity and conformation on the clay surface. Similarly, rates of degradation of organic acids sorbed to the surface of oxides are suggested to be related to their interaction with the surface and the type of oxide sorbent. Although the rate-limiting step in microbial utilization of sorbed acids and bases is apparently a desorption process, the rate of desorption is itself linked to the compound`s binding intensities on a given sorbent. Thus, as the binding intensities of compounds increase, chemical kinetic reactions, rather than mass-transfer processes, appear to limit the rate of desorption.

  6. Glycolic acid-catalyzed deamidation of asparagine residues in degrading PLGA matrices: a computational study.

    Science.gov (United States)

    Manabe, Noriyoshi; Kirikoshi, Ryota; Takahashi, Ohgi

    2015-03-31

    Poly(lactic-co-glycolic acid) (PLGA) is a strong candidate for being a drug carrier in drug delivery systems because of its biocompatibility and biodegradability. However, in degrading PLGA matrices, the encapsulated peptide and protein drugs can undergo various degradation reactions, including deamidation at asparagine (Asn) residues to give a succinimide species, which may affect their potency and/or safety. Here, we show computationally that glycolic acid (GA) in its undissociated form, which can exist in high concentration in degrading PLGA matrices, can catalyze the succinimide formation from Asn residues by acting as a proton-transfer mediator. A two-step mechanism was studied by quantum-chemical calculations using Ace-Asn-Nme (Ace = acetyl, Nme = NHCH3) as a model compound. The first step is cyclization (intramolecular addition) to form a tetrahedral intermediate, and the second step is elimination of ammonia from the intermediate. Both steps involve an extensive bond reorganization mediated by a GA molecule, and the first step was predicted to be rate-determining. The present findings are expected to be useful in the design of more effective and safe PLGA devices.

  7. Effect of Boric Acid on Volatile Products of Thermooxidative Degradation of Epoxy Polymers

    Science.gov (United States)

    Nazarenko, O. B.; Bukhareva, P. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The polymeric materials are characterized by high flammability. The use of flame retardants in order to reduce the flammability of polymers can lead to the formation of toxic gaseous products under fire conditions. In this work we studied the effect of boric acid on the volatile products of thermooxidative degradation of epoxy polymers. The comparative investigations were carried out on the samples of the unfilled epoxy resin and epoxy resin filled with a boric acid at percentage 10 wt. %. The analysis of the volatile decomposition products and thermal stability of the samples under heating in an oxidizing medium was performed using a thermal mass-spectrometric analysis. It is found that the incorporation of boric acid into the polymer matrix increases the thermal stability of epoxy composites and leads to a reduction in the 2-2.7 times of toxic gaseous products

  8. Influence of phytic acid and its metal complexes on the activity of pectin degrading polygalacturonase.

    Science.gov (United States)

    Asghar, Uzma; Rehman, Haneef Ur; Qader, Shah Ali Ul; Maqsood, Zahida Tasneem

    2013-06-05

    Polygalacturonase is one of the important requirements of different microorganism to cause pathogenicity and spoilage of fruits and vegetables that involved in degradation of pectin during plant tissue infections. In current study, 20 mM phytic acid inhibited 70% activity of polygalacturonase. The effect of different concentration of metal ions such as Cu(+2), Al(+3) and V(+4) were studied separately and it was found that the 20 mM of these metal ions inhibited 37.2%, 79%, and 53% activity of polygalacturonase, respectively. Finally, the complexes of phytic acid and these metals ions were prepared and 1:1 ratio of phytic acid and metal ions complexes showed maximum inhibitory activity of enzyme as compared to complexes having 1:2 and 1:3 ratio except phytate-copper complexes which showed no inhibitory effect on the activity of polygalacturonase.

  9. Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria

    Directory of Open Access Journals (Sweden)

    Michel Oelschlägel

    2015-06-01

    The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38 mmolproduct gcelldryweight−1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S-enantiomer of the acid with 40% enantiomeric excess.

  10. Lactobacilli reduce cell cytotoxicity caused by Streptococcus pyogenes by producing lactic acid that degrades the toxic component lipoteichoic acid.

    Science.gov (United States)

    Maudsdotter, Lisa; Jonsson, Hans; Roos, Stefan; Jonsson, Ann-Beth

    2011-04-01

    Lactobacilli are known to prevent colonization by many pathogens; nevertheless, the mechanisms of their protective effect are largely unknown. In this work, we investigated the role of lactobacilli during infection of epithelial cells with group A streptococci (GAS). GAS cause a variety of illnesses ranging from noninvasive disease to more severe invasive infections, such as necrotizing fasciitis and toxic shock-like syndrome. Invasion of deeper tissues is facilitated by GAS-induced apoptosis and cell death. We found that lactobacilli inhibit GAS-induced host cell cytotoxicity and shedding of the complement regulator CD46. Further, survival assays demonstrated that lactic acid secreted by lactobacilli is highly bactericidal toward GAS. In addition, lactic acid treatment of GAS, but not heat killing, prior to infection abolishes the cytotoxic effects against human cells. Since lipoteichoic acid (LTA) of GAS is heat resistant and cytotoxic, we explored the effects of lactic acid on LTA. By applying such an approach, we demonstrate that lactic acid reduces epithelial cell damage caused by GAS by degrading both secreted and cell-bound LTA. Taken together, our experiments reveal a mechanism by which lactobacilli prevent pathogen-induced host cell damage.

  11. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.

    Science.gov (United States)

    Sun, Huanli; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2011-06-13

    Currently, biomedical engineering is rapidly expanding, especially in the areas of drug delivery, gene transfer, tissue engineering, and regenerative medicine. A prerequisite for further development is the design and synthesis of novel multifunctional biomaterials that are biocompatible and biologically active, are biodegradable with a controlled degradation rate, and have tunable mechanical properties. In the past decades, different types of α-amino acid-containing degradable polymers have been actively developed with the aim to obtain biomimicking functional biomaterials. The use of α-amino acids as building units for degradable polymers may offer several advantages: (i) imparting chemical functionality, such as hydroxyl, amine, carboxyl, and thiol groups, which not only results in improved hydrophilicity and possible interactions with proteins and genes, but also facilitates further modification with bioactive molecules (e.g., drugs or biological cues); (ii) possibly improving materials biological properties, including cell-materials interactions (e.g., cell adhesion, migration) and degradability; (iii) enhancing thermal and mechanical properties; and (iv) providing metabolizable building units/blocks. In this paper, recent developments in the field of α-amino acid-containing degradable polymers are reviewed. First, synthetic approaches to prepare α-amino acid-containing degradable polymers will be discussed. Subsequently, the biomedical applications of these polymers in areas such as drug delivery, gene delivery and tissue engineering will be reviewed. Finally, the future perspectives of α-amino acid-containing degradable polymers will be evaluated.

  12. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    Institute of Scientific and Technical Information of China (English)

    Agus Suryawan; Teresa ADavis

    2014-01-01

    Background:The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1, 6-and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) euinsulinemic-euglycemic-hyperaminoacidemic, and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps for 2 h. In experiment 2, 5-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic-euleucinemic, 2) euinsulinemic-euglycemic-hypoaminoacidemic-hyperleucinemic, and 3) euinsulinemic-euglycemic-euaminoacidemic-hyperleucinemic clamps for 24 h. We determined in muscle indices of ubiquitin-proteasome, i.e., atrogin-1 (MAFbx) and muscle RING-finger protein-1 (MuRF1) and autophagy-lysosome systems, i.e., unc51-like kinase 1 (UKL1), microtubule-associated protein light chain 3 (LC3), and lysosomal-associated membrane protein 2 (Lamp-2). For comparison, we measured ribosomal protein S6 (rpS6) and eukaryotic initiation factor 4E (eIF4E) activation, components of translation initiation. Results:Abundance of atrogin-1, but not MuRF1, was greater in 26-than 6-d-old pigs and was not affected by insulin, amino acids, or leucine. Abundance of ULK1 and LC3 was higher in younger pigs and not affected by treatment. The LC3-II/LC3-I ratio was reduced and ULK1 phosphorylation increased by insulin, amino acids, and leucine. These responses were more profound in younger pigs. Abundance of Lamp-2 was not affected by treatment or development. Abundance of eIF4E, but not rpS6, was higher in 6-than 26-d-old-pigs but unaffected by treatment. Phosphorylation of eIF4E was not affected by treatment, however, insulin, amino acids, and leucine stimulated rpS6 phosphorylation, and the

  13. In vitro degradation of poly (L-co-D,L lactic acid containing PCL-T

    Directory of Open Access Journals (Sweden)

    Marcia Adriana Tomaz Duarte

    2014-01-01

    Full Text Available The application of polymer-based bioresorbable temporary devices in the medical field grows continuously, and professionals from several areas act to solve problems related to body functions lost due to diseases, accidents or natural wear. Here we study the influence from poly(caprolactonetriol (PCL-T on the degeneration process in the copolymer poly(L-co-DL-lactic acid (PLDLA membrane, by producing PLDLA/PCL-T blends with 90/10, 70/30 and 50/50 relative concentrations. The data for in vitro degradation showed that PCL-T decreases the rate of PLDLA. This was obtained with the following techniques: Differential Scanning Calorimetry (DSC, Thermogravimetric Analysis (TGA, Gel Permeation Chromatography (GPC and Scanning Electron Microscopy (SEM. Therefore, it is possible to vary the membrane degradation rate by changing the blend composition, which is a tool to tailor a biomaterial.

  14. Comparison of degradation reactions of Acid Yellow 61 in both oxidation processes of H202/UV and 03

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The comparison of degradation of Acid Yellow 61 as a model dye compound in both oxidation processes of H2 O2/UV and O3 has been studied. When the decolorization rate of Acid Yellow 61 in both reactions presented similar, it was found there are some differences from the results of AOX removal and production of inorganic ions and organic acids. The results reveal that the H2O2/UV has beneficial effect on mineralization than O3 only for degradation of Acid Yellow 61 solution and it is possible for enhancement of method efficiency by taking longer reaction time and addition of high concentration of oxidants.

  15. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    Directory of Open Access Journals (Sweden)

    C. M. Pavuluri

    2015-01-01

    Full Text Available To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA and biogenic aerosols (BA, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2 and malonic (C3 and other C8-C12 diacids overwhelmed their production in aqueous aerosols whereas succinic acid (C4 and C5-C7 diacids showed a significant increase (ca. 10 times during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment, except for ω-oxooctanoic acid (ωC8 that showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids dominates their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8 is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  16. Enhanced biofilm production by a toluene-degrading Rhodococcus observed after exposure to perfluoroalkyl acids.

    Science.gov (United States)

    Weathers, Tess S; Higgins, Christopher P; Sharp, Jonathan O

    2015-05-05

    This study focuses on interactions between aerobic soil-derived hydrocarbon degrading bacteria and a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates that are found in aqueous film-forming foams used for fire suppression. No effect on toluene degradation rate or induction time was observed when active cells of Rhodococcus jostii strain RHA1 were exposed to toluene and a mixture of perfluoroalkyl acids (PFAAs) including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) at concentrations near the upper bounds of groundwater relevance (11 PFAAs at 10 mg/L each). However, exposure to aqueous PFAA concentrations above 2 mg/L (each) was associated with enhanced aggregation of bacterial cells and significant increases in extracellular polymeric substance production. Flocculation was only observed during exponential growth and not elicited when PFAAs were added to resting incubations; analogous flocculation was also observed in soil enrichments. Aggregation was accompanied by 2- to 3-fold upregulation of stress-associated genes, sigF3 and prmA, during growth of this Rhodococcus in the presence of PFAAs. These results suggest that biological responses, such as microbial stress and biofilm formation, could be more prominent than suppression of co-contaminant biodegradation in subsurface locations where poly- and perfluoroalkyl substances occur with hydrocarbon fuels.

  17. Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors, Technical Progress Report for FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, P.; Meyer, R.M.; Fricke, J.M.; Prowant, M.S.; Coble, J.B.; Griffin, J.W.; Pitman, S.G.; Dahl, M.E.; Kafentzis, T.A.; Roosendaal, T.J.

    2012-09-01

    The overall objective of this project was to investigate the effectiveness of nondestructive examination (NDE) technology in detecting material degradation precursors by initiating and growing cracks in selected materials and using NDE methods to measure crack precursors prior to the onset of cracking. Nuclear reactor components are subject to stresses over time that are not precisely known and that make the life expectancy of components difficult to determine. To prevent future issues with the operation of these plants because of unforeseen failure of components, NDE technology is needed that can be used to identify and quantify precursors to macroscopic degradation of materials. Some of the NDE methods being researched as possible solutions to the precursor detection problem are magnetic Barkhausen noise, nonlinear ultrasonics, acoustic emission, eddy current measurements, and guided wave technology. In FY12, the objective was to complete preliminary assessment of advanced NDE techniques for sensitivity to degradation precursors, using prototypical degradation mechanisms in laboratory-scale measurements. This present document reports on the deliverable that meets the following milestone: M3LW-12OR0402143 – Report detailing an initial demonstration on samples from the crack-initiation tests will be provided (demonstrating acceleration of the work).

  18. Mechanism and kinetics of electrochemical degradation of uric acid using conductive-diamond anodes.

    Science.gov (United States)

    Dbira, Sondos; Bensalah, Nasr; Bedoui, Ahmed

    2016-12-01

    Uric acid (UA) is one of the principal effluents of urine wastewaters, widely used in agriculture as fertilizer, which is potentially dangerous and biorefractory. Hence, the degradation of UA (2,6,8-trihydroxy purine) in aqueous solution of pH 3.0 has been studied by conductive-diamond electrochemical oxidation. Hydroxyl radicals formed from water oxidation at the surface of boron-doped diamond anodes were the main oxidizing agents. Effects of current density and supporting electrolyte on the degradation rate and process efficiency are assessed. Results show that the increase of current density from 20 to 60 mA cm(-2) leads to a decrease in the efficiency of the electrochemical process. In addition, the best degradation occurred in the presence of NaCl as conductive electrolyte. Interestingly, an almost total mineralization of 50 ppm UA was obtained when anodic oxidation was performed at low current densities (20 mA cm(-2)) and in the presence of NaCl. This result confirmed that the electrolysis using diamond anodes is a very interesting technology for the treatment of UA. The identification of UA transformation products was performed by high-performance liquid chromatography (HPLC). HPLC analysis of treated solutions revealed that oxalic acid and urea were the two intermediates found. Oxalic acid was the most persistent product. Based on detected intermediates and bibliographic research, a mechanism of UA mineralization by anodic oxidation has been proposed. Ionic chromatography analysis confirmed the release of [Formula: see text] and [Formula: see text] ions during UA mineralization.

  19. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Science.gov (United States)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  20. Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives

    Energy Technology Data Exchange (ETDEWEB)

    Ghabbour, N.; Lamzira, Z.; Thonart, P.; Cidalia, P.; Markaouid, M.; Asehraoua, A.

    2011-07-01

    A total of 177 strains of lactic acid bacteria (LAB) were isolated from early-stage Moroccan Picholine green olive fermentation, including Lactobacillus plantarum (44.63%), Lactobacillus pentosus (25.99%), Lactobacillus brevis (9.61%) and Pediococcus pentosaceus (19.77%). All the isolates were screened for their tolerance to olive leaf extract and oleuropein. Most of the isolates (85.3%) were found able to degrade oleuropein, when evaluated by either oleuropein or 5-Bromo-4-chloro-3-indolyl {beta}-D-glucuronide (X-Gluc) as substrates. The biodegradation capacity of the selected strains of each species was confirmed by HPLC analysis. (Author).

  1. Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification

    Science.gov (United States)

    Van Mooy, Benjamin A. S.; Keil, Richard G.; Devol, Allan H.

    2002-02-01

    Fluxes of particulate organic carbon (POC) through the oxygen deficient waters in the eastern tropical North Pacific were found to be relatively less attenuated with depth than elsewhere in the eastern North Pacific. The attenuation coefficient (b) for the flux was found to be 0.40 versus the composite value of 0.86 determined by Martin et al. (1987). To examine this further, sinking POC was collected using sediment traps and allowed to degrade in oxic and suboxic experiments. Using a kinetic model, it was found that degradation proceeded at similar rates (roughly 0.8 day-1) under oxic and suboxic conditions, but a greater fraction of bulk POC was resistant to degradation in the suboxic experiments (61% vs. 23%). Amino acids accounted for 37% of POC collected at 75m, but following degradation the value dropped to 17% and 16% in the oxic and suboxic experiments respectively. POC collected from 500m was 10% amino acids. The non-AA component of POC collected at 75m was not degraded under suboxic conditions, while under oxic conditions it was. These results suggest that microbes degrading OC under suboxic conditions via denitrification preferentially utilize nitrogen-rich amino acids. This preferential degradation of amino acids suggests that 9% more nitrogen may be lost via water column denitrification than is accounted for when a more ;Redfieldian; stoichiometry for POC is assumed.

  2. Degradation of reactive, acid and basic textile dyes in the presence of ultrasound and rare earths [Lanthanum and Praseodymium].

    Science.gov (United States)

    Srivastava, Pankaj; Goyal, Shikha; Patnala, Prem Kishore

    2014-11-01

    Degradation of five textile dyes, namely Reactive Red 141 (RR 141), Reactive Blue 21 (RB 21), Acid Red 114 (AR 114), Acid Blue 113 (AB 113) and Basic Violet 16 (BV 16) in aqueous solution has been carried out with ultrasound (US) and in combination with rare earth ions (La(3+) and Pr(3+)). Kinetic analysis of the data showed a pseudo-first order degradation reaction for all the dyes. The rate constant (k), half life (t1/2) and the process efficiency (φ) for various processes in degradation of dyes under different experimental conditions have been calculated. The influence of concentrations of dyes (16-40mg/L), pH (5, 7 and 9) and rare earth ion concentration (4, 12 and 20mg/L) on the degradation of dyes have also been studied. The degradation percentage increased with increasing rare earth amount and decreased with increasing concentration of dyes. Both horn and bath type sonicators were used at 20kHz and 250W for degradation. The sonochemical degradation rate of dyes in the presence of rare earths was related to the type of chromophoric groups in the dye molecule. Degradation sequence of dyes was further examined through LCMS and Raman spectroscopic techniques, which confirmed the sonochemical degradation of dyes to non-toxic end products. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Suppression of muscle protein turnover and amino acid degradation by dietary protein deficiency

    Science.gov (United States)

    Tawa, N. E. Jr; Goldberg, A. L.

    1992-01-01

    To define the adaptations that conserve amino acids and muscle protein when dietary protein intake is inadequate, rats (60-70 g final wt) were fed a normal or protein-deficient (PD) diet (18 or 1% lactalbumin), and their muscles were studied in vitro. After 7 days on the PD diet, both protein degradation and synthesis fell 30-40% in skeletal muscles and atria. This fall in proteolysis did not result from reduced amino acid supply to the muscle and preceded any clear decrease in plasma amino acids. Oxidation of branched-chain amino acids, glutamine and alanine synthesis, and uptake of alpha-aminoisobutyrate also fell by 30-50% in muscles and adipose tissue of PD rats. After 1 day on the PD diet, muscle protein synthesis and amino acid uptake decreased by 25-40%, and after 3 days proteolysis and leucine oxidation fell 30-45%. Upon refeeding with the normal diet, protein synthesis also rose more rapidly (+30% by 1 day) than proteolysis, which increased significantly after 3 days (+60%). These different time courses suggest distinct endocrine signals for these responses. The high rate of protein synthesis and low rate of proteolysis during the first 3 days of refeeding a normal diet to PD rats contributes to the rapid weight gain ("catch-up growth") of such animals.

  4. Production of 6-phenylacetylene picolinic acid from diphenylacetylene by a toluene-degrading Acinetobacter strain.

    Science.gov (United States)

    Spain, Jim C; Nishino, Shirley F; Witholt, Bernard; Tan, Loon-Seng; Duetz, Wouter A

    2003-07-01

    Several strategies for using enzymes to catalyze reactions leading to the synthesis of relatively simple substituted picolinic acids have been described. The goal of the work described here was to synthesize a more complex molecule, 6-phenylacetylene picolinic acid [6-(2-phenylethynyl)pyridine-2-carboxylic acid], for use as a potential endcapping agent for aerospace polymers. We screened 139 toluene-degrading strains that use a variety of catabolic pathways for the ability to catalyze oxidative transformation of diphenylacetylene. Acinetobacter sp. strain F4 catalyzed the overall conversion of diphenylacetylene to a yellow metabolite, which was identified as a putative meta ring fission product (2-hydroxy-8-phenyl-6-oxoocta-2,4-dien-7-ynoic acid [RFP]). The activity could be sustained by addition of toluene at a flow rate determined empirically so that the transformations were sustained in spite of the fact that toluene is a competitive inhibitor of the enzymes. The overall rate of transformation was limited by the instability of RFP. The RFP was chemically converted to 6-phenylacetylene picolinic acid by treatment with ammonium hydroxide. The results show the potential for using the normal growth substrate to provide energy and to maintain induction of the enzymes involved in biotransformation during preliminary stages of biocatalyst development.

  5. Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee.

    Science.gov (United States)

    Kamiyama, Masumi; Moon, Joon-Kwan; Jang, Hae Won; Shibamoto, Takayuki

    2015-02-25

    Antioxidant activities of brewed coffees prepared from six commercial brands ranged from 63.13 ± 1.01 to 96.80 ± 1.68% at the highest levels tested. Generally, the degree of antioxidant activity of the brewed coffee was inversely proportional to the total chlorogenic acid concentration. A sample obtained from the major chlorogenic acid, 5-caffeoylquinic acid (5-CQA), heated at 250 °C exhibited potent antioxidant activity (79.12 ± 2.49%) at the level of 10 μg/mL, whereas unheated 5-CQA showed only moderate antioxidant activity (44.41 ± 0.27%) at the level of 100 μg/mL. Heat produced relatively high levels of pyrocatechol (2,809.3 μg/g) and 2-methoxy-4-vinylphenol (46.4 μg/g) from 5-CQA, and their antioxidant activity levels were 76.57 ± 3.00 and 98.63 ± 0.01%, respectively. The results of the present study suggest that roasting degrades chlorogenic acids to form potent antioxidants and thus plays an important role in the preparation of high-antioxidant low-acid coffee.

  6. Prostatic and dietary omega-3 fatty acids and prostate cancer progression during active surveillance.

    Science.gov (United States)

    Moreel, Xavier; Allaire, Janie; Léger, Caroline; Caron, André; Labonté, Marie-Ève; Lamarche, Benoît; Julien, Pierre; Desmeules, Patrice; Têtu, Bernard; Fradet, Vincent

    2014-07-01

    The association between omega-3 (ω-3) fatty acids and prostate cancer has been widely studied. However, little is known about the impact of prostate tissue fatty acid content on prostate cancer progression. We hypothesized that compared with the estimated dietary ω-3 fatty acids intake and the ω-3 fatty acids levels measured in red blood cells (RBC), the prostate tissue ω-3 fatty acid content is more strongly related to prostate cancer progression. We present the initial observations from baseline data of a phase II clinical trial conducted in a cohort of 48 untreated men affected with low-risk prostate cancer, managed under active surveillance. These men underwent a first repeat biopsy session within 6 months after the initial diagnosis of low-risk prostate cancer, at which time 29% of the men had progressed from a Gleason score of 6 to a Gleason score of 7. At the first repeat biopsy session, fatty acid levels were assessed with a food-frequency questionnaire, and determined in the RBC and in the prostate tissue biopsy. We found that eicosapentaenoic acid (EPA) was associated with a reduced risk of prostate cancer progression when measured directly in the prostate tissue. Thus, this initial interim study analysis suggests that prostate tissue ω-3 fatty acids, especially EPA, may be protective against prostate cancer progression in men with low-risk prostate cancer.

  7. Folic acid supplementation promotes mammary tumor progression in a rat model.

    Science.gov (United States)

    Deghan Manshadi, Shaidah; Ishiguro, Lisa; Sohn, Kyoung-Jin; Medline, Alan; Renlund, Richard; Croxford, Ruth; Kim, Young-In

    2014-01-01

    Folic acid supplementation may prevent the development of cancer in normal tissues but may promote the progression of established (pre)neoplastic lesions. However, whether or not folic acid supplementation can promote the progression of established (pre)neoplastic mammary lesions is unknown. This is a critically important issue because breast cancer patients and survivors in North America are likely exposed to high levels of folic acid owing to folic acid fortification and widespread supplemental use after cancer diagnosis. We investigated whether folic acid supplementation can promote the progression of established mammary tumors. Female Sprague-Dawley rats were placed on a control diet and mammary tumors were initiated with 7,12-dimethylbenza[a]anthracene at puberty. When the sentinel tumor reached a predefined size, rats were randomized to receive a diet containing the control, 2.5x, 4x, or 5x supplemental levels of folic acid for up to 12 weeks. The sentinel mammary tumor growth was monitored weekly. At necropsy, the sentinel and all other mammary tumors were analyzed histologically. The effect of folic acid supplementation on the expression of proteins involved in proliferation, apoptosis, and mammary tumorigenesis was determined in representative sentinel adenocarcinomas. Although no clear dose-response relationship was observed, folic acid supplementation significantly promoted the progression of the sentinel mammary tumors and was associated with significantly higher sentinel mammary tumor weight and volume compared with the control diet. Furthermore, folic acid supplementation was associated with significantly higher weight and volume of all mammary tumors. The most significant and consistent mammary tumor-promoting effect was observed with the 2.5x supplemental level of folic acid. Folic acid supplementation was also associated with an increased expression of BAX, PARP, and HER2. Our data suggest that folic acid supplementation may promote the progression

  8. Research progress in fumonisins′degradation%伏马毒素削减方法研究进展

    Institute of Scientific and Technical Information of China (English)

    杨朋飞; 王楠希; 屈凌波; 伍松陵; 孙长坡

    2015-01-01

    Fumonisin (FB)is a kind of water soluble secondary metabolites produced from genus fusari-um under a certain temperature and humidity condition.It not only greatly pollutes grain crops which will cause reduction of output but cause huge damage to humans and animals.Recently,degradation of FB has become a research hotspot.Although the traditional physical and chemical methods can reduce part of fumonisins the degradation is not complete,the nutritional components are damaged and some uncertainty is introduced,while the reactions by biological methods are mild,high efficiency and friendly to environ-ment.Now,the research on degradation of FB has reached molecular levels.Correlative degrading bacte-ria have been filtrated and some degrading genes have been cloned.The research progress in degradation of FB was summarized.The advice for degradation of FB was proposed.%伏马毒素(Fumonisins,FB)是镰刀菌属(Fusarium spp.)在一定温度和湿度条件下产生的水溶性次级代谢产物。它不仅污染粮食作物造成粮食减产,还对人畜的健康造成巨大损害,近年来关于 FB 削减已成为研究热点。传统的物理、化学方法虽能一定程度削减 FB,但削减不彻底,破坏营养成分,引入不确定因素,而生物方法反应温和,效率高,环境友好。目前,国际上对 FB 的削减研究已进入分子水平,已筛选到相关的降解菌,降解基因也已被克隆。综述了 FB 削减方法的研究进展,提出 FB 削减的有关建议。

  9. Chaperone-Mediated Autophagy Targets IFNAR1 for Lysosomal Degradation in Free Fatty Acid Treated HCV Cell Culture.

    Directory of Open Access Journals (Sweden)

    Ramazan Kurt

    Full Text Available Hepatic steatosis is a risk factor for both liver disease progression and an impaired response to interferon alpha (IFN-α-based combination therapy in chronic hepatitis C virus (HCV infection. Previously, we reported that free fatty acid (FFA-treated HCV cell culture induces hepatocellular steatosis and impairs the expression of interferon alpha receptor-1 (IFNAR1, which is why the antiviral activity of IFN-α against HCV is impaired.To investigate the molecular mechanism by which IFNAR1 expression is impaired in HCV cell culture with or without free fatty acid-treatment.HCV-infected Huh 7.5 cells were cultured with or without a mixture of saturated (palmitate and unsaturated (oleate long-chain free fatty acids (FFA. Intracytoplasmic fat accumulation in HCV-infected culture was visualized by oil red staining. Clearance of HCV in FFA cell culture treated with type I IFN (IFN-α and Type III IFN (IFN-λ was determined by Renilla luciferase activity, and the expression of HCV core was determined by immunostaining. Activation of Jak-Stat signaling in the FFA-treated HCV culture by IFN-α alone and IFN-λ alone was examined by Western blot analysis and confocal microscopy. Lysosomal degradation of IFNAR1 by chaperone-mediated autophagy (CMA in the FFA-treated HCV cell culture model was investigated.FFA treatment induced dose-dependent hepatocellular steatosis and lipid droplet accumulation in HCV-infected Huh-7.5 cells. FFA treatment of infected culture increased HCV replication in a concentration-dependent manner. Intracellular lipid accumulation led to reduced Stat phosphorylation and nuclear translocation, causing an impaired IFN-α antiviral response and HCV clearance. Type III IFN (IFN-λ, which binds to a separate receptor, induces Stat phosphorylation, and nuclear translocation as well as antiviral clearance in FFA-treated HCV cell culture. We show here that the HCV-induced autophagy response is increased in FFA-treated cell culture

  10. Kinetic modeling of the photocatalytic degradation of clofibric acid in a slurry reactor.

    Science.gov (United States)

    Manassero, Agustina; Satuf, María Lucila; Alfano, Orlando Mario

    2015-01-01

    A kinetic study of the photocatalytic degradation of the pharmaceutical clofibric acid is presented. Experiments were carried out under UV radiation employing titanium dioxide in water suspension. The main reaction intermediates were identified and quantified. Intrinsic expressions to represent the kinetics of clofibric acid and the main intermediates were derived. The modeling of the radiation field in the reactor was carried out by Monte Carlo simulation. Experimental runs were performed by varying the catalyst concentration and the incident radiation. Kinetic parameters were estimated from the experiments by applying a non-linear regression procedure. Good agreement was obtained between model predictions and experimental data, with an error of 5.9 % in the estimations of the primary pollutant concentration.

  11. Synthesis and degradation of nucleic acid components by formamide and iron sulfur minerals.

    Science.gov (United States)

    Saladino, Raffaele; Neri, Veronica; Crestini, Claudia; Costanzo, Giovanna; Graciotti, Michele; Di Mauro, Ernesto

    2008-11-19

    We describe the one-pot synthesis of a large panel of nucleic bases and related compounds from formamide in the presence of iron sulfur and iron-copper sulfur minerals as catalysts. The major products observed are purine, 1H-pyrimidinone, isocytosine, adenine, 2-aminopurine, carbodiimide, urea, and oxalic acid. Isocytosine and 2-aminopurine may recognize natural nucleobases by Watson-Crick and reverse Watson-Crick interactions, thus suggesting novel scenarios for the origin of primordial nucleic acids. Since the major problem in the origin of informational polymers is the instability of their precursors, we also investigate the effects of iron sulfur and iron-copper sulfur minerals on the stability of ribooligonucleotides in formamide and in water. All of the iron sulfur and iron-copper sulfur minerals stimulated degradation of RNA. The relevance of these findings with respect to the origin of informational polymers is discussed.

  12. [Raoultella planticola, a new strain degrading 2,4,5-trichlorophenoxyacetic acid].

    Science.gov (United States)

    Zharikova, N V; Markusheva, T V; Galkin, E G; Korobov, V V; Zhurenko, E Iu; Sitdikova, L R; Kolganova, T V; Kuznetsov, B B; Turova, T P

    2006-01-01

    A new strain that degrades the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) was isolated from soil, which was exposed to factors related to the petrochemical industry. According to its physiological, biochemical, cultural, and morphological traits, together with the sequence of the 16S rRNA gene, the strain was identified as Raoultella planticola 33-4ch. The strain could consume 2,4,5-T as a sole source of carbon and energy. The amount of 2,4,5-T in the culture medium decreased by 51% after five days of incubation. Raoultella planticola 33-4ch consumes 2,4,5-T to produce 4-chlorophenoxyacetic, phenoxyacetic, and 3-methyl-2,6-dioxo-4-hexenoic acids.

  13. Oil sands to the rescue: oil sand microbial communities can degrade recalcitrant alkyl phenyl alkanoic acids

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, Corinne [University of Essex (Canada)], email: cwhitby@essex.ac.uk

    2011-07-01

    Almost half of all global oil reserves are found as biodegraded heavy oils found in vast tar sand deposits located in North and South America and these account for 47% of Canadian oil production. Oil sand extraction generates large amounts of toxic waste water, known as oil sand process waters (OSPW), that are stored in large tailing ponds that contain toxic compounds like naphthenic acids (NAs). The presence of NAs creates problems like toxicity, corrosion, and the formation of calcium napthenate deposits which block pipelines and other infrastructure and need to be removed. This paper presents oil sand microbial communities that can degrade these NAs. The approach is to apply new aliphatic and aromatic NAs as substrates to supplement and identify NA degrading microbes and also to identify the metabolites produced and explain NA degradation pathways and the functional genes involved. The chemistry and the processes involved are explained. From the results, it is suggested that pure cultures of P. putida KT2440 be used against NAs.

  14. Preparation, cell compatibility and degradability of collagen-modified poly(lactic acid).

    Science.gov (United States)

    Cui, Miaomiao; Liu, Leili; Guo, Ning; Su, Ruixia; Ma, Feng

    2015-01-05

    Poly(lactic acid) (PLA) was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA) was prepared by the reaction between the reactive acylchlorided group and amino/hydroxyl groups on collagen. Subsequently, the structure of collagen-PLA was confirmed by Fourier transform infrared spectroscopy, fluorescein isothiocyanate-labeled fluorescence spectroscopy, X-ray photoelectron spectroscopy, and DSC analyses. Finally, some properties of collagen-PLA, such as hydrophilicity, cell compatibility and degradability were characterized. Results showed that collagen had been grafted onto the PLA with 5% graft ratio. Water contact angle and water absorption behavior tests indicated that the hydrophilicity of collagen-PLA was significantly higher than that of PLA. The cell compatibility of collagen-PLA with mouse embryonic fibroblasts (3T3) was also significantly better than PLA in terms of cell morphology and cell proliferation, and the degradability of PLA was also improved after introducing collagen. Results suggested that collagen-PLA was a promising candidate for biomedical applications.

  15. Effect of dietary starch level and its rumen degradability on lamb meat fatty acid composition.

    Science.gov (United States)

    Oliveira, Maria A; Alves, Susana P; Santos-Silva, José; Bessa, Rui J B

    2017-01-01

    Forty lambs were fed one of four diets supplemented with a linseed and sunflower oil blend but differing in starch level (mid, ≈35 vs. high, ≈50%) and starch rumen degradability (mid, ≈70 vs. high, ≈80%). The effects of diet on growth, carcass traits and meat fatty acid (FA) composition, with emphasis on biohydrogenation intermediates were evaluated. Lambs stayed on trial for 5weeks until slaughter. Treatment had no effect on animal performance and carcass traits. High-degradability diets decreased (P=0.04) meat shear force compared with mid-degradability diets. Lipid content of meat was unaffected by the diet. Mid-starch diets increased (P<0.05) the saturated FA and cis-MUFA but decreased (P<0.05) the trans-MUFA, particularly the t10-18:1, when compared with high-starch diets. The t11-18:1 (0.7% of total FA) and c9,t11-18:2 (<0.3%) remained low and the 18:3n-3 remained high (1.74%) and unaffected by diet.

  16. Durability of Ag-TiO2 Photocatalysts Assessed for the Degradation of Dichloroacetic Acid

    Directory of Open Access Journals (Sweden)

    Víctor M. Menéndez-Flores

    2008-01-01

    Full Text Available The stability of Ag-TiO2 photocatalysts was examined for the photocatalytic degradation of dichloroacetic acid (DCA as a function of the recycling times. The photocatalytic activity was investigated by measuring the rate of H+ ions released during the photodegradation of DCA and confirmed by measuring the total organic carbon removal. The photodegradation reactions were studied at pH 3 and pH 10 for a series of Ag-TiO2 photocatalysts as different with Ag loadings . All the Ag-TiO2 and bare TiO2 photocatalysts showed a decrease in photocatalytic activity on recycling for the DCA photodegradation reaction. The decrease in activity can be attributed to poisoning of active sites by Cl− anions formed during the photocatalytic DCA degradation. The photocatalytic activity was, however, easily recovered by a simple washing technique. The reversibility of the poisoning is taken as evidence to support the idea that the recycling of Ag-P25 TiO2 photocatalysts does not have a permanent negative effect on their photocatalytic performance for the degradation of DCA. The choice of the preparation procedure for the Ag-TiO2 photocatalysts is shown to be of significant importance for the observed changes in the photocatalytic activity of the Ag-TiO2 particles.

  17. Microwave activated electrochemical degradation of 2,4-dichlorophenoxyacetic acid at boron-doped diamond electrode.

    Science.gov (United States)

    Gao, Junxia; Zhao, Guohua; Shi, Wei; Li, Dongming

    2009-04-01

    A method for improving the oxidation ability of the electrode is proposed by using microwave activation in electrochemical oxidation. The electrochemical degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) with microwave radiation (MW-EC) was carried out in a continuous flow system under atmospheric pressure. In 3 h the removal of COD, ACE (average current efficiency) and Cl(-) concentration was 1.63, 2.25 and 1.67 times as that without microwave radiation, respectively. The high degradation ability was resulted from the more active centers at the electrode surface due to the microwave radiation. The decay kinetics of 2,4-D followed a pseudo first-order reaction. The rate constant was increased to 2.16x10(-4) s(-1) with the microwave radiation, while it was 8.52x10(-5) s(-1) with electrochemical treatment only (EC). Under both conditions, the main intermediates were identified and quantified by High Performance Liquid Chromatography (HPLC). The formation rate of intermediate products and further degradation rate were increased by about 50-120% with the microwave radiation. The activation of electrochemical oxidation by microwave was discussed from the diffusion process, adsorption and the temperature at boron-doped diamond (BDD) electrode.

  18. Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride for uric acid measurements

    Directory of Open Access Journals (Sweden)

    Vanessa F Cardoso, Pedro Martins, Gabriela Botelho, Luis Rebouta, Senentxu Lanceros-Méndez and Graca Minas

    2010-01-01

    Full Text Available Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride (β-PVDF. If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

  19. Photoelectrocatalytic degradation of benzoic acid using Au doped TiO2 thin films.

    Science.gov (United States)

    Mohite, V S; Mahadik, M A; Kumbhar, S S; Hunge, Y M; Kim, J H; Moholkar, A V; Rajpure, K Y; Bhosale, C H

    2015-01-01

    Highly transparent pure and Au doped TiO2 thin films are successfully deposited by using simple chemical spray pyrolysis technique. The effect of Au doping onto the structural and physicochemical properties has been investigated. The PEC study shows that, both short circuit current (Isc) and open circuit voltage (Voc) are (Isc=1.81mA and Voc=890mV) relatively higher at 3at.% Au doping percentage. XRD study shows that the films are nanocrystalline in nature with tetragonal crystal structure. FESEM images show that the film surface covered with a smooth, uniform, compact and rice shaped nanoparticles. The Au doped thin films exhibit indirect band gap, decreases from 3.23 to 3.09eV with increase in Au doping. The chemical composition and valence states of pure and Au doped TiO2 films are studied by using X-ray photoelectron spectroscopy. The photocatalytic degradation effect is 49% higher in case 3at.% Au doped TiO2 than the pure TiO2 thin film photoelectrodes in the degradation of benzoic acid. It is revealed that Au doped TiO2 can be reused for five cycles of experiments without a requirement of post-treatment while the degradation efficiency was retained.

  20. High performance degradation of azo dye Acid Orange 7 and sulfanilic acid in a laboratory scale reactor after seeding with cultured bacterial strains.

    Science.gov (United States)

    Coughlin, Michael F; Kinkle, Brian K; Bishop, Paul L

    2003-06-01

    Bacterial strains 1CX and SAD4i--previously isolated from the mixed liquor of a municipal sewage treatment plant--are capable of degrading the azo dye Acid Orange 7 (AO7) and sulfanilic acid, respectively. A rotating drum bioreactor (RDBR), operating under continuous flow and nutrient conditions designed to simulate the effluent from a dye manufacturing plant, was seeded with strains 1CX and SAD4i, forming a biofilm capable of degrading AO7 and sulfanilic acid. In addition, an RDBR containing a pre-existing biofilm capable of degrading AO7, but not sulfanilic acid, was seeded with strain SAD4i alone. Strain SAD4i was incorporated into the existing biofilm and degraded the sulfanilic acid resulting from the degradation of AO7 by indigenous members of the biofilm. The ability to seed a bioreactor with bacterial strains capable of degrading azo dyes, and resulting by-products, in a mixed microbial community suggests that this process could have commercial applications.

  1. [Research progress on the degradation mechanisms and restoration of riparian ecosystem].

    Science.gov (United States)

    Huang, Kai; Guo, Huai-cheng; Liu, Yong; Yu, Ya-juan; Zhou, Feng

    2007-06-01

    Restoration and reconstruction of degraded riparian ecosystem caused by natural and anthropogenic disturbances is one of the important issues in restoration ecology and watershed ecology. The disturbances on riparian ecosystem include flow regime alteration, direct modification and watershed disturbance, which have different affecting mechanisms. Flow regime alteration affects riparian ecosystem by changing riparian soil humidity, oxidation-reduction potential, biotaliving environment, and sediment transfer; direct modification affects riparian vegetation diversity through human activities and exotic plants invasion; and watershed disturbance mainly manifests in the channel degradation, aggradation or widening, the lowering of groundwater table, and the modification in fluvial process. The assessment objects of riparian restoration are riparian ecosystem components, and the assessment indicators are shifted from ecological to synthetic indices. Riparian restoration should be based on the detailed understanding of the biological and physical processes which affect riparian ecosystem, and implemented by vegetation restoration and hydrological adjustment at watershed or landscape scale. To extend the research scales and objects and to apply interdisciplinary approaches should be the key points in the further studies on the degradation mechanisms and restoration of riparian ecosystem.

  2. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression.

    Science.gov (United States)

    Jeong, Ho-Chang; Gil, Na-Yeon; Lee, Ho-Soo; Cho, Seung-Ju; Kim, Kyungtae; Chun, Kwang-Hoon; Cho, Hyeseong; Cha, Hyuk-Jin

    2015-08-01

    Wip1 belongs to the protein phosphatase C (PP2C) family, of which expression is up-regulated by a number of external stresses, and serves as a stress modulator in normal physiological conditions. When overexpressed, premature dephosphorylation of stress-mediators by Wip1 results in abrogation of tumor surveillance, thus Wip1 acts as an oncogene. Previously, the functional regulation of Wip1 in cell-cycle progression by counteracting cellular G1 and G2/M checkpoint activity in response to DNA damage was reported. However, other than in stress conditions, the function and regulatory mechanism of Wip1 has not been fully determined. Herein, we demonstrated that protein regulation of Wip1 occurs in a cell cycle-dependent manner, which is directly governed by APC/C(Cdh1) at the end of mitosis. In particular, we also showed evidence that Wip1 phosphatase activity is closely associated with its own protein stability, suggesting that reduced phosphatase activity of Wip1 during mitosis could trigger its degradation. Furthermore, to verify the physiological role of its phosphatase activity during mitosis, we established doxycycline-inducible cell models, including a Wip1 wild type (WT) and phosphatase dead mutant (Wip1 DA). When ectopically expressing Wip1 WT, we observed a delay in the transition from metaphase to anaphase. In conclusion, these studies show that mitotic degradation of Wip1 by APC/C(Cdh1) is important for normal mitotic progression.

  3. Effect of hydrion evolution by polylactic-co-glycolic acid coating on degradation rate of pure iron.

    Science.gov (United States)

    Wu, Jingyao; Lu, Xi; Tan, Lili; Zhang, Bingchun; Yang, Ke

    2013-10-01

    For biodegradable iron coronary stents, the major problem is the low degradation rate in body environment. In this study, a new strategy was proposed to increase the degradation rate of iron in vitro. The hydrion evolution was intended to be introduced into the degradation system to increase the degradation rate. To realize this strategy, polylactic-co-glycolic acid (PLGA) was coated onto the surface of pure iron. The degradation process and mechanism of pure iron coated with PLGA were investigated. The results showed that iron coated with PLGA exhibited higher degradation rate in the static immersion test all along. With the degradation of PLGA, the oligomers of PLGA could release abundant H(+) which could dissolve the ferrous oxide to make the electrolyte and oxygen to reach the surface of iron again and simultaneity trigger the hydrion evolution at the middle stage of the degradation. The study also revealed that the solution ions failed to permeate the PLGA coating and the deposition of calcium and phosphorus in the degradation layer was inhibited which further enhanced the degradation.

  4. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    Institute of Scientific and Technical Information of China (English)

    SHEN Yongjun; LEI Lecheng; ZHANG Xingwang; DING Jiandong

    2014-01-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants,two hybrid plasma discharge reactors were designed and optimized.The reactors were compared via the discharge characteristics,energy transfer efficiency,the yields of the active species and the energy utilization in dye wastewater degradation.The results showed that under the same AC input power,the characteristics of the discharge waveform of the point-to-plate reactor were better.Under the same AC input power,the two reactors both had almost the same peak voltage of 22 kV.The peak current of the point-to-plate reactor was 146 A,while that of the wire-to-cylinder reactor was only 48.8 A.The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW,respectively.The energy per pulse of the point-to-plate reactor was 0.2221 J,which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J).To remove 50% Acid Orange 7 (AO7),the energy utilizations of the point-to-plate reactor and the wireto-cylinder reactor were 1.02×10-9 mol/L and 0.61×10-9 mol/L,respectively.In the point-to-plate reactor,the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge,which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L).The concentration of liquid phase ozone in the point-to-plate reactor (5.7×10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5× 10-2 mmol/L).The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone.The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid,maleic anhydride,pbenzoquinone,phenol,benzoic acid,phthalic anhydride,coumarin and 2-naphthol.Proposed degradation pathways were elucidated in light of the analyzed

  5. Isolation and characterization of resin acid degrading bacteria found in effluent from a bleached kraft pulp mill.

    Science.gov (United States)

    Morgan, C A; Wyndham, R C

    1996-05-01

    Thirteen resin acid degrading bacteria enriched on abietic or dehydroabietic acids were isolated from waste water from the aerated stabilization basin of a bleached kraft pulp mill. Standard biochemical tests were used to characterize each isolate. Each isolate was tested for its ability to degrade six abietane- and pimarane-type resin acids. Resin acid concentrations were determined by high pressure liquid chromatography and UV absorbance. Cluster analysis based on phenotypic characteristics identified two distinct clusters of degraders that differed in their ability to utilize carbohydrates as carbon sources. Fatty acid methyl ester analysis of representative isolates from each cluster identified A19-6a and D11-13 as Comamonas and Alcaligenes species, respectively. To determine genotypic relatedness, enterobacterial repetitive intergenic consensus sequences were used to amplify genomic DNA fragments from 10 isolates. These results supported the phenotypic analysis for all isolates tested except A19-5 and A19-6b. These two organisms were clustered closely together based on phenotype but had distinctly different banding patterns, suggesting that they are not related genotypically. All isolates degraded a subset of the six resin acid congeners. Isolates A19-3, A19-6a, A19-6b, and D11-37 were the most effective at degrading all six congeners.

  6. Electrochemical degradation applied to the metabolites of Acid Orange 7 anaerobic biotreatment.

    Science.gov (United States)

    Carvalho, C; Fernandes, A; Lopes, A; Pinheiro, H; Gonçalves, I

    2007-04-01

    The electrochemical oxidation of the biotic degradation products of the textile dye C.I. Acid Orange 7 (AO7) was achieved using a boron doped diamond electrode (BDD). Tests were performed with model solutions of the biotic degradation products, sulphanilic acid (SA) and 1-amino-2-naphthol (AN), and also with real effluents obtained in experiments carried out in an up-flow anaerobic sludge blanket (UASB) reactor, fed with a simulated textile effluent containing AO7, working in mesophilic or thermophilic conditions. Bulk electrolysis was studied using two different supporting electrolytes - NaCl and Na(2)SO(4). The influence of initial metabolite concentration and current density on the electrodegradation rates of the biotic products was investigated. For the UASB effluents, oxidation tests were carried out for different electrolytes and at different current densities. Samples were collected at pre-selected intervals and absorbance measurements, chemical oxygen demand (COD) and total organic carbon (TOC) tests and high performance liquid chromatography (HPLC) analysis were performed. Results have shown an almost complete elimination of the persistent pollutants and a COD removal higher than 70% for both AN and SA. For the UASB effluents, COD removals between 45% and 90% and TOC removals varying from 19% to 41% were obtained.

  7. A C-terminal acidic domain regulates degradation of the transcriptional coactivator Bob1.

    Science.gov (United States)

    Lindner, John M; Wong, Christina S F; Möller, Andreas; Nielsen, Peter J

    2013-12-01

    Bob1 (Obf-1 or OCA-B) is a 34-kDa transcriptional coactivator encoded by the Pou2af1 gene that is essential for normal B-cell development and immune responses in mice. During lymphocyte activation, Bob1 protein levels dramatically increase independently of mRNA levels, suggesting that the stability of Bob1 is regulated. We used a fluorescent protein-based reporter system to analyze protein stability in response to genetic and physiological perturbations and show that, while Bob1 degradation is proteasome mediated, it does not require ubiquitination of Bob1. Furthermore, degradation of Bob1 in B cells appears to be largely independent of the E3 ubiquitin ligase Siah. We propose a novel mechanism of Bob1 turnover in B cells, whereby an acidic region in the C terminus of Bob1 regulates the activity of degron signals elsewhere in the protein. Changes that make the C terminus more acidic, including tyrosine phosphorylation-mimetic mutations, stabilize the instable murine Bob1 protein, indicating that B cells may regulate Bob1 stability and activity via signaling pathways. Finally, we show that expressing a stable Bob1 mutant in B cells suppresses cell proliferation and induces changes in surface marker expression commonly seen during B-cell differentiation.

  8. Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water.

    Science.gov (United States)

    Leshuk, Tim; Wong, Timothy; Linley, Stuart; Peru, Kerry M; Headley, John V; Gu, Frank

    2016-02-01

    Bitumen mining in the Canadian oil sands creates large volumes of oil sands process-affected water (OSPW), the toxicity of which is due in part to naphthenic acids (NAs) and other acid extractable organics (AEO). The objective of this work was to evaluate the potential of solar photocatalysis over TiO2 to remove AEO from OSPW. One day of photocatalytic treatment under natural sunlight (25 MJ/m(2) over ∼14 h daylight) eradicated AEO from raw OSPW, and acute toxicity of the OSPW toward Vibrio fischeri was eliminated. Nearly complete mineralization of organic carbon was achieved within 1-7 day equivalents of sunlight exposure, and degradation was shown to proceed through a superoxide-mediated oxidation pathway. High resolution mass spectrometry (HRMS) analysis of oxidized intermediate compounds indicated preferential degradation of the heavier and more cyclic NAs (higher number of double bond equivalents), which are the most environmentally persistent fractions. The photocatalyst was shown to be recyclable for multiple uses, and thus solar photocatalysis may be a promising "green" advanced oxidation process (AOP) for OSPW treatment.

  9. EFFECT OF NATURAL IRON OXIDE, HYDROGEN PEROXIDE, AND OXALIC ACID ON PHOTOCHEMICAL DEGRADATION OF 2-CHLOROPHENOL

    Directory of Open Access Journals (Sweden)

    W REMACHE

    2014-07-01

    Full Text Available The voluntary or accidental release of chemical compounds in the environment is a major cause of pollution of natural waters. Most of chlorophenols are toxic and hardly biodegradable and are difficult to remove from the environment. Therefore, it is important to find innovative and economical methods for the safe and complete destruction. The objective of this work is to test the activity photocatalytic of natural iron oxide (NIO in the photodegradation of 2-chlorophenol (2-CP. The analysis chromatographic with HPLC of solutions exposed under UV irradiation revealed that the degradation of 2-CP was negligible under the condition of using only natural iron oxide. The effect of wavelength on photoreactivity of NIO was also investigated in this process: at high wavelength thus at low energy the efficiency of degradation is important. We have also investigated the activation of NIO by hydrogen peroxide and oxalic acid, The results showed that the photodegradation of 2-CP under UVA irradiation could be enhanced greatly in the presence of oxalate. 2-CP was completly removed after 240 minutes of irradiation when the concentration of oxalic acid is equal to 2.10-3 M. The use of 2.0 % of isopropanol as a scavenger confirmed the intervention of hydroxyl radicals in the photodegradation of 2-CP.

  10. Enhanced propionic acid degradation (EPAD) system: proof of principle and feasibility.

    Science.gov (United States)

    Ma, Jingxing; Carballa, Marta; Van De Caveye, Pieter; Verstraete, Willy

    2009-07-01

    Full-scale anaerobic single-phase digesters can be confronted with process instabilities, which often result in the accumulation of propionic acid (HPr). As a solution, an enhanced propionic acid degradation (EPAD) system has been conceptually designed and experimentally tested at lab-scale. The system consisted of two components: a liquid/solid separator containing a microfiltration membrane and an up-flow anaerobic sludge bed (UASB) reactor specialized in HPr degradation. Two lab-scale continuous stirred tank reactors (CSTR) were used, i.e. the CSTR(control) and the CSTR(treatment). Firstly, the CSTRs were stressed by organic overloading to obtain high HPr levels. During the recovery period, besides stop feeding, no actions were taken to decrease the residual HPr concentration in the CSTR(control), while the CSTR(treatment) was connected to EPAD system in order to accelerate its recovery. By the end of the experiment, the CSTR(treatment) completely recovered from HPr accumulation, while no significant decrease of the HPr level in the CSTR(control) was observed. Based on the experimental results, the up-scaling of EPAD system was evaluated and it would only account for about 2% of the volume of the full-scale digester, thus suggesting that the implementation of a mobile EPAD system in full-scale practice should be feasible.

  11. Homogeneous and heterogeneous degradation of caffeic acid using photocatalysis driven by UVA and solar light.

    Science.gov (United States)

    Yáñez, Eliana; Santander, Paola; Contreras, David; Yáñez, Jorge; Cornejo, Lorena; Mansilla, Héctor D

    2016-01-01

    Waste water from the wine industry is characterized by a high concentration of dissolved organic matter and the presence of natural phenolic compounds with low biodegradability. High concentrations of phenolic compounds may cause environmental pollution and risks to human health. In this article caffeic acid (CA) was used as a model compound of wine effluent because it is refractory to the conventional wastewater treatments. The oxidation of caffeic acid in water solution (0.01 g L(-1)) by heterogeneous photocatalysis and photo-Fenton reaction was studied using UVA. The optimal conditions for each treatment were performed by multivariate experimental design. The optimal conditions for heterogeneous photocatalysis were pH 5.3 and 0.9 g L(-1) TiO2. In the case of photo-Fenton treatment, optimized variable were 82.4 μmol L(-1) of Fe(2+) and 558.6 μmol L(-1) of H2O2. The degradation profiles of CA were monitored by UV-Vis, HPLC, TOC and COD. To reach 90% of CA removal, 40 and 2 min of reaction, respectively, were required by heterogeneous and photo-Fenton processes, respectively. For comparison purposes, the reactions were also performed under solar light. The use of solar light does not change the efficiency of the photo-Fenton reaction, yet the performance of the heterogeneous process was significantly improved, reaching 90% of degradation in 15 min.

  12. Multilayer Capsules of Bovine Serum Albumin and Tannic Acid for Controlled Release by Enzymatic Degradation.

    Science.gov (United States)

    Lomova, Maria V; Brichkina, Anna I; Kiryukhin, Maxim V; Vasina, Elena N; Pavlov, Anton M; Gorin, Dmitry A; Sukhorukov, Gleb B; Antipina, Maria N

    2015-06-10

    With the purpose to replace expensive and significantly cytotoxic positively charged polypeptides in biodegradable capsules formed via Layer-by-Layer (LbL) assembly, multilayers of bovine serum albumin (BSA) and tannic acid (TA) are obtained and employed for encapsulation and release of model drugs with different solubility in water: hydrophilic-tetramethylrhodamine-isothiocyanate-labeled BSA (TRITC-BSA) and hydrophobic 3,4,9,10-tetra-(hectoxy-carbonyl)-perylene (THCP). Hydrogen bonding is proposed to be predominant within thus formed BSA/TA films. The TRITC-BSA-loaded capsules comprising 6 bilayers of the protein and polyphenol are benchmarked against the shells composed of dextran sulfate (DS) and poly-l-arginine (PARG) on degradability by two proteolytic enzymes with different cleavage site specificity (i.e., α-chymotrypsin and trypsin) and toxicity for murine RAW264.7 macrophage cells. Capsules of both types possess low cytotoxicity taken at concentrations equal or below 50 capsules per cell, and evident susceptibility to α-chymotrypsin resulted in release of TRITC-BSA. While the BSA/TA-based capsules clearly display resistance to treatment with trypsin, the assemblies of DS/PARG extensively degrade. Successful encapsulation of THCP in the TRITC-BSA/TA/BSA multilayer is confirmed, and the release of the model drug is observed in response to treatment with α-chymotrypsin. The thickness, surface morphology, and enzyme-catalyzed degradation process of the BSA/TA-based films are investigated on a planar multilayer comprising 40 bilayers of the protein and polyphenol deposited on a silicon wafer. The developed BSA/TA-based capsules with a protease-specific degradation mechanism are proposed to find applications in personal care, pharmacology, and the development of drug delivery systems including those intravenous injectable and having site-specific release capability.

  13. Kinetic evaluation and process performance of an upflow anaerobic filter reactor degrading terephthalic acid.

    Science.gov (United States)

    Davutluoglu, Orkun I; Seckin, Galip

    2014-01-01

    The anaerobic degradation of terephthalic acid (TA) as the sole organic carbon source was studied in an upflow anaerobic filter (UAF) reactor. The reactor was seeded with biomass obtained from a full-scale upflow anaerobic sludge bed (UASB) reactor and was used to treat wastewater from a petrochemical facility producing dimethyl terephthalate. The UAF reactor was operated for 252 d with a constant hydraulic retention time of 24 h, and the organic loading rate (OLR) was gradually increased from 1 to 10 g-chemical oxygen demand (COD)/L d. After a lag period of approximately 40 d, the COD removal efficiency increased exponentially and high removal rate values (≈90%) were obtained, except for at highest OLR (10 g-COD/L d). The high removal rates and the robustness of the reactor performance could be attributed to the formation of biofilm as well as granular sludge. The methane production rates (0.22 to 2.15 L/d) correlated well with the removed OLRs (0.3 to 6.8 g-COD/L d) during the various phases of treatment, indicating that the main mechanism of TA degradation occurs via methanogenic reactions. The average methane content of the produced biogas was 70.3%. The modified Stover-Kincannon model was found to be applicable for the anaerobic degradation of TA in UAFs (Umax = 64.5, KB = 69.1 g-COD/L d and Ymax = 0.27 L-CH4/g-CODremoved). These results suggest that UAF reactors are among the most effective reactor configurations for the anaerobic degradation of TA.

  14. The role of UV-irradiation pretreatment on the degradation of 2,4-dichlorophenoxyacetic acid in water.

    Science.gov (United States)

    Tchaikovskaya, O; Sokolova, I; Mayer, G V; Karetnikova, E; Lipatnikova, E; Kuzmina, S; Volostnov, D

    2011-01-01

    The degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in water by the combination process of UV-irradiation, humic acids and activated sludge treatment has been studied. The photoreaction rate of all irradiated samples was lowest for the sample irradiated at 308 nm (the XeCl excilamp) in the absence and in the presence of humic acids, and highest for the sample irradiated at 222 nm (the KrCl excilamp). Photolysis of 2,4-D has been shown to enhance the subsequent microbial degradation. Copyright © 2010 John Wiley & Sons, Ltd.

  15. Volatile fatty acid degradation kinetics in anaerobic process; Cinetica de la degradacion de acidos grasos volatiles en procesos anaerobios

    Energy Technology Data Exchange (ETDEWEB)

    Riscado, S.; Osuna, B.; Iza, J.; Ruiz, E. [Universidad del Pais Vasco. Bilbao (Spain)

    1998-10-01

    While searching for the optimal substrate load for anaerobic toxicity assays, the inhibition caused by the propionic acid has been addressed. Lab scale experiments have been carried out to assess the effects of different loads and acid ratios. Results bad been subjected to kinetic analysis and show the degradation follows a first order kinetic, and acetic is easier to degrade than propionic acid. The optimal load for a 100 ml vial assay is composed of 158 mg COD of the 3:1:1 HAc:HPr:HBu mixture. (Author) 9 refs.

  16. Intrinsic degradation of volatile fatty acids in laboratory-compacted clayey soil

    Science.gov (United States)

    Hrapovic, L.; Rowe, R. K.

    2002-10-01

    Volatile fatty acids (VFAs) represent the major organic constituent of landfill leachate and provide the greatest potential for leachate induced organic contamination of groundwater (e.g. as represented by an increase in the concentration of dissolved organic carbon and chemical oxygen demand). Long-term diffusion tests were performed for laboratory-compacted clayey soil plugs exposed to continuous supply of synthetic leachate containing VFAs. Significant microbial activity developed upon exposure of the soil's indigenous microorganisms to these degradable contaminants. The growth of heterotrophic aerobic bacteria (HAB, which include facultative anaerobes), sulfate reducing bacteria (SRB) and methanogenic bacteria carrying out fermentation and mineralization of the VFAs became evident after 30-50 days of testing. The maximum microbial counts of (2-8)×10 8 and (0.1-1)×10 8 cfu/g for HAB and SRB were localized in the soil layer at the interface with the source of organic and inorganic nutrients. Regardless of this rapid growth in microbial population, the VFA consumption was small and measurable only after a lag of 140-180 days. It is considered that this lag of otherwise readily degradable organic compounds (such as VFAs) persisted due to a combination of the effects of a high initial concentration of these acids (2.4 g/l as dissolved organic carbon, DOC) applied to carbon starved soil microorganisms and the small pore size of the compacted clay. Once the significant amounts of gas were generated from fermentation, conditions developed for improved mass transport and exchange of the nutrients and bacteria and the outcome of the intrinsic degradation was more apparent. The breakdown of VFAs that followed after the lag was localized near the top of the soil and was characterized by a short half-life of 0.75-5 days for DOC (total VFAs as dissolved organic carbon).

  17. Electrochemical assisted photocatalytic degradation of salicylic acid with highly ordered TiO{sub 2} nanotube electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian [The State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Zhu, Jinwei [China Aerospace Science and Technology Corporation Fourty-fourth Research Institution (China); Wang, Ying; Feng, Jiangtao [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Yan, Wei, E-mail: yanwei@mail.xjtu.edu.cn [The State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Hao, E-mail: xuhao@mail.xjtu.edu.cn [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)

    2014-07-01

    To explore the kinetics of photoelectrocatalytic degradation of salicylic acid, one of the important PPCPs, highly ordered TiO{sub 2} nanotube arrays (NTs) were prepared by the electrochemical anodization and characterized with scanning electron microscopy and X-ray diffraction techniques. The effect of TiO{sub 2} NTs properties, bias potential, initial salicylic acid concentration and solution pH on the degradation efficiency was studied and carefully analyzed. The results revealed that the salicylic acid degradation follows quasi-first order kinetics in the photoelectrocatalytic process, and the fastest decay kinetics was achieved in acidic environment (pH 2). The result was further interpreted through the electrochemical impedance spectroscopy. It is confirmed that the electrochemical assisted photocatalysis is a synergetic approach to combat stable organic substances with improved efficiency.

  18. Radiolytic degradation of gallic acid and its derivatives in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Melo, R. [Instituto Tecnologico e Nuclear, UCQR, Estrada Nacional No. 10, Apartado 21, 2686-953, Sacavem (Portugal); Leal, J.P. [Instituto Tecnologico e Nuclear, UCQR, Estrada Nacional No. 10, Apartado 21, 2686-953, Sacavem (Portugal); Centro Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, 1749-016 Lisboa (Portugal); Takacs, E., E-mail: takacs@iki.kfki.hu [Institute of Isotopes, Hungarian Academy of Sciences, P.O. Box 77, H-1525 Budapest (Hungary); Wojnarovits, L. [Institute of Isotopes, Hungarian Academy of Sciences, P.O. Box 77, H-1525 Budapest (Hungary)

    2009-12-30

    Polyphenols, like gallic acid (GA) released in the environment in larger amount, by inducing some unwanted oxidations, may constitute environmental hazard: their concentration in wastewater should be controlled. Radiolytic degradation of GA was investigated by pulse radiolysis and final product techniques in dilute aqueous solution. Subsidiary measurements were made with 3,4,5-trimethoxybenzoic acid (TMBA) and 3,4,5-trihydroxy methylbenzoate (MGA). The hydroxyl radical and hydrogen atom intermediates of water radiolysis react with the solute molecules yielding cyclohexadienyl radicals. The radicals formed in GA and MGA solutions in acid/base catalyzed water elimination decay to phenoxyl radicals. This reaction is not observed in TMBA solution. The hydrated electron intermediate of water decomposition adds to the carbonyl oxygen, the anion thus formed protonates on the ring forming cyclohexadienyl radical or on the carbonyl group forming carbonyl centred radical. The GA intermediates formed during reaction with primary water radicals in presence of oxygen transform to non-aromatic molecules, e.g., to aliphatic carboxylic acids.

  19. Anodic oxidation of salicylic acid on BDD electrode: Variable effects and mechanisms of degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rabaaoui, Nejmeddine, E-mail: chimie_tunisie@yahoo.fr [Faculte des Sciences de Sfax, Departement de Chimie, 3038 Sfax (Tunisia); Allagui, Mohamed Salah [Faculte des Sciences de Gafsa, Campus Universitaire Sidi Ahmed Zarrouk, 2112 Gafsa (Tunisia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Oxidation with BDD is a powerful electrochemical method able to mineralize. Black-Right-Pointing-Pointer SA is oxidized to aromatic compounds then CO{sub 2} and H{sub 2}O. Black-Right-Pointing-Pointer Polymeric intermediate products were formed. - Abstract: The degradation of 100 mL of solution with salicylic acid (SA) in the pH range 3.0-10.0 has been studied by anodic oxidation in a cell with a boron-doped diamond (BDD) anode and a stainless steel cathode, both of 3 cm{sup 2} area, by applying a current of 100, 300 and 450 mA at 25 Degree-Sign C. Completed mineralization is always achieved due to the great concentration of hydroxyl radical ({center_dot}OH) generated at the BDD surface. The mineralization rate increases with increasing applied current, but decreases when drug concentration rises from 200 mg L{sup -1}. Nevertheless, the pH effect was not significant. During oxidation it was observed that catechol, 2,5-dihydroxylated benzoic acid, 2,3-dihydroxylated benzoic acid and hydroquinone were formed as aromatic intermediates. In addition, ion-exclusion chromatography allowed the detection of fumaric, maleic, oxalic and formic as the ultimate carboxylic acid.

  20. Degradation and Mineralization of Benzohydroxamic Acid by Synthesized Mesoporous La/TiO2

    Directory of Open Access Journals (Sweden)

    Xianping Luo

    2016-10-01

    Full Text Available Rare earth element La-doped TiO2 (La/TiO2 was synthesized by the sol-gel method. Benzohydroxamic acid was used as the objective pollutant to investigate the photocatalytic activity of La/TiO2. The physicochemical properties of the prepared materials were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, specific surface area and porosity, scanning electron microscopy and transmission electron microscopy. As a result, the doping of La could inhibit the crystal growth of TiO2, increase its specific surface area and expand its response to visible light, thus improving its photocatalytic activity. La/TiO2 with the doping ratio of 0.75% calcined at 500 °C, showing the highest photocatalytic activity to degrade benzohydroxamic acid under the irradiation of 300 W mercury lamp. About 94.1% of benzohydroxamic acid with the original concentration at 30 mg·L−1 was removed after 120 min in a solution of pH 4.4 with an La/TiO2 amount of 0.5 g·L−1. Furthermore, 88.5% of the total organic carbon was eliminated after 120 min irradiation. In addition, after four recycling runs, La/TiO2 still kept high photocatalytic activity on the photodegradation of benzohydroxamic acid. The interfacial charge transfer processes were also hypothesized.

  1. Degradation and Mineralization of Benzohydroxamic Acid by Synthesized Mesoporous La/TiO2

    Science.gov (United States)

    Luo, Xianping; Wang, Junyu; Wang, Chunying; Zhu, Sipin; Li, Zhihui; Tang, Xuekun; Wu, Min

    2016-01-01

    Rare earth element La-doped TiO2 (La/TiO2) was synthesized by the sol-gel method. Benzohydroxamic acid was used as the objective pollutant to investigate the photocatalytic activity of La/TiO2. The physicochemical properties of the prepared materials were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, specific surface area and porosity, scanning electron microscopy and transmission electron microscopy. As a result, the doping of La could inhibit the crystal growth of TiO2, increase its specific surface area and expand its response to visible light, thus improving its photocatalytic activity. La/TiO2 with the doping ratio of 0.75% calcined at 500 °C, showing the highest photocatalytic activity to degrade benzohydroxamic acid under the irradiation of 300 W mercury lamp. About 94.1% of benzohydroxamic acid with the original concentration at 30 mg·L−1 was removed after 120 min in a solution of pH 4.4 with an La/TiO2 amount of 0.5 g·L−1. Furthermore, 88.5% of the total organic carbon was eliminated after 120 min irradiation. In addition, after four recycling runs, La/TiO2 still kept high photocatalytic activity on the photodegradation of benzohydroxamic acid. The interfacial charge transfer processes were also hypothesized. PMID:27735877

  2. Evaluation of the performance degradation at PAFC effect of operating conditions on acid loss

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Hideaki; Uchida, Hiroyuki; Watanabe, Masahiro [Yamanashi Univ., Kofu (Japan)] [and others

    1996-12-31

    As a complimentary research project to the demonstration project of 5MW and 1 MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY conducted by NEDO, with the objective of establishing an estimation method for the service life-time of the cell stacks. As part of this project, this work has been performed to clarify basic phenomena of the performance degradation at PAFCs jointly by Yamanashi University, PAFC-TRA and PAFC manufacturers. The acid loss into exhaust gases is one of life limiting factors in PAFCs. To design the cells of long-life, it is important to estimate the phosphoric acid loss and to contrive ideas eliminating it. With the objective of obtaining basic data for simulating the acid loss in the large size cells, the effect of the operating conditions on the acid loss into exhaust gases has been studied experimentally by using a single cell with an active electrode area of 100 cm{sup 2}.

  3. Electrochemical destruction of trans-cinnamic acid by advanced oxidation processes: kinetics, mineralization, and degradation route.

    Science.gov (United States)

    Flores, Nelly; Thiam, Abdoulaye; Rodríguez, Rosa María; Centellas, Francesc; Cabot, Pere Lluís; Garrido, José Antonio; Brillas, Enric; Sirés, Ignasi

    2017-03-01

    Acidic solutions of trans-cinnamic acid at pH 3.0 have been comparatively treated by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), and photoelectro-Fenton (PEF). The electrolytic experiments were carried out with a boron-doped diamond (BDD)/air-diffusion cell. The substrate was very slowly abated by AO-H2O2 because of its low reaction rate with oxidizing (•)OH produced from water discharge at the BDD anode. In contrast, its removal was very rapid and at similar rate by EF and PEF due to the additional oxidation by (•)OH in the bulk, formed from Fenton's reaction between cathodically generated H2O2 and added Fe(2+). The AO-H2O2 treatment yielded the lowest mineralization. The EF process led to persistent final products like Fe(III) complexes, which were quickly photolyzed upon UVA irradiation in PEF to give an almost total mineralization with 98 % total organic carbon removal. The effect of current density and substrate concentration on all the mineralization processes was examined. Gas chromatography-mass spectrometry (GC-MS) analysis of electrolyzed solutions allowed identifying five primary aromatics and one heteroaromatic molecule, whereas final carboxylic acids like fumaric, acetic, and oxalic were quantified by ion exclusion high-performance liquid chromatography (HPLC). From all the products detected, a degradation route for trans-cinnamic acid is proposed.

  4. Anodic oxidation of salicylic acid on BDD electrode: variable effects and mechanisms of degradation.

    Science.gov (United States)

    Rabaaoui, Nejmeddine; Allagui, Mohamed Salah

    2012-12-01

    The degradation of 100mL of solution with salicylic acid (SA) in the pH range 3.0-10.0 has been studied by anodic oxidation in a cell with a boron-doped diamond (BDD) anode and a stainless steel cathode, both of 3 cm(2) area, by applying a current of 100, 300 and 450 mA at 25°C. Completed mineralization is always achieved due to the great concentration of hydroxyl radical (OH) generated at the BDD surface. The mineralization rate increases with increasing applied current, but decreases when drug concentration rises from 200 mg L(-1). Nevertheless, the pH effect was not significant. During oxidation it was observed that catechol, 2,5-dihydroxylated benzoic acid, 2,3-dihydroxylated benzoic acid and hydroquinone were formed as aromatic intermediates. In addition, ion-exclusion chromatography allowed the detection of fumaric, maleic, oxalic and formic as the ultimate carboxylic acid. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alabbasi, Alyaa; Liyanaarachchi, S.; Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au

    2012-09-30

    Polylactic acid (PLA) was coated on a biodegradable magnesium alloy, AZ91, using spin coating technique for temporary implant applications. The degradation behaviour of the coated alloy samples was evaluated using electrochemical impedance spectroscopy (EIS) method in simulated body fluid (SBF). EIS results suggested that the PLA coating enhanced the degradation resistance of the alloy significantly. Increase in the PLA coating thickness was found to increase the degradation resistance, but resulted in poor adhesion. Long-term EIS experiments of the PLA coated samples suggested that their degradation resistance gradually decreased with increase in SBF exposure time. However, the degradation resistance of the PLA coated samples was significantly higher than that of the bare metal even after a 48 h exposure to SBF. - Highlights: Black-Right-Pointing-Pointer Polylactic acid (PLA) was coated on a magnesium-based alloy. Black-Right-Pointing-Pointer PLA coating enhanced the in vitro degradation resistance of the alloy. Black-Right-Pointing-Pointer Increase in the PLA coating thickness improved the alloy degradation resistance. Black-Right-Pointing-Pointer Thin film PLA coating exhibited both good degradation resistance and adhesion.

  6. Progress on Zeolite-membrane-aided Organic Acid Esterification

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Dharmawijaya, P. T.

    2017-07-01

    Esterification is a common route to produce carboxylic acid esters as important intermediates in chemical and pharmaceutical industries. However, the reaction is equilibrium limited and needs to be driven forward by selective removal one of the products. There have been some efforts to selectively remove water from reaction mixture via several separation processes (such as pervaporation and reactive distillation). Integrated pervaporation and esterification has gained increasing attention towards. Inorganic zeolite is the most popular material for pervaporation due to its high chemical resistant and separation performance towards water. Zeolite also has proven to be an effective material in removing water from organic compound. Zeolite can act not only as selective layer but also simultaneously act as a catalyst on promoting the reaction. Hence, there are many configurations in integrating zeolite membrane for esterification reaction. As a selective layer to remove water from reaction mixture, high Si/Al zeolite is preferred to enhance its hydrophilicity. However, low Si/Al zeolite is unstable in acid condition due to dealumination thus eliminate its advantages. As a catalyst, acid zeolites (e.g. H-ZSM-5) provide protons for autoprotolysis of the carboxylic acid similar to other catalyst for esterification (e.g. inorganic acid, and ion exchange resins). There are many studies related to zeolite membrane aided esterification. This paper will give brief information related to zeolite membrane role in esterification and also research trend towards it.

  7. Degradation of 3-phenoxybenzoic acid by a filamentous fungus Aspergillus oryzae M-4 strain with self-protection transformation.

    Science.gov (United States)

    Zhu, Yuanting; Li, Jianlong; Yao, Kai; Zhao, Nan; Zhou, Kang; Hu, Xinjie; Zou, Likou; Han, Xinfeng; Liu, Aiping; Liu, Shuliang

    2016-11-01

    A novel filamentous fungus M-4 strain was isolated from soy sauce koji and identified as Aspergillus oryzae (Collection number: CGMCC 11645) on the basis of morphological characteristics and internal transcribed spacer sequence. M-4 could degrade 80.62 % of 3-phenoxybenzoic acid (3-PBA; 100 mg L(-1)) within 5 days. 3-PBA degradation occurred in accordance with first-order kinetics. The degradation metabolites of 3-PBA were identified through high-performance liquid chromatography-mass spectrometry (HPLC-MS). Relevant enzymatic activities and substrate utilization were also investigated, which indicated that M-4 could effectively degrade the intermediates of 3-PBA. Base on analysis of these metabolites, a novel biochemical pathway for the degradation of 3-PBA was proposed. There exists a mutual transformation between 3-phenoxy-benzyl alcohol and 3-PBA, which was firstly reported about the degradation of 3-PBA and may be attributed to self-protection transformation of M-4; subsequently, 3-PBA was gradually transformed into phenol, 3-hydroxy-5-phenoxy benzoic acid, protocatechuic acid and gallic acid. The safety of M-4 was evaluated via an acute toxicity test in vivo. The biodegradation ability of M-4 without toxic effects reveals that this fungus may be likely to be used for eliminating 3-PBA from contaminated environment or fermented foods.

  8. Fatty acid methyl esters yield and phorbol esters degradation during transesterification of Jatropha curcas oil by alkaline, acid and enzyme catalyzed method

    Directory of Open Access Journals (Sweden)

    Tosa Koji

    2017-01-01

    Full Text Available Jatropha curcas has recently been the focus of intense research as a raw material of biomass fuel. However, the carcinogenesis promoter action of the phorbol esters in the Jatropha raises concerns for health and environmental risk. The purpose of the present study is to determine the relationship between the fatty acid methyl esters yield and the phorbol esters degradation ratio during the transesterification of the Jatropha oil by alkaline, acid and enzyme catalyzed method, respectively. The phorbol esters in Jatropha oil were degraded during the transesterification of the Jatropha curcas oil by alkaline and acid catalyzed methanol methods. The degradation ratio was significantly correlated with the fatty acid methyl esters yields in alkaline catalyzed transesterification. The results obtained in this study suggest that the health and environmental risk of the phorbol esters in a Jatropha BDF can be significantly reduced by a complete transesterification of the crude oil by controlling the transesterification condition appropriately.

  9. Bile Acid Pool Dynamics in Progressive Familial lntrahepatic Cholestasis With Partial External Bile Diversion

    NARCIS (Netherlands)

    Jericho, Hilary S.; Kaurs, Elizabeth; Boverhof, Renze; Knisely, Alex; Shneider, Benjamin L.; Verkade, Henkjan J.; Whitington, Peter F.

    2015-01-01

    Objectives: Partial external bile diversion (PEBD) is an established therapy for low-gamma-glutamyl transferase (GGT) progressive familial intrahepatic cholestasis (PFIC). This study sought to determine whether the dynamics of the cholic acid (CA) and chenodeoxycholic acid (CDCA) pools in subjects w

  10. Atrazine degradation and residues distribution in two acid soils from temperate humid zone.

    Science.gov (United States)

    Mahía, J; Díaz-Raviña, M

    2007-01-01

    Mineralization of atrazine and formation of extractable and non-extractable "bound" residues were followed under laboratory conditions in two contrasting soils (organic C, texture, and atrazine application history) from northern Spain. The soils, a Humic Cambisol (MP) and a Gleyic Cambisol (G) were incubated with labeled atrazine (ring-13C atrazine) at field application dose and measurements were made at different time intervals during 3 mo. Fate and behavior of atrazine along the incubation showed different patterns between the two soils, the time taken for degradation of 50% (DT50) being 9 and 44 d for MP and G soils, respectively. In MP soil, with 40 yr of atrazine application and lower organic C and clay content, more than 89% of U-13C-atrazine added was mineralized after 12 wk, with most mineralization occurring within the first 2 wk. G soil, with 10 yr of atrazine application, exhibited a more progressive U-13C-atrazine mineralization, reaching 54% of initially added atrazine at 12 wk. Hydroxyatrazine and deisopropylatrazine were the metabolites founded in the extractable fraction, demonstrating that both chemical and biological processes are involved in atrazine degradation. Soil G showed during all the incubation times an extractable residues fraction greater than that in MP soil, indicating a high potential risk of soil and water contamination. Rapid microbial degradation through s-triazine ring cleavage was proposed to be the main decomposition pathway of atrazine for the two soils studied. Bound residues pool also differed notably between soils accounting for 9 and 41% of initially added atrazine, the higher values shown by soil with higher organic matter and clay content (G soil).

  11. Recent progress on application of UV excilamps for degradation of organic pollutants and microbial inactivation.

    Science.gov (United States)

    Matafonova, Galina; Batoev, Valeriy

    2012-10-01

    Excilamps as modern mercury-free sources of narrow-band UV radiation represent an attractive alternative in environmental applications. This review focuses on recent studies on the water and surface decontamination with excilamps by means of direct photolysis and advanced oxidation processes. To date, direct photolysis and advanced oxidation processes (AOPs) such as UV/H(2)O(2), UV/Fenton and UV/O(3) have been applied for degradation of organic compounds (mainly, phenols, dyes and herbicides) in model aqueous solutions. Special emphasis is placed on studies combining UV irradiation (as a pre-treatment or post-treatment step) with biological treatment. In this review, the efficiencies of direct UV, UV/H(2)O(2) and UV/TiO(2) processes for inactivation of a variety of pathogenic microorganisms in water and on surfaces are discussed. The analysis of the literature shows that more works need to be done on scaling up the processes, degradation/mineralization of target pollutant(s) in real effluents and evaluation of energy requirements.

  12. Progress Toward an Enceladus Amino Acid Sampler Astrobiology Instrument

    Science.gov (United States)

    Kirby, J. P.; Willis, P. A.; Blacksberg, J.

    2012-12-01

    The development of a new astrobiolgoy instrument for exploring the trace chemical composition of the Enceladus jets and plume, and the e-ring of Saturn is presented. The Enceladus amino acid sampler (EAAS) allows for detection of amino acids using optical Raman spectroscopy integrated with a sample pre-concentration system. The pre-concentration process facilitates the delivery of a sample to a mass spectrometer for detection of specific amino acids. The initial EAAS design utilizes lab-on-a-breadboard components where a sample inlet, sample outlet, reagents, controllers, pumps, valves and pre-concentration column for the EAAS prototype are all assembled on a 5" x 7" breadboard. The pre-concentration process is controlled using automation scripts and software. An optical window allows a Raman spectrometer to directly monitor the pre-concentration of amino acids in a filter/column loaded with of a strong cation exchange resin. Initial samples to demonstrate EAAS simulate the conditions of Don Juan Pond, one of the coldest and saltiest bodies of liquid water on Earth, located in the Wright Valley of Antarctica. This EAAS development is an important step toward a new type of astrobiology science instrument that is capable of operating on a spacecraft in flight or in orbit.

  13. Degradation of trans-ferulic acid in acidic aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton.

    Science.gov (United States)

    Flores, Nelly; Sirés, Ignasi; Garrido, José Antonio; Centellas, Francesc; Rodríguez, Rosa María; Cabot, Pere Lluís; Brillas, Enric

    2016-12-01

    Solutions of pH 3.0 containing trans-ferulic acid, a phenolic compound in olive oil mill wastewater, have been comparatively degraded by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Trials were performed with a BDD/air-diffusion cell, where oxidizing OH was produced from water discharge at the BDD anode and/or in the solution bulk from Fenton's reaction between cathodically generated H2O2 and added catalytic Fe(2+). The substrate was very slowly removed by AO-H2O2, whereas it was very rapidly abated by EF and PEF, at similar rate in both cases, due to its fast reaction with OH in the bulk. The AO-H2O2 process yielded a slightly lower mineralization than EF, which promoted the accumulation of barely oxidizable products like Fe(III) complexes. In contrast, the fast photolysis of these latter species under irradiation with UVA light in PEF led to an almost total mineralization with 98% total organic carbon decay. The effect of current density and substrate concentration on the performance of all treatments was examined. Several solar PEF (SPEF) trials showed its viability for the treatment of wastewater containing trans-ferulic acid at larger scale. Four primary aromatic products were identified by GC-MS analysis of electrolyzed solutions, and final carboxylic acids like fumaric, acetic and oxalic were detected by ion-exclusion HPLC. A reaction sequence for trans-ferulic acid mineralization involving all the detected products is finally proposed.

  14. Degradation of sunscreen agent p-aminobenzoic acid using a combination system of UV irradiation, persulphate and iron(II).

    Science.gov (United States)

    Xue, Yicen; Dong, Wenbo; Wang, Xiaoning; Bi, Wenlong; Zhai, Pingping; Li, Hongjing; Nie, Minghua

    2016-03-01

    Increased usage and discharge of sunscreens have led to ecological safety crisis, and people are developing the advanced oxidation processes (AOPs) to treat them. The present study aimed to determine the degradation efficiency and mechanism of the sunscreen agent p-aminobenzoic acid (PABA) using the UV/Fe(2+)/persulphate (PS) method. A series of irradiation experiments were conducted to optimise the system conditions and to study the impacts of the natural anion. Free radicals and degradation products were identified in order to clarify the degradation mechanism. Initial PS and Fe(2+) concentrations showed significant impacts on PABA degradation. Natural anions, such as Cl(-), NO3 (-), H2PO4 (-) and HCO3 (-), impeded PABA degradation because of ion (Fe(2+)) capture, radical scavenging or pH effects. Hydroxyl (HO·) and sulphate (SO4 (·-)) radicals were two main radicals observed in the UV/Fe(2+)/PS system; of these, SO4 (·-) showed greater effects on PABA degradation. Over 99 % of the available PABA was completely degraded into carbon dioxide (CO2) and water (H2O) by the UV/Fe(2+)/PS system, and the remaining PABA participated in complex radical reactions. By-products were identified by total ion chromatography and mass spectrometry. Our research provides a treatment process for PABA with high degradation efficiency and environmental safety and introduces a new strategy for sunscreen degradation.

  15. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Lake, April D. [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States); Novak, Petr [Biology Centre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice 37001 (Czech Republic); Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Lu, Zhenqiang [The Arizona Statistical Consulting Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Lehman-McKeeman, Lois D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Cherrington, Nathan J., E-mail: cherrington@pharmacy.arizona.edu [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States)

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  16. The thermal degradation of some polymeric di-alkyl esters of itaconic acid

    Directory of Open Access Journals (Sweden)

    Popović Ivanka

    2013-01-01

    Full Text Available One group of polymers that may help relieve the dependence on crude oil is based on itaconic acid, the biotechnological production of which has become feasible. Itaconic acid and its derivatives can easily be incorporated into polymers and may serve as a substitute for petrochemically derived acrylate or methacrylate monomers. The applications of polymers based on itaconic di-esters depend largely on their thermal stability. The thermal stability of poly(di-itaconates is dependent, not only on the general structure of the monomer repeating unit, but also on the structure of the ester substituent. Depolymerization, initiated by b-scission or random main chain scission, is the dominant thermolysis mechanism in most cases. The depolymerization of poly-(di-itaconates may be accompanied by de-esterification, elimination, cross-linking, random main or side chain scission and carbonization. Comparison of the thermal degradation mechanism of polymeric di-esters of itaconic acid to that of corresponding poly(methacrylates confirms the viability of substituting poly(methacrylates by poly(di-itaconates. [Projekat Ministarstva nauke Republike Srbije, br. 172062

  17. Mechanisms of photocatalytical degradation of monomethylarsonic and dimethylarsinic acids using nanocrystalline titanium dioxide.

    Science.gov (United States)

    Xu, Zhonghou; Jing, Chuanyong; Li, Fasheng; Meng, Xiaoguang

    2008-04-01

    Photodegradation mechanisms of monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) with nanocrystalline titanium dioxide under UV irradiation were investigated. In the presence of UV irradiation and 0.02 g/L TiO2, 93% MMA (initial concentration is 10 mg-As/L) was transformed into inorganic arsenate, [As(V)], after 72 h of a batch reaction. The mineralization of DMA to As(V) occurred in two steps with MMA as an intermediate product. The photodegradation rate of MMA and DMA could be described using first-order kinetics, where the apparent rate constant is 0.033/h and 0.013/h for MMA and DMA, respectively. Radical scavengers, including superoxide dimutase (SOD), sodium bicarbonate, tert-butanol, and sodium azide, were used to study the photodegradation mechanisms of MMA and DMA. The results showed that hydroxyl radicals (HO*) was the primary reactive oxygen species for the photodegradation of MMA and DMA. The methyl groups in MMA and DMAweretransformed into organic carbon, including formic acid and possibly methanol, also through photochemical reactions. The results showed that nanocrystalline TiO2 can be used for the photocatalytical degradation of MMA and DMA and subsequent removal of the converted As(V), since the high adsorption capacity of the material for inorganic arsenic species has been demonstrated in previous studies.

  18. Thermal degradation behaviour of nanoamphiphilic chitosan dispersed poly (lactic acid) bionanocomposite films.

    Science.gov (United States)

    Pal, Akhilesh Kumar; Katiyar, Vimal

    2017-02-01

    In the present study, nano-amphiphilic chitosan termed as chitosan-grafted-oligo l-lactic acid (CH-g-OLLA), is synthesized by microwave initiated insitu condensation polymerization. The synthesized CH-g-OLLA becomes hydrophobic in nature due to chemical bond formation between chitosan backbone and OLLA chains. Further, CH-g-OLLA (30%) bionanocomposite is used as a nanofiller in poly (lactic acid)/chitosan-grafted-oligo l-lactic acid (PLA/CH-g-OLLA) bionanocomposite films. Surface morphology shows a homogeneous dispersion of CH-g-OLLA in the form of spherical aggregates, which vary in the range of ∼20 to 150nm. Non-isothermal degradation kinetics, proposed by Kissinger, Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa and Augis & Bennett models, are utilized to estimate the activation energies (Ea) for PLA, which are 254.1, 260.2, 257.0 and 259.1kJmol(-1) respectively. The reduction in Ea values of bionanocomposite films may be elucidated by intermolecular distance and enrichment in chain mobility. The evolved gaseous products like hydrocarbons, carbon dioxide, carbon monoxide and cyclic oligomers are successfully identified with TG-FTIR analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Fulvic acid degradation using nanoparticle TiO2 in a submerged membrane photocatalysis reactor

    Institute of Scientific and Technical Information of China (English)

    FU Jian-feng; JI Min; AN Ding-nian

    2005-01-01

    The degradation of fulvic acid(FA) by nanoparticle TiO2 in a submerged membrane photocatalysis(SMPC) reactor was studied.In this reactor, photocatalytic oxidation and membrane separation co-occured. The continuous air supplier provided O2 for the photocatalytical reaction and mixed the solution through an airflow controller. The particle TiO2 could automatically settle due to gravity without particle agglomeration so it could be easily separated by microfiltration(MF) membrane. It was efficient to maintain high flux of membranes. The effects of operational parameters on the photocatalytic oxidation rate of FA were investigated. Results indicated that photocatalyst at 0.5 g/L and airflow at 0.06 m3/h were the optimum condition for the removal of fulvic acid, the removal efficiency was higher in acid media than that in alkaline media. The effects of different filtration duration on permeate flux rate of MF with P25 powder and with nanoparticle TiO2 were compared. Experimental results indicated that the permeate flux rate of MF was improved and the membrane fouling phenomenon was reduced with the addition of nanoparticle TiO2 catalyst compared with conventional P25 powder. Therefore, this submerged membrane photocatalysis reactor can faciliate potential application of photocatalytic oxidation process in drinking water treatment.

  20. [Advances in the progress of anti-bacterial biofilms properties of acetic acid].

    Science.gov (United States)

    Gao, Xinxin; Jin, Zhenghua; Chen, Xinxin; Yu, Jia'ao

    2016-06-01

    Bacterial biofilms are considered to be the hindrance in the treatment of chronic wound, because of their tolerance toward antibiotics and other antimicrobial agents. They also have strong ability to escape from the host immune attack. Acetic acid, as a kind of organic weak acid, can disturb the biofilms by freely diffusing through the bacterial biofilms and bacterial cell membrane structure. Then the acid dissociates to release the hydrogen ions, leading to the disorder of the acid-base imbalance, change of protein conformation, and the degradation of the DNA within the membranes. This paper reviews the literature on the characteristics and treatment strategies of the bacterial biofilms and the acetic acid intervention on them, so as to demonstrate the roles acetic acid may play in the treatment of chronic wound, and thus provide a convincing treatment strategy for this kind of disease.

  1. Degradation and enantiomeric fractionation of mecoprop in soil previously exposed to phenoxy acid herbicides - New insights for bioremediation

    DEFF Research Database (Denmark)

    Frková, Zuzana; Johansen, Anders; de Jonge, Lis Wollesen;

    2016-01-01

    bioremediation. The degradation processes were studied in soil sampled at different depths (3, 4.5 and 6m) at a Danish urban site with a history of phenoxy acid contamination. We observed preferential degradation of the R-enantiomer only under aerobic conditions in the soil samples from 3- and 6-m depth......, and biodegradation rates may differ between enantiomers. Therefore, enantio-preferred degradation of mecoprop (MCPP) in soil was measured to get in-depth information on whether amendment with glucose (BOD equivalents as substrate for microbial growth) and nitrate (redox equivalents for oxidation) can stimulate...

  2. Isonicotinic acid-ligated cobalt (II phthalocyanine-modified titania as photocatalyst for benzene degradation via fluorescent lamp

    Directory of Open Access Journals (Sweden)

    Joey Andrew A. Valinton

    2016-06-01

    Full Text Available The utilization of bis(isonicotinic acidphthalocyaninatocobalt (II [CoPc(isa2] incorporated on TiO2 has been studied as a photocatalyst to degrade benzene vapor under fluorescent lamp (indoor light conditions. The photocatalytic activity of [CoPc(isa2]-TiO2 compared to TiO2 showed an increase in the extent of degradation. The axial isonicotinic acid ligand attached to CoPc improved the degradation rate of benzene as compared with unligated CoPc-TiO2 which may be attributed to the enhancement of electronic structure in the complex due to the additional isonicotinic acid ligand and its possible attachment to the TiO2 surface through the carboxylic acid moiety. Therefore, covalently-linked CoPc(isa2 to TiO2 can enhance the extent of photodegradation of benzene and other common volatile organic compounds under indoor lighting conditions.

  3. Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis.

    Science.gov (United States)

    Ivanova, Anastasia A; Wegner, Carl-Eric; Kim, Yongkyu; Liesack, Werner; Dedysh, Svetlana N

    2016-10-01

    Northern peatlands play a crucial role in the global carbon balance, serving as a persistent sink for atmospheric CO2 and a global carbon store. Their most extensive type, Sphagnum-dominated acidic peatlands, is inhabited by microorganisms with poorly understood degradation capabilities. Here, we applied a combination of barcoded pyrosequencing of SSU rRNA genes and Illumina RNA-Seq of total RNA (metatranscriptomics) to identify microbial populations and enzymes involved in degrading the major components of Sphagnum-derived litter and exoskeletons of peat-inhabiting arthropods: cellulose, xylan, pectin and chitin. Biopolymer addition to peat induced a threefold to fivefold increase in bacterial cell numbers. Functional community profiles of assembled mRNA differed between experimental treatments. In particular, pectin and xylan triggered increased transcript abundance of genes involved in energy metabolism and central carbon metabolism, such as glycolysis and TCA cycle. Concurrently, the substrate-induced activity of bacteria on these two biopolymers stimulated grazing of peat-inhabiting protozoa. Alveolata (ciliates) was the most responsive protozoa group as confirmed by analysis of both SSU rRNA genes and SSU rRNA. A stimulation of alphaproteobacterial methanotrophs on pectin was consistently shown by rRNA and mRNA data. Most likely, their significant enrichment was due to the utilization of methanol released during the degradation of pectin. Analysis of SSU rRNA and total mRNA revealed a specific response of Acidobacteria and Actinobacteria to chitin and pectin, respectively. Relatives of Telmatobacter bradus were most responsive among the Acidobacteria, while the actinobacterial response was primarily affiliated with Frankiales and Propionibacteriales. The expression of a wide repertoire of carbohydrate-active enzymes (CAZymes) corresponded well to the detection of a highly diverse peat-inhabiting microbial community, which is dominated by yet uncultivated

  4. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment.

    Science.gov (United States)

    Sundara Rajan, Sujata; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L; Sinko, Patrick J

    2014-11-28

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH7.4) and acetate buffer (AB, pH4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%-14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Hyaluronic acid binding, endocytosis and degradation by sinusoidal liver endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    McGary, C.T.

    1988-01-01

    The binding, endocytosis, and degradation of {sup 125}I-hyaluronic acid ({sup 125}I-HA) by liver endothelial cells (LEC) was studied under several conditions. The dissociation of receptor-bound {sup 125}I-HA was rapid, with a half time of {approx}31 min and a K{sub off} of 6.3 {times} 10{sup {minus}4}/sec. A large reversible increase in {sup 125}I-HA binding to LEC at pH 5.0 was due to an increase in the observed affinity of the binding interaction. Pronase digestion suggested the protein nature of the receptor and the intracellular location of the digitonin exposed binding activity. Binding and endocytosis occur in the presence of 10 mM EGTA indicating that divalent cations are not required for receptor function. To study the degradation of {sup 125}I-HA by LEC, a cetylpyridinium chloride (CPC) precipitation assay was characterized. The minimum HA length required for precipitation was elucidated. The fate of the LEC HA receptor after endocytosis was examined.

  6. Influence of neutral and charged species on the plasma degradation of the stearic acid

    Directory of Open Access Journals (Sweden)

    Euclides Alexandre Bernardelli

    2013-04-01

    Full Text Available In this work, stearic acid (SA was degraded in an Ar-O2and Ar-H2post-discharge environment created by a plasma reactor with a microwave source and in an Ar, Ar-H2and Ar-O2DC (Direct Current discharge environment created in a cathode-anode confined system. The afterglow region is useful for understanding the role of the chemically active species (O, O2, H and H2. In contrast, the discharge region allows the observation of the effects of chemically active species, charged species (ions and electrons and photons. The influence of these species on the grafting and etching of SA was evaluated by measuring the mass variation, mass variation rate and chemical composition. The results showed that when only chemically active oxygen species are present, the SA is preferentially grafted. However, when both photons and charged species are present, the SA is more efficiently etched. When the Ar-H2and Ar environments are utilized; the SA is not efficiently degraded.

  7. Kinetics of Photocatalytic Degradation of Formic Acid over Silica Composite Films Based on Polyoxometalates

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The composite films, XW11O39n-/SiO2, (X refers to Si, Ge or P, respectively) were prepared by tetraethoxysilane (TEOS) hydrolysis sol-gel method via spin-coating technique. Formation of the composite films is due to strong chemical reaction of organic silanol group with the surface oxygen atoms of XW11O39n-, resulted in the saturation of the surface of the lacunary polyoxometalates (POMs). Therefore, the coordination structural model of the films was proposed. As for the films, retention of the primary Keggin structure was confirmed by UV-vis, FT-IR spectra and MAS NMR. The surface morphology of the films was characterized by SEM, indicating that the film surface is relatively uniform, and the layer thickness is in the range of 250~350 nm. Aqueous formic acid (FA) (0-20 mmol/L) was degraded into CO2 and H2O by irradiating the films in the near-UV area. The results show that all the films have photocatalytic activities and the degradation reaction follows Langmuir-Hinshelwood first order kinetics.

  8. Bioactivity and cytocompatibility of dicalcium phosphate/poly (amino acid) biocomposite with degradability

    Science.gov (United States)

    Zhang, Yunfei; Shan, Wenpeng; Li, Xiangde; Wei, Jie; Li, Hong; Ma, Jian; Yan, Yonggang

    2012-01-01

    A bioactive composite of dicalcium phosphate (DCP) and poly (amino acid) (PAA) was fabricated, and the in vitro bioactivity, degradability, and cellular responses to the DCP/PAA composite (DPC) were investigated as compared to PAA. Apatite formation on DPC surfaces occurred after immersion into simulated body fluid (SBF) for 7 days, but not on the surface of PAA. The weight loss ratio of DPC could reach 18.6 ± 0.3 wt% after soaking into phosphate buffered saline (PBS) for 2 months, which was higher than PAA (11.0 ± 0.2 wt%). Cell attachment and proliferation of MG-63 cells on DPC was obviously higher than on PAA. Moreover, the cells spread and formed confluent layer on the DPC surfaces. The alkaline phosphatase activity (ALP) of the cells on DPC was significantly greater than PAA at day 5 and day 7. The results suggested that introducing DCP into PAA makes the composite bioactive and more degradable, and meanwhile enhances osteoblast-like cells attach, proliferation and osteogenic differentiation.

  9. Bioactivity and cytocompatibility of dicalcium phosphate/poly (amino acid) biocomposite with degradability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yunfei [College of Chemistry, Sichuan University, Chengdu 610064 (China); Shan Wenpeng; Li Xiangde [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Wei Jie, E-mail: biomater2006@yahoo.com.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Li Hong [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Ma Jian [Hospital of Stomatology, Tongji University, Shanghai 200072 (China); Yan Yonggang, E-mail: yan_yonggang@vip.163.com [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2012-01-15

    A bioactive composite of dicalcium phosphate (DCP) and poly (amino acid) (PAA) was fabricated, and the in vitro bioactivity, degradability, and cellular responses to the DCP/PAA composite (DPC) were investigated as compared to PAA. Apatite formation on DPC surfaces occurred after immersion into simulated body fluid (SBF) for 7 days, but not on the surface of PAA. The weight loss ratio of DPC could reach 18.6 {+-} 0.3 wt% after soaking into phosphate buffered saline (PBS) for 2 months, which was higher than PAA (11.0 {+-} 0.2 wt%). Cell attachment and proliferation of MG-63 cells on DPC was obviously higher than on PAA. Moreover, the cells spread and formed confluent layer on the DPC surfaces. The alkaline phosphatase activity (ALP) of the cells on DPC was significantly greater than PAA at day 5 and day 7. The results suggested that introducing DCP into PAA makes the composite bioactive and more degradable, and meanwhile enhances osteoblast-like cells attach, proliferation and osteogenic differentiation.

  10. Performance of Fluidized bed Fenton process in Degrading Acid Blue 113

    Science.gov (United States)

    Bello, M. M.; Raman, A. A.

    2017-06-01

    The performance of a fluidized bed Fenton process in degrading Acid Blue 113 (AB 113) was investigated. Fluidized bed Fenton process is a modification of conventional Fenton oxidation, aimed at reducing sludge generation and improving process performance. Response surface methodology was used to study the effects of operational parameter on the color removal from the dye. Dimensionless factors, Dye/Fe2+, H2O2/Fe2+ and pH were used as the independent variables in Box-Behnken Design (BDD). Reduced quadratic model was developed to predict the color removal. The process could remove up to 99 % of the initial color. The most significant factor for color removal was found to be Dye/Fe2+, followed by H2O2/Fe2+. Unlike conventional Fenton, the initial pH of the solution does not have a significant effect on the color removal.

  11. Photocatalytic Degradation of Imidacloprid by Phospho- tungstic Acid Supported on a Mesoporous Sieve MCM-41

    Institute of Scientific and Technical Information of China (English)

    冯长根; 李彦周; 刘霞

    2012-01-01

    Solid catalysts consisting of polyoxometalates (POM) namely phosphotungstic acid H3PWL2040 (HPW) supported on a mesoporous sieve MCM-41 have been prepared and characterized by FT-IR, X-ray diffraction, nitrogen adsorption and high resolution transmission electron microscope (HRTEM). The HPW/MCM-41 with different HPW loadings from 10 to 60 wt% possess large specific surface area and rather uniform mesopores. Keggin structure of HPW retains on the prepared composite catalysts. The photocatalytic performance of HPW/MCM-41 was examined by degradation of a durable pesticide imidacloprid. It is found that the prepared photocatalysts exhibit high activity under irradiation of 365 nm monochromatic light. For 50 mL of imidacloprid (10 rag/L), conversion of imidacloprid using 20 mg of HPW/MCM-41 with 50 wt% loading level and calcined at 300 ℃ reaches 58.0% after 5 h irradiation.

  12. The kinetics of photocatalytic degradation of aliphatic carboxylic acids in an UV/TiO2 suspension system.

    Science.gov (United States)

    Chen, Q; Song, J M; Pan, F; Xia, F L; Yuan, J Y

    2009-10-01

    Kinetic studies on the photocatalytic degradation of aliphatic carboxylic acids were carried out in a slurry photoreactor with in-situ monitoring, employing artificial UV light as the source of energy and nano-TiO2 powder as the catalyst. The influences on the photocatalytic degradation such as the initial concentration of reactant (C0), catalyst dosage (CTiO2), UV intensity (Ia) and pH value have been investigated. Good agreement has been obtained between the value calculated by Langmuir-Freundlich-Hinshelwood (L-F-H) model and experimental data, with coefficient of multiple determination (R2) varying from 0.880 to 0.999. The L-F-H model has been proven to be feasible in describing the kinetic characteristic of the photocatalytic degradation of aliphatic carboxylic acids. Moreover, the apparent reaction rate constant (k) of the photocatalytic degradation of dicarboxylic acids is higher than that of monocarboxylic acids with the same carbon atoms. This shows that the photocatalytic degradation rate is favoured by different chemical structure.

  13. Effects of material thickness and processing method on poly(lactic-co-glycolic acid) degradation and mechanical performance.

    Science.gov (United States)

    Shirazi, Reyhaneh Neghabat; Aldabbagh, Fawaz; Ronan, William; Erxleben, Andrea; Rochev, Yury; McHugh, Peter

    2016-10-01

    In this study, the effects of material thickness and processing method on the degradation rate and the changes in the mechanical properties of poly(lactic-co-glycolic acid) material during simulated physiological degradation were investigated. Two types of poly(lactic-co-glycolic acid) materials were considered: 0.12 mm solvent-cast films and 1 mm compression-moulded plates. The experimental results presented in this study were compared to the experimental results of Shirazi et al. (Acta Biomaterialia 10(11):4695-703, 2014) for 0.25 mm solvent-cast films. These experimental observations were used to validate the computational modelling predictions of Shirazi et al. (J Mech Behav Biomed Mater 54: 48-59, 2016) on critical diffusion length scale and also to refine the model parameters. The specific material processing methods considered here did not have a significant effect on the degradation rate and the changes in mechanical properties during degradation; however, they influenced the initial molecular weight and they determined the stiffness and hardness of the poly(lactic-co-glycolic acid) material. The experimental observations strongly supported the computational modelling predictions that showed no significant difference in the degradation rate and the changes in the elastic modulus of poly(lactic-co-glycolic acid) films for thicknesses larger than 100 μm.

  14. Structural characterization of the degradation products of a minor natural sweet diterpene glycoside Rebaudioside M under acidic conditions.

    Science.gov (United States)

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash; Markosyan, Avetik

    2014-01-14

    Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0) and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C-) & 2D (COSY, HSQC, HMBC) NMR, HRMS, MS/MS spectral data as well as enzymatic and acid hydrolysis studies.

  15. Structural Characterization of the Degradation Products of a Minor Natural Sweet Diterpene Glycoside Rebaudioside M under Acidic Conditions

    Directory of Open Access Journals (Sweden)

    Indra Prakash

    2014-01-01

    Full Text Available Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0 and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C- & 2D (COSY, HSQC, HMBC NMR, HRMS, MS/MS spectral data as well as enzymatic and acid hydrolysis studies.

  16. Structural Characterization of the Degradation Products of a Minor Natural Sweet Diterpene Glycoside Rebaudioside M under Acidic Conditions

    Science.gov (United States)

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash; Markosyan, Avetik

    2014-01-01

    Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0) and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C-) & 2D (COSY, HSQC, HMBC) NMR, HRMS, MS/MS spectral data as well as enzymatic and acid hydrolysis studies. PMID:24424316

  17. Biomechanical features of Poly-D,L-lactic acid (PDLLA) rods through the degradation in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective:To observe the changing of biomechanical features during the degradation course of poly-D,L-lactic acid (PDLLA) rods in vivo and in vitro and to evaluate its value as an internal fixation material. Methods :PDLLA rods were emerged into PBS simultaneous body fluid with constant temperature of 37C and the rods were embedded into muscle tissue of 20 rabbits for degradation in vitro and in vivo . The rods were taken out in 2, 4, 6, 8 and 12 weeks. Biomechanical features of bending, shearing and axial compression strength, rigidity and elastic modulus were observed during the degradation course. Statistical method was used to test the changes of biomechanical parameters. Results: (1)There was similar changes of bending, compressive, shearing strength and bending, compressive and shearing rigidity of the PDLLA rods between in vivo and in vitro. (2)Bending, compressive, shearing strength decreased 33%,18 % and 43 % respectively within the first stage of the degradation, and after 6 weeks of degradation, they decreased slowly. (3)Elastic modulus, bending, compressive and shearing rigiditydecreased sharply during the 6 weeks of degradation, with a drop of 22%, 39% and 30%00 respectively, and after 8 weeks, they decreased slowly. Even after 12 weeks of degradation, the strength of the rods was still higher than that of sponge bone. Conclusion: During the degradation of the material, the strength and rigidity of PDLLA rods can meet the need of fracture fixation of cancellous bones.

  18. Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate.

    Science.gov (United States)

    Soriano, Álvaro; Gorri, Daniel; Urtiaga, Ane

    2017-04-01

    The present study was aimed at the development of a strategy for removing and degrading perfluorohexanoic acid (PFHxA) from industrial process waters at concentrations in the range 60-200 mg L(-1). The treatment train consisted of nanofiltration (NF) separation followed by electrochemical degradation of the NF concentrate. Using a laboratory-scale system and working in the total recirculation mode, the DowFilm NF270 membrane provided PFHxA rejections that varied in the range 96.6-99.4% as the operating pressure was increased from 2.5 to 20 bar. The NF operation in concentration mode enabled a volume reduction factor of 5 and increased the PFHxA concentration in the retentate to 870 mg L(-1). Results showed that the increase in PFHxA concentration and the presence of calcium sulfate salts did not induce irreversible membrane fouling. The NF retentate was treated in a commercial undivided electrochemical cell provided with two parallel flow-by compartments separated by bipolar boron doped diamond (BDD) electrode, BDD counter anode, and counter cathode. Current densities ranging from 20 to 100 A m(-2) were examined. The electrochemical degradation rate of PFHxA reached 98% and was accompanied by its efficient mineralization, as the reduction of total organic carbon was higher than 95%. Energy consumption, which was 15.2 kWh m(-3) of treated NF concentrate, was minimized by selecting operation at 50 A m(-2). While most of the previous research on the treatment of perfluoroalkyl substances (PFASs) focused on the removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), these compounds have been phased out by chemical manufacturers. Our findings are relevant for the treatment of PFHxA, which appears to be one of the present alternatives to long-chain PFASs thanks to its lower bioaccumulative potential than PFOA and PFOS. However, PFHxA also behaves as a persistent pollutant. Moreover, our results highlight the potential of combining

  19. Abiotic Degradation Rates for Carbon Tetrachloride and Chloroform: Progress in FY2009

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Wietsma, Thomas W.; Truex, Michael J.

    2010-03-31

    This report documents the progress made through FY 2009 on a project initiated in FY 2006 to help address uncertainties related to the rates of hydrolysis in groundwater for carbon tetrachloride (CT) and chloroform (CF). The study seeks also to explore the possible effects of contact with minerals and sediment (i.e., heterogeneous hydrolysis) on these rates. In previous years the work was funded as two separate projects by various sponsors, all of whom received their funding from the U.S. Department of Energy (DOE). In FY2009, the projects were combined and funded by CH2MHill Plateau Remediation Corporation (CHPRC). Work in FY2009 was performed by staff at the Pacific Northwest National Laboratory (PNNL). Staff from the State University of New York at Cortland (SUNY–Cortland) contributed in previous years.

  20. Prediction of the ageing of commercial lager beer during storage based on the degradation of iso-α-acids.

    Science.gov (United States)

    Blanco, Carlos A; Nimubona, Dieudonné; Caballero, Isabel

    2014-08-01

    Iso-α-acids and their chemically modified variants are responsible for the bitterness of beer and play a disproportionately large role in the final quality of beer. The current study was undertaken to predict the degradation of commercial lager beers related to changes in the concentration of trans-iso-α-acids during storage by using high-pressure liquid chromatography. In the analysed beers the concentration of isohumulone (average concentration 28 mg L(-1)) was greater than that of isocohumulone (20 mg L(-1)) and isoadhumulone (10 mg L(-1)). The kinetic parameters, activation energy and rate constant, of the trans-iso-α-acids were calculated. In the case of dark beers, the activation energy for the degradation of trans-isocohumulones was found to be higher than for trans-isohumulones and trans-isoadhumulones, whereas in pale and alcohol-free beers activation energies for the degradation of the three trans isomers were similar. The loss of iso-α-acids can be calculated using the activation energy of the degradation of trans-iso-α-acids and the temperature profile of the accelerated ageing. The results obtained in the investigation can be used in the beer industry to predict the alteration of the bitterness of beer during storage. © 2013 Society of Chemical Industry.

  1. Disentangling the interactions between photochemical and bacterial degradation of dissolved organic matter: amino acids play a central role.

    Science.gov (United States)

    Amado, André M; Cotner, James B; Cory, Rose M; Edhlund, Betsy L; McNeill, Kristopher

    2015-04-01

    Photochemical and bacterial degradation are important pathways to carbon mineralization and can be coupled in dissolved organic matter (DOM) decomposition. However, details of several mechanisms of the coupled photochemical and biological processing of DOM remain too poorly understood to achieve accurate predictions of the impact of these processes on DOM fate and reactivity. The aim of this study was to evaluate how photochemical degradation of amino acids affects bacterial metabolism and whether or not photochemical degradation of DOM competes for amino acids with biological processes. We examined the interactions between photochemical and bacterial degradation dynamics using a mixture of 18 amino acids and examined their dynamics and turnover rates within a larger pool of allochthonous or autochthonous DOM. We observed that photochemical exposure of DOM containing amino acids led to delayed biomass production (even though the final biomass did not differ), most likely due to a need for upregulation of biosynthetic pathways for amino acids that were damaged by photochemically produced reactive oxygen species (ROS). This response was most pronounced in bacterial communities where the abundance of photosensitive amino acids was highest (amended treatments and autochthonous DOM) and least pronounced when the abundance of these amino acids was low (unamended and allochthonous DOM), likely because these bacteria already had these biosynthetic pathways functioning. We observed both a cost and benefit associated with photochemical exposure of DOM. We observed a cost associated with photochemically produced ROS that partially degrade key amino acids and a benefit associated with an increase in the availability of other compounds in the DOM. Bacteria growing on DOM sources that are low in labile amino acids, such as those in terrestrially influenced environments, experience more of the benefits associated with photochemical exposure, whereas bacteria growing in more amino

  2. Gastric-resistant isoniazid pellets reduced degradation of rifampicin in acidic medium

    Directory of Open Access Journals (Sweden)

    Fátima Duarte Freire

    2014-12-01

    Full Text Available Isoniazid and rifampicin are considered the first-line medication for preventing and treating tuberculosis. Rifampicin is degraded in the stomach acidic environment, especially when combined with isoniazid, factor contributing to treatment failure. In this study, gastric-resistant isoniazid pellets were obtained to physical contact of this drug with rifampicin and to bypass the stomach´s acidic environment. The pellets were fabricated using the extrusion-spheronization technique. The coating process was conducted in a fluid spray coater using Acrycoat L 100(r solution as the coating agent. The pellets obtained were submitted to a dissolution test in HCl 0.1 N and phosphate buffer media. The results indicated that optimum gastric-resistance was only attained with the highest amount of coating material, with isoniazid almost fully released in phosphate buffer. The amount of rifampicin released from its mixture with non-coated isoniazid pellets in HCl 0.1 N was less than that released from its mixture with the enteric-coated pellets. Acrycoat L 100(r was shown to be an effective enteric/gastric-resistant coating since the stability of rifampicin appeared to be enhanced when physical contact of this drug with isoniazid was prevented at low pH.

  3. Contact sensitizers induce skin inflammation via ROS production and hyaluronic acid degradation.

    Directory of Open Access Journals (Sweden)

    Philipp R Esser

    Full Text Available BACKGROUND: Allergic contact dermatitis (ACD represents a severe health problem with increasing worldwide prevalence. It is a T cell-mediated skin disease induced by protein-reactive organic and inorganic chemicals. A key feature of contact allergens is their ability to trigger an innate immune response that leads to skin inflammation. Previous evidence from the mouse contact hypersensitivity (CHS model suggests a role for endogenous activators of innate immune signaling. Here, we analyzed the role of contact sensitizer induced ROS production and concomitant changes in hyaluronic acid metabolism on CHS responses. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed in vitro and in vivo ROS production using fluorescent ROS detection reagents. HA fragmentation was determined by gel electrophoresis. The influence of blocking ROS production and HA degradation by antioxidants, hyaluronidase-inhibitor or p38 MAPK inhibitor was analyzed in the murine CHS model. Here, we demonstrate that organic contact sensitizers induce production of reactive oxygen species (ROS and a concomitant breakdown of the extracellular matrix (ECM component hyaluronic acid (HA to pro-inflammatory low molecular weight fragments in the skin. Importantly, inhibition of either ROS-mediated or enzymatic HA breakdown prevents sensitization as well as elicitation of CHS. CONCLUSIONS/SIGNIFICANCE: These data identify an indirect mechanism of contact sensitizer induced innate inflammatory signaling involving the breakdown of the ECM and generation of endogenous danger signals. Our findings suggest a beneficial role for anti-oxidants and hyaluronidase inhibitors in prevention and treatment of ACD.

  4. Kinetics of photoelectrocatalytic degradation of humic acid using B2 O3·TiO2/Ti photoelectrode

    Institute of Scientific and Technical Information of China (English)

    JIANG Yan-li; LIU Hui-ling; LU Chun-mei

    2005-01-01

    An innovative photoelectrode, B2O3·TiO2/Ti electrode, was prepared by galvanostaticanodisation. The morphology and crystalline examination results indicated that the anatase was the dominant component. The kinetics of photoelectrocatalytic(PEC) degradation of humic acid(HA) was investigated; the results demonstrated that effects from strongness to weakness on the photoelectrocatalytic degraded rate of humic acid: power of UV-lamp, area of TiO2 film, bias, original concentration of humic acid solution. The optimum conditions were power of UV-lamp 125 W, area of TiO2 film 42.0 cm2 , bias 1.4 V, original concentration of humic acid solution 5 mg/L in this PEC reaction system.

  5. Acetylsalicylic acid combined with diclofenac inhibits cartilage degradation in rabbit models of osteoarthritis.

    Science.gov (United States)

    Liu, Jianqiang; Wu, Changshun; Wang, Dong; Wang, Laicheng; Sun, Shui

    2016-10-01

    The present study aimed to investigate the effect of different concentrations of acetylsalicylic acid combined with diclofenac on the articular cartilage of a rabbit model of osteoarthritis (OA). A total of 40 New Zealand white rabbits were divided into 5 groups. Group A was a sham-operated control group, which was treated with normal saline. Groups B-E were OA models and were treated with normal saline and acetylsalicylic acid combined with diclofenac at concentrations of 5, 10 and 20 mg/kg, respectively. A cartilage macroscopic examination and a pathological observation were performed to analyze the structure of the articular cartilage in all of the treated groups. The nitric oxide (NO) content and interleukin 1β (IL-1β) levels were detected by an enzyme-linked immunosorbent assay. In addition, the protein expression of matrix metalloproteinase 3 (MMP)-3 and MMP-13 were detected by western blot analysis. The mRNA expression of tissue inhibitor of metalloproteinases 1 (TIMP1) was detected by polymerase chain reaction (PCR). The results revealed that different concentrations of the drugs significantly reduced the scores of cartilago articularis, the NO and IL-1β levels and the protein expression of MMP-3 and MMP-13. Furthermore, PCR revealed that the mRNA expression of TIMP1 was significantly upregulated, and the effects increased with increasing drug concentration. Thus, the administration of different concentrations of acetylsalicylic acid combined with diclofenac demonstrates preventive or therapeutic effects against OA progression.

  6. [Conversion of acetic acid to methane by thermophiles: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Zinder, S.

    1991-12-31

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  7. (Conversion of acetic acid to methane by thermophiles: Progress report)

    Energy Technology Data Exchange (ETDEWEB)

    Zinder, S.

    1991-01-01

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  8. Preparation of salvianolic acid A by the degradation reaction of salvianolic acid B in subcritical water integrated with pH-zone-refining counter-current chromatography.

    Science.gov (United States)

    Li, Huaizhi; Cheng, Yan; Dong, Hongjing; Wang, Xiao; Li, Jia; Gao, Qianshan

    2016-10-14

    Salvianolic acid A is the major bioactive compound in Danshen, however, due to the chemical instability and low content in Danshen, it is difficult to extract amount of salvianolic acid A. Therefore, this study was to establish an effective strategy for obtaining adequate amount of salvianolic acid A, subcritical water extraction was used to degrade salvianolic acid B and prepare salvianolic acid A. Different reaction conditions including temperature, time, concentration and pH value in subcritical water were investigated. Under 40mg/mL of reactant concentration, 180°C of temperature, 4.0 of pH value and 60min of reaction time, the highest yield rate of salvianolic acid A reached 34.86%. Then, the degradation products were successfully separated by pH-zone-refining counter-current chromatography with the solvent system Pet-EtAc-n-BuOH-H2O (2:3:1:9, v/v), where 10mM TFA was added in stationary phase and 10mM NH3·H2O in mobile phase. As a result, a total of 227.3mg of salvianolic acid A at 98.2% purity, 38.9mg of danshensu at 99.3% purity, 9.5mg of salvianolic acid D at 92.7% purity, and 32.8mg of protocatechuic aldehyde at 93.1% purity were obtained from 1.2g degradation products of salvianolic acid B by one-step purification. The results demonstrated that the combinative application of subcritical water and pH-zone-refining counter-current chromatography is a potential technique for the preparative separation of salvianolic acid A from salvianolic acid B.

  9. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2...... and methanol containing H2 which was composed of H2, steam and methanol as the fuel were performed on both single cells. After the continuous tests, 12-h-startup/12-h-shutdown dynamic tests were performed on the first single cell with H2 as the fuel and on the second single cell with methanol containing H2...... as the fuel. Along with the degradation tests, electrochemical techniques such as polarization curves and electrochemical impedance spectroscopy (EIS) were employed to study the degradation mechanisms of the fuel cells. The results of the tests showed that both single cells experienced an increase...

  10. The oxidative degradation of barley β-glucan in the presence of ascorbic acid or hydrogen peroxide.

    Science.gov (United States)

    Mäkelä, Noora; Sontag-Strohm, Tuula; Maina, Ndegwa Henry

    2015-06-05

    Cereal β-glucans are polysaccharides with health benefits that have been linked to their ability to increase luminal viscosity. However, the functional properties of cereal β-glucans may be diminished by the susceptibility of this polysaccharide to oxidative degradation. In this study, barley β-glucan was oxidised with hydrogen peroxide or ascorbic acid and the oxidative degradation of β-glucan was investigated using both asymmetrical flow field-flow fractionation (AsFlFFF) with aqueous solvent and high performance size exclusion chromatography (HPSEC) with LiBr in DMSO as the solvent. Oxidation was shown to cause degradation of β-glucan, the reaction being faster when oxidised with hydrogen peroxide compared with ascorbic acid. Both HPSEC and AsFlFFF showed comparable results as long as aggregates (only observed in AsFlFFF) were not included in the integration. The compact aggregates observed in oxidised samples suggest oxidation driven interactions between β-glucan molecules.

  11. Degradation of acid red 97 dye in aqueous medium using wet oxidation and electro-Fenton techniques.

    Science.gov (United States)

    Kayan, Berkant; Gözmen, Belgin; Demirel, Muhammet; Gizir, A Murat

    2010-05-15

    Degradation of the acid red 97 dye using wet oxidation, by different oxidants, and electro-Fenton systems was investigated in this study. The oxidation effect of different oxidants such as molecular oxygen, periodate, persulfate, bromate, and hydrogen peroxide in wet oxidation system was compared. Mineralization of AR97 with periodate appeared more effective when compared with that of the other oxidants at equal initial concentration. When 5 mM of periodate was used, at the first minute of the oxidative treatment, the decolorization percentage of AR97 solution at 150 and 200 degrees C reached 88 and 98%, respectively. The total organic carbon removal efficiency at these temperatures also reached 60 and 80%. The degradation of AR97 was also studied by electro-Fenton process. The optimal current value and Fe(2+) concentration were found to be 300 mA and 0.2 mM, respectively. The results showed that electro-Fenton process can lead to 70 and 95% mineralization of the dye solution after 3 and 5h giving carboxylic acids and inorganic ions as final end-products before mineralization. The products obtained from degradation were identified by GC/MS as 1,2-naphthalenediol, 1,1'-biphenyl-4-amino-4-ol, 2-naphthalenol diazonium, 2-naphthalenol, 2,3-dihydroxy-1,4-naphthalenedion, phthalic anhydride, 1,2-benzenedicarboxylic acid, phthaldehyde, 3-hydroxy-1,2-benzenedicarboxylic acid, 4-amino-benzoic acid, and 2-formyl-benzoic acid.

  12. The effect of degradation on κ-carrageenan/locust bean gum/konjac glucomannan gels at acidic pH.

    Science.gov (United States)

    Yang, Kun; Wang, Zheng; Nakajima, Tetsuya; Nishinari, Katsuyoshi; Brenner, Tom

    2013-10-15

    The feasibility of textural and rheological modification of gels containing κ-carrageenan (KC) and locust bean gum (LBG) by addition of konjac glucomannan (KGM) was investigated. Special attention was paid to the effect of polysaccharide degradation during heating at acidic pH. The general effect of polysaccharide degradation was to decrease the Young's modulus, while the fracture strain in extension was scarcely affected unless the degradation was very severe. Differential scanning calorimetry showed that the melting peak corresponding to dissociation of KC-KGM bonds decreased faster than the melting peak of KC-only bonds with increasing degree of polysaccharide degradation. The implication is that as degradation proceeds, fewer KGM molecules can interact with KC to form elastic bonds, and the excess of KGM which reinforces the existing elastic network and increases the fracture strain actually increases. For this reason, the fracture strain remains nearly unchanged with increasing degradation levels. A decrease in fracture strain is thus observed only at very severe degradations, where KC no longer forms a self-supporting gel by itself.

  13. Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions

    DEFF Research Database (Denmark)

    Liao, Jianhui; Yang, Jingshuai; Li, Qingfeng

    2013-01-01

    Phosphoric acid doped polybenzimidazole membranes have been explored as proton exchange membranes for high temperature polymer electrolyte membrane fuel cells. Long-term durability of the membrane is of critical concern and has been evaluated by accelerated degradation tests under Fenton conditio...

  14. Characterisation of hexane-degrading microorganisms in a biofilter by stable isotope-based fatty acid analysis, FISH and cultivation.

    Science.gov (United States)

    Friedrich, Michèle M; Lipski, André

    2010-01-01

    The hexane-degrading bacterial community of a biofilter was characterised by a combination of stable isotope-based phospholipid fatty acid analyses, fluorescence in situ hybridisation and cultivation. About 70 bacterial strains were isolated from a full-scale biofilter used for treatment of hexane containing waste gas of an oil mill. The isolation approach led to 16 bacterial groups, which were identified as members of the Alpha-, Beta- and Gammaproteobacteria, Actinobacteria and Firmicutes. Three groups showed good growth on hexane as the sole source of carbon. These groups were allocated to the genera Gordonia and Sphingomonas and to the Nevskia-branch of the Gammaproteobacteria. Actively degrading populations in the filter material were characterised by incubation of filter material samples with deuterated hexane and subsequent phospholipid fatty acid analysis. Significant labelling of the fatty acids 16:1 cis10, 18:1 cis9 and 18:0 10methyl affiliated the hexane-degrading activity of the biofilter with the isolates of the genus Gordonia. In vitro growth on hexane and in situ labelling of characteristic fatty acids confirmed the central role of these organisms in the hexane degradation within the full-scale biofilter.

  15. Acidic hydrolysis of bromazepam studied by high performance liquid chromatography. Isolation and identification of its degradation products.

    Science.gov (United States)

    Panderi, I; Archontaki, H; Gikas, E; Parissi-Poulou, M

    1998-06-01

    A kinetic study on the acidic hydrolysis of bromazepam was carried out in 0.01 M hydrochloric acid solution at 25 and 95 degrees C. A reversed-phase HPLC method was developed and validated for the determination of bromazepam and its degradation products. Bromazepam degraded by a consecutive reaction with a reversible first step. Two degradation products were isolated and identified by infrared, 1H and 13C nuclear magnetic resonance and mass spectroscopy. Spectroscopic data indicated that N-(4-bromo-2-(2-pyridylcarbonyl)phenyl)-2-aminoacetamide was the intermediate degradation product of this acid hydrolysis, whereas 2-amino-5-bromophenyl-2-pyridylmethanone was the final one. Therefore, the mechanism of this acid-catalysed hydrolysis involved initial cleavage of the 4,5-azomethine bond, followed by slow breakage of the 1,2-amide bond. Statistical evaluation of the HPLC method revealed its good linearity and reproducibility. Detection limits were 3.8 x 10(-7) M for bromazepam, 6.25 x 10(-7) M for the intermediate and 8.16 x 10(-7) M for the benzophenone derivative.

  16. In vivo degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds.

    NARCIS (Netherlands)

    Hedberg, E.L.; Kroese-Deutman, H.C.; Shih, C.K.; Crowther, R.S.; Carney, D.H.; Mikos, A.G.; Jansen, J.A.

    2005-01-01

    This study investigated the in vivo degradation of poly(propylene fumarate) (PPF)/poly(DL-lactic-co-glycolic acid) (PLGA) composite scaffolds designed for controlled release of osteogenic factors. PPF/PLGA composites were implanted into 15.0mm segmental defects in the rabbit radius, harvested after

  17. In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds.

    NARCIS (Netherlands)

    Hedberg, E.L.; Shih, C.K.; Lemoine, J.J.; Timmer, M.D.; Liebschner, M.A.; Jansen, J.A.; Mikos, A.G.

    2005-01-01

    This study investigated the in vitro degradation of porous poly(propylene fumarate) (PPF-based) composites incorporating microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) during a 26-week period in pH 7.4 phosphate-buffered saline at 37 degrees C.

  18. A comparison of anaerobic 2, 4-dichlorophenoxy acetic acid degradation in single-fed and sequencing batch reactor systems

    Science.gov (United States)

    Elefsiniotis, P.; Wareham, D. G.; Fongsatitukul, P.

    2017-08-01

    This paper compares the practical limits of 2, 4-dichlorophenoxy acetic acid (2,4-D) degradation that can be obtained in two laboratory-scale anaerobic digestion systems; namely, a sequencing batch reactor (SBR) and a single-fed batch reactor (SFBR) system. The comparison involved synthesizing a decade of research conducted by the lead author and drawing summative conclusions about the ability of each system to accommodate industrial-strength concentrations of 2,4-D. In the main, 2 L liquid volume anaerobic SBRs were used with glucose as a supplemental carbon source for both acid-phase and two-phase conditions. Volatile fatty acids however were used as a supplemental carbon source for the methanogenic SBRs. The anaerobic SBRs were operated at an hydraulic retention time of 48 hours, while being subjected to increasing concentrations of 2,4-D. The SBRs were able to degrade between 130 and 180 mg/L of 2,4-D depending upon whether they were operated in the acid-phase or two-phase regime. The methanogenic-only phase did not achieve 2,4-D degradation however this was primarily attributed to difficulties with obtaining a sufficiently long SRT. For the two-phase SFBR system, 3.5 L liquid-volume digesters were used and no difficulty was experienced with degrading 100 % of the 2,4-D concentration applied (300 mg/L).

  19. Thermal properties of extruded injection-molded poly (lactic acid) and milkweed composites: degradation kinetics and enthalpic relaxation

    Science.gov (United States)

    Currently, most polymer composites utilize petroleum-based materials that are non-degradable and difficult to recycle or incur substantial cost for disposal. Green composites can be used in nondurable limited applications. In order to determine the degree of compatibility between Poly (lactic Acid...

  20. In vivo degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds.

    NARCIS (Netherlands)

    Hedberg, E.L.; Kroese-Deutman, H.C.; Shih, C.K.; Crowther, R.S.; Carney, D.H.; Mikos, A.G.; Jansen, J.A.

    2005-01-01

    This study investigated the in vivo degradation of poly(propylene fumarate) (PPF)/poly(DL-lactic-co-glycolic acid) (PLGA) composite scaffolds designed for controlled release of osteogenic factors. PPF/PLGA composites were implanted into 15.0mm segmental defects in the rabbit radius, harvested after

  1. In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds.

    NARCIS (Netherlands)

    Hedberg, E.L.; Shih, C.K.; Lemoine, J.J.; Timmer, M.D.; Liebschner, M.A.; Jansen, J.A.; Mikos, A.G.

    2005-01-01

    This study investigated the in vitro degradation of porous poly(propylene fumarate) (PPF-based) composites incorporating microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) during a 26-week period in pH 7.4 phosphate-buffered saline at 37 degrees C. Us

  2. Progress in Acetic Acid Industry%醋酸工业现状及发展

    Institute of Scientific and Technical Information of China (English)

    李好管; 闫慧芳

    2001-01-01

    醋酸是用途最广泛的有机酸之一。分析了醋酸的生产和消费趋势;综述了醋酸工艺的进展;介绍了具有工业化前景或学术价值的醋酸合成新工艺的研究开发概况。对我国醋酸工业发展提出了建议。%Acetic acid is one of the organic acids which have many uses.This paper analyzed the production and consumption of acetic acid,summarized the progress of acetic acid technology,introduced the research and development of acetic acid new process.Some suggestions on China's acetic acid industry were also put forward.

  3. Naphthenic acids degradation and toxicity mitigation in tailings wastewater systems and aquatic environments: a review.

    Science.gov (United States)

    Kannel, Prakash R; Gan, Thian Y

    2012-01-01

    Naphthenic acids, NAs (classical formula C(n)H(2n+z)O(2), where n is the carbon numbers, z represents zero or negative even integers), found in oil sands process waters (OSPWs), are toxic to aquatic environments depending upon several factors such as pH, salinity, molecular size and chemical structure of NAs. Among various available methods, biodegradation seems to be generally the most cost-effective method for decreasing concentrations of NAs (n ≤ 21) and reducing their associated toxicity in OSPW, however the mechanism by which the biodegradation of NAs occurs are poorly understood. Ozonation is superior over biodegradation in decreasing higher molecular weight alkyl branched NAs (preferentially, n ≥ 22, -6 ≥ z ≥ -12) as well as enabling accelerated biodegradation and reducing toxicity. Photolysis (UV at 254 nm) is effective in cleaving higher molecular weight NAs into smaller fragments that will be easier for microorganisms to degrade, whereas photocatalysis can metabolize selective NAs (0 ≥ z ≥ -6) efficiently and minimize their associated toxicity. Phytoremediation is applicable for metabolizing specific NAs (O(2), O(3), O(4), and O(5) species) and minimizing their associated toxicities. Petroleum coke (PC) adsorption is effective in reducing the more structurally complex NAs (preferentially 12 ≥ n ≥ 18 and z = -10, -12) and their toxicity in OSPWs, depending upon the PC content, pH and temperature. Several factors have influence on the degradation of NAs in OSPWs and aquatic environments, which include molecular mass and chemical structure of NAs, sediment structure, temperature, pH, dissolved oxygen, nutrients, and bacteria types.

  4. Degradation of Amino Acids and Structure in Model Proteins and Bacteriophage MS2 by Chlorine, Bromine, and Ozone.

    Science.gov (United States)

    Choe, Jong Kwon; Richards, David H; Wilson, Corey J; Mitch, William A

    2015-11-17

    Proteins are important targets of chemical disinfectants. To improve the understanding of disinfectant-protein reactions, this study characterized the disinfectant:protein molar ratios at which 50% degradation of oxidizable amino acids (i.e., Met, Tyr, Trp, His, Lys) and structure were observed during HOCl, HOBr, and O3 treatment of three well-characterized model proteins and bacteriophage MS2. A critical question is the extent to which the targeting of amino acids is driven by their disinfectant rate constants rather than their geometrical arrangement. Across the model proteins and bacteriophage MS2 (coat protein), differing widely in structure, methionine was preferentially targeted, forming predominantly methionine sulfoxide. This targeting concurs with its high disinfectant rate constants and supports its hypothesized role as a sacrificial antioxidant. Despite higher HOCl and HOBr rate constants with histidine and lysine than for tyrosine, tyrosine generally was degraded in preference to histidine, and to a lesser extent, lysine. These results concur with the prevalence of geometrical motifs featuring histidines or lysines near tyrosines, facilitating histidine and lysine regeneration upon Cl[+1] transfer from their chloramines to tyrosines. Lysine nitrile formation occurred at or above oxidant doses where 3,5-dihalotyrosine products began to degrade. For O3, which lacks a similar oxidant transfer pathway, histidine, tyrosine, and lysine degradation followed their relative O3 rate constants. Except for its low reactivity with lysine, the O3 doses required to degrade amino acids were as low as or lower than for HOCl or HOBr, indicating its oxidative efficiency. Loss of structure did not correlate with loss of particular amino acids, suggesting the need to characterize the oxidation of specific geometric motifs to understand structural degradation.

  5. Photoelectrochemical synergetic degradation of Acid Orange II with TiO2 modified β-PbO2 electrode

    Institute of Scientific and Technical Information of China (English)

    LI Guoting; QU Jiuhui; WU Rongcheng

    2005-01-01

    Electrochemically assisted photocatalysis is an effective approach to improve photocatalytic efficiency. In this paper, modified β-PbO2 electrode was prepared by TiO2 co-deposition and characterized by SEM and XRD. Then 2.0 g TiO2 modified β-PbO2 electrode (2.0 g TiO2 involved in the 200 mL co-deposition solution) was used in electrochemically assisted photocatalytic degradation of Acid Orange II and the influence of initial pH values was investigated when the potential applied across the electrodes was 1.5 V. When the potential applied was 2.5 V, the difference of the degradation process and the final products were studied. The results indicated that 2.0 g TiO2 modified β-PbO2 electrode was different from the unmodified one in that the β-PbO2 crystals became finer and the electrode became more compact and more uniform. The synergetic effect in electrochemically assisted photocatalytic degradation of Acid Orange II was observed and degradation efficiency and TOC removal were the highest at initial solution pH 2.0. By UV-visible spectral analysis, it was proved that photoelectrochemical synergetic degradation of Acid Orange II went through the step of producing main product maleic acid for the solution at the initial pH 2.0 within 2 h, but the degradation was slow for the solution at the initial pH 12.0.

  6. Quantification of ascorbic acid and acetylsalicylic acid in effervescent tablets by CZE-UV and identification of related degradation products by heart-cut CZE-CZE-MS.

    Science.gov (United States)

    Neuberger, Sabine; Jooß, Kevin; Ressel, Christian; Neusüß, Christian

    2016-12-01

    Capillary electrophoresis is commonly applied for the analysis of pharmaceutical products due to its high separation efficiency and selectivity. For this purpose, electrospray-ionization-(ESI)-interfering additives or electrolytes are often required, which complicates the identification of impurities and degradation products by mass spectrometry (MS). Here, a capillary zone electrophoresis (CZE) method with ultraviolet (UV) absorption detection for the simultaneous determination and quantification of ascorbic acid and acetylsalicylic acid in effervescent tablets was developed. Related degradation products were identified via CZE-CZE-MS. Systematic optimization yielded 100 mM tricine (pH = 8.8) as appropriate background electrolyte, resulting in baseline separation of ascorbic acid, acetylsalicylic acid, and related anionic UV-active degradation products. The CZE-UV method was successfully validated regarding the guidelines of the Food and Drug Administration. The validated method was applied to trace the degradation rate of the active pharmaceutical ingredients at defined ambient conditions. A heart-cut CZE-CZE-MS approach, including a 4-port-nL-valve, was performed for the identification of the observed degradation products. This 2D setup enables a precise cutting of accurate sample volumes (20 nL) and the independent operation of two physically separated CZE dimensions, which is especially beneficial regarding MS detection. Hence, the ESI-interfering tricine electrolyte components were separated from the analytes in a second electrophoretic dimension prior to ESI-MS detection. The degradation products were identified as salicylic acid and mono- and diacetylated ascorbic acid. This setup is expected to be generally applicable for the mass spectrometric characterization of CZE separated analytes in highly ESI-interfering electrolyte systems. Graphical Abstract A CZE-UV method for the quantification of effervescent tablet ingredients and degradation products

  7. Effects of dry method esterification of starch on the degradation characteristics of starch/polylactic acid composites.

    Science.gov (United States)

    Zuo, Ying Feng; Gu, Jiyou; Qiao, Zhibang; Tan, Haiyan; Cao, Jun; Zhang, Yanhua

    2015-01-01

    Maleic anhydride esterified corn starch was prepared by dry method. Esterified starch/polylactic acid (PLA) biodegradable composite was produced via melt extrusion method with blending maleic anhydride esterified corn starch and PLA. The influence of the dry method esterification of starch on the degradation characteristics of starch/PLA composites was investigated by the natural aging degradation which was soil burial method. Test results of mass loss rate showed that the first 30 days of degradation was mainly starch degradation, and the degradation rate of esterified starch/PLA (ES/PLA) was slower than that of native starch/PLA (NS/PLA). Therefore, the damage degree of ES/PLA on the surface and inside was smaller than that of NS/PLA, and the infrared absorption peak intensities of C-O, C=O and C-H were stronger than that of NS/PLA. With the increasing time of soil burial degradation, the damage degree of NS/PLA and ES/PLA on the exterior and interior were gradually increased, whereas the infrared absorption peak intensities of C-O, C=O and C-H were gradually decreased. The XRD diffraction peak intensity of PLA in composites showed an increased trend at first which was then followed by a decreased one along with the increasing time of soil burial degradation, indicating that the degradation of amorphous regions of PLA was earlier than its crystalline regions. When the soil burial time was the same, the diffraction peak intensity of PLA in ES/PLA was stronger than that of NS/PLA. If the degradation time was the same, T0, Ti and residual rate of thermal decomposition of NS/PLA were larger than those of ES/PLA. The tensile strength and bending strength of composites were decreased gradually with soil burial time increasing. Both the tensile strength and bending strength of ES/PLA were stronger than those of NS/PLA.

  8. Modification of Spatial Distribution of 2,4-Dichlorophenoxyacetic Acid Degrader Microhabitats during Growth in Soil Columns

    Science.gov (United States)

    Pallud, C.; Dechesne, A.; Gaudet, J. P.; Debouzie, D.; Grundmann, G. L.

    2004-01-01

    Bacterial processes in soil, including biodegradation, require contact between bacteria and substrates. Knowledge of the three-dimensional spatial distribution of bacteria at the microscale is necessary to understand and predict such processes. Using a soil microsampling strategy combined with a mathematical spatial analysis, we studied the spatial distribution of 2,4-dichlorophenoxyacetic acid (2,4-D) degrader microhabitats as a function of 2,4-D degrader abundance. Soil columns that allowed natural flow were percolated with 2,4-D to increase the 2,4-D degrader abundance. Hundreds of soil microsamples (minimum diameter, 125 μm) were collected and transferred to culture medium to check for the presence of 2,4-D degraders. Spatial distributions of bacterial microhabitats were characterized by determining the average size of colonized soil patches and the average number of patches per gram of soil. The spatial distribution of 2,4-D degrader microhabitats was not affected by water flow, but there was an overall increase in colonized patch sizes after 2,4-D amendment; colonized microsamples were dispersed in the soil at low 2,4-D degrader densities and clustered in patches that were more than 0.5 mm in diameter at higher densities. During growth, spreading of 2,4-D degraders within the soil and an increase in 2,4-D degradation were observed. We hypothesized that spreading of the bacteria increased the probability of encounters with 2,4-D and resulted in better interception of the degradable substrate. This work showed that characterization of bacterial microscale spatial distribution is relevant to microbial ecology studies. It improved quantitative bacterial microhabitat description and suggested that sporadic movement of cells occurs. Furthermore, it offered perspectives for linking microbial function to the soil physicochemical environment. PMID:15128522

  9. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    Directory of Open Access Journals (Sweden)

    Seher Balaban

    2015-01-01

    Full Text Available Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression.

  10. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    Science.gov (United States)

    Balaban, Seher; Lee, Lisa S.; Schreuder, Mark; Hoy, Andrew J.

    2015-01-01

    Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression. PMID:25866768

  11. The omega-3 fatty acid eicosapentaenoic acid accelerates disease progression in a model of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Ping K Yip

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive fatal neurodegenerative disease characterised by loss of motor neurons that currently has no cure. Omega-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA, have many health benefits including neuroprotective and myoprotective potential. We tested the hypothesis that a high level of dietary EPA could exert beneficial effects in ALS. The dietary exposure to EPA (300 mg/kg/day in a well-established mouse model of ALS expressing the G93A superoxide dismutase 1 (SOD1 mutation was initiated at a pre-symptomatic or symptomatic stage, and the disease progression was monitored until the end stage. Daily dietary EPA exposure initiated at the disease onset did not significantly alter disease presentation and progression. In contrast, EPA treatment initiated at the pre-symptomatic stage induced a significantly shorter lifespan. In a separate group of animals sacrificed before the end stage, the tissue analysis showed that the vacuolisation detected in G93A-SOD1 mice was significantly increased by exposure to EPA. Although EPA did not alter motor neurone loss, EPA reversed the significant increase in activated microglia and the astrocytic activation seen in G93A-SOD1 mice. The microglia in the spinal cord of G93A-SOD1 mice treated with EPA showed a significant increase in 4-hydroxy-2-hexenal, a highly toxic aldehydic oxidation product of omega-3 fatty acids. These data show that dietary EPA supplementation in ALS has the potential to worsen the condition and accelerate the disease progression. This suggests that great caution should be exerted when considering dietary omega-3 fatty acid supplements in ALS patients.

  12. Ascorbic acid enhanced activation of oxygen by ferrous iron: A case of aerobic degradation of rhodamine B.

    Science.gov (United States)

    Hou, Xiaojing; Shen, Wenjuan; Huang, Xiaopeng; Ai, Zhihui; Zhang, Lizhi

    2016-05-05

    Molecular oxygen activation by ferrous ions (Fe(II)) in aqueous solution could generate reactive oxygen species (ROS) with high oxidation potential via reaction between Fe(II) and oxygen molecules (Fe(II)/air), however, ROS yielded in the Fe(II)/air process is insufficient for removal of organic pollutants due to the irreversible ferric ions (Fe(III)) accumulation. In this study, we demonstrate that ascorbic acid (AA) could enhance ROS generation via oxygen activation by ferrous irons (AA/Fe(II)/air) and thus improve the degradation of rhodamine (RhB) significantly. It was found that the first-order aerobic degradation rate of RhB in the AA/Fe(II)/air process in the presence of ascorbic acid is more than 4 times that of the Fe(II)/Air system without adding ascorbic acid. The presence of ascorbic acid could relieve the accumulation of Fe(III) by reductive accelerating the Fe(III)/Fe(II) cycles, as well as lower the redox potential of Fe(III)/Fe(II) through chelating effect, leading to enhanced ROS generation for promoting RhB degradation. This study not only sheds light on the effect of ascorbic acid on aerobic Fe(II) oxidation, but also provides a green method for effective remediation of organic pollutants.

  13. MESOPOROUS ACID SOLID AS A CARRIER FOR METALLOCENE CATALYST IN ETHYLENE POLYMERIZATION AND A CATALYST IN CATALYTIC DEGRADATION OF POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    Wen-xi Cheng; Li-ya Shi; Shi-yun Li; Hui Chen; Tao Tang

    2007-01-01

    The possibility of mesoporous acid solid as a carrier for metallocene catalyst in ethylene polymerization and catalyst for polyethylene(PE)catalytic degradation was investigated.Here,HMCM-41 and AlMCM-41.and mesoporous silicoaluminophosphate molecular sieves(SAPO1 and SAPO2)were synthesized and used as acid solid.Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing.The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAO1 mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1.supported metallocene catalyst.This work shows a novel technology for chemical recycling of polyolefin.

  14. A STUDY ON THE DEGRADATION MECHANISM OF PHOTOCROSSLINKING PRODUCTS FORMED BY CYCLIZED POLYISOPRENE-DIAZIDE SYSTEM UNDER THE INFLUENCE OF ALKYL BENZENE SULFONIC ACIDS

    Institute of Scientific and Technical Information of China (English)

    HUANG Junlian; SUN Meng

    1989-01-01

    The degradation mechanism of photocrosslinking products formed by cyclized polyisoprene-diazide system under the influence of the different alkyl benzene sulfonic acids was studied. The effects ofalkyl chain length and the concentration of alkyl benzene sulfonic acids on the rate of degradation reaction were discussed. It was found that in the initial stage of degradation, the cyclicity ratio and the average fused ring number did not change considerably, but the percentage of uncyclized parts content varied significantly. The suitable mechanism was supposed.

  15. Neuraminidase-Dependent Degradation of Polysialic Acid Is Required for the Lamination of Newly Generated Neurons.

    Directory of Open Access Journals (Sweden)

    Mari Sajo

    Full Text Available Hippocampal granule cells (GCs are generated throughout the lifetime and are properly incorporated into the innermost region of the granule cell layer (GCL. Hypotheses for the well-regulated lamination of newly generated GCs suggest that polysialic acid (PSA is present on the GC surface to modulate GC-to-GC interactions, regulating the process of GC migration; however, direct evidence of this involvement is lacking. We show that PSA facilitates the migration of newly generated GCs and that the activity of N-acetyl-α-neuraminidase 1 (NEU1, sialidase 1 cleaves PSA from immature GCs, terminating their migration in the innermost GCL. Developing a migration assay of immature GCs in vitro, we found that the pharmacological depletion of PSA prevents the migration of GCs, whereas the inhibition of PSA degradation with a neuraminidase inhibitor accelerates this migration. We found that NEU1 is highly expressed in immature GCs. The knockdown of NEU1 in newly generated GCs in vivo increased PSA presence on these cells, and attenuated the proper termination of GC migration in the innermost GCL. In conclusion, this study identifies a novel mechanism that underlies the proper lamination of newly generated GCs through the modulation of PSA presence by neuronal NEU1.

  16. Neuraminidase-Dependent Degradation of Polysialic Acid Is Required for the Lamination of Newly Generated Neurons.

    Science.gov (United States)

    Sajo, Mari; Sugiyama, Hiroki; Yamamoto, Hideaki; Tanii, Takashi; Matsuki, Norio; Ikegaya, Yuji; Koyama, Ryuta

    2016-01-01

    Hippocampal granule cells (GCs) are generated throughout the lifetime and are properly incorporated into the innermost region of the granule cell layer (GCL). Hypotheses for the well-regulated lamination of newly generated GCs suggest that polysialic acid (PSA) is present on the GC surface to modulate GC-to-GC interactions, regulating the process of GC migration; however, direct evidence of this involvement is lacking. We show that PSA facilitates the migration of newly generated GCs and that the activity of N-acetyl-α-neuraminidase 1 (NEU1, sialidase 1) cleaves PSA from immature GCs, terminating their migration in the innermost GCL. Developing a migration assay of immature GCs in vitro, we found that the pharmacological depletion of PSA prevents the migration of GCs, whereas the inhibition of PSA degradation with a neuraminidase inhibitor accelerates this migration. We found that NEU1 is highly expressed in immature GCs. The knockdown of NEU1 in newly generated GCs in vivo increased PSA presence on these cells, and attenuated the proper termination of GC migration in the innermost GCL. In conclusion, this study identifies a novel mechanism that underlies the proper lamination of newly generated GCs through the modulation of PSA presence by neuronal NEU1.

  17. Perfluorooctanoic acid degradation in the presence of Fe(III) under natural sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dandan [Beijing Key Laboratory of Water Resource and Environmental Engineering, China University of Geosciences, Beijing 100083 (China); Xiu, Zongming [Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005 (United States); Liu, Fei [Beijing Key Laboratory of Water Resource and Environmental Engineering, China University of Geosciences, Beijing 100083 (China); Wu, Gang [Division of Hematology, Department of Internal Medicine, University of Texas-Medical School at Houston, Houston, TX 77030 (United States); Adamson, Dave; Newell, Charles [GSI Environmental Inc., Houston, TX 77098 (United States); Vikesland, Peter [Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Tsai, Ah-Lim [Division of Hematology, Department of Internal Medicine, University of Texas-Medical School at Houston, Houston, TX 77030 (United States); Alvarez, Pedro J., E-mail: alvarez@rice.edu [Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005 (United States)

    2013-11-15

    Highlights: • PFOA was photo-chemically decomposed in the presence of Fe(III) and natural sunlight. • An alternative reaction pathway involves hydroxyl radical as confirmed by EPR. • Common oxidant-persulfate increased PFOA defluorination extent. -- Abstract: Due to the high bond dissociation energy (BDE) of C-F bonds (116 kcal/mol), perfluorooctanoic acid (PFOA) is a highly recalcitrant pollutant. Herein, we demonstrate a novel method to decompose PFOA in the presence of sunlight and ferric iron (Fe(III)). Under such conditions, 97.8 ± 1.7% of 50 μM PFOA decomposed within 28 days into shorter-chain intermediates and fluoride (F{sup −}), with an overall defluorination extent of 12.7 ± 0.5%. No PFOA was removed under visible light, indicating that UV radiation is required for PFOA decomposition. Spectroscopic analysis indicates that the decomposition reaction is likely initiated by electron-transfer from PFOA to Fe(III), forming Fe(II) and an unstable organic carboxyl radical. An alternative mechanism for the formation of this organic radical involves hydroxyl radicals, detected by electron paramagnetic resonance (EPR). The observation that PFOA can be degraded by Fe(III) under solar irradiation provides mechanistic insight into a possibly overlooked natural attenuation process. Because Fe(III) is abundant in natural waters and sunlight is essentially free, this work represents a potentially important step toward the development of simple and inexpensive remediation strategies for PFOA-contaminated water.

  18. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere

    Science.gov (United States)

    Chang, Feng-Chih; Simcik, M.F.; Capel, P.D.

    2011-01-01

    This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from 3 and from glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥30 mm.

  19. Amycolatopsis thailandensis sp. nov., a poly(L-lactic acid)-degrading actinomycete, isolated from soil.

    Science.gov (United States)

    Chomchoei, Atchareeya; Pathom-Aree, Wasu; Yokota, Akira; Kanongnuch, Chartchai; Lumyong, Saisamorn

    2011-04-01

    A novel actinomycete that was capable of degrading poly(l-lactic acid), strain CMU-PLA07(T), was isolated from soil in northern Thailand. Strain CMU-PLA07(T) had biochemical, chemotaxonomic, morphological and physiological properties that were consistent with its classification in the genus Amycolatopsis. 16S rRNA gene sequence analysis showed that the isolate formed a phyletic line within the genus Amycolatopsis. Strain CMU-PLA07(T) was most similar to Amycolatopsis coloradensis IMSNU 22096(T) (99.5 % 16S rRNA gene sequence similarity) and Amycolatopsis alba DSM 44262(T) (99.4 %). However, strain CMU-PLA07(T) was distinguishable from the type strains of species of the genus Amycolatopsis on the basis of DNA-DNA relatedness and phenotypic data. Therefore, strain CMU-PLA07(T) is considered to represent a novel species of the genus Amycolatopsis, for which the name Amycolatopsis thailandensis sp. nov. is proposed. The type strain is CMU-PLA07(T) ( = JCM 16380(T) = BCC 38279(T)).

  20. Rates of synthesis and degradation of ribosomal ribonucleic acid during differentiation of Dictyostelium discoideum.

    Science.gov (United States)

    Mangiarotti, G; Altruda, F; Lodish, H F

    1981-01-01

    Synthesis of ribosomes and ribosomal ribonucleic acid (RNA) continued during differentiation of Dictyostelium discoideum concurrently with extensive turnover of ribosomes synthesized during both growth and developmental stages. We show here that the rate of synthesis of 26S and 17S ribosomal RNA during differentiation was less than 15% of that in growing cells, and by the time of sorocarp formation only about 25% of the cellular ribosomes had been synthesized during differentiation. Ribosomes synthesized during growth and differentiation were utilized in messenger RNA translation to the same extent; about 50% of each class were on polyribosomes. Ribosome degradation is apparently an all-or-nothing process, since virtually all 80S monosomes present in developing cells could be incorporated into polysomes when growth conditions were restored. By several criteria, ribosomes synthesized during growth and differentiation were functionally indistinguishable. Our data, together with previously published information on changes in the messenger RNA population during differentiation, indicate that synthesis of new ribosomes is not necessary for translation of developmentally regulated messenger RNA. We also establish that the overall rate of messenger RNA synthesis during differentiation is less than 15% of that in growing cells.

  1. Enantioselective degradation and unidirectional chiral inversion of 2-phenylbutyric acid, an intermediate from linear alkylbenzene, by Xanthobacter flavus PA1

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yishan; Han, Ping [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Li, Xiao-yan; Shih, Kaimin [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Gu, Ji-Dong, E-mail: jdgu@hkucc.hku.hk [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China); The Swire Institute of Marine Science, The University of Hong Kong, Shek O, Cape d' Aguilar, Hong Kong (China)

    2011-09-15

    Highlights: {yields} We isolated a Xanthobacter flavus strain PA1 utilizing the racemic 2-PBA and the single enantiomers as the sole source of carbon and energy. {yields} Both (R) and (S) forms of enantiomers can be degraded in a sequential manner in which the (S) disappeared before the (R) form. {yields} The biochemical degradation pathway involves an initial oxidation of the alkyl side chain before aromatic ring cleavage. - Abstract: Microbial degradation of the chiral 2-phenylbutyric acid (2-PBA), a metabolite of surfactant linear alkylbenzene sulfonates (LAS), was investigated using both racemic and enantiomer-pure compounds together with quantitative stereoselective analyses. A pure culture of bacteria, identified as Xanthobacter flavus strain PA1 isolated from the mangrove sediment of Hong Kong Mai Po Nature Reserve, was able to utilize the racemic 2-PBA as well as the single enantiomers as the sole source of carbon and energy. In the presence of the racemic compounds, X. flavus PA1 degraded both (R) and (S) forms of enantiomers to completion in a sequential manner in which the (S) enantiomer disappeared much faster than the (R) enantiomer. When the single pure enantiomer was supplied as the sole substrate, a unidirectional chiral inversion involving (S) enantiomer to (R) enantiomer was evident. No major difference was observed in the degradation intermediates with either of the individual enantiomers when used as the growth substrate. Two major degradation intermediates were detected and identified as 3-hydroxy-2-phenylbutanoic acid and 4-methyl-3-phenyloxetan-2-one, using a combination of liquid chromatography-mass spectrometry (LC-MS), and {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR) spectroscopy. The biochemical degradation pathway follows an initial oxidation of the alkyl side chain before aromatic ring cleavage. This study reveals new evidence for enantiomeric inversion catalyzed by pure culture of environmental bacteria and emphasizes the

  2. Analysis and detection of the herbicides dimethenamid and flufenacet and their sulfonic and oxanilic acid degradates in natural water

    Science.gov (United States)

    Zimmerman, L.R.; Schneider, R.J.; Thurman, E.M.

    2002-01-01

    Dimethenamid [2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)acetamide] and flufenacet [N-(4-fluorophenyl)-N-(1-methylethyl)-2-(5-(trifluoromethyl)-1,3,4- thiadiazol-2-yl)oxy] were isolated by C-18 solid-phase extraction and separated from their ethanesulfonic acid (ESA) and oxanilic acid (OXA) degradates during their elution using ethyl acetate for the parent compound, followed by methanol for the polar degradates. The parent compounds were detected using gas chromatography-mass spectrometry in selected-ion mode. The ESA and OXA degradates were detected using high-performance liquid chromatography-electrospray mass spectrometry (HPLC-ESPMS) in negative-ion mode. The method detection limits for a 123-mL sample ranged from 0.01 to 0.07 μg/L. These methods are compatible with existing methods and thus allow for analysis of 17 commonly used herbicides and 18 of their degradation compounds with one extraction. In a study of herbicide transport near the mouth of the Mississippi River during 1999 and 2000, dimethenamid and its ESA and OXA degradates were detected in surface water samples during the annual spring flushes. For flufenacet, the only detections at the study site were for the ESA degradates in samples collected at the peak of the herbicide spring flush in 2000. The low frequency of detections in surface water likely is due to dimethenamid and flufenacet being relatively new herbicides. In addition, detectable amounts of the stable degradates have not been detected in ground water.

  3. The effect of natural iron oxide and oxalic acid on the photocatalytic degradation of isoproturon: a kinetics and analytical study.

    Science.gov (United States)

    Boucheloukh, H; Remache, W; Parrino, F; Sehili, T; Mechakra, H

    2017-03-27

    The photocatalytic degradation of isoproturon, a persistent toxic herbicide, was investigated in the presence of natural iron oxide and oxalic acid and under UV irradiation. The influence of the relevant parameters such as the pH and the iron oxide and oxalic acid concentrations has been studied. The presence of natural iron oxide and oxalic acid in the system effectively allow the degradation of isoproturon, whereas the presence of t-butyl alcohol adversely affects the phototransformation of the target pollutant, thus indicating that an OH radical initiated the degradation mechanism. The degradation mechanism of isoproturon was investigated by means of GC-MS analysis. Oxidation of both the terminal N-(CH3)2 and isopropyl groups is the initial process leading to N-monodemethylated (NHCH3), N-formyl (N(CH3)CHO), and CHCH3OH as the main intermediates. The substitution of the isopropyl group by an OH group is also observed as a side process.

  4. Evaluation of photolysis and hydrolysis of atrazine and its first degradation products in the presence of humic acids

    Energy Technology Data Exchange (ETDEWEB)

    Prosen, Helena [University of Ljubljana, Faculty of Chemistry and Chemical Technology, Askerceva 5, SI-1000 Ljubljana (Slovenia)]. E-mail: helena.prosen@uni-lj.si; Zupancic-Kralj, Lucija [University of Ljubljana, Faculty of Chemistry and Chemical Technology, Askerceva 5, SI-1000 Ljubljana (Slovenia)

    2005-02-01

    Relative importance of hydrolysis and photolysis of atrazine and its degradation products in aqueous solutions with dissolved humic acids (HA) has been assessed under exposure to sunlight and under UV irradiation. Quantum yield for direct photolysis of atrazine at 254 nm was 0.037 mol photon{sup -1}, the reaction order was 0.8. Atrazine, desethylatrazine and desisopropylatrazine converted to their 2-hydroxy analogs with rate constants 0.02-0.08 min{sup -1} in clear solutions, while addition of HA (300 mg L{sup -1}) caused a 10-fold increase in rate constants. Hydroxyatrazine was not degraded. No evidence of photo-Fenton reaction was found. Under exposure to solar light, atrazine, desethylatrazine and desisopropylatrazine were converted to 2-hydroxy analogs only at pH 2 because of acid hydrolysis and possible contribution of photolysis. At lower HA concentration, only their light-shielding effect was noticed, while at higher concentrations, HA-catalysed hydrolysis prevailed. Hydroxyatrazine concentration diminished at all pH values in solutions without HA exposed to sunlight. - Different humic acid-influenced degradation processes influence atrazine and its degradation products.

  5. Kinetics of carbaryl degradation by anodic Fenton treatment in a humic-acid-amended artificial soil slurry.

    Science.gov (United States)

    Ye, Peng; Kong, Lingjun; Lemley, Ann T

    2009-01-01

    A Fenton-based indirect electrochemical method, anodic Fenton treatment (AFT), developed for destroying and detoxifying pesticides in the aqueous environment, was evaluated for the degradation of a widely used pesticide, carbaryl, in an artificial soil slurry. More than 90% of carbaryl was removed in less than 20 minutes under given experimental conditions. The effect of initial slurry pH, humic acid content, initial carbaryl concentration, Fenton reagent delivery ratio, and soil/water ratio (w/v) were investigated. The results indicate that humic acid content is the key factor that slows down pesticide degradation, most probably because of its pH buffering and adsorption capacity. A kinetic model, which was shown to fit the experimental data quite well (R2 > 0.99), was developed to describe the carbaryl degradation in the soil slurry during the AFT process. In the presence of humic acid, carbaryl degradation kinetics was found to shift to a pseudo-first-order reaction after an "initiation" stage.

  6. Oxidative degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in subcritical and supercritical waters.

    Science.gov (United States)

    Hashimoto, M; Taniguchi, S; Takanami, R; Giri, R R; Ozaki, H

    2010-01-01

    Presence of chlorinated organic compounds in water bodies has become a concern among governments, health authorities and general public. Oxidation of organic compounds in water under high temperature and pressure is considered as a promising technique, but usefulness of the technique to mineralize 2,4-dichlorophenoxyacetic acid (2,4-D) is not well understood. This article aimed to elucidate degradation characteristics of 2,4-D in both subcritical and supercritical waters by laboratory batch experiments. 2,4-D degradation, total organic carbon (TOC) removal and dechlorination increased with increasing reaction time and temperature especially in subcritical waters, while dechlorination was a major step. 2,4-dichlorophenol (2,4-DCP) and acetic acid were the main degradation intermediates both in subcritical and supercritical waters. Though 2,4-D disappeared almost completely in subcritical waters near critical region ( approximately 99%), significant amounts of TOC and organic chlorine still remained as 2,4-DCP and acetic acid. But TOC removal and dechlorination were significantly enhanced ( approximately 95 and 91% respectively) in supercritical waters. Complete mineralization of 2,4-D in subcritical waters required a considerably longer reaction period, while the mineralization was almost complete within a short reaction period in supercritical waters. This is an important information of practical significance for oxidative degradation of chlorinated pesticides similar to 2,4-D.

  7. Acetic acid production from marine algae. Progress report No. 3, January 1, 1978--March 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J.E.; Wise, D.L.

    1978-06-01

    The program for acetic acid production from marine algae has made significant progress in the current quarter. Some of the significant developments during this period are: (1) conversion of the available reducing equivalents in Chondrus crispus to organic acids has been carried to better than 80% completion; (2) thermophilic fermentations produce higher ratios of acetic acid to total acid than is the case for mesophilic fermentations (80% vs. 50%); (3) a membrane extraction process for removing organic acid products has been developed which has potential for commercial use; (4) a large scale fermentation was shown to convert over 50% of the available carbon in five days; (5) a reducing equivalents balance on the large scale fermentation was closed to with 96% of theoretical.

  8. Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17.

    Science.gov (United States)

    Khataee, Alireza; Karimi, Atefeh; Arefi-Oskoui, Samira; Darvishi Cheshmeh Soltani, Reza; Hanifehpour, Younes; Soltani, Behzad; Joo, Sang Woo

    2015-01-01

    Undoped and Pr-doped ZnO nanoparticles were prepared using a simple sonochemical method, and their sonocatalytic activity was investigated toward degradation of Acid Red 17 (AR17) under ultrasonic (US) irradiation. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. The extent of sonocatalytic degradation was higher compared with sonolysis alone. The decolorization efficiency of sonolysis alone, sonocatalysis with undoped ZnO and 5% Pr-doped ZnO was 24%, 46% and 100% within reaction time of 70min, respectively. Sonocatalytic degradation of AR17 increased with increasing the amount of dopant and catalyst dosage and decreasing initial dye concentration. Natural pH was favored the sonocatalytic degradation of AR17. With the addition of chloride, carbonate and sulfate as radical scavengers, the decolorization efficiency was decreased from 100% to 65%, 71% and 89% at the reaction time of 70min, respectively, indicating that the controlling mechanism of sonochemical degradation of AR17 is the free radicals (not pyrolysis). The addition of peroxydisulfate and hydrogen peroxide as enhancer improved the degradation efficiency from 79% to 85% and 93% at the reaction time of 50min, respectively. The result showed good reusability of the synthesized sonocatalyst.

  9. Accelerated weathering-induced degradation of poly(lactic acid) fiber studied by near-infrared (NIR) hyperspectral imaging.

    Science.gov (United States)

    Shinzawa, Hideyuki; Nishida, Masakazu; Tanaka, Toshiyuki; Kanematsu, Wataru

    2012-04-01

    Hydrolysis degradation of a set of drawn poly(lactic acid) (PLA) fibers was induced by an accelerated weathering test, radiating ultraviolet (UV) light under a certain temperature and humidity. The fine features of the transient behavior of the PLA fibers were captured by near-infrared (NIR) hyperspectral imaging. The PLA fibers showed a gradual decrease in mechanical property (e.g., tensile strength), indicating hydrolysis degradation. Thus, the detailed analysis of the spectral variation, in turn, offers useful information on the molecular-level degradation behavior of the drawn PLA fibers. The variation of the spectral intensity as well as band position shift of the crystalline band of PLA was analyzed. The spectral intensity of the crystalline band of PLA showed gradual decrease, suggesting the decrease in molecular weight induced by the hydrolysis degradation. In addition, the crystalline band also exhibited a coinciding shift to the lower wavenumber direction with the weathering test, revealing cleavage-induced crystallization of the PLA samples. Consequently, the hydrolysis degradation induced by the weathering test substantially accelerates predominant degradation of the amorphous structure of the PLA and such variation of the molecular structure, in turn, brings less ductility to the PLA fiber.

  10. Degradation mechanisms of poly (lactic-co-glycolic acid) films in vitro under static and dynamic environment

    Institute of Scientific and Technical Information of China (English)

    HUANG Ying-ying; QI Min; ZHANG Meng; LIU Hong-ze; YANG Da-zhi

    2006-01-01

    To understand their degradation mechanisms,PLGA (50:50) polymer films were prepared and eroded in the static and dynamic medium system. The degradation behavior was characterized through weight-average molecular weight change,mass loss,water uptake,etc. The results show that in dynamic system,significant mass loss begins until 10 d while mass loss does not begin until 30 d later,while weight-average molecular weight decreases observably at the beginning,and the appeasable mass loss happens in 20 d in static system,which suggests that the dynamic degradation rate is slower even than degradation in static medium. A mechanism was proposed that specimens in static medium take up water homogeneously and cause the polymer chains to degrade all over the specimen cross sections,which creates free carboxylic acid groups which lead to a decrease of pH value inside the swollen polymer and accelerate degradation of the polymer. While pH value inside polymer keeps constant in dynamic medium because of flowing of simulated medium,which make the hydrolytic cleavage of ester bonds inside specimen delayed.

  11. Structural Characterization of the Degradation Products of a Minor Natural Sweet Diterpene Glycoside Rebaudioside M under Acidic Conditions

    OpenAIRE

    Prakash, Indra; Chaturvedula, Venkata; Markosyan, Avetik

    2014-01-01

    Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0) and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C-) &

  12. Structural Characterization of the Degradation Products of a Minor Natural Sweet Diterpene Glycoside Rebaudioside M under Acidic Conditions

    OpenAIRE

    Indra Prakash; Venkata Sai Prakash Chaturvedula; Avetik Markosyan

    2014-01-01

    Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0) and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C-) &...

  13. Structural Characterization of the Degradation Products of a Minor Natural Sweet Diterpene Glycoside Rebaudioside M under Acidic Conditions

    OpenAIRE

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash; Markosyan, Avetik

    2014-01-01

    Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0) and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C-) & 2D ...

  14. [Progress in engineering Escherichia coli for production of high-value added organic acids and alcohols].

    Science.gov (United States)

    Wang, Jiming; Liu, Wei; Xu, Xin; Zhang, Haibo; Xian, Mo

    2013-10-01

    Confronted with the gradual exhaustion of the earth's fossil energy resources and the grimmer environmental deterioration, the bio-based process to produce high-value added platform chemicals from renewable biomass is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to various advantages, such as clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. This review focuses on recent progresses in metabolic engineering of E. coli that lead to efficient recombinant biocatalysts for production of high-value organic acids such as succinic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like glycerol and xylitol. Besides, this review also discusses several other platform chemicals, including 2,5-furan dicarboxylic acid, aspartic acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxy-gamma-butyrolactone and sorbitol, which have not been produced by E. coli until now.

  15. Novel 2,4-Dichlorophenoxyacetic Acid Degradation Genes from Oligotrophic Bradyrhizobium sp. Strain HW13 Isolated from a Pristine Environment

    Science.gov (United States)

    Kitagawa, Wataru; Takami, Sachiko; Miyauchi, Keisuke; Masai, Eiji; Kamagata, Yoichi; Tiedje, James M.; Fukuda, Masao

    2002-01-01

    The tfd genes of Ralstonia eutropha JMP134 are the only well-characterized set of genes responsible for 2,4-dichlorophenoxyacetic acid (2,4-D) degradation among 2,4-D-degrading bacteria. A new family of 2,4-D degradation genes, cadRABKC, was cloned and characterized from Bradyrhizobium sp. strain HW13, a strain that was isolated from a buried Hawaiian soil that has never experienced anthropogenic chemicals. The cadR gene was inferred to encode an AraC/XylS type of transcriptional regulator from its deduced amino acid sequence. The cadABC genes were predicted to encode 2,4-D oxygenase subunits from their deduced amino acid sequences that showed 46, 44, and 37% identities with the TftA and TftB subunits of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) oxygenase of Burkholderia cepacia AC1100 and with a putative ferredoxin, ThcC, of Rhodococcus erythropolis NI86/21, respectively. They are thoroughly different from the 2,4-D dioxygenase gene, tfdA, of R. eutropha JMP134. The cadK gene was presumed to encode a 2,4-D transport protein from its deduced amino acid sequence that showed 60% identity with the 2,4-D transporter, TfdK, of strain JMP134. Sinorhizobium meliloti Rm1021 cells containing cadRABKC transformed several phenoxyacetic acids, including 2,4-D and 2,4,5-T, to corresponding phenol derivatives. Frameshift mutations indicated that each of the cadRABC genes was essential for 2,4-D conversion in strain Rm1021 but that cadK was not. Five 2,4-D degraders, including Bradyrhizobium and Sphingomonas strains, were found to have cadA gene homologs, suggesting that these 2,4-D degraders share 2,4-D degradation genes similar to those of strain HW13 cadABC. PMID:11751829

  16. In vitro degradation of Poly-L-co-D, L-lactic acid membranes

    Directory of Open Access Journals (Sweden)

    Grazielle Baraúna

    2012-01-01

    Full Text Available Poly-L-co-D.L-lactic (PLDLA is a bioresorbable polymer whose properties have been studied for degradation sensitivity and its application in medicine. In this study, the potential of PLDLA membranes for temporary implantation was evaluated. PLDLA membranes were prepared with the solvent evaporation technique and characterized by differential scanning calorimetry, gel permeation chromatography, thermogravimetric analysis, scanning electron microscopy and traction tests. The glass transition temperature of the membranes was 59 ºC. Degradation started around 340 ºC during the second week showing pores and fissures on the broken surface. Evident degradation was observed after 16 weeks. Microscopy showed that before degradation PLDLA membranes presented no pores. PLDLA properties of resistance to traction and elasticity module were maintained until the 8th week, and after the 16th week there was a sharp reduction of these properties due to degradation. PLDLA membranes present excellent potential as temporary implantation given their degradation characteristics.

  17. Synthesis and Properties of Degradable Copolymers Com- posed of Poly(E-caprolactone) and 3,4-Dihydroxycinnamic Acid%Synthesis and Properties of Degradable Copolymers Com- posed of Poly(E-caprolactone) and 3,4-Dihydroxycinnamic Acid

    Institute of Scientific and Technical Information of China (English)

    李继航; 施冬健; 徐华青; 胡娜; 东为富; 陈明清

    2012-01-01

    Photoreactive and degradable hyperbranched (HB) copolymers with various 3,4-dihydroxycinnamic acid (DHCA) compositions, poly(e-caprolactone)-co-poly(3,4-dihydroxycinnamic acid) (PCL-co-PDHCA), were ob- tained by thermal melt-polycondensation of PCL and DHCA. The HB structures and the branching degree (BD) of the PCL-co-PDHCA copolymers were confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR). The melting points (Tm) of the PCL-co-PDHCA copolymers changed depending on the PCL and DHCA composition by differential scanning calorimetry (DSC) measurements. Wide angle X-ray dif- fraction (WXRD) analysis showed semi-crystalline of the PCL and PCL-co-PDHCA polymers. The PCL-co-PDHCA copolymers showed good photoreactivities and fluorescent properties. Crosslinking of the cin- namoyl groups in the copolymers caused by UV irradiation affected the thermal stability and wettability slightly. Moreover, the hydrolysis experiments revealed that copolyrners are facile degradable.

  18. Degradation of /sup 14/C-labeled lignins and /sup 14/C-labeled aromatic acids by fusarium solani

    Energy Technology Data Exchange (ETDEWEB)

    Norris, D.M.

    1980-08-01

    Abilities of isolate AF-W1 of Fusarium solani to degrade the side chain and the ring structure of synthetic dehydrogenative polymerizates, aromatic acids, or lignin in sound wood were investigated under several conditions of growth substrate or basal medium and pH. Significant transformations of lignins occurred in 50 days in both unextracted and extracted sound wood substrances with 3% malt as the growth substrate and the pH buffered initially at 4.0 with 2,2-dimethylsuccinate. Degradation of lignin in such woods also occurred under unbuffered pH conditions when a basal medium of either 3% malt or powdered cellulose in deionized water was present. Decomposition of the lignin in these woods did not occur in cultures where D-glucose was present as a growth substrate. F. solani significantly transformed, as measured as evolved /sup 14/CO/sub 2/, both synthetic side chain (beta, gamma)-/sup 14/C- and U-ring-/sup 14/C-labeled lignins in 30 days under liquid culture conditions of only distilled deionized water and no pH adjustment. Degradation of dehydrogenative polymerizates by F. solani was reduced drastically when D2 was the liquid medium. AF-W1 also cleaved the alpha-/sup 14/C from p- hydroxybenzoic acid and evolved /sup 14/CO/sub 2/ from the substrace, (3-/sup 14/C) cinnamic acid. Thus, the fungus cleaved side chain carbon from substrate that originally lacked hydroxyl substitution on the aromatic nucleus. Surprisingly, small amounts of /sup 14/C cleaved from aromatic acids by F. solani were incorporated into cell mass. Initial buffering of the culture medium to pH 4.0 or 5.0 with 0.1 M2,2-dimethylsuccinate significantly increased F. solani degradation of all lignins or aromatic acids. Results indicated that AF-W1 used lignin as a sole carbon source.

  19. Degradation State, Sources, and Reactivity of Dissolved Organic Matter from an Amino Acid Time Series in an Agricultural Watershed

    Science.gov (United States)

    Matiasek, S. J.; Pellerin, B. A.; Spencer, R. G.; Bergamaschi, B. A.; Hernes, P.

    2015-12-01

    A detailed time series of dissolved amino acids was obtained in an agricultural watershed in the northern Central Valley, California, USA to investigate the roles of hydrologic and seasonal changes on the composition of dissolved organic matter (DOM). Total hydrolysable amino acid (THAA) concentrations ranged from 0.55 to 9.96 μM (mean 3.76 ± 1.80 μM) and not only peaked with discharge during winter storms, but also remained elevated throughout the irrigation season when discharge was low. Summer irrigation was a critical hydrologic regime for DOM cycling, since it mobilized DOM similar in concentration and reactivity to DOM released during winter storms for an extended period of time, with the largest amino acid contributions to the dissolved organic carbon (DOC) and the dissolved organic nitrogen (DON) pools (3.4 ‒ 3.7 % DOC-AA, 17.4 ‒ 22.5 % DON-AA), the largest proportion of basic amino acids (B/(B+A) = 0.19 ‒ 0.22), and the largest degradation index values (mean 1.37 ± 0.96). The mole percent of non-protein amino acids, commonly considered as an indicator of microbial degradation, decreased with DOM processing and was highest during summer (mean 4.1 ± 1.1%). A lack of correlation between THAA concentrations and UV-Vis absorbance and fluorescence proxies (including "protein-like" fluorophores B and T) indicated that optical properties may be limited in representing amino acid dynamics in this system. A new parameter for DOM processing derived from trends in individual amino acids demonstrated strong potential for inferring the extent of DOM degradation in freshwater systems. The biogeochemical relevance of irrigation practices is heightened by timing, since the additional export of reactive DOM coincides with enhanced downstream DOM processing in the Sacramento-San Joaquin River Delta, a critical habitat for endangered species serving as water source for 25 million Californians.

  20. Chemopreventive effects of oral gallic acid feeding on tumor growth and progression in TRAMP mice.

    Science.gov (United States)

    Raina, Komal; Rajamanickam, Subapriya; Deep, Gagan; Singh, Meenakshi; Agarwal, Rajesh; Agarwal, Chapla

    2008-05-01

    Our recent studies have identified gallic acid as one of the major constituents of grape seed extract showing strong in vitro anticancer efficacy against human prostate cancer cells. Herein, for the first time, we established the in vivo chemopreventive efficacy of gallic acid against prostate cancer by evaluating its activity against prostate tumor growth and progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) model. At 4 weeks of age, male TRAMP mice were fed with drinking water supplemented with 0.3% and 1% (w/v) gallic acid until 24 weeks of age. Positive control group was fed with regular drinking water for the same period. Our results showed that gallic acid-fed groups had a higher incidence of differentiated lower-grade prostatic tumors at the expense of strong decrease ( approximately 60%; P cancer growth and progression to advanced-stage adenocarcinoma in TRAMP mice via a strong suppression of cell cycle progression and cell proliferation and an increase in apoptosis.

  1. Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. McInerney

    1996-06-24

    The factors that affect the rate and extent of a model aromatic compound, benzoate, in methanogenic environments was studied. Benzoate is degraded to a threshold concentration below which no further substrate degradation occurs. The threshold concentration depended on the substrate concentration and the amount of acetate present. The threshold value was not a function of the kinetic ability of the organism or toxicity of the end products. Rather a minimal Gibb's free energy value may exist where thermodynamic constraints preclude further benzoate degradation. In addition, new bacterial species were isolated and described, that degrade benzoate or reduce iron, cobalt and other metals.

  2. The Promotion Effect of Low-Molecular Hydroxyl Compounds on the Nano-Photoelectrocatalytic Degradation of Fulvic Acid and Mechanism

    Institute of Scientific and Technical Information of China (English)

    Yifan Dong; Jinhua Li; Xuejin Li; Baoxue Zhou

    2016-01-01

    A significant promotion effect of low-molecular hydroxyl compounds (LMHCs) was found in the nano-pho-toelectrocatalytic (NPEC) degradation of fulvic acid (FA), which is a typical kind of humic acid existing widely in natural water bodies, and its influence mechanism was proposed. A TiO2 nanotube arrays (TNAs) material is served as the photoanode. Methanol, ethanediol, and glycerol were chosen as the representative of LMHCs in this study. The adsorption performance of organics on the surface of TNAs was investigated by using the instantaneous photocurrent value. The adsorption constants of FA, methanol, ethanediol, and glycerol were 43.44, 19.32, 7.00, and 1.30, respectively, which indicates that FA has the strongest adsorption property. The degradation performance of these organics and their mixture were observed in a thin-layer reactor. It shows that FA could hardly achieve exhausted mineralization alone, while LMHCs could be easily oxidized completely in the same condition. The degradation degree of FA, which is added LMHCs, improves significantly and the best promotion effect is achieved by glycerol. The promotion effect of LMHCs in the degradation of FA could be contributed to the formation of a tremendous amount of hydroxyl radicals in the NPEC process. The hydroxyl radicals could facilitate the complete degradation of both FA and its intermediate products. Among the chosen LMHCs, glycerol molecule which has three hydroxyls could generate the most hydroxyl radicals and contribute the best effective promotion. This work provides a new way to promote the NPEC degradation of FA and a direction to remove humus from polluted water.

  3. Screening of indigenous oxalate degrading lactic acid bacteria from human faeces and South Indian fermented foods: assessment of probiotic potential.

    Science.gov (United States)

    Gomathi, Sivasamy; Sasikumar, Ponnusamy; Anbazhagan, Kolandaswamy; Sasikumar, Sundaresan; Kavitha, Murugan; Selvi, M S; Selvam, Govindan Sadasivam

    2014-01-01

    Lactic acid bacteria (LAB) have the potential to degrade intestinal oxalate and this is increasingly being studied as a promising probiotic solution to manage kidney stone disease. In this study, oxalate degrading LAB were isolated from human faeces and south Indian fermented foods, subsequently assessed for potential probiotic property in vitro and in vivo. Based on preliminary characteristics, 251 out of 673 bacterial isolates were identified as LAB. A total of 17 strains were found to degrade oxalate significantly between 40.38% and 62.90% and were subjected to acid and bile tolerance test. Among them, nine strains exhibited considerable tolerance up to pH 3.0 and at 0.3% bile. These were identified as Lactobacillus fermentum and Lactobacillus salivarius using 16S rDNA sequencing. Three strains, Lactobacillus fermentum TY5, Lactobacillus fermentum AB1, and Lactobacillus salivarius AB11, exhibited good adhesion to HT-29 cells and strong antimicrobial activity. They also conferred resistance to kanamycin, rifampicin, and ampicillin, but were sensitive to chloramphenicol and erythromycin. The faecal recovery rate of these strains was observed as 15.16% (TY5), 6.71% (AB1), and 9.3% (AB11) which indicates the colonization ability. In conclusion, three efficient oxalate degrading LAB were identified and their safety assessments suggest that they may serve as good probiotic candidates for preventing hyperoxaluria.

  4. Screening of Indigenous Oxalate Degrading Lactic Acid Bacteria from Human Faeces and South Indian Fermented Foods: Assessment of Probiotic Potential

    Directory of Open Access Journals (Sweden)

    Sivasamy Gomathi

    2014-01-01

    Full Text Available Lactic acid bacteria (LAB have the potential to degrade intestinal oxalate and this is increasingly being studied as a promising probiotic solution to manage kidney stone disease. In this study, oxalate degrading LAB were isolated from human faeces and south Indian fermented foods, subsequently assessed for potential probiotic property in vitro and in vivo. Based on preliminary characteristics, 251 out of 673 bacterial isolates were identified as LAB. A total of 17 strains were found to degrade oxalate significantly between 40.38% and 62.90% and were subjected to acid and bile tolerance test. Among them, nine strains exhibited considerable tolerance up to pH 3.0 and at 0.3% bile. These were identified as Lactobacillus fermentum and Lactobacillus salivarius using 16S rDNA sequencing. Three strains, Lactobacillus fermentum TY5, Lactobacillus fermentum AB1, and Lactobacillus salivarius AB11, exhibited good adhesion to HT-29 cells and strong antimicrobial activity. They also conferred resistance to kanamycin, rifampicin, and ampicillin, but were sensitive to chloramphenicol and erythromycin. The faecal recovery rate of these strains was observed as 15.16% (TY5, 6.71% (AB1, and 9.3% (AB11 which indicates the colonization ability. In conclusion, three efficient oxalate degrading LAB were identified and their safety assessments suggest that they may serve as good probiotic candidates for preventing hyperoxaluria.

  5. [Analysis of alkaline CuO degradation products of acid detergent fiber from tobacco leaves by using liquid chromatography].

    Science.gov (United States)

    Hao, Weiqiang; Wang, Leijun; Wu, Shun; Yue, Bangyi; Chen, Qiang; Zhang, Peipei

    2015-07-01

    The acid detergent fiber (ADF) from tobacco leaves was obtained by treating the sample with petroleum ether-ethanol (6:4, v/v), 30 g/L sodium dodecylsulfate and 0.5 mol/L sulphuric acid containing 20 g/L hexadecyl trimethyl ammonium bromide successively. The ADF was degraded by the alkaline CuO oxidation procedure. In this work, six samples of ADF degradation products from tobacco leaves were prepared. The samples were analyzed by using gradient liquid chromatography (LC) where an Ultimate XB C18 column was used as stationary phase, with a mixture of methanol and water as mobile phase, at a column temperature of 35 °C and a flow rate of 0.8 mL/min. Dual wavelengths of 280 nm and 320 nm were chosen for the detection. It was found that there were four characteristic peaks for the ADF degradation products. By taking these peaks as research object, the optimum time for the degradation was found to be 5 h and the sample solution could be kept stable within 7 days. The established method may provide a new approach for the studies of the differences between lignin composition in different tobacco leaves and the relationship between lignin content and the smoking quality of tobacco leaves.

  6. Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives

    Directory of Open Access Journals (Sweden)

    Ghabbour, N.

    2011-03-01

    Full Text Available A total of 177 strains of lactic acid bacteria (LAB were isolated from early-stage Moroccan Picholine green olive fermentation, including Lactobacillus plantarum (44.63%, Lactobacillus pentosus (25.99%, Lactobacillus brevis (9.61% and Pediococcus pentosaceus (19.77%. All the isolates were screened for their tolerance to olive leaf extract and oleuropein. Most of the isolates (85.3% were found able to degrade oleuropein, when evaluated by either oleuropein or 5-Bromo- 4-chloro-3-indolyl β-D-glucuronide (X-Gluc as substrates. The biodegradation capacity of the selected strains of each species was confirmed by HPLC analysis.

    Un total de 177 cepas de bacterias ácido lácticas (LAB fueron aisladas en las primeras etapas de la fermentación de aceitunas verdes marroquíes Picholine, incluyendo Lactobacillus plantarum (44.63%, Lactobacillus pentosus (25.99%, Lactobacillus brevis (9.61% y Pediococcus pentosaceus (19.77%. Todos los aislados fueron evaluados mediante su tolerancia a extractos de hojas de olivo y oleuropeína. La mayoría de los aislados (85,3% degradaron oleuropeína, cuando fueron evaluados usando oleuropeína o 5-Bromo-4-cloro- 3-indolil β-D-glucuronido (X-Gluc como sustrato. La capacidad de biodegradación de las cepas seleccionadas para cada especie fue confirmada mediante análisis por HPLC.

  7. Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, S.D.; Germida, J.J. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    1997-06-01

    Biological remediation of contaminated soil is an effective method of reducing risk to human and ecosystem health. Bacteria and plants might be used to enhance remediation of soil pollutants in situ. This study assessed the potential of bacteria, plants, and plant-bacteria associations to remediate 2-chlorobenzoic acid (2CBA) contaminated soil. Initially, grass viability was assessed in 2CBA-contaminated soil. Soil was contaminated with 2CBA, forage grasses were grown under growth chamber conditions for 42 or 60 d, and the 2CBA concentration in soil was determined by gas chromatography. Only five of 16 forage grasses grew in 2CBA-treated soil. Growth of Bromus inermis had no effect on 2CBA concentration, whereas Agropyron intermedium, B. biebersteinii, A. riparum, and Elymus dauricus decreased 2CBA relative to nonplanted control soil by 32 to 42%. The 12 bacteria isolates were screened for their ability to promote the germination of the five grasses in 2CBA-contaminated soil. Inoculation of A. riparum with Pseudomonas aeruginosa strain R75, a proven plant growth-promoting rhizobacterium, increased seed germination by 80% and disappearance of 2CBA by 20% relative to noninoculated plants. Inoculation of E. dauricus with a mixture of P. savastanoi strain CB35, a 2CBA-degrading bacterium, and P. aeruginosa strain R75 increased disappearance of 2CBA by 112% relative to noninoculated plants. No clear relationship between enhanced 2CBA disappearance and increased plant biomass was found. These results suggest that specific plant-microbial systems can be developed to enhance remediation of pollutants in soil.

  8. Microbial degradation of 2,4-dichlorophenoxyacetic acid on the Greenland ice sheet.

    Science.gov (United States)

    Stibal, Marek; Bælum, Jacob; Holben, William E; Sørensen, Sebastian R; Jensen, Anders; Jacobsen, Carsten S

    2012-08-01

    The Greenland ice sheet (GrIS) receives organic carbon (OC) of anthropogenic origin, including pesticides, from the atmosphere and/or local sources, and the fate of these compounds in the ice is currently unknown. The ability of supraglacial heterotrophic microbes to mineralize different types of OC is likely a significant factor determining the fate of anthropogenic OC on the ice sheet. Here we determine the potential of the microbial community from the surface of the GrIS to mineralize the widely used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Surface ice cores were collected and incubated for up to 529 days in microcosms simulating in situ conditions. Mineralization of side chain- and ring-labeled [(14)C]2,4-D was measured in the samples, and quantitative PCR targeting the tfdA genes in total DNA extracted from the ice after the experiment was performed. We show that the supraglacial microbial community on the GrIS contains microbes that are capable of degrading 2,4-D and that they are likely present in very low numbers. They can mineralize 2,4-D at a rate of up to 1 nmol per m(2) per day, equivalent to ∼26 ng C m(-2) day(-1). Thus, the GrIS should not be considered a mere reservoir of all atmospheric contaminants, as it is likely that some deposited compounds will be removed from the system via biodegradation processes before their potential release due to the accelerated melting of the ice sheet.

  9. Effect of fusarium oxysporum f. sp. lycopersici on the degradation of humic acid associated with Cu, Pb, and Ni: an in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Corrales Escobosa, Alma Rosa; Gutierrez Corona, J.F. [University of Guanajuato, Department of Biology, Guanajuato (Mexico); Landero Figueroa, Julio Alberto; Wrobel, Katarzyna; Wrobel, Kazimierz [University of Guanajuato, Department of Chemistry, Guanajuato (Mexico)

    2009-08-15

    The intent of this work was to gain further insight on the fungus-assisted degradation/solubilization of humic acid and the related changes in metal-binding profiles. In the experimental design, Aldrich reagent humic acid (HA) or HA enriched with Cu, Pb, and Ni (HA(Me)) was added to Fusarium oxysporum f. sp. lycopersici cultures in vitro. The cultures were supplied by different carbon- and nitrogen-containing nutrients (glucose, Glc, or glutamate, Glu and ammonium, NH{sub 4}{sup +}, or nitrate, NO{sub 3}{sup -}, ions, respectively) in order to examine their possible effect on HA and HA(Me) decomposition. During the first 48 h of fungus growth, gradual acidification to pH 2 was observed in medium containing Glc+NH{sub 4}{sup +}, while for other cultures, alkalinization to pH 9 occurred and then, the above conditions were stable up to at least 200 h. Size exclusion chromatography (SEC) with UV/Vis detection showed progressive degradation and solubilization of both HA and HA(Me) with the increasing time of fungus growth. However, the molecular mass distributions of HA-related soluble species were different in the presence of metals (HA(Me)) as referred to HA and were also influenced by the composition of growth medium. The solubilization of Pb, Cu, and Ni and their association with HA molecular mass fractions were studied using inductively coupled plasma mass spectrometry (ICP-MS) detection. Under acidic conditions, relatively high concentrations of low-molecular-mass metallic species were found in culture supernatants, while in alkaline media, metal solubilization was generally poorer. In contrast to low pH culture, SEC-ICP-MS results obtained in alkaline supernatants indicated metal binding to degradation products of humic substances of MM>5 kDa. In summary, the results of this study suggest that fungus-assisted degradation of HA and HA(Me) might be controlled using appropriate N- and C-sources required for fungus growth, which in turn would affect molecular mass

  10. Antagonism between lipid-derived reactive carbonyls and phenolic compounds in the Strecker degradation of amino acids.

    Science.gov (United States)

    Delgado, Rosa M; Hidalgo, Francisco J; Zamora, Rosario

    2016-03-01

    The Strecker-type degradation of phenylalanine in the presence of 2-pentanal and phenolic compounds was studied to investigate possible interactions that either promote or inhibit the formation of Strecker aldehydes in food products. Phenylacetaldehyde formation was promoted by 2-pentenal and also by o- and p-diphenols, but not by m-diphenols. This is consequence of the ability of phenolic compounds to be converted into reactive carbonyls and produce the Strecker degradation of the amino acid. When 2-pentenal and phenolic compounds were simultaneously present, an antagonism among them was observed. This antagonism is suggested to be a consequence of the ability of phenolic compounds to either react with both 2-pentenal and phenylacetaldehyde, or compete with other carbonyl compounds for the amino acids, a function that is determined by their structure. All these results suggest that carbonyl-phenol reactions may be used to modulate flavor formation produced in food products by lipid-derived reactive carbonyls.

  11. Enantiomeric fractioning, degradation and metabolite formation of Mecoprop in subsoils with a phenoxy acid contamination history

    DEFF Research Database (Denmark)

    Frkova, Zuzana; Johansen, Anders; Karlson, Ulrich G.

    2015-01-01

    for their ability to degrade mecoprop under natural and amended conditions. Degradation of mecoprop was studied at elevated and environmentally relevant mecoprop concentrations as affected by nitrate and glucose at nitrate-reducing conditions and at a presence of oxygen (mimicking purging the soil with air. Results...

  12. Research Progress on Microbial Degradation of Degradable Plastics%可降解塑料的微生物降解研究进展

    Institute of Scientific and Technical Information of China (English)

    毛海龙; 白俊岩; 姜虎生; 王战勇

    2014-01-01

    With the widespread using of plastic materials,plastics have caused huge environmental pollution and pressure of waste disposal. Using biodegradation plastics to replace traditional plastics is one of the most important ways to solve the problem. Biodegradation of degradable plastics is completed by microorganisms and their degrading enzymes. This article provides an overview of current research on microbial degradation and makes certain that the im-portance of microorganisms in biodegradable plastics degradation.%塑料材料的广泛使用给环境带了巨大的污染和处理压力,使用可降解塑料替代传统塑料是解决这一问题的重要途径。可降解塑料的生物降解是由相应的微生物和降解酶来完成的。综述了目前常见的生物降解塑料的微生物降解研究和进展情况,明确了微生物在可降解塑料生物降解中的重要性。

  13. Kinetic analysis of acid orange 7 degradation by pulsed discharge plasma combined with activated carbon and the synergistic mechanism exploration.

    Science.gov (United States)

    Guo, He; Wang, Huijuan; Wu, Qiangshun; Zhou, Guangshun; Yi, Chengwu

    2016-09-01

    The synergistic technique of pulsed discharge plasma (PDP) and activated carbon (AC) was built to investigate the kinetics of acid orange 7 (AO7) degradation under different conditions of AC addition, electrode gap, initial pH value of solution, gas variety and gas flow rate. Emission spectra of OH and O, UV-vis absorption spectra of the AO7 solution and TOC removal were measured to illustrate the synergistic mechanism of the PDP and the AC. The obtained results indicated that the kinetic constant of AO7 degradation increased from 0.00947 min(-1) to 0.01419 min(-1) when 4 g AC was added into the PDP system; AO7 degradation was higher in the case of alkaline solution when oxygen was used as the flow gas in the PDP/AC system, 2 L/min oxygen flow was more favorable for the degradation. Results of the relative emission intensities of OH and O indicated the catalytic effect of the AC on the active species formation as well as the important role of the two radicals for the AO7 degradation. There was no new peaks appeared by the UV-vis analysis of the AO7 solution after 60 min treatment. The highest TOC removal in the PDP/AC system was 30.3%, which was achieved under the condition of 4 L/min air flow rate and 3 initial pH value.

  14. Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine.

    Science.gov (United States)

    Callejón, S; Sendra, R; Ferrer, S; Pardo, I

    2014-01-01

    The main objectives of this study were the search for enzymatic activities responsible for biogenic amine (BA) degradation in lactic acid bacteria (LAB) strains isolated from wine, their identification, and the evaluation of their applicability for reducing BAs in wine. Fifty-three percent of the 76 LAB cell extracts showed activity against a mixture of histamine, tyramine, and putrescine when analyzed in-gel. The quantification of the degrading ability for each individual amine was tested in a synthetic medium and wine. Most of the bacteria analyzed were able to degrade the three amines in both conditions. The highest percentages of degradation in wine were those of putrescine: up to 41% diminution in 1 week. Enzymes responsible for amine degradation were isolated and purified from Lactobacillus plantarum J16 and Pediococcus acidilactici CECT 5930 strains and were identified as multicopper oxidases. This is the first report of an efficient BA reduction in wine by LAB. Furthermore, the identity of the enzymes involved has been revealed.

  15. Isolation and characterization of a novel 2-methyl-4-chlorophenoxyacetic acid-degrading Enterobacter sp. strain SE08.

    Science.gov (United States)

    Tan, Lin; Hu, Qiulong; Xiong, Xingyao; Su, Xiaojun; Huang, Yanning; Jiang, Ziwei; Zhou, Qingming; Zhao, Songyi; Zeng, Wei-ai

    2013-10-01

    A bacterial strain (SE08) capable of utilizing 2-methyl-4-chlorophenoxy acetic acid (MCPA) as the sole carbon and energy source for growth was isolated by continuous enrichment culturing in minimal salt medium (MSM) from a long term MCPA exposed soil. This bacterial strain was identified as Enterobacter sp. based on morphological, physiological and biochemical tests, as well as 16S rRNA sequence analysis. Its ability to degrade MCPA was determined using high performance liquid chromatography. The strain SE08 can tolerate unusually high MCPA concentrations (125-2000mg/L). The influences of culturing factors (initial concentration, pH, and temperature) on the bacterial growth and substrate degradation were studied. The results showed that the optimal MCPA degradation occurred at an MCPA concentration of 500mg/L, 30°C and pH 6.0. Under these conditions, 68.5 percent of MCPA in MSM was degraded by SE08, and the OD600nm reached 0.64 after culturing for 72h. The degradation of MCPA could be enhanced by addition of both carbon and nitrogen sources. At an initial MCPA concentration of 500mg/L, when 5g/L glucose and 2.5g/L yeast extract were added into the MSM media, the MCPA degradation was significantly increased to 83.8 percent, and OD600nm was increased to 1.09 after incubation at 30°C and pH 6.0 for 72h. This is the first study showing that an Enterobacter sp. strain is capable of degrading MCPA, which might provide a new approach for the remediation of MCPA contaminated soil and contribute to the limited knowledge about the function of Enterobacter species.

  16. Combined treatment with vitamin B12b and ascorbic acid causes in vitro DNA degradation in tumor cells.

    Science.gov (United States)

    Medvedev, A I; Akatov, V S; Kreshchenko, N D; Solov'eva, M E; Leshchenko, V V; Lezhnev, E I; Yakubovskaya, R I

    2001-04-01

    Incubation of Ehrlich ascites carcinoma and HEp-2 human epidermoid laryngeal carcinoma cells with hydroxycobalamin (vitamin B12b) and ascorbic acid induced generation and accumulation of double-stranded DNA fragments (23,000 b.p. and longer) in cells. The same vitamins alone in the same concentrations produced no such effects. DNA degradation in HEp-2 cells caused by long-term (4 h) incubation with 5-25 microM hydroxycobalamin and ascorbic acid (1:10-1:40 molar ratio) at 37 degrees C was comparable with that induced by gamma-irradiation in a dose of 150 Gy at 4 degrees C.

  17. Gallic acid as a protective antioxidant against anthocyanin degradation and color loss in vitamin-C fortified cranberry juice.

    Science.gov (United States)

    Roidoung, Sunisa; Dolan, Kirk D; Siddiq, Muhammad

    2016-11-01

    The objective of this study was to evaluate different antioxidants for anthocyanin (ACY) retention in vitamin C fortified cranberry juice and assess its quality. Cranberry juice was fortified with 40-80mg/100mL vitamin C and added hesperidin, catechin, and gallic acid at different concentrations. Juice was pasteurized at 85°C for 1min and stored at 23°C for 16days. ACYs, vitamin C, color intensity, and browning index (BI) were evaluated at 2-day intervals. Gallic acid was found to be the most effective antioxidant against ACYs degradation and significantly (pgallic acid-added juice was significantly lower (0.80 vs 1.00) than the control juice. The outcome of this research provided a potential solution of using gallic acid to preserve a health-beneficial component (ACYs), and endogenous red color in cranberry juice.

  18. Photo-degradation of Acid-red 3B dye catalyzed by TiO2 nanotubes

    Institute of Scientific and Technical Information of China (English)

    JIANG Fang; ZHENG Shou-rong; ZHENG Zheng; XU Zhao-yi; WANG Yan-jin

    2006-01-01

    TiO2 nanotube precursor was synthesized by the hydrothermal reaction of TiO2 powders with NaOH solution and the properties of the nanotube materials were tuned using different post-treatments. Transmission electron microscopic (TEM) observation revealed that the nanotube could be obtained by either a direct rinse with acid solution or rinse with distilled water followed by acid solution. The results of X-ray diffraction (XRD) and inductively coupled plasma (ICP) analysis indicated that the nanotube material on the post-treatment. The results of the photocatalytic reaction showed that the degradation of Acid-red 3B dye fitted pseudo-zero-order kinetics and TiO2 nanotube prepared under direct rinse with acid solution exhibited a higher catalytic efficiency compared to other catalysts.

  19. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15.

    Science.gov (United States)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-04-09

    Comparative experiments were conducted to investigate the catalytic ability of MnO(x)/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O3/MnO(x)/SBA-15). Adsorption of CA and its intermediates by MnO(x)/SBA-15 was proved unimportant in O3/MnO(x)/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO3) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO(x)/SBA-15 facilitated the generation of hydroxyl radicals (OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO(x) on SBA-15 were believed to be the main active component in MnO(x)/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more OH.

  20. Amino Acid and Peptide Utilization Profiles of the Fluoroacetate-Degrading Bacterium Synergistetes Strain MFA1 Under Varying Conditions.

    Science.gov (United States)

    Leong, Lex E X; Denman, Stuart E; Hugenholtz, Philip; McSweeney, Christopher S

    2016-02-01

    Synergistetes strain MFA1 is an asaccharolytic ruminal bacterium isolated based on its ability to degrade fluoroacetate, a plant toxin. The amino acid and peptide requirements of the bacterium were investigated under different culturing conditions. The growth of strain MFA1 and its fluoroacetate degradation rate were enhanced by peptide-rich protein hydrolysates (tryptone and yeast extract) compared to casamino acid, an amino acid-rich protein hydrolysate. Complete utilization and preference for arginine, asparagine, glutamate, glycine, and histidine as free amino acids from yeast extract were observed, while the utilization of serine, threonine, and lysine in free form and peptide-bound glutamate was stimulated during growth on fluoroacetate. A predominant peptide in yeast extract preferentially utilized by strain MFA1 was partially characterized by high-liquid performance chromatography-mass spectrometry as a hepta-glutamate oligopeptide. Similar utilization profiles of amino acids were observed between the co-culture of strain MFA1 with Methanobrevibacter smithii without fluoroacetate and pure strain MFA1 culture with fluoroacetate. This suggests that growth of strain MFA1 could be enhanced by a reduction of hydrogen partial pressure as a result of hydrogen removal by a methanogen or reduction of fluoroacetate.

  1. Hydrothermal synthesis spherical TiO{sub 2} and its photo-degradation property on salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Guo Wenlu, E-mail: liu287856624@163.com [School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang 212003 (China); Liu Xiaolin [School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang 212003 (China); Huo Pengwei; Gao Xun; Wu Di; Lu Ziyang; Yan Yongsheng [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2012-07-01

    Anatase TiO{sub 2} spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO{sub 2} consisted of well-defined spheres with size of 3-5 {mu}m. The photocatalytic activity of spherical TiO{sub 2} was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO{sub 2} which was processed at 150 Degree-Sign C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S{sup -1} of the salicylic acid onto TiO{sub 2} (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg{sup -1} of the salicylic acid onto TiO{sub 2} (temperature: 150, time: 48 h).

  2. Heterogeneous photo-Fenton degradation of acid red B over Fe2O3 supported on activated carbon fiber.

    Science.gov (United States)

    Lan, Huachun; Wang, Aiming; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2015-03-21

    Fe2O3 supported on activated carbon fiber (Fe2O3/ACF) was prepared via an impregnation method and characterized by X-ray diffraction, scanning electron microscopy and BET analysis. The results indicated that Fe2O3 with small particle size was highly dispersed on the surface of the ACF and the introduction of Fe2O3 did not change the ACF pore structure. Fe2O3/ACF exhibited a higher Fenton efficiency for the degradation of acid red B (ARB), especially under simulated solar irradiation. Complete decoloration of the ARB solution and 43% removal of TOC could be achieved within 200 min under optimal conditions. It was verified that more ˙OH radicals were generated in the photo-assisted Fenton process and involved as active species in ARB degradation. FTIR analysis indicated that the degradation of ARB was initiated through the cleavage of -N=N-, followed by hydroxylation and opening of phenyl rings to form aliphatic acids, and further oxidation of aliphatic acids would produce CO2 and H2O. Moreover, Fe2O3/ACF maintained its activity after being reused 4 times and the release of iron from the catalyst was found to be insignificant during the Fenton and photo-Fenton processes, indicating that Fe2O3/ACF had good long-term stability. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers

    Directory of Open Access Journals (Sweden)

    A. Hoffer

    2010-03-01

    Full Text Available Aerosols in the size class <2.5 μm (6 daytime and 9 nighttime samples were collected at a pasture site in Rondônia, Brazil, during the intensive biomass burning period of 16–26 September 2002 as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC. Homologous series of dicarboxylic acids (C2–C11 and related compounds (ketocarboxylic acids and α-dicarbonyls were identified using gas chromatography (GC and GC/mass spectrometry (GC/MS. Among the species detected, oxalic acid was found to be the most abundant, followed by succinic, malonic and glyoxylic acids. Average concentrations of total dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the aerosol samples were 2180, 167 and 56 ng m−3, respectively. These are 2–8, 3–11 and 2–16 times higher, respectively, than those reported in urban aerosols, such as in 14 Chinese megacities. Higher ratios of dicarboxylic acids and related compounds to biomass burning tracers (levoglucosan and K+ were found in the daytime than in the nighttime, suggesting the importance of photochemical production. On the other hand, higher ratios of oxalic acid to other dicarboxylic acids and related compounds normalized to biomass burning tracers (levoglucosan and K+ in the daytime provide evidence for the possible degradation of dicarboxylic acids (≥C3 in this smoke-polluted environment. Assuming that these and related compounds are photo-chemically oxidized to oxalic acid in the daytime, and given their linear relationship, they could account for, on average, 77% of the formation of oxalic acid. The remaining portion of oxalic acid may have been directly emitted from biomass burning as suggested by a good correlation with the biomass burning tracers (K+, CO and ECa and organic carbon (OC. However, photochemical production from other precursors could not be excluded.

  4. Association of serum uric acid levels with the progression of Parkinson's disease in Chinese patients

    Institute of Scientific and Technical Information of China (English)

    SUN Cong-cong; LUO Fei-fei; WEI Lei; LEI Mi; LI Guo-fei; LIU Zhuo-lin; LE Wei-dong; XU Ping-yi

    2012-01-01

    Background Uric acid (UA) is suspected to play a neuro-protective role in Parkinson's disease (PD).This study aimed to evaluate whether the serum UA level was associated with the disease progression of PD in a relatively large population of Chinese patients.Methods Serum UA levels were measured from 411 Chinese PD patients and 396 age-matched controls; following the uric acid colorimetric method,the serum creatinine (Scr) levels were also measured to reduce the bias caused by possible differences in renal excretion function.The disease progression was scored by Hoehn and Yahr (H&Y) scales and disease durations; PD group was divided into 3 subgroups according to H&Y scales.Independent-samples ttest was performed to analyze the differences between PD group and control group.Multiple analysis of covariance was performed to analyze the differences between PD subgroups.Spearman rank-correlation was performed to evaluate the associations between serum UA or Scr level and disease progression.Results PD patients were found to have significantly lower levels of serum UA than controls ((243.38±78.91) vs.(282.97±90.80) pmol/L,P<0.01).As the disease progression,the serum UA levels were gradually reduced.There was a significantly inverse correlation of UA levels with H&Y scales (Rs=-0.429,P <0.01) and disease duration (Rs=-0.284,P <0.01) in PD patients of both females and males.No significant difference of the Scr level between PD patients and controls was found ((70.01±14.70) vs.(69.84±16.46) μmol/L),and the Scr level was not involved in disease progression.Conclusion Lower serum UA levels may possess a higher risk of PD,which may be a potential useful biomarker to indicate the progression of PD.

  5. Mechanism of Acetyl Salicylic Acid (Aspirin Degradation under Solar Light in Presence of a TiO2-Polymeric Film Photocatalyst

    Directory of Open Access Journals (Sweden)

    Debjani Mukherjee

    2016-04-01

    Full Text Available Application of titanium dioxide (TiO2 as a photocatalyst has presented a promising avenue for the safe photocatalytic degradation of pollutants. Increasing levels of the release of pharmaceuticals in the environment and formation of the intermediates during their degradation may impose health and environmental risks and therefore require more attention. Photocatalytic degradation of acetylsalicylic acid (aspirin was carried out in the presence of the TiO2-filled polymeric film as a photocatalyst under solar light irradiation. The polymeric film incorporates TiO2 in the matrix, which acts as a photocatalyst under solar illumination and degrades the acetyl salicylic acid (ASA into a range of organic compounds before complete demineralization (formation of carbon dioxide and water as final products. Among the intermediates, acetic acid was found to be present in a larger amount compared to other organic acids. The qualitative/quantitative analyses of the intermediates resulted in the determination of the most probable reaction’s mechanism in the degradation process. The mechanism of degradation of acetylsalicylic acid and its reaction pathway were developed from liquid chromatography/mass spectroscopy (LC/MS, Fourier Transform Infra Red (FTIR and UV spectrophotometric analysis. It was found that hydroxyl groups were dominant in the degradation process compared to electrons and holes generated by TiO2. The total organic carbon (TOC analysis was also carried out to analyze the organic carbon content of the intermediates formed during the course of degradation.

  6. 多溴联苯醚降解和分析研究进展%Research Progresses in Degradation and Analysis of Polybrominated Diphenyl Ethers

    Institute of Scientific and Technical Information of China (English)

    令狐文生; 孙春燕

    2013-01-01

    The distribution of polybrominated diphenyl ethers (PBDEs) in the environment is introduced.The recent research progresses on PBDEs analysis methods and degradation technologies (such as:chemical catalytic degradation,biodegradation and thermal degradation) at home and abroad are reviewed.The direction for further research of PBDEs is prospected.%介绍了多溴联苯醚(PBDEs)在环境中的分布情况,综述了近年来国内外对PBDEs测定方法以及化学催化降解、生物降解和热解等PBDEs降解技术的研究进展,并对PBDEs研究的未来发展方向进行了展望.

  7. Lipoprotein lipase and hydrofluoric acid deactivate both bacterial lipoproteins and lipoteichoic acids, but platelet-activating factor-acetylhydrolase degrades only lipoteichoic acids.

    Science.gov (United States)

    Seo, Ho Seong; Nahm, Moon H

    2009-08-01

    To identify the Toll-like receptor 2 ligand critically involved in infections with gram-positive bacteria, lipoprotein lipase (LPL) or hydrogen peroxide (H(2)O(2)) is often used to selectively inactivate lipoproteins, and hydrofluoric acid (HF) or platelet-activating factor-acetylhydrolase (PAF-AH) is used to selectively inactivate lipoteichoic acid (LTA). However, the specificities of these chemical reactions are unknown. We investigated the reaction specificities by using two synthetic lipoproteins (Pam(3)CSK(4) and FSL-1) and LTAs from pneumococci and staphylococci. Changes in the structures of the two synthetic proteins and the LTAs were monitored by mass spectrometry, and biological activity changes were evaluated by measuring tumor necrosis factor alpha production by mouse macrophage cells (RAW 264.7) following stimulation. PAF-AH inactivated LTA without reducing the biological activities of Pam(3)CSK(4) and FSL-1. Mass spectroscopy confirmed that PAF-AH monodeacylated pneumococcal LTA but did not alter the structure of either Pam(3)CSK(4) or FSL-1. As expected, HF treatment reduced the biological activity of LTA by more than 80% and degraded LTA. HF treatment not only deacylated Pam(3)CSK(4) and FSL-1 but also reduced the activities of the lipoproteins by more than 60%. Treatment with LPL decreased the biological activities by more than 80%. LPL also removed an acyl chain from the LTA and reduced its activity. Our results indicate that treatment with 1% H(2)O(2) for 6 h at 37 degrees C inactivates Pam(3)CSK(4), FSL-1, and LTA by more than 80%. Although HF, LPL, and H(2)O(2) treatments degrade and inactivate both lipopeptides and LTA, PAF-AH selectively inactivated LTA with no effect on the biological and structural properties of the two lipopeptides. Also, the ability of PAF-AH to reduce the inflammatory activities of cell wall extracts from gram-positive bacteria suggests LTA to be essential in inflammatory responses to gram-positive bacteria.

  8. Rheological techniques for determining degradation of polylactic acid in bioresorbable medical polymer systems

    Science.gov (United States)

    Choong, Gabriel Y. H.; Parsons, Andrew J.; Grant, David M.; De Focatiis, Davide S. A.

    2015-05-01

    A method developed in the 1980s for the conversion of linear rheological data to molar mass distribution is revisited in the context of degradable polymers. The method is first applied using linear rheology for a linear polystyrene, for which all conversion parameters are known. A proof of principle is then carried out on four polycarbonate grades. Finally, preliminary results are shown on degradable polylactides. The application of this method to degrading polymer systems, and to systems containing nanofillers, is also discussed. This work forms part of a wider study of bioresorbable nanocomposites using polylactides, novel hydroxyapatite nanoparticles and tailored dispersants for medical applications.

  9. Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440.

    Science.gov (United States)

    Jiménez, José I; Canales, Angeles; Jiménez-Barbero, Jesús; Ginalski, Krzysztof; Rychlewski, Leszek; García, José L; Díaz, Eduardo

    2008-08-12

    The aerobic catabolism of nicotinic acid (NA) is considered a model system for degradation of N-heterocyclic aromatic compounds, some of which are major environmental pollutants; however, the complete set of genes as well as the structural-functional relationships of most of the enzymes involved in this process are still unknown. We have characterized a gene cluster (nic genes) from Pseudomonas putida KT2440 responsible for the aerobic NA degradation in this bacterium and when expressed in heterologous hosts. The biochemistry of the NA degradation through the formation of 2,5-dihydroxypyridine and maleamic acid has been revisited, and some gene products become the prototype of new types of enzymes with unprecedented molecular architectures. Thus, the initial hydroxylation of NA is catalyzed by a two-component hydroxylase (NicAB) that constitutes the first member of the xanthine dehydrogenase family whose electron transport chain to molecular oxygen includes a cytochrome c domain. The Fe(2+)-dependent dioxygenase (NicX) converts 2,5-dihydroxypyridine into N-formylmaleamic acid, and it becomes the founding member of a new family of extradiol ring-cleavage dioxygenases. Further conversion of N-formylmaleamic acid to formic and maleamic acid is catalyzed by the NicD protein, the only deformylase described so far whose catalytic triad is similar to that of some members of the alpha/beta-hydrolase fold superfamily. This work allows exploration of the existence of orthologous gene clusters in saprophytic bacteria and some pathogens, where they might stimulate studies on their role in virulence, and it provides a framework to develop new biotechnological processes for detoxification/biotransformation of N-heterocyclic aromatic compounds.

  10. 2,4-Dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading gene cluster in the soybean root-nodulating bacterium Bradyrhizobium elkanii USDA94.

    Science.gov (United States)

    Hayashi, Shohei; Sano, Tomoki; Suyama, Kousuke; Itoh, Kazuhito

    2016-01-01

    Herbicides 2,4-dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading Bradyrhizobium strains possess tfdAα and/or cadABC as degrading genes. It has been reported that root-nodulating bacteria belonging to Bradyrhizobium elkanii also have tfdAα and cadA like genes but lack the ability to degrade these herbicides and that the cadA genes in 2,4-D-degrading and non-degrading Bradyrhizobium are phylogenetically different. In this study, we identified cadRABCK in the genome of a type strain of soybean root-nodulating B. elkanii USDA94 and demonstrated that the strain could degrade the herbicides when cadABCK was forcibly expressed. cadABCK-cloned Escherichia coli also showed the degrading ability. Because co-spiked phenoxyacetic acid (PAA) could induce the degradation of 2,4-D in B. elkanii USDA94, the lack of degrading ability in this strain was supposed to be due to the low inducing potential of the herbicides for the degrading gene cluster. On the other hand, tfdAα from B. elkanii USDA94 showed little potential to degrade the herbicides, but it did for 4-chlorophenoxyacetic acid and PAA. The 2,4-D-degrading ability of the cad cluster and the inducing ability of PAA were confirmed by preparing cadA deletion mutant. This is the first study to demonstrate that the cad cluster in the typical root-nodulating bacterium indeed have the potential to degrade the herbicides, suggesting that degrading genes for anthropogenic compounds could be found in ordinary non-degrading bacteria. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Stability-indicating methods for the determination of erdosteine in the presence of its acid degradation products.

    Science.gov (United States)

    Moustafa, Nadia M; Badawey, Amr M; Lamie, Nesrine T; El-Aleem, Abd El-Aziz B Abd

    2014-01-01

    Four accurate, sensitive, and reproducible stability-indicating methods for the determination of erdosteine in the presence of its acid degradation products are presented. The first method involves processing the spectra by using a first-derivative method at 229 nm in a concentration range of 10-70 microg/mL. The mean percentage recovery was 100.43 +/- 0.977. The second method is based on ratio-spectra first derivative spectrophotometry at 227.4 and 255 nm over a concentration range of 10-70 microg/mL. The mean percentage recovery was 99.65 +/- 1.122% and 100.02 +/- 1.306% at 227.4 and 255 nm, respectively. The third method utilizes quantitative densitometric evaluation of the TLC of erdosteine in the presence of its acid degradation products, and uses methanol-chloroform-ammonia (7 + 3 +/- 0.01, v/v/v) as the mobile phase. TLC chromatograms were scanned at 235 nm. This method analyzes erdosteine in a concentration range of 2.4-5.6 microg/spot, with a mean percentage recovery of 100.03 +/- 1.015%. The fourth method is HPLC for the simultaneous determination of erdosteine in the presence of its acid degradation products. The mobile phase consists of water-methanol (65 + 35, v/v). The standard curve of erdosteine showed good linearity over a concentration range of 10-80 microg/mL, with a mean percentage recovery of 99.90 +/- 1.207%. These methods were successfully applied to the determination of erdosteine in bulk powder, laboratory-prepared mixtures containing different percentages of the degradation products, and pharmaceutical dosage forms. The validity of results was assessed by applying the standard addition technique. The results obtained agreed statistically with those obtained by a reported method, showing no significant differences with respect to accuracy and precision.

  12. Amino acids in the Pearl River Estuary and adjacent waters: origins, transformation and degradation

    Science.gov (United States)

    Chen, Jianfang; Li, Yan; Yin, Kedong; Jin, Haiyan

    2004-10-01

    Two cruises were conducted in the Pearl River Estuary (PRE) and adjacent coastal waters during July 1999 and 2000 to investigate spatial variation, transformation and degradation of amino acids (AAs). Salinity, suspended sediments (SS), chl a, nutrients, dissolved organic carbon, particulate organic carbon, AAs, and hexosamines were measured and analyzed. Concentrations of particulate hydrolysable AAs (PHAAs), dissolved combined AAs and dissolved free AAs ranged from 0.41 to 12.6 μmol L-1, 1.1 to 4.0 μmol L-1 and 0.15 to 1.10 μmol L-1, respectively. AAs concentrations were low in waters of salinity coincided with the region of the chl a maximum and depletion of dissolved inorganic phosphorus in the coastal plume south of Hong Kong. This indicates that most of the AAs in estuarine and coastal waters were produced through phytoplankton production and AAs might be a temporary sink for inorganic nitrogen. The ratios of AAs/HAs and glucosamine/galactosamine (Glc-NH2/Gal-NH2) were on average, 26.0 and 3.8, respectively, in biogenic particulate matter (chl a >5 μg L-1 and SS20 mg L-1) and reached the lowest values of 5.8 and 1.4 in sediments. In particular, the ratios of AAs/HAs, Glc-NH2/Gal-NH2 were low in the upper or northwest side of the estuary where turbidity was high. This indicated that these AAs were "old", likely due to resuspension of refractory organic matter from sediments or zooplankton grazing modification and bacterial reworking as the salt wedge advanced upstream near the bottom. Apparently, the dynamics of AAs in the PRE appeared to be governed by biological production processes and estuarine circulation in the estuary. As the chl a maximum developed downstream in the estuarine and coastal plume and the salt wedge moved upstream at the bottom, AAs increased and were subjected to sinking as particulates, grazing by zooplankton and reworking by bacterial activity. Sinking AAs would be transformed and modified in the lower layer, which would be brought

  13. [Research progress and application prospect of near-infrared spectroscopy in analysis of food amino acid].

    Science.gov (United States)

    Yu, Xiao-Lan; Xu, Ning; He, Yong

    2014-09-01

    To investigate the progress and application of near infrared spectroscopy (NIR) used to detect amino acids in the growth of crops and food processing process. With online searching databases including ISI (Web of Knowledge), CNKI (China Knowledge Network), summarize the detection of chemical value using high performance liquid chromatography (HPLC) and chemometric methods involved in the application of NIR used to analyze amino acids in food, meanwhile summarize the data, materials and main topics in relevant original literature. Overview the methods of chemical value detection using HPLC and chemometric analysis, their applications in detecting the quality of crops, determining the content of water, amino acids and polyphenol in green tea, detecting the quality of feed and determining the content of amino acids in cheese, ham and meat products, We forecasted the application of NIR in determining the content of amino acids in food and analyzed its merits and drawbacks. The development of NIR's application in amino acids detection should be based on the HPLC detection, and the problem of model transfer mainly restricts its large-scale promotion currently. Online analysis can monitor the entire reaction and change process from raw materials to products and thus meets the needs of real-time monitoring food quality from production to sales, and it will be an important direction for future.

  14. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Vakhrusheva, Tatyana V. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Sokolov, Alexey V.; Kostevich, Valeria A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Research Institute for Experimental Medicine, Russian Academy of Medical Science, Saint Petersburg (Russian Federation); Gusev, Alexandr A.; Gusev, Sergey A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Melnikova, Viktoriya I. [Institute of Developmental Biology, Russian Academy of Science, Moscow (Russian Federation); Lobach, Anatolii S. [Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka (Russian Federation)

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  15. Acridone acetic acid, sodium salt, as an agent to stop vitiligo progression: a pilot study.

    Science.gov (United States)

    Korobko, Igor V; Lomonosov, Konstantin M

    2014-01-01

    Vitiligo progression is attributed to immune system malfunctioning, thus immunomodulating compounds might be beneficial in stopping vitiligo progression which is a prerequisite for successful repigmentation. The goal of this study was to assess efficacy of acridone acetic acid, sodium salt (Na-AAA), an immunomodulating compound with favorable safety profile, in stabilizing active vitiligo, and to reveal prognostic factors of treatment outcome. Sixty consecutive patients with progressing nonsegmental vitiligo were treated with 10 i.m. injections of Na-AAA every other day. Disease stability was assessed in 1, 3, 6, and 12 months post-treatment. Statistical analysis was applied to correlate treatment outcome and available clinical parameters. Of the 60 patients treated, vitiligo stopped progression in 44 patients (73.3%). Older age (p = 0.0219), age of 35 and older (p = 0.0189, odds ratio (OR) = 5.2, 95% confidence interval (CI) 1.30-20.84) or age of 40 and older (p = 0.0039, OR = 6.48, 95% CI 1.86-22.61), longer disease duration (p = 0.0234), pre-treatment interleukin-6 level over 2 pg/mL (p = 0.0005, OR = 13.7, 95% CI 2.97-63), and over the reference threshold value 5.9 pg/mL (p = 0.0009, OR = 25.8, 95% CI 2.8-239) as well as presence of other autoimmune diseases (p = 0.038, OR = 7.0, 95% CI 1.14-42.97) were negative prognostic factors of treatment success. In conclusion, acridone acetic acid, sodium salt, emerges as an efficient option for stopping vitiligo progression.

  16. Full factorial experimental design applied to oxalic acid photocatalytic degradation in TiO2 aqueous suspension

    Directory of Open Access Journals (Sweden)

    N. Barka

    2014-11-01

    Full Text Available Full factorial experimental design technique was used to study the main effects and the interaction effects between operational parameters in the photocatalytic degradation of oxalic acid in a batch photo-reactor using TiO2 aqueous suspension. The important parameters which affect the removal efficiency of oxalic acid such as agitation, initial concentration, volume of the solution and TiO2 dosage were investigated. The parameters were coded as X1, X2, X3 and X4, consecutively, and were investigated at two levels (−1 and +1. The effects of individual variables and their interaction effects for dependent variables, namely, photocatalytic degradation efficiency (% were determined. From the statistical analysis, the most effective parameters in the photocatalytic degradation efficiency were initial concentration and volume of solution. The interaction between initial concentration, volume of solution and TiO2 dosage was the most influencing interaction. However, the interaction between agitation, initial concentration and volume of solution was the least influencing parameter.

  17. Perfluorinated carboxylic and sulphonic acids in surface water media from the regions of Tibetan Plateau: Indirect evidence on photochemical degradation?

    Science.gov (United States)

    Yamazaki, Eriko; Falandysz, Jerzy; Taniyasu, Sachi; Hui, Ge; Jurkiewicz, Gabriela; Yamashita, Nobuyoshi; Yang, Yong-Liang; Lam, Paul K S

    2016-01-01

    Perfluorinated surfactants and repellents are synthetic substances that have found numerous industrial and customer applications. Due to their persistence, at least two groups of these substances-perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonic acids (PFSAs)-are diffused widely in the environment. It is hypothesized that the Tibetan Plateau, is one of few unique places on the Earth, due to its topography, specifically the vast space and high elevation above sea level, geographic location, climate, high solar radiation, lack of industry, little urbanization and general lack of significant direct sources of pollution. There it is believed possible to gain an insight into atmospheric fate (possible photochemical degradation of higher molecular mass and formation of lower molecular mass PFCAs and PFSAs) of PFASs under un-disturbed environmental conditions. Ultratrace analytical method for PFCAs and PFSAs and use of transportation and field blanks, laboratory blanks and isotopically labelled surrogates for recovery control has allowed the determination of nine perfluorinated carboxylic acids and six perfluorinated sulfonic acids at ultra-trace levels in water based samples from the alpine dimension regions of the Tibetan Plateau, the eastern slope of Minya Konka peak at the eastern edge of the Tibetan Plateau, and also from the city of Chengdu from the lowland of the Sichuan Province in China. The specific compositional pattern of PFCAs and PFSAs and low levels of pollution with those compounds were observed in the central region of the Tibetan Plateau and in the region adjacent to the peaks of Minya Konka in the Eastern Tibetan Plateau. The fingerprint of the compositional pattern of PFCAs and PFSAs in water samples in the central region of the Tibetan Plateau and in the alpine region adjacent to the peaks of Minya Konka in the Eastern Tibetan Plateau may be explained by the result of photochemical degradation with dealkylation of longer chain

  18. Application of vibrational spectroscopy in the in vitro studies of carbon fiber-polylactic acid composite degradation.

    Science.gov (United States)

    Blazewicz, Marta; Gajewska, Maria Chomyszyn; Paluszkiewicz, Czeslawa

    1999-05-01

    Vibrational spectroscopy was used for assessment of new material for stomatology, for guided tissue regeneration (GTR) techniqe.Implants applied in the healing of periodontal defects using GTR technique have to meet stringent requirements concerning their chemical as well physical properties.At present the implants prepared from two layers membranes differing in porosity in their outer and inner layers are studied clinically. Composite plates prepared by us consist of three layers: polylactic acid film, carbon fibres coated with polylactic acid and carbon fabric.Vibrational spectroscopic studies of the material; polylactic acid- carbon fiber have made it possible to analyse chemical reactions occurring between the polymer and carbon surface. Analysis of the IR spectra of samples treated in Ringer solution allowed to describe the phenomena resulting from the composite degradation. It was shown that material biostability is related to the presence of carbon fibers.

  19. Screening and characterization of purine nucleoside degrading lactic acid bacteria isolated from Chinese sauerkraut and evaluation of the serum uric acid lowering effect in hyperuricemic rats.

    Directory of Open Access Journals (Sweden)

    Ming Li

    Full Text Available Hyperuricemia is well known as the cause of gout. In recent years, it has also been recognized as a risk factor for arteriosclerosis, cerebrovascular and cardiovascular diseases, and nephropathy in diabetic patients. Foods high in purine compounds are more potent in exacerbating hyperuricemia. Therefore, the development of probiotics that efficiently degrade purine compounds is a promising potential therapy for the prevention of hyperuricemia. In this study, fifty-five lactic acid bacteria isolated from Chinese sauerkraut were evaluated for the ability to degrade inosine and guanosine, the two key intermediates in purine metabolism. After a preliminary screening based on HPLC, three candidate strains with the highest nucleoside degrading rates were selected for further characterization. The tested biological characteristics of candidate strains included acid tolerance, bile tolerance, anti-pathogenic bacteria activity, cell adhesion ability, resistance to antibiotics and the ability to produce hydrogen peroxide. Among the selected strains, DM9218 showed the best probiotic potential compared with other strains despite its poor bile resistance. Analysis of 16S rRNA sequences showed that DM9218 has the highest similarity (99% to Lactobacillus plantarum WCFS1. The acclimated strain DM9218-A showed better resistance to 0.3% bile salt, and its survival in gastrointestinal tract of rats was proven by PCR-DGGE. Furthermore, the effects of DM9218-A in a hyperuricemia rat model were evaluated. The level of serum uric acid in hyperuricemic rat can be efficiently reduced by the intragastric administration of DM9218-A (P<0.05. The preventive treatment of DM9218-A caused a greater reduction in serum uric acid concentration in hyperuricemic rats than the later treatment (P<0.05. Our results suggest that DM9218-A may be a promising candidate as an adjunctive treatment in patients with hyperuricemia during the onset period of disease. DM9218-A also has potential

  20. Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis.

    Science.gov (United States)

    Cawley, Niamh; Solanky, Bhavana S; Muhlert, Nils; Tur, Carmen; Edden, Richard A E; Wheeler-Kingshott, Claudia A M; Miller, David H; Thompson, Alan J; Ciccarelli, Olga

    2015-09-01

    Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = -0.403 mM, 95% confidence intervals -0.792, -0.014, P = 0.043) and sensorimotor cortex (adjusted difference = -0.385 mM, 95% confidence intervals -0.667, -0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid concentration in the

  1. Chemically modified amino porphyrin/TiO2 for the degradation of Acid Black 1 under day light illumination.

    Science.gov (United States)

    Krishnakumar, Balu; Balakrishna, Avula; Arranja, Cláudia T; Dias, Carlos M F; Sobral, Abilio J F N

    2017-04-05

    In this paper, for the first time, chemically modified 5,10,15,20-meso-tetra-(para-amino)-phenyl-porphyrin/TiO2 (TPAPP/TiO2) was prepared and used for the degradation of an azo dye Acid Black 1 (AB 1) under direct sunlight. Initially, TiO2 was prepared by sol-gel method. Before making a TPAPP/TiO2 composite, the surface modification of TiO2 was carried out with glycidoxypropyltrimethoxy silane (GPTMS) which acts as a coupling agent. This is an epoxy terminated silane and could easily bond to the amino group of TPAPP through epoxy cleavage. The formation of TPAPP/TiO2 was confirmed by different characterization techniques such as FT-IR, XRD, SEM and DRS. The photocatalytic activity of TiO2 was highly influenced by TPAPP. A mechanism was proposed for AB 1 degradation by TPAPP/TiO2 under sun light.

  2. Phytoremediation potential of duckweed (Lemna minor L.) in degradation of C.I. Acid Blue 92: artificial neural network modeling.

    Science.gov (United States)

    Khataee, A R; Movafeghi, A; Torbati, S; Salehi Lisar, S Y; Zarei, M

    2012-06-01

    In present study, the potential of duckweed (Lemna minor L.) for degradation of an azo dye C.I. Acid Blue 92 (AB92) has been investigated. The effect of operational parameters such as initial dye concentration, pH, temperature and amount of plant on the efficiency of biological decolorization process was determined. The reusability of Lemna minor L. in long term repetitive operations was also examined. Growth and some biochemical parameters (photosynthetic pigments content, superoxide dismutase, catalase and peroxidase activity) were used to detect the toxic effects of AB92 on duckweed plant. The biological degradation compounds formed in the present process were analyzed by GC-MS technique. In addition, an artificial neural network (ANN) model was expanded to predict the biological decolorization efficiency. The obtained data indicated that ANN provide realistic predictive performance (R(2)=0.954). Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Chemically modified amino porphyrin/TiO2 for the degradation of Acid Black 1 under day light illumination

    Science.gov (United States)

    Krishnakumar, Balu; Balakrishna, Avula; Arranja, Cláudia T.; Dias, Carlos M. F.; Sobral, Abilio J. F. N.

    2017-04-01

    In this paper, for the first time, chemically modified 5,10,15,20-meso-tetra-(para-amino)-phenyl-porphyrin/TiO2 (TPAPP/TiO2) was prepared and used for the degradation of an azo dye Acid Black 1 (AB 1) under direct sunlight. Initially, TiO2 was prepared by sol-gel method. Before making a TPAPP/TiO2 composite, the surface modification of TiO2 was carried out with glycidoxypropyltrimethoxy silane (GPTMS) which acts as a coupling agent. This is an epoxy terminated silane and could easily bond to the amino group of TPAPP through epoxy cleavage. The formation of TPAPP/TiO2 was confirmed by different characterization techniques such as FT-IR, XRD, SEM and DRS. The photocatalytic activity of TiO2 was highly influenced by TPAPP. A mechanism was proposed for AB 1 degradation by TPAPP/TiO2 under sun light.

  4. Accumulation of aspartic acid421- and glutamic acid391-cleaved tau in neurofibrillary tangles correlates with progression in Alzheimer disease.

    Science.gov (United States)

    Basurto-Islas, Gustavo; Luna-Muñoz, Jose; Guillozet-Bongaarts, Angela L; Binder, Lester I; Mena, Raul; García-Sierra, Francisco

    2008-05-01

    Truncations of tau protein at aspartic acid421 (D421) and glutamic acid391 (E391) residues are associated with neurofibrillary tangles (NFTs) in the brains of Alzheimer disease (AD) patients. Using immunohistochemistry with antibodies to D421- and E391-truncated tau (Tau-C3 and MN423, respectively), we correlated the presence of NFTs composed of these truncated tau proteins with clinical and neuropathologic parameters in 17 AD and 23 non-AD control brains. The densities of NFTs composed of D421- or E391-truncated tau correlated with clinical dementia index and Braak staging in AD. Glutamic acid391 tau truncation was prominent in the entorhinal cortex, whereas D421 truncation was prominent in the subiculum, suggesting that NFTs composed of either D421- or E391-truncated tau may be formed mutually exclusively in these areas. Both truncations were associated with the prevalence of the apolipoprotein E epsilon4 allele. By double labeling, intact tau in NFTs was commonly associated with D421-cleaved tau but not with E391-truncated tau; D421-cleaved tau was never associated with E391-truncated tau. These results indicate that tau is not randomly proteolyzed at different domains, and that proteolysis occurs sequentially from the C-terminus to inner regions of tau in AD progression. Identification of NFTs composed of tau at different stages of truncation may facilitate assessment of neurofibrillary pathology in AD.

  5. INHIBITION OF FATTY ACID DESATURASES IN Drosophila melanogaster LARVAE BLOCKS FEEDING AND DEVELOPMENTAL PROGRESSION.

    Science.gov (United States)

    Wang, Yiwen; da Cruz, Tina Correia; Pulfemuller, Alicia; Grégoire, Stéphane; Ferveur, Jean-François; Moussian, Bernard

    2016-05-01

    Fatty acid desaturases are metabolic setscrews. To study their systemic impact on growth in Drosophila melanogaster, we inhibited fatty acid desaturases using the inhibitor CAY10566. As expected, the amount of desaturated lipids is reduced in larvae fed with CAY10566. These animals cease feeding soon after hatching, and their growth is strongly attenuated. A starvation program is not launched, but the expression of distinct metabolic genes is activated, possibly to mobilize storage material. Without attaining the normal size, inhibitor-fed larvae molt to the next stage indicating that the steroid hormone ecdysone triggers molting correctly. Nevertheless, after molting, expression of ecdysone-dependent regulators is not induced. While control larvae molt a second time, these larvae fail to do so and die after few days of straying. These effects are similar to those observed in experiments using larvae deficient for the fatty acid desaturase1 gene. Based on these data, we propose that the ratio of saturated to unsaturated fatty acids adjusts a sensor system that directs feeding behavior. We also hypothesize that loss of fatty acid desaturase activity leads to a block of the genetic program of development progression indirectly by switching on a metabolic compensation program. © 2016 Wiley Periodicals, Inc.

  6. Recent Progress in Nucleic Acid Aptamer-Based Biosensors and Bioassays

    Directory of Open Access Journals (Sweden)

    Yingfu Li

    2008-11-01

    Full Text Available As the key constituents of the genetic code, the importance of nucleic acids to life has long been appreciated. Despite being composed of only four structurally similar nucleotides, single-stranded nucleic acids, as in single-stranded DNAs and RNAs, can fold into distinct three-dimensional shapes due to specific intramolecular interactions and carry out functions beyond serving as templates for protein synthesis. These functional nucleic acids (FNAs can catalyze chemical reactions, regulate gene expression, and recognize target molecules. Aptamers, whose name is derived from the Latin word aptus meaning “to fit”, are oligonucleotides that can bind their target ligands with high affinity and specificity. Since aptamers exist in nature but can also be artificially isolated from pools of random nucleic acids through a process called in vitro selection, they can potentially bind a diverse array of compounds. In this review, we will discuss the research that is being done to develop aptamers against various biomolecules, the progress in engineering biosensors by coupling aptamers to signal transducers, and the prospect of employing these sensors for a range of chemical and biological applications. Advances in aptamer technology emphasizes that nucleic acids are not only the fundamental molecules of life, they can also serve as research tools to enhance our understanding of life. The possibility of using aptamer-based tools in drug discovery and the identification of infectious agents can ultimately augment our quality of life.

  7. Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions.

    Science.gov (United States)

    Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Zhang, Hui; Lu, Yahai

    2014-01-01

    Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus) and Firmicutes (mainly consisting of Desulfotomaculum) were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, "Shengli Cluster" and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes.

  8. Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions.

    Directory of Open Access Journals (Sweden)

    Lei Cheng

    Full Text Available Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus and Firmicutes (mainly consisting of Desulfotomaculum were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, "Shengli Cluster" and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes.

  9. Structural characterization of the acid-degraded secondary cell wall polymer of Geobacillus stearothermophilus PV72/p2.

    Science.gov (United States)

    Petersen, Bent O; Sára, Margit; Mader, Christoph; Mayer, Harald F; Sleytr, Uwe B; Pabst, Martin; Puchberger, Michael; Krause, Eberhard; Hofinger, Andreas; Duus, Jens Ø; Kosma, Paul

    2008-06-09

    The secondary cell wall polymer (SCWP) from Geobacillus stearothermophilus PV72/p2, which is involved in the anchoring of the surface-layer protein to the bacterial cell wall layer, is composed of 2-amino-2-deoxy- and 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-mannose, and 2-acetamido-2-deoxy-D-mannuronic acid. The primary structure of the acid-degraded polysaccharide--liberated by HF-treatment from the cell wall--was determined by high-field NMR spectroscopy and mass spectrometry using N-acetylated and hydrolyzed polysaccharide derivatives as well as Smith-degradation. The polysaccharide was shown to consist of a tetrasaccharide repeating unit containing a pyruvic acid acetal at a side-chain 2-acetamido-2-deoxy-alpha-D-mannopyranosyl residue. Substoichiometric substitutions of the repeating unit were observed concerning the degree of N-acetylation of glucosamine residues and the presence of side-chain linked 2-acetamido-2-deoxy-beta-D-glucopyranosyl units: [Formula: see text].

  10. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation.

    Science.gov (United States)

    Chung, Jinwook; Lee, Mikyung; Ahn, Jaehwan; Bae, Wookeun; Lee, Yong-Woo; Shim, Hojae

    2009-02-15

    Wet air oxidation processes are to treat highly concentrated organic compounds including refractory materials, sludge, and night soil, and usually operated at supercritical water conditions of high temperature and pressure. In this study, the effects of operational conditions including temperature, pressure, and oxidant dose on sludge degradation and conversion into subsequent intermediates such as organic acids were investigated at low critical wet oxidation conditions. The reaction time and temperature in the wet air oxidation process was shown an important factor affecting the liquefaction of volatile solids, with more significant effect on the thermal hydrolysis reaction rather than the oxidation reaction. The degradation efficiency of sludge and the formation of organic acids were improved with longer reaction time and higher reaction temperature. For the sludge reduction and the organic acids formation under the wet air oxidation, the optimal conditions for reaction temperature, time, pressure, and oxidant dose were shown approximately 240 degrees C, 30min, 60atm, and 2.0L/min, respectively.

  11. Electrochemical synthesis of FeS{sub 2} thin film: An effective material for peroxide sensing and terephthalic acid degradation

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Sumanta [Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103 WB (India); Mondal, Palash; Tripathi, Subhankar [Department of Chemistry, Vivekananda Mahavidyalaya, Burdwan, 713103 WB (India); Mondal, Anup [Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103 WB (India); Chakraborty, Biswajit, E-mail: biswajitmailbag@gmail.com [Department of Chemistry, Vivekananda Mahavidyalaya, Burdwan, 713103 WB (India)

    2015-10-15

    Electrochemically FeS{sub 2} thin films have been synthesized on ITO substrates at room temperature (25 °C). UV–Vis, X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) were used for the characterization of nanostructure FeS{sub 2} thin films. Two probe I–V measurements convey that the material is p type and a p-n junction (diode) was found to be developed between FeS{sub 2} and ITO layer. Cyclic voltametry study shows that FeS{sub 2}/ITO electrode facilitates the reduction of hydrogen peroxide and exhibits excellent electro-catalytic activity towards its sensing. Photocatalytic study reveals that the synthesized thin films are also efficient to degrade terephthalic acid (TA). - Graphical abstract: Electrochemically FeS{sub 2} thin films have been synthesized on ITO substrate. The synthesized material is effective for the reduction of H{sub 2}O{sub 2} and the sensitivity of the material is strongly dependent on pH and temperature. Photocatalytic study reveals that the material is quite effective towards decomposition of terephthalic acid. These results indicate that the material can play a dual role as pollutant cleanup for environmental interest. - Highlights: • Electrochemically FeS{sub 2} thin films are synthesized. • The material is effective to sense the H{sub 2}O{sub 2} and degrade terephthalic acid. • It plays a dual role as pollutant cleanup for environmental interest.

  12. Ligand-functionalized degradable polyplexes formed by cationic poly(aspartic acid)-grafted chitosan-cyclodextrin conjugates.

    Science.gov (United States)

    Song, Hai-Qing; Li, Rui-Quan; Duan, Shun; Yu, Bingran; Zhao, Hong; Chen, Da-Fu; Xu, Fu-Jian

    2015-03-19

    Polypeptide-based degradable polyplexes attracted considerable attention in drug delivery systems. Polysaccharides including cyclodextrin (CD), dextran, and chitosan (CS) were readily grafted with cationic poly(aspartic acid)s (PAsps). To further enhance the transfection performances of PAsp-based polyplexes, herein, different types of ligand (folic acid, FA)-functionalized degradable polyplexes were proposed based on the PAsp-grafted chitosan-cyclodextrin conjugate (CCPE), where multiple β-CDs were tied on a CS chain. The FA-functionalized CCPE (i.e., CCPE-FA) was obtained via a host-guest interaction between the CD units of CCPE and the adamantane (Ad) species of Ad-modified FA (Ad-FA). The resulting CCPE/pDNA, CCPE-FA/pDNA, and ternary CCPE-FA/CCPE/pDNA (prepared by layer-by-layer assembly) polyplexes were investigated in detail using different cell lines. The CCPE-based polyplexes displayed much higher transfection efficiencies than the CS-based polyplexes reported earlier by us. The ternary polyplexes of CCPE-FA/CCPE/pDNA produced excellent gene transfection abilities in the folate receptor (FR)-positive tumor cells. This work would provide a promising means to produce highly efficient polyplexes for future gene therapy applications.

  13. Phenylalanine induces Burkholderia cenocepacia phenylacetic acid catabolism through degradation to phenylacetyl-CoA in synthetic cystic fibrosis sputum medium.

    Science.gov (United States)

    Yudistira, Harry; McClarty, Leigh; Bloodworth, Ruhi A M; Hammond, Sydney A; Butcher, Haley; Mark, Brian L; Cardona, Silvia T

    2011-09-01

    Synthetic cystic fibrosis sputum medium (SCFM) is rich in amino acids and supports robust growth of Burkholderia cenocepacia, a member of the Burkholderia cepacia complex (Bcc). Previous work demonstrated that B. cenocepacia phenylacetic acid (PA) catabolic genes are up-regulated during growth in SCFM and are required for full virulence in a Caenorhabditis elegans host model. In this work, we investigated the role of phenylalanine, one of the aromatic amino acids present in SCFM, as an inducer of the PA catabolic pathway. Phenylalanine degradation intermediates were used as sole carbon sources for growth and gene reporter experiments. In addition to phenylalanine and PA, phenylethylamine, phenylpyruvate, and 2-phenylacetamide were usable as sole carbon sources by wild type B. cenocepacia K56-2, but not by a PA catabolism-defective mutant. EMSA analysis showed that the binding of PaaR, the negative regulator protein of B. cenocepacia PA catabolism, to PA regulatory DNA could only be relieved by phenylacetyl-Coenzyme A (PA-CoA), but not by any of the putative phenylalanine degradation intermediates. Taken together, our results show that in B. cenocepacia, phenylalanine is catabolized to PA and induces PA catabolism through PA activation to PA-CoA. Thus, PaaR shares the same inducer with PaaX, the regulator of PA catabolism in Escherichia coli, despite belonging to a different protein family.

  14. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes.

    Science.gov (United States)

    Vlasova, Irina I; Vakhrusheva, Tatyana V; Sokolov, Alexey V; Kostevich, Valeria A; Gusev, Alexandr A; Gusev, Sergey A; Melnikova, Viktoriya I; Lobach, Anatolii S

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H(2)O(2) system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes.

  15. Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophenoxyacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Quan Xiangchun, E-mail: xchquan@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Tang Hua; Xiong Weicong; Yang Zhifeng [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2010-07-15

    Aerobic sludge granules pre-grown on glucose were bioaugmented with a plasmid pJP4 carrying strain Pseudomonas putida SM1443 in a fed-batch microcosm system and a lab-scale sequencing batch reactor (SBR) to enhance their degradation capacity to 2,4-dichlorophenoxyacetic acid (2,4-D). The fed-batch test results showed that the bioaugmented aerobic granule system gained 2,4-D degradation ability faster and maintained a more stable microbial community than the control in the presence of 2,4-D. 2,4-D at the initial concentration of about 160 mg/L was nearly completely removed by the bioaugmented granule system within 62 h, while the control system only removed 26% within 66 h. In the bioaugmented SBR which had been operated for 90 days, the seeded aerobic granules pre-grown on glucose successfully turned into 2,4-D degrading granules through bioaugmentation and stepwise increase of 2,4-D concentration from 8 to 385 mg/L. The granules showed a compact structure and good settling ability with the mean diameter of about 450 {mu}m. The degradation kinetics of 2,4-D by the aerobic granules can be described with the Haldane kinetics model with V{sub max} = 31.1 mg 2,4-D/gVSS h, K{sub i} = 597.9 mg/L and K{sub s} = 257.3 mg/L, respectively. This study shows that plasmid mediated bioaugmentation is a feasible strategy to cultivate aerobic granules degrading recalcitrant pollutants.

  16. Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Quan, Xiang-chun; Tang, Hua; Xiong, Wei-cong; Yang, Zhi-feng

    2010-07-15

    Aerobic sludge granules pre-grown on glucose were bioaugmented with a plasmid pJP4 carrying strain Pseudomonas putida SM1443 in a fed-batch microcosm system and a lab-scale sequencing batch reactor (SBR) to enhance their degradation capacity to 2,4-dichlorophenoxyacetic acid (2,4-D). The fed-batch test results showed that the bioaugmented aerobic granule system gained 2,4-D degradation ability faster and maintained a more stable microbial community than the control in the presence of 2,4-D. 2,4-D at the initial concentration of about 160 mg/L was nearly completely removed by the bioaugmented granule system within 62 h, while the control system only removed 26% within 66 h. In the bioaugmented SBR which had been operated for 90 days, the seeded aerobic granules pre-grown on glucose successfully turned into 2,4-D degrading granules through bioaugmentation and stepwise increase of 2,4-D concentration from 8 to 385 mg/L. The granules showed a compact structure and good settling ability with the mean diameter of about 450 microm. The degradation kinetics of 2,4-D by the aerobic granules can be described with the Haldane kinetics model with V(max)=31.1 mg 2,4-D/gVSS h, K(i)=597.9 mg/L and K(s)=257.3 mg/L, respectively. This study shows that plasmid mediated bioaugmentation is a feasible strategy to cultivate aerobic granules degrading recalcitrant pollutants. 2010 Elsevier B.V. All rights reserved.

  17. The correlation of Mycolic acid production by a toluene degrading Mycobacterium in the presence of cholesterol

    Directory of Open Access Journals (Sweden)

    Giti Emtiazi *

    2013-01-01

    Full Text Available Introduction: Cell wall mycolic acids (MA from Mycobacterium tuberculosis are presented as antigens that can be used to detect antibodies as surrogate markers of active Tuberculosis (TB disease, even in HIV coinfected patients. The use of the complex mixtures of natural MA is complicated by apparent antibody cross-reactivity with cholesterol. Mycolic acid is not only related to diagnosis of TB disease but also similar structure of mycolic acid in saprophyte strains are excellent candidate for drug delivery especially for nasal spray. The aim of this work was to investigate the effect of cholesterol on mycolic acid synthesis and potential of saprophyte mycolic acid to drug delivery. Materials and methods: Toluene enrichment medium was used for isolation of mycolic acid producing bacteria. A fast growing, acid fast bacterium was identified by PCR reaction and the related sequence of 16S rRNA gene was deposited in the NCBI Genbank with accession number jn64433. Production of mycolic acid was investigated by high-performance liquid chromatography (HPLC in different media. Results: Here the effect of cholesterol on biosynthesis of mycolic acids by saprophyte Mycobacterium isolated from marine water is was reported. HPLC analyses showed the mycolic acid extracted from saprophyte. Mycobacterium had one, early, cluster of peaks, like Mycobacterium tuberculosis and Mobacterium bovis.This strain is a fast growing bacterium and cholesterol might promote longer fatty acid production. Discussion and conclusion: The similarity between mycolic acid from isolated and patogenic mycobacteria offers that mycolic acid obtained from saprophyte Mycobacterium can be useful as a drug carrier. Addition of egg yolk to media induced longer fatty acid production by isolating that is suitable for delivery of drugs into the macrophage.

  18. Bile Acids in Polycystic Liver Diseases: Triggers of Disease Progression and Potential Solution for Treatment.

    Science.gov (United States)

    Perugorria, Maria J; Labiano, Ibone; Esparza-Baquer, Aitor; Marzioni, Marco; Marin, Jose J G; Bujanda, Luis; Banales, Jesús M

    2017-01-01

    Polycystic liver diseases (PLDs) are a group of genetic hereditary cholangiopathies characterized by the development and progressive growth of cysts in the liver, which are the main cause of morbidity. Current therapies are based on surgical procedures and pharmacological strategies, which show short-term and modest beneficial effects. Therefore, the determination of the molecular mechanisms of pathogenesis appears to be crucial in order to find new potential targets for pharmacological therapy. Ductal plate malformation during embryogenesis and abnormal cystic cholangiocyte growth and secretion are some of the key mechanisms involved in the pathogenesis of PLDs. However, the discovery of the presence of bile acids in the fluid collected from human cysts and the intrahepatic accumulation of cytotoxic bile acids in an animal model of PLD (i.e. polycystic kidney (PCK) rat) suggest a potential role of impaired bile acid homeostasis in the pathogenesis of these diseases. On the other hand, ursodeoxycholic acid (UDCA) has emerged as a new potential therapeutic tool for PLDs by promoting the inhibition of cystic cholangiocyte growth in both PCK rats and highly symptomatic patients with autosomal dominant polycystic kidney disease (ADPKD: most common type of PLD), and improving symptoms. Chronic treatment with UDCA normalizes the decreased intracellular calcium levels in ADPKD human cholangiocytes in vitro, which results in the reduction of their baseline-stimulated proliferation. Moreover, UDCA decreases the liver concentration of cytotoxic bile acids in PCK rats and the bile acid-dependent enhanced proliferation of cystic cholangiocytes. Here, the role of bile acids in the pathogenesis of PLDs and the potential therapeutic value of UDCA for the treatment of these diseases are reviewed and future lines of investigation in this field are proposed.

  19. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, June 1-August 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1978-08-01

    Studies concerning the cellobiose properties of Clostridium thermocellum were started to determine if the cellulose degradation end products can be enhanced for glucose (with a subsequent decrease in cellobiose). Implications of preliminary studies indicate that the cells or the enzyme(s) responsible for converting cellobiose to glucose can be manipulated environmentally and genetically to increase the final yield of glucose. The second area of effort is to the production of chemical feedstocks. Three fermentations have been identified for exploration. Preliminary reports on acrylic acid acetone/butanol, and acetic acid production by C. propionicum, C. acetobutylicum, and C. thermoaceticum, respectively, are included. (DMC)

  20. Synthesis of new poly(ether-urethane-urea)s based on amino acid cyclopeptide and PEG: study of their environmental degradation.

    Science.gov (United States)

    Rafiemanzelat, Fatemeh; Fathollahi Zonouz, Abolfazl; Emtiazi, Giti

    2013-02-01

    Conventional polyurethanes (PUs) are among biomaterials not intended to degrade but are susceptible to hydrolytic, oxidative and enzymatic degradation in vivo. Biodegradable PUs are typically prepared from polyester polyols, aliphatic diisocyanates and chain extenders. In this work we have developed a degradable monomer based on α-amino acid to accelerate hard segment degradation. Thus a new class of degradable poly(ether-urethane-urea)s (PEUUs) was synthesized via direct reaction of 4,4'-methylene-bis(4-phenylisocyanate) (MDI), L-leucine anhydride (LA) and polyethylene glycol with molecular weight of 1,000 (PEG-1000) as polyether soft segment. The resulting polymers are environmentally biodegradable and thermally stable. Decomposition temperatures for 5 % weight loss occurred above 300 °C by TGA in nitrogen atmospheres. Some structural characterization and physical properties of these polymers before and after degradation in soil, river water and sludge are reported. The environmental degradation of the polymer films was investigated by SEM, FTIR, TGA, DSC, GPC and XRD techniques. A significant rate of degradation occurred in PEUU samples under river water and sludge condition. The polymeric films were not toxic to E. coli (Gram negative), Staphylococcus aureus and Micrococcus (Gram positive) bacteria and showed good biofilm formation on polymer surface. Our results show that hard segment degraded selectively as much as soft segment and these polymers are susceptible to degradation in soil and water. Thus our study shows that new environment-friendly polyurethane, which can degrade in soil, river water and sludge, is synthesized.

  1. Modeling of olive oil degradation and oleic acid inhibition during chemostat and batch cultivation of Bacillus thermoleovorans IHI-91.

    Science.gov (United States)

    Becker, P; Märkl, H

    2000-12-20

    Olive oil degradation by the thermophilic lipolytic strain Bacillus thermoleovorans IHI-91 in chemostat and batch culture was modeled to obtain a general understanding of the underlying principles and limitations of the process and to quantify its stoichiometry. Chemostat experiments with olive oil as the sole carbon source were successfully described using the Monod chemostat model extended by terms for maintenance requirements and wall growth. Maintenance requirements and biomass yield coefficients were in the range reported for mesophiles. For a chemostat experiment at D = 0.3 h(-1) the model was validated up to an olive oil feed concentration of about 3.0 g L(-1) above which an inhibitory effect occurred. Further analysis showed that the liberated oleic acid is the main cause for this inhibition. Using steady-state oleic acid concentrations measured in chemostat experiments with olive oil as substrate it was possible to derive a kinetic expression for oleic acid utilization, showing that a concentration of 430 mg L(-1) leads to a complete growth inhibition. Oleic acid accumulation observed during batch fermentations can be predicted using a model involving growth-associated lipase production and olive oil hydrolysis. Simulations confirmed that this accumulation is the cause for the sudden growth cessation occurring in batch fermentations with higher olive oil start concentrations. Further, an oscillatory behavior, as observed in some chemostat experiments, can also be predicted using the latter model. This work clearly demonstrates that thermophilic lipid degradation by Bacillus thermoleovorans IHI-91 is limited by long-chain fatty acid beta-oxidation rather than oil hydrolysis.

  2. Sorption, desorption, and degradation of (4-chloro-2-methylphenoxy)acetic acid in representative soils of the Danubian Lowland, Slovakia.

    Science.gov (United States)

    Hiller, Edgar; Tatarková, Veronika; Šimonovičová, Alexandra; Bartal', Mikuláš

    2012-04-01

    Herbicide leaching through soil into groundwater greatly depends upon sorption-desorption and degradation phenomena. Batch adsorption, desorption and degradation experiments were performed with acidic herbicide MCPA and three soil types collected from their respective soil horizons. MCPA was found to be weakly sorbed by the soils with Freundlich coefficient values ranging from 0.37 to 1.03 mg(1-1/)(n) kg(-1) L(1/)(n). It was shown that MCPA sorption positively correlated with soil organic carbon content, humic and fulvic acid carbon contents, and negatively with soil pH. The importance of soil organic matter in MCPA sorption by soils was also confirmed by performing sorption experiments after soil organic matter removal. MCPA sorption in these treated soils decreased by 37-100% compared to the original soils. A relatively large part of the sorbed MCPA was released from soils into aqueous solution after four successive desorption steps, although some hysteresis occurred during desorption of MCPA from all soils. Both sorption and desorption were depth-dependent, the A soil horizons exhibited higher retention capacity of the herbicide than B or C soil horizons. Generally, MCPA sorption decreased in the presence of phosphate and low molecular weight organic acids. Degradation of MCPA was faster in the A soil horizons than the corresponding B or C soil horizons with half-life values ranging from 4.9 to 9.6 d in topsoils and from 11.6 to 23.4 d in subsoils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. 沸石对亚硝胺吸附及降解的研究进展%Progress on the Adsorption and Degradation of Nitrosamines by Zeolites

    Institute of Scientific and Technical Information of China (English)

    万密密; 朱建华

    2012-01-01

    Nitrosamines are well-recognized carcinogens, and nitrosamines in smoke causes health hazard by smoking. How to adsorb and catalytically degrade nitrosamines in the environmental tobacco smoke with complex composition becomes the challenge facing zeolite material. In this article some latest research progresses in adsorption and catalytic degradation of nitrosamines by zeolites are reviewed. The special selectivity of zeolite toward nitrosamines and the degradation of nitrosamines by zeolite are described, and how to elevate the efficiency of zeolite with metal compounds modification is introduced. Also, the research progress on the removal of nitrosamines is summarized. Finally the development of new functional materials to eliminate the pollution of nitrosamines is prospected.%亚硝胺是吸烟导致癌症的重要因素,如何在成分复杂的环境烟气中吸附和催化降解亚硝胺成为沸石吸附和催化的难题.本文剖析了沸石对亚硝胺的特殊选择性吸附,讨论了沸石降解亚硝胺的机制以及金属氧化物对沸石去除亚硝胺效率的促进作用,并回顾了相关研究领域的动态和展望环境净化沸石新材料的发展方向.

  4. Degradation and contamination of perfluorinated sulfonic acid membrane due to swelling-dehydration cycles

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Morgen, Per; Skou, Eivind Morten

    to the membrane degradation in direct methanol fuel cells (DMFCs), where liquid water has direct contact with the electrolyte. An ex-situ experiment was established with swelling-dehydration cycles on the membrane. However, formation of sulfonic anhydride was not detected during the entire treatment; instead...... contamination from calcium was found the primary reason for the deterioration of the membrane properties....

  5. Engineering a fungal peroxidase that degrades lignin at very acidic pH

    NARCIS (Netherlands)

    Fernandez-Fueyo, E.; Ruiz-Duenas, F.J.; Martinez, A.T.

    2014-01-01

    Background Ligninolytic peroxidases are divided into three families: manganese peroxidases (MnPs), lignin peroxidases (LiPs), and versatile peroxidases (VPs). The latter two are able to degrade intact lignins, as shown using nonphenolic lignin model compounds, with VP oxidizing the widest range of r

  6. Engineering a fungal peroxidase that degrades lignin at very acidic pH

    NARCIS (Netherlands)

    Fernandez-Fueyo, E.; Ruiz-Duenas, F.J.; Martinez, A.T.

    2014-01-01

    Background Ligninolytic peroxidases are divided into three families: manganese peroxidases (MnPs), lignin peroxidases (LiPs), and versatile peroxidases (VPs). The latter two are able to degrade intact lignins, as shown using nonphenolic lignin model compounds, with VP oxidizing the widest range of

  7. Agrofibre reinforced poly(lactic acid) composites: Effect of moisture on degradation and mechanical properties

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Beck, B.; Müssig, J.

    2010-01-01

    Natural fibre reinforced PLA composites are a 100% biobased material with a promising mechanical properties profile. However, natural fibres are hygroscopic whereas PLA is sensitive to hydrolytic degradation under melt processing conditions in the presence of small amounts of water. Here, we determi

  8. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes

    DEFF Research Database (Denmark)

    Andersen, Gorm; Bjornberg, Olof; Polakova, Silvia;

    2008-01-01

    Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyv...

  9. Humic acid degradation by the synthesized flower-like Ag/ZnO nanostructure as an efficient photocatalyst

    OpenAIRE

    Ghaneian, Mohammad Taghi; Morovati, Pouran; Ehrampoush, Mohammad Hassan; Tabatabaee, Masoumeh

    2014-01-01

    Nano-sized flower-like Ag/ZnO was synthesized by a simple method using zinc acetate and silver acetate under hydrothermal condition. Powder X-ray diffraction (PXRD) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the synthesized powder. Nano flower-like Ag/ZnO was used as a photocatalyst for degradation of humic acid in aqueous solution. The disappearance of HA was analyzed by measuring the absorbance of sample at special wavelength (254 nm...

  10. Photocatalytic Degradation of Humic Acid by Fe-TiO2 Supported on Spherical Activated Carbon with Enhanced Activity

    OpenAIRE

    2013-01-01

    Fe-TiO2 supported on spherical activated carbon (Fe-TiO2/SAC) with different Fe contents was prepared by heat treatment process after ion exchange method. The prepared Fe-TiO2/SAC was characterized by SEM, EDS, and BET. Batch experiments for photocatalytic degradation of humic acid by Fe-TiO2/SAC were carried out in the fluidized bed photoreactor. It was found that 0 wt% Fe-TiO2/SAC had high photocatalytic activity in the wavelength range of 100~280 nm. However, Fe-TiO2/SAC with Fe contents o...

  11. Functional analyses of three acyl-CoA synthetases involved in bile acid degradation in Pseudomonas putida DOC21.

    Science.gov (United States)

    Barrientos, Álvaro; Merino, Estefanía; Casabon, Israël; Rodríguez, Joaquín; Crowe, Adam M; Holert, Johannes; Philipp, Bodo; Eltis, Lindsay D; Olivera, Elías R; Luengo, José M

    2015-01-01

    Pseudomonas putida DOC21, a soil-dwelling proteobacterium, catabolizes a variety of steroids and bile acids. Transposon mutagenesis and bioinformatics analyses identified four clusters of steroid degradation (std) genes encoding a single catabolic pathway. The latter includes three predicted acyl-CoA synthetases encoded by stdA1, stdA2 and stdA3 respectively. The ΔstdA1 and ΔstdA2 deletion mutants were unable to assimilate cholate or other bile acids but grew well on testosterone or 4-androstene-3,17-dione (AD). In contrast, a ΔstdA3 mutant grew poorly in media containing either testosterone or AD. When cells were grown with succinate in the presence of cholate, ΔstdA1 accumulated Δ(1/4) -3-ketocholate and Δ(1,4) -3-ketocholate, whereas ΔstdA2 only accumulated 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC). When incubated with testosterone or bile acids, ΔstdA3 accumulated 3aα-H-4α(3'propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP) or the corresponding hydroxylated derivative. Biochemical analyses revealed that StdA1 converted cholate, 3-ketocholate, Δ(1/4) -3-ketocholate, and Δ(1,4) -3-ketocholate to their CoA thioesters, while StdA2 transformed DHOPDC to DHOPDC-CoA. In contrast, purified StdA3 catalysed the CoA thioesterification of HIP and its hydroxylated derivatives. Overall, StdA1, StdA2 and StdA3 are acyl-CoA synthetases required for the complete degradation of bile acids: StdA1 and StdA2 are involved in degrading the C-17 acyl chain, whereas StdA3 initiates degradation of the last two steroid rings. The study highlights differences in steroid catabolism between Proteobacteria and Actinobacteria.

  12. Photo induced dissociation of amino acids free from thermal degradation effects: A case study applied to DL-Valine

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Á. Miranda da; Mocellin, A. [Instituto, Universidade de Brasília, Box 04455, 70919-970 Brasília-DF (Brazil); Farrokhpour, H. [Chemistry Department, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Mundim, M.S.P. [Instituto, Universidade de Brasília, Box 04455, 70919-970 Brasília-DF (Brazil); Brito, A. Naves de, E-mail: arnaldo.naves@gmail.com [Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, 13083-859 Campinas, SP (Brazil)

    2013-08-15

    We present a careful study of the thermal degradation effects in the mass spectrum of DL-Valine using a quadrupole mass spectrometer and a time of flight – mass spectrometer. This allows setting the temperature of 95 ± 10 °C as threshold for the sublimation of our solid sample. Based on the assignments for each ionic fragment detected, it is possible to separate the mass peaks in groups, explaining what are the principal bond breaks involved in the specific ionic yield, whose procedure can be extended to other amino acids.

  13. Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers

    Directory of Open Access Journals (Sweden)

    S. Kundu

    2009-09-01

    Full Text Available Aerosols in the size class <2.5 μm (6 daytime and 9 nighttime samples were collected at a pasture site in Rondônia, Brazil, during the intensive biomass burning period of 16–26 September 2002 as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC. Homologous series of dicarboxylic acids (C2–C11 and related compounds (ketocarboxylic acids and dicarbonyls were identified using gas chromatography and GC/mass spectrometry (GC/MS. Among the species detected, oxalic acid was found to be the most abundant, followed by succinic, malonic and glyoxylic acids. Average concentrations of total dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the aerosol samples were 2180, 167 and 56 ng m−3, respectively. These are 2–8, 3–11 and 2–16 times higher, respectively, than those reported in urban aerosols, such as in 14 Chinese megacities. Higher ratios of dicarboxylic acids and related compounds to biomass burning tracers (levoglucosan and K+ were found in the daytime than in the nighttime, suggesting an importance of photochemical production. On the other hand, higher ratios of oxalic acid to other dicarboxylic acids and related compounds normalized to biomass burning tracers (levoglucosan and K+ in the daytime provide evidence for the possible degradation of dicarboxylic acids (≥C3 in this smoke-polluted environment. Assuming that these and related compounds are photochemically oxidized to oxalic acid in the daytime and given their linear relationship, they could account for, on average, 77% of the formation of oxalic acid. The remaining portion of oxalic acid may have been directly emitted from biomass burning as suggested by a good correlation with the biomass burning tracers (K+, CO and ECa and organic carbon (OC. However, photochemical production from other precursors

  14. New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation.

    Science.gov (United States)

    González-Martínez, Alejandro; Calderón, Kadiya; González-López, Jesús

    2016-05-01

    High concentrations of proteins and amino acids can be found in wastewater and wastewater stream produced in anaerobic digesters, having shown that amino acids could persist over different managements for nitrogen removal affecting the nitrogen removal processes. Nitrogen removal is completely necessary because of their implications and the significant adverse environmental impact of ammonium such as eutrophication and toxicity to aquatic life on the receiving bodies. In the last decade, the treatment of effluents with high ammonium concentration through anammox-based bioprocesses has been enhanced because these biotechnologies are cheaper and more environmentally friendly than conventional technologies. However, it has been shown that the presence of important amounts of proteins and amino acids in the effluents seriously affects the microbial autotrophic consortia leading to important losses in terms of ammonium oxidation efficiency. Particularly the presence of sulfur amino acids such as methionine and cysteine has been reported to drastically decrease the autotrophic denitrification processes as well as affect the microbial community structure promoting the decline of ammonium oxidizing bacteria in favor of other phylotypes. In this context we discuss that new biotechnological processes that improve the degradation of protein and amino acids must be considered as a priority to increase the performance of the autotrophic denitrification biotechnologies.

  15. Enhanced Photocatalytic Degradation of Salicylic Acid in Water-ethanol Mixtures from Titanium Dioxide Grafted with Hexadecyltrichlorosilane

    Science.gov (United States)

    Kassir, Mounir; Roques-Carmes, Thibault; Assaker, Karine; Hamieh, Tayssir; Razafitianamaharavo, Angelina; Toufaily, Joumana; Villiéras, Frédéric

    The aim of this paper is to study the effect of the chemical modification on the photocatalytic properties of TiO2. The TiO2 Degussa-P25 nanoparticles are chemically modified using the hydrophobic organosilane hexadecyltrichlorosilane (HTS). The samples are employed as catalysts for salicylic acid photocatalytic oxidation in water-ethanol mixtures. The kinetics of salicylic acid photodegradation is investigated as a function of ethanol content in water-ethanol mixtures and initial HTS concentrations. The results indicate that the HTS groups are not degraded during the photocatalytic process. The TiO2 grafted by HTS is more efficient than bare TiO2 for the photodegradation process in presence of ethanol. The photodegradation process follows first order kinetics and the apparent rate constant increases linearly with the initial HTS concentration (amount of HTS grafted).

  16. Efficient photocatalytic degradation of acid orange 7 on metal oxide p-n junction composites under visible light

    Science.gov (United States)

    Suk Jang, Jum; Gyu Kim, Hyun; Lee, Se-Hee

    2012-11-01

    MO(=CuO, Co3O4, NiO)/BiVO4 p-n junction composites were synthesized by urea-precipitation and wet impregnation method. The physicochemical and optical properties of the as-prepared materials were investigated by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-visible diffuse reflectance spectra. The photocatalytic performance of the as-prepared materials was investigated for decomposition of azo dye, acid orange 7. The CuO/BiVO4 and Co3O4/BiVO4 p-n junction composite photocatalysts exhibited the higher photocatalytic degradation of acid orange 7 than those of BiVO4 and NiO/BiVO4 as-prepared samples under visible light irradiation. We also discussed the mechanism of enhanced photocatalytic activity of p-n junctioned composites based on their energy band structures.

  17. Data of thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid as crosslinking agent

    Directory of Open Access Journals (Sweden)

    Paula González Seligra

    2016-06-01

    Full Text Available Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid (CA as crosslinking agent described in the article titled: “Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent” González Seligra et al. (2016 [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature.

  18. Data of thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid as crosslinking agent

    Science.gov (United States)

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-01-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: “Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent” González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature. PMID:27158645

  19. Peracetic acid degradation in freshwater aquaculture systems and possible practical implications

    DEFF Research Database (Denmark)

    Pedersen, Lars-Flemming; Meinelt, Thomas; Straus, David L.

    2013-01-01

    Peracetic acid (PAA) is a highly reactive peroxygen compound with wide-ranging antimicrobial effects and is considered an alternative sanitizer to formaldehyde. Products containing PAA are available in solution with acetic acid and hydrogen peroxide to maintain the stability of the chemical...

  20. Bacterial degradation of 3-chloroacrylic acid and the characterization of cis- and trans-specific dehalogenases

    NARCIS (Netherlands)

    Hylckama Vlieg, Johan E.T. van; Janssen, Dick B.

    1992-01-01

    A coryneform bacterium that is able to utilize cis- and trans-3-chloroacrylic acid as sole carbon source for growth was isolated from freshwater sediment. The organism was found to produce two inducible dehalogenases, one specific for the cis- and the other for trans-3-chloroacrylic acid. Both dehal

  1. EFFECTS OF PROSTAGLANDIN E1 ON THE PROGRESSION OF ARISTOLOCHIC ACID NEPHROPATHY

    Institute of Scientific and Technical Information of China (English)

    Dong Sun; Jiang-min Feng; Yan-ling Zhao; Tao Jin; Li-ning Wang

    2005-01-01

    Objective To investigate the effects of prostaglandin El (PGE1) on the progression of aristolochic acid nephropathy AAN).Methods Twenty-four patients diagnosed as AAN with serum creatinine (Scr) between 1.5 mg/dL and 4 mg/dL during September 2001 to August 2003 were randomly divided into 2 groups. All patients had ingested long dan xie gan wan containing aristolochic acid (0.219 mg/g) for at least 3 months. Twelve patients were injected with Alprostadil (10 μg/d for 10days in one month, summing up to 6 months). Except for PGE1, the other therapy was same in both groups. Renal function was assessed using reciprocal serum creatinine levels (1/Scr).Results The level of Scr and serum hemoglobin (Hgb) was similar in both groups prior to therapy. During follow-up,1/Scr levels in PGE1 group were significantly higher than control group (P < 0.01), and Hgb levels in PGE1 group were significantly increased compared with control (P < 0.05).Conclusion PGE1 can slow the progression of renal failure and increase Hgb level of AAN patient.

  2. Research progress in microbial degradation of antibiotics%微生物降解抗生素的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘元望; 李兆君; 冯瑶; 成登苗; 胡海燕; 张文娟

    2016-01-01

    近几十年来,抗生素的大量使用所引起的公共健康、资源利用和环境污染等问题倍受社会关注。由于微生物对抗生素削减的高效、低耗、环保和操作简单等优点,微生物降解法已成为处理抗生素污染的有效途径。在综述近几十年来利用微生物方法处理抗生素污染的技术、抗生素降解功能微生物的筛选、降解条件优化、降解效果及其降解机制等方面研究进展的基础上,指出了今后的研究方向。%Antibiotics, a group of chemicals, are widely used in treating human diseases and animal diseases and promoting animal growth. It was estimated that approximately 2300 tons of antibiotics were consumed in veterinary medicine in European countries and about 52%of all antibiotics(approximately 162 000 tons)were used for veterinary medicine in China in 2013. However, antibiotics could not be completely absorbed by the animal body, and most is excreted along with urine or feces, either unaltered or as metabolites. Antibiotics entered the envi-ronmental compartments at high rates, which resulted in concerns over public health, resource utilization and environmental pollution. Therefore, more and more attention has been paid to their effective elimination in the environment. The degradation of antibiotics by special microorganisms has been considered to be an efficient method for getting rid of antibiotics from the environment because of its low cost, simple management, and high degradation rates compared to other methods such as advanced oxidation processes, active carbon adsorption, low-temperature plasma technology, and membrane processing. In the present paper, the progress in antibiotic degradation by microorgan-isms and its mechanisms were reviewed in aspects of screening of specific functional microorganisms responsible for antibiotic degradation, optimization of microbial degradation conditions, degradation efficiencies and mechanisms including

  3. The non-oxidative degradation of ascorbic acid at physiological conditions.

    Science.gov (United States)

    Simpson, G L; Ortwerth, B J

    2000-04-15

    The degradation of L-ascorbate (AsA) and its primary oxidation products, L-dehydroascorbate (DHA) and 2,3-L-diketogulonate (2, 3-DKG) were studied under physiological conditions. Analysis determined that L-erythrulose (ERU) and oxalate were the primary degradation products of ASA regardless of which compound was used as the starting material. The identification of ERU was determined by proton decoupled (13)C-nuclear magnetic resonance spectroscopy, and was quantified by high performance liquid chromatography, and enzymatic analysis. The molar yield of ERU from 2,3-DKG at pH 7.0 37 degrees C and limiting O(2)97%. This novel ketose product of AsA degradation, was additionally qualitatively identified by gas-liquid chromatography, and by thin layer chromatography. ERU is an extremely reactive ketose, which rapidly glycates and crosslinks proteins, and therefore may mediate the AsA-dependent modification of protein (ascorbylation) seen in vitro, and also proposed to occur in vivo in human lens during diabetic and age-onset cataract formation.

  4. Ultrasound-assisted MnO2 catalyzed homolysis of peracetic acid for phenol degradation: The assessment of process chemistry and kinetics

    NARCIS (Netherlands)

    Rokhina, E.V.; Makarova, K.; Lathinen, M.; Golovina, E.A.; As, van H.; Virkutyte, J.

    2013-01-01

    The combination of peracetic acid (PAA) and heterogeneous catalyst (MnO2) was used for the degradation of phenol in an aqueous solution in the presence of ultrasound irradiation (US). As a relevant source of free radicals (e.g. OH), peracetic acid was comprehensively studied by means of electron spi

  5. Effect of ascorbic acid on the degradation of cyanocobalamin and hydroxocobalamin in aqueous solution: a kinetic study.

    Science.gov (United States)

    Ahmad, Iqbal; Qadeer, Kiran; Zahid, Saima; Sheraz, Muhammad Ali; Ismail, Tehmina; Hussain, Waqar; Ansari, Izhar Ahmad

    2014-10-01

    The degradation kinetics of 5 × 10(-5) M cyanocobalamin (B12) and hydroxocobalamin (B12b) in the presence of ascorbic acid (AH2) was studied in the pH range of 1.0-8.0. B12 is degraded to B12b which undergoes oxidation to corrin ring cleavage products. B12b alone is directly oxidized to the ring cleavage products. B12 and B12b in degraded solutions were simultaneously assayed by a two-component spectrometric method at 525 and 550 nm without interference from AH2. Both degrade by first-order kinetics and the values of the rate constants at pH 1.0-8.0 range from 0.08 to 1.05 × 10(-5) s(-1) and 0.22-7.62 × 10(-5) s(-1), respectively, in the presence of 0.25 × 10(-3) M AH2. The t 1/2 values of B12 and B12b range from 13.7 to 137.5 h and 2.5-87.5 h, respectively. The second-order rate constants for the interaction of AH2 with B12 and B12b are 0.05-0.28 × 10(-2) and 1.10-30.08 × 10(-2) M(-1) s(-1), respectively, indicating a greater effect of AH2 on B12b compared to that of B12. The k obs-pH profiles for both B12 and B12b show the highest rates of degradation around pH 5. The degradation of B12 and B12b by AH2 is affected by the catalytic effect of phosphate ions on the oxidation of AH2 in the pH range 6.0-8.0.

  6. Docosahexaenoic acid induces the degradation of HPV E6/E7 oncoproteins by activating the ubiquitin–proteasome system

    Science.gov (United States)

    Jing, K; Shin, S; Jeong, S; Kim, S; Song, K-S; Park, J-H; Heo, J-Y; Seo, K-S; Park, S-K; Kweon, G-R; Wu, T; Park, J-I; Lim, K

    2014-01-01

    The oncogenic human papillomavirus (HPV) E6/E7 proteins are essential for the onset and maintenance of HPV-associated malignancies. Here, we report that activation of the cellular ubiquitin–proteasome system (UPS) by the omega-3 fatty acid, docosahexaenoic acid (DHA), leads to proteasome-mediated degradation of E6/E7 viral proteins and the induction of apoptosis in HPV-infected cancer cells. The increases in UPS activity and degradation of E6/E7 oncoproteins were associated with DHA-induced overproduction of mitochondrial reactive oxygen species (ROS). Exogenous oxidative stress and pharmacological induction of mitochondrial ROS showed effects similar to those of DHA, and inhibition of ROS production abolished UPS activation, E6/E7 viral protein destabilization, and apoptosis. These findings identify a novel role for DHA in the regulation of UPS and viral proteins, and provide evidence for the use of DHA as a mechanistically unique anticancer agent for the chemoprevention and treatment of HPV-associated tumors. PMID:25393480

  7. Fast Degradation for High Activity: Oxygen- and Nitrogen-Functionalised Carbon Nanotubes in Solid-Acid Fuel-Cell Electrodes.

    Science.gov (United States)

    Naumov, Olga; Naumov, Sergej; Flyunt, Roman; Abel, Bernd; Varga, Aron

    2016-12-08

    Similar to polymer electrolyte membrane fuel cells, the widespread application of solid acid fuel cells (SAFCs) has been hindered partly by the necessity of the use of the precious-metal catalyst Pt in the electrodes. Here we investigate multi-walled carbon nanotubes (MWCNTs) for their potential catalytic activity by using symmetric cell measurements of solid-acid-based electrochemical cells in a cathodic environment. For all measurements, the carbon nanotubes were Pt free and subject to either nitrogen or oxygen plasma treatment. AC impedance spectroscopy of the electrochemical cells, with and without a DC bias, was performed and showed significantly lower initial impedances for oxygen-plasma-treated MWCNTs compared to those treated with a nitrogen plasma. In symmetric cell measurements with a DC bias, the current declines quickly for oxygen-plasma-treated MWCNTs and more slowly, over 12 days, for nitrogen-plasma-treated MWCNTs. To elucidate the degradation mechanisms of the oxygen-plasma-treated MWCNTs under SAFC operating conditions, theoretical calculations were performed using DFT. The results indicate that several degradation mechanisms are likely to occur in parallel through the reduction of the surface oxygen groups that were introduced by the plasma treatment. This finally leads to an inert MWCNT surface and a very low electrode performance. Nitrogen-plasma-treated MWCNTs appear to have a higher stability and may be worthwhile for future investigations.

  8. Degradation of the endocrine disrupting chemicals (EDCs) carbamazepine, clofibric acid, and iopromide by corona discharge over water.

    Science.gov (United States)

    Krause, Holger; Schweiger, Bianca; Schuhmacher, Jörg; Scholl, Saskia; Steinfeld, Ute

    2009-04-01

    Common wastewater treatment plants often do not eliminate endocrine disrupting chemicals (EDCs). Aqueous solutions of three EDCs were treated with an enhanced corona discharge technology. The three EDCs were clofibric acid, a blood lipid regulator, carbamazepine, an antiepileptic drug, and iopromide, a contrast media. To simulate real conditions, EDC solutions containing landfill leachate were also used. In our setup, two barrier electrodes provided an atmospheric pressure corona discharge over a thin water film, in which the counter-electrode was submerged. Clofibric acid, carbamazepine, and iopromide were effectively removed from a single solution. After a treatment of 15min, there were no traces of iopromide estrogen activity either as a single substance or as degradation products when using an E-Screen Assay. Continuous treatment was compared with pulsed treatment using carbamazepine solutions mixed with pretreated landfill leachate. Best degradation results were achieved with a 500 W continuous duty cycle treatment. Counter-electrodes from materials such as boron doped diamond (BDD), titanium iridium oxide, and iron were investigated for their influences on the process effectivity. Significant improvements were achieved by using an enclosed reactor, BDD electrodes, and circulating only a fresh air or argon/air mixture as cooling gas through the barrier electrodes.

  9. Mass Spectrometry/Mass Spectrometry Study on the Degradation of B-Aflatoxins in Maize with Aqueous Citric Acid

    Directory of Open Access Journals (Sweden)

    A. Mendez-Albores

    2008-01-01

    Full Text Available Degradation of B-aflatoxins in maize by means of 1N aqueous citric acid was confirmed by the AFLATEST immunoaffinity column method, High Performance Liquid Chromatography (HPLC, tandem mass spectrometry (MS/MS and computational information. The AFLATEST and HPLC assays showed that 96.7% degradation occurred in maize contaminated with 93 ng g-1 when treated with the aqueous citric acid. Two major products, produced during the acidification process, were identified by their corresponding mass spectral data: a nonfluorescent compound lacking the lactone group evidenced by the presence of a peak m/z 286 and a nonfluorescent compound retaining the difurane moiety but lacking the lactone carbonyl and the cyclopentenone ring of the AFB1, also suggested by the peak m/z 206; the title fragments correspond to molecular ions in agreement with their respective molecular weights. According to the theoretical calculations, applying density functional theory, it was confirmed that the active site may be assigned to the carbonylic carbon of the lactonic moiety.

  10. Photocatalytic degradation kinetics of naphthenic acids in oil sands process-affected water: Multifactorial determination of significant factors.

    Science.gov (United States)

    Leshuk, Tim; de Oliveira Livera, Diogo; Peru, Kerry M; Headley, John V; Vijayaraghavan, Sucharita; Wong, Timothy; Gu, Frank

    2016-12-01

    Oil sands process-affected water (OSPW) is generated as a byproduct of bitumen extraction in Canada's oil sands. Due to the water's toxicity, associated with dissolved acid extractable organics (AEO), especially naphthenic acids (NAs), along with base-neutral organics, OSPW may require treatment to enable safe discharge to the environment. Heterogeneous photocatalysis is a promising advanced oxidation process (AOP) for OSPW remediation, however, predicting treatment efficacy can be challenging due to the unique water chemistry of OSPW from different tailings ponds. The objective of this work was to study various factors affecting the kinetics of photocatalytic AEO degradation in OSPW. The rate of photocatalytic treatment varied significantly in two different OSPW sources, which could not be accounted for by differences in AEO composition, as studied by high resolution mass spectrometry (HRMS). The effects of inorganic water constituents were investigated using factorial and response surface experiments, which revealed that hydroxyl (HO) radical scavenging by iron (Fe(3+)) and bicarbonate (HCO3(-)) inhibited the NA degradation rate. The effects of NA concentration and temperature on the treatment kinetics were also evaluated in terms of Langmuir-Hinshelwood and Arrhenius models; pH and temperature were identified as weak factors, while dissolved oxygen (DO) was critical to the photo-oxidation reaction. Accounting for all of these variables, a general empirical kinetic expression is proposed, enabling prediction of photocatalytic treatment performance in diverse sources of OSPW.

  11. Photocatalytic Degradation of Humic Acid by Fe-TiO2 Supported on Spherical Activated Carbon with Enhanced Activity

    Directory of Open Access Journals (Sweden)

    Mi-Hwa Baek

    2013-01-01

    Full Text Available Fe-TiO2 supported on spherical activated carbon (Fe-TiO2/SAC with different Fe contents was prepared by heat treatment process after ion exchange method. The prepared Fe-TiO2/SAC was characterized by SEM, EDS, and BET. Batch experiments for photocatalytic degradation of humic acid by Fe-TiO2/SAC were carried out in the fluidized bed photoreactor. It was found that 0 wt% Fe-TiO2/SAC had high photocatalytic activity in the wavelength range of 100~280 nm. However, Fe-TiO2/SAC with Fe contents of 0.4, 0.6, and 0.8 wt% exhibited higher photocatalytic activity than 0 wt% Fe-TiO2/SAC in the wavelength range of 315~400 nm compared to that of 100~280 nm. The optimum Fe content was 0.6 wt% for maximum photocatalytic degradation of humic acid. Moreover, Fe-TiO2/SAC does not require an additional process step for separation of photocatalyst from treated water after photocatalysis.

  12. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    Science.gov (United States)

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Kinetic modeling of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation in soil slurry by anodic fenton treatment.

    Science.gov (United States)

    Kong, Lingjun; Lemley, Ann T

    2006-05-31

    Anodic Fenton treatment (AFT) has been shown to be a promising technology in pesticide wastewater treatment. However, no research has been conducted on the AFT application to contaminated soils. In this study, the 2,4-D degradation kinetics of AFT in a silt loam soil slurry were investigated for the first time, and the effects of various experimental conditions including initial 2,4-D concentration, Fenton reagent delivery rate, amount of humic acid (HA) addition, and pH were examined. The 2,4-D degradation in soil slurry by AFT was found to follow a two-stage kinetic model. During the early stage of AFT (the first 4-5 min), the 2,4-D concentration profile followed a pseudo-first-order kinetic model. In the later stage (typically after 5 or 6 min), the AFT kinetic model provided a better fit. This result is most likely due to the existence of (*)OH scavengers and 2,4-D sorption on soil. The Fe(2+) delivery rate was shown to be a more significant factor in degradation rate than the H(2)O(2) delivery rate when the Fe(2+)/H(2)O(2) ratios were in the range of 1:2 to 1:10. The presence of HA in soil lowered the AFT rate, most probably due to the competition with 2,4-D for consumption of (*)OH and increased sorption of 2,4-D on soil. The optimal pH for 2,4-D degradation in soil slurry by AFT was observed to be in the range of pH 2-3.

  14. Surface modification of nanometer size TiO{sub 2} with salicylic acid for photocatalytic degradation of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Li Shunxing [Department of Chemistry and Environmental Science, Zhangzhou Teachers College, Zhangzhou 363000 (China) and State Key Lab for Marine Environment, Xiamen University, Xiamen 361005 (China)]. E-mail: lishunxing@fjzs.edu.cn; Zheng Fengying [Department of Chemistry and Environmental Science, Zhangzhou Teachers College, Zhangzhou 363000 (China); Cai Wenlian [Department of Chemistry and Environmental Science, Zhangzhou Teachers College, Zhangzhou 363000 (China); Han Aiqin [Department of Chemistry and Environmental Science, Zhangzhou Teachers College, Zhangzhou 363000 (China); Xie Yukune [Department of Chemistry and Environmental Science, Zhangzhou Teachers College, Zhangzhou 363000 (China); State Key Lab for Marine Environment, Xiamen University, Xiamen 361005 (China)

    2006-07-31

    The efficiency of photocatalytic reactions was limited by the wide band-gap of TiO{sub 2} and the high degree of electron-hole recombination inherent in photocatalytic process, as well as by the limited adsorption capability of photocatalysts. In order to increase the overall efficiency, the surface of nanometer size TiO{sub 2} was simply and fast modified by chemical adsorption in saturated solution of salicylic acid. A stable, light yellow surface complex was formed quickly, which has obvious absorption in the region from 320 to 420 nm. Through surface modification, the adsorption efficiency of 4-nitrophenol by TiO{sub 2} was enhanced from 42 to 84%. The photocatalytic efficiency was tested on the degradation of 4-nitrophenol. The influences of catalyst and its dosage, pH value, and 4-nitrophenol concentration on the degradation were investigated. Under such photodegradation conditions as initial pH 4.0, 4-nitrophenol 5 mg l{sup -1}, catalyst 100 mg, and irradiation time 160 min with 160 W high-pressure mercury lamp, the degradation efficiency of 4-nitrophenol by TiO{sub 2} was increased from 39.5 to 79.3% after surface modification, and furthermore, the degradation efficiency could be enhanced to 91.1% if the concentration of 4-nitrophenol was not more than 1 mg l{sup -1}. Compared with the pure TiO{sub 2}, surface modification led not only to improve the surface coverage of 4-nitrophenol, but also to increase the light utilization. Both of these factors were crucial for the photocatalytic activity of heterogeneous photocatalysis, especially for photodegradation of aromatic pollutants.

  15. Aspartic Acid Racemization and Collagen Degradation Markers Reveal an Accumulation of Damage in Tendon Collagen That Is Enhanced with Aging*

    Science.gov (United States)

    Thorpe, Chavaunne T.; Streeter, Ian; Pinchbeck, Gina L.; Goodship, Allen E.; Clegg, Peter D.; Birch, Helen L.

    2010-01-01

    Little is known about the rate at which protein turnover occurs in living tendon and whether the rate differs between tendons with different physiological roles. In this study, we have quantified the racemization of aspartic acid to calculate the age of the collagenous and non-collagenous components of the high strain injury-prone superficial digital flexor tendon (SDFT) and low strain rarely injured common digital extensor tendon (CDET) in a group of horses with a wide age range. In addition, the turnover of collagen was assessed indirectly by measuring the levels of collagen degradation markers (collagenase-generated neoepitope and cross-linked telopeptide of type I collagen). The fractional increase in d-Asp was similar (p = 0.7) in the SDFT (5.87 × 10−4/year) and CDET (5.82 × 10−4/year) tissue, and d/l-Asp ratios showed a good correlation with pentosidine levels. We calculated a mean (±S.E.) collagen half-life of 197.53 (±18.23) years for the SDFT, which increased significantly with horse age (p = 0.03) and was significantly (p < 0.001) higher than that for the CDET (34.03 (±3.39) years). Using similar calculations, the half-life of non-collagenous protein was 2.18 (±0.41) years in the SDFT and was significantly (p = 0.04) lower than the value of 3.51 (±0.51) years for the CDET. Collagen degradation markers were higher in the CDET and suggested an accumulation of partially degraded collagen within the matrix with aging in the SDFT. We propose that increased susceptibility to injury in older individuals results from an inability to remove partially degraded collagen from the mat