WorldWideScience

Sample records for acid cycle enzyme

  1. Localisation of gluconeogenesis and tricarboxylic acid (TCA)-cycle enzymes and first functional analysis of the TCA cycle in Toxoplasma gondii.

    Science.gov (United States)

    Fleige, Tobias; Pfaff, Nils; Gross, Uwe; Bohne, Wolfgang

    2008-08-01

    The apicomplexan parasite Toxoplasma gondii displays some unusual localisations of carbohydrate converting enzymes, which is due to the presence of a vestigial, non-photosynthetic plastid, referred to as the apicoplast. It was recently demonstrated that the single pyruvate dehydrogenase complex (PDH) in T. gondii is exclusively localised inside the apicoplast but absent in the mitochondrion. This raises the question about expression, localisation and function of enzymes for the tricarboxylic acid (TCA)-cycle, which normally depends on PDH generated acetyl-CoA. Based on the expression and localisation of epitope-tagged fusion proteins, we show that all analysed TCA cycle enzymes are localised in the mitochondrion, including both isoforms of malate dehydrogenase. The absence of a cytosolic malate dehydrogenase suggests that a typical malate-aspartate shuttle for transfer of reduction equivalents is missing in T. gondii. We also localised various enzymes which catalyse the irreversible steps in gluconeogenesis to a cellular compartment and examined mRNA expression levels for gluconeogenesis and TCA cycle genes between tachyzoites and in vitro bradyzoites. In order to get functional information on the TCA cycle for the parasite energy metabolism, we created a conditional knock-out mutant for the succinyl-CoA synthetase. Disruption of the sixth step in the TCA cycle should leave the biosynthetic parts of the cycle intact, but prevent FADH2 production. The succinyl-CoA synthetase depletion mutant displayed a 30% reduction in growth rate, which could be restored by supplementation with 2 microM succinate in the tissue culture medium. The mitochondrial membrane potential in these parasites was found to be unaltered. The lack of a more severe phenotype suggests that a functional TCA cycle is not essential for T. gondii replication and for maintenance of the mitochondrial membrane potential.

  2. Expression of Genes Encoding Enzymes Involved in the One Carbon Cycle in Rat Placenta is Determined by Maternal Micronutrients (Folic Acid, Vitamin B12 and Omega-3 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Vinita Khot

    2014-01-01

    Full Text Available We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR and methionine synthase , but higher cystathionine b-synthase (CBS and Phosphatidylethanolamine-N-methyltransferase (PEMT as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE, phosphatidylcholine (PC, in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes.

  3. The Krebs Uric Acid Cycle: A Forgotten Krebs Cycle.

    Science.gov (United States)

    Salway, Jack G

    2018-05-25

    Hans Kornberg wrote a paper entitled 'Krebs and his trinity of cycles' commenting that every school biology student knows of the Krebs cycle, but few know that Krebs discovered two other cycles. These are (i) the ornithine cycle (urea cycle), (ii) the citric acid cycle (tricarboxylic acid or TCA cycle), and (iii) the glyoxylate cycle that was described by Krebs and Kornberg. Ironically, Kornberg, codiscoverer of the 'glyoxylate cycle', overlooked a fourth Krebs cycle - (iv) the uric acid cycle. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation.

    Science.gov (United States)

    Nagaraj, Raghavendra; Sharpley, Mark S; Chi, Fangtao; Braas, Daniel; Zhou, Yonggang; Kim, Rachel; Clark, Amander T; Banerjee, Utpal

    2017-01-12

    Transcriptional control requires epigenetic changes directed by mitochondrial tricarboxylic acid (TCA) cycle metabolites. In the mouse embryo, global epigenetic changes occur during zygotic genome activation (ZGA) at the 2-cell stage. Pyruvate is essential for development beyond this stage, which is at odds with the low activity of mitochondria in this period. We now show that a number of enzymatically active mitochondrial enzymes associated with the TCA cycle are essential for epigenetic remodeling and are transiently and partially localized to the nucleus. Pyruvate is essential for this nuclear localization, and a failure of TCA cycle enzymes to enter the nucleus correlates with loss of specific histone modifications and a block in ZGA. At later stages, however, these enzymes are exclusively mitochondrial. In humans, the enzyme pyruvate dehydrogenase is transiently nuclear at the 4/8-cell stage coincident with timing of human embryonic genome activation, suggesting a conserved metabolic control mechanism underlying early pre-implantation development. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Ethosuximide: liver enzyme induction and D-glucaric acid excretion.

    Science.gov (United States)

    Gilbert, J C; Scott, A K; Galloway, D B; Petrie, J C

    1974-06-01

    1 A study has been carried out to determine if ethosuximide induces liver enzymes. 2 Ethosuximide did not affect the urinary excretion of D-glucaric acid by healthy adult subjects nor was the mean daily D-glucaric acid excretion of three epileptic children on long term ethosuximide therapy different from that of three matched controls. 3 Ethosuximide (10 mg/kg or 50 mg/kg daily) did not influence D-glucaric acid excretion or liver microsomal protein and cytochrome P450 contents of guinea pigs but at a dose of 100 mg/kg daily in rats it increased liver microsomal protein and cytochrome P450 without altering D-glucaric acid excretion. 4 These results suggest that at anticonvulsant doses ethosuximide is unlikely to induce liver enzymes. The precise relationship between D-glucaric acid excretion and liver enzyme induction remains in doubt.

  6. The Roles of Acids and Bases in Enzyme Catalysis

    Science.gov (United States)

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  7. Proteolytic enzymes of lactic acid bacteria

    NARCIS (Netherlands)

    Law, J; Haandrikman, A

    The proteolytic system of lactic acid bacteria is essential for their growth in milk and contributes significantly to flavour development in fermented milk products where these microorganisms are used as starter cultures. The proteolytic system is composed of proteinases which initially cleave the

  8. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  9. Influence of enzymes and ascorbic acid on dough rheology and ...

    African Journals Online (AJOL)

    Influence of enzymes and ascorbic acid on dough rheology and wheat bread quality. ... Journal Home > Vol 15, No 3 (2016) >. Log in or ... Seven bread formulations containing different concentrations of these ... The rheological properties of each dough formulation were determined by moisture, gluten and farinograph tests.

  10. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities.

    Directory of Open Access Journals (Sweden)

    Fiona Karen Harlan

    Full Text Available Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson's Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research

  11. Brownian dynamic study of an enzyme metabolon in the TCA cycle: Substrate kinetics and channeling.

    Science.gov (United States)

    Huang, Yu-Ming M; Huber, Gary A; Wang, Nuo; Minteer, Shelley D; McCammon, J Andrew

    2018-02-01

    Malate dehydrogenase (MDH) and citrate synthase (CS) are two pacemaking enzymes involved in the tricarboxylic acid (TCA) cycle. Oxaloacetate (OAA) molecules are the intermediate substrates that are transferred from the MDH to CS to carry out sequential catalysis. It is known that, to achieve a high flux of intermediate transport and reduce the probability of substrate leaking, a MDH-CS metabolon forms to enhance the OAA substrate channeling. In this study, we aim to understand the OAA channeling within possible MDH-CS metabolons that have different structural orientations in their complexes. Three MDH-CS metabolons from native bovine, wild-type porcine, and recombinant sources, published in recent work, were selected to calculate OAA transfer efficiency by Brownian dynamics (BD) simulations and to study, through electrostatic potential calculations, a possible role of charges that drive the substrate channeling. Our results show that an electrostatic channel is formed in the metabolons of native bovine and recombinant porcine enzymes, which guides the oppositely charged OAA molecules passing through the channel and enhances the transfer efficiency. However, the channeling probability in a suggested wild-type porcine metabolon conformation is reduced due to an extended diffusion length between the MDH and CS active sites, implying that the corresponding arrangements of MDH and CS result in the decrease of electrostatic steering between substrates and protein surface and then reduce the substrate transfer efficiency from one active site to another. © 2017 The Protein Society.

  12. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism

    Science.gov (United States)

    Marelja, Zvonimir; Leimkühler, Silke; Missirlis, Fanis

    2018-01-01

    may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle. PMID:29491838

  13. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism

    Directory of Open Access Journals (Sweden)

    Zvonimir Marelja

    2018-02-01

    dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.

  14. Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents.

    Directory of Open Access Journals (Sweden)

    Hong-Leong Cheah

    Full Text Available Candida albicans is an opportunistic pathogen that causes candidiasis in humans. In recent years, metabolic pathways in C. albicans have been explored as potential antifungal targets to treat candidiasis. The glyoxylate cycle, which enables C. albicans to survive in nutrient-limited host niches and its. Key enzymes (e.g., isocitrate lyase (ICL1, are particularly attractive antifungal targets for C. albicans. In this study, we used a new screening approach that better reflects the physiological environment that C. albicans cells experience during infection to identify potential inhibitors of ICL. Three compounds (caffeic acid (CAFF, rosmarinic acid (ROS, and apigenin (API were found to have antifungal activity against C. albicans when tested under glucose-depleted conditions. We further confirmed the inhibitory potential of these compounds against ICL using the ICL enzyme assay. Lastly, we assessed the bioavailability and toxicity of these compounds using Lipinski's rule-of-five and ADMET analysis.

  15. The contribution of enzymes and process chemicals to the life cycle of ethanol

    International Nuclear Information System (INIS)

    MacLean, Heather L; Spatari, Sabrina

    2009-01-01

    Most life cycle studies of biofuels have not examined the impact of process chemicals and enzymes, both necessary inputs to biochemical production and which vary depending upon the technology platform (feedstock, pretreatment and hydrolysis system). We examine whether this omission is warranted for sugar-platform technologies. We develop life cycle ('well-to-tank') case studies for a corn dry-mill and for one 'mature' and two near-term lignocellulosic ethanol technologies. Process chemical and enzyme inputs contribute only 3% of fossil energy use and greenhouse gas (GHG) emissions for corn ethanol. Assuming considerable improvement compared to current enzyme performance, the inputs for the near-term lignocellulosic technologies studied are found to be responsible for 30%-40% of fossil energy use and 30%-35% of GHG emissions, not an insignificant fraction given that these models represent technology developers' nth plant performance. Mature technologies which assume lower chemical and enzyme loadings, high enzyme specific activity and on-site production utilizing renewable energy would significantly improve performance. Although the lignocellulosic technologies modeled offer benefits over today's corn ethanol through reducing life cycle fossil energy demand and GHG emissions by factors of three and six, achieving those performance levels requires continued research into and development of the manufacture of low dose, high specific activity enzyme systems. Realizing the benefits of low carbon fuels through biological conversion will otherwise not be possible. Tracking the technological performance of process conversion materials remains an important step in measuring the life cycle performance of biofuels.

  16. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Science.gov (United States)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  17. Integrated structural biology and molecular ecology of N-cycling enzymes from ammonia-oxidizing archaea.

    Science.gov (United States)

    Tolar, Bradley B; Herrmann, Jonathan; Bargar, John R; van den Bedem, Henry; Wakatsuki, Soichi; Francis, Christopher A

    2017-10-01

    Knowledge of the molecular ecology and environmental determinants of ammonia-oxidizing organisms is critical to understanding and predicting the global nitrogen (N) and carbon cycles, but an incomplete biochemical picture hinders in vitro studies of N-cycling enzymes. Although an integrative structural and dynamic characterization at the atomic scale would advance our understanding of function tremendously, structural knowledge of key N-cycling enzymes from ecologically relevant ammonia oxidizers is unfortunately extremely limited. Here, we discuss the challenges and opportunities for examining the ecology of ammonia-oxidizing organisms, particularly uncultivated Thaumarchaeota, through (meta)genome-driven structural biology of the enzymes ammonia monooxygenase (AMO) and nitrite reductase (NirK). © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates.

    Directory of Open Access Journals (Sweden)

    Marie Izac

    Full Text Available It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium's growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports.

  19. Improving a natural enzyme activity through incorporation of unnatural amino acids.

    Science.gov (United States)

    Ugwumba, Isaac N; Ozawa, Kiyoshi; Xu, Zhi-Qiang; Ely, Fernanda; Foo, Jee-Loon; Herlt, Anthony J; Coppin, Chris; Brown, Sue; Taylor, Matthew C; Ollis, David L; Mander, Lewis N; Schenk, Gerhard; Dixon, Nicholas E; Otting, Gottfried; Oakeshott, John G; Jackson, Colin J

    2011-01-19

    The bacterial phosphotriesterases catalyze hydrolysis of the pesticide paraoxon with very fast turnover rates and are thought to be near to their evolutionary limit for this activity. To test whether the naturally evolved turnover rate could be improved through the incorporation of unnatural amino acids and to probe the role of peripheral active site residues in nonchemical steps of the catalytic cycle (substrate binding and product release), we replaced the naturally occurring tyrosine amino acid at position 309 with unnatural L-(7-hydroxycoumarin-4-yl)ethylglycine (Hco) and L-(7-methylcoumarin-4-yl)ethylglycine amino acids, as well as leucine, phenylalanine, and tryptophan. Kinetic analysis suggests that the 7-hydroxyl group of Hco, particularly in its deprotonated state, contributes to an increase in the rate-limiting product release step of substrate turnover as a result of its electrostatic repulsion of the negatively charged 4-nitrophenolate product of paraoxon hydrolysis. The 8-11-fold improvement of this already highly efficient catalyst through a single rationally designed mutation using an unnatural amino acid stands in contrast to the difficulty in improving this native activity through screening hundreds of thousands of mutants with natural amino acids. These results demonstrate that designer amino acids provide easy access to new and valuable sequence and functional space for the engineering and evolution of existing enzyme functions.

  20. Metabolism: Part II. The Tricarboxylic Acid (TCA), Citric Acid, or Krebs Cycle.

    Science.gov (United States)

    Bodner, George M.

    1986-01-01

    Differentiates the tricarboxylic acid (TCA) cycle (or Krebs cycle) from glycolysis, and describes the bridge between the two as being the conversion of pyruvate into acetyl coenzyme A. Discusses the eight steps in the TCA cycle, the results of isotopic labeling experiments, and the net effects of the TCA cycle. (TW)

  1. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Apple, F. S.; Sjödin, B.

    1996-01-01

    (P anaerobic capacity in the trained muscle. The present study demonstrates that intermittent sprint cycle training that induces an enhanced capacity for anaerobic energy generation also improves......The effect of intermittent sprint cycle training on the level of muscle antioxidant enzyme protection was investigated. Resting muscle biopsies, obtained before and after 6 wk of training and 3, 24, and 72 h after the final session of an additional 1 wk of more frequent training, were analyzed...... for activities of the antioxidant enzymes glutathione peroxidase (GPX), glutathione reductase (GR), and superoxide dismutase (SOD). Activities of several muscle metabolic enzymes were determined to assess the effectiveness of the training. After the first 6-wk training period, no change in GPX, GR, or SOD...

  2. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  3. The response of amino acid cycling to global change across multiple biomes: Feedbacks on soil nitrogen availability

    Science.gov (United States)

    Brzostek, E. R.; Finzi, A. C.

    2010-12-01

    The cycling of organic nitrogen (N) in soil links soil organic matter decomposition to ecosystem productivity. Amino acids are a key pool of organic N in the soil, whose cycling is sensitive to alterations in microbial demand for carbon and N. Further, the amino acids released from the breakdown of protein by proteolytic enzymes are an important source of N that supports terrestrial productivity. The objective of this study was to measure changes in amino acid cycling in response to experimental alterations of precipitation and temperature in twelve global change experiments during the 2009 growing season. The study sites ranged from arctic tundra to xeric grasslands. The treatments experimentally increased temperature, increased or decreased precipitation, or some combination of both factors. The response of amino acid cycling to temperature and precipitation manipulations tended to be site specific, but the responses could be placed into a common framework. Changes in soil moisture drove a large response in amino acid cycling. Precipitation augmentation in xeric and mesic sites increased both amino acid pool sizes and production. However, treatments that decreased precipitation drove decreases in amino acid cycling in xeric sites, but led to increases in amino acid cycling in more mesic sites. Across sites, the response to soil warming was horizon specific. Amino acid cycling in organic rich horizons responded positively to warming, while negative responses were exhibited in lower mineral soil horizons. The variable response likely reflects a higher availability of protein substrate to sustain high rates of proteolytic enzyme activity in organic rich horizons. Overall, these results suggest that soil moisture and the availability of protein substrate may be important factors that mediate the response of amino acid cycling to predicted increases in soil temperatures.

  4. Determination of glutamine and glutamic acid in mammalian cell cultures using tetrathiafulvalene modified enzyme electrodes.

    Science.gov (United States)

    Mulchandani, A; Bassi, A S

    1996-01-01

    Tetrathiafulvalene (TTF) mediated amperometric enzyme electrodes have been developed for the monitoring of L-glutamine and L-glutamic acid in growing mammalian cell cultures. The detection of glutamine was accomplished by a coupled enzyme system comprised of glutaminase plus glutamate oxidase, while the detection of glutamic acid was carried out by a single enzyme, glutamate oxidase. The appropriate enzyme(s) were immoblized on the Triton-X treated surface of tetrathiafulvalene modified carbon paste electrodes by adsorption, in conjunction with entrapment by an electrochemically deposited copolymer film of 1,3-phenylenediamine and resorcinol. Operating conditions for the glutamine enzyme electrode were optimized with respect to the amount of enzymes immoblized, pH, temperature and mobile phase flow rate for operation in a flow injection (FIA) system. When applied to glutamine and glutamic acid measurements in mammalian cell culture in FIA, the results obtained with enzyme electrodes were in excellent agreement with those determined by enzymatic analysis.

  5. A modern mode of activation for nucleic acid enzymes.

    Directory of Open Access Journals (Sweden)

    Dominique Lévesque

    2007-07-01

    Full Text Available Through evolution, enzymes have developed subtle modes of activation in order to ensure the sufficiently high substrate specificity required by modern cellular metabolism. One of these modes is the use of a target-dependent module (i.e. a docking domain such as those found in signalling kinases. Upon the binding of the target to a docking domain, the substrate is positioned within the catalytic site. The prodomain acts as a target-dependent module switching the kinase from an off state to an on state. As compared to the allosteric mode of activation, there is no need for the presence of a third partner. None of the ribozymes discovered to date have such a mode of activation, nor does any other known RNA. Starting from a specific on/off adaptor for the hepatitis delta virus ribozyme, that differs but has a mechanism reminiscent of this signalling kinase, we have adapted this mode of activation, using the techniques of molecular engineering, to both catalytic RNAs and DNAs exhibiting various activities. Specifically, we adapted three cleaving ribozymes (hepatitis delta virus, hammerhead and hairpin ribozymes, a cleaving 10-23 deoxyribozyme, a ligating hairpin ribozyme and an artificially selected capping ribozyme. In each case, there was a significant gain in terms of substrate specificity. Even if this mode of control is unreported for natural catalytic nucleic acids, its use needs not be limited to proteinous enzymes. We suggest that the complexity of the modern cellular metabolism might have been an important selective pressure in this evolutionary process.

  6. Integrating enzyme fermentation in lignocellulosic ethanol production: life-cycle assessment and techno-economic analysis.

    Science.gov (United States)

    Olofsson, Johanna; Barta, Zsolt; Börjesson, Pål; Wallberg, Ola

    2017-01-01

    Cellulase enzymes have been reported to contribute with a significant share of the total costs and greenhouse gas emissions of lignocellulosic ethanol production today. A potential future alternative to purchasing enzymes from an off-site manufacturer is to integrate enzyme and ethanol production, using microorganisms and part of the lignocellulosic material as feedstock for enzymes. This study modelled two such integrated process designs for ethanol from logging residues from spruce production, and compared it to an off-site case based on existing data regarding purchased enzymes. Greenhouse gas emissions and primary energy balances were studied in a life-cycle assessment, and cost performance in a techno-economic analysis. The base case scenario suggests that greenhouse gas emissions per MJ of ethanol could be significantly lower in the integrated cases than in the off-site case. However, the difference between the integrated and off-site cases is reduced with alternative assumptions regarding enzyme dosage and the environmental impact of the purchased enzymes. The comparison of primary energy balances did not show any significant difference between the cases. The minimum ethanol selling price, to reach break-even costs, was from 0.568 to 0.622 EUR L -1 for the integrated cases, as compared to 0.581 EUR L -1 for the off-site case. An integrated process design could reduce greenhouse gas emissions from lignocellulose-based ethanol production, and the cost of an integrated process could be comparable to purchasing enzymes produced off-site. This study focused on the environmental and economic assessment of an integrated process, and in order to strengthen the comparison to the off-site case, more detailed and updated data regarding industrial off-site enzyme production are especially important.

  7. Metabolic Interaction between Urea Cycle and Citric Acid Cycle Shunt: A Guided Approach

    Science.gov (United States)

    Pesi, Rossana; Balestri, Francesco; Ipata, Piero L.

    2018-01-01

    This article is a guided pedagogical approach, devoted to postgraduate students specializing in biochemistry, aimed at presenting all single reactions and overall equations leading to the metabolic interaction between ureagenesis and citric acid cycle to be incorporated into a two-three lecture series about the interaction of urea cycle with other…

  8. Development of a novel ultrasensitive enzyme immunoassay for human glutamic acid decarboxylase 65 antibody.

    Science.gov (United States)

    Numata, Satoshi; Katakami, Hideki; Inoue, Shinobu; Sawada, Hirotake; Hashida, Seiichi

    2016-07-01

    We developed a novel, ultrasensitive enzyme immunoassay (immune complex transfer enzyme immunoassay) for determination of glutamic acid decarboxylase autoantibody concentrations in serum samples from patients with type 2 diabetes. We developed an immune complex transfer enzyme immunoassay for glutamic acid decarboxylase autoantibody and measured glutamic acid decarboxylase autoantibody from 22 patients with type 1 diabetes, 29 patients with type 2 diabetes, and 32 healthy controls. A conventional ELISA kit identified 10 patients with type 1 diabetes and one patient with type 2 diabetes as glutamic acid decarboxylase autoantibody positive, whereas 15 patients with type 1 diabetes and six patients with type 2 diabetes were identified as glutamic acid decarboxylase autoantibody positive using immune complex transfer enzyme immunoassay. Immune complex transfer enzyme immunoassay is a highly sensitive and specific assay for glutamic acid decarboxylase autoantibody and might be clinically useful for diabetic onset prediction and early diagnosis. © The Author(s) 2016.

  9. Kinetics and spatial distribution of enzymes of carbon, nitrogen and phosphorus cycles in earthworm biopores

    Science.gov (United States)

    Hoang Thi Thu, Duyen; Razavi, Bahar S.

    2016-04-01

    Earthworms boost microbial activities and consequently form hotspots in soil. The distribution of enzyme activities inside the earthworm biopores is completely unknown. For the first time, we analyzed enzyme kinetics and visualized enzyme distribution inside and outside biopores by in situ soil zymography. Kinetic parameters (Vmax and Km) of 6 enzymes β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) were determined in biopores formed by Lumbricus terrestris L.. The spatial distributions of GLU, NAG and APT become visible via zymograms in comparison between earthworm-inhabited and earthworm-free soil. Zymography showed heterogeneous distribution of hotspots in the rhizosphere and biopores. The hotspot areas were 2.4 to 14 times larger in the biopores than in soil without earthworms. The significantly higher Vmax values for GLU, CBH, XYL, NAG and APT in biopores confirmed the stimulation of enzyme activities by earthworms. For CBH, XYL and NAG, the 2- to 3-fold higher Km values in biopores indicated different enzyme systems with lower substrate affinity compared to control soil. The positive effects of earthworms on Vmax were cancelled by the Km increase for CBH, XYL and NAG at a substrate concentration below 20 μmol g-1 soil. The change of enzyme systems reflected a shift in dominant microbial populations toward species with lower affinity to holo-celluloses and to N-acetylglucosamine, and with higher affinity to proteins as compared to the biopores-free soil. We conclude that earthworm biopores are microbial hotspots with much higher and dense distribution of enzyme activities compared to bulk soil. References Spohn M, Kuzyakov Y. (2014) Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots - a soil zymography analysis, Plant Soil 379: 67-77. Blagodatskaya, E., Kuzyakov, Y., 2013. Review paper: Active microorganisms in soil

  10. Exponential isothermal amplification of nucleic acids and amplified assays for proteins, cells, and enzyme activities.

    Science.gov (United States)

    Reid, Michael S; Le, X Chris; Zhang, Hongquan

    2018-04-27

    Isothermal exponential amplification techniques, such as strand-displacement amplification (SDA), rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on-site, point-of-care, and in-situ assay applications. These amplification techniques eliminate the need for temperature cycling required for polymerase chain reaction (PCR) while achieving comparable amplification yield. We highlight here recent advances in exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. We discuss design strategies, enzyme reactions, detection techniques, and key features. Incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from non-specific template interactions, must be addressed to further improve isothermal and exponential amplification techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hepatic fatty acid oxidation : activity, localization and function of some enzymes involved

    NARCIS (Netherlands)

    A. van Tol (Arie)

    1971-01-01

    textabstractFatty acid oxidation is an important pathway for energy production in mammals and birds. In animal tissues the enzymes of fatty acid oxidation are located in the mitochondrion. Recent reports suggest that this is not the case in Castor bean endosperm. In this tissue the enzymes of

  12. Effect of citric acid and microbial phytase on serum enzyme activities ...

    African Journals Online (AJOL)

    Effect of citric acid and microbial phytase on serum enzyme activities and plasma minerals retention in broiler chicks. ... African Journal of Biotechnology ... An experiment was conducted to study the effect of microbial phytase supplementation and citric acid in broiler chicks fed corn-soybean meal base diets on enzyme ...

  13. 2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis.

    Science.gov (United States)

    Araújo, Wagner L; Martins, Auxiliadora O; Fernie, Alisdair R; Tohge, Takayuki

    2014-01-01

    The tricarboxylic acid (TCA) cycle intermediate 2-oxoglutarate (2-OG) is used as an obligatory substrate in a range of oxidative reactions catalyzed by 2-OG-dependent dioxygenases. These enzymes are widespread in nature being involved in several important biochemical processes. We have recently demonstrated that tomato plants in which the TCA cycle enzyme 2-OG dehydrogenase (2-ODD) was antisense inhibited were characterized by early senescence and modified fruit ripening associated with differences in the levels of bioactive gibberellin (GA). Accordingly, there is now compelling evidence that the TCA cycle plays an important role in modulating the rate of flux from 2-OG to amino acid metabolism. Here we discuss recent advances in the biochemistry and molecular biology of 2-OG metabolism occurring in different biological systems indicating the importance of 2-OG and 2-OG dependent dioxygenases not only in glucosinolate, flavonoid and alkaloid metabolism but also in GA and amino acid metabolism. We additionally summarize recent findings regarding the impact of modification of 2-OG metabolism on biosynthetic pathways involving 2-ODDs.

  14. The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification.

    Science.gov (United States)

    Carreira, Cíntia; Pauleta, Sofia R; Moura, Isabel

    2017-12-01

    The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Vitamin B2 content determination in liver paste by using acid and acid-enzyme hydrolysis

    Directory of Open Access Journals (Sweden)

    Basić Zorica

    2007-01-01

    the samples (r = 0.9994, and r = 0.99987. Hydrolysis procedures make a sample suitable for vitamin B2 determination. In the liver paste samples a high content of vitamin B2 was determined: 0.83 mg/100 g after acid hydrolysis, and 0.909 mg/100 g after acid-enzyme hydrolysis. There were statistically significantly higher values determined after the acid-enzyme hydrolysis (p < 0.05. Conclusion. Using acid-enzyme hydrolysis and separation instrument technique (liquid chromatography with a fluorescent detector as detection system, statistically significantly greater vitamin B2 quantities were determined than after using acid hydrolysis procedure. Vitamin B2 content determined in ten liver paste samples was high (0.881 − 0.936 mg/100g indicating that this meat product is a good vitamin B2 source.

  16. Non-enzymic beta-decarboxylation of aspartic acid.

    Science.gov (United States)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  17. Increased resiliency and activity of microbial mediated carbon cycling enzymes in diversified bioenergy cropping systems

    Science.gov (United States)

    Upton, R.; Bach, E.; Hofmockel, K. S.

    2017-12-01

    Microbes are mediators of soil carbon (C) and are influenced in membership and activity by nitrogen (N) fertilization and inter-annual abiotic factors. Microbial communities and their extracellular enzyme activities (EEA) are important parameters that influence ecosystem C cycling properties and are often included in microbial explicit C cycling models. In an effort to generate model relevant, empirical findings, we investigated how both microbial community structure and C degrading enzyme activity are influenced by inter-annual variability and N inputs in bioenergy crops. Our study was performed at the Comparison of Biofuel Systems field-site from 2011 to 2014, in three bioenergy cropping systems, continuous corn (CC) and two restored prairies, both fertilized (FP) and unfertilized (P). We hypothesized microbial community structure would diverge during the prairie restoration, leading to changes in C cycling enzymes over time. Using a sequencing approach (16S and ITS) we determined the bacterial and fungal community structure response to the cropping system, fertilization, and inter-annual variability. Additionally, we used EEA of β-glucosidase, cellobiohydrolase, and β-xylosidase to determine inter-annual and ecosystem impacts on microbial activity. Our results show cropping system was a main effect for microbial community structure, with corn diverging from both prairies to be less diverse. Inter-annual changes showed that a drought occurring in 2012 significantly impacted microbial community structure in both the P and CC, decreasing microbial richness. However, FP increased in microbial richness, suggesting the application of N increased resiliency to drought. Similarly, the only year in which C cycling enzymes were impacted by ecosystem was 2012, with FP supporting higher potential enzymatic activity then CC and P. The highest EEA across all ecosystems occurred in 2014, suggesting the continued root biomass and litter build-up in this no till system

  18. The dogfish shark (Squalus acanthias) increases both hepatic and extrahepatic ornithine urea cycle enzyme activities for nitrogen conservation after feeding.

    Science.gov (United States)

    Kajimura, Makiko; Walsh, Patrick J; Mommsen, Thomas P; Wood, Chris M

    2006-01-01

    Urea not only is utilized as a major osmolyte in marine elasmobranchs but also constitutes their main nitrogenous waste. This study investigated the effect of feeding, and thus elevated nitrogen intake, on nitrogen metabolism in the Pacific spiny dogfish Squalus acanthias. We determined the activities of ornithine urea cycle (O-UC) and related enzymes in liver and nonhepatic tissues. Carbamoyl phosphate synthetase III (the rate-limiting enzyme of the O-UC) activity in muscle is high compared with liver, and the activities in both tissues increased after feeding. The contribution of muscle to urea synthesis in the dogfish body appears to be much larger than that of liver when body mass is considered. Furthermore, enhanced activities of the O-UC and related enzymes (glutamine synthetase, ornithine transcarbamoylase, arginase) were seen after feeding in both liver and muscle and were accompanied by delayed increases in plasma urea, trimethylamine oxide, total free amino acids, alanine, and chloride concentrations, as well as in total osmolality. The O-UC and related enzymes also occurred in the intestine but showed little change after feeding. Feeding did not change the rate of urea excretion, indicating strong N retention after feeding. Ammonia excretion, which constituted only a small percentage of total N excretion, was raised in fed fish, while plasma ammonia did not change, suggesting that excess ammonia in plasma is quickly ushered into synthesis of urea or protein. In conclusion, we suggest that N conservation is a high priority in this elasmobranch and that feeding promotes ureogenesis and growth. Furthermore, exogenous nitrogen from food is converted into urea not only by the liver but also by the muscle and to a small extent by the intestine.

  19. Evolutionary History of the Enzymes Involved in the Calvin-Benson Cycle in Euglenids.

    Science.gov (United States)

    Markunas, Chelsea M; Triemer, Richard E

    2016-05-01

    Euglenids are an ancient lineage that may have existed as early as 2 billion years ago. A mere 65 years ago, Melvin Calvin and Andrew A. Benson performed experiments on Euglena gracilis and elucidated the series of reactions by which carbon was fixed and reduced during photosynthesis. However, the evolutionary history of this pathway (Calvin-Benson cycle) in euglenids was more complex than Calvin and Benson could have imagined. The chloroplast present today in euglenophytes arose from a secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga. A long period of evolutionary time existed before this secondary endosymbiotic event took place, which allowed for other endosymbiotic events or gene transfers to occur prior to the establishment of the green chloroplast. This research revealed the evolutionary history of the major enzymes of the Calvin-Benson cycle throughout the euglenid lineage and showed that the majority of genes for Calvin-Benson cycle enzymes shared an ancestry with red algae and/or chromophytes suggesting they may have been transferred to the nucleus prior to the acquisition of the green chloroplast. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  20. Cadmium Phytoavailability and Enzyme Activity under Humic Acid Treatment in Fluvo-aquic Soil

    Science.gov (United States)

    Liu, Borui; Huang, Qing; Su, Yuefeng

    2018-01-01

    A pot experiment was conducted to investigate the cadmium (Cd) availability to pakchois (Brassica chinensis L.) as well as the enzyme activities in fluvo-aquic soil under humic acid treatment. The results showed that the phytoavailability of Cd in soil decreased gradually as humic acid concentration rose (0 to 12 g·kg-1), while the activities of urease (UE), alkaline phosphatase (ALP) and catalase (CAT) kept increasing (P enzymes due to the Cd pollution. In conclusion, humic acid is effective for the reduction of both Cd phytoavailability and the damage to enzyme activities due to Cd pollution in fluvo-aquic soil

  1. Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine; Shahpiri, Azar; Finnie, Christine

    2010-01-01

    Enzymes involved in redox control are important during seed germination and seedling growth. Ascorbate-glutathione cycle enzymes in barley embryo extracts were monitored both by 2D-gel electrophoresis and activity measurements from 4 to 144 h post imbibition (PI). Strikingly different activity...... profiles were observed. No ascorbate peroxidase (APX) activity was present in mature seeds but activity was detected after 24 h PI and increased 14-fold up to 144 h PI. In contrast, dehydroascorbate reductase (DHAR) activity was present at 4 h PI and first decreased by 9-fold until 72 h PI followed by a 5......-fold increase at 144 h PI. Glutathione reductase and monodehydroascorbate reductase activities were also detected at 4 h PI, and showed modest increases of 1.8- and 2.7-fold, respectively, by 144 h PI. The combination of functional analysis with the proteomics approach enabled correlation...

  2. The synthesis of glutamic acid in the absence of enzymes: Implications for biogenesis

    Science.gov (United States)

    Morowitz, Harold; Peterson, Eta; Chang, Sherwood

    1995-01-01

    This paper reports on the non-enzymatic aqueous phase synthesis of amino acids from keto acids, ammonia and reducing agents. The facile synthesis of key metabolic intermediates, particularly in the glycolytic pathway, the citric acid cycle, and the first step of amino acid synthesis, lead to new ways of looking at the problem of biogenesis.

  3. Photoperiodism and enzyme rhythms: Kinetic characteristics of the photoperiodic induction of Crassulacean acid metabolism.

    Science.gov (United States)

    Brulfert, J; Guerrier, D; Queiroz, O

    1975-01-01

    The effect of photoperiod on Crassulacean acid metabolism (CAM) in Kalanchoe blossfeldiana Poellniz, cv. Tom Thumb, has characteristics similar to its effect on flowering in this plant (although these two phenomena are not causally related). The photoperiodic control of CAM is based on (a) dependance on phytochrome, (b) an endogenous circadian rhythm of sensitivity to photoperiodic signals, (c) a balance between specific positive (increase in enzyme capacity) and negative (inhibitory substances) effects of the photoperiod. Variations in malate content, capacity of phosphoenolpyruvate (PEP) carboxylase, and capacity of CAM inhibitors in young leaves were measured under photoperiodic conditions noninductive for CAM and after transfer into photoperiodic conditions inductive for CAM. Essential characteristics of the photoperiodic induction of CAM are: 1) lag time for malate accumulation; 2) after-effect of the inductive photoperiod on the malate accumulation, on the increase in PEP carboxylase capacity, and on the decrease in the level of long-day produced inhibitors; final levels of malate, enzyme capacity and inhibitor are proportional to the number of inductive day-night cycles; 3) cireadian rhythm in PEP carboxylase capacity with a fixed phase under noninductive photoperiods and a continuously shifting phase under inductive photoperiods, after complex advancing and delaying transients. Kinetic similarities indicate that photoperiodic control of different physiological functions, namely, CAM and flowering, may be achieved through similar mechanisms. Preliminary results with species of Bryophyllum and Sedum support this hypothesis. Phase relationships suggest different degrees of coupling between endogenous enzymic rhythm and photoperiod, depending on whether the plants are under long days or short days.

  4. Kinetic characteristics of polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Science.gov (United States)

    Polygalacturonase enzymes hydrolyze the polygalacturonic acid chains found in pectin. Interest in polygalacturonase enzymes continues as they are useful in a number of industrial processes and conversely, detrimental, as they are involved in maceration of economically important crops. While a good...

  5. Decarboxylation of Malate in the Crassulacean Acid Metabolism Plant Bryophyllum (Kalanchoe) fedtschenkoi (Role of NAD-Malic Enzyme).

    Science.gov (United States)

    Cook, R. M.; Lindsay, J. G.; Wilkins, M. B.; Nimmo, H. G.

    1995-01-01

    The role of NAD-malic enzyme (NAD-ME) in the Crassulacean acid metabolism plant Bryophyllum (Kalanchoe) fedtschenkoi was investigated using preparations of intact and solubilized mitochondria from fully expanded leaves. Intact, coupled mitochondria isolated during the day or night did not differ in their ability to take up [14C]malic acid from the surrounding medium or to respire using malate or succinate as substrate. However, intact mitochondria isolated from plants during the day decarboxylated added malate to pyruvate significantly faster than mitochondria isolated from plants at night. NAD-ME activity in solubilized mitochondrial extracts showed hysteretic kinetics and was stimulated by a number of activators, including acetyl-coenzyme A, fructose-1,6-bisphosphate, and sulfate ions. In the absence of these effectors, reaction progress curves were nonlinear, with a pronounced acceleration phase. The lag period before a steady-state rate was reached in assays of mitochondrial extracts decreased during the photoperiod and increased slowly during the period of darkness. However, these changes in the kinetic properties of the enzyme could not account for the changes in the rate of decarboxylation of malate by intact mitochondria. Gel-filtration experiments showed that mitochondrial extracts contained three forms of NAD-ME with different molecular weights. The relative proportions of the three forms varied somewhat throughout the light/dark cycle, but this did not account for the changes in the kinetics behavior of the enzyme during the diurnal cycle. PMID:12228671

  6. Chronotherapeutic effect of fisetin on expression of urea cycle enzymes and inflammatory markers in hyperammonaemic rats.

    Science.gov (United States)

    Subramanian, Perumal; Jayakumar, Murugesan; Jayapalan, Jaime Jacqueline; Hashim, Onn Haji

    2014-12-01

    Elevated blood ammonia leads to hyperammonaemia that affects vital central nervous system (CNS) functions. Fisetin, a naturally occurring flavonoid, exhibits therapeutic benefits, such as anti-cancer, anti-diabetic, anti-oxidant, anti-angiogenic, neuroprotective and neurotrophic effects. In this study, the chronotherapeutic effect of fisetin on ammonium chloride (AC)-induced hyperammonaemic rats was investigated, to ascertain the time point at which the maximum drug effect is achieved. The anti-hyperammonaemic potential of fisetin (50mg/kg b.w. oral) was analysed when administered to AC treated (100mg/kg b.w. i.p.) rats at 06:00, 12:00, 18:00 and 00:00h. Amelioration of pathophysiological conditions by fisetin at different time points was measured by analysing the levels of expression of liver urea cycle enzymes (carbamoyl phosphate synthetase-I (CPS-I), ornithine transcarbamoylase (OTC) and argininosuccinate synthetase (ASS)), nuclear transcription factor kappaB (NF-κB p65), brain glutamine synthetase (GS) and inducible nitric oxide synthase (iNOS) by Western blot analysis. Fisetin increased the expression of CPS-I, OTC, ASS and GS and decreased iNOS and NF-κB p65 in hyperammonaemic rats. Fisetin administration at 00:00h showed more significant effects on the expression of liver and brain markers, compared with other time points. Fisetin could exhibit anti-hyperammonaemic effect owing to its anti-oxidant and cytoprotective influences. The temporal variation in the effect of fisetin could be due to the (i) chronopharmacological, chronopharmacokinetic properties of fisetin and (ii) modulations in the endogenous circadian rhythms of urea cycle enzymes, brain markers, redox enzymes and renal clearance during hyperammonaemia by fisetin. However, future studies in these lines are necessitated. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder.

    Science.gov (United States)

    Yoshimi, Noriko; Futamura, Takashi; Kakumoto, Keiji; Salehi, Alireza M; Sellgren, Carl M; Holmén-Larsson, Jessica; Jakobsson, Joel; Pålsson, Erik; Landén, Mikael; Hashimoto, Kenji

    2016-06-01

    Bipolar disorder (BD) is a severe and debilitating psychiatric disorder. However, the precise biological basis remains unknown, hampering the search for novel biomarkers. We performed a metabolomics analysis to discover novel peripheral biomarkers for BD. We quantified serum levels of 116 metabolites in mood-stabilized male BD patients (n = 54) and age-matched male healthy controls (n = 39). After multivariate logistic regression, serum levels of pyruvate, N-acetylglutamic acid, α-ketoglutarate, and arginine were significantly higher in BD patients than in healthy controls. Conversely, serum levels of β-alanine, and serine were significantly lower in BD patients than in healthy controls. Chronic (4-weeks) administration of lithium or valproic acid to adult male rats did not alter serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, or arginine, but lithium administration significantly increased serum levels of α-ketoglutarate. The metabolomics analysis demonstrated altered serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, and arginine in BD patients. The present findings suggest that abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism play a role in the pathogenesis of BD.

  8. Integrated gasification combined cycle for acid rain control

    Energy Technology Data Exchange (ETDEWEB)

    Simbeck, D.R.; Dickenson, R.L.

    1986-10-01

    The role of integrated coal gasification combined-cycle power plants in the abatement of emission of SO/sub 2/ and NO/sub 2/ which lead to acid rain is discussed. The economics of this IGCC approach are assessed for a nominal 500 MW plant size. Phased construction of IGCC plants is recommended as a means of reducing SO/sub 2/ and NO/sub x/ emissions noting that high-sulfur coals could continue to be used. It is also noted that phased construction IGCC is the only acid rain control technology that greatly reduces NO/sub x/. 17 references.

  9. Secretion of acid phosphatase by axenic Entamoeba histolytica NIH-200 and properties of the extracellular enzyme.

    Science.gov (United States)

    Agrawal, A; Pandey, V C; Kumar, S; Sagar, P

    1989-01-01

    Entamoeba histolytica (NIH-200) secreted large amounts of acid phosphatase in its external environment when grown axenically in modified TPS-II medium. Fractionation by DEAE-cellulose chromatography of the precipitate obtained from the cell-free medium at 60% ammonium sulfate saturation yielded 3 distinct peaks of enzyme activity. The enzyme in all the peaks showed resistance to tartrate but was inhibited by fluoride, cupric chloride, ethylene diamine-tetra acetic acid, ammonium molybdate and cysteine; however, enzyme associated with different peaks differed in its polyacrylamide gel electrophoretic profiles and behavior towards concanavalin A.

  10. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides.

    Science.gov (United States)

    Cravatt, B F; Giang, D K; Mayfield, S P; Boger, D L; Lerner, R A; Gilula, N B

    1996-11-07

    Endogenous neuromodulatory molecules are commonly coupled to specific metabolic enzymes to ensure rapid signal inactivation. Thus, acetylcholine is hydrolysed by acetylcholine esterase and tryptamine neurotransmitters like serotonin are degraded by monoamine oxidases. Previously, we reported the structure and sleep-inducing properties of cis-9-octadecenamide, a lipid isolated from the cerebrospinal fluid of sleep-deprived cats. cis-9-Octadecenamide, or oleamide, has since been shown to affect serotonergic systems and block gap-junction communication in glial cells (our unpublished results). We also identified a membrane-bound enzyme activity that hydrolyses oleamide to its inactive acid, oleic acid. We now report the mechanism-based isolation, cloning and expression of this enzyme activity, originally named oleamide hydrolase, from rat liver plasma membranes. We also show that oleamide hydrolase converts anandamide, a fatty-acid amide identified as the endogenous ligand for the cannabinoid receptor, to arachidonic acid, indicating that oleamide hydrolase may serve as the general inactivating enzyme for a growing family of bioactive signalling molecules, the fatty-acid amides. Therefore we will hereafter refer to oleamide hydrolase as fatty-acid amide hydrolase, in recognition of the plurality of fatty-acid amides that the enzyme can accept as substrates.

  11. Kinetics of leather dyeing pretreated with enzymes: role of acid protease.

    Science.gov (United States)

    Kanth, Swarna Vinodh; Venba, Rajangam; Jayakumar, Gladstone Christopher; Chandrababu, Narasimhan Kannan

    2009-04-01

    In the present investigation, kinetics of dyeing involving pretreatment with acid protease has been presented. Application of acid protease in dyeing process resulted in increased absorption and diffusion of dye into the leather matrix. Enzyme treatment at 1% concentration, 60 min duration and 50 degrees C resulted in maximum of 98% dye exhaustion and increased absorption rate constants. The final exhaustion (C(infinity)) for the best fit of CI Acid Black 194 dye has been 98.5% with K and r2 values from the modified Cegarra-Puente isotherm as 0.1033 and 0.0631. CI Acid Black 194 being a 2:1 metal complex acid dye exhibited higher absorption rate than the acid dye CI Acid Black 210. A reduction in 50% activation energy calculated from Arrhenius equation has been observed in enzyme assisted dyeing process of both the dyes that substantiates enhanced dye absorption. The absorption rate constant calculated with modified Cegarra-Puente equation confirm higher rate constants and faster kinetics for enzyme assisted dyeing process. Enzyme treated leather exhibited richness of color and shade when compared with control. The present study substantiates the essential role of enzyme pretreatment as an eco-friendly leather dyeing process.

  12. Evaluation of endogenous nitric oxide synthesis in congenital urea cycle enzyme defects.

    Science.gov (United States)

    Nagasaka, Hironori; Tsukahara, Hirokazu; Yorifuji, Tohru; Miida, Takashi; Murayama, Kei; Tsuruoka, Tomoko; Takatani, Tomozumi; Kanazawa, Masaki; Kobayashi, Kunihiko; Okano, Yoshiyuki; Takayanagi, Masaki

    2009-03-01

    Nitric oxide (NO) is synthesized from arginine and O(2) by nitric oxide synthase (NOS). Citrulline, which is formed as a by-product of the NOS reaction, can be recycled to arginine by the 2 enzymes acting in the urea cycle: argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL). Although the complete urea cycle is expressed only in the liver, ASS and ASL are expressed in other organs including the kidney and vascular endothelium. To examine possible alterations of the NO pathway in urea cycle defects, we measured plasma concentrations of arginine and citrulline and serum concentrations of nitrite/nitrate (NOx(-), stable NO metabolites) and asymmetric dimethylarginine (ADMA, an endogenous NOS inhibitor) in patients with congenital urea cycle disorders of 3 types: ornithine transcarbamylase (OTC) deficiency, ASS deficiency, and ASL deficiency. All were receiving oral arginine replacement at the time of this study. The same parameters were also measured in healthy subjects, who participated as controls. The OTC-deficient patients had significantly high NOx(-) and nonsignificantly high ADMA concentrations. Their NOx(-) was significantly positively correlated with arginine. The ASS-deficient patients had significantly low NOx(-) and significantly high ADMA concentrations. The ASL-deficient patients had normal NOx(-) and nonsignificantly high ADMA concentrations. In ASS-deficient and ASL-deficient patients, the NOx(-) was significantly inversely correlated with citrulline. These results suggest that NO synthesis is enhanced in OTC-deficient patients while receiving arginine but that NO synthesis remains low in ASS-deficient patients despite receiving arginine. They also suggest that endogenous NO synthesis is negatively affected by citrulline and ADMA in ASS-deficient and ASL-deficient patients. Although the molecular mechanisms remain poorly understood, we infer that the NO pathway might play a role in the pathophysiology related to congenital urea cycle

  13. Bile acids cycle disruption in patients with nasopharyngeal ...

    African Journals Online (AJOL)

    2014-12-31

    Dec 31, 2014 ... Cite as: Wang C-S, Liu S-H, Peng J, Tang C, Zhu W-G. Bile acids cycle disruption in patients .... stein-Barr virus in the development of nasopharyngeal carcinoma. Chin. J. Cancer 2014; 33(11): 556 PubMed. -568. 2. Mrizak D, Martin N, Barjon C, Jimenez-Pailhes AS,. Mustapha R, Niki T, Guigay J, Pancre V, ...

  14. Genetic Investigation of Tricarboxylic Acid Metabolism during the Plasmodium falciparum Life Cycle

    Directory of Open Access Journals (Sweden)

    Hangjun Ke

    2015-04-01

    Full Text Available New antimalarial drugs are urgently needed to control drug-resistant forms of the malaria parasite Plasmodium falciparum. Mitochondrial electron transport is the target of both existing and new antimalarials. Herein, we describe 11 genetic knockout (KO lines that delete six of the eight mitochondrial tricarboxylic acid (TCA cycle enzymes. Although all TCA KOs grew normally in asexual blood stages, these metabolic deficiencies halted life-cycle progression in later stages. Specifically, aconitase KO parasites arrested as late gametocytes, whereas α-ketoglutarate-dehydrogenase-deficient parasites failed to develop oocysts in the mosquitoes. Mass spectrometry analysis of 13C-isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development.

  15. Genetic investigation of tricarboxylic acid metabolism during the Plasmodium falciparum life cycle.

    Science.gov (United States)

    Ke, Hangjun; Lewis, Ian A; Morrisey, Joanne M; McLean, Kyle J; Ganesan, Suresh M; Painter, Heather J; Mather, Michael W; Jacobs-Lorena, Marcelo; Llinás, Manuel; Vaidya, Akhil B

    2015-04-07

    New antimalarial drugs are urgently needed to control drug-resistant forms of the malaria parasite Plasmodium falciparum. Mitochondrial electron transport is the target of both existing and new antimalarials. Herein, we describe 11 genetic knockout (KO) lines that delete six of the eight mitochondrial tricarboxylic acid (TCA) cycle enzymes. Although all TCA KOs grew normally in asexual blood stages, these metabolic deficiencies halted life-cycle progression in later stages. Specifically, aconitase KO parasites arrested as late gametocytes, whereas α-ketoglutarate-dehydrogenase-deficient parasites failed to develop oocysts in the mosquitoes. Mass spectrometry analysis of (13)C-isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Influence of enzymes and ascorbic acid on dough rheology and ...

    African Journals Online (AJOL)

    The combined action of ascorbic acid and two commercial enzymatic complexes containing amylase and xylanase/amylase was analyzed to determine their effects on dough rheology and bread quality. Seven bread formulations containing different concentrations of these improvers were used in the analysis.

  17. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets.

    Science.gov (United States)

    Pinto-Fernandez, Adan; Kessler, Benedikt M

    2016-01-01

    Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.

  18. DUBbing cancer: Deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets

    Directory of Open Access Journals (Sweden)

    Benedikt M Kessler

    2016-07-01

    Full Text Available Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs, have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.

  19. Fatty acid and amino acid modulation of glucose cycling in isolated rat hepatocytes

    NARCIS (Netherlands)

    Gustafson, LA; Neeft, M; Reijngoud, DJ; Kuipers, F; Sauerwein, HP; Romijn, JA; Herling, AW; Burger, HJ; Meijer, AJ

    2001-01-01

    We studied the influence of glucose/glucose 6-phosphate cycling on glycogen deposition from glucose in fasted-rat hepatocytes using S4048 and CP320626, specific inhibitors of glucose-6-phosphate translocase and glycogen phosphorylase respectively. The effect of amino acids and oleate was also

  20. Effect of acidic treatment on carbon nano tubes for immobilization of cellulase enzyme

    International Nuclear Information System (INIS)

    Al-Khatib, M.F.R.; Mohd Zahangir Alam; Rasha Mohammed

    2009-01-01

    Full text: The effect of acidic treatment on MWCNTs functionalization was studied by mixing different ratios (1:1, 1:2, and 1:3 v/v %) of nitric acid and sulphuric acid, respectively. The effect of these treatments on the structure of MWCNTs was characterized by Fourier transform infrared spectroscopy (FTIR) and Filed emission scanning electron microscopy (FESEM). Results showed that the optimum ratio 1:3 (v/v %) is best suitable in imparting carboxylic acid and hydroxyl groups which are required for immobilization of cellulase enzyme on functionalized CNTs. (author)

  1. Biosynthesis of quinoxaline antibiotics: Purification and characterization of the quinoxaline-2-carboxylic acid activating enzyme from Streptomyces triostinicus

    International Nuclear Information System (INIS)

    Glund, K.; Schlumbohm, W.; Bapat, M.; Keller, U.

    1990-01-01

    A quinoxaline-2-carboxylic acid activating enzyme was purified to homogeneity from triostin-producing Streptomyces triostinicus. It could also be purified from quinomycin-producing Streptomyces echinatus. Triostins and quinomycins are peptide lactones that contain quinoxaline-2-carboxylic acid as chromophoric moiety. The enzyme catalyzes the ATP-pyrophosphate exchange reaction dependent on quinoxaline-2-carboxylic acid and the formation of the corresponding adenylate. Besides quinoxaline-2-carboxylic acid, the enzyme also catalyzes the formation of adenylates from quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid. No adenylates were seen from quinoline-3-carboxylic acid, quinoline-4-carboxylic acid, pyridine-2-carboxylic acid, and 2-pyrazinecarboxylic acid. Previous work revealed that quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid became efficiently incorporated into the corresponding quinoxaline antibiotic analogues in vivo. Together with the data described here, this suggests that the enzyme is part of the quinoxaline antibiotics synthesizing enzyme system. The enzyme displays a native molecular weight of 42,000, whereas in its denatured form it is a polypeptide of Mr 52,000-53,000. It resembles in its behavior actinomycin synthetase I, the chromophore activating enzyme involved in actinomycin biosynthesis

  2. Production of Biodiesel from High Acid Value Waste Cooking Oil Using an Optimized Lipase Enzyme/Acid-Catalyzed Hybrid Process

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2009-01-01

    Full Text Available The present study is aimed at developing an enzymatic/acid-catalyzed hybrid process for biodiesel production using waste cooking oil with high acid value (poor quality as feedstock. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes. Further enhancement was achieved by three phase partitioning (TPP method. The results on the lipase enzyme which was subjected to pH tuning and TPP, indicated remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. The optimized enzyme was used for hydrolysis and 88% of the oil taken initially was hydrolyzed by the lipase. The hydrolysate was further used in acid-catalyzed esterification for biodiesel production. By using a feedstock to methanol molar ratio of 1:15 and a sulphuric acid concentration of 2.5%, a biodiesel conversion of 88% was obtained at 50 °C for an hour reaction time. This hybrid process may open a way for biodiesel production using unrefined and used oil with high acid value as feedstock.

  3. Characterization of Anammox Hydrazine Dehydrogenase, a Key N2-producing Enzyme in the Global Nitrogen Cycle.

    Science.gov (United States)

    Maalcke, Wouter J; Reimann, Joachim; de Vries, Simon; Butt, Julea N; Dietl, Andreas; Kip, Nardy; Mersdorf, Ulrike; Barends, Thomas R M; Jetten, Mike S M; Keltjens, Jan T; Kartal, Boran

    2016-08-12

    Anaerobic ammonium-oxidizing (anammox) bacteria derive their energy for growth from the oxidation of ammonium with nitrite as the electron acceptor. N2, the end product of this metabolism, is produced from the oxidation of the intermediate, hydrazine (N2H4). Previously, we identified N2-producing hydrazine dehydrogenase (KsHDH) from the anammox organism Kuenenia stuttgartiensis as the gene product of kustc0694 and determined some of its catalytic properties. In the genome of K. stuttgartiensis, kustc0694 is one of 10 paralogs related to octaheme hydroxylamine (NH2OH) oxidoreductase (HAO). Here, we characterized KsHDH as a covalently cross-linked homotrimeric octaheme protein as found for HAO and HAO-related hydroxylamine-oxidizing enzyme kustc1061 from K. stuttgartiensis Interestingly, the HDH trimers formed octamers in solution, each octamer harboring an amazing 192 c-type heme moieties. Whereas HAO and kustc1061 are capable of hydrazine oxidation as well, KsHDH was highly specific for this activity. To understand this specificity, we performed detailed amino acid sequence analyses and investigated the catalytic and spectroscopic (electronic absorbance, EPR) properties of KsHDH in comparison with the well defined HAO and kustc1061. We conclude that HDH specificity is most likely derived from structural changes around the catalytic heme 4 (P460) and of the electron-wiring circuit comprising seven His/His-ligated c-type hemes in each subunit. These nuances make HDH a globally prominent N2-producing enzyme, next to nitrous oxide (N2O) reductase from denitrifying microorganisms. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Enzyme-assisted extraction enhancing the umami taste amino acids recovery from several cultivated mushrooms

    DEFF Research Database (Denmark)

    Poojary, Mahesha Manjunatha; Orlien, Vibeke; Passamonti, Paolo

    2017-01-01

    In this study, enzyme-assisted extraction was performed to extract umami taste and total free amino acids (FAAs) from the six different mushrooms including shiitake (Lentinus edodes), oyster (Pleurotus ostreatus), tea tree (Agrocybe aegerita) and, white, brown and portobello champignons (Agaricus...

  5. Chlorophyll-derived fatty acids regulate expression of lipid metabolizing enzymes in liver - a nutritional opportunity

    Directory of Open Access Journals (Sweden)

    Wolfrum Christian

    2001-01-01

    Full Text Available Nutritional values of fatty acid classes are normally discussed on the basis of their saturated, monounsaturated and polyunsaturated structures with implicit understanding that they are straight-chain. Here we focus on chlorophyll-derived phytanic and pristanic acids that are minor isoprenoid branched-chain lipid constituents in food, but of unknown nutritional value. After describing the enzyme machinery that degrades these nutrient fatty acids in the peroxisome, we show by the criteria of a mouse model and of a human cell culture model that they induce with high potency expression of enzymes responsible for beta-oxidation of straight-chain fatty acids in the peroxisome. We summarize present mechanistic knowledge on fatty acid signaling to the nucleus, which involves protein/protein contacts between peroxisome proliferator activated receptor (PPAR and fatty acid binding protein (FABP. In this signaling event the branched-chain fatty acids are the most effective ones. Finally, on the basis of this nutrient-gene interaction we discuss nutritional opportunities and therapeutic aspects of the chlorophyll-derived fatty acids.

  6. Correlation between citric acid and nitrate metabolisms during CAM cycle in the atmospheric bromeliad Tillandsia pohliana.

    Science.gov (United States)

    Freschi, Luciano; Rodrigues, Maria Aurineide; Tiné, Marco Aurélio Silva; Mercier, Helenice

    2010-12-15

    Crassulacean acid metabolism (CAM) confers crucial adaptations for plants living under frequent environmental stresses. A wide metabolic plasticity can be found among CAM species regarding the type of storage carbohydrate, organic acid accumulated at night and decarboxylating system. Consequently, many aspects of the CAM pathway control are still elusive while the impact of this photosynthetic adaptation on nitrogen metabolism has remained largely unexplored. In this study, we investigated a possible link between the CAM cycle and the nitrogen assimilation in the atmospheric bromeliad Tillandsia pohliana by simultaneously characterizing the diel changes in key enzyme activities and metabolite levels of both organic acid and nitrate metabolisms. The results revealed that T. pohliana performed a typical CAM cycle in which phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase phosphorylation seemed to play a crucial role to avoid futile cycles of carboxylation and decarboxylation. Unlike all other bromeliads previously investigated, almost equimolar concentrations of malate and citrate were accumulated at night. Moreover, a marked nocturnal depletion in the starch reservoirs and an atypical pattern of nitrate reduction restricted to the nighttime were also observed. Since reduction and assimilation of nitrate requires a massive supply of reducing power and energy and considering that T. pohliana lives overexposed to the sunlight, we hypothesize that citrate decarboxylation might be an accessory mechanism to increase internal CO₂ concentration during the day while its biosynthesis could provide NADH and ATP for nocturnal assimilation of nitrate. Therefore, besides delivering photoprotection during the day, citrate might represent a key component connecting both CAM pathway and nitrogen metabolism in T. pohliana; a scenario that certainly deserves further study not only in this species but also in other CAM plants that nocturnally accumulate citrate

  7. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    International Nuclear Information System (INIS)

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C. K.

    2010-01-01

    The crystal structure of phenolic acid decarboxylase from B. pumilus strain UI-670 has been determined and refined at 1.69 Å resolution. The enzyme is a dimer, with each subunit adopting a β-barrel structure belonging to the lipocalin fold. The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavouring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a β-barrel structure and two α-helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the β-barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site

  8. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tingting; Sui, Xiaoyu, E-mail: suixiaoyu@outlook.com; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-15

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. - Highlights: • An ionic liquid based enzyme-assisted extraction method of natural product was explored. • ILEAE utilizes enzymatic treatment to improve permeability of ionic liquids solution. • Enzyme incubation and solvent extraction process were ongoing simultaneously. • ILEAE process simplified operating process and suitable for more complete extraction.

  9. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves

    International Nuclear Information System (INIS)

    Liu, Tingting; Sui, Xiaoyu; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-01

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. - Highlights: • An ionic liquid based enzyme-assisted extraction method of natural product was explored. • ILEAE utilizes enzymatic treatment to improve permeability of ionic liquids solution. • Enzyme incubation and solvent extraction process were ongoing simultaneously. • ILEAE process simplified operating process and suitable for more complete extraction.

  10. Molecular dynamics simulations of deoxyribonucleic acids and repair enzyme T4 endonuclease V

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    1999-01-01

    This report describes the results of molecular dynamics (MD) simulation of deoxyribonucleic acids (DNA) and specific repair enzyme T4 endonuclease V. Namely research described here is focused on the examination of specific recognition process, in which this repair enzyme recognizes the damaged site on the DNA molecule-thymine dimer (TD). TD is frequent DNA damage induced by UV radiation in sun light and unless properly repaired it may be mutagenic or lethal for cell, and is also considered among the major causes of skin cancer. T4 endonuclease V is a DNA specific repair enzyme from bacteriophage T4 that catalyzes the first reaction step of TD repair pathway. MD simulations of three molecules - native DNA dodecamer (12 base pairs), DNA of the same sequence of nucleotides as native one but with TD, and repair enzyme T4 endonuclease V - were performed for 1 ns individually for each molecule. Simulations were analyzed to determine the role of electrostatic interaction in the recognition process. It is found that electrostatic energies calculated for amino acids of the enzyme have positive values of around +15 kcal/mol. The electrostatic energy of TD site has negative value of approximately -9 kcal/mol, different from the nearly neutral value of the respective thymines site of the native DNA. The electrostatic interaction of TD site with surrounding water environment differs from the electrostatic interaction of other nucleotides. Differences found between TD site and respective thymines site of native DNA indicate that the electrostatic energy is an important factor contributing to proper recognition of TD site during scanning process in which enzyme scans the DNA. In addition to the electrostatic energy, the important factor in recognition process might be structural complementarity of enzyme and bent DNA with TD. There is significant kink formed around TD site, that is not observed in native DNA. (author)

  11. Production of L-lactic Acid from Biomass Wastes Using Scallop Crude Enzymes and Novel Lactic Acid Bacterium

    Science.gov (United States)

    Yanagisawa, Mitsunori; Nakamura, Kanami; Nakasaki, Kiyohiko

    In the present study, biomass waste raw materials including paper mill sludge, bamboo, sea lettuce, and shochu residue (from a distiller) and crude enzymes derived from inedible and discarded scallop parts were used to produce L-lactic acid for the raw material of biodegradable plastic poly-lactic acid. The activities of cellulase and amylase in the crude enzymes were 22 and 170units/L, respectively, and L-lactic acid was produced from every of the above mentioned biomass wastes, by the method of liquid-state simultaneous saccharification and fermentation (SSF) . The L-lactic acid concentrations produced from sea lettuce and shochu residue, which contain high concentration of starch were 3.6 and 9.3g/L, respectively, and corresponded to greater than 25% of the conversion of glucans contained in these biomass wastes. Furthermore, using the solid state SSF method, concentrations as high as 13g/L of L-lactic acid were obtained from sea lettuce and 26g/L were obtained from shochu residue.

  12. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    Science.gov (United States)

    Gallage, Nethaji J.; Hansen, Esben H.; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

  13. Serum uric acid in relation to endogenous reproductive hormones during the menstrual cycle: findings from the BioCycle study

    Science.gov (United States)

    Mumford, Sunni L.; Dasharathy, Sonya S.; Pollack, Anna Z.; Perkins, Neil J.; Mattison, Donald R.; Cole, Stephen R.; Wactawski-Wende, Jean; Schisterman, Enrique F.

    2013-01-01

    STUDY QUESTION Do uric acid levels across the menstrual cycle show associations with endogenous estradiol (E2) and reproductive hormone concentrations in regularly menstruating women? SUMMARY ANSWER Mean uric acid concentrations were highest during the follicular phase, and were inversely associated with E2 and progesterone, and positively associated with FSH. WHAT IS KNOWN ALREADY E2 may decrease serum levels of uric acid in post-menopausal women; however, the interplay between endogenous reproductive hormones and uric acid levels among regularly menstruating women has not been elucidated. STUDY DESIGN, SIZE, DURATION The BioCycle study was a prospective cohort study conducted at the University at Buffalo research centre from 2005 to 2007, which followed healthy women for one (n = 9) or 2 (n = 250) menstrual cycle(s). PARTICIPANTS/MATERIALS, SETTING, METHODS Participants were healthy women aged 18–44 years. Hormones and uric acid were measured in serum eight times each cycle for up to two cycles. Marginal structural models with inverse probability of exposure weights were used to evaluate the associations between endogenous hormones and uric acid concentrations. MAIN RESULTS AND THE ROLE OF CHANCE Uric acid levels were observed to vary across the menstrual cycle, with the lowest levels observed during the luteal phase. Every log-unit increase in E2 was associated with a decrease in uric acid of 1.1% (β = −0.011; 95% confidence interval (CI): −0.019, −0.004; persistent-effects model), and for every log-unit increase in progesterone, uric acid decreased by ∼0.8% (β = −0.008; 95% CI: −0.012, −0.004; persistent-effects model). FSH was positively associated with uric acid concentrations, such that each log-unit increase was associated with a 1.6% increase in uric acid (β = 0.016; 95% CI: 0.005, 0.026; persistent-effects model). Progesterone and FSH were also associated with uric acid levels in acute-effects models. Of 509 cycles, 42 were anovulatory

  14. Two modes of regulation of the fatty acid elongase ELOVL6 by the 3-ketoacyl-CoA reductase KAR in the fatty acid elongation cycle.

    Directory of Open Access Journals (Sweden)

    Tatsuro Naganuma

    Full Text Available Fatty acids (FAs are diverse molecules, and such diversity is important for lipids to exert their functions under several environmental conditions. FA elongation occurs at the endoplasmic reticulum and produces a variety of FA species; the FA elongation cycle consists of four distinct enzyme reactions. For this cycle to be driven efficiently, there must exist coordinated regulation of protein components of the FA elongation machinery. However, such regulation is poorly understood. In the present study, we performed biochemical analyses using the FA elongase ELOVL6 and the 3-ketoacyl-CoA reductase KAR, which catalyze the first and second steps of the FA elongation cycle, respectively. In vitro FA elongation assays using membrane fractions demonstrated that ELOVL6 activity was enhanced ∼10-fold in the presence of NADPH, although ELOVL6 itself did not require NADPH for its catalysis. On the other hand, KAR does use NADPH as a reductant in its enzyme reaction. Activity of purified ELOVL6 was enhanced by ∼3-fold in the presence of KAR. This effect was KAR enzyme activity-independent, since it was observed in the absence of NADPH and in the KAR mutant. However, ELOVL6 enzyme activity was further enhanced in a KAR enzyme activity-dependent manner. Therefore, KAR regulates ELOVL6 via two modes. In the first mode, KAR may induce conformational changes in ELOVL6 to become structure that can undergo catalysis. In the second mode, conversion of 3-ketoacyl-CoA to 3-hydroxyacyl-CoA by KAR may facilitate release of the product from the presumed ELOVL6-KAR complex.

  15. Genipin Cross-Linked Glucose Oxidase and Catalase Multi-enzyme for Gluconic Acid Synthesis.

    Science.gov (United States)

    Cui, Caixia; Chen, Haibin; Chen, Biqiang; Tan, Tianwei

    2017-02-01

    In this work, glucose oxidase (GOD) and catalase (CAT) were used simultaneously to produce gluconic acid from glucose. In order to reduce the distance between the two enzymes, and therefore improve efficiency, GOD and CAT were cross-linked together using genipin. Improvements in gluconic acid production were due to quick removal of harmful intermediate hydrogen peroxide by CAT. GOD activity was significantly affected by the proportion of CAT in the system, with GOD activity in the cross-linked multi-enzyme (CLME) being 10 times higher than that in an un-cross-linked GOD/CAT mixture. The glucose conversion rate after 15 h using 15 % glucose was also 10 % higher using the CLME than was measured using a GOD/CAT mixture.

  16. mRNA levels of enzymes and receptors implicated in arachidonic acid metabolism in gliomas.

    Science.gov (United States)

    De Armas, Rafael; Durand, Karine; Guillaudeau, Angélique; Weinbreck, Nicolas; Robert, Sandrine; Moreau, Jean-Jacques; Caire, François; Acosta, Gisela; Pebet, Matias; Chaunavel, Alain; Marin, Benoît; Labrousse, François; Denizot, Yves

    2010-07-01

    Gliomas are tumors of the central nervous system derived from glial cells. They show cellular heterogeneity and lack specific diagnostic markers. Although a possible role for the eicosanoid cascade has been suggested in glioma tumorigenesis, the relationship between enzymes and receptors implicated in arachidonic acid metabolism, with histological tumor type has not yet been determined. Quantitative real-time reverse transcription-polymerase chain reaction was performed to measure and compare transcript levels of enzymes and receptors implicated in both lipoxygenase and cyclooxygenase pathways between oligodendrogliomas, astrocytomas, glioblastomas and mixed oligoastrocytomas. Arachidonic acid metabolism-related enzymes and receptor transcripts (i) were underexpressed in classical oligodendrogliomas compared to astrocytomas and/or glioblastomas, (ii) differed between astrocytomas and glioblastomas and (iii) had an intermediate expression in mixed oligoastrocytomas. mRNA levels of enzymes and receptors implicated both in lipoxygenase and cyclooxygenase pathways differed significantly in gliomas according to the histological type. Copyright 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  17. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content

    OpenAIRE

    Chung Myung; Shin Hea; Lee Kyung; Kim Mi; Baek Eun; Jang Seok; Lee Do; Kim Jin; Lee Kang; Ha Nam

    2009-01-01

    Abstract Background Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. Methods In vitro culture experiments were performed to ...

  18. Correlation of secretory phospholipase-A2 activity and fatty acids in cerebrospinal fluid with liver enzymes tests

    Directory of Open Access Journals (Sweden)

    Sepideh Ghodoosifar

    2016-02-01

    Full Text Available Introduction: The aim was to determine whether secretory phospholipase-A2 (sPLA2 activity and fatty acids in cerebrospinal fluid (CSF are correlated with liver enzymes tests. Methods: CSF and serum samples were collected from 49 patients (age 18-65 as part of routine diagnostic testing. Along with serum liver enzymes aspartate aminotransferase (AST, alanine aminotransferase (ALT and alkaline phosphatase (ALP, the fatty acid composition of CSF was measured by gas liquid chromatography. CSF enzyme activities of sPLA2 were measured using the standard assay with diheptanoyl thio-phosphatidylcholin as substrate. Results: The saturated fatty acids (SFAs including palmitic acid and stearic acid were positively, and the unsaturated fatty acids including oleic acid and linoleic acid were negatively correlated with liver enzymes tests. In regression analysis with adjustment for body mass index (BMI, the elevated liver enzymes tests were positively associated with activity of sPLA2 (β > 0.31, P 0.38, P < 0.010 and negatively with total monounsaturated fatty acids (MUFAs (β < -0.40, P < 0.001 contents of CSF. Conclusion: CSF activity of sPLA2 and fatty acids may be linked to peripheral markers of liver function, suggesting an indirect impact of central fatty acids on hepatocytes function and metabolism.

  19. Transcriptome mining and in silico structural and functional analysis of ascorbic acid and tartaric acid biosynthesis pathway enzymes in rose-scanted geranium.

    Science.gov (United States)

    Narnoliya, Lokesh K; Sangwan, Rajender S; Singh, Sudhir P

    2018-06-01

    Rose-scented geranium (Pelargonium sp.) is widely known as aromatic and medicinal herb, accumulating specialized metabolites of high economic importance, such as essential oils, ascorbic acid, and tartaric acid. Ascorbic acid and tartaric acid are multifunctional metabolites of human value to be used as vital antioxidants and flavor enhancing agents in food products. No information is available related to the structural and functional properties of the enzymes involved in ascorbic acid and tartaric acid biosynthesis in rose-scented geranium. In the present study, transcriptome mining was done to identify full-length genes, followed by their bioinformatic and molecular modeling investigations and understanding of in silico structural and functional properties of these enzymes. Evolutionary conserved domains were identified in the pathway enzymes. In silico physicochemical characterization of the catalytic enzymes revealed isoelectric point (pI), instability index, aliphatic index, and grand average hydropathy (GRAVY) values of the enzymes. Secondary structural prediction revealed abundant proportion of alpha helix and random coil confirmations in the pathway enzymes. Three-dimensional homology models were developed for these enzymes. The predicted structures showed significant structural similarity with their respective templates in root mean square deviation analysis. Ramachandran plot analysis of the modeled enzymes revealed that more than 84% of the amino acid residues were within the favored regions. Further, functionally important residues were identified corresponding to catalytic sites located in the enzymes. To, our best knowledge, this is the first report which provides a foundation on functional annotation and structural determination of ascorbic acid and tartaric acid pathway enzymes in rose-scanted geranium.

  20. A simple assay method for omega-oxidation of lauric acid by hepatic enzymes

    International Nuclear Information System (INIS)

    Giera, D.D.; van Lier, R.B.L.

    1990-01-01

    Routine assessment of hepatic ω-oxidation of fatty acids in toxicology studies requires a simpler method of enzymatic analysis than HPLC or TLC. A method depending upon selective solvent separation of 14 C-lauric acid and 14 C-11/12-hydroxy lauric acid was developed. Following enzymatic incubation and addition of 15% methanol to the acidified incubation mixtures, partitioning with an alkane solvent such as iso-octane, cyclohexane, or n-hexane separated the lauric acid substrate and ω-hydroxylated products into two immiscible phases. Approximately 98% of the substrate partitioned into the organic phase, and approximately 83% of the hydroxylated products partitioned into the aqueous phase. Subsequent quantitation of the enzymatic activity required only liquid scintillation counting of the aqueous phase. Hepatic homogenates from male rats treated with 0.01, 0.05, 0.125, and 0.25% clofibrate in the diet for 7 days had enzyme levels 1.3, 6.1, 11.1, and 15.9 times control values, respectively, when assayed by conventional TLC methods, and 1.3, 5.3, 12.3, and 15.3 times control values when assayed by the solvent extraction method. The data indicate that the selective solvent partitioning yields comparable precision and sensitivity to the more conventional TLC method when studying induction of hepatic microsomal enzymes

  1. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Science.gov (United States)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  2. A Single Enzyme Transforms a Carboxylic Acid into a Nitrile through an Amide Intermediate.

    Science.gov (United States)

    Nelp, Micah T; Bandarian, Vahe

    2015-09-01

    The biosynthesis of nitriles is known to occur through specialized pathways involving multiple enzymes; however, in bacterial and archeal biosynthesis of 7-deazapurines, a single enzyme, ToyM, catalyzes the conversion of the carboxylic acid containing 7-carboxy-7-deazaguanine (CDG) into its corresponding nitrile, 7-cyano-7-deazaguanine (preQ0 ). The mechanism of this unusual direct transformation was shown to proceed via the adenylation of CDG, which activates it to form the newly discovered amide intermediate 7-amido-7-deazaguanine (ADG). This is subsequently dehydrated to form the nitrile in a process that consumes a second equivalent of ATP. The authentic amide intermediate is shown to be chemically and kinetically competent. The ability of ToyM to activate two different substrates, an acid and an amide, accounts for this unprecedented one-enzyme catalysis of nitrile synthesis, and the differential rates of these two half reactions suggest that this catalytic ability is derived from an amide synthetase that gained a new function. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Human triose-phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme.

    Science.gov (United States)

    Daar, I O; Artymiuk, P J; Phillips, D C; Maquat, L E

    1986-10-01

    Triose-phosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1) deficiency is a recessive disorder that results in hemolytic anemia and neuromuscular dysfunction. To determine the molecular basis of this disorder, a TPI allele from two unrelated patients homozygous for TPI deficiency was compared with an allele from a normal individual. Each disease-associated sequence harbors a G X C----C X G transversion in the codon for amino acid-104 and specifies a structurally altered protein in which a glutamate residue is replaced by an aspartate residue. The importance of glutamate-104 to enzyme structure and function is implicated by its conservation in the TPI protein of all species that have been characterized to date. The glutamate-to-aspartate substitution results in a thermolabile enzyme as demonstrated by assays of TPI activity in cultured fibroblasts of each patient and cultured Chinese hamster ovary (CHO) cells that were stably transformed with the mutant alleles. Although this substitution conserves the overall charge of amino acid-104, the x-ray crystal structure of chicken TPI indicates that the loss of a side-chain methylene group (-CH2CH2COO- ---- -CH2COO-) is sufficient to disrupt the counterbalancing of charges that normally exists within a hydrophobic pocket of the native enzyme.

  4. Nitrile-hydrolyzing enzyme from Meyerozyma guilliermondii and its potential in biosynthesis of 3-hydroxypropionic acid.

    Science.gov (United States)

    Zhang, Qiang; Gong, Jin-Song; Dong, Ting-Ting; Liu, Ting-Ting; Li, Heng; Dou, Wen-Fang; Lu, Zhen-Ming; Shi, Jin-Song; Xu, Zheng-Hong

    2017-06-01

    3-Hydroxypropionic acid (3-HP) is an important platform chemical in organic synthesis. Traditionally, 3-HP was produced by chemical methods and fermentation process. In this work, a novel enzymatic method was developed for green synthesis of 3-HP. A yeast strain harboring nitrile-hydrolyzing enzyme was newly isolated from environmental samples using 3-hydroxypropionitrile (3-HPN) as the sole nitrogen source. It was identified to be Meyerozyma guilliermondii CGMCC12935 by sequencing of the 18S ribosomal DNA and internal transcribed spacer, together with analysis of the morphology characteristics. The catalytic properties of M. guilliermondii CGMCC12935 resting cells were determined, and the optimum activity was achieved at 55 °C and pH 7.5. The enzyme showed broad substrate specificity towards nitriles, especially 3-HPN, aminoacetonitrile and 3-cyanopyridine. The presence of Ag + , Pb 2+ and excess substrate inhibited the enzyme activity, whereas 5% (v/v) ethyl acetate had a positive effect on the enzyme activity. M. guilliermondii CGMCC12935 resting cells by addition of 3% glucose could thoroughly hydrolyze 500 mM 3-HPN into 3-HP within 100 h and the maximal accumulative production of 3-HP reached 216.33 mM, which was over twofolds than the control group with no additional glucose. And this work would lay the foundation for biological production of 3-HP in industry.

  5. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.E.; McKay, D.M. [Cleansorb Limited, Surrey (United Kingdom); Moses, V. [King`s College, London (United Kingdom)

    1995-12-31

    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  6. In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum.

    Science.gov (United States)

    Ikeda, Masato; Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki

    2017-10-01

    For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis , which use an individual nonaggregating type II fatty acid synthase

  7. Subcellular location of the enzymes of purine breakdown in the yeast Candida famata grown on uric acid

    NARCIS (Netherlands)

    Large, Peter J.; Waterham, Hans R.; Veenhuis, Marten

    1990-01-01

    The subcellular location of the enzymes of purine breakdown in the yeast Candida famata, which grows on uric acid as sole carbon and nitrogen source, has been examined by subcellular fractionation methods. Uricase was confirmed as being peroxisomal, but the other three enzymes, allantoinase,

  8. Enzyme active site mimics based on TriAzaCyclophane (TAC)-scaffolded peptides and amino acid residues

    NARCIS (Netherlands)

    Albada, H.B.

    2009-01-01

    This thesis describes the scope and limitations of the application of TriAzaCyclophane (TAC)-scaffolded peptides or amino acid residues as enzyme active site mimics, as ligands in asymmetric catalysis and as hydrolysis catalysts attached to vancomycin. For the mimicry of functional group enzymes, of

  9. Acetobacter turbidans α-Amino Acid Ester Hydrolase. How a Single Mutation Improves an Antibiotic-Producing Enzyme

    NARCIS (Netherlands)

    Barends, Thomas R.M.; Polderman-Tijmes, Jolanda J.; Jekel, Peter A.; Williams, Christopher; Wybenga, Gjalt; Janssen, Dick B.; Dijkstra, Bauke W.

    2006-01-01

    The α-amino acid ester hydrolase (AEH) from Acetobacter turbidans is a bacterial enzyme catalyzing the hydrolysis and synthesis of β-lactam antibiotics. The crystal structures of the native enzyme, both unliganded and in complex with the hydrolysis product D-phenylglycine are reported, as well as

  10. Increased serum levels of hyaluronic acid in pregnancies complicated by preeclampsia or hemolysis, elevated liver enzymes, and low platelets syndrome.

    Science.gov (United States)

    Osmers, R G; Schütz, E; Diedrich, F; Wehry, B; Krauss, T; Oellerich, M; Kuhn, W

    1998-02-01

    Fifteen percent of patients who later have hemolysis, elevated liver enzymes, and low platelets syndrome develop initially have nonspecific symptoms. Early diagnosis could ensure adequate obstetric management; however, prognostic biochemical tests are lacking. We hypothesized that elevated hyaluronic acid serum levels might be an early indicator of hemolysis, elevated liver enzymes, and low platelets syndrome because it is known to be a sensitive marker of liver cell function. Hyaluronic acid in serum was measured in patients with normal pregnancies (n = 109) and in those patients with pregnancies complicated by preeclampsia (n = 14) or hemolysis, elevated liver enzymes, and low platelets syndrome (n = 11). A significant increase in hyaluronic acid serum concentrations was observed in patients with hemolysis, elevated liver enzymes, and low platelets syndrome or with preeclampsia (p hyaluronic acid serum levels in hemolysis, elevated liver enzymes, and low platelets syndrome correlated with the clinical severity of the individual course of disease as measured by intensive care unit time (r = 0.72; p hyaluronic acid in preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome are significantly elevated and might play an important diagnostic and prognostic role in patients with hemolysis, elevated liver enzymes, and low platelets syndrome.

  11. Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle

    Science.gov (United States)

    Alcolombri, Uria; Ben-Dor, Shifra; Feldmesser, Ester; Levin, Yishai; Tawfik, Dan S.; Vardi, Assaf

    2015-06-01

    Algal blooms produce large amounts of dimethyl sulfide (DMS), a volatile with a diverse signaling role in marine food webs that is emitted to the atmosphere, where it can affect cloud formation. The algal enzymes responsible for forming DMS from dimethylsulfoniopropionate (DMSP) remain unidentified despite their critical role in the global sulfur cycle. We identified and characterized Alma1, a DMSP lyase from the bloom-forming algae Emiliania huxleyi. Alma1 is a tetrameric, redox-sensitive enzyme of the aspartate racemase superfamily. Recombinant Alma1 exhibits biochemical features identical to the DMSP lyase in E. huxleyi, and DMS released by various E. huxleyi isolates correlates with their Alma1 levels. Sequence homology searches suggest that Alma1 represents a gene family present in major, globally distributed phytoplankton taxa and in other marine organisms.

  12. Induction of Shikimic Acid Pathway Enzymes by Light in Suspension Cultured Cells of Parsley (Petroselinum crispum) 1

    Science.gov (United States)

    McCue, Kent F.; Conn, Eric E.

    1990-01-01

    Light treatment of suspension cultured cells of parsley (Petroselinum crispum) was shown to increase the activity of the shikimic acid pathway enzyme, 3-deoxy-d-arabino-heptulosonic acid-7-phosphate (DAHP) synthase (EC 4.1.2.15). DAHP synthase activity was assayed for two isoforms, DS-Mn and DS-Co (RJ Ganson, TA d'Amato, RA Jensen [1986] Plant Physiol 82: 203-210). Light increased the enzymatic activity of the plastidic isoform DS-Mn as much as 2-fold, averaging 1.6-fold with >95% confidence. The cytosolic isoform DS-Co was unaffected. Cycloheximide and actinomycin D, translational and transcriptional inhibitors, respectively, both reversed induction of DS-Mn by light suggesting transcriptional regulation of the gene. Chorismate mutase activity was assayed for the two isoforms CM I and CM II (BK Singh, JA Connelly, EE Conn [1985] Arch Biochem Biophys 243: 374-384). Treatment by light did not significantly affect either chorismate mutase isoform. The ratio of the two chorismate mutase isoforms changed during the growth cycle, with an increase in the ratio of plastidic to cytosolic isoforms occurring towards the end of logarithmic growth. PMID:16667741

  13. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin.

    Directory of Open Access Journals (Sweden)

    Wenwen Yang

    Full Text Available Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent Km, kcat, and Vmax values to be 0.35 mM, 67.7 s(-1, and 78.2 U mg(-1, respectively. The catalytic efficiency (kcat/Km value of Fcs was 193.4 mM(-1 s(-1 for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation.

  14. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin.

    Science.gov (United States)

    Yang, Wenwen; Tang, Hongzhi; Ni, Jun; Wu, Qiulin; Hua, Dongliang; Tao, Fei; Xu, Ping

    2013-01-01

    Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent Km, kcat, and Vmax values to be 0.35 mM, 67.7 s(-1), and 78.2 U mg(-1), respectively. The catalytic efficiency (kcat/Km) value of Fcs was 193.4 mM(-1) s(-1) for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation.

  15. Characterization of Two Streptomyces Enzymes That Convert Ferulic Acid to Vanillin

    Science.gov (United States)

    Yang, Wenwen; Tang, Hongzhi; Ni, Jun; Wu, Qiulin; Hua, Dongliang; Tao, Fei; Xu, Ping

    2013-01-01

    Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent K m, k cat, and V max values to be 0.35 mM, 67.7 s−1, and 78.2 U mg−1, respectively. The catalytic efficiency (k cat/K m) value of Fcs was 193.4 mM−1 s−1 for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation. PMID:23840666

  16. Temperature sensitivity differences with depth and season between carbon, nitrogen, and phosphorus cycling enzyme activities in an ombrotrophic peatland system

    Science.gov (United States)

    Steinweg, J. M.; Kostka, J. E.; Hanson, P. J.; Schadt, C. W.

    2017-12-01

    Northern peatlands have large amounts of soil organic matter due to reduced decomposition. Breakdown of organic matter is initially mediated by extracellular enzymes, the activity of which may be controlled by temperature, moisture, and substrate availability, all of which vary seasonally throughout the year and with depth. In typical soils the majority of the microbial biomass and decomposition occurs within the top 30cm due to reduced organic matter inputs in the subsurface however peatlands by their very nature contain large amounts of organic matter throughout their depth profile. We hypothesized that potential enzyme activity would be greatest at the surface of the peat due to a larger microbial biomass compared to 40cm and 175cm below the surface and that temperature sensitivity would be greatest at the surface during winter but lowest during the summer due to high temperatures and enzyme efficiency. Peat samples were collected in February, July, and August 2012 from the DOE Spruce and Peatland Responses Under Climatic and Environmental Change project at Marcell Experimental Forest S1 bog. We measured potential activity of hydrolytic enzymes involved in three different nutrient cycles: beta-glucosidase (carbon), leucine amino peptidase (nitrogen), and phosphatase (phosphorus) at 15 temperature points ranging from 3°C to 65°C. Enzyme activity decreased with depth as expected but there was no concurrent change in activation energy (Ea). The reduction in enzyme activity with depth indicates a smaller pool which coincided with a decreased microbial biomass. Differences in enzyme activity with depth also mirrored the changes in peat composition from the acrotelm to the catotelm. Season did play a role in temperature sensitivity with Ea of β-glucosidase and phosphatase being the lowest in August as expected but leucine amino peptidase (a nitrogen acquiring enzyme) Ea was not influenced by season. As temperatures rise, especially in winter months, enzymatic

  17. Bioaccessibility and inhibitory effects on digestive enzymes of carnosic acid in sage and rosemary.

    Science.gov (United States)

    Ercan, Pınar; El, Sedef Nehir

    2018-04-28

    In this study, the aim was to determine the bioaccessibilities of carnosic acid in sage and rosemary and in vitro inhibitory effects of these samples on lipid and starch digestive enzymes by evaluating the lipase, α-amylase and α-glucosidase enzyme inhibition activities. The content of carnosic acid in rosemary (18.72 ± 0.33 mg/g) was found to be higher than that content of that in sage (3.76 ± 0.13 mg/g) (p sage and rosemary, respectively. The tested sage and rosemary showed inhibitory activity against α-glucosidase (Concentration of inhibitor required to produce a 50% inhibition of the initial rate of reaction - IC 50 88.49 ± 2.35, 76.80 ± 1.68 μg/mL, respectively), α-amylase (IC 50 107.65 ± 12.64, 95.65 ± 2.73 μg/mL, respectively) and lipase (IC 50 6.20 ± 0.63, 4.31 ± 0.62 μg/mL, respectively). Furthermore, to the best of our knowledge, this is the first work that carnosic acid standard equivalent inhibition capacities (CAEIC 50 ) for these food samples were determined and these values were in agreement with the IC 50 values. These results show that sage and rosemary are potent inhibitors of lipase, α-amylase and α-glucosidase digestive enzymes. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco

    Directory of Open Access Journals (Sweden)

    Kapralov Maxim V

    2011-09-01

    Full Text Available Abstract Background One of the key forces shaping proteins is coevolution of amino acid residues. Knowing which residues coevolve in a particular protein may facilitate our understanding of protein evolution, structure and function, and help to identify substitutions that may lead to desired changes in enzyme kinetics. Rubisco, the most abundant enzyme in biosphere, plays an essential role in the process of carbon fixation through photosynthesis, thus facilitating life on Earth. This makes Rubisco an important model system for studying the dynamics of protein fitness optimization on the evolutionary landscape. In this study we investigated the selective and coevolutionary forces acting on large subunit of land plants Rubisco using Markov models of codon substitution and clustering approaches applied to amino acid substitution histories. Results We found that both selection and coevolution shape Rubisco, and that positively selected and coevolving residues have their specifically favored amino acid composition and pairing preference. The mapping of these residues on the known Rubisco tertiary structures showed that the coevolving residues tend to be in closer proximity with each other compared to the background, while positively selected residues tend to be further away from each other. This study also reveals that the residues under positive selection or coevolutionary force are located within functionally important regions and that some residues are targets of both positive selection and coevolution at the same time. Conclusion Our results demonstrate that coevolution of residues is common in Rubisco of land plants and that there is an overlap between coevolving and positively selected residues. Knowledge of which Rubisco residues are coevolving and positively selected could be used for further work on structural modeling and identification of substitutions that may be changed in order to improve efficiency of this important enzyme in crops.

  19. Origin of the Reductive Tricarboxylic Acid (rTCA Cycle-Type CO2 Fixation: A Perspective

    Directory of Open Access Journals (Sweden)

    Norio Kitadai

    2017-10-01

    Full Text Available The reductive tricarboxylic acid (rTCA cycle is among the most plausible candidates for the first autotrophic metabolism in the earliest life. Extant enzymes fixing CO2 in this cycle contain cofactors at the catalytic centers, but it is unlikely that the protein/cofactor system emerged at once in a prebiotic process. Here, we discuss the feasibility of non-enzymatic cofactor-assisted drive of the rTCA reactions in the primitive Earth environments, particularly focusing on the acetyl-CoA conversion to pyruvate. Based on the energetic and mechanistic aspects of this reaction, we propose that the deep-sea hydrothermal vent environments with active electricity generation in the presence of various sulfide catalysts are a promising setting for it to progress. Our view supports the theory of an autotrophic origin of life from primordial carbon assimilation within a sulfide-rich hydrothermal vent.

  20. Inactivation of thiol-dependent enzymes by hypothiocyanous acid: role of sulfenyl thiocyanate and sulfenic acid intermediates

    Science.gov (United States)

    Barrett, Tessa J.; Pattison, David I.; Leonard, Stephen E.; Carroll, Kate S.; Davies, Michael J.; Hawkins, Clare L.

    2012-01-01

    Myeloperoxidase (MPO) forms reactive oxidants including hypochlorous and hypothiocyanous acids (HOCl and HOSCN) under inflammatory conditions. HOCl causes extensive tissue damage and plays a role in the progression of many inflammatory-based diseases. Although HOSCN is a major MPO oxidant, particularly in smokers, who have elevated plasma thiocyanate, the role of this oxidant in disease is poorly characterized. HOSCN induces cellular damage by targeting thiols. However, the specific targets and mechanisms involved in this process are not well defined. We show that exposure of macrophages to HOSCN results in the inactivation of intracellular enzymes, including creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In each case, the active-site thiol residue is particularly sensitive to oxidation, with evidence for reversible inactivation and the formation of sulfenyl thiocyanate and sulfenic acid intermediates, on treatment with HOSCN (less than fivefold molar excess). Experiments with DAz-2, a cell-permeable chemical trap for sulfenic acids, demonstrate that these intermediates are formed on many cellular proteins, including GAPDH and CK, in macrophages exposed to HOSCN. This is the first direct evidence for the formation of protein sulfenic acids in HOSCN-treated cells and highlights the potential of this oxidant to perturb redox signaling processes. PMID:22248862

  1. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    DEFF Research Database (Denmark)

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside...... to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP...

  2. Angiotensin-converting enzyme inhibition improves cardiac fatty acid metabolism in patients with congestive heart failure.

    Science.gov (United States)

    Yamauchi, S; Takeishi, Y; Minamihaba, O; Arimoto, T; Hirono, O; Takahashi, H; Miyamoto, T; Nitobe, J; Nozaki, N; Tachibana, H; Watanabe, T; Fukui, A; Kubota, I

    2003-08-01

    This study aimed to examine whether angiotensin-converting enzyme (ACE) inhibition improved cardiac fatty acid metabolism in patients with congestive heart failure (CHF). Myocardial 123I-beta-methyl-iodophenylpentadecanoic acid (123I-BMIPP) imaging was performed in 25 patients with CHF and in 10 control subjects. Myocardial 123I-BMIPP images were obtained 30 min and 4 h after tracer injection. The heart-to-mediastinum (H/M) ratio of 123I-BMIPP uptake and the washout rate of 123I-BMIPP from the myocardium were calculated. Patients were given enalapril for 6 months, and 123I-BMIPP imaging was repeated. H/M ratios on early and delayed images were lower in CHF patients than in normal controls (Pacid metabolism by ACE inhibition may represent a new mechanism for the beneficial effect of this therapy in heart failure.

  3. Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria

    Directory of Open Access Journals (Sweden)

    Lu Thea

    2012-06-01

    Full Text Available Abstract Background Fatty acid modifying enzyme (FAME has been shown to modify free fatty acids to alleviate their bactericidal effect by esterifying fatty acids to cholesterol or alcohols. Although it has been shown in previous studies that FAME is required for Staphylococcus aureus survival in skin abscesses, FAME is poorly studied compared to other virulence factors. FAME activity had also been detected in coagulase-negative staphylococci (CNS. However, FAME activity was only surveyed after a bacterial culture was grown for 24 h. Therefore if FAME activity was earlier in the growth phase, it would not have been detected by the assay and those strains would have been labeled as FAME negative. Results Fifty CNS bovine mastitis isolates and several S. aureus, Escherichia coli, and Streptococcus uberis strains were assayed for FAME activity over 24 h. FAME activity was detected in 54% of CNS and 80% S. aureus strains surveyed but none in E. coli or S. uberis. While some CNS strains produced FAME activity comparable to the lab strain of S. aureus, the pattern of FAME activity varied among strains and across species of staphylococci. All CNS that produced FAME activity also exhibited lipase activity. Lipase activity relative to colony forming units of these CNS decreased over the 24 h growth period. No relationship was observed between somatic cell count in the milk and FAME activity in CNS. Conclusions Some staphylococcal species surveyed produced FAME activity, but E. coli and S. uberis strains did not. All FAME producing CNS exhibited lipase activity which may indicate that both these enzymes work in concert to alter fatty acids in the bacterial environment.

  4. Direct evidence for the inactivation of branched-chain oxo-acid dehydrogenase by enzyme phosphorylation

    International Nuclear Information System (INIS)

    Odessey, R.

    1980-01-01

    The branched-chain 2-oxo-acid dehydrogenase (BCOAD) from mitochondria of several different rat tissues is inactivated by ATP and can be reactivated by incubation in Mg 2+ -containing buffers. Work carried out on the system from skeletal muscle mitochondria has shown that inactivation requires the cleavage of the γ-phosphate group of ATP and that modification is covalent. The non-metabolized ATP analog, p[NH]ppA, can block the inhibitory effect of ATP when added prior to ATP addition, but cannot reverse the inhibition of the inactivated dehydrogenase. These and other data raise the possibility that BCOAD may be regulated by enzyme phosphorylation. This hypothesis is supported by the finding that various procedures which separate the enzyme from its mitochondrial environment (e.g. detergent treatment, ammonium sulfate precipitation and freeze-thawing) do not alter the degree of inhibition induced by ATP in the mitochondrial preincubation. These experiments suggested the feasibility of labelling the enzyme with 32 P and purifying it. (Auth.)

  5. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content.

    Science.gov (United States)

    Lee, Do Kyung; Jang, Seok; Baek, Eun Hye; Kim, Mi Jin; Lee, Kyung Soon; Shin, Hea Soon; Chung, Myung Jun; Kim, Jin Eung; Lee, Kang Oh; Ha, Nam Joo

    2009-06-11

    Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20 approximately 30 years old) to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108 approximately 109 CFU/ml) were orally administered to SD rats (fed a high-cholesterol diet) every day for 2 weeks. B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p water content, and reduced body weight and harmful intestinal enzyme activities. Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation.

  6. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content

    Directory of Open Access Journals (Sweden)

    Chung Myung

    2009-06-01

    Full Text Available Abstract Background Lactic acid bacteria (LAB are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. Methods In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20~30 years old to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108~109 CFU/ml were orally administered to SD rats (fed a high-cholesterol diet every day for 2 weeks. Results B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p B. longum SPM1207 also increased fecal LAB levels and fecal water content, and reduced body weight and harmful intestinal enzyme activities. Conclusion Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation.

  7. In vivo examination of the effects of hydroxycinnamic acid on xenobiotic metabolizing and antioxidant enzymes

    Directory of Open Access Journals (Sweden)

    Semiz Asli

    2017-01-01

    Full Text Available In the last decade, hydroxycinnamic acids (HCA have gained increasing attention from researchers due to their antioxidant potential. The aim of this study was to examine in detail the impact of dietary HCA on particular types of P450 and also selected phase II and antioxidant enzymes in Wistar rat. HCA (10 mM/kg/day, i.p. was administered for ten continuous days. Examination of the activities and mRNA and protein levels revealed that CYP2B, 2C6 and 3A enzyme activities were not altered significantly, with Western blot and qRT-PCR results corroborating this result. While treatment with HCA led to a significant reduction in CYP1A1/CYP1A2-associated enzyme activities, CYP1A1 protein, and mRNA levels were found to be unchanged. Aromatase (CYP19 activity, as well as protein and mRNA levels, were significantly reduced with HCA treatment. On the other hand, the NAD(PH:quinone oxidoreductase 1 (NQO1, catalase (CAT, glutathione peroxidase (GPx and glutathione S-transferases (GSTs activities were increased significantly. Also, HCA treatment significantly increased the GST-mu and GST-theta mRNA levels. These observations may be of importance given the potential use of HCA as a chemopreventive and as an anticancer agent.

  8. The feasibility of enzyme targeted activation for amino acid/dipeptide monoester prodrugs of floxuridine; cathepsin D as a potential targeted enzyme.

    Science.gov (United States)

    Tsume, Yasuhiro; Amidon, Gordon L

    2012-03-26

    The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5'-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0-105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5'-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5'-O-L-phenylalanyl-L-tyrosylfloxuridine and 5'-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enzymes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5'-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  9. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes.

    Science.gov (United States)

    Greenough, Lucia; Schermerhorn, Kelly M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E; Gardner, Andrew F

    2016-01-29

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3'-5' exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Analysis of hyaluronic acid concentration in rat vocal folds during estral and gravidic puerperal cycles.

    Science.gov (United States)

    Pedroso, José Eduardo de Sá; Brasil, Osíris Camponês do; Martins, João Roberto Maciel; Nader, Helena Bociane; Simões, Manuel de Jesus

    2009-01-01

    Hormone plays an important role in the larynx. Among other substances, vocal folds contain hyaluronic acid, which tissue concentration may vary according to hormone action. the objective of this study is to analyze hyaluronic acid concentration in the vocal folds during estral and gravidic-puerperal cycles. Experimental study. 40 adult rats were divided into two groups. In the first group we used 20 rats to establish the concentration of hyaluronic acid during the estral cycle and in the second group, 20 animals were submitted to the same procedure but during the gravidic-puerperal cycle. Variations in hyaluronic acid concentration was not observed during the estral cycle. In the gravidic puerperal cycle group, an increase in hyaluronic acid concentration was observed in the puerperal subgroup. Comparing the two groups of estral and gravidic-puerperal cycles, no difference was observed. In comparing all subgroups of estral and gravidic-puerperal cycles, an increase in hyaluronic acid concentration was noticed only in the puerperal phase.

  11. Short-Chain Fatty Acids Enhance the Lipid Accumulation of 3T3-L1 Cells by Modulating the Expression of Enzymes of Fatty Acid Metabolism.

    Science.gov (United States)

    Yu, Haining; Li, Ran; Huang, Haiyong; Yao, Ru; Shen, Shengrong

    2018-01-01

    Short-chain fatty acids (SCFA) such as acetic acid, propionic acid, and butyric acid are produced by fermentation by gut microbiota. In this paper, we investigate the effects of SCFA on 3T3-L1 cells and the underlying molecular mechanisms. The cells were treated with acetic acid, propionic acid, or butyric acid when cells were induced to differentiate into adipocytes. MTT assay was employed to detect the viability of 3T3-L1 cells. Oil Red O staining was used to visualize the lipid content in 3T3-L1 cells. A triglyceride assay kit was used to detect the triacylglycerol content in 3T3-L1 cells. qRT-PCR and Western blot were used to evaluate the expression of metabolic enzymes. MTT results showed that safe concentrations of acetic acid, propionic acid, and butyric acid were less than 6.4, 3.2, and 0.8 mM, respectively. Oil Red O staining and triacylglycerols detection results showed that treatment with acetic acid, propionic acid, and butyric acid accelerated the 3T3-L1 adipocyte differentiation. qRT-PCR and Western blot results showed that the expressions of lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4), fatty acid transporter protein 4 (FATP4), and fatty acid synthase (FAS) were significantly increased by acetic acid, propionic acid, and butyric acid treatment during adipose differentiation (p fatty acid metabolism. © 2018 AOCS.

  12. Mutations in MDH2, Encoding a Krebs Cycle Enzyme, Cause Early-Onset Severe Encephalopathy

    NARCIS (Netherlands)

    Ait-El-Mkadem, Samira; Dayem-Quere, Manal; Gusic, Mirjana; Chaussenot, Annabelle; Bannwarth, Sylvie; François, Bérengère; Genin, Emmanuelle C; Fragaki, Konstantina; Volker-Touw, Catharina L M; Vasnier, Christelle; Serre, Valérie; van Gassen, Koen L I; Lespinasse, Françoise; Richter, Susan; Eisenhofer, Graeme; Rouzier, Cécile; Mochel, Fanny; De Saint-Martin, Anne; Abi Warde, Marie-Thérèse; de Sain-van der Velden, Monique G M; Jans, Judith J M; Amiel, Jeanne; Avsec, Ziga; Mertes, Christian; Haack, Tobias B; Strom, Tim; Meitinger, Thomas; Bonnen, Penelope E; Taylor, Robert W; Gagneur, Julien; van Hasselt, Peter M; Rötig, Agnès; Delahodde, Agnès; Prokisch, Holger; Fuchs, Sabine A; Paquis-Flucklinger, Véronique

    2016-01-01

    MDH2 encodes mitochondrial malate dehydrogenase (MDH), which is essential for the conversion of malate to oxaloacetate as part of the proper functioning of the Krebs cycle. We report bi-allelic pathogenic mutations in MDH2 in three unrelated subjects presenting with early-onset generalized

  13. Complementary Enzymes Activities in Organic Phosphorus Mineralization and Cycling by Phosphohydrolases in Soils

    Science.gov (United States)

    Inorganic and organic phosphates react strongly with soil constituents, resulting in relatively low concentrations of soluble phosphates in the soil solution. Multiple competing reactions control the solution-phase concentration and the cycling of phosphorus-containing organic substrates and the re...

  14. Involvement of a Lipoxygenase-Like Enzyme in Abscisic Acid Biosynthesis 1

    Science.gov (United States)

    Creelman, Robert A.; Bell, Erin; Mullet, John E.

    1992-01-01

    Several lines of evidence indicate that abscisic acid (ABA) is derived from 9′-cis-neoxanthin or 9′-cis-violaxanthin with xanthoxin as an intermediate. 18O-labeling experiments show incorporation primarily into the side chain carboxyl group of ABA, suggesting that oxidative cleavage occurs at the 11, 12 (11′, 12′) double bond of xanthophylls. Carbon monoxide, a strong inhibitor of heme-containing P-450 monooxygenases, did not inhibit ABA accumulation, suggesting that the oxygenase catalyzing the carotenoid cleavage step did not contain heme. This observation, plus the ability of lipoxygenase to make xanthoxin from violaxanthin, suggested that a lipoxygenase-like enzyme is involved in ABA biosynthesis. To test this idea, the ability of several soybean (Glycine max L.) lipoxygenase inhibitors (5,8,11-eicosatriynoic acid, 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and naproxen) to inhibit stress-induced ABA accumulation in soybean cell culture and soybean seedlings was determined. All lipoxygenase inhibitors significantly inhibited ABA accumulation in response to stress. These results suggest that the in vivo oxidative cleavage reaction involved in ABA biosynthesis requires activity of a nonheme oxygenase having lipoxygenase-like properties. PMID:16668998

  15. Involvement of a lipoxygenase-like enzyme in abscisic Acid biosynthesis.

    Science.gov (United States)

    Creelman, R A; Bell, E; Mullet, J E

    1992-07-01

    Several lines of evidence indicate that abscisic acid (ABA) is derived from 9'-cis-neoxanthin or 9'-cis-violaxanthin with xanthoxin as an intermediate. (18)O-labeling experiments show incorporation primarily into the side chain carboxyl group of ABA, suggesting that oxidative cleavage occurs at the 11, 12 (11', 12') double bond of xanthophylls. Carbon monoxide, a strong inhibitor of heme-containing P-450 monooxygenases, did not inhibit ABA accumulation, suggesting that the oxygenase catalyzing the carotenoid cleavage step did not contain heme. This observation, plus the ability of lipoxygenase to make xanthoxin from violaxanthin, suggested that a lipoxygenase-like enzyme is involved in ABA biosynthesis. To test this idea, the ability of several soybean (Glycine max L.) lipoxygenase inhibitors (5,8,11-eicosatriynoic acid, 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and naproxen) to inhibit stress-induced ABA accumulation in soybean cell culture and soybean seedlings was determined. All lipoxygenase inhibitors significantly inhibited ABA accumulation in response to stress. These results suggest that the in vivo oxidative cleavage reaction involved in ABA biosynthesis requires activity of a nonheme oxygenase having lipoxygenase-like properties.

  16. Association of canalicular membrane enzymes with bile acid micelles and lipid aggregates in human and rat bile.

    Science.gov (United States)

    Accatino, L; Pizarro, M; Solís, N; Koenig, C S

    1995-01-18

    This study was undertaken to gain insights into the characteristics of the polymolecular association between canalicular membrane enzymes, bile acids, cholesterol and phospholipids in bile and into the celular mechanisms whereby the enzymes are secreted into bile. With this purpose, we studied the distribution of bile acids, cholesterol, phospholipids, proteins and representative canalicular membrane enzymes (alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase), which can be considered specific marker constituents, in bile fractions enriched in phospholipid-cholesterol lamellar structures (multilamellar and unilamellar vesicles) and bile acid-mixed micelles. These fractions were isolated by ultracentrifugation from human hepatic bile, normal rat bile and bile of rats treated with diosgenin, a steroid that induces a marked increase in biliary cholesterol secretion, and were characterized by density, lipid composition and transmission electron microscopy. These studies demonstrate that alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase are secreted into both human and rat bile where they are preferentially associated with bile acid-mixed micelles, suggesting a role for bile acids in both release of these enzymes and lipids from the canalicular membrane and solubilization in bile. In addition, heterogeneous association of these enzymes with nonmicellar, lamellar structures in human and rat bile is consistent with the hypothesis that processes independent of the detergent effects of bile acids might also result in the release of specific intrinsic membrane proteins into bile.

  17. THE CALVIN CYCLE ENZYME PHOSPHOGLYCERATE KINASE OF XANTHOBACTER-FLAVUS REQUIRED FOR AUTOTROPHIC CO2 FIXATION IS NOT ENCODED BY THE CBB OPERON

    NARCIS (Netherlands)

    MEIJER, WG

    1994-01-01

    During autotrophic growth of Xanthobacter flavus, energy derived from the oxidation of hydrogen methanol or formate is used to drive the assimilation of CO2 via the Calvin cycle. The genes encoding the Calvin cycle enzymes are organized in the cbb operon, which is expressed only during autotrophic

  18. Formation of conjugated delta8,delta10-double bonds by delta12-oleic-acid desaturase-related enzymes: biosynthetic origin of calendic acid.

    Science.gov (United States)

    Cahoon, E B; Ripp, K G; Hall, S E; Kinney, A J

    2001-01-26

    Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.

  19. OVER-EXPRESSION OF GENE ENCODING FATTY ACID METABOLIC ENZYMES IN FISH

    Directory of Open Access Journals (Sweden)

    Alimuddin Alimuddin

    2008-12-01

    Full Text Available Eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3 have important nutritional benefits in humans. EPA and DHA are mainly derived from fish, but the decline in the stocks of major marine capture fishes could result in these fatty acids being consumed less. Farmed fish could serve as promising sources of EPA and DHA, but they need these fatty acids in their diets. Generation of fish strains that are capable of synthesizing enough amounts of EPA/DHA from the conversion of α-linolenic acid (LNA, 18:3n-3 rich oils can supply a new EPA/DHA source. This may be achieved by over-expression of genes encoding enzymes involved in HUFA biosynthesis. In aquaculture, the successful of this technique would open the possibility to reduce the enrichment of live food with fish oils for marine fish larvae, and to completely substitute fish oils with plant oils without reducing the quality of flesh in terms of EPA and DHA contents. Here, three genes, i.e. Δ6-desaturase-like (OmΔ6FAD, Δ5-desaturase-like (OmΔ5FAD and elongase-like (MELO encoding EPA/DHA metabolic enzymes derived from masu salmon (Oncorhynchus masou were individually transferred into zebrafish (Danio rerio as a model to increase its ability for synthesizing EPA and DHA. Fatty acid analysis showed that EPA content in whole body of the second transgenic fish generation over-expressing OmΔ6FAD gene was 1.4 fold and that of DHA was 2.1 fold higher (P<0.05 than those in non-transgenic fish. The EPA content in whole body of transgenic fish over-expressing OmΔ5FAD gene was 1.21-fold, and that of DHA was 1.24-fold higher (P<0.05 than those in nontransgenic fish. The same patterns were obtained in transgenic fish over-expressing MELO gene. EPA content was increased by 1.30-fold and DHA content by 1.33-fold higher (P<0.05 than those in non-transgenic fish. The results of studies demonstrated that fatty acid content of fish can be enhanced by over

  20. Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling.

    Science.gov (United States)

    Elgersma, Kenneth J; Ehrenfeld, Joan G; Yu, Shen; Vor, Torsten

    2011-11-01

    Plant invasions can have substantial consequences for the soil ecosystem, altering microbial community structure and nutrient cycling. However, relatively little is known about what drives these changes, making it difficult to predict the effects of future invasions. In addition, because most studies compare soils from uninvaded areas to long-established dense invasions, little is known about the temporal dependence of invasion impacts. We experimentally manipulated forest understory vegetation in replicated sites dominated either by exotic Japanese barberry (Berberis thunbergii), native Viburnums, or native Vacciniums, so that each vegetation type was present in each site-type. We compared the short-term effect of vegetation changes to the lingering legacy effects of the previous vegetation type by measuring soil microbial community structure (phospholipid fatty acids) and function (extracellular enzymes and nitrogen mineralization). We also replaced the aboveground litter in half of each plot with an inert substitute to determine if changes in the soil microbial community were driven by aboveground or belowground plant inputs. We found that after 2 years, the microbial community structure and function was largely determined by the legacy effect of the previous vegetation type, and was not affected by the current vegetation. Aboveground litter removal had only weak effects, suggesting that changes in the soil microbial community and nutrient cycling were driven largely by belowground processes. These results suggest that changes in the soil following either invasion or restoration do not occur quickly, but rather exhibit long-lasting legacy effects from previous belowground plant inputs.

  1. Fresh insight to functioning of selected enzymes of the nitrogen cycle.

    Science.gov (United States)

    Eady, Robert R; Antonyuk, Svetlana V; Hasnain, S Samar

    2016-04-01

    The global nitrogen cycle is the process in which different forms of environmental N are interconverted by microorganisms either for assimilation into biomass or in respiratory energy-generating pathways. This short review highlights developments over the last 5 years in our understanding of functionality of nitrogenase, Cu-nitrite reductase, NO reductase and N2O reductase, complex metalloenzymes that catalyze electron/proton-coupled substrate reduction reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Alternative carbohydrate reserves used in the daily cycle of crassulacean acid metabolism

    Science.gov (United States)

    C.C. Black; J.-Q. Chen; R.L. Doong; M.N. Angelov; Shi-Jean S. Sung

    1996-01-01

    Each day a massive interlocked biochemical cycle occurs in the green tissues of crassulacean acid metabolism plants.The function of this interlocked cycle, in its simplest context, is to furnish most of the CO2 for CAM plant photosynthesis.In this unified presentation our aims are (1) to divide CAM plants into two metabolic groups, (2) to...

  3. Changes in sodium and uric acid concentrations in plasma during the menstrual cycle.

    Science.gov (United States)

    Mira, M; Stewart, P M; Gebski, V; Llewellyn-Jones, D; Abraham, S F

    1984-03-01

    Hormonal changes during the menstrual cycle are well documented, but many other biochemical variables have not been studied. We find that in the luteal phase of the menstrual cycle the concentrations of sodium and uric acid are significantly lower. The changes may be of significance for the determination of the normal reference interval.

  4. The Feasibility of Enzyme Targeted Activation for Amino Acid/Dipeptide Monoester Prodrugs of Floxuridine; Cathepsin D as a Potential Targeted Enzyme

    Directory of Open Access Journals (Sweden)

    Gordon L. Amidon

    2012-03-01

    Full Text Available The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5¢-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0–105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5¢-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine and 5¢-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enyzmes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  5. Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients.

    Science.gov (United States)

    Bubber, P; Hartounian, V; Gibson, G E; Blass, J P

    2011-03-01

    Images of brain metabolism and measurements of activities of components of the electron transport chain support earlier studies that suggest that brain glucose oxidation is inherently abnormal in a significant proportion of persons with schizophrenia. Therefore, we measured the activities of enzymes of the tricarboxylic (TCA) cycle in dorsolateral-prefrontal-cortex from schizophrenia patients (N=13) and non-psychiatric disease controls (N=13): the pyruvate dehydrogenase complex (PDHC), citrate synthase (CS), aconitase, isocitrate dehydrogenase (ICDH), the alpha-ketoglutarate dehydrogenase complex (KGDHC), succinate thiokinase (STH), succinate dehydrogenase (SDH), fumarase and malate dehydrogenase (MDH). Activities of aconitase (18.4%, pTCA cycle, were lower, but SDH (18.3%, pTCA cycle and cognitive function, age or choline acetyl transferase activity, except for aconitase activity which decreased slightly with age (r=0.55, p=003). The increased activities of dehydrogenases in the second half of the TCA cycle may reflect a compensatory response to reduced activities of enzymes in the first half. Such alterations in the components of TCA cycle are adequate to alter the rate of brain metabolism. These results are consistent with the imaging studies of hypometabolism in schizophrenia. They suggest that deficiencies in mitochondrial enzymes can be associated with mental disease that takes the form of schizophrenia. Copyright © 2010 Elsevier B.V. and ECNP. All rights reserved.

  6. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle.

    Science.gov (United States)

    Gameiro, Paulo A; Laviolette, Laura A; Kelleher, Joanne K; Iliopoulos, Othon; Stephanopoulos, Gregory

    2013-05-03

    Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)(+) cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT inhibits the contribution of glutamine to the TCA cycle and activates glucose catabolism in SkMel5 melanoma cells. The increase in glucose oxidation partially occurred through pyruvate carboxylase and rendered NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT inhibits reductive carboxylation in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate glutamine oxidation and reductive carboxylation, whereas it inhibits glucose catabolism in the TCA cycle. These observations are supported by an impairment of the NAD(P)H/NAD(P)(+) ratios. Our findings underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other mechanisms that coordinate substrate preference to maintain a functional TCA cycle.

  7. Differential Sensitivities of Fast- and Slow-Cycling Cancer Cells to Inosine Monophosphate Dehydrogenase 2 Inhibition by Mycophenolic Acid

    Science.gov (United States)

    Chen, Kan; Cao, Wanlu; Li, Juan; Sprengers, Dave; Hernanda, Pratika Y; Kong, Xiangdong; van der Laan, Luc JW; Man, Kwan; Kwekkeboom, Jaap; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2015-01-01

    As uncontrolled cell proliferation requires nucleotide biosynthesis, inhibiting enzymes that mediate nucleotide biosynthesis constitutes a rational approach to the management of oncological diseases. In practice, however, results of this strategy are mixed and thus elucidation of the mechanisms by which cancer cells evade the effect of nucleotide biosynthesis restriction is urgently needed. Here we explored the notion that intrinsic differences in cancer cell cycle velocity are important in the resistance toward inhibition of inosine monophosphate dehydrogenase (IMPDH) by mycophenolic acid (MPA). In short-term experiments, MPA treatment of fast-growing cancer cells effectively elicited G0/G1 arrest and provoked apoptosis, thus inhibiting cell proliferation and colony formation. Forced expression of a mutated IMPDH2, lacking a binding site for MPA but retaining enzymatic activity, resulted in complete resistance of cancer cells to MPA. In nude mice subcutaneously engrafted with HeLa cells, MPA moderately delayed tumor formation by inhibiting cell proliferation and inducing apoptosis. Importantly, we developed a lentiviral vector–based Tet-on label-retaining system that enables to identify, isolate and functionally characterize slow-cycling or so-called label-retaining cells (LRCs) in vitro and in vivo. We surprisingly found the presence of LRCs in fast-growing tumors. LRCs were superior in colony formation, tumor initiation and resistance to MPA as compared with fast-cycling cells. Thus, the slow-cycling compartment of cancer seems predominantly responsible for resistance to MPA. PMID:26467706

  8. Methods for the isolation of genes encoding novel PHB cycle enzymes from complex microbial communities.

    Science.gov (United States)

    Nordeste, Ricardo F; Trainer, Maria A; Charles, Trevor C

    2010-01-01

    Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bioplastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti allows for the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates finding functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.

  9. Lecithin:Retinol Acyltransferase: A Key Enzyme Involved in the Retinoid (visual) Cycle

    OpenAIRE

    Sears, Avery E.; Palczewski, Krzysztof

    2016-01-01

    Lecithin:retinol acyltransferase (LRAT) catalyzes the acyl transfer from the sn-1 position of phosphatidylcholine (PC) to all-trans-retinol, creating fatty acid retinyl esters (palmitoyl, stearoyl, and some unsaturated derivatives). In the eye, these retinyl esters are substrates for the 65 kDa retinoid isomerase (RPE65). LRAT is well characterized biochemically, and recent structural data from closely related family members of the NlpC/P60 superfamily and a chimeric protein have established ...

  10. Bile acids cycle disruption in patients with nasopharyngeal ...

    African Journals Online (AJOL)

    2014-12-31

    Dec 31, 2014 ... promotes the elevation of interleukin-10 secretion. Cheng-Shi Wang1 ... Nasopharyngeal carcinoma (NPC) is uncommon in the ... Immune function has close relationship with the patho- genesis of ... Liver is the major organ responsible for the synthesis of primary bile acids, and the function of bacteria in the ...

  11. Influence of fine grinding on the hydrolysis of cellulosic materials - acid vs enzymic

    Energy Technology Data Exchange (ETDEWEB)

    Millet, M A; Effland, M J; Caulfield, D F

    1979-01-01

    The effect of vibratory milling on the enzymic and dilute H/sub 2/SO/sub 4/ hydrolysis of cotton linters, newsprint, Douglas fir, and red oak was investigated by determining the rate and degree of hydrolysis, maximum yield of reducing sugars, and cellulose crystallinity index. Linters were totally hydrolyzed in 10 days after 60 min milling; oak carbohydrates were 93% convertible to sugar in the same period after 240 min milling. Vibratory milling substantially increased the rates of acid hydrolysis of all 4 substrates, nearly 9- and 5-fold for linters and other lignocellulosic materials, respectively. Increases in maximum sugar yields under batch conditions were 60 to 140% higher than those for unmilled materials.

  12. Aptamer- and nucleic acid enzyme-based systems for simultaneous detection of multiple analytes

    Science.gov (United States)

    Lu, Yi [Champaign, IL; Liu, Juewen [Albuquerque, NM

    2011-11-15

    The present invention provides aptamer- and nucleic acid enzyme-based systems for simultaneously determining the presence and optionally the concentration of multiple analytes in a sample. Methods of utilizing the system and kits that include the sensor components are also provided. The system includes a first reactive polynucleotide that reacts to a first analyte; a second reactive polynucleotide that reacts to a second analyte; a third polynucleotide; a fourth polynucleotide; a first particle, coupled to the third polynucleotide; a second particle, coupled to the fourth polynucleotide; and at least one quencher, for quenching emissions of the first and second quantum dots, coupled to the first and second reactive polynucleotides. The first particle includes a quantum dot having a first emission wavelength. The second particle includes a second quantum dot having a second emission wavelength different from the first emission wavelength. The third polynucleotide and the fourth polynucleotide are different.

  13. Analysis of hyaluronic acid concentration in rat vocal folds during estral and gravidic puerperal cycles

    OpenAIRE

    de Sá Pedroso, José Eduardo; Camponês do Brasil, Osíris; Maciel Martins, João Roberto; Nader, Helena Bociane; Simões, Manuel de Jesus

    2009-01-01

    Hormone plays an important role in the larynx. Among other substances, vocal folds contain hyaluronic acid, which tissue concentration may vary according to hormone action. AIM: the objective of this study is to analyze hyaluronic acid concentration in the vocal folds during estral and gravidic-puerperal cycles. MATERIALS AND METHODS: Experimental study. 40 adult rats were divided into two groups. In the first group we used 20 rats to establish the concentration of hyaluronic acid during the ...

  14. Preparation of crosslinked enzyme aggregates (CLEAs) of acid urease with urethanase activity and their application.

    Science.gov (United States)

    Zhang, Qian; Zha, Xiaohong; Zhou, Nandi; Tian, Yaping

    2016-04-01

    An acid urease from Providencia rettgeri JN-B815 was purified via ultrasonication, ethanol precipitation, and DEAE ion-exchange column chromatography. It was found that the enzyme exhibits not only urease activity, but also urethanase activity, which made it possible to reduce EC already existed or would produce and its precursor urea at the same time. Then, crosslinked enzyme aggregates of P. rettgeri urease (PRU-CLEAs) were prepared using genipin as crosslinking agent. The purification process of acid urease, the effects of genipin concentration, and crosslinking time on PRU-CLEAs activity were investigated. The crosslinking was performed at pH 4.5 for 2.5 h, using 0.3% genipin as crosslinking agent, and 0.3 g · L(-1) bovine serum albumin as protein feeder. Using the obtained PRU-CLEAs, the removal rate of urea was up to 9.31 mg · L(-1) · h(-1). The removal rate of urea was still up to 7.56 mg · L(-1) · h(-1) after PRU-CLEAs was re-used for 6 times. When PRU-CLEAs were applied in a batch stirred and membrane reactor, the removal rate of urea in rice wine reached 5.16 mg · L(-1) · h(-1) and the removal rate of EC was 9.21 μg · L(-1) · h(-1). Furthermore, the treatment with PRU-CLEAs revealed no significant change of volatile flavor substances in Chinese rice wine. Thus PRU-CLEAs have great potential in the elimination of EC in Chinese rice wine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Effects of Subacute Exposure of Peracetic Acid on Lipid Peroxidation and Hepatic Enzymes in Wistar Rats

    Science.gov (United States)

    Marjani, Abdoljalal; Golalipour, Mohammad J.; Gharravi, Anneh M.

    2010-01-01

    Objectives This study was undertaken to determine the effect of subacute exposure of peracetic acid on lipid peroxidation and hepatic enzymes in Wistar rats. Methods 48 male animals in Treatment Group I, II and III received 0.2%, 2% and 20% peracetic acid daily for 2 and 4 weeks. Results Serum malondialdehyde increased and Alanine Transaminase and Aspartate Transaminase decreased significantly in groups 2 and 3, compared to the control group. The malondialdehyde, Alanine Transaminase and Aspartate Transaminase with 0.2% and 2% doses of peracetic acid for 2 weeks do not lead to the alteration of malondialdehyde and enzyme activities. Conclusion This study demonstrated that the enhancement of malondialdehyde could provide an oxidative damage induced by disinfectant peroxidation at 20% and 2% doses at 2 and 4 weeks. The consumption of peroxidation with 20% for 2 weeks and 2% for 4 weeks can cause the increase of malondialdehyde and the decrease of enzyme activities, respectively. PMID:22043353

  16. Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin.

    Science.gov (United States)

    Shimizu, Motoyuki; Yuda, Naoki; Nakamura, Tomofumi; Tanaka, Hiroo; Wariishi, Hiroyuki

    2005-10-01

    A proteomic differential display technique was utilized to study cellular responses of Phanerochaete chrysosporium exposed to vanillin, one of the key intermediates found during lignin biodegradation. Intracellular proteins were resolved by 2-DE and target protein spots were identified using MALDI-MS after in-gel tryptic digestions. Upon addition of vanillin to P. chrysosporium, up-regulation of homogentisate 1,2-dioxygenase, 1,4-benzoquinone reductases, aldehyde dehydrogenase, and aryl-alcohol dehydrogenase, which seem to play roles in vanillin metabolism, was observed. Furthermore, enzymes involved in glycolysis, the tricarboxylic acid cycle, the pentose-phosphate cycle, and heme biosynthesis were also activated. Up-regulation of extracellular peroxidase was also observed. One of the most unique phenomena against exogenous vanillin was a switch from the glyoxylate cycle to the tricarboxylic acid cycle, where a drastic increase in isocitrate dehydrogenase activity was observed. The exogenous addition of other aromatic compounds also caused an increase in its activity, which in turn triggered NAD(P)H production via the action of dehydrogenases in the tricarboxylic acid cycle, heme biosynthesis via the action of aminolevulinic acid synthase on succinyl-CoA, and energy production via activation of the mitochondrial electron transfer system. These metabolic shifts seem to be required for activating a metabolic system for aromatic compounds.

  17. Enzyme-linked immunosorbent assay (ELISA) for the anthropogenic marker isolithocholic acid in water.

    Science.gov (United States)

    Baldofski, Stefanie; Hoffmann, Holger; Lehmann, Andreas; Breitfeld, Stefan; Garbe, Leif-Alexander; Schneider, Rudolf J

    2016-11-01

    Bile acids are promising chemical markers to assess the pollution of water samples with fecal material. This study describes the optimization and validation of a direct competitive enzyme-linked immunosorbent assay for the bile acid isolithocholic acid (ILA). The quantification range of the optimized assay was between 0.09 and 15 μg/L. The assay was applied to environmental water samples. Most studies until now were focused on bile acid fractions in the particulate phase of water samples. In order to avoid tedious sample preparation, we undertook to evaluate the dynamics and significance of ILA levels in the aqueous phase. Very low concentrations in tap and surface water samples made a pre-concentration step necessary for this matrix as well as for wastewater treatment plant (WWTP) effluent. Mean recoveries for spiked water samples were between 97% and 109% for tap water and WWTP influent samples and between 102% and 136% for WWTP effluent samples. 90th percentiles of intra-plate and inter-plate coefficients of variation were below 10% for influents and below 20% for effluents and surface water. ILA concentrations were quantified in the range of 33-72 μg/L in influent, 21-49 ng/L in effluent and 18-48 ng/L in surface water samples. During wastewater treatment the ILA levels were reduced by more than 99%. ILA concentrations of influents determined by ELISA and LC-MS/MS were in good agreement. However, findings in LC-ELISA experiments suggest that the true ILA levels in concentrated samples are lower due to interfering effects of matrix compounds and/or cross-reactants. Yet, the ELISA will be a valuable tool for the performance check and comparison of WWTPs and the localization of fecal matter input into surface waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of sexually dimorphic growth hormone secretory patterns on arachidonic acid metabolizing enzymes in rodent heart

    International Nuclear Information System (INIS)

    Zhang, Furong; Yu, Xuming; He, Chunyan; Ouyang, Xiufang; Wu, Jinhua; Li, Jie; Zhang, Junjie; Duan, Xuejiao; Wan, Yu; Yue, Jiang

    2015-01-01

    The arachidonic acid (AA) metabolizing enzymes are the potential therapeutic targets of cardiovascular diseases (CVDs). As sex differences have been shown in the risk and outcome of CVDs, we investigated the regulation of heart AA metabolizing enzymes (COXs, LOXs, and CYPs) by sex-dependent growth hormone (GH) secretory patterns. The pulsatile (masculine) GH secretion at a physiological concentration decreased CYP1A1 and CYP2J3 mRNA levels more efficiently in the H9c2 cells compared with the constant (feminine) GH secretion; however, CYP1B1 mRNA levels were higher following the pulsatile GH secretion. Sex differences in CYP1A1, CYP1B1, and CYP2J11 mRNA levels were observed in both the wild-type and GHR deficient mice. No sex differences in the mRNA levels of COXs, LOXs, or CYP2E1 were observed in the wild-type mice. The constant GH infusion induced heart CYP1A1 and CYP2J11, and decreased CYP1B1 in the male C57/B6 mice constantly infused with GH (0.4 μg/h, 7 days). The activity of rat Cyp2j3 promoter was inhibited by the STAT5B protein, but was activated by C/EBPα (CEBPA). Compared with the constant GH administration, the levels of the nuclear phosphorylated STAT5B protein and its binding to the rat Cyp2j3 promoter were higher following the pulsatile GH administration. The constant GH infusion decreased the binding of the nuclear phosphorylated STAT5B protein to the mouse Cyp2j11 promoter. The data suggest the sexually dimorphic transcription of heart AA metabolizing enzymes, which might alter the risk and outcome of CVDs. GHR-STAT5B signal transduction pathway may be involved in the sex difference in heart CYP2J levels. - Highlights: • The transcription of heart Cyp1a1, Cyp1b1 and Cyp2j genes is sexually dimorphic. • There are no sex differences in the mRNA levels of heart COXs, LOXs, or CYP2E1. • GHR-STAT5B pathway is involved in sexually dimorphic transcription of heart Cpy2j genes. • Heart CYPs-mediated metabolism pathway of arachidonic acid may be sex

  19. Effects of sexually dimorphic growth hormone secretory patterns on arachidonic acid metabolizing enzymes in rodent heart

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Furong; Yu, Xuming [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); He, Chunyan [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Ouyang, Xiufang; Wu, Jinhua; Li, Jie; Zhang, Junjie; Duan, Xuejiao [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Wan, Yu [Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yue, Jiang, E-mail: yuejiang@whu.edu.cn [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-12-15

    The arachidonic acid (AA) metabolizing enzymes are the potential therapeutic targets of cardiovascular diseases (CVDs). As sex differences have been shown in the risk and outcome of CVDs, we investigated the regulation of heart AA metabolizing enzymes (COXs, LOXs, and CYPs) by sex-dependent growth hormone (GH) secretory patterns. The pulsatile (masculine) GH secretion at a physiological concentration decreased CYP1A1 and CYP2J3 mRNA levels more efficiently in the H9c2 cells compared with the constant (feminine) GH secretion; however, CYP1B1 mRNA levels were higher following the pulsatile GH secretion. Sex differences in CYP1A1, CYP1B1, and CYP2J11 mRNA levels were observed in both the wild-type and GHR deficient mice. No sex differences in the mRNA levels of COXs, LOXs, or CYP2E1 were observed in the wild-type mice. The constant GH infusion induced heart CYP1A1 and CYP2J11, and decreased CYP1B1 in the male C57/B6 mice constantly infused with GH (0.4 μg/h, 7 days). The activity of rat Cyp2j3 promoter was inhibited by the STAT5B protein, but was activated by C/EBPα (CEBPA). Compared with the constant GH administration, the levels of the nuclear phosphorylated STAT5B protein and its binding to the rat Cyp2j3 promoter were higher following the pulsatile GH administration. The constant GH infusion decreased the binding of the nuclear phosphorylated STAT5B protein to the mouse Cyp2j11 promoter. The data suggest the sexually dimorphic transcription of heart AA metabolizing enzymes, which might alter the risk and outcome of CVDs. GHR-STAT5B signal transduction pathway may be involved in the sex difference in heart CYP2J levels. - Highlights: • The transcription of heart Cyp1a1, Cyp1b1 and Cyp2j genes is sexually dimorphic. • There are no sex differences in the mRNA levels of heart COXs, LOXs, or CYP2E1. • GHR-STAT5B pathway is involved in sexually dimorphic transcription of heart Cpy2j genes. • Heart CYPs-mediated metabolism pathway of arachidonic acid may be sex

  20. Photoreduction fuels biogeochemical cycling of iron in Spain's acid rivers

    Science.gov (United States)

    Gammons, C.H.; Nimick, D.A.; Parker, S.R.; Snyder, D.M.; McCleskey, R. Blaine; Amils, R.; Poulson, S.R.

    2008-01-01

    A number of investigations have shown that photoreduction of Fe(III) causes midday accumulations of dissolved Fe(II) in rivers and lakes, leading to large diel (24-h) fluctuations in the concentration and speciation of total dissolved iron. Less well appreciated is the importance of photoreduction in providing chemical energy for bacteria to thrive in low pH waters. Diel variations in water chemistry from the highly acidic (pH 2.3 to 3.1) Ri??o Tinto, Ri??o Odiel, and Ri??o Agrio of southwestern Spain (Iberian Pyrite Belt) resulted in daytime increases in Fe(II) concentration of 15 to 66????M at four diel sampling locations. Dissolved Fe(II) concentrations increased with solar radiation, and one of the stream sites showed an antithetic relationship between dissolved Fe(II) and Fe(III) concentrations; both results are consistent with photoreduction. The diel data were used to estimate rates of microbially catalyzed Fe(II) oxidation (1 to 3??nmol L- 1 s- 1) and maximum rates of Fe(III) photoreduction (1.7 to 4.3??nmol L- 1 s- 1). Bioenergetic calculations indicate that the latter rates are sufficient to build up a population of Fe-oxidizing bacteria to the levels observed in the Ri??o Tinto in about 30??days. We conclude that photoreduction plays an important role in the bioenergetics of the bacterial communities of these acidic rivers, which have previously been shown to be dominated by autotrophic Fe(II)-oxidizers such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. Given the possibility of the previous existence of acidic, Fe(III)-rich water on Mars, photoreduction may be an important process on other planets, a fact that could have implications to astrobiological research. ?? 2008 Elsevier B.V. All rights reserved.

  1. Acidic-alkaline ferulic acid esterase from Chaetomium thermophilum var. dissitum: Molecular cloning and characterization of recombinant enzyme expressed in Pichia pastoris

    DEFF Research Database (Denmark)

    Dotsenko, Gleb; Tong, Xiaoxue; Pilgaard, Bo

    2016-01-01

    A novel ferulic acid esterase encoding gene CtFae, was successfully cloned from a highly esterase active strain of the thermophile ascomycetous fungus Chaetomium thermophilum var. dissitum; the gene was heterologously expressed in Pichia pastoris KM71H. The recombinant enzyme (CtFae) was purified...... to homogeneity and subsequently characterized. CtFae was active towards synthetic esters of ferulic, p-coumaric, and caffeic acids, as well as towards wide range of p-nitrophenyl substrates. Its temperature and pH optima were 55 °C and pH 6.0, respectively. Enzyme rare features were broad pH optimum, high...

  2. Dynamic subcellular localization of isoforms of the folate pathway enzyme serine hydroxymethyltransferase (SHMT through the erythrocytic cycle of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Mitchell Sarah L

    2010-12-01

    Full Text Available Abstract Background The folate pathway enzyme serine hydroxymethyltransferase (SHMT converts serine to glycine and 5,10-methylenetetrahydrofolate and is essential for the acquisition of one-carbon units for subsequent transfer reactions. 5,10-methylenetetrahydrofolate is used by thymidylate synthase to convert dUMP to dTMP for DNA synthesis. In Plasmodium falciparum an enzymatically functional SHMT (PfSHMTc and a related, apparently inactive isoform (PfSHMTm are found, encoded by different genes. Here, patterns of localization of the two isoforms during the parasite erythrocytic cycle are investigated. Methods Polyclonal antibodies were raised to PfSHMTc and PfSHMTm, and, together with specific markers for the mitochondrion and apicoplast, were employed in quantitative confocal fluorescence microscopy of blood-stage parasites. Results As well as the expected cytoplasmic occupancy of PfSHMTc during all stages, localization into the mitochondrion and apicoplast occurred in a stage-specific manner. Although early trophozoites lacked visible organellar PfSHMTc, a significant percentage of parasites showed such fluorescence during the mid-to-late trophozoite and schizont stages. In the case of the mitochondrion, the majority of parasites in these stages at any given time showed no marked PfSHMTc fluorescence, suggesting that its occupancy of this organelle is of limited duration. PfSHMTm showed a distinctly more pronounced mitochondrial location through most of the erythrocytic cycle and GFP-tagging of its N-terminal region confirmed the predicted presence of a mitochondrial signal sequence. Within the apicoplast, a majority of mitotic schizonts showed a marked concentration of PfSHMTc, whose localization in this organelle was less restricted than for the mitochondrion and persisted from the late trophozoite to the post-mitotic stages. PfSHMTm showed a broadly similar distribution across the cycle, but with a distinctive punctate accumulation towards

  3. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    Science.gov (United States)

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2017-08-15

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  5. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2016-03-22

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  6. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Science.gov (United States)

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2013-07-23

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  7. Mutation for nonsyndromic mental retardation in the trans-2-enoyl-CoA reductase TER gene involved in fatty acid elongation impairs the enzyme activity and stability, leading to change in sphingolipid profile.

    Science.gov (United States)

    Abe, Kensuke; Ohno, Yusuke; Sassa, Takayuki; Taguchi, Ryo; Çalışkan, Minal; Ober, Carole; Kihara, Akio

    2013-12-20

    Very long-chain fatty acids (VLCFAs, chain length >C20) exist in tissues throughout the body and are synthesized by repetition of the fatty acid (FA) elongation cycle composed of four successive enzymatic reactions. In mammals, the TER gene is the only gene encoding trans-2-enoyl-CoA reductase, which catalyzes the fourth reaction in the FA elongation cycle. The TER P182L mutation is the pathogenic mutation for nonsyndromic mental retardation. This mutation substitutes a leucine for a proline residue at amino acid 182 in the TER enzyme. Currently, the mechanism by which the TER P182L mutation causes nonsyndromic mental retardation is unknown. To understand the effect of this mutation on the TER enzyme and VLCFA synthesis, we have biochemically characterized the TER P182L mutant enzyme using yeast and mammalian cells transfected with the TER P182L mutant gene and analyzed the FA elongation cycle in the B-lymphoblastoid cell line with the homozygous TER P182L mutation (TER(P182L/P182L) B-lymphoblastoid cell line). We have found that TER P182L mutant enzyme exhibits reduced trans-2-enoyl-CoA reductase activity and protein stability, thereby impairing VLCFA synthesis and, in turn, altering the sphingolipid profile (i.e. decreased level of C24 sphingomyelin and C24 ceramide) in the TER(P182L/P182L) B-lymphoblastoid cell line. We have also found that in addition to the TER enzyme-catalyzed fourth reaction, the third reaction in the FA elongation cycle is affected by the TER P182L mutation. These findings provide new insight into the biochemical defects associated with this genetic mutation.

  8. Current concepts on the physiology and genetics of neurotransmitters-mediating enzyme-aromatic L-amino acid decarboxylase

    International Nuclear Information System (INIS)

    Rahman, M.K.

    1993-03-01

    Two most important neurotransmitters, dopamine and serotonin are mediated by the enzyme aromatic L-amino acid decarboxylase (AADC). Because of their importance in the regulation of neuronal functions, behaviour and emotion of higher animals, many researchers are working on this enzyme to elucidate its physiological properties, structure and genetic aspects. We have discovered this enzyme in the mammalian blood, we established sensitive assay methods for the assay of the activities of this enzyme. We have made systematic studies on this enzyme in the tissues and brains of rats, and human subjects. We have found an endogenous inhibitor of this enzyme in the monkey's blood. The amino acid sequences of human AADC has been compared to rat or bovine. A full-length cDNA clone encoding human AADC has been isolated. Very recently the structure of human AADC gene including 5'-flaking region has been characterized and the transcriptional starting point has been determined. The human AADC gene assigned to chromosome 7. Up-to-date research data have shown that AADC is encoded by a single gene. Recently two patients with AADC deficiency were reported. This paper describes the systematic up-to-date review studies on AADC. (author). 62 refs, 5 figs, 8 tabs

  9. Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase .

    Science.gov (United States)

    Dey, Sanghamitra; Lane, James M; Lee, Richard E; Rubin, Eric J; Sacchettini, James C

    2010-08-10

    Mycobacterium tuberculosis (Mtb) depends on biotin synthesis for survival during infection. In the absence of biotin, disruption of the biotin biosynthesis pathway results in cell death rather than growth arrest, an unusual phenotype for an Mtb auxotroph. Humans lack the enzymes for biotin production, making the proteins of this essential Mtb pathway promising drug targets. To this end, we have determined the crystal structures of the second and third enzymes of the Mtb biotin biosynthetic pathway, 7,8-diaminopelargonic acid synthase (DAPAS) and dethiobiotin synthetase (DTBS), at respective resolutions of 2.2 and 1.85 A. Superimposition of the DAPAS structures bound either to the SAM analogue sinefungin or to 7-keto-8-aminopelargonic acid (KAPA) allowed us to map the putative binding site for the substrates and to propose a mechanism by which the enzyme accommodates their disparate structures. Comparison of the DTBS structures bound to the substrate 7,8-diaminopelargonic acid (DAPA) or to ADP and the product dethiobiotin (DTB) permitted derivation of an enzyme mechanism. There are significant differences between the Mtb enzymes and those of other organisms; the Bacillus subtilis DAPAS, presented here at a high resolution of 2.2 A, has active site variations and the Escherichia coli and Helicobacter pylori DTBS have alterations in their overall folds. We have begun to exploit the unique characteristics of the Mtb structures to design specific inhibitors against the biotin biosynthesis pathway in Mtb.

  10. Cyclic fatty acid monomers from dietary heated fats affect rat liver enzyme activity.

    Science.gov (United States)

    Lamboni, C; Sébédio, J L; Perkins, E G

    1998-07-01

    This study was conducted to investigate the effects of dietary cyclic fatty acid monomers (CFAM), contained in heated fat from a commercial deep-fat frying operation, on rat liver enzyme activity. A partially hydrogenated soybean oil (PHSBO) used 7 d (7-DH) for frying foodstuffs, or 0.15% methylated CFAM diets was fed to male weanling rats in comparison to a control group fed a nonheated PHSBO (NH) diet in a 10-wk experiment. All diets were isocaloric with 15% fat. Animals fed either CFAM or 7-DH diets showed increased hepatic content of cytochrome (cyt.) b5 and P450 and increased activity of (E.C. 1.6.2.4) NADPH-cyt. P450 reductase in comparison to the control rats. In addition, the activities of (E.C. 2.3.1.21) carnitine palmitoyltransferase-I and (E.C. 1.1.1.42) isocitrate dehydrogenase were significantly decreased when compared to that of rats fed the NH diet. A significantly depressed activity of (E.C. 1.1.1.49) glucose 6-phosphate dehydrogenase was also observed for these animals compared to the control rats fed NH diet. Moreover, liver and microsomal proteins were significantly increased when CFAM or 7-DH diets were fed to animals in comparison to controls while liver glycogen was decreased significantly in experimental groups of rats. The results obtained in this study indicate that the CFAM in the diet from either synthetic sources or used fats increase the activity of liver enzyme systems that detoxify them.

  11. In Silico Phylogenetic Analysis and Molecular Modelling Study of 2-Haloalkanoic Acid Dehalogenase Enzymes from Bacterial and Fungal Origin

    Directory of Open Access Journals (Sweden)

    Raghunath Satpathy

    2016-01-01

    Full Text Available 2-Haloalkanoic acid dehalogenase enzymes have broad range of applications, starting from bioremediation to chemical synthesis of useful compounds that are widely distributed in fungi and bacteria. In the present study, a total of 81 full-length protein sequences of 2-haloalkanoic acid dehalogenase from bacteria and fungi were retrieved from NCBI database. Sequence analysis such as multiple sequence alignment (MSA, conserved motif identification, computation of amino acid composition, and phylogenetic tree construction were performed on these primary sequences. From MSA analysis, it was observed that the sequences share conserved lysine (K and aspartate (D residues in them. Also, phylogenetic tree indicated a subcluster comprised of both fungal and bacterial species. Due to nonavailability of experimental 3D structure for fungal 2-haloalkanoic acid dehalogenase in the PDB, molecular modelling study was performed for both fungal and bacterial sources of enzymes present in the subcluster. Further structural analysis revealed a common evolutionary topology shared between both fungal and bacterial enzymes. Studies on the buried amino acids showed highly conserved Leu and Ser in the core, despite variation in their amino acid percentage. Additionally, a surface exposed tryptophan was conserved in all of these selected models.

  12. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Science.gov (United States)

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could

  13. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    Full Text Available Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%, Chaetomiaceae (17.6%, Incertae sadis (29.5%, Aureobasidiaceae (17.6%, Nectriaceae (5.9% and Sporomiaceae (17.6% from the phylloplane (leaf and caulosphere (stem of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33% than the stem (0.262%. The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583 than in the stem (0.416. Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL and cellulases (62.11±1.6 μM-1min-1mL, whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL and phosphatases (3.46±0.31μM-1min-1mL compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways. Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  14. Synthesis and study on biological activity of nitrogen-containing heterocyclic compounds – regulators of enzymes of nucleic acid biosynthesis

    Directory of Open Access Journals (Sweden)

    Alexeeva I. V.

    2013-07-01

    Full Text Available Results of investigations on the development of new regulators of functional activity of nucleic acid biosynthesis enzymes based on polycyclic nitrogen-containing heterosystems are summarized. Computer design and molecular docking in the catalytic site of target enzyme (T7pol allowed to perform the directed optimization of basic structures. Several series of compounds were obtained and efficient inhibitors of herpes family (simple herpes virus type 2, Epstein-Barr virus, influenza A and hepatitis C viruses were identified, as well as compounds with potent antitumor, antibacterial and antifungal activity. It was established that the use of model test systems based on enzymes participating in nucleic acids synthesis is a promising approach to the primary screening of potential inhibitors in vitro.

  15. Rate-limiting reaction in papain action as derived from the reaction of the enzyme with chloroacetic acid

    NARCIS (Netherlands)

    Sluyterman, L.A.A.E.

    1968-01-01

    Chloroacetic acid reacts with the essential thiol group of papain (EC 3.4.4.10) and inactivates the enzyme. The rate of inactivation, k, at pH 6.0, 25°, was determined in the absence and presence of the substrates benzoylarginine ethyl ester (BAEE) and benzoylglycine ethyl ester (BGEE). The rate was

  16. Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo

    DEFF Research Database (Denmark)

    Fuglsang, Anders; Rattray, Fergal; Nilsson, Dan

    2003-01-01

    A total of 26 strains of wild-type lactic acid bacteria, mainly belonging to Lactococcus lactis and Lactobacillus helveticus , were assayed in vitro for their ability to produce a milk fermentate with inhibitory activity towards angiotensin converting enzyme (ACE). It was clear that the test stra...

  17. EVALUATION OF AN ENZYME-LINKED IMMUNOSORBENT ASSAY FOR BIOLOGICAL MONITORING OF 3-PHENOXYBENZOIC ACID IN URINE

    Science.gov (United States)

    Abstract describes the development of an enzyme-linked immunosorbent assay (ELISA) method for monitoring 2,4-dichlorophenoxyacetic acid (2,4-D exposures). The ELISA is compared with a gas chromatograhy/mass spectrometry procedure. ELISA method development steps and comparative ...

  18. Effect of alternative pathway therapy on branched chain amino acid metabolism in urea cycle disorder patients.

    Science.gov (United States)

    Scaglia, Fernando; Carter, Susan; O'Brien, William E; Lee, Brendan

    2004-04-01

    Urea cycle disorders (UCDs) are a group of inborn errors of hepatic metabolism caused by the loss of enzymatic activities that mediate the transfer of nitrogen from ammonia to urea. These disorders often result in life-threatening hyperammonemia and hyperglutaminemia. A combination of sodium phenylbutyrate and sodium phenylacetate/benzoate is used in the clinical management of children with urea cycle defects as a glutamine trap, diverting nitrogen from urea synthesis to alternatives routes of excretion. We have observed that patients treated with these compounds have selective branched chain amino acid (BCAA) deficiency despite adequate dietary protein intake. However, the direct effect of alternative therapy on the steady state levels of plasma branched chain amino acids has not been well characterized. We have measured steady state plasma branched chain and other essential non-branched chain amino acids in control subjects, untreated ornithine transcarbamylase deficiency females and treated null activity urea cycle disorder patients in the fed steady state during the course of stable isotope studies. Steady-state leucine levels were noted to be significantly lower in treated urea cycle disorder patients when compared to either untreated ornithine transcarbamylase deficiency females or control subjects (Purea cycle disorder patients. These findings suggest that better titration of protein restriction could be achieved with branched chain amino acid supplementation in patients with UCDs who are on alternative route therapy.

  19. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle.

    Science.gov (United States)

    Boros, László G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gábor

    2016-02-01

    The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption. Published by Elsevier Ltd.

  20. Expression of the neurotransmitter-synthesizing enzyme glutamic acid decarboxylase in male germ cells.

    Science.gov (United States)

    Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M

    1990-09-01

    The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility.

  1. Castasterone confers copper stress tolerance by regulating antioxidant enzyme responses, antioxidants, and amino acid balance in B. juncea seedlings.

    Science.gov (United States)

    Yadav, Poonam; Kaur, Ravdeep; Kanwar, Mukesh Kumar; Sharma, Anket; Verma, Vinod; Sirhindi, Geetika; Bhardwaj, Renu

    2018-01-01

    The aim of the present study was to explore the effect of exogenous application of castasterone (CS) on physiologic and biochemical responses in Brassica juncea seedlings under copper (Cu) stress. Seeds were pre-soaked in different concentrations of CS and grown for 7 days under various levels of Cu. The exposure of B. juncea to higher levels of Cu led to decrease of morphologic parameters, with partial recovery of length and fresh weight in the CS pre-treated seedlings. Metal content was high in both roots and shoots under Cu exposure while the CS pre-treatment reduced the metal uptake. Accumulation of hydrogen peroxide (H 2 O 2 ) and superoxide anion radical (O 2 - ) were chosen as stress biomarker and higher levels of H 2 O 2 (88.89%) and O 2 - (62.11%) showed the oxidative stress in metal treated B. juncea seedlings, however, CS pre-treatment reduced ROS accumulation in Cu-exposed seedlings. The Cu exposures lead to enhance the plant's enzymatic and non-enzymatic antioxidant system. It was observed that enzymatic activities of ascorbate peroxidase (APOX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), glutathione perxoidase (GPOX) and gultrathione-s-transferase increased while activity of monodehydroascorbate reductase (MDHAR) decreased under Cu stress. The pre-treatment with CS positively affected the activities of enzymes. RT-PCR analysis showed that mRNA transcript levels were correlated with total enzymatic activity of DHAR, GR, GST and GSH. Increase in the gene expression of DHAR (1.85 folds), GR (3.24 folds), GST-1 (2.00 folds) and GSH-S (3.18 folds) was noticed with CS pre-treatment. Overall, the present study shows that Cu exposure induced severe oxidative stress in B. juncea plants and exogenous application of CS improved antioxidative defense system by modulating the ascorbate-glutathione cycle and amino acid metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Involvement of the lysophosphatidic acid-generating enzyme autotaxin in lymphocyte-endothelial cell interactions.

    Science.gov (United States)

    Nakasaki, Tae; Tanaka, Toshiyuki; Okudaira, Shinichi; Hirosawa, Michi; Umemoto, Eiji; Otani, Kazuhiro; Jin, Soojung; Bai, Zhongbin; Hayasaka, Haruko; Fukui, Yoshinori; Aozasa, Katsuyuki; Fujita, Naoya; Tsuruo, Takashi; Ozono, Keiichi; Aoki, Junken; Miyasaka, Masayuki

    2008-11-01

    Autotaxin (ATX) is a secreted protein with lysophospholipase D activity that generates lysophosphatidic acid (LPA) from lysophosphatidylcholine. Here we report that functional ATX is selectively expressed in high endothelial venules (HEVs) of both lymph nodes and Peyer's patches. ATX expression was developmentally regulated and coincided with lymphocyte recruitment to the lymph nodes. In adults, ATX expression was independent of HEV-expressed chemokines such as CCL21 and CXCL13, innate immunity signals including those via TLR4 or MyD88, and of the extent of lymphocyte trafficking across the HEVs. ATX expression was induced in venules at sites of chronic inflammation. Receptors for the ATX enzyme product LPA were constitutively expressed in HEV endothelial cells (ECs). In vitro, LPA induced strong morphological changes in HEV ECs. Forced ATX expression caused cultured ECs to respond to lysophosphatidylcholine, up-regulating lymphocyte binding to the ECs in a LPA receptor-dependent manner under both static and flow conditions. Although in vivo depletion of circulating ATX did not affect lymphocyte trafficking into the lymph nodes, we surmise, based on the above data, that ATX expressed by HEVs acts on HEVs in situ to facilitate lymphocyte binding to ECs and that ATX in the general circulation does not play a major role in this process. Tissue-specific inactivation of ATX will verify this hypothesis in future studies of its mechanism of action.

  3. Degradation of Perfluorooctanoic Acid and Perfluoroctane Sulfonate by Enzyme Catalyzed Oxidative Humification Reactions

    Science.gov (United States)

    Huang, Q.

    2016-12-01

    Poly- and perfluoroalkyl substances (PFASs) are alkyl based chemicals having multiple or all hydrogens replaced by fluorine atoms, and thus exhibit high thermal and chemical stability and other unusual characteristics. PFASs have been widely used in a wide variety of industrial and consumer products, and tend to be environmentally persistent. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative PFASs that have drawn particular attention because of their ubiquitous presence in the environment, resistance to degradation and toxicity to animals. This study examined the decomposition of PFOA and PFOS in enzyme catalyzed oxidative humification reactions (ECOHR), a class of reactions that are ubiquitous in the environment involved in natural organic humification. Reaction rates and influential factors were examined, and high-resolution mass spectrometry was used to identify possible products. Fluorides and partially fluorinated compounds were identified as likely products from PFOA and PFOS degradation, which were possibly formed via a combination of free radical decomposition, rearrangements and coupling processes. The findings suggest that PFOA and PFOS may be transformed during humification, and ECOHR can potentially be used for the remediation of these chemicals.

  4. Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo.

    Science.gov (United States)

    Fuglsang, Anders; Rattray, Fergal P; Nilsson, Dan; Nyborg, Niels C B

    2003-01-01

    A total of 26 strains of wild-type lactic acid bacteria, mainly belonging to Lactococcus lactis and Lactobacillus helveticus, were assayed in vitro for their ability to produce a milk fermentate with inhibitory activity towards angiotensin converting enzyme (ACE). It was clear that the test strains in this study, in general, produce inhibitory substances in varying amounts. Using a spectrophotometric assay based on amino group derivatization with ortho-phthaldialdehyde as a measure of relative peptide content, it was shown that there is a significant correlation between peptide formation and ACE inhibition, indicating that peptide measurement constitutes a convenient selection method. The effect of active fermentates on in vivo ACE activity was demonstrated in normotensive rats. The pressor effect of angiotensin I (0.3 microg/kg) upon intravenous injection was significantly lower when rats were pre-fed with milks fermented using two strains of Lactobacillus helveticus. An increased response to bradykinin (10 microg/kg, intravenously injected) was observed using one of these fermented milks. It is concluded that Lactobacillus helveticus produces substances which in vivo can give rise to an inhibition of ACE. The inhibition in vivo was low compared to what can be achieved with classical ACE inhibitors. The clinical relevance of this finding is discussed. This work is the first in which an effect of fermented milk on ACE in vivo has been demonstrated, measured as decreased ability to convert angiotensin I to angiotensin II.

  5. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme.

    Science.gov (United States)

    Brown, Breann L; Kardon, Julia R; Sauer, Robert T; Baker, Tania A

    2018-04-03

    5-Aminolevulinic acid synthase (ALAS) catalyzes the first step in heme biosynthesis. We present the crystal structure of a eukaryotic ALAS from Saccharomyces cerevisiae. In this homodimeric structure, one ALAS subunit contains covalently bound cofactor, pyridoxal 5'-phosphate (PLP), whereas the second is PLP free. Comparison between the subunits reveals PLP-coupled reordering of the active site and of additional regions to achieve the active conformation of the enzyme. The eukaryotic C-terminal extension, a region altered in multiple human disease alleles, wraps around the dimer and contacts active-site-proximal residues. Mutational analysis demonstrates that this C-terminal region that engages the active site is important for ALAS activity. Our discovery of structural elements that change conformation upon PLP binding and of direct contact between the C-terminal extension and the active site thus provides a structural basis for investigation of disruptions in the first step of heme biosynthesis and resulting human disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Alteration of Fatty-Acid-Metabolizing Enzymes Affects Mitochondrial Form and Function in Hereditary Spastic Paraplegia

    Science.gov (United States)

    Tesson, Christelle; Nawara, Magdalena; Salih, Mustafa A.M.; Rossignol, Rodrigue; Zaki, Maha S.; Al Balwi, Mohammed; Schule, Rebecca; Mignot, Cyril; Obre, Emilie; Bouhouche, Ahmed; Santorelli, Filippo M.; Durand, Christelle M.; Oteyza, Andrés Caballero; El-Hachimi, Khalid H.; Al Drees, Abdulmajeed; Bouslam, Naima; Lamari, Foudil; Elmalik, Salah A.; Kabiraj, Mohammad M.; Seidahmed, Mohammed Z.; Esteves, Typhaine; Gaussen, Marion; Monin, Marie-Lorraine; Gyapay, Gabor; Lechner, Doris; Gonzalez, Michael; Depienne, Christel; Mochel, Fanny; Lavie, Julie; Schols, Ludger; Lacombe, Didier; Yahyaoui, Mohamed; Al Abdulkareem, Ibrahim; Zuchner, Stephan; Yamashita, Atsushi; Benomar, Ali; Goizet, Cyril; Durr, Alexandra; Gleeson, Joseph G.; Darios, Frederic; Brice, Alexis; Stevanin, Giovanni

    2012-01-01

    Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function. PMID:23176821

  7. Effects of ionizing radiation on the activity of the major hepatic enzymes implicated in bile acid biosynthesis in the rat

    International Nuclear Information System (INIS)

    Souidi, M.; Scanff, P.; Grison, St.; Gourmelon, P.; Aigueperse, J.

    2007-01-01

    In the days following high-dose radiation exposure, damage to small intestinal mucosa is aggravated by changes in the bile acid pool reaching the gut. Intestinal bile acid malabsorption, as described classically, may be associated with altered hepatic bile acid biosynthesis, which was the objective of this work. The activity of the main rate-limiting enzymes implicated in the bile acid biosynthesis were evaluated in the days following an 8-Gy γ Co 60 total body irradiation of rats, with concomitant determination of biliary bile acid profiles and intestinal bile acid content. Modifications of biliary bile acid profiles, observed as early as the first post-irradiation day, were most marked at the third and fourth day, and resulted in an increased hydrophobicity index. In parallel, the intestinal bile acids' content was enhanced and hepatic enzymatic activities leading to bile acids were changed. A marked increase of sterol 12-hydroxylase and decrease of oxy-sterol 7-hydroxylase activity was observed at day 3, whereas both cholesterol 7-hydroxylase and oxy-sterol 7-hydroxylase activities were decreased at day 4 after irradiation. These results show, for the first time, radiation-induced modifications of hepatic enzymatic activities implicated in bile acid biosynthesis and suggest that they are mainly a consequence of radiation-altered intestinal absorption, which induces a physiological response of the entero-hepatic bile acid recirculation. (authors)

  8. Comparison of the effects of gemfibrozil and clofibric acid on peroxisomal enzymes and cholesterol synthesis of rat hepatocytes.

    Science.gov (United States)

    Hashimoto, F; Taira, S; Hayashi, H

    1998-11-01

    We studied whether the peroxisomal proliferation, induction of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and activation of cholesterol synthesis by gemfibrozil shown in whole body (Hashimoto F., Ishikawa T., Hamada S. and Hayashi H., Biochemical. Pharm., 49, 1213-1221 (1995)) is also detected at a culture cell level, and we made a comparative analysis of the effects of clofibric acid. Gemfibrozil at 0.25 mM increased the activity of some peroxisomal enzymes (catalase and the cyanide-insensitive fatty acyl-CoA oxidizing system) after incubation for 72 h. However, contrary to whole body experiments, gemfibrozil decreased the activity of HMG-CoA reductase and cholesterol synthesis from [14C]acetate. At 1 mM, gemfibrozil decreased not only the activity of HMG-CoA reductase and cholesterol synthesis, but also the protein content of the cells and peroxisomal enzyme activity, indicating nonspecific inhibition at this concentration. Clofibric acid (0.25 and 1 mM) increased the activity of peroxisomal enzymes, but decreased the activity of HMG-CoA reductase and cholesterol synthesis. With respect to the direct effect on HMG-CoA reductase in the cell homogenate, gemfibrozil at 0.25 mm did not affect the activity, but it clearly inhibited the activity at 2 mM and above. Clofibric acid at 2 mM hardly affected the activity, but it clearly decreased the activity at 5 mM and over. That is, gemfibrozil directly inhibited the activity more strongly than clofibric acid. The direct inhibition of the enzyme itself required higher concentrations of both agents than did inhibition at the culture cell level. These results suggest that the cytotoxicity of gemfibrozil is greater than that of clofibric acid, and that gemfibrozil, as well as clofibric acid, can induce peroxisomal enzymes in the culture cell level. In contrast to whole body results, gemfibrozil may suppress cholesterol synthesis from [14C]acetate through the inhibition of HMG-CoA reductase at the culture

  9. Immbolization of uricase enzyme in Langmuir and Langmuir-Blodgett films of fatty acids: possible use as a uric acid sensor.

    Science.gov (United States)

    Zanon, Nathaly C M; Oliveira, Osvaldo N; Caseli, Luciano

    2012-05-01

    Preserving the enzyme structure in solid films is key for producing various bioelectronic devices, including biosensors, which has normally been performed with nanostructured films that allow for control of molecular architectures. In this paper, we investigate the adsorption of uricase onto Langmuir monolayers of stearic acid (SA), and their transfer to solid supports as Langmuir-Blodgett (LB) films. Structuring of the enzyme in β-sheets was preserved in the form of 1-layer LB film, which was corroborated with a higher catalytic activity than for other uricase-containing LB film architectures where the β-sheets structuring was not preserved. The optimized architecture was also used to detect uric acid within a range covering typical concentrations in the human blood. The approach presented here not only allows for an optimized catalytic activity toward uric acid but also permits one to explain why some film architectures exhibit a superior performance. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Salazar, Margarita Pena; Schaap, Peter J.

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme......-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15...

  11. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    Directory of Open Access Journals (Sweden)

    Jin Sun

    2010-11-01

    Full Text Available This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid. The highest degree of hydrolysis (DH was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain, with an optimum condition of: (1 ratio of enzyme and substrate, 4760 U/g; (2 concentration of substrate, 4%; (3 reaction temperature, 55 °C and (4 pH 7.0. At 4 h, DH increased significantly (P < 0.01 under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen.

  12. Effect of long-term inhalation of uranium dust on balance of certain metabolites and enzymes of Krebs cycle on rat kidney tissues

    International Nuclear Information System (INIS)

    Sarsenova, L.K.; Mustafina, R.Kh.

    2010-01-01

    Kidney is the main organ for transportation and cumulation of soluble radioactive nuclides. The changing of bioenergetic processes has the most value for investigation of kidney infringements nature. Purpose of study: exploring the changing dynamics of Krebs cycle dehydrogenases activity and of tricarbonic acid content in rat kidney tissues after long-term inhalation of Uranium ore dust (UOD) for 10 mpc and application of licorice root aqueous solution. The investigation had been performed on winter breeding white out bred male rats which body weight was 120-140 g. UOD inhalation had been conducted in exposure chamber during the 120 days,4 hours per day 5 days per week. Licorice root aqueous solution was injected per os in dose 100 mg/kg 30 days after the inhalation. Isocitric (ICA) and malic acids (MA) were quantified by Hohorost enzymatic method. Activity rate of a-Ketoglutarate, Malat, Succinate and Isocitrate dehydrogenases (AKDG, MDG, SDG, IDG) in the kidney tissue was determined by Kun and Abood method in modification of Oda and Okazaki and Natochin, and assessed by reduction of Neotetrazolium. As control groups intact rats (norm) and intact animals (control) which stood in exposure chamber without UOD 4 hours/day 5 days in week were serving. Each group of 6-10 animals consisted. Data was processed statistically. At UOD inhalation in 10 mpc doze during the first 30 days the ICA content level has decreased more than in 2 times, by 90-th days this indicator has grown in 4 times and has exceeded control on 70 %. By the experiment end for 120 days the level of ICA has decreased, coming nearer to the control. Decrease in concentration of the MA was longer. The decrease maximum - in 2,2 times - has been fixed for 90-s' days of an inhalation. In the subsequent term - to the 120-th day -there was an increase of concentration to the level comparable to the control. Character and depth of radiation influence of the long inhalation of UOD are shown by change of a parity

  13. Production of N-acetyl-D-neuraminic acid using two sequential enzymes overexpressed as double-tagged fusion proteins

    Directory of Open Access Journals (Sweden)

    Cheng Chung-Hsien

    2009-07-01

    Full Text Available Abstract Background Two sequential enzymes in the production of sialic acids, N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase and N-acetyl-D-neuraminic acid aldolase (Neu5Ac aldolase, were overexpressed as double-tagged gene fusions. Both were tagged with glutathione S-transferase (GST at the N-terminus, but at the C-terminus, one was tagged with five contiguous aspartate residues (5D, and the other with five contiguous arginine residues (5R. Results Both fusion proteins were overexpressed in Escherichia coli and retained enzymatic activity. The fusions were designed so their surfaces were charged under enzyme reaction conditions, which allowed isolation and immobilization in a single step, through a simple capture with either an anionic or a cationic exchanger (Sepharose Q or Sepharose SP that electrostatically bound the 5D or 5R tag. The introduction of double tags only marginally altered the affinity of the enzymes for their substrates, and the double-tagged proteins were enzymatically active in both soluble and immobilized forms. Combined use of the fusion proteins led to the production of N-acetyl-D-neuraminic acid (Neu5Ac from N-acetyl-D-glucosamine (GlcNAc. Conclusion Double-tagged gene fusions were overexpressed to yield two enzymes that perform sequential steps in sialic acid synthesis. The proteins were easily immobilized via ionic tags onto ionic exchange resins and could thus be purified by direct capture from crude protein extracts. The immobilized, double-tagged proteins were effective for one-pot enzymatic production of sialic acid.

  14. Levels of Arabidopsis thaliana leaf phosphatidic acids, phosphatidylserines, and most trienoate-containing polar lipid molecular species increase during the dark period of the diurnal cycle

    Directory of Open Access Journals (Sweden)

    Sara eMaatta

    2012-03-01

    Full Text Available Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark-light cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole mass spectrometry indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD is a family of enzymes that hydrolyzes phospholipids to produce phosphatidic acid. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of phosphatidic acid. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing.

  15. 2-Hexadecynoic acid inhibits plasmodial FAS-II enzymes and arrests erythrocytic and liver stage Plasmodium infections.

    Science.gov (United States)

    Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H; Brun, Reto; Carballeira, Néstor M

    2010-11-01

    Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of Plasmodium yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC(50) value 6.6 μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC(50) value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescence analysis (IC(50) 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory activity against the PfFAS-II enzymes PfFabI and PfFabZ with IC(50) values of 0.38 and 0.58 μg/ml (IC(50) control drugs 14 and 30 ng/ml), respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC(50) values 3.7-31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC(50) 20.2 μg/ml), and Leishmania donovani (IC(50) values 4.1-13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature, and calculated pharmacokinetic properties suggests that 2-HDA could be a useful compound to

  16. 2-Hexadecynoic Acid Inhibits Plasmodial FAS-II Enzymes and Arrest Erythrocytic and Liver Stage Plasmodium Infections

    Science.gov (United States)

    Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L.; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H.; Brun, Reto; Carballeira, Néstor M.

    2010-01-01

    Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of P. yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC50 value 6.6. μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC50 value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescense analysis (IC50 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory against the PfFAS-II enzymes PfFabI and PfFabZ with IC50 values of 0.38 and 0.58 μg/ml (IC50 control drugs 14 and 30 ng/ml) respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC50 values 3.7–31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC50 20.2 μg/ml), and Leishmania donovani (IC50 values 4.1–13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature and calculated pharmacokinetic properties suggest that 2-HDA could be a useful compound to study the interaction of fatty

  17. Ketogenesis in isolated rat liver mitochondria I. Relationships with the citric acid cycle and with the mitochondrial energy state

    NARCIS (Netherlands)

    Lopes-Cardozo, M.; Bergh, S.G. van den

    1972-01-01

    1. A method is described to calculate the distribution of acetyl-CoA over the citric acid cycle and ketogenesis during the oxidation of fatty acids in the presence of added malate. 2. Increasing concentrations of added Krebs cycle intermediates lower the rate of ketogenesis both in the low-energy

  18. Enzymatic characterization and gene identification of aconitate isomerase, an enzyme involved in assimilation of trans-aconitic acid, from Pseudomonas sp. WU-0701.

    Science.gov (United States)

    Yuhara, Kahori; Yonehara, Hiromi; Hattori, Takasumi; Kobayashi, Keiichi; Kirimura, Kohtaro

    2015-11-01

    trans-Aconitic acid is an unsaturated organic acid that is present in some plants such as soybean and wheat; however, it remains unclear how trans-aconitic acid is degraded and/or assimilated by living cells in nature. From soil, we isolated Pseudomonas sp. WU-0701 assimilating trans-aconitic acid as a sole carbon source. In the cell-free extract of Pseudomonas sp. WU-0701, aconitate isomerase (AI; EC 5.3.3.7) activity was detected. Therefore, it seems likely that strain Pseudomonas sp. WU-0701 converts trans-aconitic acid to cis-aconitic acid with AI, and assimilates this via the tricarboxylic acid cycle. For the characterization of AI from Pseudomonas sp. WU-0701, we performed purification, determination of enzymatic properties and gene identification of AI. The molecular mass of AI purified from cell-free extract was estimated to be ~ 25 kDa by both SDS/PAGE and gel filtration analyses, indicating that AI is a monomeric enzyme. The optimal pH and temperature of purified AI for the reaction were 6.0 °C and 37 °C, respectively. The gene ais encoding AI was cloned on the basis of the N-terminal amino acid sequence of the protein, and Southern blot analysis revealed that only one copy of ais is located on the bacterial genome. The gene ais contains an ORF of 786 bp, encoding a polypeptide of 262 amino acids, including the N-terminal 22 amino acids as a putative periplasm-targeting signal peptide. It is noteworthy that the amino acid sequence of AI shows 90% and 74% identity with molybdenum ABC transporter substrate-binding proteins of Pseudomonas psychrotolerans and Xanthomonas albilineans, respectively. This is the first report on purification to homogeneity, characterization and gene identification of AI. The nucleotide sequence of ais described in this article is available in the DDBJ/EMBL/GenBank nucleotide sequence databases under the Accession No. LC010980. © 2015 FEBS.

  19. The Cell Wall Teichuronic Acid Synthetase (TUAS Is an Enzyme Complex Located in the Cytoplasmic Membrane of Micrococcus luteus

    Directory of Open Access Journals (Sweden)

    Lingyi Lynn Deng

    2010-01-01

    composed of disaccharide repeating units [-4-β-D-ManNAcAp-(1→6α-D-Glcp−1-]n, which is covalently anchored to the peptidoglycan on the inner cell wall and extended to the outer surface of the cell envelope. An enzyme complex responsible for the TUA chain biosynthesis was purified and characterized. The 440 kDa enzyme complex, named teichuronic acid synthetase (TUAS, is an octomer composed of two kinds of glycosyltransferases, Glucosyltransferase, and ManNAcA-transferase, which is capable of catalyzing the transfer of disaccharide glycosyl residues containing both glucose and the N-acetylmannosaminuronic acid residues. TUAS displays hydrophobic properties and is found primarily associated with the cytoplasmic membrane. The purified TUAS contains carotinoids and lipids. TUAS activity is diminished by phospholipase digestion. We propose that TUAS serves as a multitasking polysaccharide assembling station on the bacterial membrane.

  20. The antidiabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S

    2017-01-01

    , and malate, as well as the MCL of the TCA cycle intermediate-derived amino acids glutamate, glutamine, and aspartate. In addition to the total molecular 13 C labeling, analysis of the individual isotopomers of TCA cycle intermediates confirmed a severe decline in labeling and a significant lowering in TCA...... tricarboxylic acid (TCA) cycle metabolism in astrocytes are unknown. We investigated this by mapping 13 C labeling in TCA cycle intermediates and corresponding amino acids after incubation of primary rat astrocytes with [U-13 C]glucose. The presence of metformin did not compromise the viability of cultured...

  1. An Additional Method for Analyzing the Reversible Inhibition of an ?Enzyme Using Acid Phosphatase as a Model

    OpenAIRE

    Baumhardt, Jordan M.; Dorsey, Benjamin M.; McLauchlan, Craig C.; Jones, Marjorie A.

    2015-01-01

    Using wheat germ acid phosphatase and sodium orthovanadate as a competitive inhibitor, a novel method for analyzing reversible inhibition was carried out. Our alternative approach involves plotting the initial velocity at which product is formed as a function of the ratio of substrate concentration to inhibitor concentration at a constant enzyme concentration and constant assay conditions. The concept of initial concentrations driving equilibrium leads to the chosen axes. Three apparent const...

  2. THE COORDINATION COMPOUNDS OF COBALT (II, III) WITH DITHIOCARBAMIC ACID DERIVATIVES — MODIFICATORS OF HYDROLYTIC ENZYMES ACTIVITY

    OpenAIRE

    L. D. Varbanets; О. V. Matselyukh; N. А. Nidyalkova; Е. V. Аvdiyuk; А. V. Gudzenko; I. I. Seifullina; G. N. Маsаnоvets; N. V. Khitrich

    2013-01-01

    Chloride, bromide and isothiocyanate complexes of cobalt(II) with N-substituted thiocarbamoyl-N?-pentamethylenesulfenamides (1)–(12), and also complexes of cobalt(II, Ш) with derivatives of morpholine-4-carbodithioic acid (13)–(18) have been used as modificators of enzymes of hydrolytic action — Bacillus thurin-giensis ІМВ В-7324 peptidases, Bacillus subtilis 147 and Aspergillus flavus var. oryzae 80428 amylases, Eupenicillium erubescens 248 and Cryptococcus albidus 1001 rhamnosidases. It was...

  3. Modeling and simulation of enzymatic gluconic acid production using immobilized enzyme and CSTR-PFTR circulation reaction system.

    Science.gov (United States)

    Li, Can; Lin, Jianqun; Gao, Ling; Lin, Huibin; Lin, Jianqiang

    2018-04-01

    Production of gluconic acid by using immobilized enzyme and continuous stirred tank reactor-plug flow tubular reactor (CSTR-PFTR) circulation reaction system. A production system is constructed for gluconic acid production, which consists of a continuous stirred tank reactor (CSTR) for pH control and liquid storage and a plug flow tubular reactor (PFTR) filled with immobilized glucose oxidase (GOD) for gluconic acid production. Mathematical model is developed for this production system and simulation is made for the enzymatic reaction process. The pH inhibition effect on GOD is modeled by using a bell-type curve. Gluconic acid can be efficiently produced by using the reaction system and the mathematical model developed for this system can simulate and predict the process well.

  4. Salinity and Salicylic Acid Interactions in Affecting Nitrogen Assimilation, Enzyme Activity, Ions Content and Translocation Rate of Maize Plants

    International Nuclear Information System (INIS)

    Khodary, S.E.A.; Moussa, H.R.

    2002-01-01

    This study was carried out to establish the relationship between nitrogen metabolism, enzyme activity, ions concentration as well as the translocation rate (TR) of carbohydrates and salicylic acid (SA) in salt-stressed maize (Zea mays L). Salicylic acid plus salinity treatment highly significantly increased: nucleic acids (DNA and RNA), protein content, phosphoenolpyruvate carboxylase (PEPCase) and nitrate reductase (NR) and inhibited nucleases (DNase and RNase) activities compared with Na CI-treated plants. In addition, the ionic levels of potassium (K), phosphorus (P), nitrate (NO 3 ) and the translocation rate of the labelled photo assimilates have also been stimulated while sodium (Na) ions content was decreased. It is concluded that, salinazid maize plants might show an enhancement in their growth pattern upon salicylic acid application

  5. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    Science.gov (United States)

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil.

  6. Pretreatment with oleic acid accelerates the entrance into the mitotic cycle of EGF-stimulated fibroblasts.

    Science.gov (United States)

    Zugaza, J L; Casabiell, X A; Bokser, L; Eiras, A; Beiras, A; Casanueva, F F

    1995-07-01

    We have previously demonstrated that pretreatment of several cell lines with cis-unsaturated fatty acids, like oleic acid, blocks epidermal growth factor (EGF)-induced early ionic signals, and in particular the [Ca2+]i rise. In the present work we show that this blockade does not alter EGF-stimulated cellular proliferation evaluated by direct cell counting, but induces a powerful enhancement in the pulsed thymidine incorporation assay. The lack of effect of oleic acid on EGF-stimulated cellular proliferation was confirmed by repeated cell counts, cumulative thymidine incorporation, and protein synthesis, but a clear synergistic effect between oleic acid and EGF was again obtained by means of time course experiments with pulsed thymidine. Combined flow cytometry analysis and cell counts at earlier times in EGF-stimulated cells showed that oleic acids accelerates the entrance of cells into the replicative cycle leading to an earlier cell division. Afterward, these oleic acid-pretreated cells became delayed by an unknown compensatory mechanism in such a way that at 48 h post-EGF, the cell count in control and oleic acid-pretreated cells was equal. In conclusion (a) oleic acid accelerates or enhances the EGF mitogenic action and (b) in the long term cells compensate the initial perturbation with respect to untreated cells. As a side observation, the widely employed pulsed thymidine incorporation method as a measure of cell division could be extremely misleading unless experimental conditions are well controlled.

  7. Effect of calcium and salicylic acid on quality retention in relation to antioxidative enzymes in radish stored under refrigerated conditions.

    Science.gov (United States)

    Devi, Jomika; Bhatia, Surekha; Alam, M S; Dhillon, Tarsem Singh

    2018-03-01

    Effect of post harvest treatments with calcium chloride (CaCl 2 ) and salicylic acid (SA) on physiological and biochemical parameters in relation to activities of antioxidative enzymes were investigated in radish. Radish of variety Punjab Safed Mooli 2 was harvested, washed and treated with CaCl 2 (1, 1.5 and 2%) or SA (1, 1.5 and 2 mM). Treated as well as untreated radish were placed in open trays and stored under refrigerated (5 ± 1 °C, 90% RH) conditions for 42 days. Treatment of radish with CaCl 2 and SA slowed down changes in physiological weight, colour, total soluble solids, ascorbic acid, titrable acidity, total phenolics and antioxidant activity. Treated samples exhibited higher enhancement in activities of antioxidant enzymes viz. catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), peroxidase (POD), dehydroascorbate reductase (DHAR) and monodehydro-ascorbate reductase (MDHAR) than untreated samples. However SA was found to be more effective in slowing down the metabolic activities of radish as compared to CaCl 2 treatment. Among all the treatments, 1.5 mM SA maintained the quality parameters to greater extent probably by reducing the oxidative stress to larger extent due to highest activities of antioxidative enzymes and can be used to enhance the shelf life of radish during refrigerated storage.

  8. The Effects of Subacute Exposure of Peracetic Acid on Lipid Peroxidation and Hepatic Enzymes in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Abdoljalal Marjani

    2010-10-01

    Full Text Available Objectives: This study was undertaken to determine the effect of subacute exposure of peracetic acid on lipid peroxidation and hepatic enzymes in Wistar rats.Methods: 48 male animals in Treatment Group I, II and III received 0.2%, 2% and 20% peracetic acid daily for 2 and 4 weeks.Results: Serum malondialdehyde increased and Alanine Transaminase and Aspartate Transaminase decreased significantly in groups 2 and 3, compared to the control group. The malondialdehyde, Alanine Transaminase and Aspartate Transaminase with 0.2% and 2% doses of peracetic acid for 2 weeks do not lead to the alteration of malondialdehyde and enzyme activities.Conclusion: This study demonstrated that the enhancement of malondialdehyde could provide an oxidative damage induced by disinfectant peroxidation at 20% and 2% doses at 2 and 4 weeks. The consumption of peroxidation with 20% for 2 weeks and 2% for 4 weeks can cause the increase of malondialdehyde and the decrease of enzyme activities, respectively.

  9. Metabolomics of prematurity: analysis of patterns of amino acids, enzymes, and endocrine markers by categories of gestational age.

    Science.gov (United States)

    Wilson, Kumanan; Hawken, Steven; Ducharme, Robin; Potter, Beth K; Little, Julian; Thébaud, Bernard; Chakraborty, Pranesh

    2014-02-01

    Prematurity may influence the levels of amino acids, enzymes, and endocrine markers obtained through newborn screening. Identifying which analytes are the most affected by degree of prematurity could provide insight into how prematurity impacts metabolism. Analytes from blood spots assayed by Newborn Screening Ontario between March 2006 and April 2009 were used in this analysis. We examined the associations between the degree of prematurity and the levels of amino acids, enzymes, and endocrine markers in all newborns with and without adjustment for birth weight, feeding status, sample timing, transfusion, and sex. Our analysis included the following cohorts: 373,819 children born at term (>36 wk gestation), 26,483 near-term children (33-36 wk gestation), 4,354 very premature children (28-32 wk gestation), and 1,146 extremely premature children (prematurity, the levels of three amino acids (arginine, leucine, and valine) were at least 50% different between the cohorts of extremely premature and term children. The levels of 17-hydroxyprogesterone increased with increasing prematurity, while thyrotropin-stimulating hormone values consistently decreased with increasing prematurity. None of the three enzyme markers we examined showed a trend in levels across categories of prematurity. This study demonstrates that children at different stages of prematurity are metabolically distinct. Future research should focus on the mechanism by which specific analytes are influenced by prematurity.

  10. The shikimate pathway: review of amino acid sequence, function and three-dimensional structures of the enzymes.

    Science.gov (United States)

    Mir, Rafia; Jallu, Shais; Singh, T P

    2015-06-01

    The aromatic compounds such as aromatic amino acids, vitamin K and ubiquinone are important prerequisites for the metabolism of an organism. All organisms can synthesize these aromatic metabolites through shikimate pathway, except for mammals which are dependent on their diet for these compounds. The pathway converts phosphoenolpyruvate and erythrose 4-phosphate to chorismate through seven enzymatically catalyzed steps and chorismate serves as a precursor for the synthesis of variety of aromatic compounds. These enzymes have shown to play a vital role for the viability of microorganisms and thus are suggested to present attractive molecular targets for the design of novel antimicrobial drugs. This review focuses on the seven enzymes of the shikimate pathway, highlighting their primary sequences, functions and three-dimensional structures. The understanding of their active site amino acid maps, functions and three-dimensional structures will provide a framework on which the rational design of antimicrobial drugs would be based. Comparing the full length amino acid sequences and the X-ray crystal structures of these enzymes from bacteria, fungi and plant sources would contribute in designing a specific drug and/or in developing broad-spectrum compounds with efficacy against a variety of pathogens.

  11. Chronic fluoxetine treatment directs energy metabolism towards the citric acid cycle and oxidative phosphorylation in rat hippocampal nonsynaptic mitochondria.

    Science.gov (United States)

    Filipović, Dragana; Costina, Victor; Perić, Ivana; Stanisavljević, Andrijana; Findeisen, Peter

    2017-03-15

    Fluoxetine (Flx) is the principal treatment for depression; however, the precise mechanisms of its actions remain elusive. Our aim was to identify protein expression changes within rat hippocampus regulated by chronic Flx treatment versus vehicle-controls using proteomics. Fluoxetine-hydrohloride (15mg/kg) was administered daily to adult male Wistar rats for 3weeks, and cytosolic and nonsynaptic mitochondrial hippocampal proteomes were analyzed. All differentially expressed proteins were functionally annotated according to biological process and molecular function using Uniprot and Blast2GO. Our comparative study revealed that in cytosolic and nonsynaptic mitochondrial fractions, 60 and 3 proteins respectively, were down-regulated, and 23 and 60 proteins, respectively, were up-regulated. Proteins differentially regulated in cytosolic and nonsynaptic mitochondrial fractions were primarily related to cellular and metabolic processes. Of the identified proteins, the expressions of calretinin and parvalbumine were confirmed. The predominant molecular functions of differentially expressed proteins in both cell hippocampal fractions were binding and catalytic activity. Most differentially expressed proteins in nonsynaptic mitochondria were catalytic enzymes involved in the pyruvate metabolism, citric acid cycle, oxidative phosphorylation, ATP synthesis, ATP transduction and glutamate metabolism. Results indicate that chronic Flx treatment may influence proteins involved in calcium signaling, cytoskeletal structure, chaperone system and stimulates energy metabolism via the upregulation of GAPDH expression in cytoplasm, as well as directing energy metabolism toward the citric acid cycle and oxidative phosphorylation in nonsynaptic mitochondria. This approach provides new insight into the chronic effects of Flx treatment on protein expression in a key brain region associated with stress response and memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Celluloytic enzymes, nucleic acids encoding them and methods for making and using them

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Kevin A; Zhao, Lishan; Cayouette, Michelle H

    2015-11-04

    The invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  13. Celluloytic enzymes, nucleic acids encoding them and methods for making and using them

    Science.gov (United States)

    Gray, Kevin A.; Zhao, Lishan; Cayouette, Michelle H.

    2015-09-08

    The invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  14. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation

    NARCIS (Netherlands)

    Molven, Anders; Matre, Guri E.; Duran, Marinus; Wanders, Ronald J.; Rishaug, Unni; Njølstad, Pål R.; Jellum, Egil; Søvik, Oddmund

    2004-01-01

    Inappropriately elevated insulin secretion is the hallmark of persistent hyperinsulinemic hypoglycemia of infancy (PHHI), also denoted congenital hyperinsulinism. Causal mutations have been uncovered in genes coding for the beta-cell's ATP-sensitive potassium channel and the metabolic enzymes

  15. THE COORDINATION COMPOUNDS OF COBALT (II, III WITH DITHIOCARBAMIC ACID DERIVATIVES — MODIFICATORS OF HYDROLYTIC ENZYMES ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. D. Varbanets

    2013-02-01

    Full Text Available Chloride, bromide and isothiocyanate complexes of cobalt(II with N-substituted thiocarbamoyl-N?-pentamethylenesulfenamides (1–(12, and also complexes of cobalt(II, Ш with derivatives of morpholine-4-carbodithioic acid (13–(18 have been used as modificators of enzymes of hydrolytic action — Bacillus thurin-giensis ІМВ В-7324 peptidases, Bacillus subtilis 147 and Aspergillus flavus var. oryzae 80428 amylases, Eupenicillium erubescens 248 and Cryptococcus albidus 1001 rhamnosidases. It was shown that cobalt (II, Ш compounds influence differently on the activity of enzymes tested, exerted both inhibitory and stimulatory action. It gives a possibility to expect that manifestation of activity by complex molecule depends on ligand and anion presence — Cl–, Br– or NCS–. The high activating action of cobalt(II complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides (1–(12 on elastase and fibrinolytic activity of peptidases compared to tris(4-morpholinecarbodithioatocobalt(ІІІ (14 and products of its interaction with halogens (15–(17, causes inhibitory effect that is probably due to presence of a weekly S–N link, which is easy subjected to homolytic breaking. The studies of influences of cobalt(II complexes on activity of C. аlbidus and E. еrubescens ?-Lrhamnosidases showed, that majority of compounds inhibits of its activity, at that the most inhibitory effect exerts to C. аlbidus enzyme.To sum up, it is possible to state that character of influence of cobalt(II complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides, and also cobalt(II, Ш complexes with derivatives of morpholine-4-carbodithioic acid varies depending on both strain producer and enzyme tested. The difference in complex effects on enzymes tested are due to peculiarities of building and functional groups of their active centers, which are also responsible for binding with modificators.

  16. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part 1: decomposition of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [Central Florida Univ., Florida Solar Energy Center, Cocoa, FL (United States)

    2005-05-01

    The sulfur-iodine (S-I) thermochemical water splitting cycle is one of the most studied cycles for hydrogen (H{sub 2}) production. S-I cycle consists of four sections: (I) acid production and separation and oxygen purification, (II) sulfuric acid concentration and decomposition, (III) hydroiodic acid (HI) concentration, and (IV) HI decomposition and H{sub 2} purification. Section II of the cycle is an endothermic reaction driven by the heat input from a high temperature source. Analysis of the S-I cycle in the past thirty years have been focused mostly on the utilization of nuclear power as the high temperature heat source for the sulfuric acid decomposition step. Thermodynamic as well as kinetic considerations indicate that both the extent and rate of sulfuric acid decomposition can be improved at very high temperatures (in excess of 1000 deg C) available only from solar concentrators. The beneficial effect of high temperature solar heat for decomposition of sulfuric acid in the S-I cycle is described in this paper. We used Aspen Technologies' HYSYS chemical process simulator (CPS) to develop flowsheets for sulfuric acid (H{sub 2}SO{sub 4}) decomposition that include all mass and heat balances. Based on the HYSYS analyses, two new process flowsheets were developed. These new sulfuric acid decomposition processes are simpler and more stable than previous processes and yield higher conversion efficiencies for the sulfuric acid decomposition and sulfur dioxide and oxygen formation. (Author)

  17. The Peroxisomal Enzyme L-PBE Is Required to Prevent the Dietary Toxicity of Medium-Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2013-10-01

    Full Text Available Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe−/− mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.

  18. The role of axial chirality in Schiff bases of pyridoxal phosphate and amino acids in the mechanism of racemase enzyme : a quantum-chemical study

    NARCIS (Netherlands)

    Genderen, van M.H.P.; Buck, H.M.

    1989-01-01

    In the enzymatic racemization of L and D amino acids, the coenzyme pyridoxal phosphate (PLP) forms a Schiff base with the amino acid. In the first step of the isomerization reaction, both the L and D PLP-amino acid compounds are deprotonated by a single basic site in the enzyme, which is normally

  19. Genome-wide identification of bahd acyltransferases and in vivo characterization of HQT-like enzymes involved in caffeoylquinic acid synthesis in globe artichoke

    NARCIS (Netherlands)

    Moglia, Andrea; Acquadro, Alberto; Eljounaidi, Kaouthar; Milani, Anna M.; Cagliero, Cecilia; Rubiolo, Patrizia; Genre, Andrea; Cankar, Katarina; Beekwilder, Jules; Comino, Cinzia

    2016-01-01

    Globe artichoke (Cynara cardunculus L. var. scolymus) is a rich source of compounds promoting human health (phytonutrients), among them caffeoylquinic acids (CQAs), mainly represented by chlorogenic acid (CGA), and dicaffeoylquinic acids (diCQAs). The enzymes involved in their biosynthesis belong

  20. Alteration of tricarboxylic acid cycle metabolism in rat brain slices by halothane

    International Nuclear Information System (INIS)

    Cheng, S.C.; Brunner, E.A.

    1978-01-01

    Metabolism of [2- 14 C] pyruvate, [1- 14 C] acetate and [5- 14 C] citrate in rat cerebral cortex slices was studied in the presence of halothane. Metabolites assayed include acetylcholine (ACh), citrate, glutamate, glutamineγ-aminobutyrate (GABA) and aspartate. The trichloroacetic acid soluble extract, the trichloracetic acid insoluble precipitate and its lipid extract were also studied. In control experiments, pyruvate preferentially labelled ACh, citrate, glutamate, GABA and aspartate. Acetate labelled ACh, but to a lesser extent than pyruvate. Acetate also labelled lipids and glutamine. Citrate labelled lipids but not ACh and served as a preferential precursor for glutamine. These data support a three-compartment model for cerebral tricarboxylic acid cycle metabolism. Halothane caused increases in GABA and aspartate contents and a decrease in ACh content. It has no effect on the contents of citrate, glutamate and glutamine. Halothane preferentially inhibited the metabolic transfer of radioactivity from pyruvate into almost all metabolites, an effect probably not related to pyruvate permeability. This is interpreted as halothane depression of the large metabolic compartment which includes the nerve endings. Halothane increased the metabolic transfer of radioactivity from acetate into lipids but did not alter such a transfer into the trichloroacetic acid extract. Halothane increased the metabolic transfer of radioactivity from citrate into the trichloroacetic acid precipitate, lipids and especially glutamine. Transfer of citrate radioactivity into GABA was somewhat decreased. The differential effects of halothane on acetate and citrate utilization suggest that the small metabolic compartment should be subdivided. Therefore, at least three metabolic compartments are demonstrated. Halothane did not interfere with the dicarboxylic acid portion of the tricarboxylic acid cycle. (author)

  1. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle.

    Science.gov (United States)

    Terada, Shin; Tabata, Izumi; Higuchi, Mitsuru

    2004-02-01

    We previously reported that high-intensity exercise training significantly increased citrate synthase (CS) activity, a marker of oxidative enzyme, in rat skeletal muscle to a level equaling that attained after low-intensity prolonged exercise training (Terada et al., J Appl Physiol 90: 2019-2024, 2001). Since mitochondrial oxidative enzymes and fatty acid oxidation (FAO) enzymes are often increased simultaneously, we assessed the effect of high-intensity intermittent swimming training on FAO enzyme activity in rat skeletal muscle. Male Sprague-Dawley rats (3 to 4 weeks old) were assigned to a 10-day period of high-intensity intermittent exercise training (HIT), low-intensity prolonged exercise training (LIT), or sedentary control conditions. In the HIT group, the rats repeated fourteen 20 s swimming sessions with a weight equivalent to 14-16% of their body weight. Between the exercise sessions, a 10 s pause was allowed. Rats in the LIT group swam 6 h/day in two 3 h sessions separated by 45 min of rest. CS activity in the triceps muscle of rats in the HIT and LIT groups was significantly higher than that in the control rats by 36 and 39%, respectively. Furthermore, 3-beta hydroxyacyl-CoA dehydrogenase (HAD) activity, an important enzyme in the FAO pathway in skeletal muscle, was higher in the two training groups than in the control rats (HIT: 100%, LIT: 88%). No significant difference in HAD activity was observed between the two training groups. In conclusion, the present investigation demonstrated that high-intensity intermittent swimming training elevated FAO enzyme activity in rat skeletal muscle to a level similar to that attained after 6 h of low-intensity prolonged swimming exercise training.

  2. Studies on the Growth Effects of the Canaline-Urea Cycle Amino Acids with Lemna minor L. 1

    Science.gov (United States)

    Rosenthal, Gerald A.; Gulati, Dushyant K.; Sabharwal, P. S.

    1975-01-01

    The aquatic microphyte, Lemna minor L., was utilized to assess the relative toxicity and general growth effects of canavanine, canaline, ureidohomoserine (UHS), and canavaninosuccinate (CSA). These amino acids are constituents of the canaline-urea cycle and structural analogues of the ornithine-urea cycle amino acids. Comparative growth studies with L. minor revealed that the canaline-urea cycle amino acids are potent antimetabolites. With the exception of CSA, they are extremely toxic at a concentration of 5 μm. Over a concentration range of 1 to 4 μm, canavanine is the most growth-inhibiting of the canaline-urea cycle amino acids. At or above 5 μm, canavanine and canaline possess comparable toxicity. UHS is less growth-inhibiting than canavanine or canaline, and CSA is the least toxic of the canaline-urea cycle intermediates. PMID:16659316

  3. Key Feature of the Catalytic Cycle of TNF-α Converting Enzyme Involves Communication Between Distal Protein Sites and the Enzyme Catalytic Core

    International Nuclear Information System (INIS)

    Solomon, A.; Akabayov, B.; Frenkel, A.; Millas, M.; Sagi, I.

    2007-01-01

    Despite their key roles in many normal and pathological processes, the molecular details by which zinc-dependent proteases hydrolyze their physiological substrates remain elusive. Advanced theoretical analyses have suggested reaction models for which there is limited and controversial experimental evidence. Here we report the structure, chemistry and lifetime of transient metal-protein reaction intermediates evolving during the substrate turnover reaction of a metalloproteinase, the tumor necrosis factor-α converting enzyme (TACE). TACE controls multiple signal transduction pathways through the proteolytic release of the extracellular domain of a host of membrane-bound factors and receptors. Using stopped-flow x-ray spectroscopy methods together with transient kinetic analyses, we demonstrate that TACE's catalytic zinc ion undergoes dynamic charge transitions before substrate binding to the metal ion. This indicates previously undescribed communication pathways taking place between distal protein sites and the enzyme catalytic core. The observed charge transitions are synchronized with distinct phases in the reaction kinetics and changes in metal coordination chemistry mediated by the binding of the peptide substrate to the catalytic metal ion and product release. Here we report key local charge transitions critical for proteolysis as well as long sought evidence for the proposed reaction model of peptide hydrolysis. This study provides a general approach for gaining critical insights into the molecular basis of substrate recognition and turnover by zinc metalloproteinases that may be used for drug design

  4. Fatty acid biosynthesis. VIII. The fate of malonyl-CoA in fatty acid biosynthesis by purified enzymes from lactating-rabbit mammary gland

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1971-01-01

    - 1. We have investigated the formation and utilization of malonyl-CoA in fatty acid synthesis catalysed by preparations of partially purified acetyl-CoA carboxylase and purified fatty acid synthetase from lactating-rabbit mammary gland. - 2. Carboxylation of [1-14C]acetyl-CoA was linked to fatty...... acid synthesis by the presence of fatty acid synthetase and NADPH. The rate of fatty acid formation was equal to that of acetyl-CoA carboxylation, without the accumulation of free malonyl-CoA to a concentration required to obtain the same rate of fatty acid synthesis from added [1,3-14C2]malonyl......-CoA. - 3. The preparations of acetyl-CoA carboxylase and fatty acid synthetase were each able to decarboxylate [1,3-14C2]malonyl-CoA. - 4. Both enzyme preparations acted as competitive inhibitors of 14CO2 fixation into acetyl-CoA catalysed by acetyl-CoA carboxylase in the absence of NADPH...

  5. Nucleic acids digestion by enzymes in the stomach of snakehead (Channa argus) and banded grouper (Epinephelus awoara).

    Science.gov (United States)

    Liu, Yu; Zhang, Yanfang; Jiang, Wei; Wang, Jing; Pan, Xiaoming; Wu, Wei; Cao, Minjie; Dong, Ping; Liang, Xingguo

    2017-02-01

    Dietary nucleic acids (NAs) were important nutrients. However, the digestion of NAs in stomach has not been studied. In this study, the digestion of NAs by enzymes from fish stomach was investigated. The snakehead pepsins (SP) which were the main enzymes in stomach were extracted and purified. The purity of SP was evaluated by SDS-PAGE and HPLC. The snakehead pepsin 2 (SP2) which was the main component in the extracts was used for investigating the protein and NAs digestion activity. SP2 could digest NAs, including λ DNA and salmon sperm DNA. Interestingly, the digestion could be inhibited by treatment of alkaline solution at pH 8.0 and pepstatin A, and the digestion could happen either in the presence or absence of hemoglobin (Hb) and BSA as the protein substrates. Similarly, the stomach enzymes of banded grouper also showed the NAs digestion activity. NAs could be digested by the stomach enzymes of snakehead and banded grouper. It may be helpful for understanding both animal nutrition and NAs metabolic pathway.

  6. An Additional Method for Analyzing the Reversible Inhibition of an 
Enzyme Using Acid Phosphatase as a Model.

    Science.gov (United States)

    Baumhardt, Jordan M; Dorsey, Benjamin M; McLauchlan, Craig C; Jones, Marjorie A

    2015-08-01

    Using wheat germ acid phosphatase and sodium orthovanadate as a competitive inhibitor, a novel method for analyzing reversible inhibition was carried out. Our alternative approach involves plotting the initial velocity at which product is formed as a function of the ratio of substrate concentration to inhibitor concentration at a constant enzyme concentration and constant assay conditions. The concept of initial concentrations driving equilibrium leads to the chosen axes. Three apparent constants can be derived from this plot: K max , K min , and K inflect . K max and K min represent the substrate to inhibitor concentration ratio for complete inhibition and minimal inhibition, respectively. K inflect represents the substrate to inhibitor concentration ratio at which the enzyme-substrate complex is equal to the inhibitory complex. These constants can be interpolated from the graph or calculated using the first and second derivative of the plot. We conclude that a steeper slope and a shift of the line to the right (increased x-axis values) would indicate a better inhibitor. Since initial velocity is not a linear function of the substrate/inhibitor ratio, this means that inhibition changes more quickly with the change in the [S]/ [I] ratio. When preincubating the enzyme with substrate before the addition of inhibitor, preincubating the enzyme with inhibitor before the addition of substrate or with concurrent addition of both substrate and inhibitor, modest changes in the slopes and y-intercepts were obtained. This plot appears useful for known competitive and non-competitive inhibitors and may have general applicability.

  7. Dietary Deficiency of Essential Amino Acids Rapidly Induces Cessation of the Rat Estrous Cycle

    Science.gov (United States)

    Bannai, Makoto; Ichimaru, Toru; Nakano, Sayako; Murata, Takuya; Higuchi, Takashi; Takahashi, Michio

    2011-01-01

    Reproductive functions are regulated by the sophisticated coordination between the neuronal and endocrine systems and are sustained by a proper nutritional environment. Female reproductive function is vulnerable to effects from dietary restrictions, suggesting a transient adaptation that prioritizes individual survival over reproduction until a possible future opportunity for satiation. This adaptation could also partially explain the existence of amenorrhea in women with anorexia nervosa. Because amino acid nutritional conditions other than caloric restriction uniquely alters amino acid metabolism and affect the hormonal levels of organisms, we hypothesized that the supply of essential amino acids in the diet plays a pivotal role in the maintenance of the female reproductive system. To test this hypothesis, we examined ovulatory cyclicity in female rats under diets that were deficient in threonine, lysine, tryptophan, methionine or valine. Ovulatory cyclicity was monitored by daily cytological evaluations of vaginal smears. After continuous feeding of the deficient diet, a persistent diestrus or anovulatory state was induced most quickly by the valine-deficient diet and most slowly by the lysine-deficient diet. A decline in the systemic insulin-like growth factor 1 level was associated with a dietary amino acid deficiency. Furthermore, a paired group of rats that were fed an isocaloric diet with balanced amino acids maintained normal estrous cyclicity. These disturbances of the estrous cycle by amino acid deficiency were quickly reversed by the consumption of a normal diet. The continuous anovulatory state in this study is not attributable to a decrease in caloric intake but to an imbalance in the dietary amino acid composition. With a shortage of well-balanced amino acid sources, reproduction becomes risky for both the mother and the fetus. It could be viewed as an adaptation to the diet, diverting resources away from reproduction and reallocating them to

  8. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  9. GC/MS-based profiling of amino acids and TCA cycle-related molecules in ulcerative colitis.

    Science.gov (United States)

    Ooi, Makoto; Nishiumi, Shin; Yoshie, Tomoo; Shiomi, Yuuki; Kohashi, Michitaka; Fukunaga, Ken; Nakamura, Shiro; Matsumoto, Takayuki; Hatano, Naoya; Shinohara, Masakazu; Irino, Yasuhiro; Takenawa, Tadaomi; Azuma, Takeshi; Yoshida, Masaru

    2011-09-01

    The roles that amino acids play in immunity and inflammation are well defined, and the relationship between inflammatory bowel disease (IBD) and certain amino acids has recently attracted attention. In this study, the levels of amino acids and trichloroacetic acid (TCA) cycle-related molecules in the colonic tissues and sera of patients with ulcerative colitis (UC) were profiled by gas chromatography/mass spectrometry (GC/MS), with the aim of evaluating whether the clinical state induced by UC leads to variations in the amino acid profile. Colonic biopsy samples from 22 UC patients were used, as well as serum samples from UC patients (n = 13), Crohn's disease (CD) patients (n = 21), and healthy volunteers (n = 17). In the GC/MS-based profiling of amino acids and TCA cycle-related molecules, lower levels of 16 amino acids and 5 TCA cycle-related molecules were observed in the colonic lesion tissues of the UC patients, and the serum profiles of amino acids and TCA cycle-related molecules of the UC patients were different from those of the CD patients and healthy volunteers. Our study raises the possibility that GC/MS-based profiling of amino acids and TCA cycle-related molecules is a useful early diagnostic tool for UC.

  10. A plant pathogenic bacterium exploits the tricarboxylic acid cycle metabolic pathway of its insect vector

    Science.gov (United States)

    Nehela, Yasser; Hijaz, Faraj; Vincent, Christopher I.

    2018-01-01

    ABSTRACT Huanglongbing in citrus is caused by a phloem-limited, uncultivable, gram-negative α-proteobacterium, Candidatus Liberibacter asiaticus (CLas). CLas is transmitted by the phloem-sucking insect, Diaphorina citri (Hemiptera: Liviidae), in a persistent, circulative, and propagative manner. In this study, we investigated the metabolomic and respiration rates changes in D. citri upon infection with CLas using gas chromatography-mass spectrometry (GC-MS) and gas exchange analysis. The level of glycine, L-serine, L-threonine, and gamma-amino butyric acid were higher in CLas-infected D. citri, while L-proline, L-aspartic acid, and L-pyroglutamic acid were lower in CLas-infected D. citri compared with the control. Citric acid was increased in CLas-infected D. citri, whereas malic and succinic acids were reduced. Interestingly, most of the reduced metabolites such as malate, succinate, aspartate, and L-proline are required for the growth of CLas. The increase in citric acid, serine, and glycine indicated that CLas induced glycolysis and the tricarboxylic acid cycle (TCA) in its vector. In agreement with the GC-MS results, the gene expression results also indicated that glycolysis and TCA were induced in CLas-infected D. citri and this was accompanied with an increases in respiration rate. Phosphoric acid and most of the sugar alcohols were higher in CLas-infected D. citri, indicating a response to the biotic stress or cell damage. Only slight increases in the levels of few sugars were observed in CLas-infected D. citri, which indicated that sugars are tightly regulated by D. citri. Our results indicated that CLas induces nutrient and energetic stress in its host insect. This study may provide some insights into the mechanism of colonization of CLas in its vector. PMID:28594267

  11. Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them

    Science.gov (United States)

    Gray, Kevin A [San Diego, CA; Zhao, Lishan [Emeryville, CA; Cayouette, Michelle H [San Diego, CA

    2012-01-24

    The invention provides polypeptides having any cellulolytic activity, e.g., a cellulase activity, a endoglucanase, a cellobiohydrolase, a beta-glucosidase, a xylanase, a mannanse, a .beta.-xylosidase, an arabinofuranosidase, and/or an oligomerase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. In one aspect, the invention provides polypeptides having an oligomerase activity, e.g., enzymes that convert recalcitrant soluble oligomers to fermentable sugars in the saccharification of biomass. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  12. Eutectic mixtures of some fatty acids for latent heat storage: Thermal properties and thermal reliability with respect to thermal cycling

    International Nuclear Information System (INIS)

    Sari, Ahmet

    2006-01-01

    Accelerated thermal cycle tests have been conducted to study the change in melting temperatures and latent heats of fusion of the eutectic mixtures of lauric acid (LA)-myristic acid (MA), lauric acid (LA)-palmitic acid (PA) and myristic acid (MA)-stearic acid (SA) as latent heat storage materials. The thermal properties of these materials were determined by the differential scanning calorimetry (DSC) analysis method. The thermal reliability of the eutectic mixtures after melt/freeze cycles of 720, 1080 and 1460 was also evaluated using the DSC curves. The accelerated thermal cycle tests indicate that the melting temperatures usually tend to decrease, and the variations in the latent heats of fusion are irregular with increasing number of thermal cycles. Moreover, the probable reasons for the change in thermal properties of the eutectic mixtures after repeated thermal cycles were investigated. Fourier Transform Infrared (FT-IR) spectroscopic analysis indicates that the accelerated melt/freeze processes do not cause any degradation in the chemical structure of the mixtures. The change in thermal properties of the eutectic mixtures with increasing number of thermal cycles is only because of the presence of certain amounts of impurities in the fatty acids used in their preparation. It is concluded that the tested eutectic mixtures have reasonable thermal properties and thermal reliability as phase change materials (PCMs) for latent heat storage in any solar heating applications that include a four year utilization period

  13. Development of an improved two-cycle process for recovering uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Chen, H.M.; Chen, H.J.; Tsai, Y.M.; Lee, T.W.; Ting, G.

    1987-01-01

    An improved two-cycle separation process for the recovery of uranium from wet-process phosphoric acid by extraction with bis(2-ethylhexyl)phosphoric acid (D2EHPA) plus dibutyl butylphosphonate (DBBP) in kerosene has been developed and demonstrated successfully in bench-scale, continuous mixer-settler tests. The sulfuric acid and water scrubbing steps for the recycled extraction in the second cycle solve the problems of the contamination and dilution of the phosphoric acid by the ammonium ion and water and also avoid the formation of undesirable phosphatic precipitates during the subsequent extraction of uranium by recycled organic extractant

  14. Renal uptake of dimercaptosuccinic acid and glomerular filtration rate in chronic nephropathy at angiotensin converting enzyme inhibition

    International Nuclear Information System (INIS)

    Kamper, A.L.; Thomsen, H.S.; Nielsen, S.L.; Strandgaard, S.; Herlev Hospital

    1990-01-01

    Glomerular filtration rate (GFR) and renal uptake of dimercaptosuccinic acid (DMSA) were measured in 31 patients with progressive chronic nephropathy before and immediately after the start of treatment with angiotensin converting enzyme (ACE) inhibitor in order to control adverse effects on kidney function. Scintigrams of the kidneys showed an unaltered distribution of DMSA during treatment. GFR estimated by 51 Cr-EDTA plasma clearance fell by 14% (P 99m Tc-DMSA increased by 10% (P<0.01). It is concluded that DMSA in chronic renal failure is mainly taken up by the tubular cells from the peritubular capillaries since the uptake was unaffected by the acute decrease in GFR. (orig.)

  15. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes.

    Science.gov (United States)

    Panda, Sandeep K; Mishra, Swati S; Kayitesi, Eugenie; Ray, Ramesh C

    2016-04-01

    Wastes generated from fruits and vegetables are organic in nature and contribute a major share in soil and water pollution. Also, green house gas emission caused by fruit and vegetable wastes (FVWs) is a matter of serious environmental concern. This review addresses the developments over the last one decade on microbial processing technologies for production of enzymes and organic acids from FVWs. The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Renal uptake of dimercaptosuccinic acid and glomerular filtration rate in chronic nephropathy at angiotensin converting enzyme inhibition

    DEFF Research Database (Denmark)

    Kamper, A L; Thomsen, H S; Nielsen, S L

    1990-01-01

    function. Scintigrams of the kidneys showed an unaltered distribution of DMSA during treatment. GFR estimated by 51Cr-EDTA plasma clearance fell by 14% (P less than 0.01), but renal uptake of 99mTc-DMSA increased by 10% (P less than 0.01). It is concluded that DMSA in chronic renal failure is mainly taken......Glomerular filtration rate (GFR) and renal uptake of dimercaptosuccinic acid (DMSA) were measured in 31 patients with progressive chronic nephropathy before and immediately after the start of treatment with angiotensin converting enzyme (ACE) inhibitor in order to control adverse effects on kidney...

  17. Localization and Interactions of Teichoic Acid Synthetic Enzymes in Bacillus subtilis

    NARCIS (Netherlands)

    Formstone, Alex; Carballido-López, Rut; Noirot, Philippe; Errington, Jeffery; Scheffers, Dirk-Jan

    2008-01-01

    The thick wall of gram-positive bacteria is a polymer meshwork composed predominantly of peptidoglycan (PG) and teichoic acids, both of which have a critical function in maintenance of the structural integrity and the shape of the cell. In Bacillus subtilis 168 the major teichoic acid is covalently

  18. Influence of salicylic and succinic acids on antioxidant enzymes activity, heat resistance and productivity of Panicum miliaceum L.

    Directory of Open Access Journals (Sweden)

    Miroshnichenko N.N.

    2011-05-01

    Full Text Available The influence of treatment of millet (Panicum miliaceum L. seeds with the solutions of salicylic and succinic acids on the heat resistance of plantlets and activity of antioxidant enzymes – superoxide dismutase (SOD, catalase and peroxidase – in them have been investigated. In the micro-field experiment the influence of these acids on the millet yield was estimated. The action of salicylic (10 μM and succinic (1 mM acids caused the increase of plantlets resistance to the damaging heating that expressed in the rise of relative quantity of survived plantlets in 5 days after heating at the temperature of 47°С and in the reduced content of lipid peroxidation product malonic dialdehyde during the poststress period. The increase of activity of SOD, catalase and peroxidase took place in millet plantlets under the influence of salicylic and succinic acids. The increase of productivity of millet grain under the action of salicylic and succinic acids on 13,3-52,0 and 6,4-38,8% respectively depending on weather conditions in the field experiments was noted.

  19. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid Green Composites during Thermal Cycling

    Directory of Open Access Journals (Sweden)

    Hideaki Katogi

    2016-07-01

    Full Text Available This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid (PLA during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin.

  20. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid) Green Composites during Thermal Cycling.

    Science.gov (United States)

    Katogi, Hideaki; Takemura, Kenichi; Akiyama, Motoki

    2016-07-14

    This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid) (PLA) during thermal cycling. Temperature ranges of thermal cycling tests were 35-45 °C and 35-55 °C. The maximum number of cycles was 10³ cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35-45 °C, tensile strength of composite at 10³ cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35-55 °C, tensile strength and Young's modulus of composite at 10³ cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 10³ cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin.

  1. High activity and low temperature optima of extracellular enzymes in Arctic sediments: implications for carbon cycling by heterotrophic microbial communities

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB

    2003-01-01

    (chondroitin sulfate, fucoidan, xylan and pullulan) to determine the temperature-activity responses of hydrolysis of a related class of compounds. All 4 enzyme activities showed similarly low temperature optima in the range of 15 to 18degreesC. These temperature optima are considerably lower than most previous......The rate of the initial step in microbial remineralization of organic carbon, extracellular enzymatic hydrolysis, was investigated as a function of temperature in permanently cold sediments from 2 fjords on the west coast of Svalbard (Arctic Ocean). We used 4 structurally distinct polysaccharides...... reports of temperature optima for enzyme activities in marine sediments. At 0degreesC, close to the in situ temperature, these enzyme activities achieved 13 to 38% of their rates at optimum temperatures. In one experiment, sulfate reduction rates were measured in parallel with extracellular enzymatic...

  2. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    Science.gov (United States)

    Scott, Durelle T.; Runkel, Robert L.; McKnight, Diane M.; Voelker, Bettina M.; Kimball, Briant A.; Carraway, Elizabeth R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  3. Nucleic Acids and Enzymes at Electrodes: Electrochemical Nanomedical Biosensors and Biofuel Cell Development

    DEFF Research Database (Denmark)

    Ferapontova, Elena

    Starting from the development of the first electrochemical biosensor for glucose, as far as in 1962, the electrochemical biosensor research area underwent a dramatic evolution both in scientific and commercial directions. At present, electrochemical biosensors are widely used in medical practice,...... perspectives of the biosensor research and such biotechnological applications as enzyme electrodes for sustainable energy production (6) will be discussed.......Starting from the development of the first electrochemical biosensor for glucose, as far as in 1962, the electrochemical biosensor research area underwent a dramatic evolution both in scientific and commercial directions. At present, electrochemical biosensors are widely used in medical practice......, by offering extremely sensitive and accurate yet simple, rapid, and inexpensive biosensing platforms (1). In this talk, I will discuss the developed at iNANO reagentless enzymatic biosensors, in which the enzyme is directly electronically coupled to the electrode (1-3), and advanced genosensor platforms...

  4. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors

    Science.gov (United States)

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-01-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23–0.99 U mg−1 protein), butyrate kinase (Buk, biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH3 and NH4+-N), and a negative dependency can be postulated. Thus, high concentrations of NH3 and NH4+-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. PMID:26086956

  5. Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme.

    Science.gov (United States)

    Pellegrini, Vanessa O A; Serpa, Viviane Isabel; Godoy, Andre S; Camilo, Cesar M; Bernardes, Amanda; Rezende, Camila A; Junior, Nei Pereira; Franco Cairo, João Paulo L; Squina, Fabio M; Polikarpov, Igor

    2015-11-01

    Trichoderma filamentous fungi have been investigated due to their ability to secrete cellulases which find various biotechnological applications such as biomass hydrolysis and cellulosic ethanol production. Previous studies demonstrated that Trichoderma harzianum IOC-3844 has a high degree of cellulolytic activity and potential for biomass hydrolysis. However, enzymatic, biochemical, and structural studies of cellulases from T. harzianum are scarce. This work reports biochemical characterization of the recombinant endoglucanase I from T. harzianum, ThCel7B, and its catalytic core domain. The constructs display optimum activity at 55 °C and a surprisingly acidic pH optimum of 3.0. The full-length enzyme is able to hydrolyze a variety of substrates, with high specific activity: 75 U/mg for β-glucan, 46 U/mg toward xyloglucan, 39 U/mg for lichenan, 26 U/mg for carboxymethyl cellulose, 18 U/mg for 4-nitrophenyl β-D-cellobioside, 16 U/mg for rye arabinoxylan, and 12 U/mg toward xylan. The enzyme also hydrolyzed filter paper, phosphoric acid swollen cellulose, Sigmacell 20, Avicel PH-101, and cellulose, albeit with lower efficiency. The ThCel7B catalytic domain displays similar substrate diversity. Fluorescence-based thermal shift assays showed that thermal stability is highest at pH 5.0. We determined kinetic parameters and analyzed a pattern of oligosaccharide substrates hydrolysis, revealing cellobiose as a final product of C6 degradation. Finally, we visualized effects of ThCel7B on oat spelt using scanning electron microscopy, demonstrating the morphological changes of the substrate during the hydrolysis. The acidic behavior of ThCel7B and its considerable thermostability hold a promise of its industrial applications and other biotechnological uses under extremely acidic conditions.

  6. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Science.gov (United States)

    Ryan, Veronica H; Primiani, Christopher T; Rao, Jagadeesh S; Ahn, Kwangmi; Rapoport, Stanley I; Blanchard, Helene

    2014-01-01

    The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  7. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Directory of Open Access Journals (Sweden)

    Veronica H Ryan

    Full Text Available The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades.AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging.The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism.Expression patterns were split into Development (0 to 20 years and Aging (21 to 78 years intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2, cyclooxygenases (COX-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA and PTGS2 (COX-2 genes at 1q25, highly inter-correlated genes were at distant chromosomal loci.Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  8. Eucalyptus ESTs involved in the production of 9-cis epoxycarotenoid dioxygenase, a regulatory enzyme of abscisic acid production

    Directory of Open Access Journals (Sweden)

    Iraê A. Guerrini

    2005-01-01

    Full Text Available Abscisic acid (ABA regulates stress responses in plants, and genomic tools can help us to understand the mechanisms involved in that process. FAPESP, a Brazilian research foundation, in association with four private forestry companies, has established the FORESTs database (https://forests.esalq.usp.br. A search was carried out in the Eucalyptus expressed sequence tag database to find ESTs involved with 9-cis epoxycarotenoid dioxygenase (NCED, the regulatory enzyme for ABA biosynthesis, using the basic local BLAST alignment tool. We found four clusters (EGEZLV2206B11.g, EGJMWD2252H08.g, EGBFRT3107F10.g, and EGEQFB1200H10.g, which represent similar sequences of the gene that produces NCED. Data showed that the EGBFRT3107F10.g cluster was similar to the maize (Zea mays NCED enzyme, while EGEZLV2206B11.g and EGJMWD2252H08.g clusters were similar to the avocado (Persea americana NCED enzyme. All Eucalyptus clusters were expressed in several tissues, especially in flower buds, where ABA has a special participation during the floral development process.

  9. Degradation and contamination of perfluorinated sulfonic acid membrane due to swelling-dehydration cycles

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Morgen, Per; Skou, Eivind Morten

    Formation of sulfonic anhydride S-O-S (from the condensation of sulfonic acids) was known one of the important degradation mechanisms [i] for Nafion membrane under hydrothermal aging condition, which is especially critical for hydrogen fuel cells. Similar mechanism would also have be desirable...... to the membrane degradation in direct methanol fuel cells (DMFCs), where liquid water has direct contact with the electrolyte. An ex-situ experiment was established with swelling-dehydration cycles on the membrane. However, formation of sulfonic anhydride was not detected during the entire treatment; instead...

  10. Regulation of adipose branched chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes. One possibility is that under these conditions there is a reduced cellular utilization and/or lower complete oxidation of BCAAs. White adipose tissue (WAT) has become appreciated as a...

  11. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Directory of Open Access Journals (Sweden)

    Ramin Lotfi

    2015-10-01

    Full Text Available The ameliorative effect of fulvic acid (0, 300, and 600 mg L− 1 on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L. plant under water stress (60, 100, and 140 mm evaporation from class A pan was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA improved the maximum quantum efficiency of PSII (Fv/Fm and performance index (PI of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  12. Short-Term Responses of Soil Respiration and C-Cycle Enzyme Activities to Additions of Biochar and Urea in a Calcareous Soil

    Science.gov (United States)

    Song, Dali; Xi, Xiangyin; Huang, Shaomin; Liang, Guoqing; Sun, Jingwen; Zhou, Wei; Wang, Xiubin

    2016-01-01

    Biochar (BC) addition to soil is a proposed strategy to enhance soil fertility and crop productivity. However, there is limited knowledge regarding responses of soil respiration and C-cycle enzyme activities to BC and nitrogen (N) additions in a calcareous soil. A 56-day incubation experiment was conducted to investigate the combined effects of BC addition rates (0, 0.5, 1.0, 2.5 and 5.0% by mass) and urea (U) application on soil nutrients, soil respiration and C-cycle enzyme activities in a calcareous soil in the North China Plain. Our results showed soil pH values in both U-only and U plus BC treatments significantly decreased within the first 14 days and then stabilized, and CO2emission rate in all U plus BC soils decreased exponentially, while there was no significant difference in the contents of soil total organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN), and C/N ratio in each treatment over time. At each incubation time, soil pH, electrical conductivity (EC), TOC, TN, C/N ratio, DOC and cumulative CO2 emission significantly increased with increasing BC addition rate, while soil potential activities of the four hydrolytic enzymes increased first and then decreased with increasing BC addition rate, with the largest values in the U + 1.0%BC treatment. However, phenol oxidase activity in all U plus BC soils showed a decreasing trend with the increase of BC addition rate. Our results suggest that U plus BC application at a rate of 1% promotes increases in hydrolytic enzymes, does not highly increase C/N and C mineralization, and can improve in soil fertility. PMID:27589265

  13. Short-Term Responses of Soil Respiration and C-Cycle Enzyme Activities to Additions of Biochar and Urea in a Calcareous Soil.

    Directory of Open Access Journals (Sweden)

    Dali Song

    Full Text Available Biochar (BC addition to soil is a proposed strategy to enhance soil fertility and crop productivity. However, there is limited knowledge regarding responses of soil respiration and C-cycle enzyme activities to BC and nitrogen (N additions in a calcareous soil. A 56-day incubation experiment was conducted to investigate the combined effects of BC addition rates (0, 0.5, 1.0, 2.5 and 5.0% by mass and urea (U application on soil nutrients, soil respiration and C-cycle enzyme activities in a calcareous soil in the North China Plain. Our results showed soil pH values in both U-only and U plus BC treatments significantly decreased within the first 14 days and then stabilized, and CO2emission rate in all U plus BC soils decreased exponentially, while there was no significant difference in the contents of soil total organic carbon (TOC, dissolved organic carbon (DOC, total nitrogen (TN, and C/N ratio in each treatment over time. At each incubation time, soil pH, electrical conductivity (EC, TOC, TN, C/N ratio, DOC and cumulative CO2 emission significantly increased with increasing BC addition rate, while soil potential activities of the four hydrolytic enzymes increased first and then decreased with increasing BC addition rate, with the largest values in the U + 1.0%BC treatment. However, phenol oxidase activity in all U plus BC soils showed a decreasing trend with the increase of BC addition rate. Our results suggest that U plus BC application at a rate of 1% promotes increases in hydrolytic enzymes, does not highly increase C/N and C mineralization, and can improve in soil fertility.

  14. Humic acid and enzymes in canola-based broiler diets: Effects on ...

    African Journals Online (AJOL)

    NWUUser

    2017-10-17

    Oct 17, 2017 ... URL: http://www.sasas.co.za ... Introduction. In broiler chickens selection for rapid growth over a short production cycle has inadvertently resulted in ..... Chlorine. 0.3. 0.299997. 0.299991. 0.3. Potassium. 0.732957. 0.655133.

  15. Biosynthesis of acid phosphatase of baker's yeast . Characterization of a protoplast-bound fraction containing precursors of the exo-enzyme

    NARCIS (Netherlands)

    Boer, Pieter; Rijn, Herman J.M. van; Reinking, A.; Steyn-Parvé, Elizabeth P.

    1975-01-01

    1. 1.|Yest protoplasts, secreting acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum) EC 3.1.3.2) contain a small amount of firmly bound enzyme, even after lysis (Van Rijn, H.J.M.; Boer, P. and Steyn-Parvé, E.P. (1972) Biochim. Biophys. Acta 268, 431–441). The major part

  16. Contribution of the microbial and meat endogenous enzymes to the free amino acid and amine contents of dry fermented sausages.

    Science.gov (United States)

    Hierro, E; de La Hoz, L; Ordóñez, J A

    1999-03-01

    The role of the starter culture and meat endogenous enzymes on the free amino acid and amine contents of dry fermented sausages was studied. Five batches of sausages were prepared. The control batch was manufactured with aseptic ingredients without microbial inoculation. The other four experimental batches were manufactured with aseptic ingredients inoculated with Lactobacillus plantarum 4045 or Micrococcus-12 or L. plantarum 4045 and Micrococcus-12 or L. plantarum 4045 and Staphylococcus sp. Their effects on pH, a(w), myofibrillar proteins, and free amino acid and amine contents were studied. Sausages inoculated only with L. plantarum 4045 or with this starter combined with a Micrococcaceae had the lowest pH as a result of carbohydrate fermentation. In all batches similar patterns were observed for myofibrillar proteins and free amino acids which could indicate that meat endogenous proteases play an important role in proteolytic phenomena. No changes were observed in the amine fraction, indicating that the strains used as starter cultures did not show amino acid decarboxylase activity.

  17. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.

    Science.gov (United States)

    Rueda, Elda M; Johnson, Jerry E; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J; Sigel, Irena; Chaney, Shawnta Y; Fox, Donald A

    2016-01-01

    The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor inner segments. The

  18. Cofactor Balance by Nicotinamide Nucleotide Transhydrogenase (NNT) Coordinates Reductive Carboxylation and Glucose Catabolism in the Tricarboxylic Acid (TCA) Cycle*♦

    Science.gov (United States)

    Gameiro, Paulo A.; Laviolette, Laura A.; Kelleher, Joanne K.; Iliopoulos, Othon; Stephanopoulos, Gregory

    2013-01-01

    Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)+ cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT inhibits the contribution of glutamine to the TCA cycle and activates glucose catabolism in SkMel5 melanoma cells. The increase in glucose oxidation partially occurred through pyruvate carboxylase and rendered NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT inhibits reductive carboxylation in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate glutamine oxidation and reductive carboxylation, whereas it inhibits glucose catabolism in the TCA cycle. These observations are supported by an impairment of the NAD(P)H/NAD(P)+ ratios. Our findings underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other mechanisms that coordinate substrate preference to maintain a functional TCA cycle. PMID:23504317

  19. Formation and action of lignin-modifying enzymes in cultures of Phlebia radiata supplemented with veratric acid

    International Nuclear Information System (INIS)

    Lundell, T.; Hatakka, A.; Leonowicz, A.; Rogalski, J.

    1990-01-01

    Transformation of veratric (3,4-dimethoxybenzoic) acid by the white rot fungus Phlebia radiata was studied to elucidate the role of ligninolytic, reductive, and demeth(ox)ylating enzymes. Under both air and a 100% O 2 atmosphere, with nitrogen limitation and glucose as a carbon source, reducing activity resulted in the accumulation of veratryl alcohol in the medium. When the fungus was cultivated under air, veratric acid caused a rapid increase in laccase (benzenediol:oxygen oxidoreductase; EC 1.10.3.2) production, which indicated that veratic acid was first demethylated, thus providing phenolic compounds for laccase. After a rapid decline in laccase activity, elevated lignin peroxidase (ligninase) activity and manganese-dependent peroxidase production were detected simultaneously with extracellular release of methanol. This indicated apparent demethoxylation. When the fungus was cultivated under a continuous 100% O 2 flow and in the presence of veratric acid, laccase production was markedly repressed, whereas production of lignin peroxidase and degradation of veratryl compounds were clearly enhanced. In all cultures, the increases in lignin peroxidase titers were directly related to veratryl alcohol accumulation. Evolution of 14 CO 2 from 3-O 14 CH 3 -and 4-O 14 CH 3 -labeled veratric acids showed that the position of the methoxyl substituent in the aromatic ring only slightly affected demeth(ox)ylation activity. In both cases, more than 60% of the total 14 C was converted to 14 CO 2 under air in 4 weeks, and oxygen flux increased the degradation rate of the 14 C-labeled veratric acids just as it did with unlabeled cultures

  20. Presence of bile acids in human follicular fluid and their relation with embryo development in modified natural cycle IVF

    NARCIS (Netherlands)

    Nagy, R. A.; van Montfoort, A. P. A.; Dikkers, A.; van Echten-Arends, J.; Homminga, I.; Land, J. A.; Hoek, A.; Tietge, U. J. F.

    STUDY QUESTION: Are bile acids (BA) and their respective subspecies present in human follicular fluid (FF) and do they relate to embryo quality in modified natural cycle IVF (MNC-IVF)? SUMMARY ANSWER: BAconcentrations are 2-fold higher in follicular fluid than in serum and ursodeoxycholic acid

  1. A Critical Review on the Effect of Docosahexaenoic Acid (DHA) on Cancer Cell Cycle Progression.

    Science.gov (United States)

    Newell, Marnie; Baker, Kristi; Postovit, Lynne M; Field, Catherine J

    2017-08-17

    Globally, there were 14.1 million new cancer diagnoses and 8.2 million cancer deaths in 2012. For many cancers, conventional therapies are limited in their successes and an improved understanding of disease progression is needed in conjunction with exploration of alternative therapies. The long chain polyunsaturated fatty acid, docosahexaenoic acid (DHA), has been shown to enhance many cellular responses that reduce cancer cell viability and decrease proliferation both in vitro and in vivo. A small number of studies suggest that DHA improves chemotherapy outcomes in cancer patients. It is readily incorporated into cancer cell membranes and, as a result there has been considerable research regarding cell membrane initiated events. For example, DHA has been shown to mediate the induction of apoptosis/reduction of proliferation in vitro and in vivo. However, there is limited research into the effect of DHA on cell cycle regulation in cancer cells and the mechanism(s) by which DHA acts are not fully understood. The purpose of the current review is to provide a critical examination of the literature investigating the ability of DHA to stall progression during different cell cycle phases in cancer cells, as well as the consequences that these changes may have on tumour growth, independently and in conjunction with chemotherapy.

  2. Structure, function, and regulation of enzymes involved in amino acid metabolism of bacteria and archaea.

    Science.gov (United States)

    Tomita, Takeo

    2017-11-01

    Amino acids are essential components in all organisms because they are building blocks of proteins. They are also produced industrially and used for various purposes. For example, L-glutamate is used as the component of "umami" taste and lysine has been used as livestock feed. Recently, many kinds of amino acids have attracted attention as biological regulators and are used for a healthy life. Thus, to clarify the mechanism of how amino acids are biosynthesized and how they work as biological regulators will lead to further effective utilization of them. Here, I review the leucine-induced-allosteric activation of glutamate dehydrogenase (GDH) from Thermus thermophilus and the relationship with the allosteric regulation of GDH from mammals. Next, I describe structural insights into the efficient production of L-glutamate by GDH from an excellent L-glutamate producer, Corynebacterium glutamicum. Finally, I review the structural biology of lysine biosynthesis of thermophilic bacterium and archaea.

  3. Interrelationship of dietary lipids and ascorbic acid with hepatic enzymes of cholesterol metabolic pathway.

    Science.gov (United States)

    Sen, S; Mukherjee, S

    1997-01-01

    Effect of unsaturated and saturated fats on cholesterol metabolism was studied in ascorbate sufficient and deficient guineapigs. Experimental animals were made chronic ascorbic acid deficient by allowing oral intake of 0.5 mg ascorbic acid/day/animal. Elevation in serum and liver cholesterol and triglyceride along with depression in cholesterol oxidation and 7 alpha-hydroxylation in liver was observed in unsaturated fat fed guineapigs with ascorbate deficiency. Liver microsomal cytochrome P-450 level was found to be low in ascorbate deficient animals. Polyunsaturated fat intake could not lower the serum cholesterol level in ascorbate deficiency. Today polyunsaturated fat in the diet is encouraged all over the world for its hypocholesterolemic effect. This study indicates that polyunsaturated fat intake with ascorbic acid deficiency may produce hypercholesterolemia.

  4. Isotopomer profiling of Leishmania mexicana promastigotes reveals important roles for succinate fermentation and aspartate uptake in tricarboxylic acid cycle (TCA) anaplerosis, glutamate synthesis, and growth.

    Science.gov (United States)

    Saunders, Eleanor C; Ng, William W; Chambers, Jennifer M; Ng, Milica; Naderer, Thomas; Krömer, Jens O; Likic, Vladimir A; McConville, Malcolm J

    2011-08-05

    Leishmania parasites proliferate within nutritionally complex niches in their sandfly vector and mammalian hosts. However, the extent to which these parasites utilize different carbon sources remains poorly defined. In this study, we have followed the incorporation of various (13)C-labeled carbon sources into the intracellular and secreted metabolites of Leishmania mexicana promastigotes using gas chromatography-mass spectrometry and (13)C NMR. [U-(13)C]Glucose was rapidly incorporated into intermediates in glycolysis, the pentose phosphate pathway, and the cytoplasmic carbohydrate reserve material, mannogen. Enzymes involved in the upper glycolytic pathway are sequestered within glycosomes, and the ATP and NAD(+) consumed by these reactions were primarily regenerated by the fermentation of phosphoenolpyruvate to succinate (glycosomal succinate fermentation). The initiating enzyme in this pathway, phosphoenolpyruvate carboxykinase, was exclusively localized to the glycosome. Although some of the glycosomal succinate was secreted, most of the C4 dicarboxylic acids generated during succinate fermentation were further catabolized in the TCA cycle. A high rate of TCA cycle anaplerosis was further suggested by measurement of [U-(13)C]aspartate and [U-(13)C]alanine uptake and catabolism. TCA cycle anaplerosis is apparently needed to sustain glutamate production under standard culture conditions. Specifically, inhibition of mitochondrial aconitase with sodium fluoroacetate resulted in the rapid depletion of intracellular glutamate pools and growth arrest. Addition of high concentrations of exogenous glutamate alleviated this growth arrest. These findings suggest that glycosomal and mitochondrial metabolism in Leishmania promastigotes is tightly coupled and that, in contrast to the situation in some other trypanosomatid parasites, the TCA cycle has crucial anabolic functions.

  5. Differential effects of valproic acid and enzyme-inducing anticonvulsants on nimodipine pharmacokinetics in epileptic patients

    Science.gov (United States)

    Tartara, A.; Galimberti, C.A.; Manni, R.; Parietti, L.; Zucca, C.; Baasch, H.; Caresia, L.; Mück, W.; Barzaghi, N.; Gatti, G.; Perucca, E.

    1991-01-01

    1 The single dose pharmacokinetics of orally administered nimodipine (60 mg) were investigated in normal subjects and in two groups of epileptic patients receiving chronic treatment with hepatic microsomal enzyme-inducing anticonvulsants (carbamazepine, phenobarbitone or phenytoin) and sodium valproate, respectively. 2 Compared with the values found in the control group, mean areas under the plasma nimodipine concentration curve were lowered by about seven-fold (P anticonvulsants and increased by about 50% (P < 0.05) in patients taking sodium valproate. 3 Nimodipine half-lives were shorter in enzyme-induced patients than in controls (3.9 ± 2.0 h vs 9.1 ± 3.4 h, means ± s.d., P < 0.01), but this difference could be artifactual since in the patients drug concentrations declined rapidly below the limit of assay, thus preventing identification of a possible slower terminal phase. In valproate-treated patients, half-lives (8.2 ± 1.8 h) were similar to those found in controls. PMID:1777370

  6. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Mikael R.; Salazar, Margarita; Schaap, Peter; van de Vondervoort, Peter; Culley, David E.; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy; Braus, Gerhard; Braus-Stromeyer, Susanna A.; Corrochano, Luis; Dai, Ziyu; van Dijck, Piet; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert; Pel, Herman J.; Poulsen, Lars; Samson, Rob; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; ATkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noel; Roubos, Johannes A.; Nielsen, Jens B.; Baker, Scott E.

    2011-06-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases and protein transporters.

  7. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    Science.gov (United States)

    Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; van de Vondervoort, Peter J.I.; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; van Dijck, Piet W.M.; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert J.J.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noël N.M.E.; Roubos, Johannes A.; Nielsen, Jens; Baker, Scott E.

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi. PMID:21543515

  8. Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders.

    Science.gov (United States)

    Burrage, Lindsay C; Jain, Mahim; Gandolfo, Laura; Lee, Brendan H; Nagamani, Sandesh C S

    2014-01-01

    Sodium phenylbutyrate (NaPBA) is a commonly used medication for the treatment of patients with urea cycle disorders (UCDs). Previous reports involving small numbers of patients with UCDs have shown that NaPBA treatment can result in lower plasma levels of the branched-chain amino acids (BCAA) but this has not been studied systematically. From a large cohort of patients (n=553) with UCDs enrolled in the Longitudinal Study of Urea Cycle Disorders, a collaborative multicenter study of the Urea Cycle Disorders Consortium, we evaluated whether treatment with NaPBA leads to a decrease in plasma BCAA levels. Our analysis shows that NaPBA use independently affects the plasma BCAA levels even after accounting for multiple confounding covariates. Moreover, NaPBA use increases the risk for BCAA deficiency. This effect of NaPBA seems specific to plasma BCAA levels, as levels of other essential amino acids are not altered by its use. Our study, in an unselected population of UCD subjects, is the largest to analyze the effects of NaPBA on BCAA metabolism and potentially has significant clinical implications. Our results indicate that plasma BCAA levels should to be monitored in patients treated with NaPBA since patients taking the medication are at increased risk for BCAA deficiency. On a broader scale, these findings could open avenues to explore NaPBA as a therapy in maple syrup urine disease and other common complex disorders with dysregulation of BCAA metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. High activity of fatty acid oxidation enzymes in human placenta: implications for fetal-maternal disease

    NARCIS (Netherlands)

    Oey, N. A.; den Boer, M. E. J.; Ruiter, J. P. N.; Wanders, R. J. A.; Duran, M.; Waterham, H. R.; Boer, K.; van der Post, J. A. M.; Wijburg, F. A.

    2003-01-01

    As the human fetus and placenta are considered to be primarily dependent on glucose oxidation for energy metabolism, the cause of the remarkable association between severe maternal pregnancy complications and the carriage of a fetus with an inborn error of mitochondrial long-chain fatty acid

  10. Effects of hyaluronic acid- chitosan-gelatin complex on the apoptosis and cell cycle of L929 cells

    Institute of Scientific and Technical Information of China (English)

    MAO Jinshu; WANG Xianghui; CUI Yuanlu; YAO Kangde

    2003-01-01

    With the development in the field of tissue engineering, the interaction between biomaterials and cells has been deeply studied. Viewing the cells seeded on the surface of materials as an organic whole, cell cycle and apoptosis are analyzed to deepen the study of cell compatibility on biomaterials, while cellproliferation and differentiation are studied at the same time. In this paper, hyaluronic acid is incorporated into the chitosan-gelatin system. Propidium iodide (PI) was used in cell cycle analysis and the double-staining of cells with annexin-V and PI was applied in cell apoptosis analysis. The results show that incorporated hyaluronic acid shortens the adaptation period of cells on the material surface, and then cells enter the normal cell cycle quickly. In addition, added hyaluronic acid inhibits cell apoptosis triggered by the membranes. Therefore,hyaluronic acid improves the cell compatibility of chitosan-gelatin system and benefits the design of biomimetic materials.

  11. Effect of active acidity on the stability of amylolytic enzymes in fermentation of corn mash

    Energy Technology Data Exchange (ETDEWEB)

    Zherebtsov, N A; Mal' tsev, P M

    1957-01-01

    The effect of pH between 6.5 and 3.5 on the activity of ..cap alpha..- and ..beta..-amylases, dextrinase, and on the yield of alcohol in the fermentation of corn mash were investigated. The minimum of unfermented maltose and maximum activity of amylolytic enzymes were found from fermentations between pH 5.5 and 4.9. Under these conditions ..beta..-amylase and dextrinase were unaffected, while ..cap alpha..-amylase activity was reduced to 59.1% initial activity. Considerable inactivation of ..beta..-amylase and dextrinase set in at pH 4.0 and ..cap alpha..-amylase at pH 4.5. The highest yield of alcohol was produced from mash with initial pH 6.0 obtained by addition of sodium hydroxide.

  12. Acid Glycohydrolases in Rat Spermatocytes, Spermatids and Spermatozoa: Enzyme Activities, Biosynthesis and Immunolocalization

    Directory of Open Access Journals (Sweden)

    Abou-Haila Aida

    2001-01-01

    Full Text Available Mammalian sperm acrosome contains several glycohydrolases thought to aid in the dispersion and digestion of vestments surrounding the egg. In this study, we have used multiple approaches to examine the origin of acrosome-associated glycohdyrdolases. Mixed spermatogenic cells, prepared from rat testis, were separated by unit gravity sedimentation. The purified germ cells (spermatocytes [SP], round spermatids [RS], and elongated/condensed spermatids [E/CS] contained several glycohydrolase activities. Metabolic labeling in the cell culture, immunoprecipitation, and autoradiographic approaches revealed that &bgr;-D-galactosidase was synthesized in SP and RS in 88/90 kDa forms which undergo processing in a cell-specific manner. Immunohistochemical approaches demonstrated that the enzyme was localized in Golgi membranes/vesicles, and lysosome-like structures in SP and RS, and forming/formed acrosome of E/CS.

  13. Amylolytic Enzymes Acquired from L-Lactic Acid Producing Enterococcus faecium K-1 and Improvement of Direct Lactic Acid Production from Cassava Starch.

    Science.gov (United States)

    Unban, Kridsada; Kanpiengjai, Apinun; Takata, Goro; Uechi, Keiko; Lee, Wen-Chien; Khanongnuch, Chartchai

    2017-09-01

    An amylolytic lactic acid bacterium isolate K-1 was isolated from the wastewater of a cassava starch manufacturing factory and identified as Entercoccus faecium based on 16S rRNA gene sequence analysis. An extracellular α-amylase was purified to homogeneity and the molecular weight of the purified enzyme was approximately 112 kDa with optimal pH value and temperature measured of 7.0 and 40 °C, respectively. It was stable at a pH range of 6.0-7.0, but was markedly sensitive to high temperatures and low pH conditions, even at a pH value of 5. Ba 2+ , Al 3+ , and Co 2+ activated enzyme activity. This bacterium was capable of producing 99.2% high optically pure L-lactic acid of 4.3 and 8.2 g/L under uncontrolled and controlled pH at 6.5 conditions, respectively, in the MRS broth containing 10 g/L cassava starch as the sole carbon source when cultivated at 37 °C for 48 h. A control pH condition of 6.5 improved and stabilized the yield of L-lactic acid production directly from starch even at a high concentration of starch at up to 150 g/L. This paper is the first report describing the properties of purified α-amylase from E. faecium. Additionally, pullulanase and cyclodextrinase activities were also firstly recorded from E. faecium K-1.

  14. Annotating Enzymes of Uncertain Function: The Deacylation of d-Amino Acids by Members of the Amidohydrolase Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Fedorov, A; Xu, C; Brown, S; Fedorov, E; Babbitt, P; Almo, S; Raushel, F

    2009-01-01

    The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxidans, and Sco4986 from Streptomyces coelicolor are currently annotated as d-aminoacylases or N-acetyl-d-glutamate deacetylases. These three enzymes are 22-34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-d-Xaa, N-acetyl-d-Xaa, N-succinyl-d-Xaa, and l-Xaa-d-Xaa were used to establish the substrate profiles for these enzymes. It was demonstrated that Bb3285 is restricted to the hydrolysis of N-acyl-substituted derivatives of d-glutamate. The best substrates for this enzyme are N-formyl-d-glutamate (k{sub cat}/K{sub m} = 5.8 x 10{sup 6} M{sup -1} s{sup -1}), N-acetyl-d-glutamate (k{sub cat}/K{sub m} = 5.2 x 10{sup 6} M{sup -1} s{sup -1}), and l-methionine-d-glutamate (k{sub cat}/K{sub m} = 3.4 x 10{sup 5} M{sup -1} s{sup -1}). Gox1177 and Sco4986 preferentially hydrolyze N-acyl-substituted derivatives of hydrophobic d-amino acids. The best substrates for Gox1177 are N-acetyl-d-leucine (k{sub cat}/K{sub m} = 3.2 x 104 M{sup -1} s-1), N-acetyl-d-tryptophan (kcat/Km = 4.1 x 104 M-1 s-1), and l-tyrosine-d-leucine (kcat/Km = 1.5 x 104 M-1 s-1). A fourth protein, Bb2785 from B. bronchiseptica, did not have d-aminoacylase activity. The best substrates for Sco4986 are N-acetyl-d-phenylalanine and N-acetyl-d-tryptophan. The three-dimensional structures of Bb3285 in the presence of the product acetate or a potent mimic of the tetrahedral intermediate were determined by X-ray diffraction methods. The side chain of the d-glutamate moiety of the inhibitor is ion-paired to Arg-295, while the {alpha}-carboxylate is ion-paired with Lys-250 and Arg-376. These results have revealed the chemical and structural determinants for substrate specificity in this protein. Bioinformatic analyses of an additional {approx}250

  15. Streptomyces clavuligerus shows a strong association between TCA cycle intermediate accumulation and clavulanic acid biosynthesis.

    Science.gov (United States)

    Ramirez-Malule, Howard; Junne, Stefan; Nicolás Cruz-Bournazou, Mariano; Neubauer, Peter; Ríos-Estepa, Rigoberto

    2018-05-01

    Clavulanic acid (CA) is produced by Streptomyces clavuligerus (S. clavuligerus) as a secondary metabolite. Knowledge about the carbon flux distribution along the various routes that supply CA precursors would certainly provide insights about metabolic performance. In order to evaluate metabolic patterns and the possible accumulation of tricarboxylic acid (TCA) cycle intermediates during CA biosynthesis, batch and subsequent continuous cultures with steadily declining feed rates were performed with glycerol as the main substrate. The data were used to in silico explore the metabolic capabilities and the accumulation of metabolic intermediates in S. clavuligerus. While clavulanic acid accumulated at glycerol excess, it steadily decreased at declining dilution rates; CA synthesis stopped when glycerol became the limiting substrate. A strong association of succinate, oxaloacetate, malate, and acetate accumulation with CA production in S. clavuligerus was observed, and flux balance analysis (FBA) was used to describe the carbon flux distribution in the network. This combined experimental and numerical approach also identified bottlenecks during the synthesis of CA in a batch and subsequent continuous cultivation and demonstrated the importance of this type of methodologies for a more advanced understanding of metabolism; this potentially derives valuable insights for future successful metabolic engineering studies in S. clavuligerus.

  16. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles.

    Directory of Open Access Journals (Sweden)

    Carla R V Coelho

    Full Text Available A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1 modifying diets by changing the quantities and proportions of foods and 2 increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA and Docosahexaenoic Acid (DHA in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets.

  17. The effect of chaya (Cnidoscolus aconitifolius) leaf meal and of exogenous enzymes on amino acid digestibility in broilers.

    Science.gov (United States)

    Sarmiento-Franco, L; McNab, J M; Pearson, A; Belmar-Casso, R

    2003-07-01

    1. The apparent ileal nitrogen (N) and amino acid digestibilities in chaya leaf meal (CLM) (Cnidoscolus aconitifolius) with added enzymes, and the same variables in diets containing different amounts of CLM were studied in chickens. 2. In the first experiment pectinase, beta-glucanase, and pectinase + beta-glucanase were added to CLM. In the second experiment, there were three diets based on maize and soybean: 0, 150 and 250 g/kg CLM. 3. Pectinase significantly increased both lysine and overall amino acid digestibilities in CLM. 4. In experiment 2, the amino acid digestibility in birds fed on CLM250 was lower than that from birds fed on either control or CLM150. Only the digestibilities of alanine, arginine and proline were lower in birds fed on CLM150 than in those fed on the control diet. Nitrogen digestibility was lower in birds fed on the CLM250 diet than on either control or CLM150 diets. These findings were attributed to the increasing concentration of fibre with increasing dietary CLM.

  18. In vitro dissolution of calcium oxalate stones with ethylenediaminetetraacetic acid and snake venom thrombin-like enzyme.

    Science.gov (United States)

    Zhou, Xiang-Jun; Zhang, Jie; Zhang, Ci; Xu, Chang-Geng

    2014-01-01

    The aim of this study was to determine the feasibility of using snake venom thrombin-like enzyme (SVTLE) and/or ethylenediaminetetraacetic acid (EDTA) to dissolve calcium oxalate stones in vitro. Seven calcium oxalate stones were incubated with various chemolytic agents [EDTA, Tris-HCl/EDTA (TE) buffer or SVTLE diluted in TE buffer]. The pH, calcium concentration, stone weight and stone surface integrity were recorded, as well as related pathological changes to bladder mucosae. Compared to all other solutions, those containing SVTLE and buffered EDTA had higher concentrations of mobilized calcium and caused significantly more stone weight loss, stone fragility and gaps in the calcium crystals. Also, there were no adverse pathological effects on rabbit bladder mucosae from any of the solutions. The data indicate that buffered EDTA and SVTLE can be used to dissolve calcium oxalate stones and, at the concentrations used here, do not damage tissue. 2013 S. Karger AG, Basel.

  19. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2.

    Science.gov (United States)

    Yadav, Rajesh K; Baeg, Jin-Ook; Oh, Gyu Hwan; Park, No-Joong; Kong, Ki-jeong; Kim, Jinheung; Hwang, Dong Won; Biswas, Soumya K

    2012-07-18

    The photocatalyst-enzyme coupled system for artificial photosynthesis process is one of the most promising methods of solar energy conversion for the synthesis of organic chemicals or fuel. Here we report the synthesis of a novel graphene-based visible light active photocatalyst which covalently bonded the chromophore, such as multianthraquinone substituted porphyrin with the chemically converted graphene as a photocatalyst of the artificial photosynthesis system for an efficient photosynthetic production of formic acid from CO(2). The results not only show a benchmark example of the graphene-based material used as a photocatalyst in general artificial photosynthesis but also the benchmark example of the selective production system of solar chemicals/solar fuel directly from CO(2).

  20. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids.

    Science.gov (United States)

    Iyer, Lakshminarayan M; Tahiliani, Mamta; Rao, Anjana; Aravind, L

    2009-06-01

    Modified bases in nucleic acids present a layer of information that directs biological function over and beyond the coding capacity of the conventional bases. While a large number of modified bases have been identified, many of the enzymes generating them still remain to be discovered. Recently, members of the 2-oxoglutarate- and iron(II)-dependent dioxygenase super-family, which modify diverse substrates from small molecules to biopolymers, were predicted and subsequently confirmed to catalyze oxidative modification of bases in nucleic acids. Of these, two distinct families, namely the AlkB and the kinetoplastid base J binding proteins (JBP) catalyze in situ hydroxylation of bases in nucleic acids. Using sensitive computational analysis of sequences, structures and contextual information from genomic structure and protein domain architectures, we report five distinct families of 2-oxoglutarate- and iron(II)-dependent dioxygenase that we predict to be involved in nucleic acid modifications. Among the DNA-modifying families, we show that the dioxygenase domains of the kinetoplastid base J-binding proteins belong to a larger family that includes the Tet proteins, prototyped by the human oncogene Tet1, and proteins from basidiomycete fungi, chlorophyte algae, heterolobosean amoeboflagellates and bacteriophages. We present evidence that some of these proteins are likely to be involved in oxidative modification of the 5-methyl group of cytosine leading to the formation of 5-hydroxymethylcytosine. The Tet/JBP homologs from basidiomycete fungi such as Laccaria and Coprinopsis show large lineage-specific expansions and a tight linkage with genes encoding a novel and distinct family of predicted transposases, and a member of the Maelstrom-like HMG family. We propose that these fungal members are part of a mobile transposon. To the best of our knowledge, this is the first report of a eukaryotic transposable element that encodes its own DNA-modification enzyme with a

  1. Detection scheme for bioassays based on 2,6-pyridinedicarboxylic acid derivatives and enzyme-amplified lanthanide luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, Tanja [Department of Chemical Analysis, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Karst, Uwe [Department of Chemical Analysis, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)]. E-mail: u.karst@utwente.nl

    2004-11-15

    2,6-Pyridinedicarboxylic acid (PDC) and its derivatives are introduced as a new sensitizer system for enzyme-amplified lanthanide luminescence (EALL), a detection scheme for bioassays, which combines enzymatic amplification with time-resolved luminescence measurements of lanthanide chelates. Various PDC esters have been synthesized as esterase substrates that are cleaved to PDC in the presence of the enzyme. PDC forms luminescent complexes with Tb(III) or Eu(III), and the evaluation of the reaction is used for the selective and sensitive detection of esterases. For an esterase from hog liver a limit of detection of 10{sup -3} u/mL (equivalent to 10{sup -9} mol/L) and a limit of quantification of 3 x 10{sup -3} u/mL (equivalent to 3 x 10{sup -9} mol/L) could be achieved. As a second model reaction, xanthine oxidase (XOD) catalyzes the oxidation of 2,6-pyridinedicarboxaldehyde to PDC. Here, the limit of detection was 3 x 10{sup -3} u/mL and the limit of quantification 10{sup -2} u/mL for XOD from microorganisms. Major advantage of the tridentate PDC ligand is the possibility to perform all steps of the assay within or close to the physiological pH range, while the established EALL schemes based on bidentate salicylates or bisphenols have to be carried out at strongly alkaline pH to ensure sufficient complexation with the lanthanides.

  2. Oxaloacetate-to-malate conversion by mineral photoelectrochemistry: implications for the viability of the reductive tricarboxylic acid cycle in prebiotic chemistry

    Science.gov (United States)

    Guzman, Marcelo I.; Martin, Scot T.

    2008-10-01

    The carboxylic acids produced by the reductive tricarboxylic acid (rTCA) cycle are possibly a biosynthetic core of initial life, although several steps such as the reductive kinetics of oxaloacetate (OAA) to malate (MA) are problematic by conventional chemical routes. In this context, we studied the kinetics of this reaction as promoted by ZnS mineral photoelectrochemistry. The quantum efficiency φMA of MA production from the photoelectrochemical reduction of OAA followed φMA=0.13 [OAA] (2.1×10-3+[OAA])-1 and was independent of temperature (5 to 50°C). To evaluate the importance of this forward rate under a prebiotic scenario, we also studied the temperature-dependent rate of the backward thermal decarboxylation of OAA to pyruvate (PA), which followed an Arrhenius behavior as log (k-2)=11.74 4956/T, where k-2 is in units of s-1. These measured rates were employed in conjunction with the indirectly estimated carboxylation rate of PA to OAA to assess the possible importance of mineral photoelectrochemistry in the conversion of OAA to MA under several scenarios of prebiotic conditions on early Earth. As an example, our analysis shows that there is 90% efficiency with a forward velocity of 3 yr/cycle for the OAA→MA step of the rTCA cycle at 280 K. Efficiency and velocity both decrease for increasing temperature. These results suggest high viability for mineral photoelectrochemistry as an enzyme-free engine to drive the rTCA cycle through the early aeons of early Earth, at least for the investigated OAA→MA step.

  3. Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model

    Directory of Open Access Journals (Sweden)

    Das Undurti N

    2010-10-01

    Full Text Available Abstract Background Nutritional factors play a major role in cancer initiation and development. Dietary polyunsaturated fatty acids (PUFAs have the ability to induce modifications in the activity of lipoxygenase (LOX and cyclooxygenase (COX enzymes that affect tumour growth. We studied the effect of two diets enriched in 6% Walnut and Peanut oils that are rich in ω-3 and ω9 PUFAs respectively on a murine mammary gland adenocarcinoma as compared with the control (C that received commercial diet. Results Peanut oil enriched diet induced an increase in membrane arachidonic acid (AA content and the cyclooxygenase enzyme derived 12-HHT (p Conclusions The results of the present study showed that Peanut oil-enriched diet protects against mammary cancer development by modulating tumour membrane fatty acids composition and LOX and COX enzyme activities.

  4. Assessment of natural sepiolite on cadmium stabilization, microbial communities, and enzyme activities in acidic soil.

    Science.gov (United States)

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Wang, Lin; Liang, Xuefeng; Lin, Dasong; Hu, Fazhi

    2013-05-01

    A pot trial was conducted to assess the efficiency of sepiolite-induced cadmium (Cd) immobilization in ultisoils. Under Cd concentrations of 1.25, 2.5, and 5 mg kg(-1), the available Cd in the soil after the application of 1-10 % sepiolite decreased by a maximum of 44.4, 23.0, and 17.0 %, respectively, compared with no sepiolite treatments. The increase in the values of soil enzyme activities and microbial number proved that a certain metabolic recovery occurred after sepiolite treatment. The dry biomass of spinach (Spinacia oleracea) increased with increasing sepiolite concentration in the soil. However, the concentration (dry weight) of Cd in the spinach shoots decreased with the increase in sepiolite dose, with maximum reduction of 92.2, 90.0, and 84.9 %, respectively, compared with that of unamended soils. Under a Cd level of 1.25 mg kg(-1), the Cd concentration in the edible parts of spinach at 1 % sepiolite amendment was lower than 0.2 mg kg(-1) fresh weight, the maximum permissible concentration (MPC) of Cd in vegetable. Even at higher Cd concentrations (2.5 and 5 mg kg(-1)), safe spinach was produced when the sepiolite treatment was up to 5 %. The results showed that sepiolite-assisted remediation could potentially succeed on a field scale by decreasing Cd entry into the food chain.

  5. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    Science.gov (United States)

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Human triose-phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme.

    OpenAIRE

    Daar, I O; Artymiuk, P J; Phillips, D C; Maquat, L E

    1986-01-01

    Triose-phosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1) deficiency is a recessive disorder that results in hemolytic anemia and neuromuscular dysfunction. To determine the molecular basis of this disorder, a TPI allele from two unrelated patients homozygous for TPI deficiency was compared with an allele from a normal individual. Each disease-associated sequence harbors a G X C----C X G transversion in the codon for amino acid-104 and specifies a structurally...

  7. O-Alkyl Hydroxamates as Metaphors of Enzyme-Bound Enolate Intermediates in Hydroxy Acid Dehydrogenases. Inhibitors of Isopropylmalate Dehydrogenase, Isocitrate Dehydrogenase, and Tartrate Dehydrogenase(1).

    Science.gov (United States)

    Pirrung, Michael C.; Han, Hyunsoo; Chen, Jrlung

    1996-07-12

    The inhibition of Thermus thermophilus isopropylmalate dehydrogenase by O-methyl oxalohydroxamate was studied for comparison to earlier results of Schloss with the Salmonella enzyme. It is a fairly potent (1.2 &mgr;M), slow-binding, uncompetitive inhibitor against isopropylmalate and is far superior to an oxamide (25 mM K(i) competitive) that is isosteric with the ketoisocaproate product of the enzyme. This improvement in inhibition was attributed to its increased NH acidity, which presumably is due to the inductive effect of the hydroxylamine oxygen. This principle was extended to the structurally homologous enzyme isocitrate dehydrogenase from E. coli, for which the compound O-(carboxymethyl) oxalohydroxamate is a 30 nM inhibitor, uncompetitive against isocitrate. The pH dependence of its inhibition supports the idea that it is bound to the enzyme in the anionic form. Another recently discovered homologous enzyme, tartrate dehydrogenase from Pseudomonas putida, was studied with oxalylhydroxamate. It has a relatively low affinity for the enzyme, though it is superior to tartrate. On the basis of these leads, squaric hydroxamates with increased acidity compared to squaric amides directed toward two of these enzymes were prepared, and they also show increased inhibitory potency, though not approaching the nanomolar levels of the oxalylhydroxamates.

  8. Rosmarinic acid and antioxidant enzyme activities in Lavandula vera MM cell suspension culture: a comparative study.

    Science.gov (United States)

    Georgiev, Milen; Abrashev, Radoslav; Krumova, Ekaterina; Demirevska, Klimentina; Ilieva, Mladenka; Angelova, Maria

    2009-11-01

    The growth and intracellular protein content of lavender (Lavandula vera MM) cell suspension culture was followed along with some antioxidant defense system members-non-enzymatic (rosmarinic acid) and enzymatic [superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6)]. It was found that the media content and the cultivation mode strongly influenced the production of plant defense compounds as well as the ratio between non-enzymatic and enzymatic ones. The bioreactor culture contains about two times more rosmarinic acid, superoxide dismutase, and catalase compared to the shake-flask cultivation. These findings are discussed with respect to the relative stress levels and plant antioxidant orchestra system. It was concluded that investigated defense system components (enzymatic and non-enzymatic) were closely associated in a complex balance. The three isoenzyme forms of SOD (Cu/ZnSOD, FeSOD, and MnSOD) in the cells of Lavandula vera were revealed by polyacrylamide gel electrophoresis analysis, and the FeSOD isoform exhibited highest activity.

  9. High activity and low temperature optima of extracellular enzymes in Arctic sediments: implications for carbon cycling by heterotrophic microbial communities

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB

    2003-01-01

    The rate of the initial step in microbial remineralization of organic carbon, extracellular enzymatic hydrolysis, was investigated as a function of temperature in permanently cold sediments from 2 fjords on the west coast of Svalbard (Arctic Ocean). We used 4 structurally distinct polysaccharides...... hydrolysis in order to determine the relative temperature responses of the initial and terminal steps in microbial remineralization of carbon. The temperature optimum of sulfate reduction, 21degreesC, was considerably lower than previous reports of sulfate reduction in marine sediments, but is consistent...... with recent studies of psychrophilic sulfate reducers isolated from Svalbard sediments. A calculation of potential carbon flow into the microbial food chain demonstrated that the activity of just one type of polysaccharide-hydrolyzing enzyme could in theory supply 21 to 100% of the carbon consumed via sulfate...

  10. Extending food deprivation reverses the short-term lipolytic response to fasting: role of the triacylglycerol/fatty acid cycle.

    Science.gov (United States)

    Weber, Jean-Michel; Reidy, Shannon P

    2012-05-01

    The effects of short-term food deprivation on lipid metabolism are well documented, but little is known about prolonged fasting. This study monitored the kinetics of glycerol (rate of appearance, R(a) glycerol) and non-esterified fatty acids (R(a) NEFA) in fasting rabbits. Our goals were to determine whether lipolysis is stimulated beyond values seen for short-term fasting, and to characterize the roles of primary (intracellular) and secondary (with transit through the circulation) triacylglycerol/fatty acid cycling (TAG/FA cycling) in regulating fatty acid allocation to oxidation or re-esterification. R(a) glycerol (9.62±0.72 to 15.29±0.96 μmol kg(-1) min(-1)) and R(a) NEFA (18.05±2.55 to 31.25±1.93 μmol kg(-1) min(-1)) were stimulated during the first 2 days of fasting, but returned to baseline after 4 days. An initial increase in TAG/FA cycling was followed by a reduction below baseline after 6 days without food, with primary and secondary cycling contributing to these responses. We conclude that the classic activation of lipolysis caused by short-term fasting is abolished when food deprivation is prolonged. High rates of re-esterification may become impossible to sustain, and TAG/FA cycling could decrease to reduce its cost to 3% of total energy expenditure. Throughout prolonged fasting, fatty acid metabolism gradually shifts towards increased oxidation and reduced re-esterification. Survival is achieved by pressing fuel selection towards the fatty acid dominance of energy metabolism and by slowing substrate cycles to assist metabolic suppression. However, TAG/FA cycling remains active even after prolonged fasting, suggesting that re-esterification is a crucial mechanism that cannot be stopped without harmful consequences.

  11. Study of the interaction of enzyme Heparanase 1 (HPSE1) active with deoxyribonucleic acids

    International Nuclear Information System (INIS)

    Cid, Gisele da Silva

    2016-01-01

    The human heparanase 1 (HPSE 1) is a protein with multiple functions and has emerged as a promising therapeutic target in the context of antitumor therapy. This fact is due to its clinical relevance in the tumor development and progression, as determined by their enzymatic ability to degrade heparan sulfate (HS), the main constituent of the extracellular matrix, providing a tumor microenvironment to tumor dissemination. In addition, this protein plays a significant role in the increase of tumor cells migration ionizing radiation dose delivery in radiotherapy from the increase in the expression levels of HPSE1. In order to evaluate in more detail the functions of active HPSE1, it has been proposed to characterize the interaction of human heparanase protein 1 with deoxyribonucleic acids. Our results are original and point to a new function of HPSE1 of the endonuclease type. (author)

  12. Headache and neuropsychic disorders in the puerperium: a case report with suspected deficiency of urea cycle enzymes.

    Science.gov (United States)

    Tonini, Maria Clara; Bignamini, V; Mattioli, M

    2011-05-01

    An enzymatic abnormality of the urea cycle is a metabolic disorder occasionally seen in adults, but particularly in the puerperium. The main risk is acute hyperammoniemic encephalopathy, leading to psychosis, coma and even death if not diagnosed promptly and treated appropriately. Headache is frequent in the puerperium normally manifesting between 3 and 6 days after delivery. We describe here a 39-year-old woman, who 3 days after delivery presented diffuse tension-type headache and depression, followed by behavioral disorders, psychomotor agitation, epileptic seizures, and finally coma 2 days later. Pregnancy and normal delivery: routine blood chemistry findings, CT scan, MR imaging, angio-MR of the brain, and lumbar puncture were normal. EEG when seizures started, it showed diffuse slowing, as in the case of metabolic encephalopathy. This led us to assay blood ammonia, which was high at >400 mmol. Liver function and abdominal US were normal; hence, we suspected a urea cycle enzymatic abnormality, and requested for genetic tests. These confirmed a congenital primary metabolic deficiency of arginine succinate synthetase, with high citrullinemia (type II, adult form). Dialysis was started promptly, with initially iv arginine, then orally, plus medical therapy for the hyperammoniemia and a low protein diet; plasma ammonia dropped swiftly to normal, and her state of consciousness gradually improved until all the clinical symptoms had resolved. Ammonia assay should always be considered in the first few days of the puerperium in women with headache and behavioral disorders, to exclude an inborn deficiency of the urea cycle, which may have gone unnoticed until then.

  13. Differential induction of peroxisomal beta-oxidation enzymes by clofibric acid and aspirin in piglet tissues.

    Science.gov (United States)

    Yu, X X; Odle, J; Drackley, J K

    2001-11-01

    Peroxisomal beta-oxidation (POX) of fatty acids is important in lipid catabolism and thermogenesis. To investigate the effects of peroxisome proliferators on peroxisomal and mitochondrial beta-oxidation in piglet tissues, newborn pigs (1-2 days old) were allowed ad libitum access to milk replacer supplemented with 0.5% clofibric acid (CA) or 1% aspirin for 14 days. CA increased ratios of liver weight to body weight (P < 0.07), kidney weight to body weight (P < 0.05), and heart weight to body weight (P < 0.001). Aspirin decreased daily food intake and final body weight but increased the ratio of heart weight to body weight (P < 0.01). In liver, activities of POX, fatty acyl-CoA oxidase (FAO), total carnitine palmitoyltransferase (CPT), and catalase were 2.7-, 2.2-, 1.5-fold, and 33% greater, respectively, for pigs given CA than for control pigs. In heart, these variables were 2.2-, 4.1-, 1.9-, and 1.8-fold greater, respectively, for pigs given CA than for control pigs. CA did not change these variables in either kidney or muscle, except that CPT activity was increased approximately 110% (P < 0.01) in kidney. Aspirin increased only hepatic FAO and CPT activities. Northern blot analysis revealed that CA increased the abundance of catalase mRNA in heart by approximately 2.2-fold. We conclude that 1) POX and CPT in newborn pigs can be induced by peroxisomal proliferators with tissue specificity and 2) the relatively smaller induction of POX in piglets (compared with that in young or adult rodents) may be related to either age or species differences.

  14. Plasma lipid peroxidation, blood GSH concentration and erythrocyte antioxidant enzymes in menstruating females with ovulatory and anovulatory cycles compared with males

    Directory of Open Access Journals (Sweden)

    G Lutosławska

    2003-12-01

    Full Text Available This study was undertaken to evaluate plasma TBARS and blood GSH concentration and erythrocyte antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase in active, regularly menstruating female physical education students with ovulatory and anovulatory menstrual cycles and in their male counterparts. A total of 27 subjects (12 males and 15 females volunteered to participate in the study. All females were regularly menstruating with cycle length between 26-31 days. Plasma progesterone and 17-β-estradiol concentrations were assayed during the 7th-9th and 22nd-25th day of the menstrual cycle. Women with plasma progesterone concentration exceeding 19 nmol•l-1 during the 22nd-25th day were referred to as ovulatory (Group OV; n=7. Women without a peak plasma progesterone concentration were referred to as anovulatory (Group AN; n=8. Blood from male subjects was withdrawn twice - two weeks apart, at their convenience. It was found that the menstrual cycle phases did not affect plasma TBARS and blood glutathione concentration and erythrocyte GPX, CAT and SOD activity. However, erythrocyte GPX activity either in ovulatory or anovulatory women was by about 30% higher than in male subjects. Erythrocyte SOD activity in ovulatory women both in follicular and luteal phase of the menstrual cycle (1557 U/g Hb and 1394.6 U/g Hb, respectively was markedly lower than in men (1951.8 and 1937.7 U/g Hb for blood sampling I and II, respectively. In contrast, erythrocyte SOD activity in anovulatory women (1855.5 U/g Hb and 1745.7 U/g Hb in the follicular and luteal phases, respectively was similar to that found in men. The above data indicated that erythrocyte GPX and SOD activities are sensitive to plasma ovarian hormone concentration. In addition, they suggested that due to higher erythrocyte GPX activity females even with anovulatory menstrual cycles are protected better than males against hydrogen peroxide action. However, lower superoxide

  15. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa.

    Science.gov (United States)

    Glonti, T; Chanishvili, N; Taylor, P W

    2010-02-01

    To identify enzymes associated with bacteriophages infecting cystic fibrosis (CF) strains of Pseudomonas aeruginosa that are able to degrade extracellular alginic acids elaborated by the host bacterium. Plaques produced by 21 Ps. aeruginosa-specific phages were screened for the presence of haloes, an indicator of capsule hydrolytic activity. Four phages produced haloed plaques, and one (PT-6) was investigated further. PT-6 was shown by electron microscopy to belong to Podoviridae family C1, to reduce the viscosity of four alginate preparations using a rolling ball viscometer and to release uronic acid-containing fragments from the polymers, as judged by spectrophotometry and thin layer chromatography. The alginase was partially purified by gel filtration chromatography and shown to be a 37 kDa polypeptide. Infection of CF strains of Ps. aeruginosa by phage PT-6 involves hydrolysis of the exopolysaccharide secreted by the host. The alginase produced by PT-6 has the potential to increase the well-being of CF suffers by improving the surface properties of sputum, accelerating phagocytic uptake of bacteria and perturbing bacterial growth in biofilms.

  16. Effects of indole-3-acetic acid on arsenic uptake and antioxidative enzymes in Pteris cretica var. nervosa and Pteris ensiformis.

    Science.gov (United States)

    He, Shujuan; Hu, Yongjun; Wang, Hongbin; Wang, Haijuan; Li, Qinchun

    2017-03-04

    A hydroponic experiment was conducted to investigate the effects of indole-3-acetic acid (IAA) on arsenic (As) uptake and antioxidative enzymes in fronds of Pteris cretica var. nervosa (As hyperaccumulator) and Pteris ensiformis (non-hyperaccumulator). Plants were exposed to 2 mg L -1 As(III), As(V) or dimethylarsinic acid (DMA) and IAA concentrations for 14 d. The biomass and total As in the plants significantly increased at 30 mg L -1 IAA. Superoxide dismutase (SOD) activities significantly increased with IAA addition. Catalase (CAT) activities showed a significant increase in P. ensiformis exposed to three As species at 30 or 50 mg L -1 IAA but varied in P. cretica var. nervosa. Peroxidase (POD) activities were unchanged in P. ensiformis except for a significant decrease at 50 mg L -1 IAA under As(III) treatment. However, a significant increase was observed in P. cretica var. nervosa at 10 mg L -1 IAA under As(III) or DMA treatment and at 50 mg L -1 IAA under As(V) treatment. Under DMA stress, malondialdehyde contents in fronds of P. cretica var. nervosa showed a significant decrease at 10 mg L -1 IAA but remained unchanged in P. ensiformis. Therefore, IAA enhanced As uptake and frond POD activity in P. cretica var. nervosa under As stress.

  17. In Folio Respiratory Fluxomics Revealed by {sup 13}C Isotopic Labeling and H/D Isotope Effects Highlight the Non-cyclic Nature of the Tricarboxylic Acid 'Cycle' in Illuminated Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Tcherkez, G.; Mahe, A.; Gauthier, P.; Hodges, M. [Institut de Biotechnologie des Plantes, Plateforme Metabolisme-Metabolome IFR87, Batiment 630, Universite Paris-Sud 11, 91405 Orsay cedex (France); Tcherkez, G.; Mauve, C.; Cornic, G. [Laboratoire d' Ecophysiologie Vegetale, Ecologie Systematique Evolution (G.C.), Batiment 630, Universite Paris-Sud 11, 91405 Orsay cedex (France); Gout, E.; Bligny, R. [Laboratoire de Physiologie Cellulaire Vegetale, Commissariat a l' Energie Atomique-Grenoble, 38054 Grenoble cedex 9 (France)

    2009-07-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, {sup 13}C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA 'cycle' does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. (authors)

  18. In Folio Respiratory Fluxomics Revealed by 13C Isotopic Labeling and H/D Isotope Effects Highlight the Non-cyclic Nature of the Tricarboxylic Acid 'Cycle' in Illuminated Leaves

    International Nuclear Information System (INIS)

    Tcherkez, G.; Mahe, A.; Gauthier, P.; Hodges, M.; Tcherkez, G.; Mauve, C.; Cornic, G.; Gout, E.; Bligny, R.

    2009-01-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, 13 C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA 'cycle' does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. (authors)

  19. In Folio Respiratory Fluxomics Revealed by {sup 13}C Isotopic Labeling and H/D Isotope Effects Highlight the Non-cyclic Nature of the Tricarboxylic Acid 'Cycle' in Illuminated Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Tcherkez, G; Mahe, A; Gauthier, P; Hodges, M [Institut de Biotechnologie des Plantes, Plateforme Metabolisme-Metabolome IFR87, Batiment 630, Universite Paris-Sud 11, 91405 Orsay cedex (France); Tcherkez, G; Mauve, C; Cornic, G [Laboratoire d' Ecophysiologie Vegetale, Ecologie Systematique Evolution (G.C.), Batiment 630, Universite Paris-Sud 11, 91405 Orsay cedex (France); Gout, E; Bligny, R [Laboratoire de Physiologie Cellulaire Vegetale, Commissariat a l' Energie Atomique-Grenoble, 38054 Grenoble cedex 9 (France)

    2009-07-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, {sup 13}C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA 'cycle' does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. (authors)

  20. Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification.

    Science.gov (United States)

    Sun, Li; Lu, Yufang; Kronzucker, Herbert J; Shi, Weiming

    2016-07-01

    Fatty acid amides from plant root exudates, such as oleamide and erucamide, have the ability to participate in strong plant-microbe interactions, stimulating nitrogen metabolism in rhizospheric bacteria. However, mechanisms of secretion of such fatty acid amides, and the nature of their stimulatory activities on microbial metabolism, have not been examined. In the present study, collection, pre-treatment, and determination methods of oleamide and erucamide in duckweed root exudates are compared. The detection limits of oleamide and erucamide by gas chromatography (GC) (10.3ngmL(-1) and 16.1ngmL(-1), respectively) are shown to be much lower than those by liquid chromatography (LC) (1.7 and 5.0μgmL(-1), respectively). Quantitative GC analysis yielded five times larger amounts of oleamide and erucamide in root exudates of Spirodela polyrrhiza when using a continuous collection method (50.20±4.32 and 76.79±13.92μgkg(-1) FW day(-1)), compared to static collection (10.88±0.66 and 15.27±0.58μgkg(-1) FW day(-1)). Furthermore, fatty acid amide secretion was significantly enhanced under elevated nitrogen conditions (>300mgL(-1)), and was negatively correlated with the relative growth rate of duckweed. Mechanistic assays were conducted to show that erucamide stimulates nitrogen removal by enhancing denitrification, targeting two key denitrifying enzymes, nitrate and nitrite reductases, in bacteria. Our findings significantly contribute to our understanding of the regulation of nitrogen dynamics by plant root exudates in natural ecosystems. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Retinal Pigmented Epithelial Cells Obtained from Human Induced Pluripotent Stem Cells Possess Functional Visual Cycle Enzymes in Vitro and in Vivo*

    Science.gov (United States)

    Maeda, Tadao; Lee, Mee Jee; Palczewska, Grazyna; Marsili, Stefania; Tesar, Paul J.; Palczewski, Krzysztof; Takahashi, Masayo; Maeda, Akiko

    2013-01-01

    Differentiated retinal pigmented epithelial (RPE) cells have been obtained from human induced pluripotent stem (hiPS) cells. However, the visual (retinoid) cycle in hiPS-RPE cells has not been adequately examined. Here we determined the expression of functional visual cycle enzymes in hiPS-RPE cells compared with that of isolated wild-type mouse primary RPE (mpRPE) cells in vitro and in vivo. hiPS-RPE cells appeared morphologically similar to mpRPE cells. Notably, expression of certain visual cycle proteins was maintained during cell culture of hiPS-RPE cells, whereas expression of these same molecules rapidly decreased in mpRPE cells. Production of the visual chromophore, 11-cis-retinal, and retinosome formation also were documented in hiPS-RPE cells in vitro. When mpRPE cells with luciferase activity were transplanted into the subretinal space of mice, bioluminance intensity was preserved for >3 months. Additionally, transplantation of mpRPE into blind Lrat−/− and Rpe65−/− mice resulted in the recovery of visual function, including increased electrographic signaling and endogenous 11-cis-retinal production. Finally, when hiPS-RPE cells were transplanted into the subretinal space of Lrat−/− and Rpe65−/− mice, their vision improved as well. Moreover, histological analyses of these eyes displayed replacement of dysfunctional RPE cells by hiPS-RPE cells. Together, our results show that hiPS-RPE cells can exhibit a functional visual cycle in vitro and in vivo. These cells could provide potential treatment options for certain blinding retinal degenerative diseases. PMID:24129572

  2. Cloning and characterization of a cell cycle-regulated gene encoding topoisomerase I from Nicotiana tabacum that is inducible by light, low temperature and abscisic acid.

    Science.gov (United States)

    Mudgil, Y; Singh, B N; Upadhyaya, K C; Sopory, S K; Reddy, M K

    2002-05-01

    We have cloned a full-length 2874-bp cDNA coding for tobacco topoisomerase I, with an ORF of 2559 bp encoding a protein of 852 amino acids with a calculated molecular mass of 95 kDa and an estimated pI of 9.51. The deduced amino acid sequence shows homology to other eukaryotic topoisomerases I. Tobacco topoisomerase I was over-expressed in Escherichia coli, and the purified recombinant protein was found to relax both positively and negatively super-coiled DNA in the absence of the divalent cation Mg(2+)and ATP. These characteristic features indicate that the tobacco enzyme is a type I topoisomerase. The recombinant protein could be phosphorylated at (a) threonine residue(s) by protein kinase C. However, phosphorylation did not cause any change in its enzymatic activity. The genomic organization of the topoisomerase I gene revealed the presence of 8 exons and 7 introns in the region corresponding to the ORF and one intron in the 3' UTR region. Transcript analysis using RT-PCR showed basal constitutive expression in all organs examined, and the gene was expressed at all stages of the cell cycle--but the level of expression increased during the G1-S phase. The transcript level also increased following exposure to light, low-temperature stress and abscisic acid, a stress hormone.

  3. Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes.

    Directory of Open Access Journals (Sweden)

    Fei Xia

    Full Text Available Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17 and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19 are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high

  4. Role of AMACR (α-methylacyl-CoA racemase) and MFE-1 (peroxisomal multifunctional enzyme-1) in bile acid synthesis in mice.

    Science.gov (United States)

    Autio, Kaija J; Schmitz, Werner; Nair, Remya R; Selkälä, Eija M; Sormunen, Raija T; Miinalainen, Ilkka J; Crick, Peter J; Wang, Yuqin; Griffiths, William J; Reddy, Janardan K; Baes, Myriam; Hiltunen, J Kalervo

    2014-07-01

    Cholesterol is catabolized to bile acids by peroxisomal β-oxidation in which the side chain of C27-bile acid intermediates is shortened by three carbon atoms to form mature C24-bile acids. Knockout mouse models deficient in AMACR (α-methylacyl-CoA racemase) or MFE-2 (peroxisomal multifunctional enzyme type 2), in which this β-oxidation pathway is prevented, display a residual C24-bile acid pool which, although greatly reduced, implies the existence of alternative pathways of bile acid synthesis. One alternative pathway could involve Mfe-1 (peroxisomal multifunctional enzyme type 1) either with or without Amacr. To test this hypothesis, we generated a double knockout mouse model lacking both Amacr and Mfe-1 activities and studied the bile acid profiles in wild-type, Mfe-1 and Amacr single knockout mouse line and Mfe-1 and Amacr double knockout mouse lines. The total bile acid pool was decreased in Mfe-1-/- mice compared with wild-type and the levels of mature C24-bile acids were reduced in the double knockout mice when compared with Amacr-deficient mice. These results indicate that Mfe-1 can contribute to the synthesis of mature bile acids in both Amacr-dependent and Amacr-independent pathways.

  5. Over-expressing the C3 photosynthesis cycle enzyme Sedoheptulose-1-7 Bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE)

    Science.gov (United States)

    2011-01-01

    Background Biochemical models predict that photosynthesis in C3 plants is most frequently limited by the slower of two processes, the maximum capacity of the enzyme Rubisco to carboxylate RuBP (Vc,max), or the regeneration of RuBP via electron transport (J). At current atmospheric [CO2] levels Rubisco is not saturated; consequently, elevating [CO2] increases the velocity of carboxylation and inhibits the competing oxygenation reaction which is also catalyzed by Rubisco. In the future, leaf photosynthesis (A) should be increasingly limited by RuBP regeneration, as [CO2] is predicted to exceed 550 ppm by 2050. The C3 cycle enzyme sedoheptulose-1,7 bisphosphatase (SBPase, EC 3.1.3.17) has been shown to exert strong metabolic control over RuBP regeneration at light saturation. Results We tested the hypothesis that tobacco transformed to overexpressing SBPase will exhibit greater stimulation of A than wild type (WT) tobacco when grown under field conditions at elevated [CO2] (585 ppm) under fully open air fumigation. Growth under elevated [CO2] stimulated instantaneous A and the diurnal photosynthetic integral (A') more in transformants than WT. There was evidence of photosynthetic acclimation to elevated [CO2] via downregulation of Vc,max in both WT and transformants. Nevertheless, greater carbon assimilation and electron transport rates (J and Jmax) for transformants led to greater yield increases than WT at elevated [CO2] compared to ambient grown plants. Conclusion These results provide proof of concept that increasing content and activity of a single photosynthesis enzyme can enhance carbon assimilation and yield of C3 crops grown at [CO2] expected by the middle of the 21st century. PMID:21884586

  6. Interactive Effect of Salicylic Acid on Some Physiological Features and Antioxidant Enzymes Activity in Ginger (Zingiber officinale Roscoe

    Directory of Open Access Journals (Sweden)

    Hawa Z. E. Jaafar

    2013-05-01

    Full Text Available The effect of foliar salicylic acid (SA applications (10−3 and 10−5 M on activities of nitrate reductase, guaiacol peroxidase (POD, superoxide dismutases (SOD, catalase (CAT and proline enzymes and physiological parameters was evaluated in two ginger varieties (Halia Bentong and Halia Bara under greenhouse conditions. In both varieties, tested treatments generally enhanced photosynthetic rate and total dry weight. Photosynthetic rate increases were generally accompanied by increased or unchanged stomatal conductance levels, although intercellular CO2 concentrations of treated plants were typically lower than in controls. Lower SA concentrations were generally more effective in enhancing photosynthetic rate and plant growth. Exogenous application of SA increased antioxidant enzyme activities and proline content; the greatest responses were obtained in plants sprayed with 10–5 M SA, with significant increases observed in CAT (20.1%, POD (45.2%, SOD (44.1% and proline (43.1% activities. Increased CAT activity in leaves is naturally expected to increase photosynthetic efficiency and thus net photosynthesis by maintaining a constant CO2 supply. Our results support the idea that low SA concentrations (10–5 M may induce nitrite reductase synthesis by mobilizing intracellular NO3− and can provide protection to nitrite reductase degradation in vivo in the absence of NO3–. Observed positive correlations among proline, SOD, CAT and POD activities in the studied varieties suggest that increased SOD activity was accompanied by increases in CAT and POD activities because of the high demands of H2O2 quenching.

  7. Toward "stable-on-the-table" enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).

    Science.gov (United States)

    Riccardi, Caterina M; Cole, Kyle S; Benson, Kyle R; Ward, Jessamyn R; Bassett, Kayla M; Zhang, Yiren; Zore, Omkar V; Stromer, Bobbi; Kasi, Rajeswari M; Kumar, Challa V

    2014-08-20

    Several key properties of catalase such as thermal stability, resistance to protease degradation, and resistance to ascorbate inhibition were improved, while retaining its structure and activity, by conjugation to poly(acrylic acid) (PAA, Mw 8000) via carbodiimide chemistry where the amine groups on the protein are appended to the carboxyl groups of the polymer. Catalase conjugation was examined at three different pH values (pH 5.0, 6.0, and 7.0) and at three distinct mole ratios (1:100, 1:500, and 1:1000) of catalase to PAA at each reaction pH. The corresponding products are labeled as Cat-PAA(x)-y, where x is the protein to polymer mole ratio and y is the pH used for the synthesis. The coupling reaction consumed about 60-70% of the primary amines on the catalase; all samples were completely water-soluble and formed nanogels, as evidenced by gel electrophoresis and electron microscopy. The UV circular dichroism (CD) spectra indicated substantial retention of protein secondary structure for all samples, which increased to 100% with increasing pH of the synthesis and polymer mole fraction. Soret CD bands of all samples indicated loss of ∼50% of band intensities, independent of the reaction pH. Catalytic activities of the conjugates increased with increasing synthesis pH, where 55-80% and 90-100% activity was retained for all samples synthesized at pH 5.0 and pH 7.0, respectively, and the Km or Vmax values of Cat-PAA(100)-7 did not differ significantly from those of the free enzyme. All conjugates synthesized at pH 7.0 were thermally stable even when heated to ∼85-90 °C, while native catalase denatured between 55 and 65 °C. All conjugates retained 40-90% of their original activities even after storing for 10 weeks at 8 °C, while unmodified catalase lost all of its activity within 2 weeks, under similar storage conditions. Interestingly, PAA surrounding catalase limited access to the enzyme from large molecules like proteases and significantly increased

  8. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase.

    Science.gov (United States)

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A

    2014-10-01

    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  9. Recombinant human acid alpha-glucosidase: high level production in mouse milk, biochemical characteristics, correction of enzyme deficiency in GSDII KO mice

    NARCIS (Netherlands)

    A.G.A. Bijvoet (Agnes); M.A. Kroos (Marian); F.R. Pieper (Frank); M. Van der Vliet (Martin); H.A. de Boer (Herman); A.T. van der Ploeg (Ans); M.Ph. Verbeet (Martin); A.J.J. Reuser (Arnold)

    1998-01-01

    textabstractGlycogen storage disease type II (GSDII) is caused by lysosomal acid alpha-glucosidase deficiency. Patients have a rapidly fatal or slowly progressive impairment of muscle function. Enzyme replacement therapy is under investigation. For large-scale, cost-effective

  10. Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Lignos, G.D.; Bakker, R.R.C.; Koukios, E.G.

    2012-01-01

    The objective of this work was to investigate the feasibility of combining low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis for the high production of fermentable substrates and the low release of inhibitory compounds. For most of the pretreatments at 160

  11. AN ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) METHOD FOR THE URINARY BIOMONITORING OF 2,4-DICHLOROPHRENOCYACETIC ACID (2,4-D)

    Science.gov (United States)

    An enzyme-linked immunosorbent assay (ELISA) method was developed to quantitatively measure 2,4-dichlorophenoyacetic acid (2,4-D) in human urine. Samples were diluted (1:5) with phosphate-buffered saline, 0.05% Tween 20, with 0.02% sodium azide, and analyzed by a 96-microwekk pl...

  12. Interplay between cell cycle and autophagy induced by boswellic acid analog

    Science.gov (United States)

    Pathania, Anup S.; Guru, Santosh K.; Kumar, Suresh; Kumar, Ashok; Ahmad, Masroor; Bhushan, Shashi; Sharma, Parduman R.; Mahajan, Priya; Shah, Bhahwal A.; Sharma, Simmi; Nargotra, Amit; Vishwakarma, Ram; Korkaya, Hasan; Malik, Fayaz

    2016-01-01

    In this study, we investigated the role of autophagy induced by boswellic acid analog BA145 on cell cycle progression in pancreatic cancer cells. BA145 induced robust autophagy in pancreatic cancer cell line PANC-1 and exhibited cell proliferation inhibition by inducing cells to undergo G2/M arrest. Inhibition of G2/M progression was associated with decreased expression of cyclin A, cyclin B, cyclin E, cdc2, cdc25c and CDK-1. Pre-treatment of cells with autophagy inhibitors or silencing the expression of key autophagy genes abrogated BA145 induced G2/M arrest and downregulation of cell cycle regulatory proteins. It was further observed that BA145 induced autophagy by targeting mTOR kinase (IC50 1 μM), leading to reduced expression of p-mTOR, p-p70S6K (T389), p-4EBP (T37/46) and p-S6 (S240/244). Notably, inhibition of mTOR signalling by BA145 was followed by attendant activation of AKT and its membrane translocation. Inhibition of Akt through pharmacological inhibitors or siRNAs enhanced BA145 mediated autophagy, G2/M arrest and reduced expression of G2/M regulators. Further studies revealed that BA145 arbitrated inhibition of mTOR led to the activation of Akt through IGFR/PI3k/Akt feedback loop. Intervention in IGFR/PI3k/Akt loop further depreciated Akt phosphorylation and its membrane translocation that culminates in augmented autophagy with concomitant G2/M arrest and cell death. PMID:27680387

  13. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  14. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D.

    Science.gov (United States)

    Xu, Keming; Narayanan, Karthikeyan; Lee, Fan; Bae, Ki Hyun; Gao, Shujun; Kurisawa, Motoichi

    2015-09-01

    The propagation of human embryonic stem cells (hESCs) in three-dimensional (3D) scaffolds facilitates the cell expansion process and supplies pluripotent cells of high quality for broad-spectrum applications in regenerative medicine. Herein, we report an enzyme-mediated hyaluronic acid-tyramine (HA-Tyr) hydrogel that encapsulated and propagated hESCs in 3D. HA-Tyr hydrogels were formed by crosslinking the tyramine moieties with horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). By changing the HRP and H2O2 concentration, we prepared HA-Tyr hydrogels of different mechanical strength and studied the self-renewal properties of hESCs in these scaffolds. We observed that both the chemical composition and mechanical strength of substrates were important factors affecting cell proliferation and pluripotency. The HA-Tyr hydrogel with a compressive modulus of ∼350Pa supported the proliferation of hESCs at the pluripotent state in both mTeSR1 medium and mouse embryonic fibroblast (MEF)-conditioned medium. Immunohistochemical analyses revealed that hESCs proliferated well and formed spheroid structures in 3D, without undergoing apoptosis. The hESCs cultured in HA-Tyr hydrogels showed high expression of CD44 and pluripotency markers. These cells exhibited the capability to form cell derivatives of all three embryonic germ layers in vitro and in vivo. In addition, the genetic integrity of the hESCs was unaffected in the 3D cultivation system. The scope of this study is to provide a stable 3D cultivation system for the expansion of human embryonic stem cells (hESCs) towards clinical applications. We report an enzyme mediated hyaluronic acid-tyramine (HA-Tyr) hydrogel that encapsulated and propagated hESCs in 3D. Unlike other HA-based photo-crosslinked hydrogel systems reported, we investigated the effects of mechanical strength of hydrogels on the self-renewal properties of hESCs in 3D. Then, we characterized hESCs cultured in hydrogels with lower mechanical strength

  15. Hydrogen Peroxide Cycling in Acidic Geothermal Environments and Potential Implications for Oxidative Stress

    Science.gov (United States)

    Mesle, M.; Beam, J.; Jay, Z.; Bodle, B.; Bogenschutz, E.; Inskeep, W.

    2014-12-01

    Hydrogen peroxide (H2O2) may be produced in natural waters via photochemical reactions between dissolved oxygen, organic carbon and light. Other reactive oxygen species (ROS) such as superoxide and hydroxyl radicals are potentially formed in environments with high concentrations of ferrous iron (Fe(II), ~10-100 μM) by reaction between H2O2 and Fe(II) (i.e., Fenton chemistry). Thermophilic archaea and bacteria inhabiting acidic iron-oxide mats have defense mechanisms against both extracellular and intracellular peroxide, such as peroxiredoxins (which can degrade H2O2) and against other ROS, such as superoxide dismutases. Biological cycling of H2O2 is not well understood in geothermal ecosystems, and geochemical measurements combined with molecular investigations will contribute to our understanding of microbial response to oxidative stress. We measured H2O2 and other dissolved compounds (Fe(II), Fe(III), H2S, O2), as well as photon flux, pH and temperature, over time in surface geothermal waters of several acidic springs in Norris Geyser Basin, Yellowstone National Park, WY (Beowulf Spring and One Hundred Spring Plain). Iron-oxide mats were sampled in Beowulf Spring for on-going analysis of metatranscriptomes and RT-qPCR assays of specific stress-response gene transcription (e.g., superoxide dismutases, peroxiredoxins, thioredoxins, and peroxidases). In situ analyses show that H2O2 concentrations are lowest in the source waters of sulfidic systems (ca. 1 μM), and increase by two-fold in oxygenated waters corresponding to Fe(III)-oxide mat formation (ca. 2 - 3 μM). Channel transects confirm increases in H2O2 as a function of oxygenation (distance). The temporal dynamics of H2O2, O2, Fe(II), and H2S in Beowulf geothermal waters were also measured during a diel cycle, and increases in H2O2 were observed during peak photon flux. These results suggest that photochemical reactions may contribute to changes in H2O2. We hypothesize that increases in H2O2 and O2

  16. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study.

    Science.gov (United States)

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-01

    The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO2 emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in Biganzoli et al. (2014) and from the dolomitic sorbent production plant. The results of the LCA show minor changes in the potential impacts between the two operational modes of the plants. These differences are for 8 impact categories in favour of the new operational mode based on the addition of the dolomitic sorbent, and for 7 impact categories in favour of the traditional operation. A final evaluation was conducted on the potential

  17. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Lackey, Denise E.; Lynch, Christopher J.; Olson, Kristine C.; Mostaedi, Rouzbeh; Ali, Mohamed; Smith, William H.; Karpe, Fredrik; Humphreys, Sandy; Bedinger, Daniel H.; Dunn, Tamara N.; Thomas, Anthony P.; Oort, Pieter J.; Kieffer, Dorothy A.; Amin, Rajesh; Bettaieb, Ahmed; Haj, Fawaz G.; Permana, Paska; Anthony, Tracy G.

    2013-01-01

    Elevated blood branched-chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metabolism. We tested if expression of the mitochondrial BCAA oxidation checkpoint, branched-chain α-ketoacid dehydrogenase (BCKD) complex, is reduced in obese WAT and regulated by metabolic signals. WAT BCKD protein (E1α subunit) was significantly reduced by 35–50% in various obesity models (fa/fa rats, db/db mice, diet-induced obese mice), and BCKD component transcripts significantly lower in subcutaneous (SC) adipocytes from obese vs. lean Pima Indians. Treatment of 3T3-L1 adipocytes or mice with peroxisome proliferator-activated receptor-γ agonists increased WAT BCAA catabolism enzyme mRNAs, whereas the nonmetabolizable glucose analog 2-deoxy-d-glucose had the opposite effect. The results support the hypothesis that suboptimal insulin action and/or perturbed metabolic signals in WAT, as would be seen with insulin resistance/type 2 diabetes, could impair WAT BCAA utilization. However, cross-tissue flux studies comparing lean vs. insulin-sensitive or insulin-resistant obese subjects revealed an unexpected negligible uptake of BCAA from human abdominal SC WAT. This suggests that SC WAT may not be an important contributor to blood BCAA phenotypes associated with insulin resistance in the overnight-fasted state. mRNA abundances for BCAA catabolic enzymes were markedly reduced in omental (but not SC) WAT of obese persons with metabolic syndrome compared with weight-matched healthy obese subjects, raising the possibility that visceral WAT contributes to the BCAA metabolic phenotype of metabolically compromised individuals. PMID:23512805

  18. Jasmonic acid-isoleucine formation in grapevine (Vitis vinifera L.) by two enzymes with distinct transcription profiles.

    Science.gov (United States)

    Böttcher, Christine; Burbidge, Crista A; di Rienzo, Valentina; Boss, Paul K; Davies, Christopher

    2015-07-01

    The plant hormone jasmonic acid (JA) is essential for stress responses and the formation of reproductive organs, but its role in fruit development and ripening is unclear. Conjugation of JA to isoleucine is a crucial step in the JA signaling pathway since only JA-Ile is recognized by the jasmonate receptor. The conjugation reaction is catalyzed by JA-amido synthetases, belonging to the family of Gretchen Hagen3 (GH3) proteins. Here, in vitro studies of two grapevine (Vitis vinifera L. cv Shiraz) GH3 enzymes, VvGH3-7 and VvGH3-9, demonstrated JA-conjugating activities with an overlapping range of amino acid substrates, including isoleucine. Expression studies of the corresponding genes in grape berries combined with JA and JA-Ile measurements suggested a primary role for JA signaling in fruit set and cell division and did not support an involvement of JA in the ripening process. In response to methyl JA (MeJA) treatment, and in wounded and unwounded (distal) leaves, VvGH3-9 transcripts accumulated, indicating a participation in the JA response. In contrast, VvGH3-7 was unresponsive to MeJA and local wounding, demonstrating a differential transcriptional regulation of VvGH3-7 and VvGH3-9. The transient induction of VvGH3-7 in unwounded, distal leaves was suggestive of the involvement of an unknown mobile wound signal. © 2014 Institute of Botany, Chinese Academy of Sciences.

  19. The antidiabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes.

    Science.gov (United States)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S; Dringen, Ralf

    2017-11-01

    Metformin is an antidiabetic drug that is used daily by millions of patients worldwide. Metformin is able to cross the blood-brain barrier and has recently been shown to increase glucose consumption and lactate release in cultured astrocytes. However, potential effects of metformin on mitochondrial tricarboxylic acid (TCA) cycle metabolism in astrocytes are unknown. We investigated this by mapping 13 C labeling in TCA cycle intermediates and corresponding amino acids after incubation of primary rat astrocytes with [U- 13 C]glucose. The presence of metformin did not compromise the viability of cultured astrocytes during 4 hr of incubation, but almost doubled cellular glucose consumption and lactate release. Compared with control cells, the presence of metformin dramatically lowered the molecular 13 C carbon labeling (MCL) of the cellular TCA cycle intermediates citrate, α-ketoglutarate, succinate, fumarate, and malate, as well as the MCL of the TCA cycle intermediate-derived amino acids glutamate, glutamine, and aspartate. In addition to the total molecular 13 C labeling, analysis of the individual isotopomers of TCA cycle intermediates confirmed a severe decline in labeling and a significant lowering in TCA cycling ratio in metformin-treated astrocytes. Finally, the oxygen consumption of mitochondria isolated from metformin-treated astrocytes was drastically reduced in the presence of complex I substrates, but not of complex II substrates. These data demonstrate that exposure to metformin strongly impairs complex I-mediated mitochondrial respiration in astrocytes, which is likely to cause the observed decrease in labeling of mitochondrial TCA cycle intermediates and the stimulation of glycolytic lactate production. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Effect of tricarboxylic acid cycle regulator on carbon retention and organic component transformation during food waste composting.

    Science.gov (United States)

    Lu, Qian; Zhao, Yue; Gao, Xintong; Wu, Junqiu; Zhou, Haixuan; Tang, Pengfei; Wei, Qingbin; Wei, Zimin

    2018-05-01

    Composting is an environment friendly method to recycling organic waste. However, with the increasing concern about greenhouse gases generated in global atmosphere, it is significant to reduce the emission of carbon dioxide (CO 2 ). This study analyzes tricarboxylic acid (TCA) cycle regulators on the effect of reducing CO 2 emission, and the relationship among organic component (OC) degradation and transformation and microorganism during composting. The results showed that adding adenosine tri-phosphate (ATP) and nicotinamide adenine dinucleotide (NADH) could enhance the transformation of OC and increase the diversity of microorganism community. Malonic acid (MA) as a competitive inhibitor could decrease the emission of CO 2 by inhibiting the TCA cycle. A structural equation model was established to explore effects of different OC and microorganism on humic acid (HA) concentration during composting. Furthermore, added MA provided an environmental benefit in reducing the greenhouse gas emission for manufacture sustainable products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Remediation of an acidic mine spoil: Miscanthus biochar and lime amendment affects metal availability, plant growth, and soil enzyme activity.

    Science.gov (United States)

    Novak, Jeffrey M; Ippolito, James A; Ducey, Thomas F; Watts, Donald W; Spokas, Kurt A; Trippe, Kristin M; Sigua, Gilbert C; Johnson, Mark G

    2018-08-01

    Biochar may be a tool for mine spoil remediation; however, its mechanisms for achieving this goal remain unclear. In this study, Miscanthus (Miscanthus giganteus) biochar was evaluated for its ability to reclaim acidic mine spoils (pH lime/no lime and fertilizer additions. Blue Wildrye (Elymus glaucus cv. 'Elkton') was planted and later the shoots and roots were collected and metal concentrations determined. Afterwards, each pot was leached with deionized water, and the leachate analyzed for pH, electrical conductivity (EC), dissolved organic carbon (DOC) and soluble metal concentrations. After drying, the spoil was extracted with 0.01 M CaCl 2 and Mehlich 3 (M3) to determine extractable Al, Cu, and Zn concentrations. Additionally, microbial activity was measured using a fluorescent β-glucosidase and N-acetyl-β-d-glucosaminidase assay. Spoil treated with lime and biochar had significantly greater pH and EC values. Significantly greater β-glucosidase activity occurred only in the 5% biochar plus lime treatment, while N-acetyl-β-d-glucosaminidase activities were not altered. Metal concentrations in rye shoot and roots were mixed. Lime additions significantly reduced extractable metal concentrations. Increasing biochar rates alone significantly reduced leachate DOC concentrations, and subsequently reduced leachable metal concentrations. Surprisingly, miscanthus biochar, by itself, was limited at mitigation, but when combined with lime, the combination was capable of further reducing extractable metal concentrations and improving β-glucosidase enzyme activity. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine.

    Science.gov (United States)

    Galeano, Belinda; Klootwijk, Riko; Manoli, Irini; Sun, MaoSen; Ciccone, Carla; Darvish, Daniel; Starost, Matthew F; Zerfas, Patricia M; Hoffmann, Victoria J; Hoogstraten-Miller, Shelley; Krasnewich, Donna M; Gahl, William A; Huizing, Marjan

    2007-06-01

    Mutations in the key enzyme of sialic acid biosynthesis, uridine diphospho-N-acetylglucosamine 2-epimerase/N-acetylmannosamine (ManNAc) kinase (GNE/MNK), result in hereditary inclusion body myopathy (HIBM), an adult-onset, progressive neuromuscular disorder. We created knockin mice harboring the M712T Gne/Mnk mutation. Homozygous mutant (Gne(M712T/M712T)) mice did not survive beyond P3. At P2, significantly decreased Gne-epimerase activity was observed in Gne(M712T/M712T) muscle, but no myopathic features were apparent. Rather, homozygous mutant mice had glomerular hematuria, proteinuria, and podocytopathy. Renal findings included segmental splitting of the glomerular basement membrane, effacement of podocyte foot processes, and reduced sialylation of the major podocyte sialoprotein, podocalyxin. ManNAc administration yielded survival beyond P3 in 43% of the Gne(M712T/M712T) pups. Survivors exhibited improved renal histology, increased sialylation of podocalyxin, and increased Gne/Mnk protein expression and Gne-epimerase activities. These findings establish this Gne(M712T/M712T) knockin mouse as what we believe to be the first genetic model of podocyte injury and segmental glomerular basement membrane splitting due to hyposialylation. The results also support evaluation of ManNAc as a treatment not only for HIBM but also for renal disorders involving proteinuria and hematuria due to podocytopathy and/or segmental splitting of the glomerular basement membrane.

  3. Comparisons of blood biochemical parameters, digestive enzyme activities and volatile fatty acid profile between Meishan and Yorkshire piglets

    Directory of Open Access Journals (Sweden)

    Shouqing Ma

    2015-12-01

    Full Text Available This study was conducted to compare physiological characteristics between Meishan and Yorkshire piglets in their early lives. Six healthy purebred Meishan sows and Yorkshire sows with close farrowing dates were used in this research. The piglets sucked their respective sow's milk for 14 days, then they were slaughtered to collect samples of blood, pancreas, contents of stomach, jejunum, cecum, colon as well as feces for analysis of blood biochemical parameters, digestive enzymes, and volatile fatty acid (VFA. The results showed that Yorkshire piglets had higher concentrations of high-density lipoprotein cholesterol (HDL-C and total cholesterol (TC (P < 0.05. Gastric lipase activity was higher in Meishan piglets but Yorkshire piglets had higher lactase activity (P < 0.05. The total VFA together with acetate and propionate in cecum and colon were higher in Meishan piglets than in Yorkshire piglets (P < 0.05, but acetate in jejunum and ratio of acetate to propionate in colon were lower in Meishan piglets than in Yorkshire piglets (P < 0.05. In conclusion, in early suckling period, significant differences exist in host metabolism and intestinal microbial metabolism between Meishan and Yorkshire piglets.

  4. On-line monitoring system of lactic acid fermentation by using integrated enzyme sons ors; Shusekika koso sensa wo mochiita nyusan hakko keisokuyo onrain monitaringu shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masayasu; Kumagi, Takeshi; Nakashima, Yuuichi [Kyushu University, Fukuoka (Japan). Dept. of Biochemical Engineering and Science

    1999-03-10

    An on-line monitoring system for lactic acid fermentation is developed by using integrated micro enzyme sensors, a flow injection analysis system, and a micro dialysis system. The calibration curves of micro glucose, lactose and lactate sensors show good linearity in the concentration range below 70 mM. By combination with the micro dialysis system, the enzyme sensors can measure the whole concentration range of lactic acid fermentation, and interference by the medium can not be observed. The on-line sensor system is then applied to lactic acid fermentation of Lactobacillus delbrueckii. The sensor system can monitor the glucose and lactate concentrations simultaneously during 24-h fermentation, and the measurements show good agreement with those of the conventional colorimetric method. The sensor system can also be applied to on-line monitoring of lactose and lactate during Lactobacillus lactis fermentation. (author)

  5. Organic acid formation in steam–water cycles: Influence of temperature, retention time, heating rate and O2

    International Nuclear Information System (INIS)

    Moed, D.H.; Verliefde, A.R.D.; Heijman, S.G.J.; Rietveld, L.C.

    2014-01-01

    Organic carbon breaks down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam–water cycle components. Prediction of the identity and quantity of these anions, based on feedwater organic carbon concentrations, has not been attempted, making it hard to establish a well-founded organic carbon guideline. By using a batch-reactor and flow reactor, the influence of temperature (276–352 °C), retention time (1–25 min), concentration (150–2400 ppb) and an oxygen scavenger (carbohydrazide) on organic acid anion formation from organic carbon was investigated. By comparing this to data gathered at a case-study site, the validity of setups was tested as well. The flow reactor provided results more representative for steam–water cycles than the batch reactor. It was found that lower heating rates give more organic acid anions as degradation products of organic carbon, both in quantity and species variety. The thermal stability of the organic acid anions is key. As boiler temperature increases, acetate becomes the dominant degradation product, due to its thermal stability. Shorter retention times lead to more variety and quantity of organic acid anions, due to a lack of time for the thermally less stable ones to degrade. Reducing conditions (or the absence of oxygen) increase the thermal stability of organic acid anions. As the feedwater organic carbon concentration decreases, there are relatively more organic acid anions formed. - Highlights: •Formation of organic acids from hydrothermolysis of organic carbon has been investigated. •The lower the temperature, the higher the variety of organic acid anions. •At the higher tested temperatures (331–352 °C) acetate is the dominant degradation product. •At longer retention times acetate is the dominant degradation product. •There is no linear relation between the organic carbon concentration and formed organic acids

  6. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study

    Energy Technology Data Exchange (ETDEWEB)

    Biganzoli, Laura, E-mail: laura.biganzoli@mail.polimi.it [Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza L. da Vinci 32, 20133 Milano (Italy); Racanella, Gaia [Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza L. da Vinci 32, 20133 Milano (Italy); Marras, Roberto [Unicalce S.p.A., R and D Department, Via Tonio da Belledo 30, 23900 Lecco (Italy); Rigamonti, Lucia [Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza L. da Vinci 32, 20133 Milano (Italy)

    2015-01-15

    Highlights: • Two scenarios of acid gases removal in WTE plants were compared in an LCA study. • A detailed inventory based on primary data has been reported for the production of the new dolomitic sorbent. • Results show that the comparison between the two scenarios does not show systematic differences. • The potential impacts are reduced only if there is an increase in the energy efficiency of the WTE plant. - Abstract: The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO{sub 2} emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in

  7. Transient changes of enzyme activity of five acid hydrolases in the supernatants of homogenates of hearts of mice due to ultraviolet irradiation

    International Nuclear Information System (INIS)

    Droba, B.; Jagiellonian Univ., Krakow

    1977-01-01

    Enzymatic activity of five lysosomal hydrolases: acid p-nitrophenyl phosphatase (EC 3.1.3.2), acid β-glycerophosphatase (EC 3.1.3.2), arylsulphatase (EC 3.1.6.1), β-galactosidase (EC 3.2.1.23) and β-N-acetylhexoaminidase (EC 3.2.1.30) was studied in the supernatants of homogenates of hearts of unirradiated mice, serving as controls, and a group of UV-irradiated mice. In the control group, determinations made at 6-hr intervals showed rhythmic diurnal changes in activities of three acid hydrolases. These changes were statistically significant in the case of acid p-nitrophenyl phosphatase, acid β-glycerophosphatase, and β-N-acetylhexosaminidase. The effect of UV-irradiation was manifested mainly by depression of enzyme activities of the acid hydrolases during the first few hours after exposure. Depression of activities of arylsulphatase and β-N-acetylhexosaminidase by UV light was statistically significant. Presumably, the fall in enzyme activities of the acid hydrolases was due to chemical mediators formed in the skin under the influence of UV-radiation and adrenal corticoids secreted into the blood

  8. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  9. Mechanisms of Enzyme-Catalyzed Reduction of Two Carcinogenic Nitro-Aromatics, 3-Nitrobenzanthrone and Aristolochic Acid I: Experimental and Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Marie Stiborová

    2014-06-01

    Full Text Available This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI, to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why human NAD(PH:quinone oxidoreductase (NQO1 and cytochromes P450 (CYP 1A1 and 1A2 have the potential to reductively activate both nitro-aromatics. The results also contributed to the elucidation of the molecular mechanisms of these reactions. The contribution of conjugation enzymes such as N,O-acetyltransferases (NATs and sulfotransferases (SULTs to the activation of 3-NBA and AAI was also examined. The results indicated differences in the abilities of 3-NBA and AAI metabolites to be further activated by these conjugation enzymes. The formation of DNA adducts generated by both carcinogens during their reductive activation by the NOQ1 and CYP1A1/2 enzymes was investigated with pure enzymes, enzymes present in subcellular cytosolic and microsomal fractions, selective inhibitors, and animal models (including knock-out and humanized animals. For the theoretical approaches, flexible in silico docking methods as well as ab initio calculations were employed. The results summarized in this review demonstrate that a combination of experimental and theoretical approaches is a useful tool to study the enzyme-mediated reaction mechanisms of 3-NBA and AAI reduction.

  10. Mechanisms of Enzyme-Catalyzed Reduction of Two Carcinogenic Nitro-Aromatics, 3-Nitrobenzanthrone and Aristolochic Acid I: Experimental and Theoretical Approaches

    Science.gov (United States)

    Stiborová, Marie; Frei, Eva; Schmeiser, Heinz H.; Arlt, Volker M.; Martínek, Václav

    2014-01-01

    This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA) and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI), to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why human NAD(P)H:quinone oxidoreductase (NQO1) and cytochromes P450 (CYP) 1A1 and 1A2 have the potential to reductively activate both nitro-aromatics. The results also contributed to the elucidation of the molecular mechanisms of these reactions. The contribution of conjugation enzymes such as N,O-acetyltransferases (NATs) and sulfotransferases (SULTs) to the activation of 3-NBA and AAI was also examined. The results indicated differences in the abilities of 3-NBA and AAI metabolites to be further activated by these conjugation enzymes. The formation of DNA adducts generated by both carcinogens during their reductive activation by the NOQ1 and CYP1A1/2 enzymes was investigated with pure enzymes, enzymes present in subcellular cytosolic and microsomal fractions, selective inhibitors, and animal models (including knock-out and humanized animals). For the theoretical approaches, flexible in silico docking methods as well as ab initio calculations were employed. The results summarized in this review demonstrate that a combination of experimental and theoretical approaches is a useful tool to study the enzyme-mediated reaction mechanisms of 3-NBA and AAI reduction. PMID:24918288

  11. Jasmonic acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity and Gene Expression in Glycine max under Nickel Toxicity

    Directory of Open Access Journals (Sweden)

    Geetika eSirhindi

    2016-05-01

    Full Text Available In present study, we evaluated the effects of Jasmonic acid (JA on physio-biochemical attributes, antioxidant enzyme activity and gene expression in soybean (Glycine max L. plants subjected to nickel (Ni stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23%, 38.31% and 39.21% respectively over the control. However, application of JA was found to improve the chlorophyll content and growth of Ni-stressed seedlings in terms of root and shoot length. Plants supplemented with Jasmonate restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein and total soluble sugar (TSS by 33.09%, 51.26%, 22.58% and 49.15% respectively under Ni toxicity as compared to control. Supplementation of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2 by 68.49%, lipid peroxidation (MDA by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD, peroxidase (POD, catalase (CAT and ascorbate peroxidase (APX increases by 40.04%, 28.22%, 48.53% and 56.79% respectively over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62%, CAT by 15.25%, POD by 58.33% and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes and osmoprotectants, antioxidant enzyme activity and gene expression.

  12. Prompt and easy activation by specific thioredoxins of calvin cycle enzymes of Arabidopsis thaliana associated in the GAPDH/CP12/PRK supramolecular complex.

    Science.gov (United States)

    Marri, Lucia; Zaffagnini, Mirko; Collin, Valérie; Issakidis-Bourguet, Emmanuelle; Lemaire, Stéphane D; Pupillo, Paolo; Sparla, Francesca; Miginiac-Maslow, Myroslawa; Trost, Paolo

    2009-03-01

    The Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) can form under oxidizing conditions a supramolecular complex with the regulatory protein CP12. Both GAPDH and PRK activities are inhibited within the complex, but they can be fully restored by reduced thioredoxins (TRXs). We have investigated the interactions of eight different chloroplast thioredoxin isoforms (TRX f1, m1, m2, m3, m4, y1, y2, x) with GAPDH (A(4), B(4), and B(8) isoforms), PRK and CP12 (isoform 2), all from Arabidopsis thaliana. In the complex, both A(4)-GAPDH and PRK were promptly activated by TRX f1, or more slowly by TRXs m1 and m2, but all other TRXs were ineffective. Free PRK was regulated by TRX f1, m1, or m2, while B(4)- and B(8)-GAPDH were absolutely specific for TRX f1. Interestingly, reductive activation of PRK caged in the complex was much faster than reductive activation of free oxidized PRK, and activation of A(4)-GAPDH in the complex was much faster (and less demanding in terms of reducing potential) than activation of free oxidized B(4)- or B(8)-GAPDH. It is proposed that CP12-assembled supramolecular complex may represent a reservoir of inhibited enzymes ready to be released in fully active conformation following reduction and dissociation of the complex by TRXs upon the shift from dark to low light. On the contrary, autonomous redox-modulation of GAPDH (B-containing isoforms) would be more suited to conditions of very active photosynthesis.

  13. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.

    Science.gov (United States)

    Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M

    2015-07-02

    Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Influence of safety vlave pressure on gelled electrolyte valve-regulated lead/acid batteries under deep cycling applications

    International Nuclear Information System (INIS)

    Oh, Sang Hyub; Kim, Myung Soo; Lee, Jin Bok; Lee, Heung Lark

    2002-01-01

    Cycle life tests have been carried out to evaluate the influence of safety valve pressure on vlave regulated lead/acid batteries under deep cycling applications. Batteries were cycled at 5 hour rates at 100 % DOD, and safety valve pressure was set to 1.08 and 2.00 bar, respectively. The batteries lost 248.3 g of water for each case after about 1,200 cycles, but the cyclic performances of the batteries were comparable. Most of the gas of the battery during discharging was hydrogen, and the oxygen concentration increased to 18 % after 3 hours of charging. The micro structure of the positive active materials was completely changed and the corrosion layer of the positive grid was less than 50 μm, regardless of the pressure of the safety valve after cycle life tests. The cause of discharge capacity decrease was found to water loss and the shedding of the positive active materials. The pressure of safety valve does not give little effect to the cyclic performance and the failure modes of the gelled electrolyte valve-regulated lead acid batteries

  15. Variation in incorporation of tritiated amino acids into rhodopsin and opsin during the 12 hour light-dark cycle

    International Nuclear Information System (INIS)

    Matsumoto, B.

    1981-01-01

    This is a study of the variation in incorporation of labeled amino acids into opsin and rhodopsin during the 12 hour light-dark cycle. Groups of 12 adult, light-entrained R. pipiens were injected with tritiated amino acids at selected times of the day and night. Twenty four hours later, the frogs were sacrificed and their rhodopsin purified by column chromatography. It was found that the peak incorporation of amino acids into rhodopsin occurred shortly after light onset and declined to lower levels at later hours. Light microscopic autoradiography revealed the presence of radioactive disc membranes in the rod outer segments. However there was no correlation between outer segment grain density and rhodopsin specific activity. Succeeding experiments showed that light onset, rather than the time of day, played an important role in stimulating isotope incorporation. Electro-immunoprecipitation experiments revealed a changing specific activity for inner segment opsin during the light-dark cycle. Peak levels of amino acid incorporation occurred shortly after light onset and then declined to lower levels. For all time points, opsin was found to be radioactive, indicating opsin biosynthesis occurred continually throughout the diurnal cycle

  16. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  17. Down-regulation of tricarboxylic acid (TCA) cycle genes blocks progression through the first mitotic division in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Rahman, Mohammad M; Rosu, Simona; Joseph-Strauss, Daphna; Cohen-Fix, Orna

    2014-02-18

    The cell cycle is a highly regulated process that enables the accurate transmission of chromosomes to daughter cells. Here we uncover a previously unknown link between the tricarboxylic acid (TCA) cycle and cell cycle progression in the Caenorhabditis elegans early embryo. We found that down-regulation of TCA cycle components, including citrate synthase, malate dehydrogenase, and aconitase, resulted in a one-cell stage arrest before entry into mitosis: pronuclear meeting occurred normally, but nuclear envelope breakdown, centrosome separation, and chromosome condensation did not take place. Mitotic entry is controlled by the cyclin B-cyclin-dependent kinase 1 (Cdk1) complex, and the inhibitory phosphorylation of Cdk1 must be removed in order for the complex to be active. We found that following down-regulation of the TCA cycle, cyclin B levels were normal but CDK-1 remained inhibitory-phosphorylated in one-cell stage-arrested embryos, indicative of a G2-like arrest. Moreover, this was not due to an indirect effect caused by checkpoint activation by DNA damage or replication defects. These observations suggest that CDK-1 activation in the C. elegans one-cell embryo is sensitive to the metabolic state of the cell, and that down-regulation of the TCA cycle prevents the removal of CDK-1 inhibitory phosphorylation. The TCA cycle was previously shown to be necessary for the development of the early embryo in mammals, but the molecular processes affected were not known. Our study demonstrates a link between the TCA cycle and a specific cell cycle transition in the one-cell stage embryo.

  18. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    International Nuclear Information System (INIS)

    Fukuda, Jun; Tsujimura, Seiya; Kano, Kenji

    2008-01-01

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 μL was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change (ΔG o ') is negative; (2) α-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive ΔG o ' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of α-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total ΔG o ' value negative

  19. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Tsujimura, Seiya [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: seiya@kais.kyoto-u.ac.jp; Kano, Kenji [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: kkano@kais.kyoto-u.ac.jp

    2008-12-30

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 {mu}L was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change ({delta}G{sup o}') is negative; (2) {alpha}-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive {delta}G{sup o}' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of {alpha}-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total {delta}G{sup o}' value negative.

  20. Trichloroacetic acid cycling in Sitka spruce saplings and effects on sapling health following long term exposure

    International Nuclear Information System (INIS)

    Dickey, C.A.; Heal, K.V.; Stidson, R.T.; Koren, R.; Schroeder, P.; Cape, J.N.; Heal, M.R.

    2004-01-01

    Trichloroacetic acid (TCA, CCl 3 COOH) has been associated with forest damage but the source of TCA to trees is poorly characterised. To investigate the routes and effects of TCA uptake in conifers, 120 Sitka spruce (Picea sitchensis (Bong.) Carr) saplings were exposed to control, 10 or 100 μg l -1 solutions of TCA applied twice weekly to foliage only or soil only over two consecutive 5-month growing seasons. At the end of each growing season similar elevated TCA concentrations (approximate range 200-300 ng g -1 dwt) were detected in both foliage and soil-dosed saplings exposed to 100 μg l -1 TCA solutions showing that TCA uptake can occur from both exposure routes. Higher TCA concentrations in branchwood of foliage-dosed saplings suggest that atmospheric TCA in solution is taken up indirectly into conifer needles via branch and stemwood. TCA concentrations in needles declined slowly by only 25-30% over 6 months of winter without dosing. No effect of TCA exposure on sapling growth was measured during the experiment. However at the end of the first growing season needles of saplings exposed to 10 or 100 μg l -1 foliage-applied TCA showed significantly more visible damage, higher activities of some detoxifying enzymes, lower protein contents and poorer water control than needles of saplings dosed with the same TCA concentrations to the soil. At the end of each growing season the combined TCA storage in needles, stemwood, branchwood and soil of each sapling was <6% of TCA applied. Even with an estimated half-life of tens of days for within-sapling elimination of TCA during the growing season, this indicates that TCA is eliminated rapidly before uptake or accumulates in another compartment. Although TCA stored in sapling needles accounted for only a small proportion of TCA stored in the sapling/soil system it appears to significantly affect some measures of sapling health. - TCA stored in Sitka spruce needles may affect the health of saplings

  1. Oleanolic acid acetate inhibits rheumatoid arthritis by modulating T cell immune responses and matrix-degrading enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Kyeong [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Kim, Sung-Wan; Kim, Duk-Sil [Department of Thoracic and Cardiovascular Surgery, CHA Gumi Medical Center, CHA University, Gumi 730-040 (Korea, Republic of); Lee, Jong Yeong [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Lee, Soyoung [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Oh, Hyun-Mee [Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Ha, Yeong Su; Yoo, Jeongsoo [Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Park, Pil-Hoon [College of Pharmacy, Yeungnam University, Gyeongbuk 712-749 (Korea, Republic of); Shin, Tae-Yong [College of Pharmacy, Woosuk University, Jeonju 565-701 (Korea, Republic of); Kwon, Taeg Kyu [Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701 (Korea, Republic of); Rho, Mun-Chual, E-mail: rho-m@kribb.re.kr [Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Kim, Sang-Hyun, E-mail: shkim72@knu.ac.kr [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2016-01-01

    ABSTRACT: Rheumatoid arthritis (RA) is a chronic autoimmune disease associated with a combination of synovium joint inflammation, synovium hyperplasia, and destruction of cartilage and bone. Oleanolic acid acetate (OAA), a compound isolated from Vigna angularis, has been known to possess pharmacological activities, including anti-inflammation and anti-bone destruction. In this study, we investigated the effects of OAA on RA and the underlying mechanisms of action by using a type-II collagen-induced arthritis (CIA) mouse model and tumor necrosis factor (TNF)-α-stimulated RA synovial fibroblasts. Oral administration of OAA decreased the clinical arthritis symptoms, paw thickness, histologic and radiologic changes, and serum total and anti-type II collagen IgG, IgG1, and IgG2a levels. OAA administration reduced Th1/Th17 phenotype CD4{sup +} T lymphocyte expansions and inflammatory cytokine productions in T cell activated draining lymph nodes and spleen. OAA reduced the expression and production of inflammatory mediators, such as cytokines and matrix metalloproteinase (MMP)-1/3, in the ankle joint tissue and RA synovial fibroblasts by down-regulating Akt, mitogen-activated protein kinases, and nuclear factor-κB. Our results clearly support that OAA plays a therapeutic role in RA pathogenesis by modulating helper T cell immune responses and matrix-degrading enzymes. The immunosuppressive effects of OAA were comparable to dexamethasone and ketoprofen. We provide evidences that OAA could be a potential therapeutic candidate for RA. - Highlights: • OAA attenuated chronic CIA symptoms. • OAA had a regulating effect on the T helper cell immune reaction for CIA. • The effect of OAA on the RA was comparable to the dexamethasone or ketoprofen. • OAA might be a candidate for the treatment of arthritic diseases.

  2. Influence of baking enzymes on antimicrobial activity of five bacteriocin-like inhibitory substances produced by lactic acid bacteria isolated from Lithuanian sourdoughs.

    Science.gov (United States)

    Narbutaite, V; Fernandez, A; Horn, N; Juodeikiene, G; Narbad, A

    2008-12-01

    To evaluate the effect of four different baking enzymes on the inhibitory activity of five bacteriocin-like inhibitory substances (BLIS) produced by lactic acid bacteria (LAB) isolated from Lithuanian sourdoughs. The overlay assay and the Bioscreen methods revealed that the five BLIS exhibited an inhibitory effect against spore germination and vegetative outgrowth of Bacillus subtilis, the predominant species causing ropiness in bread. The possibility that the observed antibacterial activity of BLIS might be lost after treatment with enzymes used for baking purposes was also examined. The enzymes tested; hemicellulase, lipase, amyloglucosidase and amylase had little or no effect on the majority of the antimicrobial activities associated with the five BLIS studied. This study suggests a potential application in the sourdough baking industry for these antimicrobial producing LAB strains in the control of B. subtilis spore germination and vegetative outgrowth.

  3. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism.

    Science.gov (United States)

    Mourtzakis, M; Graham, T E; González-Alonso, J; Saltin, B

    2008-08-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (PTCA cycle intermediates. In the UT thigh, peak exercise (vs. rest) induced an increase in fumarate (0.33+/-0.07 vs. 0.02+/-0.01 mmol/kg dry wt (dw), PTCA cycle, glutamate and TCA cycle intermediates do not directly affect VO2peak in either trained or untrained muscle.

  4. The tricarboxylic acid cycle activity in cultured primary astrocytes is strongly accelerated by the protein tyrosine kinase inhibitor tyrphostin 23

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S

    2017-01-01

    production. In addition, T23-treatment strongly increased the molecular carbon labeling of the TCA cycle intermediates citrate, succinate, fumarate and malate, and significantly increased the incorporation of (13)C-labelling into the amino acids glutamate, glutamine and aspartate. These results clearly......Tyrphostin 23 (T23) is a well-known inhibitor of protein tyrosine kinases and has been considered as potential anti-cancer drug. T23 was recently reported to acutely stimulate the glycolytic flux in primary cultured astrocytes. To investigate whether T23 also affects the tricarboxylic acid (TCA...

  5. Experiment K-6-21. Effect of microgravity on 1) metabolic enzymes of type 1 and type 2 muscle fibers and on 2) metabolic enzymes, neutransmitter amino acids, and neurotransmitter associated enzymes in motor and somatosensory cerebral cortex. Part 1: Metabolic enzymes of individual muscle fibers; part 2: metabolic enzymes of hippocampus and spinal cord

    Science.gov (United States)

    Lowry, O.; Mcdougal, D., Jr.; Nemeth, Patti M.; Maggie, M.-Y. Chi; Pusateri, M.; Carter, J.; Manchester, J.; Norris, Beverly; Krasnov, I.

    1990-01-01

    The individual fibers of any individual muscle vary greatly in enzyme composition, a fact which is obscured when enzyme levels of a whole muscle are measured. The purpose of this study was therefore to assess the changes due to weightless on the enzyme patterns composed by the individual fibers within the flight muscles. In spite of the limitation in numbers of muscles examined, it is apparent that: (1) that the size of individual fibers (i.e., their dry weight) was reduced about a third, (2) that this loss in dry mass was accompanied by changes in the eight enzymes studied, and (3) that these changes were different for the two muscles, and different for the two enzyme groups. In the soleus muscle the absolute amounts of the three enzymes of oxidative metabolism decreased about in proportion to the dry weight loss, so that their concentration in the atrophic fibers was almost unchanged. In contrast, there was little loss among the four enzymes of glycogenolysis - glycolysis so that their concentrations were substantially increased in the atrophic fibers. In the TA muscle, these seven enzymes were affected in just the opposite direction. There appeared to be no absolute loss among the oxidative enzymes, whereas the glycogenolytic enzymes were reduced by nearly half, so that the concentrations of the first metabolic group were increased within the atrophic fibers and the concentrations of the second group were only marginally decreased. The behavior of hexokinase was exceptional in that it did not decrease in absolute terms in either type of muscle and probably increased as much as 50 percent in soleus. Thus, their was a large increase in concentration of this enzyme in the atrophied fibers of both muscles. Another clear-cut finding was the large increase in the range of activities of the glycolytic enzymes among individual fibers of TA muscles. This was due to the emergence of TA fibers with activities for enzymes of this group extending down to levels as low as

  6. Coccolithophores: Functional Biodiversity, Enzymes and Bioprospecting

    Directory of Open Access Journals (Sweden)

    Michael J. Allen

    2011-04-01

    Full Text Available Emiliania huxleyi is a single celled, marine phytoplankton with global distribution. As a key species for global biogeochemical cycling, a variety of strains have been amassed in various culture collections. Using a library consisting of 52 strains of E. huxleyi and an ‘in house‘ enzyme screening program, we have assessed the functional biodiversity within this species of fundamental importance to global biogeochemical cycling, whilst at the same time determining their potential for exploitation in biocatalytic applications. Here, we describe the screening of E. huxleyi strains, as well as a coccolithovirus infected strain, for commercially relevant biocatalytic enzymes such as acid/alkali phosphodiesterase, acid/alkali phosphomonoesterase, EC1.1.1-type dehydrogenase, EC1.3.1-type dehydrogenase and carboxylesterase.

  7. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction.

    Science.gov (United States)

    Liu, Lin; Xia, Ning; Liu, Huiping; Kang, Xiaojing; Liu, Xiaoshuan; Xue, Chan; He, Xiaoling

    2014-03-15

    MicroRNAs (miRNAs) are believed to be important for cancer diagnosis and prognosis, serving as reliable molecular biomarkers. In this work, we presented a label-free and highly sensitive electrochemical genosensor for miRNAs detection with the triple signal amplification of gold nanoparticles (AuNPs), alkaline phosphatase (ALP) and p-aminophenol (p-AP) redox cycling. The label-free strategy is based on the difference in the structures of RNA and DNA. Specifically, miRNAs were first captured by the pre-immobilized DNA probes on a gold electrode. Next, the cis-diol group of ribose sugar at the end of the miRNAs chain allowed 3-aminophenylboronic acid (APBA)/biotin-modified multifunctional AuNPs (denoted as APBA-biotin-AuNPs) to be attached through the formation of a boronate ester covalent bond, which facilitated the capture of streptavidin-conjugated alkaline phosphatase (SA-ALP) via the biotin-streptavidin interaction. After the addition of the 4-aminophenylphosphate (p-APP) substrate, the enzymatic conversion from p-APP to p-AP occurred. The resulting p-AP could be cycled by a chemical reducing reagent after its electro-oxidization on the electrode (known as p-AP redox cycling), thus enabling an increase in the anodic current. As a result, the current increased linearly with the miRNAs concentration over a range of 10 fM-5 pM, and a detection limit of 3 fM was achieved. We believe that this work will be valuable for the design of new types of label-free and sensitive electrochemical biosensors. © 2013 Published by Elsevier B.V.

  8. The Effect of Salicylic Acid and Gibberellin on Seed Reserve Utilization, Germination and Enzyme Activity of Sorghum (Sorghum bicolor L. Seeds Under Drought Stress

    Directory of Open Access Journals (Sweden)

    Roghayyeh Sheykhbaglou

    2014-03-01

    Full Text Available Seed priming methods have been used to increases germination characteristics under stress conditions. The study aimed was to determine the effect of salicylic acid and gibberellin on seed reserve utilization, germination and enzyme activity of sorghum (Sorghum bicolor L. seeds under drought stress. Factorial experiment was carried out in completely randomized design with three replications. The first factor was the seed treatments (unpriming, salicylic acid and gibberellin and the second factor was drought stress (0, -4, -8 and -12 bar. The results indicated that for these traits: germination percentage, germination index, weight of utilized (mobilized seed, seed reserve utilization efficiency, seedling dry weight and seed reserve depletion percentage was a significant treatment Ч drought interaction. Thus priming improved study traits in Sorghum (Sorghum bicolor L. seeds under drought stress. Also, priming improves enzyme activity as compared to the unprimed seeds.

  9. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism

    DEFF Research Database (Denmark)

    Mourtzakis, M.; Graham, T.E.; Gonzalez-Alonso, J.

    2008-01-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate...... declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70......% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (Pglutamate infusion. Peak...

  10. Clostridium difficile Testing Algorithm: Is There a Difference in Patients Who Test Positive by Enzyme Immunoassay vs. Those Who Only Test Positive by Nucleic Acid Amplification Methodology?

    OpenAIRE

    Polak, Jonathan; Odili, Ogheneruona; Craver, Mary Ashleigh; Mayen, Anthony; Purrman, Kyle; Rahman, Asem; Sang, Charlie Joseph; Cook, Paul P

    2017-01-01

    Abstract Background Testing for Clostridium difficile infection (CDI) commonly involves checking for the presence of toxins A and B by enzyme immunoassay (EIA) or nucleic acid amplification (NAA). The former is very specific, but not very sensitive. The latter is very sensitive. Beginning in 2011, our hospital incorporated an algorithm that involved testing liquid stool specimens for glutamate dehydrogenase (GDH) and toxin by EIA. For discrepant results, the stool specimen was tested for the ...

  11. Gene polymorphisms of desaturase enzymes of polyunsaturated fatty acid metabolism and adiponutrin and the increased risk of nonalcoholic fatty liver disease

    OpenAIRE

    Manvi Vernekar; Deepak Amarapurkar; Kalpana Joshi; Rekha Singhal

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is considered to be the hepatic manifestation of the metabolic syndrome (MetS). Adiponutrin gene polymorphisms have been associated with NAFLD worldwide. Polyunsaturated fatty acids (PUFAs) have been studied to have anti-inflammatory effects and plasma lipid lowering properties. PUFAs are endogenously synthesized with the help of delta-6-desaturase and delta-5-desaturase enzymes. They are encoded by FADS2 and FADS1 genes respectively. Polymorphisms in ...

  12. Mono-N-acyl-2,6-diaminopimelic acid derivatives: Analysis by electromigration and spectroscopic methods and examination of enzyme inhibitory activity

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Jan; Vítovcová, M.; Sázelová, Petra; Pícha, Jan; Vaněk, Václav; Buděšínský, Miloš; Jiráček, Jiří; Gillner, D. M.; Holz, R. C.; Mikšík, Ivan; Kašička, Václav

    2014-01-01

    Roč. 467, Dec 15 (2014), s. 4-13 ISSN 0003-2697 R&D Projects: GA ČR(CZ) GAP206/12/0453; GA ČR(CZ) GA13-17224S; GA AV ČR IAA400550614 Institutional support: RVO:61388963 ; RVO:67985823 Keywords : 2,6-diaminopimelic acid derivatives * capillary zone electrophoresis * micellar electrokinetic chromatography * enzyme inhibition Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.219, year: 2014

  13. Synthesis of Na-acetyl-ornithine and N-succinyl-diaminopimelic acid analogs as potential inhibitors of bacterial enzymes ArgE and DapE

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Jan; Pícha, Jan; Jiráček, Jiří; Vaněk, Václav; Gilner, D.; Slaninová, Jiřina; Fučík, Vladimír; Holz, R. C.

    2009-01-01

    Roč. 103, č. 11 (2009), s. 952-952 ISSN 0009-2770. [Pokroky v organické, bioorganické a farmaceutické chemii /44./. 27.11.2009-29.11.2009, Liblice] R&D Projects: GA AV ČR IAA400550614 Institutional research plan: CEZ:AV0Z40550506 Keywords : amino acid derivatives * bacterial enzymes * inhibition Subject RIV: CC - Organic Chemistry

  14. Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Vavitsas, Konstantinos; Andersen-Ranberg, Johan

    2015-01-01

    in the infiltrated leaves. Furthermore, we demonstrated that a modified membrane anchor is a prerequisite for a functional CYP720B4 enzyme when the chloroplast targeting peptide is added. We report the accumulation of 45-55 μg/g plant dry weight of isopimaric acid four days after the infiltration with the modified...... in the chloroplast and subsequently oxidized by a cytochrome P450, CYP720B4. RESULTS: We transiently expressed the isopimaric acid pathway in Nicotiana benthamiana leaves and enhanced its productivity by the expression of two rate-limiting steps in the pathway (providing the general precursor of diterpenes). This co...

  15. Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level.

    Science.gov (United States)

    Sookoian, Silvia; Castaño, Gustavo O; Scian, Romina; Fernández Gianotti, Tomas; Dopazo, Hernán; Rohr, Cristian; Gaj, Graciela; San Martino, Julio; Sevic, Ina; Flichman, Diego; Pirola, Carlos J

    2016-02-01

    Extensive epidemiologic studies have shown that cardiovascular disease and the metabolic syndrome (MetS) are associated with serum concentrations of liver enzymes; however, fundamental characteristics of this relation are currently unknown. We aimed to explore the role of liver aminotransferases in nonalcoholic fatty liver disease (NAFLD) and MetS. Liver gene- and protein-expression changes of aminotransferases, including their corresponding isoforms, were evaluated in a case-control study of patients with NAFLD (n = 42), which was proven through a biopsy (control subjects: n = 10). We also carried out a serum targeted metabolite profiling to the glycolysis, gluconeogenesis, and Krebs cycle (n = 48) and an exploration by the next-generation sequencing of aminotransferase genes (n = 96). An in vitro study to provide a biological explanation of changes in the transcriptional level and enzymatic activity of aminotransferases was included. Fatty liver was associated with a deregulated liver expression of aminotransferases, which was unrelated to the disease severity. Metabolite profiling showed that serum aminotransferase concentrations are a signature of liver metabolic perturbations, particularly at the amino acid metabolism and Krebs cycle level. A significant and positive association between systolic hypertension and liver expression levels of glutamic-oxaloacetic transaminase 2 (GOT2) messenger RNA (Spearman R = 0.42, P = 0.03) was observed. The rs6993 located in the 3' untranslated region of the GOT2 locus was significantly associated with features of the MetS, including arterial hypertension [P = 0.028; OR: 2.285 (95% CI: 1.024, 5.09); adjusted by NAFLD severity] and plasma lipid concentrations. In the context of an abnormal hepatic triglyceride accumulation, circulating aminotransferases rise as a consequence of the need for increased reactions of transamination to cope with the liver metabolic derangement that is associated with greater gluconeogenesis and

  16. Enzyme-mediated bacterial biodegradation of an azo dye (C.I. Acid blue 113): reuse of treated dye wastewater in post-tanning operations.

    Science.gov (United States)

    Senthilvelan, T; Kanagaraj, J; Panda, R C

    2014-11-01

    "Dyeing" is a common practice used to color the hides during the post-tanning operations in leather processing generating plenty of wastewater. The waste stream containing dye as pollutant is severely harmful to living beings. An azo dye (C.I. Acid Blue 113) has been biodegraded effectively by bacterial culture mediated with azoreductase enzyme to reduce the pollution load in the present investigation. The maximum rate of dye degradation was found to be 96 ± 4 and 92 ± 4 % for the initial concentrations of 100 and 200 mg/l, respectively. The enzyme activity was measured using NADH as a substrate. Fourier transform infrared spectroscopy (FT-IR) analysis was confirmed that the transformation of azo linkage could be transformed into N2 or NH3 or incorporated into complete biomass. Breaking down of dye molecules to various metabolites (such as aniline, naphthalene-1,4-diamine, 3-aminobenzenesulfonic acid, naphthalene-1-sulfonic acid, 8-aminonaphthalene-1-sulfonic acid, 5,8-diaminonaphthalene-1-sulfonic acid) was confirmed by gas chromatography and mass spectra (GC-MS) and mass (electrospray ionization (ESI)) spectra analysis. The treated wastewater could be reused for dyeing operation in the leather processing, and the properties of produced leather were evaluated by conventional methods that revealed to have improved dye penetration into the grain layer of experimental leather sample and resulted in high levelness of dyeing, which helps to obtain the desired smoothness and soft leather properties.

  17. Expression of glutamic acid decarboxylase (GAD) mRNA in the preoptic region of the brain during the estrous cycle of the ewe

    International Nuclear Information System (INIS)

    Pompolo, S.; Clarke, I.J.; Scott, C.J.

    2001-01-01

    Full text: Gamma-aminobutyric acid (GABA) is thought to regulate gonadotropin releasing hormone (GnRH) neurones located in the preoptic area (POA). GABA neurons in this region,express estrogen receptors, and synapse with GnRH cells. Reduced levels of GABA are thought to be permissive of the preovulatory LH surge. We aimed to determine whether the function of GABA changes across the ovine estrous cycle. GAD is an enzyme that synthesises GABA. We measured mRNA levels for the GAD-65 transcript in the diagonal band of Broca (dbB), POA and bed nucleus of stria terminalis (BnST) of ewes (4/group) that were killed (overdose of Pentobarbital) during the luteal (L), follicular (F) or estrous (E) phase of the estrous cycle. Brains were perfused and processed for in situ hybridisation.Sections (20 μm) were hybridised with an 35 S-labelled GAD-65 probe and the number of silver grains/cell was counted. Grains/cell were similar across the cycle in dbB and the ventral BnST. In the dorsal and lateral BnST, GAD expression was greater (P<0.05) in the L (65 ± 3;SEM) than in F (56 ± 30), with a return to luteal phase levels at estrus (70 ± 3). Expression in the POA was lower (P<0.05) during estrus (54 ± 3) than during the luteal phase (70 ± 4). These data show that expression of GAD-65 is lower in some regions of BnST at the time of the cycle (follicular) when estrogen initiates events that lead to the preovulatory LH surge. Expression in the POA is lower at estrus (during the GnRH/LH surge) than during the luteal phase:this could be permissive of the surge. Higher GAD-65 expression in the luteal phase could be due to high progesterone levels at this time of the cycle. Copyright (2001) Australian Neuroscience Society

  18. Glucagon and Amino Acids Are Linked in a Mutual Feedback Cycle

    DEFF Research Database (Denmark)

    Holst, Jens J; Wewer Albrechtsen, Nicolai J; Pedersen, Jens

    2017-01-01

    ; neither condition is necessarily associated with disturbed glucose metabolism. In glucagonoma patients, amino acid turnover and ureagenesis are greatly accelerated, and low plasma amino acid levels are probably at least partly responsible for the necrolytic migratory erythema, which resolves after amino...... acid administration. In patients with receptor mutations (and in knockout mice), pancreatic swelling is due to α-cell hyperplasia with gross hypersecretion of glucagon, which according to recent groundbreaking research may result from elevated amino acid levels. Additionally, solid evidence indicates...... that ureagenesis, and thereby amino acid levels, is critically controlled by glucagon. Together, this constitutes a complete endocrine system; feedback regulation involving amino acids regulates α-cell function and secretion, while glucagon, in turn, regulates amino acid turnover....

  19. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    Science.gov (United States)

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Histological changes and antioxidant enzyme activity in signal crayfish (Pacifastacus leniusculus) associated with sub-acute peracetic acid exposure.

    Science.gov (United States)

    Chupani, Latifeh; Zuskova, Eliska; Stara, Alzbeta; Velisek, Josef; Kouba, Antonin

    2016-01-01

    Peracetic acid (PAA) is a powerful disinfectant recently adopted as a therapeutic agent in aquaculture. A concentration of 10 mg L(-1) PAA effectively suppresses zoospores of Aphanomyces astaci, the agent of crayfish plague. To aid in establishing safe therapeutic guideline, the effects of PAA on treated crayfish were investigated through assessment of histological changes and oxidative damage. Adult female signal crayfish Pacifastacus leniusculus (n = 135) were exposed to 2 mg L(-1) and 10 mg L(-1) of PAA for 7 days followed by a 7 day recovery period in clean water. Superoxide dismutase activity was significantly lower in gill and hepatopancreas after three days exposure to 10 mg L(1) PAA than in the group treated with 2 mg L(-1) PAA and a control in only clean water. Catalase activity in gill and hepatopancreas remained unaffected by both exposures. Glutathione reductase was significantly decreased in gill of 10 mg L(-1) PAA treated crayfish and increased in group exposed to 2 mg L(-1) compared to control after 7 days exposure. Antioxidant enzyme activity in exposed groups returned to control values after recovery period. Gill, hepatopancreas, and antennal gland showed slight damage in crayfish treated with 2 mg L(-1) of PAA compared to the control group. The extent and frequency of histological alterations were more pronounced in animals exposed to 10 mg L(-1). The gill was the most affected organ, infiltrated by granular hemocytes and displaying malformations of lamella tips and disorganization of epithelial cells. After a 7 day recovery period, the infiltrating cells in affected tissues of the exposed crayfish began to return to normal levels. Results suggested that the given concentrations could be applied to signal crayfish against crayfish plague agent in aquaculture; however, further studies are required for safe use. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Interconnection between tricarboxylic acid cycle and energy generation in microbial fuel cell performed by desulfuromonas acetoxidans IMV B-7384

    Science.gov (United States)

    Vasyliv, Oresta M.; Maslovska, Olga D.; Ferensovych, Yaroslav P.; Bilyy, Oleksandr I.; Hnatush, Svitlana O.

    2015-05-01

    Desulfuromonas acetoxidans IMV B-7384 is exoelectrogenic obligate anaerobic sulfur-reducing bacterium. Its one of the first described electrogenic bacterium that performs complete oxidation of an organic substrate with electron transfer directly to the electrode in microbial fuel cell (MFC). This bacterium is very promising for MFC development because of inexpensive cultivation medium, high survival rate and selective resistance to various heavy metal ions. The size of D. acetoxidans IMV B-7384 cells is comparatively small (0.4-0.8×1-2 μm) that is highly beneficial while application of porous anode material because of complete bacterial cover of an electrode area with further significant improvement of the effectiveness of its usage. The interconnection between functioning of reductive stage of tricarboxylic acid (TCA) cycle under anaerobic conditions, and MFC performance was established. Malic, pyruvic, fumaric and succinic acids in concentration 42 mM were separately added into the anode chamber of MFC as the redox agents. Application of malic acid caused the most stabile and the highest power generation in comparison with other investigated organic acids. Its maximum equaled 10.07±0.17mW/m2 on 136 hour of bacterial cultivation. Under addition of pyruvic, succinic and fumaric acids into the anode chamber of MFC the maximal power values equaled 5.80±0.25 mW/m2; 3.2±0.11 mW/m2, and 2.14±0.19 mW/m2 respectively on 40, 56 and 32 hour of bacterial cultivation. Hence the malic acid conversion via reductive stage of TCA cycle is shown to be the most efficient process in terms of electricity generation by D. acetoxidans IMV B-7384 in MFC under anaerobic conditions.

  2. Inhibition of hydrolytic enzymes by gold compounds. I. beta-Glucuronidase and acid phosphatase by sodium tetrachloroaurate (III) and potassium tetrabromoaurate (III).

    Science.gov (United States)

    Lee, M T; Ahmed, T; Friedman, M E

    1989-01-01

    Purified bovine liver beta-glucuronidase (beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32) and wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) were inhibited with freshly dissolved and 24 h aquated tetrahaloaurate (III) compounds. Rate and equilibrium inhibition constants were measured. From this data two acid phosphatases species were observed. Equilibrium inhibition constants ranged from 1 to 12.5 microM for the various gold compounds toward both enzymes. The first order rate constants ranged between 0.005 and 0.04 min.-1 for most reactions with the exception of the fast reacting acid phosphatase which had values as high as 2.6 and 2.8 min.-1. It is observed that the beta-glucuronidase is rapidly inhibited during the equilibrium phase before the more slower reaction covalent bond formation takes place. The acid phosphatases form the covalent bonds more rapidly, especially the faster reacting species suggesting a unique difference in the active site geometry to that of the more slowly reacting species. The tightly bonded gold (III)-enzyme complex is probably the reason for its toxicity and non-anti-inflammatory use as a drug.

  3. The Key Enzyme of the Sialic Acid Metabolism Is Involved in Embryoid Body Formation and Expression of Marker Genes of Germ Layer Formation

    Directory of Open Access Journals (Sweden)

    Annett Thate

    2013-10-01

    Full Text Available The bi-functional enzyme UDP-N-acetyl-2-epimerase/N-acetylmannosamine kinase (GNE is the key enzyme of the sialic acid biosynthesis. Sialic acids are negatively charged nine carbon amino sugars and are found on most glycoproteins and many glycolipids in terminal positions, where they are involved in a variety of biological important molecular interactions. Inactivation of the GNE by homologous recombination results in early embryonic lethality in mice. Here, we report that GNE-deficient embryonic stem cells express less differentiation markers compared to wild-type embryonic stem cells. As a result, GNE-deficient embryonic stem cells fail to form proper embryoid bodies (EB within the first day of culture. However, when culturing these cells in the presence of sialic acids for three days, also GNE-deficient embryonic stem cells form normal EBs. In contrast, when culturing these cells in sialic acid reduced medium, GNE-deficient embryonic stem cells proliferate faster and form larger EBs without any change in the expression of markers of the germ layers.

  4. Ser/Thr Phosphorylation Regulates the Fatty Acyl-AMP Ligase Activity of FadD32, an Essential Enzyme in Mycolic Acid Biosynthesis*

    Science.gov (United States)

    Le, Nguyen-Hung; Molle, Virginie; Eynard, Nathalie; Miras, Mathieu; Stella, Alexandre; Bardou, Fabienne; Galandrin, Ségolène; Guillet, Valérie; André-Leroux, Gwenaëlle; Bellinzoni, Marco; Alzari, Pedro; Mourey, Lionel; Burlet-Schiltz, Odile; Daffé, Mamadou; Marrakchi, Hedia

    2016-01-01

    Mycolic acids are essential components of the mycobacterial cell envelope, and their biosynthetic pathway is a well known source of antituberculous drug targets. Among the promising new targets in the pathway, FadD32 is an essential enzyme required for the activation of the long meromycolic chain of mycolic acids and is essential for mycobacterial growth. Following the in-depth biochemical, biophysical, and structural characterization of FadD32, we investigated its putative regulation via post-translational modifications. Comparison of the fatty acyl-AMP ligase activity between phosphorylated and dephosphorylated FadD32 isoforms showed that the native protein is phosphorylated by serine/threonine protein kinases and that this phosphorylation induced a significant loss of activity. Mass spectrometry analysis of the native protein confirmed the post-translational modifications and identified Thr-552 as the phosphosite. Phosphoablative and phosphomimetic FadD32 mutant proteins confirmed both the position and the importance of the modification and its correlation with the negative regulation of FadD32 activity. Investigation of the mycolic acid condensation reaction catalyzed by Pks13, involving FadD32 as a partner, showed that FadD32 phosphorylation also impacts the condensation activity. Altogether, our results bring to light FadD32 phosphorylation by serine/threonine protein kinases and its correlation with the enzyme-negative regulation, thus shedding a new horizon on the mycolic acid biosynthesis modulation and possible inhibition strategies for this promising drug target. PMID:27590338

  5. Long Term Effects of Acid Irrigation at the Hoeglwald on Seepage Water Chemistry and Nutrient Cycling

    International Nuclear Information System (INIS)

    Weis, Wendelin; Baier, Roland; Huber, Christian; Goettlein, Axel

    2007-01-01

    In order to test the hypothesis of aluminium toxicity induced by acid deposition, an experimental acid irrigation was carried out in a mature Norway spruce stand in Southern Germany (Hoeglwald). The experiment comprised three plots: no irrigation, irrigation (170 mm a -1 ), and acid irrigation with diluted sulphuric acid (pH of 2.6-2.8). During the seven years of acid irrigation (1984-1990) water containing 0.43 mol c m -2 a -1 of protons and sulphate was added with a mean pH of 3.2 (throughfall + acid irrigation water) compared to 4.9 (throughfall) on both control plots. Most of the additional proton input was consumed in the organic layer and the upper mineral soil. Acid irrigation resulted in a long lasting elevation of sulphate concentrations in the seepage water. Together with sulphate both aluminium and appreciable amounts of base cations were leached from the main rooting zone. The ratio between base cations (Ca + Mg + K) and aluminium was 0.79 during acid irrigation and 0.92 on the control. Neither tree growth and nutrition nor the pool of exchangeable cations were affected significantly. We conclude that at this site protection mechanisms against aluminium toxicity exist and that additional base cation runoff can still be compensated without further reduction of the supply of exchangeable base cations in the upper mineral soil

  6. Co-ordinate changes in enzymes of fatty acid synthesis, activation and esterification in rabbit mammary gland druing pregnancy and lactation.

    Science.gov (United States)

    Short, V J; Brindley, D N; Dils, R

    1977-01-01

    1. The activities of fatty acid synthetase, acyl-CoA synthetase, glycerol phosphate acyltransferase and phosphatidate phosphatase were measured in the mammary glands of rabbits from day 16 of pregnancy to day 15 of post partum. 2. There were significant correlations between the increases in activities of these enzymes during this period. This was the case whether the activities were expressed per mg of homogenate protein, per g wet wt. of tissue or per total wet weight of the whole glands. The only exception was the lack of correlation between the activities of fatty acid synthetase and of phosphatidate phosphatase per g wet wt. of tissue. 3. These co-ordinate increases are discussed in relation to the changes which occur in fatty acid metabolism in the mammary gland during pregnancy and lactation. PMID:192226

  7. ω-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin

    Directory of Open Access Journals (Sweden)

    O'Shea Karen M

    2010-09-01

    Full Text Available Abstract Background Pathological left ventricular (LV hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1 assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2 evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart. Methods Wild type (WT and adiponectin-/- mice underwent transverse aortic constriction (TAC and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated. Results TAC induced similar pathological LV hypertrophy compared to sham mice in both strains on both diets. In WT mice TAC increased LV systolic and diastolic volumes and reduced mitochondrial enzyme activities, which were attenuated by ω-3 PUFA without increasing adiponectin. In contrast, adiponectin-/- mice displayed no increase in LV end diastolic and systolic volumes or decrease in mitochondrial enzymes with TAC, and did not respond to ω-3 PUFA. Conclusion These findings suggest ω-3 PUFA attenuates cardiac pathology in response to pressure overload independent of an elevation in adiponectin.

  8. Poly(3-hydroxybutyrate) fuels the tricarboxylic acid cycle and de novo lipid biosynthesis during Bacillus anthracis sporulation.

    Science.gov (United States)

    Sadykov, Marat R; Ahn, Jong-Sam; Widhelm, Todd J; Eckrich, Valerie M; Endres, Jennifer L; Driks, Adam; Rutkowski, Gregory E; Wingerd, Kevin L; Bayles, Kenneth W

    2017-06-01

    Numerous bacteria accumulate poly(3-hydroxybutyrate) (PHB) as an intracellular reservoir of carbon and energy in response to imbalanced nutritional conditions. In Bacillus spp., where PHB biosynthesis precedes the formation of the dormant cell type called the spore (sporulation), the direct link between PHB accumulation and efficiency of sporulation was observed in multiple studies. Although the idea of PHB as an intracellular carbon and energy source fueling sporulation was proposed several decades ago, the mechanisms underlying PHB contribution to sporulation have not been defined. Here, we demonstrate that PHB deficiency impairs Bacillus anthracis sporulation through diminishing the energy status of the cells and by reducing carbon flux into the tricarboxylic acid (TCA) cycle and de novo lipid biosynthesis. Consequently, this metabolic imbalance decreased biosynthesis of the critical components required for spore integrity and resistance, such as dipicolinic acid (DPA) and the spore's inner membrane. Supplementation of the PHB deficient mutant with exogenous fatty acids overcame these sporulation defects, highlighting the importance of the TCA cycle and lipid biosynthesis during sporulation. Combined, the results of this work reveal the molecular mechanisms of PHB contribution to B. anthracis sporulation and provide valuable insight into the metabolic requirements for this developmental process in Bacillus species. © 2017 John Wiley & Sons Ltd.

  9. Spheroid cancer stem cells display reprogrammed metabolism and obtain energy by actively running the tricarboxylic acid (TCA) cycle.

    Science.gov (United States)

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Takahashi, Juri; Eguchi, Satoko; Yamashita, Aki; Tomio, Kensuke; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Osuga, Yutaka; Fujii, Tomoyuki

    2016-05-31

    The Warburg effect is a metabolic hallmark of cancer cells; cancer cells, unlike normal cells, exclusively activate glycolysis, even in the presence of enough oxygen. On the other hand, intratumoral heterogeneity is currently of interest in cancer research, including that involving cancer stem cells (CSCs). In the present study, we attempted to gain an understanding of metabolism in CSCs that is distinct from that in non-CSCs. After forming spheroids from the OVTOKO (ovarian clear cell adenocarcinoma) and SiHa (cervical squamous cell carcinoma) cell lines, the metabolites of these cells were compared with the metabolites of cancer cells that were cultured in adherent plates. A principle components analysis clearly divided their metabolic features. Amino acids that participate in tricarboxylic acid (TCA) cycle reactions, such as serine and glutamine, were significantly increased in the spheroids. Indeed, spheroids from each cell line contained more total adenylates than did their corresponding cells in adherent cultures. This study demonstrated that cancer metabolism is not limited to aerobic glycolysis (i.e. the Warburg effect), but is flexible and context-dependent. In addition, activation of TCA cycles was suggested to be a metabolic feature of CSCs that was distinct from non-CSCs. The amino acid metabolic pathways discussed here are already considered as targets for cancer therapy, and they are additionally proposed as potential targets for CSC treatment.

  10. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest.

    Science.gov (United States)

    Li, Long-Zhu; Deng, Hong-Xia; Lou, Wen-Zhu; Sun, Xue-Yan; Song, Meng-Wan; Tao, Jing; Xiao, Bing-Xiu; Guo, Jun-Ming

    2012-01-07

    To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G₀/G₁ phase, whereas cells treated with high concentrations of PBA were arrested at the G₂/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G₀/ G₁ phase, cells treated with high concentrations of PBA were arrested at the S phase. The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G₀ /G₁ and G₂/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G₀/G₁ and S phases.

  11. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  12. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  13. High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner.

    Science.gov (United States)

    Glaubitz, Ulrike; Erban, Alexander; Kopka, Joachim; Hincha, Dirk K; Zuther, Ellen

    2015-10-01

    Global climate change combined with asymmetric warming can have detrimental effects on the yield of crop plants such as rice (Oryza sativa L.). Little is known about metabolic responses of rice to high night temperature (HNT) conditions. Twelve cultivars with different HNT sensitivity were used to investigate metabolic changes in the vegetative stage under HNT compared to control conditions. Central metabolism, especially TCA cycle and amino acid biosynthesis, were strongly affected particularly in sensitive cultivars. Levels of several metabolites were correlated with HNT sensitivity. Furthermore, pool sizes of some metabolites negatively correlated with HNT sensitivity under control conditions, indicating metabolic pre-adaptation in tolerant cultivars. The polyamines putrescine, spermidine and spermine showed increased abundance in sensitive cultivars under HNT conditions. Correlations between the content of polyamines and 75 other metabolites indicated metabolic shifts from correlations with sugar-phosphates and 1-kestose under control to correlations with sugars and amino and organic acids under HNT conditions. Increased expression levels of ADC2 and ODC1, genes encoding enzymes catalysing the first committed steps of putrescine biosynthesis, were restricted to sensitive cultivars under HNT. Additionally, transcript levels of eight polyamine biosynthesis genes were correlated with HNT sensitivity. Responses to HNT in the vegetative stage result in distinct differences between differently responding cultivars with a dysregulation of central metabolism and an increase of polyamine biosynthesis restricted to sensitive cultivars under HNT conditions and a pre-adaptation of tolerant cultivars already under control conditions with higher levels of potentially protective compatible solutes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Comparative analysis for the production of fatty acid alkyl esterase using whole cell biocatalyst and purified enzyme from Rhizopus oryzae on waste cooking oil (sunflower oil).

    Science.gov (United States)

    Balasubramaniam, Bharathiraja; Sudalaiyadum Perumal, Ayyappasamy; Jayaraman, Jayamuthunagai; Mani, Jayakumar; Ramanujam, Praveenkumar

    2012-08-01

    The petroleum fuel is nearing the line of extinction. Recent research and technology have provided promising outcomes to rely on biodiesel as the alternative and conventional source of fuel. The use of renewable source - vegetable oil constitutes the main stream of research. In this preliminary study, Waste Cooking Oil (WCO) was used as the substrate for biodiesel production. Lipase enzyme producing fungi Rhizopus oryzae 262 and commercially available pure lipase enzyme were used for comparative study in the production of Fatty Acid Alkyl Esters (FAAE). The whole cell (RO 262) and pure lipase enzyme (PE) were immobilized using calcium alginate beads. Calcium alginate was prepared by optimizing with different molar ratios of calcium chloride and different per cent sodium alginate. Entrapment immobilization was done for whole cell biocatalyst (WCB). PE was also immobilized by entrapment for the transesterification reaction. Seven different solvents - methanol, ethanol, n-propanol, n-butanol, iso-propanol, iso-butanol and iso-amyl alcohol were used as the acyl acceptors. The reaction parameters like temperature (30°C), molar ratio (1:3 - oil:solvent), reaction time (24 h), and amount of enzyme (10% mass ratio to oil) were also optimized for methanol alone. The same parameters were adopted for the other acyl acceptors too. Among the different acyl acceptors - methanol, whose reaction parameters were optimized showed maximum conversion of triglycerides to FAAE-94% with PE and 84% with WCB. On the whole, PE showed better catalytic converting ability with all the acyl acceptor compared to WCB. Gas chromatography analysis (GC) was done to determine the fatty acid composition of WCO (sunflower oil) and FAAE production with different acyl acceptors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Gene polymorphisms as risk factors for predicting the cardiovascular manifestations in Marfan syndrome. Role of folic acid metabolism enzyme gene polymorphisms in Marfan syndrome.

    Science.gov (United States)

    Benke, Kálmán; Ágg, Bence; Mátyás, Gábor; Szokolai, Viola; Harsányi, Gergely; Szilveszter, Bálint; Odler, Balázs; Pólos, Miklós; Maurovich-Horvat, Pál; Radovits, Tamás; Merkely, Béla; Nagy, Zsolt B; Szabolcs, Zoltán

    2015-10-01

    Folic acid metabolism enzyme polymorphisms are believed to be responsible for the elevation of homocysteine (HCY) concentration in the blood plasma, correlating with the pathogenesis of aortic aneurysms and aortic dissection. We studied 71 Marfan patients divided into groups based on the severity of cardiovascular involvement: no intervention required (n=27, Group A); mild involvement requiring intervention (n=17, Group B); severe involvement (n=27, Group C) subdivided into aortic dilatation (n=14, Group C1) and aortic dissection (n=13, Group C2), as well as 117 control subjects. We evaluated HCY, folate, vitamin B12 and the polymorphisms of methylenetetrahydrofolate reductase (MTHFR;c.665C>T and c.1286A>C), methionine synthase (MTR;c.2756A>G) and methionine synthase reductase (MTRR;c.66A>G). Multiple comparisons showed significantly higher levels of HCY in Group C2 compared to Groups A, B, C1 and control group (pMarfan patients, and especially aortic dissection, is associated with higher HCY plasma levels and prevalence of homozygous genotypes of folic acid metabolism enzymes than mild or no cardiovascular involvement. These results suggest that impaired folic acid metabolism has an important role in the development and remodelling of the extracellular matrix of the aorta.

  16. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    Science.gov (United States)

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  17. Photoperiodism and enzyme activity: towards a model for the control of circadian metabolic rhythms in the crassulacean Acid metabolism.

    Science.gov (United States)

    Queiroz, O; Morel, C

    1974-04-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system.

  18. Shifting patterns of nitrogen excretion and amino acid catabolism capacity during the life cycle of the sea lamprey (Petromyzon marinus).

    Science.gov (United States)

    Wilkie, Michael P; Claude, Jaime F; Cockshutt, Amanda; Holmes, John A; Wang, Yuxiang S; Youson, John H; Walsh, Patrick J

    2006-01-01

    The jawless fish, the sea lamprey (Petromyzon marinus), spends part of its life as a burrow-dwelling, suspension-feeding larva (ammocoete) before undergoing a metamorphosis into a free swimming, parasitic juvenile that feeds on the blood of fishes. We predicted that animals in this juvenile, parasitic stage have a great capacity for catabolizing amino acids when large quantities of protein-rich blood are ingested. The sixfold to 20-fold greater ammonia excretion rates (J(Amm)) in postmetamorphic (nonfeeding) and parasitic lampreys compared with ammocoetes suggested that basal rates of amino acid catabolism increased following metamorphosis. This was likely due to a greater basal amino acid catabolizing capacity in which there was a sixfold higher hepatic glutamate dehydrogenase (GDH) activity in parasitic lampreys compared with ammocoetes. Immunoblotting also revealed that GDH quantity was 10-fold and threefold greater in parasitic lampreys than in ammocoetes and upstream migrant lampreys, respectively. Higher hepatic alanine and aspartate aminotransferase activities in the parasitic lampreys also suggested an enhanced amino acid catabolizing capacity in this life stage. In contrast to parasitic lampreys, the twofold larger free amino acid pool in the muscle of upstream migrant lampreys confirmed that this period of natural starvation is accompanied by a prominent proteolysis. Carbamoyl phosphate synthetase III was detected at low levels in the liver of parasitic and upstream migrant lampreys, but there was no evidence of extrahepatic (muscle, intestine) urea production via the ornithine urea cycle. However, detection of arginase activity and high concentrations of arginine in the liver at all life stages examined infers that arginine hydrolysis is an important source of urea. We conclude that metamorphosis is accompanied by a metabolic reorganization that increases the capacity of parasitic sea lampreys to catabolize intermittently large amino acid loads arising

  19. Omega-3 polyunsaturated fatty acid docosahexaenoic acid and its role in exhaustive-exercise-induced changes in female rat ovulatory cycle.

    Science.gov (United States)

    Mostafa, Abeer F; Samir, Shereen M; Nagib, R M

    2018-04-01

    Exhaustive exercises can cause delayed menarche or menstrual cycle irregularities in females. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are incorporated into a wide range of benefits in many physiological systems. Our work aimed to assess the role of ω-3 PUFA docosahexaenoic acid (DHA) on the deleterious effects of exhaustive exercise on the female reproductive system in rats. Virgin female rats were randomly divided into 4 groups (12 rats in each): control group, omega-3 group treated with DHA, exhaustive exercise group, and exhaustive exercised rats treated with DHA. Omega-3 was given orally to the rats once daily for 4 estrous cycles. Exhaustive exercises revealed lower levels in progesterone and gonadotropins together with histopathological decrease in number of growing follicles and corpora lutea. Moreover, the exercised rats showed low levels of ovarian antioxidants with high level of caspase-3 and plasma cortisol level that lead to disruption of hypothalamic-pituitary-gonadal axis. ω-3 PUFA DHA has beneficial effects on the number of newly growing follicles in both sedentary and exercised rats with decreasing the level of caspase-3 and increasing the antioxidant activity in ovaries. Exhaustive exercises can cause ovulatory problems in female rats that can be improved by ω-3 supplementation.

  20. Redox cycles of vitamin E: Hydrolysis and ascorbic acid dependent reduction of 8a-(alkyldioxy)tocopherones

    International Nuclear Information System (INIS)

    Liebler, D.C.; Kaysen, K.L.; Kennedy, T.A.

    1989-01-01

    Oxidation of the biological antioxidant α-tocopherol (vitamin E; TH) by peroxyl radicals yields 8a-(alkyldioxy)tocopherones, which either may hydrolyze to α-tocopheryl quinone (TQ) or may be reduced by ascorbic acid to regenerate TH. To define the chemistry of this putative two-electron TH redox cycle, we studied the hydrolysis and reduction of 8a-[(2,4-dimethyl-1-nitrilopent-2-yl)dioxyl]tocopherone (1) in acetonitrile/buffer mixtures and in phospholipid liposomes. TQ formation in acetonitrile/buffer mixtures, which was monitored spectrophotometrically, declined with increasing pH and could not be detected above pH 4. The rate of TQ formation from 1 first increased with time and then decreased in a first-order terminal phase. Rearrangement of 8a-hydroxy-α-tocopherone (2) to TQ displayed first-order kinetics identical with the terminal phase for TQ formation from 1. Both rate constants increased with decreasing pH. Hydrolysis of 1 in acetonitrile/H 2 18 O yielded [ 18 O]TQ. These observations suggest that 1 loses the 8a-(alkyldioxy) moiety to produce the tocopherone cation (T + ), which hydrolyzes to 2, the TQ-forming intermediate. Incubation of either 1 or 2 with ascorbic acid in acetonitrile/buffer yielded TH. Reduction of both 1 and 2 decreased with increasing pH. In phosphatidylcholine liposomes at pH 7, approximately 10% of the T + generated from 1 was reduced to TH by 5 mM ascorbic acid. The results collectively demonstrate that T + is the ascorbic acid reducible intermediate in a two-electron TH redox cycle, a process that probably would require biocatalysis to proceed in biological membranes

  1. Quantification of urinary 5-hydroxyindoleacetic acid by in-house nitrosonaphthol reaction compared with nitrosonaphthol micro column chromatography and enzyme-linked immunosorbent assay

    Directory of Open Access Journals (Sweden)

    Joyce Matie Kinoshita da Silva

    2014-06-01

    Full Text Available The aim of this study was to compare the colorimetric "kit" and enzyme-linked immunosorbent assay (ELISA methods to quantify urinary 5-hydroxyindoleacetic acid through the Goldenberg's technique, exploring the potential of replacing it. 24-hour urine samples were tested by Goldenberg's assay and compared with kits. The agreement was almost perfect for the comparison of Goldenberg's assay with both colorimetric kit, and with ELISA kit, considering ≤ 7.5 mg/24h normal cutoff value. Therefore, both "kits" would be good alternatives to Goldenberg's technique due to practicality and agreement between values.

  2. The Effect of EDTA and Citric acid on Soil Enzymes Activity, Substrate Induced Respiration and Pb Availability in a Contaminated Soil

    Directory of Open Access Journals (Sweden)

    seyed sajjad hosseini

    2017-03-01

    Full Text Available Introduction: Application of EDTA may increase the heavy metal availability and phytoextraction efficiency in contaminated soils. In spite of that, it might also have some adverse effects on soil biological properties. Metals as freeions are considered to be severely toxic, whereas the complexed form of these metalswith organic compounds or Fe/Mn oxides may be less available to soil microbes. However, apart from this fact, some of these compounds like EDTA and EDTA-metal complexes have low bio- chemo- and photo-degradablity and high solubility in their own characteristics andable to cause toxicity in soil environment. So more attentions have been paid to use of low molecular weight organic acids (LMWOAs such as Citric acid because of having less unfavorable effects to the environment. Citric acid increases heavy metals solubility in soils and it also improves soil microbial activity indirectly. Soil enzymes activity is a good indicator of soil quality, and it is more suitable for monitoring the soil quality compared to physical or chemical indicators. The aims of this research were to evaluate the changes of dehydrogenase, urease and alkaline phosphomonoesterase activities, substrate-induced respiration (SIR and Pb availability after EDTA and citric acid addition into a contaminated soil with PbCl2. Materials and Methods: An experiment was conducted in a completely randomized design with factorial arrangement and three replications in greenhouse condition. The soil samples collected from surface horizon (0-20 cm of the Typic haplocalsids, located in Mashhad, Iran. Soil samples were artificially contaminated with PbCl2 (500 mg Pb per kg of soil and incubated for one months in 70 % of water holding capacity at room temperature. The experimental treatments included control, 3 and 5 mmol EDTA (EDTA3 and EDTA5 and Citric acid (CA3 and CA5 per kg of soil. Soil enzymes activity, substrate-induced respiration and Pb availability of soil samples were

  3. Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme

    DEFF Research Database (Denmark)

    Madsen, Søren M; Beck, Hans Christian; Ravn, Peter

    2002-01-01

    Staphylococcus carnosus and Staphylococcus xylosus are widely used as aroma producers in the manufacture of dried fermented sausages. Catabolism of branched-chain amino acids (BCAAs) by these strains contributes to aroma formation by production of methyl-branched aldehydes and carboxy acids. The ...

  4. Carglumic acid: a second look. Confirmed progress in a rare urea cycle disorder.

    Science.gov (United States)

    2008-04-01

    (1) N-acetylglutamate synthase deficiency is a rare congenital disorder that causes hyperammonaemic comas, resulting in severe neurological morbidity and usually leading to death during childhood. (2) Carglumic acid is the first drug to be used for replacement therapy. Data available in 2003 showed beneficial effects on growth and psychomotor development. (3) In 2007, about 20 patients treated with carglumic acid for N-acetyglutamate synthase deficiency, for at least 5 years in half of cases, were all still alive. Their development was normal when treatment was initiated before complications occurred. (4) No serious adverse effects have been observed. (5) In practice, although this treatment has to continue for life, carglumic acid represents a major advance for patients with N-acetylglutamate synthase deficiency.

  5. Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli.

    Science.gov (United States)

    Harder, Björn-Johannes; Bettenbrock, Katja; Klamt, Steffen

    2018-01-01

    Based on the recently constructed Escherichia coli itaconic acid production strain ita23, we aimed to improve the productivity by applying a two-stage process strategy with decoupled production of biomass and itaconic acid. We constructed a strain ita32 (MG1655 ΔaceA Δpta ΔpykF ΔpykA pCadCs), which, in contrast to ita23, has an active tricarboxylic acid (TCA) cycle and a fast growth rate of 0.52 hr -1 at 37°C, thus representing an ideal phenotype for the first stage, the growth phase. Subsequently we implemented a synthetic genetic control allowing the downregulation of the TCA cycle and thus the switch from growth to itaconic acid production in the second stage. The promoter of the isocitrate dehydrogenase was replaced by the Lambda promoter (p R ) and its expression was controlled by the temperature-sensitive repressor CI857 which is active at lower temperatures (30°C). With glucose as substrate, the respective strain ita36A grew with a fast growth rate at 37°C and switched to production of itaconic acid at 28°C. To study the impact of the process strategy on productivity, we performed one-stage and two-stage bioreactor cultivations. The two-stage process enabled fast formation of biomass resulting in improved peak productivity of 0.86 g/L/hr (+48%) and volumetric productivity of 0.39 g/L/hr (+22%) in comparison to the one-stage process. With our dynamic production strain, we also resolved the glutamate auxotrophy of ita23 and increased the itaconic acid titer to 47 g/L. The temperature-dependent activation of gene expression by the Lambda promoters (p R /p L ) has been frequently used to improve protein or, in a few cases, metabolite production in two-stage processes. Here we demonstrate that the system can be as well used in the opposite direction to selectively knock-down an essential gene (icd) in E. coli to design a two-stage process for improved volumetric productivity. The control by temperature avoids expensive inducers and has the

  6. Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA methylation.

    Science.gov (United States)

    Lozoya, Oswaldo A; Martinez-Reyes, Inmaculada; Wang, Tianyuan; Grenet, Dagoberto; Bushel, Pierre; Li, Jianying; Chandel, Navdeep; Woychik, Richard P; Santos, Janine H

    2018-04-18

    Mitochondrial function affects many aspects of cellular physiology, and, most recently, its role in epigenetics has been reported. Mechanistically, how mitochondrial function alters DNA methylation patterns in the nucleus remains ill defined. Using a cell culture model of induced mitochondrial DNA (mtDNA) depletion, in this study we show that progressive mitochondrial dysfunction leads to an early transcriptional and metabolic program centered on the metabolism of various amino acids, including those involved in the methionine cycle. We find that this program also increases DNA methylation, which occurs primarily in the genes that are differentially expressed. Maintenance of mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation in the context of mtDNA loss rescues methionine salvage and polyamine synthesis and prevents changes in DNA methylation and gene expression but does not affect serine/folate metabolism or transsulfuration. This work provides a novel mechanistic link between mitochondrial function and epigenetic regulation of gene expression that involves polyamine and methionine metabolism responding to changes in the tricarboxylic acid (TCA) cycle. Given the implications of these findings, future studies across different physiological contexts and in vivo are warranted.

  7. Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: A case of formic acid synthesis.

    Science.gov (United States)

    Shemfe, Mobolaji; Gadkari, Siddharth; Yu, Eileen; Rasul, Shahid; Scott, Keith; Head, Ian M; Gu, Sai; Sadhukhan, Jhuma

    2018-05-01

    A novel framework, integrating dynamic simulation (DS), life cycle assessment (LCA) and techno-economic assessment (TEA) of a bioelectrochemical system (BES), has been developed to study for the first time wastewater treatment by removal of chemical oxygen demand (COD) by oxidation in anode and thereby harvesting electron and proton for carbon dioxide reduction reaction or reuse to produce products in cathode. Increases in initial COD and applied potential increase COD removal and production (in this case formic acid) rates. DS correlations are used in LCA and TEA for holistic performance analyses. The cost of production of HCOOH is €0.015-0.005 g -1 for its production rate of 0.094-0.26 kg yr -1 and a COD removal rate of 0.038-0.106 kg yr -1 . The life cycle (LC) benefits by avoiding fossil-based formic acid production (93%) and electricity for wastewater treatment (12%) outweigh LC costs of operation and assemblage of BES (-5%), giving a net 61MJkg -1 HCOOH saving. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Synthesis of 1- and 3-11C-labelled L-lactic acid using multi-enzyme catalysis

    International Nuclear Information System (INIS)

    Bjurling, P.; Laangstroem, B.

    1990-01-01

    The synthesis of 1- and 3- 11 C-labelled L-lactic acid from the corresponding racemic 1- or 3- 11 C-labelled alanine using a multi-enzymatic reaction route, is presented. DL-[1- 11 C]Alanine was synthesised by reacting sodium 1-hydroxy-ethyl sulfite with hydrogen [ 11 C]cyanide, obtained from [ 11 C]carbon dioxide, and ammonia followed by acid hydrolysis. DL-[3- 11 C]-Alanine was synthesised by a methylation of a glycine derivative, N-(diphenylmethylene)-glycine tert-butyl ester, with [ 11 C]methyl iodide, obtained from [ 11 C]carbon dioxide, and subsequent hydrolysis. The racemic 1- or 3- 11 C-labelled alanine was then converted to pyruvic acid, by D-amino acid oxidase/catalase and glutamic-pyruvic transaminase, which was directly reduced to L-lactic acid by L-lactic dehydrogenase in a one-pot procedure. The total synthesis time was 40 minutes, counted from release of [ 11 C]carbon dioxide. The decay corrected radiochemical yields were ca. 80% for L-[1- 11 C]lactic acid, based on hydrogen cyanide, and ca. 60% for L-[3- 11 C]lactic acid, based on carbon dioxide. The radiochemical purities were higher than 99% analysed by HPLC. (author)

  9. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  10. Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs.

    Science.gov (United States)

    We recently showed that the developing gut is a significant site of methionine transmethylation to homocysteine and transsulfuration to cysteine. We hypothesized that sulfur amino acid (SAA) deficiency would preferentially reduce mucosal growth and antioxidant function in neonatal pigs. Neonatal pi...

  11. Gallic acid formation from gallotannins-rich agricultural wastes using Aspergillus niger AUMC 4301 or its tannase enzyme

    International Nuclear Information System (INIS)

    El-Fouly, M.Z.; Shahin, A.A.M.; El-Bialy, H.A.; El-Saeed, Gh.E.; El-Awamry, Z.; Naeem, E.

    2012-01-01

    Gallic acid is used in many fields including dye-making, leather and chemical industries. Seven agricultural wastes were chosen for their high gallotannin content. They were apple baggages, green tea waste, mango seed kernel, olive mill, palm kernel cake, peat moss and tamarind. Each waste was used as a carbon source instead of tannic acid in the fermentation medium. Some agricultural wastes under investigation were already contain free gallic acid especially mango seed kernel followed by green tea waste, while olive mill, peat moss and tamarind were found to be free from gallic acid. The highest concentration of liberated gallic acid from wastes fermented by A. niger AUMC 4301 was occurred at the third day of fermentation. After 72 h, a sharp decrease in gallic acid accumulation was noticed. To overcome this sharp decrease, agricultural wastes were treated with extracellular crude A. niger tannase directly in stead of tannase producer. The concentration of gallic acid increased gradually and reached its maximum at 18 h incubation in case of apple baggages, green tea waste and palm kernel cake. On the other hand, gallic acid production was delayed for a lag period (12-18) h depends on the complexity of used agriculture waste. To increase the tannase productivity by A. niger AUMC 4301, the producer fungus was irradiated by different doses of γ rays, D10 value was 0.81 kGy. Radiation dose 0.5 kGy shows a positive effect on tannase productivity. An experiment examined the change in amino acid profile between irradiated and unirradiated A. niger AUMC 4301 was also conducted.

  12. Importance of the Long-Chain Fatty Acid Beta-Hydroxylating Cytochrome P450 Enzyme YbdT for Lipopeptide Biosynthesis in Bacillus subtilis Strain OKB105

    Directory of Open Access Journals (Sweden)

    Michael J. McInerney

    2011-03-01

    Full Text Available Bacillus species produce extracellular, surface-active lipopeptides such as surfactin that have wide applications in industry and medicine. The steps involved in the synthesis of 3-hydroxyacyl-coenzyme A (CoA substrates needed for surfactin biosynthesis are not understood. Cell-free extracts of Bacillus subtilis strain OKB105 synthesized lipopeptide biosurfactants in presence of L-amino acids, myristic acid, coenzyme A, ATP, and H2O2, which suggested that 3-hydroxylation occurs prior to CoA ligation of the long chain fatty acids (LCFAs. We hypothesized that YbdT, a cytochrome P450 enzyme known to beta-hydroxylate LCFAs, functions to form 3-hydroxy fatty acids for lipopeptide biosynthesis. An in-frame mutation of ybdT was constructed and the resulting mutant strain (NHY1 produced predominantly non-hydroxylated lipopeptide with diminished biosurfactant and beta-hemolytic activities. Mass spectrometry showed that 95.6% of the fatty acids in the NHY1 biosurfactant were non-hydroxylated compared to only ~61% in the OKB105 biosurfactant. Cell-free extracts of the NHY1 synthesized surfactin containing 3-hydroxymyristic acid from 3-hydroxymyristoyl-CoA at a specific activity similar to that of the wild type (17 ± 2 versus 17.4 ± 6 ng biosurfactant min−1·ng·protein−1, respectively. These results showed that the mutation did not affect any function needed to synthesize surfactin once the 3-hydroxyacyl-CoA substrate was formed and that YbdT functions to supply 3-hydroxy fatty acid for surfactin biosynthesis. The fact that YbdT is a peroxidase could explain why biosurfactant production is rarely observed in anaerobically grown Bacillus species. Manipulation of LCFA specificity of YbdT could provide a new route to produce biosurfactants with activities tailored to specific functions.

  13. STUDY ON THE SUGAR-ACID RATIO AND RELEVANT METABOLIZING ENZYME ACTIVITIES IN NAVEL ORANGE FRUITS FROM DIFFERENT ECO-REGIONS

    Directory of Open Access Journals (Sweden)

    GONG RONGGAO

    2015-12-01

    Full Text Available ABSTRACT The flavor quality of citrus fruits is largely determined by the sugar-acid ratio, but it remains uncertain how sugar- and/or acid-metabolizing enzymes regulate the sugar-acid ratio of navel oranges and further affect the fruit quality. In the present study, Robertson navel oranges (Citrus sinesis Osb. were collected from six representative habitats in three eco-regions of Sichuan, China. The changes in the sugar-acid ratio and the activities of sucrose phosphate synthase (SPS, sucrose synthase (SS, cytosolic cio-aconitase (ACO, and isocitrate dehydrogenase (IDH were examined in navel oranges during fruit development. The results indicated that the sugar-acid ratio of fruits in different eco-regions changed significantly from 150 days after full bloom. The SPS and cytosolic ACO fruit activities had minor changes among different ecoregions throughout the experimental periods, whereas the activities of SS and IDH changed significantly in fruits among three eco-regions. Furthermore, the sugar-acid ratio and the activities of SS in the synthetic direction and IDH were the highest in south subtropics and the lowest in north mid-subtropics, probably due to the effects of climate conditions and/or other relevant eco-factors. It demonstrated that SS in the synthetic direction and IDH were of greater importance in regulating the sugar-acid ratio of navel oranges in different eco-regions, which provided new insights into the factors that determine the flavor quality of navel oranges and valuable data for guiding relevant agricultural practices.

  14. Metabonomics Indicates Inhibition of Fatty Acid Synthesis, β-Oxidation, and Tricarboxylic Acid Cycle in Triclocarban-Induced Cardiac Metabolic Alterations in Male Mice.

    Science.gov (United States)

    Xie, Wenping; Zhang, Wenpeng; Ren, Juan; Li, Wentao; Zhou, Lili; Cui, Yuan; Chen, Huiming; Yu, Wenlian; Zhuang, Xiaomei; Zhang, Zhenqing; Shen, Guolin; Li, Haishan

    2018-02-14

    Triclocarban (TCC) has been identified as a new environmental pollutant that is potentially hazardous to human health; however, the effects of short-term TCC exposure on cardiac function are not known. The aim of this study was to use metabonomics and molecular biology techniques to systematically elucidate the molecular mechanisms of TCC-induced effects on cardiac function in mice. Our results show that TCC inhibited the uptake, synthesis, and oxidation of fatty acids, suppressed the tricarboxylic acid (TCA) cycle, and increased aerobic glycolysis levels in heart tissue after short-term TCC exposure. TCC also inhibited the nuclear peroxisome proliferator-activated receptor α (PPARα), confirming its inhibitory effects on fatty acid uptake and oxidation. Histopathology and other analyses further confirm that TCC altered mouse cardiac physiology and pathology, ultimately affecting normal cardiac metabolic function. We elucidate the molecular mechanisms of TCC-induced harmful effects on mouse cardiac metabolism and function from a new perspective, using metabonomics and bioinformatics analysis data.

  15. Fatty acid and phospholipid syntheses are prerequisites for the cell cycle of Symbiodinium and their endosymbiosis within sea anemones.

    Directory of Open Access Journals (Sweden)

    Li-Hsueh Wang

    Full Text Available Lipids are a source of metabolic energy, as well as essential components of cellular membranes. Although they have been shown to be key players in the regulation of cell proliferation in various eukaryotes, including microalgae, their role in the cell cycle of cnidarian-dinoflagellate (genus Symbiodinium endosymbioses remains to be elucidated. The present study examined the effects of a lipid synthesis inhibitor, cerulenin, on the cell cycle of both cultured Symbiodinium (clade B and those engaged in an endosymbiotic association with the sea anemone Aiptasia pulchella. In the former, cerulenin exposure was found to inhibit free fatty acid (FFA synthesis, as it does in other organisms. Additionally, while it also significantly inhibited the synthesis of phosphatidylethanolamine (PE, it did not affect the production of sterol ester (SE or phosphatidylcholine (PC. Interestingly, cerulenin also significantly retarded cell division by arresting the cell cycles at the G0/G1 phase. Cerulenin-treated Symbiodinium were found to be taken up by anemone hosts at a significantly depressed quantity in comparison with control Symbiodinium. Furthermore, the uptake of cerulenin-treated Symbiodinium in host tentacles occurred much more slowly than in untreated controls. These results indicate that FFA and PE may play critical roles in the recognition, proliferation, and ultimately the success of endosymbiosis with anemones.

  16. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. [Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of {alpha}-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for {beta}-amylase. (author)

  17. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. (Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering)

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of [alpha]-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for [beta]-amylase. (author)

  18. Acinetobacter calcoaceticus CSY-P13 Mitigates Stress of Ferulic and p-Hydroxybenzoic Acids in Cucumber by Affecting Antioxidant Enzyme Activity and Soil Bacterial Community

    Directory of Open Access Journals (Sweden)

    Fenghui Wu

    2018-06-01

    Full Text Available Ferulic acid (FA and p-hydroxybenzoic acid (PHBA are main phenolic compounds accumulated in rhizosphere of continuously cropped cucumber, causing stress in plants. Microbial degradation of a mixture of FA and PHBA is not well understood in soil. We isolated a strain CSY-P13 of Acinetobacter calcoaceticus, inoculated it into soil to protect cucumber from FA and PHBA stress, and explored a mechanism underlying the protection. CSY-P13 effectively degraded a mixture of FA and PHBA in culture solution under conditions of 39.37°C, pH 6.97, and 21.59 g L-1 potassium dihydrogen phosphate, giving rise to 4-vinyl guaiacol, vanillin, vanillic acid, and protocatechuic acid. During FA and PHBA degradation, activities of superoxide dismutase (SOD, catalase, ascorbate peroxidase, and dehydroascorbate reductase in CSY-P13 were induced. Inoculated into cucumber-planted soil containing 220 μg g-1 mixture of FA and PHBA, CSY-P13 degraded FA and PHBA in soil, increased plant height, and decreased malonaldehyde, superoxide radical, and hydrogen peroxide levels in leaves. CSY-P13 also enhanced SOD, guaiacol peroxidase, catalase, glutathione peroxidase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase activities; increased ascorbate and glutathione contents; and elevated transcript levels of copper/zinc SOD, manganese SOD, and catalase in leaves under FA and PHBA. Moreover, CSY-P13 increased phosphatase, catalase, urease, and sucrase activities and changed bacterial richness, diversity, and community composition by high throughput sequencing in cucumber-planted soil supplemented with the mixture of FA and PHBA. So CSY-P13 degrades the mixture of FA and PHBA in soil and mitigates stress from the two phenolic compounds in cucumber by activating antioxidant enzymes, changing soil bacterial community, and inducing soil enzymes.

  19. Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice

    Directory of Open Access Journals (Sweden)

    Rongli Sun

    2016-10-01

    Full Text Available Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC, red blood cell (RBC, platelet (Pit counts, and hemoglobin (Hgb concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS, hydrogen peroxide (H2O2, and malondialdehyde (MDA levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity.

  20. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases

    Directory of Open Access Journals (Sweden)

    Anthony Samsel

    2013-04-01

    Full Text Available Glyphosate, the active ingredient in Roundup®, is the most popular herbicide used worldwide. The industry asserts it is minimally toxic to humans, but here we argue otherwise. Residues are found in the main foods of the Western diet, comprised primarily of sugar, corn, soy and wheat. Glyphosate's inhibition of cytochrome P450 (CYP enzymes is an overlooked component of its toxicity to mammals. CYP enzymes play crucial roles in biology, one of which is to detoxify xenobiotics. Thus, glyphosate enhances the damaging effects of other food borne chemical residues and environmental toxins. Negative impact on the body is insidious and manifests slowly over time as inflammation damages cellular systems throughout the body. Here, we show how interference with CYP enzymes acts synergistically with disruption of the biosynthesis of aromatic amino acids by gut bacteria, as well as impairment in serum sulfate transport. Consequences are most of the diseases and conditions associated with a Western diet, which include gastrointestinal disorders, obesity, diabetes, heart disease, depression, autism, infertility, cancer and Alzheimer’s disease. We explain the documented effects of glyphosate and its ability to induce disease, and we show that glyphosate is the “textbook example” of exogenous semiotic entropy: the disruption of homeostasis by environmental toxins.

  1. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan; Liu, Qi; Sun, Hui-jun; Sun, Peng-yuan; Huo, Xiao-kui; Liu, Zhi-hao; Yao, Ji-hong; Liu, Ke-xin, E-mail: kexinliu@dlmedu.edu.cn

    2015-03-15

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved

  2. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

    International Nuclear Information System (INIS)

    Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan; Liu, Qi; Sun, Hui-jun; Sun, Peng-yuan; Huo, Xiao-kui; Liu, Zhi-hao; Yao, Ji-hong; Liu, Ke-xin

    2015-01-01

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved

  3. Detection of Ganoderic Acid A in Ganoderma lingzhi by an Indirect Competitive Enzyme-Linked Immunosorbent Assay.

    Science.gov (United States)

    Sakamoto, Seiichi; Kohno, Toshitaka; Shimizu, Kuniyoshi; Tanaka, Hiroyuki; Morimoto, Satoshi

    2016-05-01

    Ganoderma is a genus of medicinal mushroom traditionally used for treating various diseases. Ganoderic acid A is one of the major bioactive Ganoderma triterpenoids isolated from Ganoderma species. Herein, we produced a highly specific monoclonal antibody against ganoderic acid A (MAb 12 A) and developed an indirect competitive ELISA for the highly sensitive detection of ganoderic acid A in Ganoderma lingzhi, with a limit of detection of 6.10 ng/mL. Several validation analyses support the accuracy and reliability of the developed indirect competitive ELISA for use in the quality control of Ganoderma based on ganoderic acid A content. Furthermore, quantitative analysis of ganoderic acid A in G. lingzhi revealed that the pileus exhibits the highest ganoderic acid A content compared with the stipe and spore of the fruiting body; the best extraction efficiency was found when 50 % ethanol was used, which suggests the use of a strong liquor to completely harness the potential of Ganoderma triterpenoids in daily life. Georg Thieme Verlag KG Stuttgart · New York.

  4. Chitosan–Collagen Coated Magnetic Nanoparticles for Lipase Immobilization—New Type of “Enzyme Friendly” Polymer Shell Crosslinking with Squaric Acid

    Directory of Open Access Journals (Sweden)

    Marta Ziegler-Borowska

    2017-01-01

    Full Text Available This article presents a novel route for crosslinking a polysaccharide and polysaccharide/protein shell coated on magnetic nanoparticles (MNPs surface via condensation reaction with squaric acid (SqA. The syntheses of four new types of collagen-, chitosan-, and chitosan–collagen coated magnetic nanoparticles as supports for enzyme immobilization have been done. Structure and morphology of prepared new materials were characterized by attenuated total reflectance Fourier-transform infrared (ATR-FTIR, XRD, and TEM analysis. Next, the immobilization of lipase from Candida rugosa was performed on the nanoparticles surface via N-(3-dimethylaminopropyl-N′-ethylcarbodiimide hydrochloride (EDC/N-hydroxy-succinimide (NHS mechanism. The best results of lipase activity recovery and specific activities were observed for nanoparticles with polymer shell crosslinked via a novel procedure with squaric acid. The specific activity for lipase immobilized on materials crosslinked with SqA (52 U/mg lipase was about 2-fold higher than for enzyme immobilized on MNPs with glutaraldehyde addition (26 U/mg lipase. Moreover, a little hyperactivation of lipase immobilized on nanoparticles with SqA was observed (104% and 112%.

  5. Metal cycling during sediment early diagenesis in a water reservoir affected by acid mine drainage

    DEFF Research Database (Denmark)

    Torres, Ester; Ayora, Carlos; Canovas, C. R.

    2013-01-01

    The discharge of acid mine drainage (AMD) into a reservoir may seriously affect the water quality. To investigate the metal transfer between the water and the sediment, three cores were collected from the Sancho Reservoir (Iberian Pyrite Belt, SW Spain) during different seasons: turnover event......; oxic, stratified period; anoxic and under shallow perennially oxic conditions. The cores were sliced in an oxygen-free atmosphere, after which pore water was extracted by centrifugation and analyzed. A sequential extraction was then applied to the sediments to extract the water-soluble, monosulfide......, low crystallinity Fe(III)-oxyhydroxide, crystalline Fe(III)-oxide, organic, pyrite and residual phases. The results showed that, despite the acidic chemistry of the water column (pH

  6. Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals.

    Science.gov (United States)

    Champagne, Cory D; Houser, Dorian S; Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E

    2012-08-01

    Animals that endure prolonged periods of food deprivation preserve vital organ function by sparing protein from catabolism. Much of this protein sparing is achieved by reducing metabolic rate and suppressing gluconeogenesis while fasting. Northern elephant seals (Mirounga angustirostris) endure prolonged fasts of up to 3 mo at multiple life stages. During these fasts, elephant seals maintain high levels of activity and energy expenditure associated with breeding, reproduction, lactation, and development while maintaining rates of glucose production typical of a postabsorptive mammal. Therefore, we investigated how fasting elephant seals meet the requirements of glucose-dependent tissues while suppressing protein catabolism by measuring the contribution of glycogenolysis, glycerol, and phosphoenolpyruvate (PEP) to endogenous glucose production (EGP) during their natural 2-mo postweaning fast. Additionally, pathway flux rates associated with the tricarboxylic acid (TCA) cycle were measured specifically, flux through phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate cycling. The rate of glucose production decreased during the fast (F(1,13) = 5.7, P = 0.04) but remained similar to that of postabsorptive mammals. The fractional contributions of glycogen, glycerol, and PEP did not change with fasting; PEP was the primary gluconeogenic precursor and accounted for ∼95% of EGP. This large contribution of PEP to glucose production occurred without substantial protein loss. Fluxes through the TCA cycle, PEPCK, and pyruvate cycling were higher than reported in other species and were the most energetically costly component of hepatic carbohydrate metabolism. The active pyruvate recycling fluxes detected in elephant seals may serve to rectify gluconeogeneic PEP production during restricted anaplerotic inflow in these fasting-adapted animals.

  7. An amperometric enzyme electrode and its biofuel cell based on a glucose oxidase-poly(3-anilineboronic acid)-Pd nanoparticles bionanocomposite for glucose biosensing.

    Science.gov (United States)

    Sun, Lingen; Ma, Yixuan; Zhang, Pei; Chao, Long; Huang, Ting; Xie, Qingji; Chen, Chao; Yao, Shouzhuo

    2015-06-01

    A new amperometric enzyme electrode and its biofuel cell were fabricated based on a glucose oxidase (GOx)-poly(3-anilineboronic acid) (PABA)-Pd nanoparticles (PdNPs) bionanocomposite for biosensing of glucose. Briefly, Pd was electroplated on a multiwalled carbon nanotubes (MWCNTs)-modified Au electrode, and the GOx-PABA-PdNPs bionanocomposite was prepared on the Pd(plate)/MWCNTs/Au electrode through the chemical oxidation of a GOx-3-anilineboronic acid adduct by Na2PdCl4, followed by electrode-modification with an outer-layer chitosan (CS) film. The thus-prepared CS/GOx-PABA-PdNPs/Pd(plate)/MWCNTs/Au electrode exhibited a linear amperometric response to glucose concentration from 2.0 μM to 4.5 mM with a sensitivity of 160 μA/mM/cm(2), sub-μM detection limit, and excellent operation/storage stability in the first-generation biosensing mode, as well as excellent analytical performance in the second-generation biosensing mode. The good recoveries of glucose obtained from spiked urine samples revealed the application potential of our amperometric enzyme electrode. In addition, a glucose/O2 biofuel cell was constructed using this enzyme electrode as the anode and a Pt/MWCNTs/Au electrode as the cathode, and this biofuel cell as a self-powered biosensing device showed a linear voltage response to glucose concentration from 100 μM to 13.5 mM with a sensitivity of 43.5 mV/mM/cm(2) and excellent operation/storage stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Short-term hepatic effects of depleted uranium on xenobiotic and bile acid metabolizing cytochrome P450 enzymes in the rat

    International Nuclear Information System (INIS)

    Gueguen, Y.; Souidi, M.; Baudelin, C.; Dudoignon, N.; Grison, S.; Dublineau, I.; Marquette, C.; Voisin, P.; Gourmelon, P.; Aigueperse, J.

    2006-01-01

    The toxicity of uranium has been demonstrated in different organs, including the kidneys, skeleton, central nervous system, and liver. However, few works have investigated the biological effects of uranium contamination on important metabolic function in the liver. In vivo studies were conducted to evaluate its effects on cytochrome P450 (CYP) enzymes involved in the metabolism of cholesterol and xenobiotics in the rat liver. The effects of depleted uranium (DU) contamination on Sprague-Dawley were measured at 1 and 3 days after exposure. Biochemical indicators characterizing liver and kidney functions were measured in the plasma. The DU affected bile acid CYP activity: 7α-hydroxycholesterol plasma level decreased by 52% at day 3 whereas microsomal CYP7A1 activity in the liver did not change significantly and mitochondrial CYP27A1 activity quintupled at day 1. Gene expression of the nuclear receptors related to lipid metabolism (FXR and LXR) also changed, while PPARα mRNA levels did not. The increased mRNA levels of the xenobiotic-metabolizing CYP3A enzyme at day 3 may be caused by feedback up-regulation due to the decreased CYP3A activity at day 1. CAR mRNA levels, which tripled on day 1, may be involved in this up-regulation, while mRNA levels of PXR did not change. These results indicate that high levels of depleted uranium, acting through modulation of the CYP enzymes and some of their nuclear receptors, affect the hepatic metabolism of bile acids and xenobiotics. (orig.)

  9. Structure of the d-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes

    International Nuclear Information System (INIS)

    Bera, Asim K.; Atanasova, Vesna; Gamage, Swarna; Robinson, Howard; Parsons, James F.

    2010-01-01

    The structure of EhpF from P. agglomerans has been solved alone and in complex with phenazine-1,6-dicarboxylate. Apo EhpF was solved and refined in two different space groups at 1.95 and 2.3 Å resolution and the EhpF–phenazine-1,6-dicarboxylate complex structure was determined at 2.8 Å resolution. The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound d-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion of chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate

  10. Steric and thermodynamic limits of design for the incorporation of large unnatural amino acids in aminoacyl-tRNA synthetase enzymes.

    Science.gov (United States)

    Armen, Roger S; Schiller, Stefan M; Brooks, Charles L

    2010-06-01

    Orthogonal aminoacyl-tRNA synthetase/tRNA pairs from archaea have been evolved to facilitate site specific in vivo incorporation of unnatural amino acids into proteins in Escherichia coli. Using this approach, unnatural amino acids have been successfully incorporated with high translational efficiency and fidelity. In this study, CHARMM-based molecular docking and free energy calculations were used to evaluate rational design of specific protein-ligand interactions for aminoacyl-tRNA synthetases. A series of novel unnatural amino acid ligands were docked into the p-benzoyl-L-phenylalanine tRNA synthetase, which revealed that the binding pocket of the enzyme does not provide sufficient space for significantly larger ligands. Specific binding site residues were mutated to alanine to create additional space to accommodate larger target ligands, and then mutations were introduced to improve binding free energy. This approach was used to redesign binding sites for several different target ligands, which were then tested against the standard 20 amino acids to verify target specificity. Only the synthetase designed to bind Man-alpha-O-Tyr was predicted to be sufficiently selective for the target ligand and also thermodynamically stable. Our study suggests that extensive redesign of the tRNA synthatase binding pocket for large bulky ligands may be quite thermodynamically unfavorable.

  11. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens)

    International Nuclear Information System (INIS)

    Fadhlaoui, Mariem; Couture, Patrice

    2016-01-01

    Highlights: • The fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated and polyunsaturated fatty acids compared to fish maintained at 28 °C. • The thermal adjustment of muscle phospholipid fatty acid profiles is likely due to modifications of desaturase and elongase activities. • Exposure to Ni and Cd modified muscle phospholipid fatty acid composition in a temperature-dependent manner. • The higher fatty polyinsaturation in cold-acclimated fish did not increase their vulnerability to peroxidation. • Lower concentrations of malondialdehyde were measured in warm-acclimated, Ni-exposed fish, suggesting an overcompensation of antioxidant mechanisms that could explain their lower condition. - Abstract: The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9 °C and 28 °C) and exposed either to Cd or Ni (respectively 4 μg/L and 600 μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28 °C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is

  12. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens)

    Energy Technology Data Exchange (ETDEWEB)

    Fadhlaoui, Mariem; Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca

    2016-11-15

    Highlights: • The fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated and polyunsaturated fatty acids compared to fish maintained at 28 °C. • The thermal adjustment of muscle phospholipid fatty acid profiles is likely due to modifications of desaturase and elongase activities. • Exposure to Ni and Cd modified muscle phospholipid fatty acid composition in a temperature-dependent manner. • The higher fatty polyinsaturation in cold-acclimated fish did not increase their vulnerability to peroxidation. • Lower concentrations of malondialdehyde were measured in warm-acclimated, Ni-exposed fish, suggesting an overcompensation of antioxidant mechanisms that could explain their lower condition. - Abstract: The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9 °C and 28 °C) and exposed either to Cd or Ni (respectively 4 μg/L and 600 μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28 °C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is

  13. Hydroperoxy fatty acid cycling mediated by mitochondrial uncoupling protein UCP2

    Czech Academy of Sciences Publication Activity Database

    Jabůrek, Martin; Miyamoto, S.; Di Mascio, P.; Garlid, K. D.; Ježek, Petr

    2004-01-01

    Roč. 279, č. 51 (2004), s. 53097-53102 ISSN 0021-9258 R&D Projects: GA AV ČR IAA5011106; GA MŠk LZ1K03002; GA ČR GA204/04/0495 Grant - others:NIH(US) TW01487; NIH(US) DK 56273; FAPESP(BR) CHPq; Programa de Apoio aos Nucleos de Excelencia(BR) PRONEX/FINEP Institutional research plan: CEZ:AV0Z5011922 Keywords : uncoupling protein * fatty acid hydroperoxides * reactive oxygen species Subject RIV: CE - Biochemistry Impact factor: 6.355, year: 2004

  14. Correction of acid beta-galactosidase deficiency in GM1 gangliosidosis human fibroblasts by retrovirus vector-mediated gene transfer: higher efficiency of release and cross-correction by the murine enzyme.

    Science.gov (United States)

    Sena-Esteves, M; Camp, S M; Alroy, J; Breakefield, X O; Kaye, E M

    2000-03-20

    Mutations in the lysosomal acid beta-galactosidase (EC 3.2.1.23) underlie two different disorders: GM1 gangliosidosis, which involves the nervous system and visceral organs to varying extents, and Morquio's syndrome type B (Morquio B disease), which is a skeletal-connective tissue disease without any CNS symptoms. This article shows that transduction of human GM1 gangliosidosis fibroblasts with retrovirus vectors encoding the human acid beta-galactosidase cDNA leads to complete correction of the enzymatic deficiency. The newly synthesized enzyme is correctly processed and targeted to the lysosomes in transduced cells. Cross-correction experiments using retrovirus-modified cells as enzyme donors showed, however, that the human enzyme is transferred at low efficiencies. Experiments using a different retrovirus vector carrying the human cDNA confirmed this observation. Transduction of human GM1 fibroblasts and mouse NIH 3T3 cells with a retrovirus vector encoding the mouse beta-galactosidase cDNA resulted in high levels of enzymatic activity. Furthermore, the mouse enzyme was found to be transferred to human cells at high efficiency. Enzyme activity measurements in medium conditioned by genetically modified cells suggest that the human beta-galactosidase enzyme is less efficiently released to the extracellular space than its mouse counterpart. This study suggests that lysosomal enzymes, contrary to the generalized perception in the field of gene therapy, may differ significantly in their properties and provides insights for design of future gene therapy interventions in acid beta-galactosidase deficiency.

  15. Genome-Wide Identification of BAHD Acyltransferases and In vivo Characterization of HQT-like Enzymes Involved in Caffeoylquinic Acid Synthesis in Globe Artichoke

    Science.gov (United States)

    Moglia, Andrea; Acquadro, Alberto; Eljounaidi, Kaouthar; Milani, Anna M.; Cagliero, Cecilia; Rubiolo, Patrizia; Genre, Andrea; Cankar, Katarina; Beekwilder, Jules; Comino, Cinzia

    2016-01-01

    Globe artichoke (Cynara cardunculus L. var. scolymus) is a rich source of compounds promoting human health (phytonutrients), among them caffeoylquinic acids (CQAs), mainly represented by chlorogenic acid (CGA), and dicaffeoylquinic acids (diCQAs). The enzymes involved in their biosynthesis belong to the large family of BAHD acyltransferases. Following a survey of the globe artichoke genome, we identified 69 BAHD proteins carrying the catalytic site (HXXXD). Their phylogenetic analysis together with another 43 proteins, from 21 species, representative of the BAHD family, highlighted their grouping in seven major clades. Nine globe artichoke acyltransferases clustered in a sub-group of Clade V, with 3 belonging to hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase (HQT) and 2 to hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) like proteins. We focused our attention on the former, HQT1, HQT2, and HQT3, as they are known to play a key role in CGA biosynthesis. The expression of genes coding for the three HQTs and correlation of expression with the CQA content is reported for different globe artichoke tissues. For the first time in the globe artichoke, we developed and applied the virus-induced gene silencing approach with the goal of assessing in vivo the effect of HQT1 silencing, which resulted in a marked reduction of both CGA and diCQAs. On the other hand, when the role of the three HQTs was assessed in leaves of Nicotiana benthamiana through their transient overexpression, significant increases in mono- and diCQAs content were observed. Using transient GFP fusion proteins expressed in N. benthamiana leaves we also established the sub-cellular localization of these three enzymes. PMID:27721818

  16. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes.

    Science.gov (United States)

    Rosenblat, Mira; Rom, Oren; Volkova, Nina; Aviram, Michael

    2016-08-01

    Nitro-fatty acids possess anti-atherogenic properties, but their effects on macrophage oxidative status and lipid metabolism that play important roles in atherosclerosis development are unclear. This study compared the effects of nitro-oleic acid (OLA-NO2) with those of native oleic acid (OLA) on intracellular reactive oxygen species (ROS) generation, anti-oxidants and metabolism of triglycerides and cholesterol in J774A.1 macrophages. Upon incubating the cells with physiological concentrations of OLA-NO2 (0-1 µM) or with equivalent levels of OLA, ROS levels measured by 2, 7-dichlorofluorescein diacetate, decreased dose-dependently, but the anti-oxidative effects of OLA-NO2 were significantly augmented. Copper ion addition increased ROS generation in OLA treated macrophages without affecting OLA-NO2 treated cells. These effects could be attributed to elevated glutathione levels and to increased activity and expression of paraoxonase2 that were observed in OLA-NO2 vs OLA treated cells. Beneficial effects on triglyceride metabolism were noted in OLA-NO2 vs OLA treated macrophages in which cellular triglycerides were reduced due to attenuated biosynthesis and accelerated hydrolysis of triglycerides. Accordingly, OLA-NO2 treated cells demonstrated down-regulation of diacylglycerol acyltransferase1, the key enzyme in triglyceride biosynthesis, and increased expression of hormone-sensitive lipase and adipose triglyceride lipase that regulate triglyceride hydrolysis. Finally, OLA-NO2 vs OLA treatment resulted in modest but significant beneficial effects on macrophage cholesterol metabolism, reducing cholesterol biosynthesis rate and low density lipoprotein influx into the cells, while increasing high density lipoprotein-mediated cholesterol efflux from the macrophages. Collectively, compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride

  17. Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme

    DEFF Research Database (Denmark)

    Madsen, Søren M; Beck, Hans Christian; Ravn, Peter

    2002-01-01

    . The first step in the catabolism is most likely a transamination reaction catalyzed by BCAA aminotransferases (IlvE proteins). In this study, we cloned the ilvE gene from S. carnosus by using degenerate oligonucleotides and PCR. We found that the deduced amino acid sequence was 80% identical...... were essential for optimal cell growth....

  18. Kinetic properties of two Rhizopus exo-polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Science.gov (United States)

    The kinetic characteristics of two Rhizopus oryzae exo-polygalacturonases acting on galacturonic acid oligomers (GalpA) were determined using isothermal titration calorimetry (ITC). RPG15 hydrolyzing (GalpA)2 demonstrated a Km of 55 uM and kcat of 10.3 s^-1^ while RPG16 was shown to have greater af...

  19. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    OpenAIRE

    Kuhn, H; Fietzek, P P; Lampen, J O

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  20. Regulation of flux through metabolic cycles

    International Nuclear Information System (INIS)

    Walsh, K.

    1984-01-01

    The branchpoint of the tricarboxylic acid and glyoxylate shunt was characterized in the intact organism by a multidimensional approach. Theory and methodology were developed to determine velocities for the net flow of carbon through the major steps of acetate metabolism in E. coli. Rates were assigned based on the 13 C-NMR spectrum of intracellular glutamate, measured rates of substrate incorporation into end products, the constituent composition of E. coli and a series of conservation equations which described the system at steady state. The in vivo fluxes through the branchpoint of the tricarboxylic acid and glyoxylate cycles were compared to rates calculated from the kinetic constants of the branchpoint enzymes and the intracellular concentrations of their substrates. These studies elucidated the role of isocitrate dehydrogenase phosphorylation in the Krebs cycle and led to the development of a generalized mathematical description of the sensitivity of branchpoints to regulatory control. This theoretical analysis was termed the branchpoint effect and it describes conditions which result in large changes in the flux through an enzyme even though that enzyme is not subject to direct regulatory control. The theoretical and experimental characterization of this system provided a framework to study the effects of enzyme overproduction and underproduction on metabolic processes in the cell. An in vivo method was developed to determine the extent to which an enzyme catalyzes a rate-controlling reaction. The enzyme chosen for this study was citrate synthase

  1. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  2. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand.

    Science.gov (United States)

    Hug, Katrin; Maher, William A; Stott, Matthew B; Krikowa, Frank; Foster, Simon; Moreau, John W

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  3. Analysis of lead/acid battery life cycle factors: their impact on society and the lead industry

    Science.gov (United States)

    Robertson, J. G. S.; Wood, J. R.; Ralph, B.; Fenn, R.

    The underlying theme of this paper is that society, globally, is undergoing a fundamental conceptual shift in the way it views the environment and the role of industry within it. There are views in certain quarters that this could result in the virtual elimination of the lead industry's entire product range. Despite these threats, it is argued that the prospects for the lead industry appear to be relatively favourable in a number of respects. The industry's future depends to a significant degree, however, upon its ability to argue its case in a number of key areas. It is contended, therefore, that if appropriate strategies and means are promulgated, the prospects of the industry would appear to be relatively healthy. But, for this to happen with optimal effectiveness, a conceptual change will be necessary within the industry. New strategies and tools will have to be developed. These will require a significantly more integrated, holistically based and 'reflexive' approach than previously. The main elements of such an approach are outlined. With reference to the authors' ongoing research into automotive lead/acid starting lighting ignition (SLI) batteries, the paper shows how the technique of in-depth life cycle assessment (LCA), appropriately adapted to the needs of the industry, will provide a crucial role in this new approach. It also shows how it may be used as an internal design and assessment tool to identify those stages in the battery life cycle that give rise to the greatest environmental burdens, and to assess the effects of changes in the cycle to those burdens. It is argued that the development of this approach requires the serious and urgent attention of the whole of the lead industry. Also to make the LCA tool fully effective, it must be based on a 'live' database that is produced, maintained and continually updated by the industry.

  4. Phytochemical composition and effects of commercial enzymes on the hydrolysis of gallic acid glycosides in mango (Mangifera indica L. cv. 'Keitt') pulp.

    Science.gov (United States)

    Krenek, Kimberly A; Barnes, Ryan C; Talcott, Stephen T

    2014-10-01

    A detailed characterization of mango pulp polyphenols and other minor phytochemicals was accomplished for the first time in the cultivar 'Keitt' whereby the identification and semiquantification of five hydroxybenzoic acids, four cinnamic acids, two flavonoids, and six apocarotenoids was accomplished. Among the most abundant compounds were two monogalloyl glucosides (MGG) identified as having an ester- or ether-linked glucose, with the ester-linked moiety present in the highest concentration among nontannin polyphenolics. Additionally, the impact of side activities of three commercial cell-wall degrading enzymes during 'Keitt' mango pulp processing was evaluated to determine their role on the hydrolysis of ester- and ether-linked phenolic acids. The use of Crystalzyme 200XL reduced the concentration of ester-linked MGG by 66%, and the use of Rapidase AR 2000 and Validase TRL completely hydrolyzed ether-linked MGG after 4 h of treatment at 50 °C. Fruit quality, in vivo absorption rate, and bioactivity of mango phytochemicals rely on their chemical characterization, and characterizing changes in composition is critical for a complete understanding of in vivo mechanisms.

  5. Regulation of adipose branched-chain amin acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched-chain amin acids (BCAA)are often assoicated with insulin resistance and type2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metaboli...

  6. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State.

    Science.gov (United States)

    Cardaci, Simone; Ciriolo, Maria Rosa

    2012-01-01

    Inborn defects of the tricarboxylic acid (TCA) cycle enzymes have been known for more than twenty years. Until recently, only recessive mutations were described which, although resulted in severe multisystem syndromes, did not predispose to cancer onset. In the last ten years, a causal role in carcinogenesis has been documented for inherited and acquired alterations in three TCA cycle enzymes, succinate dehydrogenase (SDH), fumarate hydratase (FH), and isocitrate dehydrogenase (IDH), pointing towards metabolic alterations as the underlying hallmark of cancer. This paper summarizes the neoplastic alterations of the TCA cycle enzymes focusing on the generation of pseudohypoxic phenotype and the alteration of epigenetic homeostasis as the main tumor-promoting effects of the TCA cycle affecting defects. Moreover, we debate on the ability of these mutations to affect cellular redox state and to promote carcinogenesis by impacting on redox biology.

  7. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State

    Directory of Open Access Journals (Sweden)

    Simone Cardaci

    2012-01-01

    Full Text Available Inborn defects of the tricarboxylic acid (TCA cycle enzymes have been known for more than twenty years. Until recently, only recessive mutations were described which, although resulted in severe multisystem syndromes, did not predispose to cancer onset. In the last ten years, a causal role in carcinogenesis has been documented for inherited and acquired alterations in three TCA cycle enzymes, succinate dehydrogenase (SDH, fumarate hydratase (FH, and isocitrate dehydrogenase (IDH, pointing towards metabolic alterations as the underlying hallmark of cancer. This paper summarizes the neoplastic alterations of the TCA cycle enzymes focusing on the generation of pseudohypoxic phenotype and the alteration of epigenetic homeostasis as the main tumor-promoting effects of the TCA cycle affecting defects. Moreover, we debate on the ability of these mutations to affect cellular redox state and to promote carcinogenesis by impacting on redox biology.

  8. Presence of bile acids in human follicular fluid and their relation with embryo development in modified natural cycle IVF.

    Science.gov (United States)

    Nagy, R A; van Montfoort, A P A; Dikkers, A; van Echten-Arends, J; Homminga, I; Land, J A; Hoek, A; Tietge, U J F

    2015-05-01

    Are bile acids (BA) and their respective subspecies present in human follicular fluid (FF) and do they relate to embryo quality in modified natural cycle IVF (MNC-IVF)? BA concentrations are 2-fold higher in follicular fluid than in serum and ursodeoxycholic acid (UDCA) derivatives were associated with development of top quality embryos on Day 3 after fertilization. Granulosa cells are capable of synthesizing BA, but a potential correlation with oocyte and embryo quality as well as information on the presence and role of BA subspecies in follicular fluid have yet to be investigated. Between January 2001 and June 2004, follicular fluid and serum samples were collected from 303 patients treated in a single academic centre that was involved in a multicentre cohort study on the effectiveness of MNC-IVF. Material from patients who underwent a first cycle of MNC-IVF was used. Serum was not stored from all patients, and the available material comprised 156 follicular fluid and 116 matching serum samples. Total BA and BA subspecies were measured in follicular fluid and in matching serum by enzymatic fluorimetric assay and liquid chromatography-mass spectrometry, respectively. The association of BA in follicular fluid with oocyte and embryo quality parameters, such as fertilization rate and cell number, presence of multinucleated blastomeres and percentage of fragmentation on Day 3, was analysed. Embryos with eight cells on Day 3 after oocyte retrieval were more likely to originate from follicles with a higher level of UDCA derivatives than those with fewer than eight cells (P IVF were used, which resulted in 14 samples only from women with an ongoing pregnancy, therefore further prospective studies are required to confirm the association of UDCA with IVF pregnancy outcomes. The inter-cycle variability of BA levels in follicular fluid within individuals has yet to be investigated. We checked for macroscopic signs of contamination of follicular fluid by blood but the

  9. Targeting the expression of glutathione- and sulfate-dependent detoxification enzymes in HepG2 cells by oxygen in minimal and amino acid enriched medium.

    Science.gov (United States)

    Usarek, Ewa; Graboń, Wojciech; Kaźmierczak, Beata; Barańczyk-Kuźma, Anna

    2016-02-01

    Cancer cells exhibit specific metabolism allowing them to survive and proliferate in various oxygen conditions and nutrients' availability. Hepatocytes are highly active metabolically and thus very sensitive to hypoxia. The purpose of the study was to investigate the effect of oxygen on the expression of phase II detoxification enzymes in hepatocellular carcinoma cells (HepG2) cultured in minimal and rich media (with nonessential amino acids and GSH). The cells were cultured at 1% hypoxia, 10% tissue normoxia, and 21% atmospheric normoxia. The total cell count was determined by trypan blue exclusion dye and the expression on mRNA level by RT-PCR. The result indicated that the expression of glutathione-dependent enzymes (GSTA, M, P, and GPX2) was sensitive to oxygen and medium type. At 1% hypoxia the enzyme expression (with the exception of GSTA) was higher in minimal compared to rich medium, whereas at 10% normoxia it was higher in the rich medium. The expression was oxygen-dependent in both types of medium. Among phenol sulfotransferase SULT1A1 was not sensitive to studied factors, whereas the expression of SULT1A3 was depended on oxygen only in minimal medium. It can be concluded that in HepG2 cells, the detoxification by conjugation with glutathione and, to a lower extent with sulfate, may be affected by hypoxia and/or limited nutrients' availability. Besides, because the data obtained at 10% oxygen significantly differ from those at 21%, the comparative studies on hypoxia should be performed in relation to 10% but not 21% oxygen. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Effect of pulsed electric field treatment on enzyme kinetics and thermostability of endogenous ascorbic acid oxidase in carrots (Daucus carota cv. Nantes).

    Science.gov (United States)

    Leong, Sze Ying; Oey, Indrawati

    2014-03-01

    The objective of this research was to study the enzyme kinetics and thermostability of endogenous ascorbic acid oxidase (AAO) in carrot purée (Daucus carota cv. Nantes) after being treated with pulsed electric field (PEF) processing. Various PEF treatments using electric field strength between 0.2 and 1.2kV/cm and pulsed electrical energy between 1 and 520kJ/kg were conducted. The enzyme kinetics and the kinetics of AAO thermal inactivation (55-70°C) were described using Michaelis-Menten model and first order reaction model, respectively. Overall, the estimated Vmax and KM values were situated in the same order of magnitude as the untreated carrot purée after being exposed to pulsed electrical energy between 1 and 400kJ/kg, but slightly changed at pulsed electrical energy above 500kJ/kg. However, AAO presented different thermostability depending on the electric field strength applied. After PEF treatment at the electric field strength between 0.2 and 0.5kV/cm, AAO became thermolabile (i.e. increase in inactivation rate (k value) at reference temperature) but the temperature dependence of k value (Ea value) for AAO inactivation in carrot purée decreased, indicating that the changes in k values were less temperature dependent. It is obvious that PEF treatment affects the temperature stability of endogenous AAO. The changes in enzyme kinetics and thermostability of AAO in carrot purée could be related to the resulting carrot purée composition, alteration in intracellular environment and the effective concentration of AAO released after being subjected to PEF treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Design of mixer settler extraction cycles II for recovery uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Abdul Jami; Hafni Lissa Nuri

    2013-01-01

    Mixer settler is technically designed for extraction and separation process of uranium from phosphoric acid solution. Design calculation results shows that: the mixer settler consists of two parts: part of extraction process in the mixer tank and part of separation process in settler tank. The mixer tank type of box with 4 baffles, the size of mixer tank, 0.8 m width, 0.8 m length, 1 m high of liquid, 1.05 m high of mixer tank, stirrer type of disk 6 blade, and power of mixing 4 hp and the settler tank type of rectangular with size of settler tank, 0.8 m width 5 m length, 1 m high of liquid, 1.05 m high of settler tank. For uranium recovery efficiency up to 91%, extraction process is done in 3 stage counter current flow using a solvent Organic (O) DEHPA-TOPO in Kerosene at a phase of ratio A/O of 2:1. The aqueous enter through stage 3 and the organic solvent enter through stage 1. The process of settling occurred with the value of settling velocity is 0.000694 m/s, dispersion factor Ψ = 0.3638 and the light fraction as the dispersed phase and value of Reynolds number (NRE) = 3,438. Because of the Reynolds number is lower than 5,000, it indicates that the quality of the separation is very good. (author)

  12. Fungi contribute critical but spatially varying roles in nitrogen and carbon cycling in acid mine drainage

    Directory of Open Access Journals (Sweden)

    Annika C. Mosier

    2016-03-01

    Full Text Available The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage system. A. richmondensis transcripts involved in denitrification and in the degradation of complex carbon sources (including cellulose were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. These findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches.

  13. Synthesis and Characterization of New Amino Acid-Schiff Bases and Studies their Effects on the Activity of ACP, PAP and NPA Enzymes (In Vitro

    Directory of Open Access Journals (Sweden)

    Zahraa Salim M. Al-Garawi

    2012-01-01

    Full Text Available In this study, two new Schiff base compounds derived from the condensation reaction of L-glycine and L-tryptophan with 4-methylbenzal-dehyde have been synthesized. The Schiff base compounds were characterized by FT-IR, UV and 1H NMR spectroscopy. Their effects on the activity of total (ACP, prostatic (PAP and non prostatic (NPA acid phosphatase enzymes were studied. The Schiff base derived from L-glycine (A demonstrated inhibition effect on the ACP and NPA activities and activation effect on PAP activity. The Schiff base derived from L-tryptophan (B demonstrated semi fixed inhibition effects on the ACP and NPA activities at high concentrations (5.5×10-2, 5.5×10-3 and 5.5×10-4 M and activator effect at low concentration (5.5×10-5 M while it was exhibits as activator on PAP activity.

  14. Nicotine-mediated suppression of the retinoic acid metabolizing enzyme CYP26A1 limits the oncogenic potential of breast cancer.

    Science.gov (United States)

    Osanai, Makoto; Lee, Gang-Hong

    2011-06-01

    Tobacco smoke influences cancer development in tissues that are not directly exposed, and epidemiological studies have indicated that smoking women might experience decreased risk of breast cancer as a result of antiestrogenic effects. However, it remains to be clarified whether nicotine, one of the major addictive and best-investigated constituents of tobacco smoke, has any effect on breast cancer. Our recent work demonstrated that the retinoic acid metabolizing enzyme CYP26A1 enhances oncogenic and cell survival properties of breast carcinoma cells, implying a role as an oncogene. Here, we present evidence that nicotine significantly suppresses constitutive expression of CYP26A1, and that cells treated with nicotine exhibit enhanced sensitivity to apoptosis. In addition, nicotine may inhibit anchorage independent growth, cellular invasiveness and motility. These data show that nicotine can limit CYP26A1-mediated oncogenic characteristics, and suggest mechanisms by which nicotine might inhibit breast cancer development. © 2011 Japanese Cancer Association.

  15. Inhibition of several enzymes by gold compounds. II. beta-Glucuronidase, acid phosphatase and L-malate dehydrogenase by sodium thiomalatoraurate (I), sodium thiosulfatoaurate (I) and thioglucosoaurate (I).

    Science.gov (United States)

    Lee, M T; Ahmed, T; Haddad, R; Friedman, M E

    1989-01-01

    Bovine liver beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32), wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) and bovine liver L-malate dehydrogenase (L-malate: NAD oxidoreductase, EC 1.1.1.37) were inhibited by a series of gold (I) complexes that have been used as anti-inflammatory drugs. Both sodium thiosulfatoaurate (I) (Na AuTs) and sodium thiomalatoraurate (NaAuTM) effectively inhibited all three enzymes, while thioglucosoaurate (I) (AuTG) only inhibited L-malate dehydrogenase. The equilibrium constants (K1) ranged from nearly 4000 microM for the NaAuTM-beta-glucuronidase interaction to 24 microM for the NaAuTS-beta-glucuronidase interaction. The rate of covalent bond formation (kp) ranged from 0.00032 min-1 for NaAuTM-beta-glucuronidase formation to 1.7 min-1 for AuTG-L-malate dehydrogenase formation. The equilibrium data shows that the gold (I) drugs bind by several orders lower than the gold (III) compounds, suggesting a significantly stronger interaction between the more highly charged gold ion and the enzyme. Yet the rate of covalent bond formation depends as much on the structure of the active site as upon the lability of the gold-ligand bond. It was also observed that the more effective the gold inhibition the more toxic the compound.

  16. Rhodotorulaglutinis phenylalanine/tyrosine ammonia lyase enzyme catalyzed synthesis of the methyl ester of para-hydroxycinnamic acid and its potential antibacterial activity

    Directory of Open Access Journals (Sweden)

    Marybeth C MacDonald

    2016-03-01

    Full Text Available Biotransformation of L-tyrosine methyl ester (L-TM to the methyl ester of para- hydroxycinnamic acid (p-HCAM using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26 enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5, temperature (37 C, speed of agitation (50 rpm, enzyme concentration (0.080 µM, and substrate concentration (0.50 mM. Under these conditions, the yield of the reaction was ~15% in 1 h incubation period and ~63% after an overnight (~18 h incubation period. The product (p-HCAM of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR. Fourier Transform Infra-Red spectroscopy (FTIR was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram positive and Gram negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications.

  17. Identification of human cytochrome P450 and UGT enzymes involved in the metabolism of ferulic acid, a major bioactive component in traditional Chinese medicines.

    Science.gov (United States)

    Zhuang, Xiao-Mei; Chen, Lin; Tan, Yan; Yang, Hai-Ying; Lu, Chuang; Gao, Yue; Li, Hua

    2017-09-01

    Ferulic acid (FA) is an active component of herbal medicines. One of the best documented activities of FA is its antioxidant property. Moreover, FA exerts antiallergic, anti-inflammatory, and hepatoprotective effects. However, the metabolic pathways of FA in humans remain unclear. To identify whether human CYP or UGT enzymes are involved in the metabolism of FA, reaction phenotyping of FA was conducted using major CYP-selective chemical inhibitors together with individual CYP and UGT Supersomes. The CYP- and/or UGT-mediated metabolism kinetics were examined simultaneously or individually. Relative activity factor and total normalized rate approaches were used to assess the relative contributions of each major human CYPs towards the FA metabolism. Incubations of FA with human liver microsomes (HLM) displayed NADPH- and UDPGA-dependent metabolism with multiple CYP and UGT isoforms involved. CYPs and UGTs contributed equally to the metabolism of FA in HLM. Although CYP1A2 and CYP3A4 appeared to be the major contributors in the CYP-mediated clearance, their contributions to the overall clearance are still minor (medicines because multiple phase I and phase II enzymes are involved in its metabolism. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  18. Inhibition of Procarcinogen Activating Enzyme CYP1A2 Activity and Free Radical Formation by Caffeic Acid and its Amide Analogues.

    Science.gov (United States)

    Narongchai, Paitoon; Niwatananun, Kanokporn; Narongchai, Siripun; Kusirisin, Winthana; Jaikang, Churdsak

    2016-01-01

    Caffeic acid (CAF) and its amide analogues, ethyl 1-(3',4'-dihydroxyphenyl) propen amide (EDPA), phenethyl 1-(3',4'-dihydroxyphenyl) propen amide (PEDPA), phenmethyl 1- (3',4'-dihydroxyphenyl) propen amide (PMDPA) and octyl 1-(3',4'-dihydroxyphenyl) propen amide (ODPA) were investigated for the inhibition of procarcinogen activating enzyme. CYP1A2 and scavenging activity on formation of nitric oxide, superoxide anion, DPPH radical and hydroxyl radical. It was found that they inhibited CYP1A2 enzyme by uncompetitive inhibition. Apparent Ki values of CAF, EDPA, PEDPA, PMDPA and ODPA were 0.59, 0.39, 0.45, 0.75 and 0.80 µM, respectively suggesting potent inhibitors of CYP1A2. Moreover, they potentially scavenged nitric oxide radical with IC 50 values of 0.12, 0.22, 0.28, 0.22 and 0.51 mM, respectively. The IC50 values of superoxide anion scavenging were 0.20, 0.22, 0.44, 2.18 and 2.50 mM, respectively. 1, 1- diphenyl-2- picrylhydrazyl (DPPH) radical-scavenging ability, shown as IC50 values, were 0.41, 0.29, 0.30, 0.89 and 0.84 mM, respectively. Moreover, the hydroxyl radical scavenging in vitro model was shown as IC50 values of 23.22, 21.06, 17.10, 17.21 and 15.81 µM, respectively. From our results, caffeic acid and its amide analogues are in vitro inhibitors of human CYP1A2 catalytic activity and free radical formation. They may be useful to be developed as potential chemopreventive agents that block CYP1A2-mediated chemical carcinogenesis.

  19. Testosterone suppresses the expression of regulatory enzymes of fatty acid synthesis and protects against hepatic steatosis in cholesterol-fed androgen deficient mice.

    Science.gov (United States)

    Kelly, Daniel M; Nettleship, Joanne E; Akhtar, Samia; Muraleedharan, Vakkat; Sellers, Donna J; Brooke, Jonathan C; McLaren, David S; Channer, Kevin S; Jones, T Hugh

    2014-07-30

    Non-alcoholic fatty liver disease and its precursor hepatic steatosis is common in obesity and type-2 diabetes and is associated with cardiovascular disease (CVD). Men with type-2 diabetes and/or CVD have a high prevalence of testosterone deficiency. Testosterone replacement improves key cardiovascular risk factors. The effects of testosterone on hepatic steatosis are not fully understood. Testicular feminised (Tfm) mice, which have a non-functional androgen receptor (AR) and very low serum testosterone levels, were used to investigate testosterone effects on high-cholesterol diet-induced hepatic steatosis. Hepatic lipid deposition was increased in Tfm mice and orchidectomised wild-type littermates versus intact wild-type littermate controls with normal androgen physiology. Lipid deposition was reduced in Tfm mice receiving testosterone treatment compared to placebo. Oestrogen receptor blockade significantly, but only partially, reduced the beneficial effects of testosterone treatment on hepatic lipid accumulation. Expression of key regulatory enzymes of fatty acid synthesis, acetyl-CoA carboxylase alpha (ACACA) and fatty acid synthase (FASN) were elevated in placebo-treated Tfm mice versus placebo-treated littermates and Tfm mice receiving testosterone treatment. Tfm mice on normal diet had increased lipid accumulation compared to littermates but significantly less than cholesterol-fed Tfm mice and demonstrated increased gene expression of hormone sensitive lipase, stearyl-CoA desaturase-1 and peroxisome proliferator-activated receptor-gamma but FASN and ACACA were not altered. An action of testosterone on hepatic lipid deposition which is independent of the classic AR is implicated. Testosterone may act in part via an effect on the key regulatory lipogenic enzymes to protect against hepatic steatosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Polymorphism in the retinoic acid metabolizing enzyme CYP26B1 and the development of Crohn's Disease.

    Directory of Open Access Journals (Sweden)

    Karin Fransén

    Full Text Available Several studies suggest that Vitamin A may be involved in the pathogenesis of inflammatory bowel disease (IBD, but the mechanism is still unknown. Cytochrome P450 26 B1 (CYP26B1 is involved in the degradation of retinoic acid and the polymorphism rs2241057 has an elevated catabolic function of retinoic acid, why we hypothesized that the rs2241057 polymorphism may affect the risk of Crohn's disease (CD and Ulcerative Colitis (UC. DNA from 1378 IBD patients, divided into 871 patients with CD and 507 with UC, and 1205 healthy controls collected at Örebro University Hospital and Karolinska University Hospital were analyzed for the CYP26B1 rs2241057 polymorphism with TaqMan® SNP Genotyping Assay followed by allelic discrimination analysis. A higher frequency of patients homozygous for the major (T allele was associated with CD but not UC compared to the frequency found in healthy controls. A significant association between the major allele and non-stricturing, non-penetrating phenotype was evident for CD. However, the observed associations reached borderline significance only, after correcting for multiple testing. We suggest that homozygous carriers of the major (T allele, relative to homozygous carriers of the minor (C allele, of the CYP26B1 polymorphism rs2241057 may have an increased risk for the development of CD, which possibly may be due to elevated levels of retinoic acid. Our data may support the role of Vitamin A in the pathophysiology of CD, but the exact mechanisms remain to be elucidated.

  1. Hepatic necro-inflammation and elevated liver enzymes: Evaluation with MRI perfusion imaging with gadoxetic acid in chronic hepatitis patients

    International Nuclear Information System (INIS)

    Chen, B.-B.; Hsu, C.-Y.; Yu, C.-W.; Kao, J.-H.; Lee, H.-S.; Liang, P.-C.; Wei, S.-Y.; Hwang, R.-M.; Shih, T.T.-F.

    2014-01-01

    Aim: To evaluate liver necro-inflammation and function by using gadoxetic acid-enhanced dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), with histological analysis as the reference standard. Materials and methods: Seventy-nine subjects (21 healthy subjects; 58 chronic hepatitis patients) who received gadoxetic acid-enhanced DCE-MRI were divided into three subgroups: no (A0, n = 31), mild (A1, n = 27), and moderate–severe (A2–A3, n = 21) activities. Two DCE-MRI models were measured: (1) a dual-input single-compartment model to obtain absolute arterial, portal venous, and total blood flow, arterial fraction (ART), distribution volume, and mean transit time; (2) a curve analysis method to obtain peak, slope, and AUC (area under curve). The serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels also obtained. Statistical testing included Kruskal–Wallis tests for continuous data, Pearson's correlation tests, and multiple linear regression analyses. Results: Hepatic necro-inflammatory activity grades were significantly correlated with fibrotic stages, serum ALT level, ART and AUC. ART was helpful to predict the mild activity (≤A1 versus >A1; Az = 0.728), whereas AUC could differentiate no activity from any activity (A0 versus >A0; Az = 0.703). Peak, slope and AUC were all associated with AST and ALT (p < 0.05). Conclusion: Gadoxetic acid-enhanced DCE-MRI parameters may be used to evaluate the severity of hepatic necro-inflammation and function

  2. Alterations in the fatty acid profile, antioxidant enzymes and protein pattern of Biomphalaria alexandrina snails exposed to the pesticides diazinon and profenfos.

    Science.gov (United States)

    Bakry, Fayez A; El-Hommossany, Karem; Abd El-Atti, Mahmoud; Ismail, Somaya M

    2016-04-01

    The use of pesticides is widespread in agricultural activities. These pesticides may contaminate the irrigation and drainage systems during agriculture activities and pests' control and then negatively affect the biotic and a biotic component of the polluted water courses. The present study aimed to evaluate the effect of the pesticides diazinon and profenfos on some biological activities of Biomphalaria alexandrina snails such as fatty acid profile, some antioxidant enzymes (thioredoxin reductase (TrxR), sorbitol dehydrogenase (SDH), superoxide dismutase (SOD), catalase (CAT) as well as glutathione reductase (GR) and lipid peroxidation (LP)) and protein patterns in snails' tissues exposed for 4 weeks to LC10 of diazinon and profenfos. The results showed that the two pesticides caused considerable reduction in survival rates and egg production of treated snails. Identification of fatty acid composition in snail tissues treated with diazinon and profenfos pesticides was carried out using gas-liquid chromatography (GLC). The results declared alteration in fatty acid profile, fluctuation in percentage of long chain and short chain fatty acid contributions either saturated or unsaturated ones, and a decrease in total lipid content in tissues of snails treated with these pesticides. The data demonstrate that there was a significant inhibition in the activities of tissues SOD, CAT, glutathione reductase (GR), TrxR, and SDH in tissues of treated snails, while a significant elevation was detected in LP as compared to the normal control. On the other hand, the electrophoretic pattern of total protein showed differences in number and molecular weights of protein bands due to the treatment of snails. It was concluded that the residues of diazinon and profenfos pesticides in aquatic environments have toxic effects onB. alexandrina snails. © The Author(s) 2013.

  3. Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Glycocholic Acid Based on Chicken Single-Chain Variable Fragment Antibodies.

    Science.gov (United States)

    Cui, Xiping; Vasylieva, Natalia; Wu, Panpan; Barnych, Bogdan; Yang, Jun; Shen, Ding; He, Qiyi; Gee, Shirley J; Zhao, Suqing; Hammock, Bruce D

    2017-10-17

    Glycocholic acid (GCA) is an important metabolite of bile acids, whose urine levels are expected to be a specific diagnostic biomarker for hepatocellular carcinoma (HCC). A high-throughput immunoassay for determination of GCA would be of significant advantage and useful for primary diagnosis, surveillance, and early detection of HCC. Single-chain variable fragment (scFv) antibodies have several desirable characteristics and are an attractive alternative to traditional antibodies for the immunoassay. Because chicken antibodies possess single heavy and light variable functional domains, they are an ideal framework for simplified generation of recombinant antibodies for GCA detection. However, chicken scFvs have rarely been used to detect GCA. In this study, a scFv library was generated from chickens immunized with a GCA hapten coupled to bovine serum albumin (BSA), and anti-GCA scFvs were isolated by a phage-displayed method. Compared to the homologous coating antigen, use of a heterologous coating antigen resulted in about an 85-fold improvement in sensitivity of the immunoassay. This assay, under optimized conditions, had a linear range of 0.02-0.18 μg/mL, with an IC 50 of 0.06 μg/mL. The assay showed negligible cross-reactivity with various related bile acids, except for taurocholic acid. The detection of GCA from spiked human urine samples ranged from 86.7% to 123.3%. These results, combined with the advantages of scFv antibodies, indicated that a chicken scFv-based enzyme-linked immunosorbent assay is a suitable method for high-throughput screening of GCA in human urine.

  4. The Fatty Acid Biosynthesis Enzyme FabI Plays a Key Role In the Development of Liver Stage Malarial Parasites

    Science.gov (United States)

    Yu, Min; Santha Kumar, T. R.; Nkrumah, Louis J.; Coppi, Alida; Retzlaff, Silke; Li, Celeste D.; Kelly, Brendan J.; Moura, Pedro A.; Lakshmanan, Viswanathan; Freundlich, Joel S.; Valderramos, Juan-Carlos; Vilcheze, Catherine; Siedner, Mark; Tsai, Jennifer H.-C.; Falkard, Brie; Sidhu, Amar bir Singh; Purcell, Lisa A.; Gratraud, Paul; Kremer, Laurent; Waters, Andy P.; Schiehser, Guy; Jacobus, David P.; Janse, Chris J.; Ager, Arba; Jacobs, William R.; Sacchettini, James C.; Heussler, Volker; Sinnis, Photini; Fidock, David A.

    2008-01-01

    SUMMARY Fatty acid biosynthesis has been viewed as an important biological function of and therapeutic target for Plasmodium falciparum asexual blood stage infection. This apicoplast-resident type II pathway, distinct from the mammalian type I process, includes FabI. Here, we report synthetic chemistry and transfection studies concluding that Plasmodium FabI is not the target of the antimalarial activity of the bacterial FabI inhibitor triclosan. Disruption of fabI in P. falciparum or the rodent parasite P. berghei does not impede blood stage growth. In contrast, mosquito-derived fabI-deficient P. berghei sporozoites are markedly less infective for mice and typically fail to complete liver stage development in vitro. This is characterized by an inability to form intra-hepatic merosomes that normally initiate blood stage infections. These data illuminate key differences between liver and blood stage parasites in their requirements for host versus de novo synthesized fatty acids, and create new prospects for stage-specific antimalarial interventions. PMID:19064257

  5. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes.

    Science.gov (United States)

    Yu, Dan; Hornung, Ellen; Iven, Tim; Feussner, Ivo

    2018-01-01

    overall yields and the compositions of wax esters can be strongly affected by the availability of acyl-CoA substrates and to a lesser extent, by the characteristics of wax ester synthesis enzymes. For synthesis of oleyl oleate in plant seed oil, appropriate wax ester synthesis enzymes with high catalytic efficiency and desired substrate specificity should be expressed in plant cells; meanwhile, high levels of oleic acid-derived substrates need to be supplied to these enzymes by modifying the fatty acid profile of developing seeds.

  6. A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition

    Directory of Open Access Journals (Sweden)

    Hiromi Daiyasu

    2005-01-01

    Full Text Available Cellular membrane lipids, of which phospholipids are the major constituents, form one of the characteristic features that distinguish Archaea from other organisms. In this study, we focused on the steps in archaeal phospholipid synthetic pathways that generate polar lipids such as archaetidylserine, archaetidylglycerol, and archaetidylinositol. Only archaetidylserine synthase (ASS, from Methanothermobacter thermautotrophicus, has been experimentally identified. Other enzymes have not been fully examined. Through database searching, we detected many archaeal hypothetical proteins that show sequence similarity to members of the CDP alcohol phosphatidyltransferase family, such as phosphatidylserine synthase (PSS, phosphatidylglycerol synthase (PGS and phosphatidylinositol synthase (PIS derived from Bacteria and Eukarya. The archaeal hypothetical proteins were classified into two groups, based on the sequence similarity. Members of the first group, including ASS from M. thermautotrophicus, were closely related to PSS. The rough agreement between PSS homologue distribution within Archaea and the experimentally identified distribution of archaetidylserine suggested that the hypothetical proteins are ASSs. We found that an open reading frame (ORF tends to be adjacent to that of ASS in the genome, and that the order of the two ORFs is conserved. The sequence similarity of phosphatidylserine decarboxylase to the product of the ORF next to the ASS gene, together with the genomic context conservation, suggests that the ORF encodes archaetidylserine decarboxylase, which may transform archaetidylserine to archaetidylethanolamine. The second group of archaeal hypothetical proteins was related to PGS and PIS. The members of this group were subjected to molecular phylogenetic analysis, together with PGSs and PISs and it was found that they formed two distinct clusters in the molecular phylogenetic tree. The distribution of members of each cluster within Archaea

  7. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  8. Research Applications of Proteolytic Enzymes in Molecular Biology

    Directory of Open Access Journals (Sweden)

    József Tőzsér

    2013-11-01

    Full Text Available Proteolytic enzymes (also termed peptidases, proteases and proteinases are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications require their use, including production of Klenow fragments, peptide synthesis, digestion of unwanted proteins during nucleic acid purification, cell culturing and tissue dissociation, preparation of recombinant antibody fragments for research, diagnostics and therapy, exploration of the structure-function relationships by structural studies, removal of affinity tags from fusion proteins in recombinant protein techniques, peptide sequencing and proteolytic digestion of proteins in proteomics. The aim of this paper is to review the molecular biological aspects of proteolytic enzymes and summarize their applications in the life sciences.

  9. Activation and Repression of Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycles by Short- and Medium-Chain Fatty Acids

    Science.gov (United States)

    Gorres, Kelly L.; Daigle, Derek; Mohanram, Sudharshan

    2014-01-01

    ABSTRACT The lytic cycles of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are induced in cell culture by sodium butyrate (NaB), a short-chain fatty acid (SCFA) histone deacetylase (HDAC) inhibitor. Valproic acid (VPA), another SCFA and an HDAC inhibitor, induces the lytic cycle of KSHV but blocks EBV lytic reactivation. To explore the hypothesis that structural differences between NaB and VPA account for their functional effects on the two related viruses, we investigated the capacity of 16 structurally related short- and medium-chain fatty acids to promote or prevent lytic cycle reactivation. SCFAs differentially affected EBV and KSHV reactivation. KSHV was reactivated by all SCFAs that are HDAC inhibitors, including phenylbutyrate. However, several fatty acid HDAC inhibitors, such as isobutyrate and phenylbutyrate, did not reactivate EBV. Reactivation of KSHV lytic transcripts could not be blocked completely by any fatty acid tested. In contrast, several medium-chain fatty acids inhibited lytic activation of EBV. Fatty acids that blocked EBV reactivation were more lipophilic than those that activated EBV. VPA blocked activation of the BZLF1 promoter by NaB but did not block the transcriptional function of ZEBRA. VPA also blocked activation of the DNA damage response that accompanies EBV lytic cycle activation. Properties of SCFAs in addition to their effects on chromatin are likely to explain activation or repression of EBV. We concluded that fatty acids stimulate the two related human gammaherpesviruses to enter the lytic cycle through different pathways. IMPORTANCE Lytic reactivation of EBV and KSHV is needed for persistence of these viruses and plays a role in carcinogenesis. Our direct comparison highlights the mechanistic differences in lytic reactivation between related human oncogenic gammaherpesviruses. Our findings have therapeutic implications, as fatty acids are found in the diet and produced by the human microbiota

  10. Evaluation and Comparison of Enzyme Immunoassay (Eia and Acid Fast Staining with Confirmation by Immunofluorescent Antibody Assay for Detection of Cryptosporidium Species in Infants and Young Children.

    Directory of Open Access Journals (Sweden)

    D Dorostcar Moghaddam

    2005-01-01

    Full Text Available Introduction: Cryptosporidiosis is prevalent world wide, causing a variety of problems ranging from acute, self-limiting diarrhea to fatal cases in immunocompromised persons, particulary those with acquired immunodeficiency (AIDS. Diagnosis of Cryptosporidium is made by identification of oocysts in stool specimens. The detection is most commonly made by the acid-fast staining method followed by microscopic examination which has low specificity and sensitivity. Material and Methods: In the present study, we evaluated diagnostic utility of a commercially available enzyme immunoassay (EIA, which detects Cryptosporidium-Specific antigen (CSA in 204 unprocessed stool specimens obtained from patients less than 3 years of age. Results: When compared with the routine screening procedure applied in this field study (screening by acid-fast staining and microscopy after concentration of positive results by IFA, both sensitivity and specificity were 98%. Of the 139 specimens negative by microscopy, 13 (9.3% were positive by EIA, 11 of which were confirmed by inhibition with antibody to Cryptosporidia-specific antigen. Conclusion: The EIA is an important tool for identifying Cryptosporidium in fecal specimens in field studies since it is sensitive, specific, simple to use and unaffected by the presence of a preservative.

  11. Application of Sperm Selection Using Hyaluronic Acid Binding in Intracytoplasmic Sperm Injection Cycles: A Sibling Oocyte Study

    Science.gov (United States)

    Choe, Seung Ah; Tae, Jin Chul; Shin, Mi Young; Kim, Hyun Jung; Kim, Chung Hyon; Lee, Joong Yeup; Hwang, Doyeong; Kim, Ki Chul; Suh, Chang Suk

    2012-01-01

    The purpose of this study was to investigate whether sperm selection by hyaluronic acid (HA) binding could improve fertilization rate and embryo quality in intracytoplasmic sperm injection (ICSI) cycles. Two hundred nineteen oocytes obtained from eighteen women were injected with either HA-bound (n = 107) or conventionally selected spermatozoa (n = 112) in a randomized way. All of the participants were infertile couples who had normal sperm parameters but low fertilization rate in previous in vitro fertilization (IVF) cycle (n = 5) or experienced multiple IVF failures (n = 13). Lower fertilization (75.7% vs 83.0%) and cleavage rate on day 2 (72.9% vs 83.0%) was observed in oocytes injected with HA-bound spermatozoa than the conventional group, but the difference was not significant. Significantly lower cleavage rate was observed on day 3 in HA group (56.0% vs 69.6%, P = 0.038). Blastocyst formation rate and the number of transferred embryos were similar in both groups. In multiple IVF failure patients, significantly reduced fertilization rate (71.8% vs 85.3%, P = 0.046) and cleavage rate on day 2 (70.4% vs 85.3%, P = 0.029) and day 3 (53.5% vs 77.3%, P = 0.002) were noticed in HA group. Five women achieved pregnancy continuing more than 12 weeks after transfer (27.8%). Success of ICSI was not related with the number of embryos fertilized by HA-bound spermatozoa. Application of ICSI by sperm selection using HA binding is not helpful in couples with repeated poor fertilization or implantation despite normal sperm parameters. PMID:23255860

  12. Effect of prolonged intravenous glucose and essential amino acid infusion on nitrogen balance, muscle protein degradation and ubiquitin-conjugating enzyme gene expression in calves

    Directory of Open Access Journals (Sweden)

    Scaife Jes R

    2008-02-01

    Full Text Available Abstract Background Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose (to stimulate insulin and essential amino acids (EAA would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of

  13. Organic N cycling in Arctic ecosystems: Quantifying root uptake kinetics and temporal variability of soil amino acids.

    Science.gov (United States)

    Homyak, P. M.; Iverson, S. L.; Slessarev, E.; Marchus, K.; Schimel, J.

    2017-12-01

    Arctic ecosystems are undergoing shifts in plant community composition with increased warming. How these changes may alter ecosystem function is not well constrained, owing in part to uncertainties on how plant-soil feedbacks influence nutrient cycling. For nitrogen (N), in particular, understanding how these feedbacks may alter cycling rates is challenging because i) Arctic plants take up organic N (i.e., amino acids; AA) when inorganic N is limiting, yet ii) it has never been quantified, for any plant species growing in the wild, how much of its N demand is actually met by taking up AA. To advance fundamental understanding of plant-soil feedbacks as the Arctic warms, we are integrating field measurements of AA availability in N-limited tussock tundra (E. vaginatum) and a comparably less N-limited birch shrub tundra (Betula nana and Salix spp.) with a root uptake model. We used soil microdialysis to determine available AA concentrations in the soil solution and potential rates of AA diffusion and mass flow to roots at the Toolik Field Station in Alaska. These measurements are being combined with AA root uptake kinetic experiments using E. vaginatum to establish actual AA root uptake rates. We found that in the early growing season (June), total AA concentrations in the soil solution averaged 104 µg N L-1 and were similar to NH4+ across sites. In the late growing season (August), AA were the dominant form of N averaging 75 µg N L-1 while NH4+ decreased to 13 µg N L-1. In the early growing season AA diffusion rates in the soil averaged 200 ng N cm-2 s-1 and declined to 150 ng N cm-2 s-1 in the late growing season. Lysine, serine, and arginine were the most abundant AA and differences in the N status of sites did not affect total AA concentrations. Amino acids made up at least half of the N diffusing through the soil solution, suggesting they can subsidize the N demand of arctic plants. Ongoing field experiments at Toolik will be used to constrain actual AA root

  14. Tricarboxylic acid cycle activity measured by 13C magnetic resonance spectroscopy in rats subjected to the kaolin model of obstructed hydrocephalus

    DEFF Research Database (Denmark)

    Melø, Torun M; Håberg, Asta K; Risa, Øystein

    2011-01-01

    in the amounts of glutamate, alanine and taurine. In addition, the concentration of the neuronal marker N-acetyl aspartate was decreased. (13)C Labelling of most amino acids derived from [1,6-(13)C]glucose was unchanged 2 weeks after hydrocephalus induction. The only indication of astrocyte impairment......Evaluating early changes in cerebral metabolism in hydrocephalus can help in the decision making and the timing of surgical intervention. This study was aimed at examining the tricarboxylic acid (TCA) cycle rate and (13)C label incorporation into neurotransmitter amino acids and other compounds 2...

  15. Introduction to the Glutamate-Glutamine Cycle

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    . This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate......The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain (14)C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor...... released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion...

  16. Introduction to the Glutamate-Glutamine Cycle

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion......The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain (14)C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor....... This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate...

  17. Quantum-mechanical analysis of amino acid residues function in the proton transport during F0F1-ATP synthase catalytic cycle

    Science.gov (United States)

    Ivontsin, L. A.; Mashkovtseva, E. V.; Nartsissov, Ya R.

    2017-11-01

    Implications of quantum-mechanical approach to the description of proton transport in biological systems are a tempting subject for an overlapping of fundamental physics and biology. The model of proton transport through the integrated membrane enzyme FoF1-ATP synthase responsible for ATP synthesis was developed. The estimation of the mathematical expectation of the proton transfer time through the half-channel was performed. Observed set of proton pathways through the inlet half-channel showed the nanosecond timescale highly dependable of some amino acid residues. There were proposed two types of crucial amino acids: critically localized (His245) and being a part of energy conserving system (Asp119).

  18. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand

    Directory of Open Access Journals (Sweden)

    Katrin eHug

    2014-11-01

    Full Text Available Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand. Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic, and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  19. Diel cycling of zinc in a stream impacted by acid rock drainage: Initial results from a new in situ Zn analyzer

    Science.gov (United States)

    Chapin, T.P.; Nimick, D.A.; Gammons, C.H.; Wanty, R.B.

    2007-01-01

    Recent work has demonstrated that many trace metals undergo dramatic diel (24-h) cycles in near neutral pH streams with metal concentrations reproducibly changing up to 500% during the diel period (Nimick et al., 2003). To examine diel zinc cycles in streams affected by acid rock drainage, we have developed a novel instrument, the Zn-DigiScan, to continuously monitor in situ zinc concentrations in near real-time. Initial results from a 3-day deployment at Fisher Creek, Montana have demonstrated the ability of the Zn-DigiScan to record diel Zn cycling at levels below 100 ??g/l. Longer deployments of this instrument could be used to examine the effects of episodic events such as rainstorms and snowmelt pulses on zinc loading in streams affected by acid rock drainage. ?? Springer Science+Business Media B.V. 2006.

  20. Diagnostic accuracy of the anti-glutamic acid decarboxylase antibody in type 1 diabetes mellitus: Comparison between radioimmunoassay and enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Murata, Takashi; Tsuzaki, Kokoro; Nirengi, Shinsuke; Watanabe, Tomokazu; Mizutani, Yukako; Okada, Hayami; Tsukamoto, Masami; Odori, Shinji; Nakagawachi, Reiko; Kawaguchi, Yaeko; Yoshioka, Fumi; Yamada, Kazunori; Shimatsu, Akira; Kotani, Kazuhiko; Satoh-Asahara, Noriko; Sakane, Naoki

    2017-07-01

    The distributer of the anti-glutamic acid decarboxylase antibody assay kit using radioimmunoassay (RIA) recently announced its discontinuation, and proposed an alternative kit using enzyme-linked immunosorbent assay (ELISA). The aim of the present study was to investigate the diagnostic values of the anti-glutamic acid decarboxylase antibody by RIA and ELISA among type 1 diabetes mellitus patients and control participants. A total of 79 type 1 diabetes mellitus patients and 79 age-matched controls were enrolled and assessed using RIA and ELISA. Sensitivity, specificity, positive predictive values and negative predictive values were calculated for cut-off values (RIA = 1.5 U/mL and ELISA = 5.0 U/mL, respectively). Kappa coefficients were used to test for agreements between the RIA and ELISA methods regarding the diagnosis of type 1 diabetes mellitus. The sensitivity, specificity, positive predictive values, and negative predictive values for diagnosing type 1 diabetes mellitus were 57.0, 97.5, 95.7, and 69.4% by RIA, and 60.8, 100.0, 100.0 and 71.8% by ELISA, respectively. The diagnosis of type 1 diabetes mellitus using the RIA and ELISA methods showed substantial agreement with the kappa values of 0.74 for all participants, and of 0.64 for the acute type; however, there was moderate agreement with the kappa value of 0.56 for the slowly progressive type. The present study suggests that both anti-glutamic acid decarboxylase antibody by RIA and ELISA was useful for diagnosing type 1 diabetes mellitus. However, in the slowly progressive type, the degree of agreement of these two kits was poorer compared with those in all participants or in the acute type. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  1. The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats.

    Science.gov (United States)

    Tsiplakou, E; Abdullah, M A M; Skliros, D; Chatzikonstantinou, M; Flemetakis, E; Labrou, N; Zervas, G

    2017-04-01

    Microalgae might be considered as an alternative source of fat and/or protein for ruminant's diets. However, changes in populations of ruminal micro-organisms associated with biohydrogenation process, methane and ammonia production in response to microalgae dietary supplementation have not been well characterized. Thus, 16 cross-bred goats were divided into two groups. Each goat of both groups was fed individually with alfalfa hay and concentrates separately. The concentrates of the control group had no microalgae while those of the treated group were supplemented with 10 g lyophilized Chlorella vulgaris/kg concentrate (chlor). On the 30th experimental day, samples of rumen fluid were collected for microbial DNA extraction, fatty acid profile and enzyme activity analyses. The results showed that the chlor diet compared with the control increased significantly the populations of Methanosphaera stadtmanae, Methanobrevibacter ruminantium and Methanogens bacteria and protozoa in the rumen of goats. A significant reduction in the cellulase activity and in the abundance of Ruminococcus albus, and a significant increase in the protease activity and in the abundance of Clostridium sticklandii in the rumen liquid of goats fed with the chlor diet, compared with the control, were found. Chlorella vulgaris supplementation promoted the formation of trans C 18:1 , trans-11 C 18:1 and monounsaturated fatty acids (MUFA), while the proportions of C 18:0 and long-chain fatty acids (LCFA) reduced significantly in the rumen liquid of goats. This shift in ruminal biohydrogenation pathway was accompanied by a significant increase in Butyrivibrio fibrisolvens trans C 18:1 -producing bacteria. In conclusion, the supplementation of diets with microalgae needs further investigation because it enhances the populations of methane-producing bacteria and protozoa. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  2. Functional and biochemical analysis of Chlamydia trachomatis MurC, an enzyme displaying UDP-N-acetylmuramate:amino acid ligase activity.

    Science.gov (United States)

    Hesse, Lars; Bostock, Julieanne; Dementin, Sebastien; Blanot, Didier; Mengin-Lecreulx, Dominique; Chopra, Ian

    2003-11-01

    Chlamydiae are unusual obligate intracellular bacteria that cause serious infections in humans. Chlamydiae contain genes that appear to encode products with peptidoglycan biosynthetic activity. The organisms are also susceptible to antibiotics that inhibit peptidoglycan synthesis. However, chlamydiae do not synthesize detectable peptidoglycan. The paradox created by these observations is known as the chlamydial anomaly. The MurC enzyme of chlamydiae, which is synthesized as a bifunctional MurC-Ddl product, is expected to possess UDP-N-acetylmuramate (UDP-MurNAc):L-alanine ligase activity. In this paper we demonstrate that the MurC domain of the Chlamydia trachomatis bifunctional protein is functionally expressed in Escherichia coli, since it complements a conditional lethal E. coli mutant possessing a temperature-sensitive lesion in MurC. The recombinant MurC domain was overexpressed in and purified from E. coli. It displayed in vitro ATP-dependent UDP-MurNAc:L-alanine ligase activity, with a pH optimum of 8.0 and dependence upon magnesium ions (optimum concentration, 20 mM). Its substrate specificity was studied with three amino acids (L-alanine, L-serine, and glycine); comparable Vmax/Km values were obtained. Our results are consistent with the synthesis of a muramic acid-containing polymer in chlamydiae with UDP-MurNAc-pentapeptide as a precursor molecule. However, due to the lack of specificity of MurC activity in vitro, it is not obvious which amino acid is present in the first position of the pentapeptide.

  3. Purification, properties, and N-terminal amino acid sequence of homogeneous Escherichia coli 2-amino-3-ketobutyrate CoA ligase, a pyridoxal phosphate-dependent enzyme.

    Science.gov (United States)

    Mukherjee, J J; Dekker, E E

    1987-10-25

    Starting with 100 g (wet weight) of a mutant of Escherichia coli K-12 forced to grow on L-threonine as sole carbon source, we developed a 6-step procedure that provides 30-40 mg of homogeneous 2-amino-3-ketobutyrate CoA ligase (also called aminoacetone synthetase or synthase). This ligase, which catalyzes the cleavage/condensation reaction between 2-amino-3-ketobutyrate (the presumed product of the L-threonine dehydrogenase-catalyzed reaction) and glycine + acetyl-CoA, has an apparent molecular weight approximately equal to 85,000 and consists of two identical (or nearly identical) subunits with Mr = 42,000. Computer analysis of amino acid composition data, which gives the best fit nearest integer ratio for each residue, indicates a total of 387 amino acids/subunit with a calculated Mr = 42,093. Stepwise Edman degradation provided the N-terminal sequence of the first 21 amino acids. It is a pyridoxal phosphate-dependent enzyme since (a) several carbonyl reagents caused greater than 90% loss of activity, (b) dialysis against buffer containing hydroxylamine resulted in 89% loss of activity coincident with an 86% decrease in absorptivity at 428 nm, (c) incubation of the apoenzyme with 20 microM pyridoxal phosphate showed a parallel recovery (greater than 90%) of activity and 428-nm absorptivity, and (d) reduction of the holoenzyme with NaBH4 resulted in complete inactivation, disappearance of a new absorption maximum at 333 nm. Strict specificity for glycine is shown but acetyl-CoA (100%), n-propionyl-CoA (127%), or n-butyryl-CoA (16%) is utilized in the condensation reaction. Apparent Km values for acetyl-CoA, n-propionyl-CoA, and glycine are 59 microM, 80 microM, and 12 mM, respectively; the pH optimum = 7.5. Added divalent metal ions or sulfhydryl compounds inhibited catalysis of the condensation reaction.

  4. Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Teresa A Figueiredo

    2012-01-01

    Full Text Available The glutamic acid residues of the peptidoglycan of Staphylococcus aureus and many other bacteria become amidated by an as yet unknown mechanism. In this communication we describe the identification, in the genome of S. aureus strain COL, of two co-transcribed genes, murT and gatD, which are responsible for peptidoglycan amidation. MurT and GatD have sequence similarity to substrate-binding domains in Mur ligases (MurT and to the catalytic domain in CobB/CobQ-like glutamine amidotransferases (GatD. The amidation of glutamate residues in the stem peptide of S. aureus peptidoglycan takes place in a later step than the cytoplasmic phase--presumably the lipid phase--of the biosynthesis of the S. aureus cell wall precursor. Inhibition of amidation caused reduced growth rate, reduced resistance to beta-lactam antibiotics and increased sensitivity to lysozyme which inhibited culture growth and caused degradation of the peptidoglycan.

  5. Urinary Loss of Tricarboxylic Acid Cycle Intermediates As Revealed by Metabolomics Studies: An Underlying Mechanism to Reduce Lipid Accretion by Whey Protein Ingestion?

    Science.gov (United States)

    2015-01-01

    Whey protein intake is associated with the modulation of energy metabolism and altered body composition both in human subjects and in animals, but the underlying mechanisms are not yet elucidated. We fed obesity-prone C57BL/6J mice high-fat diets with either casein (HF casein) or whey (HF whey) for 6 weeks. At equal energy intake and apparent fat and nitrogen digestibility, mice fed HF whey stored less energy as lipids, evident both as lower white adipose tissue mass and as reduced liver lipids, compared with HF-casein-fed mice. Explorative analyses of 48 h urine, both by 1H NMR and LC–MS metabolomic platforms, demonstrated higher urinary excretion of tricarboxylic acid (TCA) cycle intermediates citric acid and succinic acid (identified by both platforms), and cis-aconitic acid and isocitric acid (identified by LC–MS platform) in the HF whey, relative to in the HF-casein-fed mice. Targeted LC–MS analyses revealed higher citric acid and cis-aconitic acid concentrations in fed state plasma, but not in liver of HF-whey-fed mice. We propose that enhanced urinary loss of TCA cycle metabolites drain available substrates for anabolic processes, such as lipogenesis, thereby leading to reduced lipid accretion in HF-whey-fed compared to HF-casein-fed mice. PMID:24702026

  6. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  7. Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase- and mitochondrial-dependent signaling pathways.

    Science.gov (United States)

    Ying, Tsung-Ho; Chen, Chia-Wei; Hsiao, Yu-Ping; Hung, Sung-Jen; Chung, Jing-Gung; Yang, Jen-Hung

    2013-10-01

    Citric acid is an alpha-hydroxyacid (AHA) widely used in cosmetic dermatology and skincare products. However, there is concern regarding its safety for the skin. In this study, we investigated the cytotoxic effects of citric acid on the human keratinocyte cell line HaCaT. HaCaT cells were treated with citric acid at 2.5-12.5 mM for different time periods. Cell-cycle arrest and apoptosis were investigated by 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, flow cytometry, western blot and confocal microscopy. Citric acid not only inhibited proliferation of HaCaT cells in a dose-dependent manner, but also induced apoptosis and cell cycle-arrest at the G2/M phase (before 24 h) and S phase (after 24 h). Citric acid increased the level of Bcl-2-associated X protein (BAX) and reduced the levels of B-cell lymphoma-2 (BCL-2), B-cell lymphoma-extra large (BCL-XL) and activated caspase-9 and caspase-3, which subsequently induced apoptosis via caspase-dependent and caspase-independent pathways. Citric acid also activated death receptors and increased the levels of caspase-8, activated BH3 interacting-domain death agonist (BID) protein, Apoptosis-inducing factor (AIF), and Endonuclease G (EndoG). Therefore, citric acid induces apoptosis through the mitochondrial pathway in the human keratinocyte cell line HaCaT. The study results suggest that citric acid is cytotoxic to HaCaT cells via induction of apoptosis and cell-cycle arrest in vitro.

  8. In vitro modulatory effects of Terminalia arjuna, arjunic acid, arjunetin and arjungenin on CYP3A4, CYP2D6 and CYP2C9 enzyme activity in human liver microsomes

    Directory of Open Access Journals (Sweden)

    Alice Varghese

    2015-01-01

    Full Text Available Terminalia arjuna is a tree having an extensive medicinal potential in cardiovascular disorders. Triterpenoids are mainly responsible for cardiovascular properties. Alcoholic and aqueous bark extracts of T. arjuna, arjunic acid, arjunetin and arjungenin were evaluated for their potential to inhibit CYP3A4, CYP2D6 and CYP2C9 enzymes in human liver microsomes. We have demonstrated that alcoholic and aqueous bark extract of T. arjuna showed potent inhibition of all three enzymes in human liver microsomes with IC50 values less than 50 μg/mL. Arjunic acid, arjunetin and arjungenin did not show significant inhibition of CYP enzymes in human liver microsomes. Enzyme kinetics studies suggested that the extracts of arjuna showed reversible non-competitive inhibition of all the three enzymes in human liver microsomes. Our findings suggest strongly that arjuna extracts significantly inhibit the activity of CYP3A4, CYP2D6 and CYP2C9 enzymes, which is likely to cause clinically significant drug–drug interactions mediated via inhibition of the major CYP isozymes.

  9. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  10. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Hierro, A. [Department of Physics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Olías, M., E-mail: manuel.olias@dgyp.uhu.es [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Cánovas, C.R. [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Martín, J.E.; Bolivar, J.P. [Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain)

    2014-11-01

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH ∼ 6 Cu is desorbed, probably by the formation of Cu(I)–chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes. - Highlights: • The Tinto estuary shows strong pH gradients and high trace elements concentrations. • PM has a hysteretic relationship with tides and high contents of Fe, Al, As and Pb. • Co and Mn are controlled by river and sea water mixing and sorption processes. • Sorption processes strongly affect Cu below pH 6, above this value Cu is desorpted. • Cadmium behaves conservatively along the pH range studied (4.4–6.9)

  11. Involvement of apoptotic cell death and cell cycle perturbation in retinoic acid-induced cleft palate in mice

    International Nuclear Information System (INIS)

    Okano, Junko; Suzuki, Shigehiko; Shiota, Kohei

    2007-01-01

    Retinoic acid (RA), a metabolite of vitamin A, plays a key role in a variety of biological processes and is essential for normal embryonic development. On the other hand, exogenous RA could cause cleft palate in offspring when it is given to pregnant animals at either the early or late phases of palatogenesis, but the pathogenetic mechanism of cleft palate caused by excess RA remains not fully elucidated. The aim of the present study was to investigate the effects of excess of RA on early palatogenesis in mouse fetuses and analyze the teratogenic mechanism, especially at the stage prior to palatal shelf elevation. We gave all-trans RA (100 mg/kg) orally to E11.5 ICR pregnant mice and observed the changes occurring in the palatal shelves of their fetuses. It was found that apoptotic cell death increased not only in the epithelium of the palatal shelves but also in the tongue primordium, which might affect tongue withdrawal movement during palatogenesis and impair the horizontal elevation of palatal shelves. In addition, RA was found to prevent the G 1 /S progression of palatal mesenchymal cells through upregulation of p21 Cip1 , leading to Rb hypophospholylation. Thus, RA appears to cause G 1 arrest in palatal mesenchymal cells in a similar manner as in various cancer and embryonic cells. It is likely that apoptotic cell death and cell cycle disruption are involved in cleft palate formation induced by RA

  12. Mechanism for ginkgolic acid (15 : 1)-induced MDCK cell necrosis: Mitochondria and lysosomes damages and cell cycle arrest.

    Science.gov (United States)

    Yao, Qing-Qing; Liu, Zhen-Hua; Xu, Ming-Cheng; Hu, Hai-Hong; Zhou, Hui; Jiang, Hui-Di; Yu, Lu-Shan; Zeng, Su

    2017-05-01

    Ginkgolic acids (GAs), primarily found in the leaves, nuts, and testa of ginkgo biloba, have been identified with suspected allergenic, genotoxic and cytotoxic properties. However, little information is available about GAs toxicity in kidneys and the underlying mechanism has not been thoroughly elucidated so far. Instead of GAs extract, the renal cytotoxicity of GA (15 : 1), which was isolated from the testa of Ginkgo biloba, was assessed in vitro by using MDCK cells. The action of GA (15 : 1) on cell viability was evaluated by the MTT and neutral red uptake assays. Compared with the control, the cytotoxicity of GA (15 : 1) on MDCK cells displayed a time- and dose-dependent manner, suggesting the cells mitochondria and lysosomes were damaged. It was confirmed that GA (15 : 1) resulted in the loss of cells mitochondrial trans-membrane potential (ΔΨm). In propidium iodide (PI) staining analysis, GA (15 : 1) induced cell cycle arrest at the G0/G1 and G2/M phases, influencing on the DNA synthesis and cell mitosis. Characteristics of necrotic cell death were observed in MDCK cells at the experimental conditions, as a result of DNA agarose gel electrophoresis and morphological observation of MDCK cells. In conclusion, these findings might provide useful information for a better understanding of the GA (15 : 1) induced renal toxicity. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  13. The amino acid transporters of the glutamate/GABA-glutamine cycle and their impact on insulin and glucagon secretion

    Directory of Open Access Journals (Sweden)

    Monica eJenstad

    2013-12-01

    Full Text Available Intercellular communication is pivotal in optimising and synchronising cellular responses to keep internal homeostasis and to respond adequately to external stimuli. In the central nervous system (CNS, glutamatergic and GABAergic signals are postulated to be dependent on the glutamate/GABA-glutamine (GGG cycle for vesicular loading of neurotransmitters, for inactivating the signal and for the replenishment of the neurotransmitters. Islets of Langerhans release the hormones insulin and glucagon, but share similarities with CNS cells in for example transcriptional control of development and differentiation, and chromatin methylation. Interestingly, proteins involved in the CNS in secretion of the neurotransmitters and emitting their responses as well as the regulation of these processes, are also found in islet cells. Moreover, high levels of glutamate, GABA and glutamine and their respective vesicular and plasma membrane transporters have been shown in the islet cells and there is emerging support for these amino acids and their transporters playing important roles in the maturation and secretion of insulin and glucagon. In this review, we will discuss the feasibility of recent data in the field in relation to the biophysical properties of the transporters (Slc1, Slc17, Slc32 and Slc38 and physiology of hormone secretion in islets of Langerhans.

  14. Abscisic Acid Induced Changes in Production of Primary and Secondary Metabolites, Photosynthetic Capacity, Antioxidant Capability, Antioxidant Enzymes and Lipoxygenase Inhibitory Activity of Orthosiphon stamineus Benth.

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Ibrahim

    2013-07-01

    Full Text Available An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2−, phenylalanine ammonia lyase (PAL activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX, catalase (CAT, superoxide dismutase (SOD and Lipoxygenase inhibitory activity (LOX] under four levels of foliar abscisic acid (ABA application (0, 2, 4, 6 µM for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2−, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05 and O2− (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05. This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.

  15. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato.

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp).

  16. Suppression of 9-cis-Epoxycarotenoid Dioxygenase, Which Encodes a Key Enzyme in Abscisic Acid Biosynthesis, Alters Fruit Texture in Transgenic Tomato1[W][OA

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp). PMID:22108525

  17. Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice[S

    Science.gov (United States)

    Fu, Zidong Donna; Cui, Julia Yue; Klaassen, Curtis D.

    2014-01-01

    Statins are effective cholesterol-lowering drugs to treat CVDs. Bile acids (BAs), the end products of cholesterol metabolism in the liver, are important nutrient and energy regulators. The present study aims to investigate how statins affect BA homeostasis in the enterohepatic circulation. Male C57BL/6 mice were treated with atorvastatin (100 mg/kg/day po) for 1 week, followed by BA profiling by ultra-performance LC-MS/MS. Atorvastatin decreased BA pool size, mainly due to less BA in the intestine. Surprisingly, atorvastatin did not alter total BAs in the serum or liver. Atorvastatin increased the ratio of 12α-OH/non12α-OH BAs. Atorvastatin increased the mRNAs of the BA-synthetic enzymes cholesterol 7α-hydroxylase (Cyp7a1) (over 10-fold) and cytochrome P450 27a1, the BA uptake transporters Na+/taurocholate cotransporting polypeptide and organic anion transporting polypeptide 1b2, and the efflux transporter multidrug resistance-associated protein 2 in the liver. Noticeably, atorvastatin suppressed the expression of BA nuclear receptor farnesoid X receptor (FXR) target genes, namely small heterodimer partner (liver) and fibroblast growth factor 15 (ileum). Furthermore, atorvastatin increased the mRNAs of the organic cation uptake transporter 1 and cholesterol efflux transporters Abcg5 and Abcg8 in the liver. The increased expression of BA-synthetic enzymes and BA transporters appear to be a compensatory response to maintain BA homeostasis after atorvastatin treatment. The Cyp7a1 induction by atorvastatin appears to be due to suppressed FXR signaling in both the liver and intestine. PMID:25278499

  18. The activity of the endocannabinoid metabolising enzyme fatty acid amide hydrolase in subcutaneous adipocytes correlates with BMI in metabolically healthy humans

    Directory of Open Access Journals (Sweden)

    Alexander Stephen PH

    2011-08-01

    Full Text Available Abstract Background The endocannabinoid system (ECS is a ubiquitously expressed signalling system, with involvement in lipid metabolism and obesity. There are reported changes in obesity of blood concentrations of the endocannabinoids anandamide (AEA and 2-arachidonoylglcyerol (2-AG, and of adipose tissue expression levels of the two key catabolic enzymes of the ECS, fatty acid amide hydrolase (FAAH and monoacylglycerol lipase (MGL. Surprisingly, however, the activities of these enzymes have not been assayed in conditions of increasing adiposity. The aim of the current study was to investigate whether FAAH and MGL activities in human subcutaneous adipocytes are affected by body mass index (BMI, or other markers of adiposity and metabolism. Methods Subcutaneous abdominal mature adipocytes, fasting blood samples and anthropometric measurements were obtained from 28 metabolically healthy subjects representing a range of BMIs. FAAH and MGL activities were assayed in mature adipocytes using radiolabelled substrates. Serum glucose, insulin and adipokines were determined using ELISAs. Results MGL activity showed no relationship with BMI or other adiposity indices, metabolic markers (fasting serum insulin or glucose or serum adipokine levels (adiponectin, leptin or resistin. In contrast, FAAH activity in subcutaneous adipocytes correlated positively with BMI and waist circumference, but not with skinfold thickness, metabolic markers or serum adipokine levels. Conclusions In this study, novel evidence is provided that FAAH activity in subcutaneous mature adipocytes increases with BMI, whereas MGL activity does not. These findings support the hypothesis that some components of the ECS are upregulated with increasing adiposity in humans, and that AEA and 2-AG may be regulated differently.

  19. Pasture, multi-enzymes, benzoic acid and essential oils positively influence performance, intestinal organ weight and egg quality in free-range laying hens.

    Science.gov (United States)

    Iqbal, Z; Roberts, J; Perez-Maldonado, R A; Goodarzi Boroojeni, F; Swick, R A; Ruhnke, I

    2018-04-01

    1. The objective of this study was to investigate the effect of range type, multi-enzyme applications, and a combination of benzoic acid (BA) and essential oils (EO) on the productive performance, organ weight and egg quality of free-range laying hens. 2. Three hundred laying hens were evaluated for the short-term (6 weeks) and long-term (12 weeks) effects of range type (G = no pasture, P = pasture) and feed additives (T1 = control; T2 = betaglucanase/pectinase/protease; T3 = BA/EO). Body weight, feed intake (FI), feed conversion ratio (FCR), egg production (EP), digestive organ weight, and egg quality (EQ) were evaluated. Data were analysed using SPSS 2.2 in a 2×2×3 factorial arrangement. 3. Hens that ranged on pasture were significantly heavier (2043 g vs. 1996 g; p ranged on gravel. Hens fed T2 were significantly heavier (2050 g) compared to hens fed T1 (2005 g) or T3 (2008 g). Organ weights (gizzard, liver and pancreas) were significantly heavier in hens ranged on pasture (16.8 g/kg BW, 22.3 g/kg BW and 1.89 g/kg BW, respectively) compared to hens ranged on gravel (14.2 g/kg BW, 21.7 g/kg BW and 1.83 g/kg BW, respectively). Over time, body weight (1970-2070 g; p < 0.001) and egg weight (59.5-62.8 g; p < 0.001) increased, FI (123-120 g; p = 0.024) was reduced and FCR (2.36-2.10; p = 0.002) improved 4. In conclusion, hens housed on pasture and fed multi-enzyme supplemented diets had significantly heavier body weight and produced heavier eggs with darker yolk colour. Pasture intake and enzyme supplementation increased digestive organ weight significantly.

  20. Kinetic characterization for hemicellulose hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor at moderate conditions

    International Nuclear Information System (INIS)

    Jin, Qiang; Zhang, Hongman; Yan, Lishi; Qu, Liang; Huang, He

    2011-01-01

    The kinetic characterization of hemicellulose hydrolysis of corn stover was investigated using a new reactor of dilute acid cycle spray flow-through (DCF) pretreatment. The primary purpose was to obtain kinetic data for hemicellulose hydrolysis with sulfuric acid concentrations (10-30 kg m -3 ) at relatively low temperatures (90-100 o C). A simplified kinetic model was used to describe its performance at moderate conditions. The results indicate that the rates of xylose formation and degradation are sensitive to flow rate, temperature and acid concentration. Moreover, the kinetic data of hemicellulose hydrolysis fit a first-order reaction model and the experimental data with actual acid concentration after accounting for the neutralization effect of the substrates at different temperatures. Over 90% of the xylose monomer yield and below 5.5% of degradation product (furfural) yield were observed in this reactor. Kinetic constants for hemicellulose hydrolysis models were analyzed by an Arrhenius-type equation, and the activation energy of xylose formation were 111.6 kJ mol -1 , and 95.7 kJ mol -1 for xylose degradation, respectively. -- Highlights: → Investigating a novel pretreatment reactor of dilute acid cycle spray flow-through. → Xylose yield is sensitive to flow rate, temperature and acid concentration. → Obtaining relatively higher xylose monomer yield and lower fermentation inhibitor. → Lumping hemicellulose and xylan oligmers together in the model is a valid way. → The kinetic model as a guide for reactor design, and operation strategy optimization.

  1. Cell-cycle variation in the induction of lethality and mitotic recombination after treatment with UV and nitrous acid in the yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Davies, P.J.; Tippins, R.S.; Parry, J.M.

    1978-01-01

    Exponentially growing yeast cultures separated into discrete periods of the cell cycle by zonal rotor centrifugation show cyclic variation in both UV and nitrous acid induced cell lethality, mitotic gene conversion and mitotic crossing-over. Maximum cell survival after UV treatment was observed in the S and G2 phases of the cell cycle at a time when UV induction of both types of mitotic recombination was at a minumum. In contrast, cell inactivation by the chemical mutagen nitrous acid showed a single discrete period of sensitivity which occurred in S phase cells which are undergoing DNA synthesis. Mitotic gene conversion ahd mitotic crossing-over were induced by nitrous acid in cells at all stages of the cell cycle with a peak of induction of both events occurring at the time of maximum cell lethality. The lack of correlation observed between maximum cell survival and the maximum induction of mitotic intragenic recombination suggest that other DNA-repair mechanisms besides DNA-recombination repair are involved in the recovery of inactivated yeast cells during the cell cycle. (Auth.)

  2. Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits.

    Science.gov (United States)

    Zhang, Mei; Leng, Ping; Zhang, Guanglian; Li, Xiangxin

    2009-08-15

    Ripening and senescence are generally controlled by ethylene in climacteric fruits like peaches, and the ripening process of grape, a non-climacteric fruit, may have some relationship to abscisic acid (ABA) function. In order to better understand the role of ABA in ripening and senescence of these two types of fruits, we cloned the 9-cis-epoxycarotenoid dioxygenase (NCED) gene that encodes a key enzyme in ABA biosynthesis from peaches and grapes using an RT-PCR approach. The NCED gene fragments were cloned from peaches (PpNCED1and PpNCED2, each 740bp) and grapes (VVNCED1, 741bp) using degenerate primers designed based on the conserved amino acids sequence of NCEDs in other plants. PpNCED1 showed 78.54% homology with PpNCED2, 74.90% homology with VVNCED1, and both showed high homology to NCEDs from other plants. The expression patterns of PpNCED1 and VVNCED1 were very similar. Both were highly expressed at the beginning of ripening when ABA content becomes high. The maximum ABA preceded ethylene production in peach fruit. ABA in the grape gradually increased from the beginning of ripening and reached the highest level at 20d before the harvest stage. However, ethylene remained at low levels during the entire process of fruit development, including ripening and senescence. ABA content, and ripening and softening of both types of fruits, were promoted or delayed by exogenous ABA or Fluridone (or NDGA) treatment. The roles of ABA and ethylene in the later ripening of fruit are complex. Based on results obtained in this study, we concluded that PpNCED1 and VVNCED1 initiate ABA biosynthesis at the beginning of fruit ripening, and that ABA accumulation might play a key role in the regulation of ripeness and senescence of both peach and grape fruits.