WorldWideScience

Sample records for acid complex films

  1. Structural organization of films based on polyaniline/polysulfonic acid complexes depending on the synthesis method

    International Nuclear Information System (INIS)

    The optical properties and morphology of complexes based on polyaniline (PANI) and poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS), depending on their synthesis conditions, have been characterized by UV-visible spectroscopy and atomic force microscopy. The dependence of the electron absorption spectra of PANI/PAMPS complexes and the surface topography of their films on the initiation way of PANI formation (chemical and enzymatic) and the use of promoters of aniline polymerization has been investigated. The aniline polymerization kinetics with and without polymerization promoters has been studied. All PANI/PAMPS complexes are found to have a nanocomposite time-stable structure.

  2. Improvement of the photo stabilization of PVC films in the presence of thioacetic acid benzothiazole complexes

    International Nuclear Information System (INIS)

    The photo stabilization of poly(vinyl chloride) (PVC) films by 2-thioacetic acid benzothiazole with Sn (II), Cd (II), Ni (II), Zn (II) and Cu (II) complexes was investigated. The PVC films containing concentration of complexes 0.5 % by weight were produced by the same casting method from tetrahydrofuran (THF) solvent. The photo stabilization activities of these compounds were determined by monitoring the carbonyl, polyene and hydroxyl indices with irradiation time. The changes in viscosity average molecular weight of PVC with irradiation time were also tracked (using THF as a solvent). The quantum yield of the chain scission (φcs) of these complexes in PVC films was evaluated and found to range between 4.71 x 10-8 and 8.98 x 10-8. Results obtained showed that the rate of photo stabilization of PVC in the presence of the additive follows the trend: Sn(L)2 > Cd(L)2 > Ni(L)2 > Zn(L)2 > Cu(L)2. According to the experimental results obtained, several mechanisms were suggested depending on the structure of the additive. Among them HCl scavenging, UV absorption, peroxide decomposer and radical scavenger for photo stabilizer additives mechanisms were suggested. (author)

  3. Synthesis of nanosilver loaded chitosan/poly(acrylamide-co-itaconic acid) based inter-polyelectrolyte complex films for antimicrobial applications.

    Science.gov (United States)

    Bajpai, S K; Jyotishi, Pooja; Bajpai, M

    2016-12-10

    In the present work, AgNPs loaded chitosan/poly(acrylamide-co-itaconic acid) inter-polyelectrolyte complex (IPC) films have been prepared for antimicrobial applications. The AgNPs-loaded IPC films have been characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA) and Surface plasmon resonance (SPR). Particle size of synthesized AgNPs was found to be in the range 10-30nm. These films exhibited a remarkable antibacterial property against strong pathogen E.Coli, thus offering their candidature for antimicrobial applications. PMID:27577913

  4. Films prepared from poly(vinyl alcohol) and amylose-fatty acid salt inclusion complexes with increased surface hydrophobicity and high elongation

    Science.gov (United States)

    In this study, water-soluble amylose-inclusion complexes were prepared from high amylose corn starch and sodium salts of lauric, palmitic, and stearic acid by steam jet cooking. Cast films were prepared by combining the amylose complexes with poly(vinyl alcohol)(PVOH) solution at ratios varying from...

  5. Preparation and Properties of Cellutose-Alginic Acid Interpolymeric Complex Films

    Institute of Scientific and Technical Information of China (English)

    Xian-Hua HE; Mei-Yu HUANG; Ying-Yan JIANG

    2005-01-01

    @@ 1Introduction General synthetic polymers such as polyethylene, polyvinyl chloride, polystyrene etc. have been produced and used in large quantities. They are very cheap, but their wastes are difficult to decompose in nature so to cause environmental pollution . In order to overcome such disadvantage, various kinds of biodegradable synthetic polymers such as polyactic acid, aliphatic polyester, polyvinyl alcohol complexes etc. have been researched[1]. However, they are expensive, so cannot be manufactured on large scale. Biopolymers such as starch and cellulose have been used as raw materials to prepare biodegradable polymer materials[1,2]. Starch derivatives and starch containing materials have been prepared to obtain relatively cheap biodegradable polymer materials, but their water proofness is not so good[2].

  6. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    Directory of Open Access Journals (Sweden)

    A. L. Van Wyngarden

    2014-11-01

    Full Text Available Particles in the upper troposphere and lower stratosphere (UT/LS consist mostly of concentrated sulfuric acid (40–80 wt % in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4 with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, Attenuated Total Reflectance–Fourier Transform Infrared and 1H Nuclear Magnetic Resonance spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal and 1,3,5-trimethylbenzene, which was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence for products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal

  7. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    Science.gov (United States)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2015-04-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt%) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  8. A solid-state sensor based on ruthenium (II) complex immobilized on polytyramine film for the simultaneous determination of dopamine, ascorbic acid and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Khudaish, Emad A., E-mail: ejoudi@squ.edu.om [Sultan Qaboos University, College of Science, Chemistry Department, PO Box 36, PC 123 Muscat (Oman); Al-Ajmi, Khawla Y. [Sultan Qaboos University, College of Science, Chemistry Department, PO Box 36, PC 123 Muscat (Oman); Al-Harthi, Salim H. [Sultan Qaboos University, College of Science, Department of Physics, PO Box 36, PC 123 Muscat (Oman)

    2014-08-01

    A solid-state sensor based on a polytyramine (Pty) film deposited on a glassy carbon electrode doped with a tris(2,2′-bipyridyl)Ru(II) complex (Ru/Pty/GCE) was constructed electrochemically. The surface morphology of the film modified electrode was characterized using electrochemical and surface scanning techniques. A redox property represented by a [Ru(bpy){sub 3}]{sup 3+/2+} couple immobilized at the Pty moiety was characterized using typical voltammetric techniques. A distinct Ru 3d peak obtained at 280.9 eV confirms doping of the Ru species onto the Pty moiety characterized by X-ray photoelectron (XPS). Atomic force microscopy (AFM) images demonstrate that incorporation of Ru decreases the surface roughness of the native Pty film modified electrode. The Ru/Pty/GCE exhibits efficient electrochemical sensing toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) in their mixture. Three well-defined peaks were resolved with a large peak to peak separation and the detection limits of AA, DA and UA are brought down to 0.31, 0.08 and 0.58 μM, respectively. Interference studies and application for DA determination in real samples were conducted with satisfactory results. - Highlights: • XPS data confirm doping of ruthenium onto the polytyramine moiety. • The voltammetric signals of ascorbic acid, dopamine and uric acid are well defined. • The sensor is stable and offers a large adsorption facility for all species. • The sensor is highly sensitive to dopamine oxidation. • The sensor is applied to a real sample with a satisfactory recovery percentage.

  9. Improved thermal stability of polylactic acid (PLA) composite film via PLA-β-cyclodextrin-inclusion complex systems.

    Science.gov (United States)

    Byun, Youngjae; Rodriguez, Katia; Han, Jung H; Kim, Young Teck

    2015-11-01

    The effects of the incorporation of PLA-β-cyclodextrin-inclusion complex (IC) and β-cyclodextrin (β-CD) on biopolyester PLA films were investigated. Thermal stability, surface morphology, barrier, and mechanical properties of the films were measured at varying IC (1, 3, 5, and 7%) and β-CD (1 and 5%) concentrations. The PLA-IC-composite films (IC-PLA-CFs) showed uniform morphological structure, while samples containing β-CD (β-CD-PLA-CFs) showed high agglomeration of β-CD due to poor interfacial interaction between β-CD and PLA moieties. According to the thermal property analysis, the 5% IC-PLA-CFs showed 6.6 times lower dimensional changes (6.5%) at the temperature range of 20-80°C than that of pure PLA film (43.0%). The increase of IC or β-CD content in the PLA-composite films shifted the glass transition and crystallization temperature to higher temperature regions. The crystallinity of both composite films improved by increasing IC or β-CD content. Both composite films had higher oxygen and water vapor permeability as IC or β-CD content increased in comparison to pure PLA film. All the composite films had less flexibility and lower tensile strength than the pure PLA film. In conclusion, this study shows that the IC technique is valuable to improve the thermal expansion stability of PLA-based films.

  10. Self-assembly and photoelectric properties of cerium complexes with 3,4,9,10-perylenetetracarboxylic acid on nanocrystalline TiO2 films

    Institute of Scientific and Technical Information of China (English)

    王忠胜; 黄春辉; 李富友; 杨术明; 翁诗甫; 付小艺; 吴念祖; 奎热西; 刘凤琴; 钱海杰

    2001-01-01

    Self-assembled (SA) films (PMP, M = Ce3+ or Ce4+) of 3,4,9,10-perylenetetracarboxylic acid (PTA) on nanocrystalline TiO2 films with Ce3+ or Ce4+ as a bridge were fabricated and characterized with UV-Vis, IR, and XPS synchrotron radiation photoelectron spectroscopy (SRPES) which gave the HOMO energy levels for the SA films. It was shown that thin-layer sandwich-type solar cells based on these SA films possess good properties for photoelectric conversion. While PTA-loaded TiO2 electrode (P) generated 26.9% of incident monochromatic photon-to-electron conversion efficiency (IPCE), PMP-sensitized Ti02 electrodes yielded 55.8% and 39.1% for Ce4+ and Ce3+ respectively. PMP films can be considered as a kind of complexes whose HOMO energy levels were proved to be higher than that of film P, which is one of the major reasons for the increase in IPCE from film P to film PMP.

  11. Self-Assembled Film of Tb3+ and Poly(3-Thiophene Acetic Acid) via Layer-by-Layer Complexation Technique and Its Photoluminescence

    Institute of Scientific and Technical Information of China (English)

    辛颢; 李富友; 黄岩谊; 黄春辉

    2002-01-01

    The layer-by-layer complexation technique of polymer and metal ion was successfully utilized to fabricate the ultrathin multilayer film of poly(3-thiophene acetic acid (PTAA) and Tb3+ ion by dipping the substrates alternatively in polymer and Tb3+ ion aqueous solutions. UV-vis measurement revealed that the absorbance has linearity with the bilayer number from layer to layer and the X-ray photoelectron spectrum (XPS) confirmed the existence of Tb3+ ion. The pH of both the polymer and TbCl3 solutions influence the thickness dramatically while the concentration of the solutions is not so sensitive. The luminescent spectrum of the complex film shows the characteristic emission of Tb3+ ion as well as the ligand indicating the formation of the complex.

  12. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    OpenAIRE

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T.E.; Ha, K. T.; L. Leong; Iraci, L.T.

    2014-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric ...

  13. Growth of nitric acid hydrates on thin sulfuric acid films

    Science.gov (United States)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-05-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1 - 3 × 10-4 Torr H2O and 1 - 2.5 × 10-6 Torr HNO3) and subjected to cooling and heating cycles. FTIR spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  14. Europium complexes with trifluoroacetic acid

    International Nuclear Information System (INIS)

    Synthesis conditions and spectra-luminescent properties of different-ligand europium complexes of the composition Eu (TFA)2x2D, where TFA = anion of trifluoroacetic acid, D = 1,10-phenanthroline, 2,2-dipyridyl, triphenylphosphinoxide, hexamethyl-phosphotriamide, were studied. The compounds prepared have been characterized by the methods of elementary chemical analysis, IR and luminescence spectroscopy. It is shown that in the complex compounds two methods of coordination of the acid residue functional groups are realized, i.e. monodentate and bridge functions. The compounds were tested for resistance to UV light effect and to heating in the air. Complex with 2,2-dipyridyl proved the most thermally stable complex in the series studied, its decomposition temperature being 240 deg C

  15. Salicylic acid electrooxidation. A surface film formation

    Energy Technology Data Exchange (ETDEWEB)

    Baturova, M.D.; Vedenjapin, A.; Baturova, M.M. [N.D. Zelinsky Inst. of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Weichgrebe, D.; Danilova, E.; Rosenwinkel, K.H. [Univ. of Hannover, Inst. of Water Quality and Waste Management Hannover (Germany); Skundin, A. [A.N. Frumkin Inst. of Electrochemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2003-07-01

    A possibility to use electrochemical treatment for salicylic acid (SA) removal from waste water was studied. It was found that SA can be oxidized at platinum anode with formation of harmless products. Features of anodic process, in particular, formation of solid film on anode surface as well as properties of the film were investigated. (orig.)

  16. Electrophoretic deposition of tannic acid-polypyrrolidone films and composites.

    Science.gov (United States)

    Luo, Dan; Zhang, Tianshi; Zhitomirsky, Igor

    2016-05-01

    Thin films of polyvinylpyrrolidone (PVP)-tannic acid (TA) complexes were prepared by a conceptually new strategy, based on electrophoretic deposition (EPD). Proof of concept investigations involved the analysis of the deposition yield, FTIR and UV-vis spectroscopy of the deposited material, and electron microscopy studies. The analysis of the deposition mechanism indicated that the limitations of the EPD in the deposition of small phenolic molecules, such as TA, and electrically neutral polymers, similar to PVP, containing hydrogen-accepting carbonyl groups, can be avoided. The remarkable adsorption properties of TA and film forming properties of the PVP-TA complexes allowed for the EPD of materials of different types, such as huntite mineral platelets and hydrotalcite clay particles, TiO2 and MnO2 oxide nanoparticles, multiwalled carbon nanotubes, TiN and Pd nanoparticles. Moreover, PVP-TA complexes were used for the co-deposition of different materials and formation of composite films. In another approach, TA was used as a capping agent for the hydrothermal synthesis of ZnO nanorods, which were then deposited by EPD using PVP-TA complexes. The fundamental adsorption and interaction mechanisms of TA involved chelation of metal atoms on particle surfaces with galloyl groups, π-π interactions and hydrogen bonding. The films prepared by EPD can be used for various applications, utilizing functional properties of TA, PVP, inorganic and organic materials of different types and their composites. PMID:26878711

  17. Photoactive thin films of polycaprolactam doped with europium (III) complex using phenylalanine as ligand

    Energy Technology Data Exchange (ETDEWEB)

    Santos Garcia, Irene Teresinha, E-mail: irene@iq.ufrgs.br [Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Bairro Agronomia, CEP 91501-970, Porto Alegre, RS (Brazil); Velleda Ribeiro, Patricia; Silva Correa, Diogo; Neto da Cunha, Igor Michel; Lenin Villarreal Carreno, Neftali [Instituto de Quimica e Geociencias, Universidade Federal de Pelotas, Campus Capao do Leao, s/n. CEP 96010-900, Pelotas, RS (Brazil); Ceretta Moreira, Eduardo [PPGEE, Universidade Federal do Pampa, Campus Bage, Bage- RS (Brazil); Severo Rodembusch, Fabiano [Departamento de Quimica Organica, Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Bairro Agronomia, CEP 91501-970, Porto Alegre, RS (Brazil)

    2011-12-01

    A photoactive complex based on europium(III) using the amino acid phenylalanine as ligand was prepared and characterized. The obtained europium(III)/phenylalanine complex presents an effective energy transfer from ligands to the rare earth center. The observed photoluminescent behavior for europium(III)/phenylalanine complex was similar to the well known europium(III)/ acetyl-{beta}-acetonate hydrate. New photoactive polyamide thin films were prepared using polycaprolactam as host of these complexes. The structural characterizations of the films were studied through Rutherford backscattering (RBS), Fourier transform infrared (FTIR) and Raman spectroscopies. The polyamide films doped with the amino acid and acetyl-{beta}-acetonate rare earth complexes maintain the original photoluminescent behavior, narrow emission bands corresponding to transitions {sup 5}D{sub 0} {yields} {sup 7}F{sub 0-4}, which indicates that this polymer is an excellent host to these complexes.

  18. Complexes of salicylic acid and its derivatives

    International Nuclear Information System (INIS)

    A generalization and systematization have been made of literature data on complexing of various elements, including beryllium, cadmium, boron, indium, rare-earth elements, actinides, and transition elements with salicylic acid and it derivatives (amino-, nitro- and halosalicylic acids). The effect of the position and nature of the substitute, in the case of salicylic acid derivatives, on the complexing process is discussed. Certain physicochemical properties of the complexes under consideration are described along with data indicative of their stability

  19. Influence of complexing agent on the growth of chemically deposited Ni3Pb2S2 thin films

    Directory of Open Access Journals (Sweden)

    Ho Soonmin

    2014-09-01

    Full Text Available Ni3Pb2S2 thin films were prepared by chemical bath deposition method. Here, the objective of this research was to investigate the influence of complexing agent on the properties of films.These films were characterized using atomic force microscopy, UV-Visible spectro photometer and X-ray diffraction. It was found that, as the concentration of tartaric acid increased, film thickness increased, but, the band gap reduced. For the films prepared using 0.1M of tartaric acid, the films were uniform and completely covered the substrates.

  20. Methods for producing complex films, and films produced thereby

    Science.gov (United States)

    Duty, Chad E.; Bennett, Charlee J. C.; Moon, Ji -Won; Phelps, Tommy J.; Blue, Craig A.; Dai, Quanqin; Hu, Michael Z.; Ivanov, Ilia N.; Jellison, Jr., Gerald E.; Love, Lonnie J.; Ott, Ronald D.; Parish, Chad M.; Walker, Steven

    2015-11-24

    A method for producing a film, the method comprising melting a layer of precursor particles on a substrate until at least a portion of the melted particles are planarized and merged to produce the film. The invention is also directed to a method for producing a photovoltaic film, the method comprising depositing particles having a photovoltaic or other property onto a substrate, and affixing the particles to the substrate, wherein the particles may or may not be subsequently melted. Also described herein are films produced by these methods, methods for producing a patterned film on a substrate, and methods for producing a multilayer structure.

  1. Complex film of chitosan and carboxymethyl cellulose nanofibers.

    Science.gov (United States)

    Kawasaki, Takuma; Nakaji-Hirabayashi, Tadashi; Masuyama, Kazuhira; Fujita, Satoshi; Kitano, Hiromi

    2016-03-01

    A polymer film composed of a mixture of chitosan (Ch) and carboxymethyl cellulose sodium salt (CMC) nanofibers was deposited on a glass surface. The thin film of the Ch-CMC mixture obtained was stable, and fibroblast adhesion to the film was lowest when the weight ratio of Ch to CMC was 4:6. The ζ-potential and contact angle of the mixture film indicated that a polyion complex of Ch and CMC was formed. The mechanical strength of the film composed of Ch-CMC nanofiber complexes was much higher than that of the film composed of Ch-water-soluble CMC complexes (non-nanofiber), likely because the entanglement of nanofibers was enhanced by electrostatic attractions. These results indicate that the charge-neutralized nanofiber film was highly effective in suppressing cell adhesion and therefore is a promising material for biomedical applications. PMID:26700238

  2. Complex film of chitosan and carboxymethyl cellulose nanofibers.

    Science.gov (United States)

    Kawasaki, Takuma; Nakaji-Hirabayashi, Tadashi; Masuyama, Kazuhira; Fujita, Satoshi; Kitano, Hiromi

    2016-03-01

    A polymer film composed of a mixture of chitosan (Ch) and carboxymethyl cellulose sodium salt (CMC) nanofibers was deposited on a glass surface. The thin film of the Ch-CMC mixture obtained was stable, and fibroblast adhesion to the film was lowest when the weight ratio of Ch to CMC was 4:6. The ζ-potential and contact angle of the mixture film indicated that a polyion complex of Ch and CMC was formed. The mechanical strength of the film composed of Ch-CMC nanofiber complexes was much higher than that of the film composed of Ch-water-soluble CMC complexes (non-nanofiber), likely because the entanglement of nanofibers was enhanced by electrostatic attractions. These results indicate that the charge-neutralized nanofiber film was highly effective in suppressing cell adhesion and therefore is a promising material for biomedical applications.

  3. Preparation and Properties of Vegetable-Carboxymethylcellulose (CMC) Complex FilmsЦ Water Bamboo-CMC,Chinese Cabbage-CMC etc.Complex Films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Various kinds of biodegradable polymers have been researched[1].In our previous papers,cellulose-alginic acid[2],cellulose-agar[3],vegetable-carboxymethylcellulose (CMC) etc.complex films have been researched.Recently,some other kinds of vegetable such as water bamboo,Chinese cabbage,eggplant,spinach,naked oats,and basella,asparagus and pumpkin were used to perpare vegetable-CMC complex films.Every kind of vegetable has different content of water,cellulose,protein,carbohydrate and a small amou...

  4. Fatty acid-based polyurethane films for wound dressing applications

    NARCIS (Netherlands)

    Gultekin, G.; Atalay-Oral, C.; Erkal, S.; Sahin, F.; Karastova, D.; Tantekin-Ersolmaz, S.B.; Guner, F.S.

    2008-01-01

    Fatty acid-based polyurethane films were prepared for use as potential wound dressing material. The polymerization reaction was carried out with or without catalyst. Polymer films were prepared by casting-evaporation technique with or without crosslink-catalyst. The film prepared from uncatalyzed re

  5. Catalytically active cobalt and copper complexes in polyelectrolyte multilayer films

    International Nuclear Information System (INIS)

    In this work an approach to obtain effective and easy reusable heterogeneous catalyst, LbL deposition of polyelectrolytes followed by covalently binding with cobalt (II) and copper (II) ions were described. Immobilization of metal complexes via covalent attachment to insoluble template is an attractive method to facilitate catalyst recovery, recycling. The reaction in the heterogeneous catalysis goes in the interface of catalyst and reaction solution and it is important to create a catalyst with large surface area. We have used polycations as polyethyleneimine (BPEI), quaternized poly(4- vynilpyridine) (QPVP) and polyanions as poly(acrylic acid) (PAA), poly(styrene sulphonate) sodium salt (PSS) and the electrostatic layer-by-layer assembly technique to make uniform thin film coating on SiO2 nanoparticles and glass slides with controllable thickness, roughness and mechanically durability. The stability of metals within multilayers in reaction condition were tested. We compared the amount of metal in PEMs of different polyelectrolytes. The stability constants of complex forming processes of the polymer-metal complexes in water and in alcohol were calculated by modified method of Bjerrum. Catalytic activity of immobilized catalysts was investigated for oxidation of toluene by molecular oxygen. Catalysts were separated from reaction mixture easily and had been used for this reaction five times without significant loss of activity. Key words: catalysis, layer-by-layer (LbL), polymer-metal complexes, oxidation, cobalt and copper immobilization

  6. Complex coacervates of hyaluronic acid and lysozyme

    DEFF Research Database (Denmark)

    Water, Jorrit J.; Schack, Malthe M.; Velazquez-Campoy, Adrian;

    2014-01-01

    Complex coacervates of hyaluronic acid and lysozyme, a model protein, were formed by ionic interaction using bulk mixing and were characterized in terms of binding stoichiometry and protein structure and stability. The complexes were formed at pH 7.2 at low ionic strength (6 mM) and the binding s...

  7. Poly(vinyl alcohol) composite films with high percent elongation prepared from amylose-fatty ammonium salt inclusion complexes

    Science.gov (United States)

    Amylose inclusion complexes prepared from cationic fatty ammonium salts and jet-cooked high amylose starch were combined with poly(vinyl alcohol) (PVOH) to form glycerol-plasticized films. Their tensile properties were compared with similar films prepared previously with analogous anionic fatty acid...

  8. Sprayed films of europium complexes toward light conversion devices

    International Nuclear Information System (INIS)

    Rare-earth complexes have become subject of intensive research due to the high quantum efficiency of their emission, very narrow bands, and excellent fluorescence monochromaticity. The chemical design and characterization of Eu complexes based on β-diketone ligands hexafluoroacetylacetate (hfac) and dibenzoylmetanate (dbm) is reported here. K[Eu(dbm)4] and K[Eu(hfac)4] complexes were immobilized as thin films by using the spray technique, a promising methodology for practical applications. The latter provides not only a faster layer deposition but also larger coated areas compared to conventional methods, such as layer-by-layer (LbL) and Langmuir–Blodgett (LB). The growth of the sprayed films was monitored through microbalance (QCM) and ultraviolet–visible (UV–Vis) absorption spectroscopy, which reveal a higher mass and absorbance per deposited layer of K[Eu(dbm)4] film. Micro-Raman images display a more homogeneous spatial distribution of the K[Eu(dbm)4] complex throughout the film, when compared to K[Eu(hfac)4] film. At nanometer scale, atomic force microscopy (AFM) images indicate that the roughness of the K[Eu(hfac)4] film is approximately one order of magnitude higher than that for the K[Eu(dbm)4] film, which pattern is kept at micrometer scale according to micro-Raman measurements. The photoluminescence data show that the complexes remain as pure red emitters upon spray immobilization. Besides, the quantum efficiency for the sprayed films are found equivalent to the values achieved for the powders, highlighting the potential of the films for application in light conversion devices. - Highlights: • Rare earth complexes thin films based on β-diketone ligands. • Spraying procedures to fabricate layer-by-layer (LbL) luminescent thin films. • Chemical design of Eu complexes based on hfac and dbm β-diketones ligands immobilized as sprayed films. • Pure red emitters upon spray immobilization. • Sprayed luminescent thin films for potential

  9. Formation of complex anodic films on porous alumina matrices

    Indian Academy of Sciences (India)

    Alexander Zahariev; Assen Girginov

    2003-04-01

    The kinetics of growth of complex anodic alumina films was investigated. These films were formed by filling porous oxide films (matrices) having deep pores. The porous films (matrices) were obtained voltastatically in (COOH)2 aqueous solution under various voltages. The filling was done by re-anodization in an electrolyte solution not dissolving the film. Data about the kinetics of re-anodization depending on the porosity of the matrices were obtained. On the other hand, the slopes of the kinetic curves during reanodization were calculated by two equations expressing the dependence of these slopes on the ionic current density. A discrepancy was ascertained between the values of the calculated slopes and those experimentally found. For this discrepancy a possible explanation is proposed, related to the temperature increase in the film, because of that the real current density significantly increases during re-anodization.

  10. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    Science.gov (United States)

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions.

  11. A Complexity View of Acid Deposition

    Institute of Scientific and Technical Information of China (English)

    朱建林; 方见树

    2003-01-01

    We show that acid deposition is analogous to complex systems composed of a series of interconnected components.Frequency-size distributions of weekly hydrogen deposition (WHD) of precipitation are consistent with double power-law in two different regimes separated by a crossover WHD. The distribution of variations in acid deposition over a week interval is remarkably symmetrical, with long tail extending over eight orders of magnitude. The acid deposition fluctuations exhibit fractal Brown motion with two different temporal scaling regimes and long-range correlation exists in the series. The power-laws in the acid deposition dynamics are considered to be indicators of seff-organization of atmosphere under environmental pollution stress.

  12. Comparison of topotactic fluorination methods for complex oxide films

    Directory of Open Access Journals (Sweden)

    E. J. Moon

    2015-06-01

    Full Text Available We have investigated the synthesis of SrFeO3−αFγ (α and γ ≤ 1 perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO2.5 films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  13. Characterization and bacterial adhesion of chitosan-perfluorinated acid films.

    Science.gov (United States)

    Bierbrauer, Karina L; Alasino, Roxana V; Muñoz, Adrián; Beltramo, Dante M; Strumia, Miriam C

    2014-02-01

    We reported herein the study and characterization of films obtained by casting of chitosan solutions in perfluorinated acids, trifluoroacetic (TFA), perfluoropropionic (PFPA), and perfluorooctanoic (PFOA). The films were characterized by FTIR, solid state (13)C NMR, X-ray, AFM, contact angle, thermogravimetric effluent analysis by mass spectrometry, and rheology. The results showed a marked influence of chain length of the perfluorinated acids on the hydrophobic/hydrophilic ratio of the modified chitosan films which was evidenced by the different characteristics observed. The material that showed greater surface stability was chitosan-PFOA. Chitosan film with the addition of PFOA modifier became more hydrophobic, thus water vapor permeability diminished compared to chitosan films alone, this new material also depicted bacterial adhesion which, together with the features already described, proves its potential in applications for bioreactor coating. PMID:24189195

  14. Intensification of luminescence of Europium-EDTA complex in polyvinyl pyrrolidone films by copper nanoparticles

    Science.gov (United States)

    Reisfeld, Renata; Levchenko, Viktoria; Lazarowska, Agata; Mahlik, Sebastian; Grinberg, Marek

    2016-09-01

    Stable copper nanoparticles (CuNPs) were prepared and incorporated into polyvinylpyrrolidone (PVP) films together with pre-prepared complex of europium-ethylenediaminetetraacetic acid (EuEDTA). From the comparison of the excitation spectrum of the complex alone and of the complex in conjunction with CuNPs an increased fluorescence intensity of the complex is observed as the result of interaction of the complex with surface plasmons of copper. This effect is maximal when the extinction band of CuNPs coincides with the absorption maximum of the complex, as much more light reaches the excited state of europium in the complex during the excitation events as the result of light scattered by copper plasmons. An additional band was observed in the excitation spectrum of the complex in co-doped by the CuNPs around 320÷390 nm which we attribute to electron transfer from CuNPs to excited state of europium.

  15. Oral absorption of hyaluronic acid and phospholipids complexes in rats

    Institute of Scientific and Technical Information of China (English)

    Si-Ling Huang; Pei-Xue Ling; Tian-Min Zhang

    2007-01-01

    AIM: To prepare a complex of hyaluronic acid (HA) and phospholipids (PL), and study the improvement effect of PL on the oral absorption of HA.METHODS: The complex of HA-PL (named Haplex) was prepared by film dispersion and sonication method, its physico-chemical properties were identified by infrared spectra and differential scanning calorimetry (DSC). The oral absorption of Haplex was studied. Thirty-two healthy rats were divided into 4 groups randomly: (1) a normal saline (NS) control group; (2) an HA group; (3) a mixture group and (4) a Haplex group. After intragastric administration, the concentration of HA in serum was determined.RESULTS: The physico-chemical properties of Haplex were different from HA or PL or their mixture. After Haplex was administered to rats orally, the serum concentration of HA was increased when compared with the mixture or HA control groups from 4 h to 10 h (P < 0.05). The ΔAUCo-12 h of Haplex was also greater than that of the other three groups (P < 0.05).CONCLUSION: The method of film dispersion and sonication can prepare HA and PL complex, and PL can enhance the oral absorption of exogenous HA.

  16. Preparation and Properties of Cereal-Metal Complex Films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Various kinds of biodegradable polymer materials have been researched[1]. In our previous papers,cereals such as wheat,buckwheat,glutinous rice and nonglutinous rice were polycondenced with citric acid and polysilicic acid to prepare copolymer films respectively[2,3].These copolymer fims have relatively good mechanical properties but the water proofness is not so good.Recently,some cereals such as wheat,glutinous rice,nonglutinous rice,kaoliang,millet and maize were reacted with copper chlorid...

  17. Complex Pharmacology of Free Fatty Acid Receptors

    DEFF Research Database (Denmark)

    Milligan, Graeme; Shimpukade, Bharat; Ulven, Trond;

    2016-01-01

    G protein-coupled receptors (GPCRs) are historically the most successful family of drug targets. In recent times it has become clear that the pharmacology of these receptors is far more complex than previously imagined. Understanding of the pharmacological regulation of GPCRs now extends beyond...... pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets...... for the treatment of metabolic and inflammatory diseases. Further understanding of the complex pharmacology of these receptors will be critical to unlocking their ultimate therapeutic potential....

  18. Gelatin-Pectin Composite Films from Polyion Complex Hydrogels

    Science.gov (United States)

    Composite films from gelatin and low-methoxyl pectin were prepared by either ionic complexation or covalent cross-linking. The ionic interactions between positively charged gelatin and negatively charged pectin produced physically reversible hydrogels. The resultant homogeneous gels had improved mec...

  19. SURFACE OF GELATIN MODIFIED POLY(L-LACTIC ACID) FILM

    Institute of Scientific and Technical Information of China (English)

    Xin Hou; Bao-long Zhang; Feng She; Yuan-lu Cui; Ke-yu Shi; Kang-de Yao

    2003-01-01

    In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. The PLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with carboxyl groups, so that these functional groups could become the reactive sites for gelatin immobilization. The functional groups of the PLLA films were identified by ATR-FTIR spectra and XPS spectra, the changes in surface morphology were observed by using environmental scanning electron microscopy (ESEM), and the hydrophilicity of modified PLLA films was examined by water contact angle measurement. Experimental results showed that the gelatin was immobilized with water-soluble carbodiimide (EDC) onto the PLLA film's surfaces, and the gelatin content on the polymer surface was related to carboxylic group formed in the controlled hydrolysis process. Rough surfaces caused by hydrolysis will predominantly favor the adhesion and growth of cell; and the hydrophilicity of these surfaces after the modification procedure is enhanced.

  20. Partly Imidized Polyamic Acid and Its Uniaxial Stretched Polyimide Films

    Institute of Scientific and Technical Information of China (English)

    MA Peng-chang; HOU Yong

    2013-01-01

    Partly imidized polyamic acid(PAA) has been used to prepare high performance polyimide films.The behaviors of two polyamic acids derived from pyromellitic dianhydride(PMDA)/4,4'-oxydianiline(ODA) and 3,Y,4,4'-biphenyltetracarboxylic diahhydride(BPDA)/paraphenylenediamine(PPD) containing dehydrating agents composed of acetic anhydride and a tertiary amine as the catalyst were investigated.The gel point was dependent on imidization degree in despite of temperature and the molar ratio of catalyst to acetic acid.Imdization content was about 35% for PMDA/ODA and about 22% for BPDA/PPD.The effect of catalyst on imidization possessed an order of triethylamine>3-methylpyridine>pyridine>isoquinoline>2-methylpyridine.The stretching of the films greatly reduced the coefficient of linear thermal expansion(CTE) either in the longitudinal direction or transversal direction.Compared to the film from polyamic acid,the partly imidized film had greater stretching ratio,so that the uniaxial stretched polyimide film from partly imidized PAA had higher tensile strength and tensile modulus,but lower elongation in the stretching direction.

  1. Thin films of perovskite-type complex oxides

    Directory of Open Access Journals (Sweden)

    Hanns-Ulrich Habermeier

    2007-10-01

    Full Text Available Complex oxides represent a class of materials with a plethora of fascinating, intrinsic physical functionalities. The intriguing interplay of charge, spin, and orbital ordering in these systems superimposed by lattice effects opens a scientifically rewarding playground for both fundamental and application-oriented research. In particular, the possibility of externally modifying the properties of thin-film complex oxides by epitaxial strain or artificial boundaries, and thus potentially generating novel properties at the interfaces between films, opens a new perspective. Here, the development of physical vapor deposition based preparation technologies for complex oxide thin films is reviewed, with examples taken from current research in high-temperature superconducting cuprates, magnetically ordered manganites, and Na–cobaltates. It covers the main trends of in situ process and growth control to fabricate single-crystal, single-layer thin films, heterostructures, and superlattices. Furthermore, using the combination of ferromagnetic and superconducting oxides as a case study, the emerging field of engineering the electronic structure at the interface, and thus design of new functionalities, is highlighted.

  2. 21 CFR 172.315 - Nicotinamide-ascorbic acid complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nicotinamide-ascorbic acid complex. 172.315 Section... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex. Nicotinamide-ascorbic acid complex may be safely used in accordance with the following prescribed...

  3. Characterization of nanostructured As{sub 2}S{sub 3} thin films synthesized at room temperature by chemical bath deposition method using various complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ubale, Ashok U., E-mail: ashokuu@yahoo.com; Kantale, J.S.; Choudhari, D.M.; Mitkari, V.N.; Nikam, M.S.; Belkhedkar, M.R.

    2013-09-02

    Nanostructured binary As{sub 2}S{sub 3} thin films were deposited onto glass substrates by chemical bath deposition method from complexed and uncomplexed baths using complexing agents acetic acid, ethylenediaminetetraacetic acid, oxalic acid and tartaric acid. The effect of complexing agent on structural, electrical, morphological and optical properties of As{sub 2}S{sub 3} is reported. The synthesized films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electrical resistivity and optical absorption measurements. The deposited films are nanocrystalline in nature with monoclinic lattice. The films deposited from uncomplexed bath and from ethylenediaminetetraacetic acid complexes are non-porous and become porous for other complexes. The electrical resistivity and optical band gap is also found complex dependent. - Highlights: • Nanocrystalline n-type As{sub 2}S{sub 3} films were grown by chemical bath deposition method. • Effect of complex on structural, electrical and optical properties was reported. • The film morphology highly depends on complex used in deposition process.

  4. Surface investigation of chitosan film with fatty acid monolayers

    Directory of Open Access Journals (Sweden)

    Esam A. El-hefian

    2009-05-01

    Full Text Available The surface pressure- molecular area (-A isotherm curves of two fatty acids of different chain lengths, i.e. stearic (C18 and arachidic (C20 acids, were obtained by using Langmuir-Blodgett (LB technique. Results showed clear isotherm plots with limiting mean molecular area around 21 Å2 for both acids. However, the monolayer was found to collapse at higher than 33 mN m-1 and 21 mN m-1 for stearic acid and arachidic acid respectively. The effect of Langmuir-Blodgett monolayers of the acids was investigated by atomic force microscopy (AFM. Chitosan film, before and after dipping in water, was also studied by means of AFM so that it could be used for comparison. It was found that the surface of chitosan was more homogeneous and smoother after dipping in water. In addition, more homogeneous surfaces were achieved after transferring a layer of the fatty acid onto the substrate.

  5. Occurrence of single-electron phenomenon in CdS nanoclusters in Langmuir-Blodgett films of -octadecyl succinic acid

    Indian Academy of Sciences (India)

    G Hemakanthi; Aruna Dhathathreyan

    2002-10-01

    Cadmium complex of -octadecyl succinic acid (ODSA) in Langmuir films at air/water interface has been studied using surface pressure-molecular area ( - ) and surface potential-molecular area ( - ) isotherms. The metal complex formed, transferred as LB film onto solid substrates, was analysed using FT-IR and was subjected to sulphidation reaction. Antisymmetric and symmetric carboxylate stretching vibrations have been used to determine the nature of the ODSA/cation complexes. CdS formed after sulphidation of the cadmium complex (ODSACd) showed possible single-electron phenomenon indicating the nanosized nature of clusters formed. Atomic Force Microscopy (AFM) measurements carried out confirmed the size of these CdS clusters.

  6. Effects of complexing agents on electrochemical deposition of FeS x O y thin films

    Science.gov (United States)

    Supee, Aizuddin; Ichimura, Masaya

    2016-08-01

    FeS x O y thin films were deposited on indium-tin-oxide (ITO)-coated glass substrates at 15 °C via galvanostatic electrochemical deposition from an aqueous solution containing 100 mM Na2S2O3 and 30 mM FeSO4. The effects of l(+)-tartaric acid (C4H4O6) and lactic acid [CH3CH(OH)COOH] at different concentrations were investigated. All the deposited films were amorphous. With the complexing agents, the thickness was increased, and the oxygen content was reduced significantly compared with the sample deposited without the complexing agents. In the photoelectrochemical measurement, p-type conductivity was confirmed. The photoresponsivity was not influenced significantly by the complexing agent, suggesting that the oxygen content does not drastically affect the properties of the deposited films probably because the local bonding configuration around Fe atoms in FeS x O y is similar to that in FeS2.

  7. Langmuir-Blodgett Films from Schiff Base Aluminium ( Ⅲ ) Complex

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The characteristics of the LB films of Schiff base aluminium( Ⅲ ), tris(2-hydroxy-5-nitro N-dodecyl-benzylideneaminato) aluminium ( Ⅲ ) [Al (TA 12) 3], were studied. The surface pres sure-area(r-A) isotherm of Al(TA12)3 in the pure water subphase was investigated. The molec ular area, 0.48 nm2, is one-third of the expected value that indicates the formation of an aggre gate. The Langmuir-Blodgett (LB) films of Al(TA12) 3 were transferred and characterized. The UV-Vis spectra and the AFM image both confirmed that the J-aggregates formed. The polarized UV-Vis spectra indicated that the complex plane had to be oriented with an angle of about 30° to the substrate surface. The IR spectra suggested that the complexation took place between aluminium ions and the oxygen atoms of the ligand rather than the nitrogen atom.

  8. Ni(II) complexes of dithiophosphonic acids

    Indian Academy of Sciences (India)

    Afshin Saadat; Alireza Banaee; Patrick McArdle; Karim Zare; Khodayar Gholivand; Ali Asghar Ebrahimi Valmoozi

    2014-07-01

    The reaction of 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide (Lawesson reagent) with isobutanol, cyclohexylamine and phenylethylamine produced (4-methoxy-phenyl)-phosphonodithioic acid o-isobutyl ester HS2P(p-C6H4OMe) (OCH2CH(CH3)2) (I), [S2P(C6H11NH)(p-C6H4OMe) H3N+C6H11] (II) and [S2P(phCH2CH2NH) (p-C6H4OMe)H3N+CH2CH2ph] (III), respectively. The reaction of alcohol with Lawesson reagent produced neutral product (I) while that with amines led to an ion pair (II, III). Furthermore, reaction of I, II and III with NiCl2.6H2O in methanol produced novel complexes: IV, V and VI. The compounds were characterized by 1H, 13C and 31P NMR, IR spectroscopy and elemental analysis. The single crystal X-ray structures of IV and V showed that the nickel complexes are square planar. Compound V formed a three-dimensional supramolecular structure via intermolecular P-O…H-N hydrogen bonds. The Xray crystallography of V showed that those three hydrogens of +NH3 cation produced three hydrogen bonds with different distances. The new compounds were additionally tested in view of their anti-bacterial properties. The ligands containing amine substituents exhibited more activity toward tested bacteria than their alcohol substituents, while the Ni(II) complexes including alcohol substituents exhibited high potential.

  9. Characterisation and application of new carboxylic acid-functionalised ruthenium complexes as dye-sensitisers for solar cells

    DEFF Research Database (Denmark)

    Duprez, Virginie; Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    A series of ruthenium complexes with and without TiO2, anchoring carboxylic acid groups have been synthesised and characterised using nuclear magnetic resonance (NMR), UV-vis and luminescence. These complexes were adsorbed on thin films of the wide band-gap semiconductor anatase and were tested...

  10. Anisotropy and micromagnetics in complex oxide thin films

    Science.gov (United States)

    Wynn, Thomas Andrew

    Complex oxide perovskites are a class of material with a remarkably wide range of functional properties including magnetism, superconductivity, metal-to-insulator transitions, colossal magnetoresistance, and in some cases high magnetocrystalline anisotropy. Reduction in length scales through thin film deposition and nanopatterning results in altered properties from their bulk constituents. In this work, thin films of La0.7Sr0.3CoO3 (LSCO) and LSCO/La 0.7Sr0.3MnO3 (LSMO) bilayers of varying thicknesses were deposited onto (LaAlO3)0.3(Sr2TaAlO 6)0.7 (LSAT) substrates, and their anisotropic magnetic properties were measured along the in- plane [100] and [110] directions using superconducting quantum interference device (SQUID) magnetometry and soft x-ray magnetic spectroscopy. The LSCO showed thickness dependent magnetism, and films were non-magnetic below a critical thickness of 4 nm. Magnetic LSCO films showed unique anisotropic effects on the saturation magnetization (Ms), with a lower M s in the [110] direction than the [100] direction. This potentially indicates the existence of a hard component in the [110] direction that is not being switched at fields in the SQUID magnetometer (7 T). Normalized hysteresis loops indicate the LSCO films display little magnetocrystalline anisotropy within the plane of the film. LSCO/LSMO bilayers with a fixed LSMO layer of 6 nm in thickness showed cobalt magnetism at thicknesses where single layers were non-magnetic, suggesting that the substrate/film interface is not the cause of the non-magnetic layer in the LSCO thin films. Magnetic coupling occurs in bilayers with LSCO layer thicknesses of below 4 nm, and both LSCO and LSMO layers showed a [110] easy axis. When the layer thickness of LSCO was increased above 8 nm, the LSCO layer developed a soft component at the LSCO/LSMO interface. This soft LSCO component remained coupled with the LSMO, though the easy axis changed to the [100] direction, and the harder, non-interface LSCO

  11. Formation of linear polyenes in poly(vinyl alcohol) films catalyzed by phosphotungstic acid, aluminum chloride, and hydrochloric acid

    Science.gov (United States)

    Tretinnikov, O. N.; Sushko, N. I.; Malyi, A. B.

    2016-07-01

    Formation of linear polyenes-(CH=CH)n-via acid-catalyzed thermal dehydration of polyvinyl alcohol in 9- to 40-µm-thick films of this polymer containing hydrochloric acid, aluminum chloride, and phosphotungstic acid as dehydration catalysts was studied by electronic absorption spectroscopy. The concentration of long-chain ( n ≥ 8) polyenes in films containing phosphotungstic acid is found to monotonically increase with the duration of thermal treatment of films, although the kinetics of this process is independent of film thickness. In films containing hydrochloric acid and aluminum chloride, the formation rate of polyenes with n ≥ 8 rapidly drops as film thickness decreases and the annealing time increases. As a result, at a film thickness of less than 10-12 µm, long-chain polyenes are not formed at all in these films no matter how long thermal duration is. The reason for this behavior is that hydrochloric acid catalyzing polymer dehydration in these films evaporates from the films during thermal treatment, the evaporation rate inversely depending on film thickness.

  12. Development of pectin films with pomegranate juice and citric acid.

    Science.gov (United States)

    Azeredo, Henriette M C; Morrugares-Carmona, Rosario; Wellner, Nikolaus; Cross, Kathryn; Bajka, Balazs; Waldron, Keith W

    2016-05-01

    The influence of pomegranate juice (PJ, replacing water as solvent) and citric acid (CA) on properties of pectin films was studied. PJ provided the films with a bright red color, and acted as a plasticizer. Increasing PJ/water ratio from 0/100 to 100/0 resulted in enhanced elongation (from 2% to 20%), decreased strength (from 10 to <2 MPa) and modulus (from 93 to <10 MPa), increased water vapor permeability (WVP, from 3 to 9 g.mm.kPa(-1).h(-1).m(-2)), and decreased insoluble matter (IM, from 35% to 24%). Although a crosslinking effect by CA was not confirmed, it has been suggested to occur from its effects on films. CA noticeably increased IM (from <10% to almost 40%); moreover, when measured on a dry film basis, the CA effects presented a noticeable tendency to increases strength and modulus, and to decrease WVP. The red color density was decreased by CA, suggesting a destabilization of anthocyanins. PMID:26769510

  13. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid.

    Science.gov (United States)

    Valle-Delgado, Juan José; Johansson, Leena-Sisko; Österberg, Monika

    2016-02-01

    The development of materials that combine the excellent mechanical strength of cellulose nanofibrils (CNF) with the lubricating properties of hyaluronic acid (HA) is a new, promising approach to cartilage implants not explored so far. A simple, solvent-free method to produce a very lubricating, strong cellulosic material by covalently attaching HA to the surface of CNF films is described in this work. A detailed analysis of the tribological properties of the CNF films with and without HA is also presented. Surface and friction forces at micro/nanoscale between model hard surfaces (glass microspheres) and the CNF thin films were measured using an atomic force microscope and the colloid probe technique. The effect of HA attachment, the pH and the ionic strength of the aqueous medium on the forces was examined. Excellent lubrication was observed for CNF films with HA attached in conditions where the HA layer was highly hydrated. These results pave the way for the development of new nanocellulose-based materials with good lubrication properties that could be used in biomedical applications. PMID:26674836

  14. Bismuth induced enhanced green emission from terbium ions and their complex in thin films.

    Science.gov (United States)

    Kaur, Gagandeep; Kumar, Brijesh; Verma, R K; Rai, S B

    2014-07-28

    Bismuth nanoparticles (NPs) have been prepared by the pulsed laser ablation technique using the third harmonics of a Nd-YAG laser. UV-absorption and TEM micrographs show Bi NPs of spherical shape with the average particle size ranging from 15 to 20 nm. These NPs were dispersed with Tb(3+) ions and their complex with salicylic acid (Sal) in polyvinyl alcohol to obtain thin films. The influence of Bi NPs on the emissive properties of Tb(3+) ions and the [Tb(Sal)3(phen)] complex has been studied by luminescence spectroscopy using 266 nm and 355 nm as excitation wavelengths. The luminescence intensity of Tb(3+) ions complexed with Sal in the thin polymer films increased significantly as compared to the Tb(3+) ions in the presence of Bi NPs on excitation at 355 nm. However, terbium ions in the case of the [Tb(Sal)3(phen)] complex together with NPs show an intense and extended emission spectrum in the 375-700 nm range for transitions arising from (5)D3 and (5)D4 levels to different (7)F(J) levels on 266 nm excitation. The luminescence enhancement has also been supported by lifetime measurements.

  15. Effect of Gallic acid on mechanical and water barrier properties of zein-oleic acid composite films.

    Science.gov (United States)

    Masamba, Kingsley; Li, Yue; Hategekimana, Joseph; Liu, Fei; Ma, Jianguo; Zhong, Fang

    2016-05-01

    In this study, the effect of gallic acid on mechanical and water barrier properties of zein-oleic acid 0-4 % composite films was investigated. Molecular weight distribution analysis was carried out to confirm gallic acid induced cross linking through change in molecular weight in fraction containing zein proteins. Results revealed that gallic acid treatment increased tensile strength from 17.9 MPa to 26.0 MPa, decreased water vapour permeability from 0.60 (g mm m(-2) h(-1) kPa(-1)) to 0.41 (g mm m(-2) h(-1) kPa(-1)), increased solubility from 6.3 % to 10.2 % and marginally increased elongation at break from 3.7 % to 4.2 % in zein films only. However, gallic acid treatment in zein-oleic composite films did not significantly influence mechanical and water barrier properties and in most instances irrespective of oleic acid concentration, the properties were negatively affected. Results from scanning electron microscopy showed that both gallic acid treated and untreated zein films and composite films containing 3 % oleic acid had a compact and homogeneous structure while those containing 4 % oleic acid had inhomogeneous structure. The findings have demonstrated that gallic acid treatment can significantly improve mechanical and water barrier properties especially in zein films only as opposed to when used in composite films using zein and oleic acid. PMID:27407188

  16. Visible Absorption Properties of Retinoic Acid Controlled on Hydrogenated Amorphous Silicon Thin Film

    Science.gov (United States)

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2008-02-01

    Langmuir-Blodgett (LB) films of retinoic acid and LB films of retinoic acid mixed with a peptide that contains an alanine-lysine-valine (AKV) amino acid sequence deposited on a hydrogenated amorphous silicon (a-Si:H) film prepared by electron cyclotron resonance (ECR) plasma sputtering were fabricated, and their light absorption spectrums were compared. A specific visible light absorption at approximately 500 nm occurred in a film that had a film thickness of more than 80 nm and a hydrogen concentration of more than 20% in the sputtering process gas. Mixing the AKV sequence peptide with retinoic acid caused a 6 nm blueshift, from 363 to 357 nm, of the absorption maximum of the composite LB film on a SiO2 substrate. Using the same peptide, a large 30 nm blueshift, from 500 to 470 nm, was induced in the composite LB film on the a-Si:H film.

  17. Chemodynamics of soft nanoparticulate complexes: Cu(II) and Ni(II) complexes with fulvic acids and aquatic humic acids

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.; Buffle, J.

    2012-01-01

    The dynamics of metal complexation by small humic substances (fulvic acid and aquatic humic acid, collectively denoted as "fulvic-like substance", FS) are explored within the framework of concepts recently developed for soft nanoparticulate complexants. From a comprehensive collection of published e

  18. Boron complexing with H-resorcinol and acidic hydroxyxanthene dyes

    Energy Technology Data Exchange (ETDEWEB)

    Nazarenko, V.A.; Flyantikova, G.V.; Chekirda, T.N. (AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.)

    1984-01-01

    Complex formation of boron with H-resorcinol (hr; 2,4-dihydroxybenzene-azo -8-hydroxynaphtalene-3,6-disulfonic acid) and acidic hydroxyxanthene dyes (hxd: fluorescein, eosine, erathrosine). Mixed-ligand complexes with a ratio of r:hr:hxd=1:1:1 are formed at pH=5-6. The chemism of the complex formation of boron with H-resorcinol and fluorescein has been studied. The stability constant of the complex is 1.12x10/sup 21/, the conditional molar absorptivitis 1.80x10/sup 0/. This complex formation reaction was used for photometric determination of boron in natural water.

  19. Complexes of low oxidated /sup 99/Tc with salicylic acid

    International Nuclear Information System (INIS)

    While several complexes of technetium with hydroxycarboxylic acids in solution are well known, little has been done about complexes of technetium with phenolcarboxylic acids. M.A. Kayssi suggested the use of sulphosalicylic acid as a reagent for the quantitative determination of technetium. The resulting complex shows a spectrophotometric maximum at 460 nm; the author supposes that the complex could contain technetium in the (V) oxidation state. In this paper the reaction between technetium and salicylic acid at concentrations between 10/sup -4/ and 5 x 10/sup -2/ M, in a pH range of 2 to 4.5, has been studied. The pH does not seem to influence the reaction, while the salicylic acid concentration is particularly significant

  20. Studies On Some Acid Divalent-Metal Nitrilotriacetate Complexes

    Directory of Open Access Journals (Sweden)

    N. E. Milad

    2000-10-01

    Full Text Available IR and 1H-NMR studies on nitrilotriacetic acid (H3NTA suggest that the acid exists in the zwitterion form, which allows the existence of intermolecular hydrogen bonding. A tetrahedral structure is established for eleven (1:1 anhydrous acid-metal (II nitrilotriacetates complexes. The ten Dq values for the colored complexes were determined spectrophotometrically. The pKa values for the eleven acid metal complexes [M(HNTA].(OH23] were determined and compared with the corresponding pKa values of the [M(OH2n]+2 ions and also with the log β1 values of the corresponding [M(NTA]- complexes. X-ray diffraction studies on the ligand and on eight of these complexes are described.

  1. Protection of NdFeB magnets by corrosion resistance phytic acid conversion film

    Science.gov (United States)

    Nan, Haiyang; Zhu, Liqun; Liu, Huicong; Li, Weiping

    2015-11-01

    Phytic acid conversion film was prepared on NdFeB magnets by dipping the NdFeB into phytic acid solution. The morphology, composition, structure and corrosion resistance of the film were systematically investigated. The results showed that the phytic acid film was effective in improving the corrosion resistance of NdFeB magnets. XRD, TEM and FT-IR analyses revealed that the film was amorphous and had a strong peak of phosphate radical (PO43-). The formation mechanism of the film was also explored by XPS and the potential of zero charge (Epzc) measurement at the solution-metal interface.

  2. Starch-lipid complexes: Interesting material and applications from amylose-fatty acid salt inclusion complexes

    Science.gov (United States)

    Aqueous slurries of high amylose starch can be steam jet cooked and blended with aqueous solutions of fatty acid salts to generate materials that contain inclusion complexes between amylose and the fatty acid salt. These complexes are simply prepared on large scale using commercially available steam...

  3. Synthesis and characterization of acidic mesoporous borosilicate thin films.

    Science.gov (United States)

    Xiu, Tongping; Liu, Qian; Wang, Jiacheng

    2009-02-01

    Work on the synthesis and characterization of acidic wormhole-like ordered mesoporous borosilicate thin films (MBSTFs) on silicon wafers is described in this paper. The MBSTFs coated by the dip-coating method were prepared through an evaporation-induced self-assembly (EISA) process using nonionic block copolymers as structure-directing agents. Fourier transform infrared (FT-IR) spectroscopy confirmed the formation of borosiloxane bonds (Si-O-B). High-resolution transmission electron microscopy (HRTEM) and N2 sorption evidenced a wormhole-like mesoporous structure in the MBSTFs obtained. Scanning electron microscopy (SEM) images of the cross sections and surfaces of the samples showed that MBSTFs on silicon wafers were continuous, homogeneous and did not crack. The acidic properties of the MBSTFs were characterized by FT-IR spectra of chemisorbed pyridine. The MBSTFs thus prepared may find their future applications in many fields including chemical sensors, catalysis, optical coating, molecule separation, etc. PMID:19441565

  4. Laser-induced damage of sol-gel silica acid and basic thin films

    International Nuclear Information System (INIS)

    The sol-gel monolayer silica acid and basic thin films on K9 glass substrates were prepared with the dip method from acid and basic catalyzed silica sols, respectively. Both films have nearly similar optical thickness. The laser-induced damage thresholds(LIDT) of the two kinds of films were measured. Thermal absorption, porous ratio and surface morphologies of films were investigated by Stanford photo-thermal solutions, ellipsometer, atomic force microscope(AFM) and scanning electron micro-scope(SEM), respectively. Optical microscope was used to characterize the defects and impurities of films before laser irradiation and damage morphology after laser irradiation. The experimental results showed that compared with basic film, the silica acid film had larger absorption, smaller porous ratio, and smaller LIDT. Different damage morphologies of films were relative to their different absorption and microstructures. (authors)

  5. Formation and Investigation of Corona Charged Films from Polylactic Acid

    Science.gov (United States)

    Gencheva, E. A.; Yovcheva, T. A.; Marudova, M. G.; Viraneva, A. P.; Bodurov, I. P.; Mekishev, G. A.; Sainov, S. H.

    2010-01-01

    The aim of the present work is the development of technology for formation of corona charged electret films from polylactic acid and investigation of their structural, optical and electret properties. Polylactide films with different degree of crystalinity were prepared by casting of poly-L-lactide and poly-DL lactide blended solutions. Then glass transition, crystallization and melting temperatures, as well as the crystalinity degree were determined by a differential scanning calorimetry. The charging of the samples in a corona discharge was carried out by means of a conventional corona triode system. Sample surface potential was measured by the method of the vibrating electrode with compensation. The time dependences of the sample surface potential under room conditions were studied for 50 days. The effect of lower pressure on the surface potential of charged samples was investigated. It was established that the reduced pressure leaded to the surface potential decay of the PLA electrets. The same effect was earlier observed for other polymer films. The optical characteristics—surface refractive index and optical dispersion, were determined by the method of the disappearing diffraction pattern using a laser refractometer.

  6. Analyzing Freud's Oedipus Complex from the Perspective of the Films of Hamlet%Analyzing Freud's Oedipus Complex from the Perspective of the Films of Hamlet

    Institute of Scientific and Technical Information of China (English)

    吴静

    2012-01-01

    Freud's Oedipus complex has an important influence on the performance of Shakespeare's Hamlet. Analyzing Freud's Oedipus complex from a visual perspective, which helps understand Hamlet's suffering from oedipal conflicts more easily and visibly. This paper mainly focuses on two popular films. One is the most classical, the black-and-white film produced, directed and starred by Laurence Oliver in 1948. with Eileen Heritee as Gertude. The other is the PBS version of 2010, lasting nearly three hours, directed by Gregory Doran.

  7. Antibacterial Activity of Copper and Cobalt Amino Acids Complexes

    Directory of Open Access Journals (Sweden)

    ANDREEA STĂNILĂ

    2011-11-01

    Full Text Available The antibacterial properties of differently copper and cobalt amino acids complexes on agar plates was investigated in the present study. The antibacterial activity of amino acid complexes was evaluated against on three bacteria strains (Escherichia coli, Bacillus cereus, Micrococcus luteus. Generally, the amino acids complexes were mainly active against gram-positive organisms, species like Micrococcus luteus being the most susceptible strain tested. It was registered a moderate antibacterial activity against Bacillus cereus. The microorganisms Escherichia coli, which are already known to be multi-resistant to drugs, were also resistant to the amino acids complexes but also to the free salts tested. Escherichia coli were susceptible only to the CoCl2 and copper complex with phenylalanine. The complexes with leucine and histidine seem to be more active than the parent free ligand against one or more bacterial species. Moderate activity was registered in the case of complexes with methionine and phenylalanine. From the complexes tested less efficient antibacterial activity was noted in the case of complexes with lysine and valine. These results show that cobalt and copper complexes have an antibacterial activity and suggest their potential application as antibacterial agents.

  8. Photoconductivity study of acid on Zinc phthalocyanine pyridine thin films

    Science.gov (United States)

    Singh, Sukhwinder; Saini, G. S. S.; Tripathi, S. K.

    2016-05-01

    The Metal Phthalocyanine (MPc) have attracted much interest because of chemical and high thermal stability. Molecules forming a crystal of MPc are held together by weak attractive Vander Waals forces. Organic semiconductors have π conjugate bonds which allow electrons to move via π-electron cloud overlaps. Conduction mechanisms for organic semiconductor are mainly through tunneling; hopping between localized states, mobility gaps, and phonon assisted hopping. The photo conductivity of thin films of these complexes changes when exposed to oxidizing and reducing gases. Arrhenius plot is used to find the thermal activation energy in the intrinsic region and impurity scattering region. Arrhenius plotsare used to find the thermal activation energy.

  9. Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Jinfa, E-mail: jinfa.ming@gmail.com [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); Liu, Zhi; Bie, Shiyu [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); Zhang, Feng [Jiangsu Province Key Laboratory of Stem Cell Research, Medical College, Soochow University, Suzhou 215006 (China); Zuo, Baoqi, E-mail: bqzuo@suda.edu.cn [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China)

    2014-04-01

    Bombyx mori silk fibroin from the silkworm was firstly found to be soluble in formic acid/hydroxyapatite system. The rheological behavior of silk fibroin solution was significantly influenced by HAp contents in dissolved solution. At the same time, silk fibroin nanofibers were observed in dissolved solution with 103.6 ± 20.4 nm in diameter. Moreover, the structure behavior of SF films prepared by formic acid/hydroxyapatite dissolution method was examined. The secondary structure of silk fibroin films was attributed to silk II structure (β-sheet), indicating that the hydroxyapatite contents in dissolved solution were not significantly affected by the structure of silk fibroin. The X-ray diffraction results exhibited obviously hydroxyapatite crystalline nature existing in silk fibroin films; however, when the hydroxyapatite content was 5.0 wt.% in dissolved solution, some hydroxyapatite crystals were converted to calcium hydrogen phosphate dehydrate in silk fibroin dissolution process. This result was also confirmed by Fourier transform infrared analysis and DSC measurement. In addition, silk fibroin films prepared by this dissolution method had higher breaking strength and extension at break. Based on these analyses, an understanding of novel SF dissolution method may provide an additional tool for designing and synthesizing advanced materials with more complex structures, which should be helpful in different fields, including biomaterial applications. - Highlights: • SF fibers were firstly successfully dissolved in FA/HAp solution. • The rheological behavior of SF solution was significantly influenced by HAp contents. • SF nanofibrils were observed in FA/HAp solution with 103.6 ± 20.4 nm in diameter. • SF films prepared by FA/HAp dissolution method had higher mechanical properties.

  10. Investigation of neodymium complexes with hydroxyethyliminodiacetic acid by spectrography

    International Nuclear Information System (INIS)

    The electron absorption spectra of NdCl3 solution in the presence of oxyethylimidinodiacetic acid (H2L) in a wide range of pH (1.35-11) were studied. It is shown by the isomolar series method that neodymium forms mono-, di- and sesquialteral complexes with H2L. The absorption spectra of the corresponding solid and dissolved complexes of neodymium with oxyethyliminodiacetic acid were investigated

  11. Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes

    Science.gov (United States)

    Extruded composite films from 20% pectin and 80% polylactic acids (PLA) were developed and nisin was loaded into films by a diffusion post extrusion. Inhibitory activities of the films against Listeria monocytogenes were evaluated in brain heart infusion (BHI) broth, liquid egg white and orange juic...

  12. Uranyl complexes of n-alkanediaminotetra-acetic acids

    International Nuclear Information System (INIS)

    The uranyl complexes of n-propanediaminetetra-acetic acid, n-butanediaminetetra-acetic acid and n-hexanediaminetetra-acetic acid have been studied by potentiometry, with computer evaluation of the titration data by the MINIQUAD program. Stability constants of the 1:1 and 2:1 metal:ligand chelates have been determined as well as the respective hydrolysis and polymerization constants at 25 deg in 0.10M and 1.00M KNO3. The influence of the length of the alkane chain of the ligands on the complexes formed is discussed. (author)

  13. Investigation into neodymium complexes with methylmalonic acid by spectrography

    International Nuclear Information System (INIS)

    Complexes of neodymium with methylmalonic acid have been studied spectrographically. It has been shown that aquoion and three dimeric complexes of the composition approximately 1:1 coexist in the pH region 3.5-6.5 when the ratio between the components is equimolar. When there is an excess of the ligand, polymeric complexes of the composition 1:2 are found in the solution in addition to the complexes 1:1. The stability constants of the complexes have been determined and the data on their structure have been obtained

  14. Structure and friction of stearic acid and oleic acid films adsorbed on iron oxide surfaces in squalane.

    Science.gov (United States)

    Doig, Michael; Warrens, Chris P; Camp, Philip J

    2014-01-14

    The structure and friction of fatty acid surfactant films adsorbed on iron oxide surfaces lubricated by squalane are examined using large-scale molecular dynamics simulations. The structures of stearic acid and oleic acid films under static and shear conditions, and at various surface coverages, are described in detail, and the effects of unsaturation in the tail group are highlighted. At high surface coverage, the measured properties of stearic acid and oleic acid films are seen to be very similar. At low and intermediate surface coverages, the presence of a double bond, as in oleic acid, is seen to give rise to less penetration of lubricant in to the surfactant film and less layering of the lubricant near to the film. The kinetic friction coefficient is measured as a function of shear rate within the hydrodynamic (high shear rate) lubrication regime. Lubricant penetration and layering are observed to be correlated with friction coefficient. The friction coefficient with oleic acid depends only weakly on surface coverage, while stearic acid admits more lubricant penetration, and its friction coefficient increases significantly with decreasing surface coverage. Connections between film structure and friction are discussed.

  15. A multivariant study of the absorption properties of poly(glutaric-acid-glycerol) films

    Science.gov (United States)

    The solvent absorption into the matrix of poly(glutaric acid-glycerol) films made with or without either iminodiacetic acid, sugarcane bagasse, pectin, corn fiber gum or microcrystalline cellulose have been evaluated. The films were incubated in various solvent systems for 24h. The amounts of solve...

  16. Effects of swelling on the viscoelastic properties of polyester films made from glycerol and glutaric acid

    Science.gov (United States)

    Viscoelastic properties have been determined for poly(glycerol-co-glutaric acid) films synthesized from Lewis acid-catalyzed polyesterifications. The polymers were prepared by synthesizing polymer gels that were subsequently cured at 125 degrees C to form polymer films. The polymers were evaluated ...

  17. Synthesis and properties of ZnS-EuS films grown from volatile complex compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bessergenev, V.G.; Ivanova, E.N.; Kovalevskaya, Y.A. [Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Inorganic Chemistry

    1997-10-01

    Deposition and characterization of films of ZnS, EuS and ZnS:Eu are described. The films have been prepared by chemical vapor deposition using new volatile complex compounds, dithiocarbamates of Zn and Eu, as precursors. Characterization includes X-ray diffraction, chemical analysis of the film composition, Raman spectroscopy, ellipsometry, and spectrophotometry. The spatial chemical homogeneity of the films has been determined using a recently developed method of differential dissolution and found to be uniform. Doping of ZnS by Eu with dopant concentration up to 0.3 at.% has been achieved. Effects of Eu doping on structural and optical properties of the films are presented.

  18. Synthesis ZnS:Sm thin films from volatile complex compounds

    Science.gov (United States)

    Ivanova, Elena N.; Kovalevskaya, Yu. A.; Bessreguenev, Valentin G.

    2002-11-01

    Deposition and characterization of ZnS, Sm2S3 and ZnS:Sm films are described. The films have been prepared by chemical vapor deposition using new volatile complex compounds, dithiocarbamates of Zn and Sm, as precursors. Characterization includes X-ray diffraction, chemical analysis of the film composition, ellipsometry and spectrophotometry. It has been shown that at relatively low temperatures (about 380 °C) monophase crystalline Sm2S3 films can be fabricated. Doping of ZnS by Sm with dopant concentration up to 2 at. % has been achieved. Effects of Sm doping on structural and optical properties of the film are presented.

  19. Polypyrrole-polyvinyl sulphonate film based disposable nucleic acid biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Nirmal [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Arora, Kavita [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Singh, Surinder P. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Pandey, Manoj K. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Singh, Harpal [Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Malhotra, Bansi D. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India)]. E-mail: bansi.malhotra@gmail.com

    2007-04-18

    Double stranded calf thymus deoxyribonucleic acid entrapped polypyrrole-polyvinyl sulphonate (dsCT-DNA-PPy-PVS) films fabricated onto indium-tin-oxide (ITO) coated glass plates have been used to detect organophosphates such as chlorpyrifos and malathion. These disposable dsCT-DNA-PPy-PVS/ITO bioelectrodes have been characterized using cyclic voltammetry, Fourier-transform-infra-red (FTIR) spectroscopy and atomic force microscopy (AFM), respectively. These biosensing electrodes have a response time of 30 s, are stable for about 5 months when stored in desiccated conditions at 25 deg. C and can be used to amperometrically detect chlorpyrifos (0.0016-0.025 ppm) and malathion (0.17-5.0), respectively. The additive effect of these pesticides on the amperometric response of the disposable dsCT-DNA-PPy-PVS/ITO bioelectrodes has also been investigated.

  20. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    Science.gov (United States)

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. PMID:27507447

  1. Acrylic acid obtaining from methanol and acetic acid in the presence of complex oxide catalysts

    OpenAIRE

    Небесний, Роман Володимирович; Піх, Зорян Григорович; Шпирка, Ірина Іванівна; Івасів, Володимир Васильович; Небесна, Юлія Віталіївна; Фуч, Уляна Василівна

    2015-01-01

    The purpose of this work is to research process of single-stage acrylic acid obtaining from methanol and acetic acid, namely: to develop effective catalysts for the process of methanol oxidation to formaldehyde with its further aldol condensation with acetic acid to acrylic acid, and to determine optimum conditions for the process. Complex oxide catalysts consisting of oxides of boron, phosphorus, tungsten and vanadium supported on the silica gel have been investigated. The effect of vanadium...

  2. Effect of complexing agent on the photoelectrochemical properties of bath deposited CdS thin films

    International Nuclear Information System (INIS)

    In the present paper photoelectrochemical (PEC) performance of bath deposited CdS thin films based on complexing agents i.e. ammonia and triethanolamine (TEA) has been discussed. Effect of annealing has also been analyzed. The as-deposited and annealed (at 523 K for 1 h in air) films were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption spectroscopy, SEM, electrochemical impedance spectroscopy (EIS), and PEC properties. XRD studies revealed that the films were nanocrystalline in nature with mixed hexagonal and cubic phases. TEA complex resulted in better crystallinity. Further improvement in the crystallinity of the films was observed after air annealing. The marigold flower-like structure, in addition to flakes morphology, was observed with TEA complex, whereas for ammonia complex only flakes morphology was observed. The UV-vis absorption studies revealed that the optical absorption edge for the films with ammonia and TEA complex was around 475 nm and 500 nm, respectively. Annealing of the films resulted in red shift in the UV-vis absorption. The PEC cell performance of CdS films was found to be strongly affected by crystallinity and morphology of the films resulted due to complexing agent and annealing. The air annealed film deposited using TEA complex showed maximum short circuit current density (Jsc) and open circuit voltage (Voc) i.e. 99 μA/cm2 and 376 mV respectively, under 10 mW/cm2 of illumination. The films deposited using TEA complex showed good stability under PEC cell conditions.

  3. Adsorption of Cationic Laser Dye onto Polymer/Surfactant Complex Film

    Institute of Scientific and Technical Information of China (English)

    Pabitra Kumar Paul; Syed Arshad Hussain; Debajyoti Bhattacharjee; Mrinal Pal

    2011-01-01

    Fabrication of complex molecular films of organic materials is one of the most important issues in modern nanoscience and nanotechnology. Soft materials with flexible properties have been given much attention and can be obtained through bottom up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and technologies. In this work, we report the successful incorporation of cationic laser dye rhodamine 6G abbreviated as R6G into the pre-assembled polyelectrolyte/surfactant complex film onto quartz substrate by electrostatic adsorption technique. Poly(allylamine hydrochloride) (PAH) was used as polycation and sodium dodecyl sulphate (SDS) was used as anionic surfactant. UV-Vis absorption spectroscopic characterization reveals the formation of only H-type aggregates of R6G in their aqueous solution and both H- and J-type aggregates in PAH/SDS/R6G complex layer-by-layber films as well as the adsorption kinetics of R6G onto the complex films. The ratio of the absorbance intensity of two aggregated bands in PAH/SDS/R6G complex films is merely independent of the concentration range of the SDS solution used to fabricate PAH/SDS complex self-assembled films. Atomic force microscopy reveals the formation of R6G aggregates in PAH/SDS/R6G complex films.

  4. Enhanced photoefficiency in positive-tone direct patterning of metal complexes for forming patterned indium tin oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Cordonier, Christopher E.J., E-mail: chris@kanto-gakuin.ac.jp; Nakamura, Akimasa; Shimada, Kazuhiko; Fujishima, Akira

    2012-07-01

    The efficiency of positive-tone directly photo-patternable 4-(2-nitrobenzyloxycarbonyl)catechol and 4-(6-nitroveratryloxycarbonyl)catechol complexes of indium tin was improved by tuning the solubility of the complexes and by chelation of maltol as a cooperative photo-solvolytic component, such that films could be patterned at up to 4.88 mW{center_dot}s/nm in terms of resultant indium tin oxide (ITO). Patterned indium tin complexes were thermally transformed to pattern shape preserved ITO by anisotropic contraction and oxidation. The photo-reaction of these ligands and related derivatives was characterized by nuclear magnetic resonance analysis showing decomposition to the respective carboxylic acid for which linear rate constants were approximated, further elucidating the mechanism and mechanics of selective solubility. - Highlights: Black-Right-Pointing-Pointer Photoreaction of ortho-nitrobenzyl dioxybenzoate derivatives was investigated. Black-Right-Pointing-Pointer Tuning the photolabile ester-indium tin complex increased film photoefficiency. Black-Right-Pointing-Pointer A photoreaction of chelated maltol was also found to aid performance. Black-Right-Pointing-Pointer Complexes coated once gave patterned 8.35 Multiplication-Sign 10{sup -4} {Omega}{center_dot}cm indium tin oxide films.

  5. ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors

    Science.gov (United States)

    Zhefeng, Li; Xianye, Luo

    2014-10-01

    This study explores a strategy of using the phosphonic acid derivative (11-((12-(anthracen-2-yl)dodecyl)oxy)-11-oxoundecyl) phosphonic acid (ADO-phosphonic acid) as self-assembled monolayers (SAMs) on a Si/SiO2 surface to induce the crystallization of rubrene in vacuum deposited thin film transistors, which showed a field-effect mobility as high as 0.18 cm2/(V·s). It is found that ADO-phosphonic acid SAMs play a unique role in modulating the morphology of rubrene to form a crystalline film in the thin-film transistors.

  6. Phase Chemistry of the Complexes of RE Amino Acids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Forty-three phase diagrams of ternary system concerning rare earth salts, α-amino acids and water, which were constructed by phase equilibrium methods, were expounded. The influences of the factors such as cations, anions, the structure of amino acids, temperature on the phase diagrams were discussed. Under the guidance of phase equilibrium results, over 150 new solid complexes were prepared. IR, reflecting, UV, FS, and Raman spectra for these complexes were investigated and the regularity of “tripartite effect”, “tetrad effect”, “Nephelanxetic effect”, “Oddo-Harkins” was observed. Thermal decomposition processes of the complexes were confirmed. Based on the comparison with the known crystal structures of rare earth-amino acid-complexes, an estimation method for predicting the crystal structure data of series complexes was founded. The constant volume combustion energies of the complexes were determined by RBC-1 type rotating bomb calorimeter. The standard enthalpies of combustion and standard enthalpies of formation were calculated for these complexes.

  7. Effects of heat treatment on chitosan nanocomposite film reinforced with nanocrystalline cellulose and tannic acid.

    Science.gov (United States)

    Rubentheren, V; Ward, Thomas A; Chee, Ching Yern; Nair, Praveena; Salami, Erfan; Fearday, Christopher

    2016-04-20

    This article presents an analysis of the influence of heat treatment on chitosan nanocomposite film. A series of samples comprising: pure chitosan film, chitosan film embedded with nanocrystalline cellulose (NCC), chitosan film crosslinked with tannic acid and chitosan film with a blend of NCC and tannic acid were heat treated using a convection oven. Fourier-transform-infrared spectroscopy (FTIR) and X-ray diffraction test (XRD) shows the changes in chemical interaction of the heat treated films. The heat treated films show significant improvements in moisture absorption. Tensile strength and Young's Modulus were increased up to 7MPa and 259MPa, respectively when the samples were subjected to heat treatment. For the NCC particles, a transmission electron microscope (TEM) was used to inspect the structural properties of cellulose particle in suspension form.

  8. Effects of gas atmospheres on poly(lactic acid) film in acrylic acid plasma treatment

    Science.gov (United States)

    Zhao, Yun; Fina, Alberto; Venturello, Alberto; Geobaldo, Francesco

    2013-10-01

    Plasma polymerized acrylic acid (AA) coatings were deposited on poly(lactic acid) (PLA) films in various gas atmospheres during the pre-treatment of PLA and the deposition of AA, respectively. Therefore, this work was twofold: the argon pretreated PLA films followed by a deposition in argon were investigated against the mixture of argon and oxygen pretreated ones under the same deposition conditions; the plasma deposition of AA operating in different atmospheres (argon, oxygen and nitrogen) was employed to modify the pretreated PLA in oxygen. Chemical and physical changes on the plasma-treated surfaces were examined using contact angle, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and attenuated total reflection infrared (ATR-FTIR) analysis. The results showed that the discharge gas can have a significant influence on the chemical composition of the PLA surfaces: oxygen plasmas introduced oxygen-containing groups in company with surface etching in pretreatment and deposition, while argon discharges was able to achieve much better hydrophilic behavior and high retention ratio of poly(acrylic acid) (PAA) coating before and after washing in water.

  9. Effects of gas atmospheres on poly(lactic acid) film in acrylic acid plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yun, E-mail: yun.zhaotju@yahoo.com [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy); Fina, Alberto [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino – sede di Alessandria, V. T. Michel 5, 15121 Alessandria (Italy); Venturello, Alberto; Geobaldo, Francesco [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy)

    2013-10-15

    Plasma polymerized acrylic acid (AA) coatings were deposited on poly(lactic acid) (PLA) films in various gas atmospheres during the pre-treatment of PLA and the deposition of AA, respectively. Therefore, this work was twofold: the argon pretreated PLA films followed by a deposition in argon were investigated against the mixture of argon and oxygen pretreated ones under the same deposition conditions; the plasma deposition of AA operating in different atmospheres (argon, oxygen and nitrogen) was employed to modify the pretreated PLA in oxygen. Chemical and physical changes on the plasma-treated surfaces were examined using contact angle, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and attenuated total reflection infrared (ATR-FTIR) analysis. The results showed that the discharge gas can have a significant influence on the chemical composition of the PLA surfaces: oxygen plasmas introduced oxygen-containing groups in company with surface etching in pretreatment and deposition, while argon discharges was able to achieve much better hydrophilic behavior and high retention ratio of poly(acrylic acid) (PAA) coating before and after washing in water.

  10. Study on Copolymerization of Rare Earth-Carboxylic Acid Complex

    Institute of Scientific and Technical Information of China (English)

    Qiu Guanmin(邱关明); Zhang Ming(张明); Yan Chang hao(严长浩); Zhou Lanxiang(周兰香); Dai Shaojun(戴少俊); Okamo to Hiroshi

    2003-01-01

    Complex of rare earth with carboxylic acid was prepared by precipita tion and direct method. It was copolymerized with such monomers as acrylic acid and other ones to synthesize ionomer of rare earth and organic polymer with different rare earth contents. Its glass-transition temperature and heat stability were analyzed by TG and DTA. Infra-red detector was used to show its structure. The effect of rare earth complex prepared by different methods on copolymerization and properties of copolymers was also discussed.

  11. Introduction of phosphoric acid group to polypropylene film by radiation grafting and its blood compatibility

    International Nuclear Information System (INIS)

    2,3-epoxypropyl methacrylate (EPMA) was grafted to polypropylene (PP) film by using a radiation grafting technique. The phosphoric acid group was introduced to the EPMA-grafted PP films with different grafting yields. The blood compatibility of the phosphoric acid group-introduced PP films was evaluated by the determination of platelet adsorption and thrombus formation. The EPMA grafting extent was found to be dependent on the absorbed dose, reaction time and temperature. The grafting and phosphonation reactions were confirmed by Fourier transform infrared spectroscopy in the attenuated total reflectance mode and electron spectroscopy for chemical analysis. The amount of thrombus and adherent platelet on modified PP film was evaluated by an in vitro method and scanning electron microscope, respectively. The phosphoric acid group-introduced PP film was found to have good blood compatibility, which increased with the content of the introduced phosphoric acid group

  12. Ceramic Films via Organometallic Complex as Single Source Precursor

    Institute of Scientific and Technical Information of China (English)

    Shyu Shin-Guang; Wu Juan-Seng; Wu Chi-Chin; Chi Kal-Ming

    2004-01-01

    Fe2(CO)6(μ-S2) was used as a single source precursor in attempt to produce FeS film via MOCVD. Pyrolysis of Fe2(CO)6(μ-S2) at temperature below 500℃ produced Fe1-xS or Fe7S8 powder as indicated by its powder X-ray spectra. At 750 ℃, polycrystalline FeS powder was obtained. In film deposition, polycrystalline Fe1-xS or Fe7Ss films were obtained on Si(100) and Ag/Si(100) substrates below 500 ℃. SEM micrographs showed the film on Si(100) substrate containing whisker like grains. However, pillar like grains were obtained on Ag/Si(100) substrate.Deposition rates are also different for different substrates as evaluated by the thickness of the films, which were obtained by SEM micrographs of the cross section of the films. At 750℃, similar polycrystalline Fe1-xS or Fe7S8 film was obtained.

  13. Spectrographic investigation of neodymium complexing with hexamethylenediaminetetraacetic acid

    International Nuclear Information System (INIS)

    Complex formation between neodymium and hexamethylenediamine-tetraacetic acid (HMTA, H2L) in aqueous solution has been studied by high-resolution spectrography. Formation of NdHL, Hd(HL)23-, Nd(HL)36- complexes has been proved, their values of formation constants (lg Csub(form)) being equal to 5.63+-0.45, 4.20+-0.15, 2.63+-0.15, respectively

  14. Luminescent Thin Film of Doped Terbium Complex Obtained by Sol-Gel Method

    Institute of Scientific and Technical Information of China (English)

    刘丰祎; 符连社; 王俊; 李焕荣; 张洪杰

    2003-01-01

    The transparent luminescent thin films of doped terbium complex were obtained by sol-gel method. The result indicates that rare earth carboxylates with poor solubility can be homogeneously doped into sol matrix in situ. The fluorescence spectra show that the thin film material emits the characteristic narrow band emission of Tb3+ under the UV excitation.

  15. Synthesis of thin film containing 4-amino-1,2,4-triazole iron(II) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Onggo, Djulia, E-mail: djulia@Chem.itb.ac.id [Inorganic and Physical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132 (Indonesia)

    2014-03-24

    The Iron(II) complex with 4-amino-1,2,4 triazole (NH{sub 2}-trz) ligand has potential applications as smart material since the compounds show a distinct color change from lilac at low temperature to colorless at high temperature. The lilac color of the complex represent the diamagnetic low spin state while the colorless correspond to the paramagnetic high spin state of iron(II). The transition between the two states could be tuned by changing the anionic group. Generally, the complex was synthesized directly from aqueous solution of iron(II) salt with considerable amounts of NH{sub 2}-trz solution produced solid powder compound. For application as an electronic molecular device, the complex should be obtained as a thin film. The transparent [Fe(NH{sub 2}trz){sub 3}]-Nafion film has been successfully obtained, however, no anion variation can be produced since the nafion is an anionic resin. In this work, the [Fe(NH{sub 2}trz){sub 3}]-complexes with several anions have been synthesized inside nata de coco membrane that commonly used as a medium for deposition metal nano-particles. After drying the membrane containing the complex became a thin film. At room temperature, the film containing iron(II) complexes of sulphate and nitrate salts show lilac color, similar to that of the original complexes in the powder form. On heating, the color of the complex film changed to colorless and this color change was observed reversibly. In contrast, the films containing perchlorate and tetrafluoroborate iron(II) complexes are colorless at room temperature and changed to lilac on cooling. The significant color changing of the iron(II)complexes in the nata de coco film can be used for demonstration thermo chromic effect of smart materials with relatively small amount of the compounds.

  16. Controllably local gene delivery mediated by polyelectrolyte multilayer films assembled from gene-loaded nanopolymersomes and hyaluronic acid

    Directory of Open Access Journals (Sweden)

    Teng W

    2014-10-01

    a complex form. In vitro cell experiments demonstrate that PEM films can enhance the adhesion and proliferation of MSCs and efficiently transfect MSCs in situ in vitro for at least 4 days. Our results suggest that a (pNPs/HAn system can mediate efficient transfection in stem cells in a spatially and temporally controllable pattern, highlighting its huge potential in local gene therapy. Keywords: localized gene delivery, layer-by-layer self-assembly, gene-loaded nanopolymersomes, hyaluronic acid, polyelectrolyte multilayer films, mesenchymal stem cells

  17. Formation constants of mixed ligand complexes of oxovanadium(IV) with salicylic acid/5-sulphosalicylic acid/8-hydroxyquinoline-5-sulphonic acid and hippuric acid

    International Nuclear Information System (INIS)

    Equilibrium studies are described on the interaction of oxovanadium(IV) with salicylic acid (SA)/5-sulphosalicylic acid (SSA)/8-hydroxyquinoline-5-sulphonic acid (HQSA) in presence of hippuric acid. The formation of 1:1:1 mixed ligand complexes and their hydroxo derivatives inferred from the pH-metric titration curves and formation constants of 1:1:1 ternary complexes have been evaluated at 30 +- 0.5deg (μ = 0.1 M KNO3). The order of stability of ternary complexes has been found to be the same as that of 1:1 binary complexes involving hydroxy acids. (author)

  18. Processing and Characterization of Cellulose Nanocrystals/Polylactic Acid Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Erin M. Sullivan

    2015-12-01

    Full Text Available The focus of this study is to examine the effect of cellulose nanocrystals (CNC on the properties of polylactic acid (PLA films. The films are fabricated via melt compounding and melt fiber spinning followed by compression molding. Film fracture morphology, thermal properties, crystallization behavior, thermo-mechanical behavior, and mechanical behavior were determined as a function of CNC content using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, dynamic mechanical analysis, and tensile testing. Film crystallinity increases with increasing CNC content indicating CNC act as nucleating agents, promoting crystallization. Furthermore, the addition of CNC increased the film storage modulus and slightly broadened the glass transition region.

  19. Biodegradable films containing {alpha}-tocopherol/{beta}-cyclodextrin complex; Filmes biodegradaveis contendo {alpha}-tocoferol complexado em {beta}-ciclodextrina

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Caroline; Martelli, Silvia M.; Soldi, Valdir, E-mail: vsoldi@qmc.ufsc.br [Lab. de Materiais Polimericos (POLIMAT), Dept. de Quimica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Barreto, Pedro L.M. [Lab. de Reologia (REOLAB), Dept. de Ciencia e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil)

    2011-07-01

    The growing environmental concern about pollution and the need to reduce dependence of plastic industry in relation to non-renewable resources has increased the interest of both researchers and industry in the use of biopolymers. In this work {beta}-cyclodextrin/{alpha}-tocopherol complexes were prepared and characterized. In order to obtain polymeric active biofilms, the {beta}-cyclodextrin/{alpha}-tocopherol complex was incorporated into a polymeric matrix of carboxymethylcellulose. The {beta}-cyclodextrin/{alpha}-tocopherol complex was characterized through of X-ray diffraction and thermogravimetric analysis. The physicochemical properties of the films incorporated with the complex were evaluated through mechanical and colorimetric analysis and moisture sorption isotherm. (author)

  20. Development and characterization of crosslinked hyaluronic acid polymeric films for use in coating processes.

    Science.gov (United States)

    Sgorla, Débora; Almeida, Andreia; Azevedo, Claudia; Bunhak, Élcio Jose; Sarmento, Bruno; Cavalcanti, Osvaldo Albuquerque

    2016-09-10

    The aim of this work was to develop and characterize new hyaluronic acid-based responsive materials for film coating of solid dosage forms. Crosslinking of hyaluronic acid with trisodium trimetaphosphate was performed under controlled alkaline aqueous environment. The films were produced through casting process by mixing crosslinked or bare biopolymer in aqueous dispersion of ethylcellulose, at different proportions. Films were further characterized regarding morphology by scanning electron microscopy, robustness by permeation to water vapor transmission, and ability to hydrate in simulated gastric and intestinal physiological fluids. The safety and biocompatibility of films were assessed against Caco-2 and HT29-MTX intestinal cells. The permeation to water vapor transmission was favored by increasing hyaluronic acid content in the final formulation. When in simulated gastric fluid, films exhibited lower hydration ability compared to more extensive hydration in simulated intestinal fluids. Simultaneously, in simulated intestinal fluids, films partially lost weight, revealing ability for preventing drug release at gastric pH, but tailoring the release at higher intestinal pH. The physiochemical characterization suggests thermal stability of films and physical interaction between compounds of formulation. Lastly, cytotoxicity tests demonstrated that films and individual components of the formulations, when incubated for 4h, were safe for intestinal cells Overall, these evidences suggest that hyaluronic acid-based responsive films, applied as coating material of oral solid dosage forms, can prevent the premature release of drugs in harsh stomach conditions, but control the release it in gastrointestinal tract distal portion, assuring safety to intestinal mucosa. PMID:27436707

  1. Physico-chemical studies of some aminobenzoic acid hydrazide complexes

    Directory of Open Access Journals (Sweden)

    S. ABD EL HALEEM

    2004-04-01

    Full Text Available The stability constants and related thermodynamic functions characterizing the formation of divalent Ni, Cu, Zn, Cd and Hg complexes with o- and p-aminobenzoic acid hydrazide were determined potentiometrically at different temperatures. The formations of the complexes are endothermic processes. The formed bonds are mainly electrostatic. Conductometric titration was carried out to determine the stoichiometry and stability of the formed complexes. The structures of complexes were characterized by their IR, 1H-NMR and 13C-NMR spectra, as well as X-ray diffractograms. The coordination process takes place through the carbonyl group and the terminal hydrazinic amino group. The thermal stability of the complexes was followed in the temperature range 20–600ºC.

  2. An iron(II) diketonate–diamine complex as precursor for thin film fabrication by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bratvold, Jon E., E-mail: j.e.bratvold@kjemi.uio.no [Centre for Materials Science and Nanotechnology (SMN)/Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo (Norway); Carraro, Giorgio [Department of Chemistry, University of Padova and INSTM, via F. Marzolo 1, I-35131 Padova (Italy); Barreca, Davide [CNR-IENI and INSTM, Department of Chemistry, University of Padova, via F. Marzolo 1, I-35131 Padova (Italy); Nilsen, Ola [Centre for Materials Science and Nanotechnology (SMN)/Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo (Norway)

    2015-08-30

    Highlights: • First report of Fe(hfa){sub 2}TMEDA as precursor in ALD and MLD. • Hybrid organic–inorganic films with oxalic acid as co-reactant between 125 and 350 °C. • Surface saturation evidenced by quartz crystal microbalance (QCM) analysis. • XPS confirms complete preservation of Fe(II) from precursor to film. • Deposition of α-Fe{sub 2}O{sub 3} when using ozone as co-reactant. - Abstract: A new divalent Fe precursor has been explored for deposition of iron-containing thin films by atomic layer deposition and molecular layer deposition (ALD/MLD). The Fe(II) β-diketonate-diamine complex, Fe(hfa){sub 2}TMEDA, (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate, TMEDA = N,N,N′,N′-tetramethylethylenediamine) can be handled in air, and sublimation at 60 °C ensures a satisfactory vaporization rate. The reactivity of the precursor does not allow for direct reaction with water as co-reactant. Nevertheless, it reacts with carboxylic acids, resulting in organic–inorganic hybrid materials, and with ozone, yielding α-Fe{sub 2}O{sub 3}. The divalent oxidation state of iron was maintained during deposition when oxalic acid was used as co-reactant, demonstrating the first preservation of Fe(II) from precursor to film during an MLD process. A self-saturating growth mode was proven by in situ quartz crystal microbalance (QCM) measurements, and the films were further characterized by grazing incidence X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS)

  3. A Soluble Dynamic Complex Strategy for the Solution-Processed Fabrication of Organic Thin-Film Transistors of a Boron-Containing Polycyclic Aromatic Hydrocarbon.

    Science.gov (United States)

    Matsuo, Kyohei; Saito, Shohei; Yamaguchi, Shigehiro

    2016-09-19

    The solution-processed fabrication of thin films of organic semiconductors enables the production of cost-effective, large-area organic electronic devices under mild conditions. The formation/dissociation of a dynamic B-N coordination bond can be used for the solution-processed fabrication of semiconducting films of polycyclic aromatic hydrocarbon (PAH) materials. The poor solubility of a boron-containing PAH in chloroform, toluene, and chlorobenzene was significantly improved by addition of minor amounts (1 wt % of solvent) of pyridine derivatives, as their coordination to the boron atom suppresses the inherent propensity of the PAHs to form π-stacks. Spin-coating solutions of the thus formed Lewis acid-base complexes resulted in the formation of amorphous thin films, which could be converted into polycrystalline films of the boron-containing PAH upon thermal annealing. Organic thin-film transistors prepared by this solution process displayed typical p-type characteristics. PMID:27576306

  4. Enhanced surface coverage and conductivity of Cu complex ink-coated films by laser sintering

    International Nuclear Information System (INIS)

    We here show that highly conductive copper films are obtainable from Cu complex ink by laser sintering. The synthesized Cu formate ink was spin-coated onto polyimide substrate and the coated films were scanned by an ultraviolet laser beam at 355 nm. During the sintering process, N2 gas was blown into the irradiated area to prevent oxidation. Unlike the typical thermal process, laser sintering resulted in tightly packed, dense structures. This made it possible to produce highly conducting thin films with uniform thickness. A minimum resistivity of 1.92 × 10−5 Ω cm was obtained. - Highlights: • Highly conductive Cu films are obtainable by sintering Cu complex ink with laser. • Laser-sintered films exhibit very uniform and dense microstructure. • A minimum resistivity of 1.92 × 10−5 Ω cm is achieved

  5. In Vitro Biomineralization of Glutaraldehyde Crosslinked Chitosan/Glutamic Acid Films

    Institute of Scientific and Technical Information of China (English)

    FENG Fang; LIU Yu; ZHAO Binyuan; HU Keao

    2009-01-01

    In vitrobiomineralization ofglutaraldehyde crosslinked chitosan/glutamicacid films were studied. IR and ESCA (electron spectroscopy for chemical analysis) determinations confirm that chitosan and glutamic acid are successfully crosslinked by glutaraldehyde to form chitosan-glutamic acid surfaces. Composite films were soaked in saturated Ca(OH)2 solution for 8 d and then immersed in simulated body fluid (SBF) for more than 20 d. Morphological characterizations and structure of cal-cium phosphate coatings deposited on the films were studied by SEM, XRD, and EDAX (energy dispersive X-ray analysis). Initially, the treatment in SBF results in the formation of single-layer cal-cium phosphate particles over the film surface. As immersion time increases, further nucleation and growth produce the simulated calcium-carbonate hydroxyapatite coating. ICP results show Ca/P ratio of calcium phosphate coating is a function of SBF immersion time. The inducing of glutamic acid improves the biomineralization property of chitosan films.

  6. Ascorbic acid-containing whey protein film coatings for control of oxidation.

    Science.gov (United States)

    Min, Seacheol; Krochta, John M

    2007-04-18

    A formulation for the whey protein isolate film or coating incorporating ascorbic acid (AA-WPI film or coating) was developed. Tensile and oxygen-barrier properties of the AA-WPI film were measured. Antioxidant effects of the AA-WPI coating on roasted peanuts were studied by comparing the values of peroxide (PO), thiobarbituric acid reactive substance (TBARS), and free-radical-scavenging activity, determined with noncoated peanuts and peanuts coated with WPI with and without ascorbic acid during storage at 21% relative humidity (RH) and 23, 35, and 50 degrees C. The incorporation of AA reduced elongation of WPI films. The oxygen-barrier property of the WPI film was significantly improved by incorporation of AA. The AA-WPI coating retarded lipid oxidation in peanuts significantly at 23, 35, and 50 degrees C. The AA-WPI coated peanuts were more red than noncoated peanuts at all storage temperatures.

  7. Chemical vapour deposition of amorphous Ru(P) thin films from Ru trialkylphosphite hydride complexes.

    Science.gov (United States)

    McCarty, W Jeffrey; Yang, Xiaoping; DePue Anderson, Lauren J; Jones, Richard A

    2012-11-21

    The ruthenium phosphite hydride complexes H(2)Ru(P(OR)(3))(4) (R = Me (1), Et (2), (i)Pr (3)) were used as CVD precursors for the deposition of films of amorphous ruthenium-phosphorus alloys. The as-deposited films were X-ray amorphous and XPS analysis revealed that they were predominantly comprised of Ru and P in zero oxidation states. XPS analysis also showed the presence of small amounts of oxidized ruthenium and phosphorus. The composition of the films was found to depend on ligand chemistry as well as the deposition conditions. The use of H(2) as the carrier gas had the effect of increasing the relative concentrations of P and O for all films. Annealing films to 700 °C under vacuum produced films of polycrystalline hcp Ru while a flowing stream of H(2) resulted in polycrystalline hcp RuP. PMID:23018487

  8. Degradation and miscibility of poly(DL-lactic acid)/poly(glycolic acid) composite films: Effect of poly(DL-lactic-co-glycolic acid)

    Indian Academy of Sciences (India)

    Zhigang Ma; Na Zhao; Chengdong Xiong

    2012-08-01

    The in vitro degradation behaviour of poly(glycolic acid) (PGA) and its composite films containing poly(DL-lactic acid) (PDLLA) and poly(DL-lactic-co-glycolic acid) (PDLGA) were investigated via mass loss, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). All the films were prepared by solution casting, using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. Since the degradation rate of PDLLA is lower than that of PGA, those of the PDLLA/PGA composite films decreased. As a compatibilizer, PDLGA improved the compatibility and hydrolytic stability of PDLLA/PGA composite films. Changes in the composite films indicate that this kind of PGA-based composite biomaterial may be applicable to device design for clinical application in the future.

  9. Highly ordered thin films prepared with octabutoxy copper phthalocyanine complexes

    International Nuclear Information System (INIS)

    Langmuir-Blodgett (LB) films of copper (II) 1,4,8,11,15,18,22,25-octabutoxyphthalocyanine, nCuPc(OBu)8, (non-peripheral substitution) and copper (II) 2,3,9,10,16,17,23,24-octabutoxyphthalocyanine, pCuPc(OBu)8, (peripheral substitution), were fabricated and characterized by optical spectroscopy and scanning probe microscopy. The LB films were transferred onto hydrophilic substrates by vertical dipping. Although they posses relatively short polar substituents both compounds form smooth, uniform, dense, and highly stable LB monolayers composed of linear arrays of cofacial oligomers. The long range discotic assemblies of LB and spun cast films of pCuPc(OBu)8 and nCuPc(OBu)8 posses physical and chemical properties favorable for molecular electronic device application

  10. Highly ordered thin films prepared with octabutoxy copper phthalocyanine complexes.

    Science.gov (United States)

    Stevenson, Kelly; Miyashita, Naoko; Smieja, Joanne; Mazur, Ursula

    2003-01-01

    Langmuir-Blodgett (LB) films of copper (II) 1,4,8,11,15,18,22,25-octabutoxyphthalocyanine, nCuPc(OBu)(8), (non-peripheral substitution) and copper (II) 2,3,9,10,16,17,23,24-octabutoxyphthalocyanine, pCuPc(OBu)(8), (peripheral substitution), were fabricated and characterized by optical spectroscopy and scanning probe microscopy. The LB films were transferred onto hydrophilic substrates by vertical dipping. Although they posses relatively short polar substituents both compounds form smooth, uniform, dense, and highly stable LB monolayers composed of linear arrays of cofacial oligomers. The long range discotic assemblies of LB and spun cast films of pCuPc(OBu)(8) and nCuPc(OBu)(8) posses physical and chemical properties favorable for molecular electronic device application. PMID:12801680

  11. Highly ordered thin films prepared with octabutoxy copper phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Kelly; Miyashita, Naoko; Smieja, Joanne; Mazur, Ursula

    2003-10-15

    Langmuir-Blodgett (LB) films of copper (II) 1,4,8,11,15,18,22,25-octabutoxyphthalocyanine, nCuPc(OBu){sub 8}, (non-peripheral substitution) and copper (II) 2,3,9,10,16,17,23,24-octabutoxyphthalocyanine, pCuPc(OBu){sub 8}, (peripheral substitution), were fabricated and characterized by optical spectroscopy and scanning probe microscopy. The LB films were transferred onto hydrophilic substrates by vertical dipping. Although they posses relatively short polar substituents both compounds form smooth, uniform, dense, and highly stable LB monolayers composed of linear arrays of cofacial oligomers. The long range discotic assemblies of LB and spun cast films of pCuPc(OBu){sub 8} and nCuPc(OBu){sub 8} posses physical and chemical properties favorable for molecular electronic device application.

  12. A complex magnetic structure of ultrathin Fe films on Rh (001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Masaki [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Lana Gastelois, Pedro [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Servico de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear, 31270-901 BeloHorizonte, MG (Brazil); Przybylski, Marek, E-mail: mprzybyl@mpi-halle.de [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Krakow (Poland); Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Naturwissenschaftliche Fakultaet II, Martin-Luther-Universitaet Halle-Wittenberg, 06120 Halle (Germany)

    2013-03-15

    We conducted a structural and magnetic analysis of ultrathin Fe films on Rh (001) surfaces by using low electron energy diffraction (LEED), magneto-optical Kerr effects (MOKE) and spin-polarized scanning tunneling microscopy (SP-STM). The films in the investigated thickness range up to 6 monolayers (ML) are pseudomorphic to the Rh (001) substrate. While Fe films thinner than 3 ML grow layer-by-layer at room temperature (RT), Fe films thicker than 4 ML form islands. 1 ML Fe films do not show any hysteresis loops even at low temperature. Polar hysteresis loops for the 2 ML and 3 ML thick films appear at low temperatures. When 1 ML thick Fe films were studied by Cr- and Fe-coated W tips, a (2 Multiplication-Sign 3) and stripe structures were observed, respectively. The structures originate from a complex magnetic structure of 1 ML Fe. Based on the SP-STM results we propose a spin configuration model of a 1 ML Fe film. - Highlights: Black-Right-Pointing-Pointer We studied structural and magnetic properties of Fe films grown on an Rh (001). Black-Right-Pointing-Pointer MOKE measurements revealed that Fe films thicker than 2 ML are ferromagnetic at 5 K. Black-Right-Pointing-Pointer Fe films with thickness of 2 ML and 3 ML exhibit out-of-plane magnetization, those thicker than 4 ML show in-plane magnetization. Black-Right-Pointing-Pointer 1 ML Fe films have a complex magnetic configuration with zero net magnetization. Black-Right-Pointing-Pointer A spin configuration model of 1 ML Fe is proposed based on an SP-STM observation.

  13. Protactinium(V) complexation by oxalic and diethylenetriaminepentaacetic acids

    International Nuclear Information System (INIS)

    The present work is devoted to complexation of Pa(V) with oxalic acid and DTPA. Structural data on the limiting complex have been collected by combining X-ray absorption Spectroscopy, Capillary Electrophoresis (CE-ICP-MS) and DFT calculations. Thermodynamic data have been deduced from solvent extraction experiments. XAS data registered on samples of Pa(V) in oxalic acid have revealed the presence of one single Pa-O oxo bond and 3 oxalate in a bidentate mode in the complex of maximum order. The structure optimization, performed through DFT calculations indicate that 2 oxalate lie in the equatorial plane of the Pa=O bond, whereas one oxygen of the third oxalate goes in the prolongation of the oxo bond. Stability constants of the three successive complexes were determined by solvent extraction in the TTA/toluene/H2O/Pa(V)/NaClO4/HClO4/H2C2O4 system at different temperatures and 3M ionic strength. The stability of the complexes was proved to increase with their order. CE-ICP-MS measurements on Pa/DTPA samples have indicated the formation of a neutral (1:1)limiting complex. This complex can therefore be written as Pa(DTPA). The optimized structure determined by DFT calculations allowed one to conclude that all eight donor atoms (5 O and 3 N) of the DTPA ligand are involved in the coordination of protactinium. The formation constant of this complex has been determined for different values of ionic strength and temperature. The complexation reaction of Pa(V) with DTPA was proved to be entropy controlled. (author)

  14. Incorporation of europium III complex into nanoparticles and films obtained by the Sol-Gel methodology

    Directory of Open Access Journals (Sweden)

    Faley Jean de Sousa

    2010-03-01

    Full Text Available The sol-gel process is very effective for the preparation of new materials with potential applications in optics, sensors, catalyst supports, coatings, and specialty inorganic polymers that can be used as hosts for the accommodation of organic molecules. The low temperature employed in the process is the main advantage of this methodology. In this work, the europium (III complex with 1,10-phenantroline was prepared, and this luminescent complex was incorporated into silica nanoparticles and films by the sol-gel process. The nanoparticles were obtained by the modified Stöber methodology. The films were obtained by the dip-coating technique, at different deposition rates and numbers of layers. The nanoparticles and films were characterized by photoluminescence, thermal analysis, and Raman and infrared spectroscopies. Characterization revealed that the europium (III complex was not affected upon incorporation into the nanoparticles and films, opening a new field for the application of these materials.

  15. Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films

    Energy Technology Data Exchange (ETDEWEB)

    Deen, I. [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Zhitomirsky, I., E-mail: zhitom@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2014-02-15

    Highlights: ► Composite halloysite nanotubes–hydroxyapatite–hyaluronic acid films were prepared. ► Electrophoretic deposition method was used for deposition. ► Natural hyaluronic acid was used as a dispersing, charging and film forming agent. ► Film composition and deposition yield can be varied. ► The films can be used for biomedical implants with controlled release of drugs. -- Abstract: Electrophoretic deposition method has been developed for the deposition of biocomposite films containing halloysite nanotubes (HNTs), hydroxyapatite (HA) and hyaluronic acid. The method is based on the use of natural hyaluronate biopolymer as a dispersing and charging agent for HNT and HA and film forming agent for the fabrication of the composite films. The deposition kinetics was studied by the quartz crystal microbalance method. The composite films were studied by X-ray diffraction, thermogravimetric analysis, differential thermal analysis and electron microscopy. The composite films are promising materials for the fabrication of biomedical implants with advanced functional properties.

  16. Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films

    International Nuclear Information System (INIS)

    Highlights: ► Composite halloysite nanotubes–hydroxyapatite–hyaluronic acid films were prepared. ► Electrophoretic deposition method was used for deposition. ► Natural hyaluronic acid was used as a dispersing, charging and film forming agent. ► Film composition and deposition yield can be varied. ► The films can be used for biomedical implants with controlled release of drugs. -- Abstract: Electrophoretic deposition method has been developed for the deposition of biocomposite films containing halloysite nanotubes (HNTs), hydroxyapatite (HA) and hyaluronic acid. The method is based on the use of natural hyaluronate biopolymer as a dispersing and charging agent for HNT and HA and film forming agent for the fabrication of the composite films. The deposition kinetics was studied by the quartz crystal microbalance method. The composite films were studied by X-ray diffraction, thermogravimetric analysis, differential thermal analysis and electron microscopy. The composite films are promising materials for the fabrication of biomedical implants with advanced functional properties

  17. Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization

    Science.gov (United States)

    Liu, Yang; Shen, Xin; Zhou, Huan; Wang, Yingjun; Deng, Linhong

    2016-05-01

    We develop a novel chitosan-citric acid film (abbreviated as CS-CA) suitable for biomedical applications in this study. In this CS-CA film, the citric acid, which is a harmless organic acid has been extensively investigated as a modifying agent on carbohydrate polymers, was cross-linked by 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto the surface of chitosan (CS) film. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms the graft copolymerization of the modified chitosan film (CS-CA). Surface wettability, moisturizing performance, the capacity of mineralization in vitro and biocompatibility of the films were characterized. After modification, this CS-CA film has good hydrophilicity. It is very evident that the citric acid grafting treatment significantly promotes the biomineralization of the chitosan based substrates. Cell experiments show that the MC3T3-E1 osteoblasts can adhere and proliferate well on the surface of CS-CA film. This CS-CA film, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.

  18. Multilayer Film Fabrication and Photoelectric Conversion Property of Two Pyrrolidinofullerene Carboxylic Acid Derivatives

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Two multilayer films of pyrrolidinofullerene carboxylic acid derivatives, which exhibit photoelectric conversion property, are reported here. The first monolayers were fabricated on hydrophilic indium-tin-oxide (ITO), quartz, and mica by esterification reaction. The multilayers were characterized by contact angle and UV spectrum. The photoelectric conversion properties of both multilayer films were studied.

  19. Poly(lactic acid) and Osage Orange Wood Fiber Composites for Agricultural Mulch Films

    Science.gov (United States)

    Osage orange wood(OO)was combined with poly(lactic acid)(PLA)to form a polymer composite intended for use as an agricultural mulch film. The PLA-OO mechanical properties were comparable to existing mulch film products and had the advantage of being completely biodegradable through a single growing ...

  20. Characterization and Tribological Behavior of Octadecene, Dodecene and Undecenoic Acid Films on Si Substrate

    Institute of Scientific and Technical Information of China (English)

    Jinfang ZHOU; Shengrong YANG

    2005-01-01

    The films of octadecene, dodecene, and undecenoic acid were prepared on H-terminated Si surface in the presence of ultraviolet irradiation. The resulted films were characterized with water-contact angle measurement and infrared spectroscopy. The friction-reducing behavior of the prepared films was examined on a static-dynamic friction coefficient measurement apparatus and on an atomic force microscope. It was found that all the reacted films on the Si substrate showed good friction-reducing ability; especially, the film of the octadecene exhibited the best frictionreducing ability. This was attributed to the transfer of the reacted films onto the counter face with formation of a transfer film on the counterpart surface, which led to the transformation of the sliding between the reacted films and the hard ceramic to that between the reacted films and its transfer film on the counterpart surface. The macroscopic and microscopic friction behaviors of the prepared films were dependent on their molecular chain lengths. Thus the octadecene reacted film with the highest degree of ordering arrangement showed the best friction-reducing and antiwear abilities in sliding against Si3 N4.

  1. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

    KAUST Repository

    Kumar, Sarath

    2015-11-24

    We report the high temperature thermoelectric properties of solution processed pristine and sulphuric acid treated poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (or PEDOT:PSS) films. The acid treatment is shown to simultaneously enhance the electrical conductivity and Seebeck coefficient of the metal-like films, resulting in a five-fold increase in thermoelectric power factor (0.052 W/m. K ) at 460 K, compared to the pristine film. By using atomic force micrographs, Raman and impedance spectra and using a series heterogeneous model for electrical conductivity, we demonstrate that acid treatment results in the removal of PSS from the films, leading to the quenching of accumulated charge-induced energy barriers that prevent hopping conduction. The continuous removal of PSS with duration of acid treatment also alters the local band structure of PEDOT:PSS, resulting in simultaneous enhancement in Seebeck coefficient.

  2. The complexation behavior of neptunium and plutonium with nitrilotriacetic acid

    International Nuclear Information System (INIS)

    The first stability constant of NpO2+ with nitrilotriacetic acid (NTA) was determined at four ionic strengths (I = 0.5, 1.0, 2.0, 3.0 M) by using spectrophotometry. Nonlinear least-squares data fitting identified the complex as NpO2NTA2-. The specific ion interaction (SIT) theory approximation method was used to determine the stability constants at infinite dilution. In this paper first results on Pu4+ and PuO22+ complexation with NTA are reported. The stability constant for the Pu(NTA)+ complex at I = 0.1 M is given. From results for PuO22+ complexation with NTA (I = 1 M) at pH 2-NTA-. At pH > 3, NTA partially reduced PuO22+ to PuO2+

  3. Scandium and zirconium ion complexing with salicylic acid

    International Nuclear Information System (INIS)

    A study has been made of the extraction of complexes containing scandium and zirconium compounds and salicylic acid by using benzene, nitrobenzene, chloroform and isoamyl alcohol. It is shown that in the metal concentration range 10-5-10-3 mole/l scandium forms mononuclear complexes composed of Sc(HSal)3 (pH2 (pH>4), zirconium - polynuclear complexes Zrsub(x)(OH)sub(y)(HSal)sub(n), where the x:n ratio varies from 0.5 to 1.5. Stability constants have been calculated for the salicylate scandium complexes in aqueous solution, equal to β1=(3+-1)x102; β2=(5.0+-0.6)x104; β3=(5.3+-0.3)x106

  4. The application of layered double hydroxide clay (LDH)-poly(lactide-co-glycolic acid) (PLGA) film composites for the controlled release of antibiotics

    DEFF Research Database (Denmark)

    Chakraborti, Michelle; Jackson, John K.; Plackett, David;

    2012-01-01

    /clay complexes in poly(lactic-co-glycolic acid) films resulted in a reduced burst phase of release and a slow continuous release for many weeks with effective antimicrobial amounts of VAN and SF released at later time points. Layered double hydroxide clays may be useful for controlled release applications...

  5. Investigations on interpolymer complexes of cationic guar gum and xanthan gum for formulation of bioadhesive films.

    Science.gov (United States)

    Singh, M; Tiwary, A K; Kaur, G

    2010-07-01

    The present study was aimed at evaluating the possible use of inter polymer complexed (IPC) films of xanthan gum (XG) and cationic guar gum (CGG) for formulating domperidone bioadhesive films. Formation of bonds between -COO¯ groups of XG and -N(+)(CH(3))(3) groups of CGG was evident in the FTIR spectra of IPC films. Bioadhesive strength of the films was evaluated employing texture analyser. Water uptake studies indicated swelling to be a function of XG concentration in the interpolymer complexes. The bioadhesive films were found to possess neutral pH. In vitro drug release studies and residence time studies indicated that the film comprising CGG:XG (80:20) released 98% of domperidone in 8 h and exhibited a residence time of approximately 8 h. Enhanced bioavailability of domperidone was observed from bioadhesive films as compared to orally administered conventional tablets. Overall, the findings suggest that IPC films of XG and CGG, exhibiting desired bioadhesive strength and enhanced bioavailability of domperidone, can be prepared. PMID:21589796

  6. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    Science.gov (United States)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  7. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability

    Science.gov (United States)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.

    2016-06-01

    Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.

  8. Thermochemical properties of rare earth complexes with salicylic acid

    International Nuclear Information System (INIS)

    Fourteen rare earth complexes with salicylic acid RE(HSal)3.nH2O (HSal = C7H5O3; RE = La-Sm, n = 2; RE = Eu-Lu, n = 1) were synthesized and characterized by elemental analysis, and their thermal decomposition mechanism were studied with TG-DTG technology. The constant-volume combustion energies of complexes, ΔcU, were determined by a precise rotating-bomb calorimeter at 298.15 K. Their standard molar enthalpies of combustion, ΔcHm0, and standard molar enthalpies of formation, ΔfHmo, were calculated

  9. Antibacterial poly(lactic acid) (PLA) films grafting electrospun PLA/Ally isothioscyanate (AITC) fibers for food packaging

    Science.gov (United States)

    Poly(lactic acid) (PLA) fibers of submicron sizes encapsulating allyl isothiocyanate (AITC) (PfA) were made and electrospun onto the surfaces of PLA films (PfA-g-film). SEM examination confirmed that the fibers were grafted to the PLA film after the (PfA-g-film) underwent air blowing and water washi...

  10. Corrosion Inhibition of Mild Steel in Hydrochloric Acid Solution by Amino Acid Complexes

    OpenAIRE

    K. Kiruthikajothi; G. Chandramohan

    2015-01-01

    Using the amino acids methionine and serine reduced Schiff base and their copper(II) complexes were synthesized. The inhibition effect of these copper (II) complexes on the corrosion of mild steel in 1 M HCl solution was investigated. The corrosion inhibition action is studied through weight loss method. Among the tested complexes [CuCl(SMet)PPh3.H2O] exhibited better corrosion inhibition at 3 mmol concentration. The adsorption of the complexes on the metal surface obeys Langmuir’s adsorption...

  11. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules.

    Science.gov (United States)

    Copple, Bryan L; Li, Tiangang

    2016-02-01

    For many years, bile acids were thought to only function as detergents which solubilize fats and facilitate the uptake of fat-soluble vitamins in the intestine. Many early observations; however, demonstrated that bile acids regulate more complex processes, such as bile acids synthesis and immune cell function through activation of signal transduction pathways. These studies were the first to suggest that receptors may exist for bile acids. Ultimately, seminal studies by many investigators led to the discovery of several bile acid-activated receptors including the farnesoid X receptor, the vitamin D receptor, the pregnane X receptor, TGR5, α5 β1 integrin, and sphingosine-1-phosphate receptor 2. Several of these receptors are expressed outside of the gastrointestinal system, indicating that bile acids may have diverse functions throughout the body. Characterization of the functions of these receptors over the last two decades has identified many important roles for these receptors in regulation of bile acid synthesis, transport, and detoxification; regulation of glucose utilization; regulation of fatty acid synthesis and oxidation; regulation of immune cell function; regulation of energy expenditure; and regulation of neural processes such as gastric motility. Through these many functions, bile acids regulate many aspects of digestion ranging from uptake of essential vitamins to proper utilization of nutrients. Accordingly, within a short time period, bile acids moved beyond simple detergents and into the realm of complex signaling molecules. Because of the important processes that bile acids regulate through activation of receptors, drugs that target these receptors are under development for the treatment of several diseases, including cholestatic liver disease and metabolic syndrome. In this review, we will describe the various bile acid receptors, the signal transduction pathways activated by these receptors, and briefly discuss the physiological processes that

  12. Chitosan-gum arabic polyelectrolyte complex films: physicochemical, mechanical and mucoadhesive properties.

    Science.gov (United States)

    Sakloetsakun, Duangkamon; Preechagoon, Detpon; Bernkop-Schnürch, Andreas; Pongjanyakul, Thaned

    2016-08-01

    By blending chitosan (CS) and gum arabic (GA), a powerful biomaterial complex might be obtained due to the unique properties of CS and the low viscosity and good emulsifying properties of GA. The objectives of this study were to prepare and examine the properties of dispersions and films of CS and GA as a function of the mixing weight ratio, pH value and molecular weight of CS. The dispersions were characterized by turbidity, zeta potential and cytotoxicity and then the dispersions were cast into films. Physicochemical properties of the film were performed. CS-GA dispersions exhibited higher turbidity and a lower zeta potential with an increase in the GA ratio. Continuous films of the CS-GA could be formed at all ratios. CS and GA could molecularly interact via electrostatic forces and intermolecular hydrogen bonding. The CS-GA (1:0.5) films exhibited relatively low water uptake, erosion, water vapor permeability and puncture strength compared to the CS films. Furthermore, the CS-GA films demonstrated good mucoadhesive properties, allowing for adhesion to the mucosal membrane. Based on these results, it could be advantageous to use CS-GA films as film formers for the formulation of coatings and drug delivery systems. PMID:25886079

  13. Injectable hydrogels derived from phosphorylated alginic acid calcium complexes

    International Nuclear Information System (INIS)

    Phosphorylation of sodium alginate salt (NaAlg) was carried out using H3PO4/P2O5/Et3PO4 followed by acid–base reaction with Ca(OAc)2 to give phosphorylated alginic acid calcium complexes (CaPAlg), as a water dispersible alginic acid derivative. The modified alginate derivatives including phosphorylated alginic acid (PAlg) and CaPAlg were characterized by nuclear magnetic resonance spectroscopy for 1H, and 31P nuclei, high resolution inductively coupled plasma optical emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. CaPAlg hydrogels were prepared simply by mixing CaPAlg solution (2 w/v%) with NaAlg solution (2 w/v%) in various ratios (2:8, 4:6, 6:4, 8:2) of volume. No additional calcium salts such as CaSO4 or CaCl2 were added externally. The gelation was completed within about 3–40 min indicating a high potential of hydrogel delivery by injection in vivo. Their mechanical properties were tested to be ≤ 6.7 kPa for compressive strength at break and about 8.4 kPa/mm for elastic modulus. SEM analysis of the CaPAlg hydrogels showed highly porous morphology with interconnected pores of width in the range of 100–800 μm. Cell culture results showed that the injectable hydrogels exhibited comparable properties to the pure alginate hydrogel in terms of cytotoxicity and 3D encapsulation of cells for a short time period. The developed injectable hydrogels showed suitable physicochemical and mechanical properties for injection in vivo, and could therefore be beneficial for the field of soft tissue engineering. - Highlights: • Preparation of water-soluble alginic acid complexes with calcium phosphate • Self-assembly of the phosphorylated alginic acid calcium complexes with sodium alginate • Preparation of injectable hydrogels with diverse gelation times within about 3–40 min

  14. Ionic products of metal complexes with dithiocarbonic acid derivatives

    International Nuclear Information System (INIS)

    Ionic products of the complexes of certain sulfide-forming metal ions (In, Cd, Te, etc.) with alkyl derivates of dithiocarbonic acid have been defined. The possibility to use ionic products of alkyl xanthates for predicting the practicability of employing alkyl xanthates as analytic reagents in titrimetric methods of analysis, in extractional methods of separation and determination of elements, increase in the determination selectivity, is shown. 11 refs., 1 fig., 1 tab

  15. Modification of hydrophobic polypeptide-based film by blending with hydrophilic poly(acrylic acid

    Directory of Open Access Journals (Sweden)

    Guoquan Zhu

    2013-01-01

    Full Text Available In this study, a series of poly(γ-benzyl L-glutamate/poly(acrylic acid (PBLG/PAA polymer blend films were prepared by casting the polymer blend solution in dimethylsulfoxide (DMSO. The structure and morphology of the polymer blend film were investigated by Fourier Transform Infrared Spectroscopy (FT-IR and Scanning Electron Microscopy (SEM. Thermal, mechanical, and chemical properties of PBLG/PAA polymer blend films were studied by Differential Scanning Calorimetry (DSC, Thermogravimetric (TG Analysis, Tensile Tests, and measurements of Surface Contact Angles. The results revealed that the introduction of PAA could exert great effects on the structure and properties of the polypeptide films.

  16. Actuation Behavior of Polylactic Acid Fiber Films Prepared by Electrospinning.

    Science.gov (United States)

    Nobeshima, Taiki; Ishii, Yuya; Sakai, Heisuke; Uemura, Sei; Yoshida, Manabu

    2016-04-01

    A poly-DL-lactide (PLA) fiber film was prepared using the electrospinning method. This film consisted of randomly oriented PLA nanofibers. Consequently, it had sponge-like structure and was quite soft compared to PLA films prepared by spin coating. The average diameter of the fibers and the density of the film were 730 nm and 20%, respectively. By applying a voltage, the PLA film was subjected to electric-field-induced strain: expansion and compression in the thickness direction. When a voltage of -200 V was applied to the film, its thickness shrank from 13.5 µm to 10.0 µm (a 26% reduction). Electric-field-induced strain can occur via two different mechanisms: The first is electrostrictive behavior. That. is, in a highly electric field region, a change of film thickness occurs (compression only) from the electrostatic force between electrodes. The second mechanism is piezoelectric-like behavior that occurs in racemic PLA, wherein a PLA nanofiber is expanded and compressed by applying positive and negative voltage. Such piezoelectric-like behavior was not observed in spin-coated PLA films.

  17. Electrochemical behaviour of niobium and niobium passive films in nitric acid solutions

    International Nuclear Information System (INIS)

    Electrochemical behaviour of bare niobium and phosphoric acid anodized niobium electrodes is investigated in nitric acid solutions. Electrochemical impedance spectroscopy and polarisation techniques have been used to investigate the open-circuit growth of the passive film. The stability of the anodic oxide film has been studied as a function of the formation voltage, formation current density and concentration of the ambient electrolyte. The results show that the Nb-Nb2O5-1M HNO3 does not behave as a perfect dielectric. The flat band potential and donor concentration of the semiconducting anodic oxide film have been calculated from the Mott-Schottky plots. (author)

  18. Quantification of acidic compounds in complex biomass-derived streams

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Eric M.; Nimlos, Claire T.; Deutch, Steve; Salvachúa, Davinia; Cywar, Robin M.; Beckham, Gregg T.

    2016-01-01

    Biomass-derived streams that contain acidic compounds from the degradation of lignin and polysaccharides (e.g. black liquor, pyrolysis oil, pyrolytic lignin, etc.) are chemically complex solutions prone to instability and degradation during analysis, making quantification of compounds within them challenging. Here we present a robust analytical method to quantify acidic compounds in complex biomass-derived mixtures using ion exchange, sample reconstitution in pyridine and derivatization with BSTFA. The procedure is based on an earlier method originally reported for kraft black liquors and, in this work, is applied to identify and quantify a large slate of acidic compounds in corn stover derived alkaline pretreatment liquor (APL) as a function of pretreatment severity. Analysis of the samples is conducted with GCxGC-TOFMS to achieve good resolution of the components within the complex mixture. The results reveal the dominant low molecular weight components and their concentrations as a function of pretreatment severity. Application of this method is also demonstrated in the context of lignin conversion technologies by applying it to track the microbial conversion of an APL substrate. Here too excellent results are achieved, and the appearance and disappearance of compounds is observed in agreement with the known metabolic pathways of two bacteria, indicating the sample integrity was maintained throughout analysis. Finally, it is shown that this method applies more generally to lignin-rich materials by demonstrating its usefulness in analysis of pyrolysis oil and pyrolytic lignin.

  19. Tracer studies of anodic films formed on aluminium in malonic and oxalic acids

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Vergara, S.J. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)], E-mail: s.garcia-vergara@manchester.ac.uk; Skeldon, P.; Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Habakaki, H. [Graduate School of Engineering, Hokkaido University, N13-W8, Sapporo 060-8628 (Japan)

    2007-12-30

    Using a tungsten-containing layer, incorporated into sputtering-deposited aluminium, as a tracer, the growth of porous anodic films in malonic and oxalic acid electrolytes has been investigated using transmission electron microscopy, Rutherford backscattering spectroscopy and nuclear reaction analysis. Comparisons were also made with films formed in phosphoric acid electrolyte, which have been studied previously. The findings reveal a distortion of the tracer layer within the barrier region of the porous films, evident as a lagging of the tracer beneath the pores relative to that in the adjacent cell wall region. Further, the films are significantly thicker than the layer of metal consumed during anodizing and display smooth-sided pores. The anodizing behaviours are consistent with a major role for field-assisted flow of film material within the barrier layer in the development of the pores.

  20. A study on the performance of hyaluronic acid immobilized chitosan film

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yingjun; Guo Li; Ren Li; Yin Shiheng [Biomaterial Research Institute, College of Material Science and Engineering, South China University of Technology, Guangzhou, 510640 (China); Ge Jian; Gao Qianying [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 (China); Luxbacher, Thomas; Luo Shijing, E-mail: imwangyj@scut.edu.c, E-mail: psliren@scut.edu.c [Anton Paar GmbH, Anton-Paar-Strasse 20, A-8054 Graz (Austria)

    2009-06-15

    In order to improve hydrophilicity and biocompatibility of chitosan, hyaluronic acid was immobilized onto the surface of chitosan film. The structure of films was characterized by Fourier transformed infrared spectroscopy with attenuated total reflectance (ATR-FTIR), x-ray photoelectron spectroscopy (XPS) and zeta potential. Results confirmed that hyaluronic acid was successfully immobilized on chitosan film. Transparency, water absorption percentage and contact angle of films were characterized. Results showed that there was no significant variation in transparency (p < 0.05) before and after immobilization, the maximum was up to 99% which was enough for corneal regeneration in clinical applications. After the immobilization, the time-dependent contact angle declined sharply (from 91.8 deg. to 67.7 deg. at 100 s). The hydrophilicity was significantly improved. The methylthiazol tetrazolium (MTT) (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay was used to assess cell viability and proliferation. Results showed that human cornea epithelial cells (HCEC) grew better on hyaluronic acid immobilized chitosan films than on chitosan films. The hyaluronic acid immobilized chitosan film could be a promising candidate material for corneal regeneration.

  1. Effect of acid and alkaline solubilization on the properties of surimi based film

    Directory of Open Access Journals (Sweden)

    Thummanoon Prodpran

    2005-05-01

    Full Text Available The effect of acid and alkaline solubilizing processes on the properties of the protein based film from threadfin bream surimi was investigated. Surimi films prepared from both processes had the similar light transmission, tensile strength (TS and elongation at break (EAB (P<0.05. However, film with alkaline process had slightly lower water vapor permeability (WVP, compared to that prepared by acid solubilizing process. The protein concentration in the film-forming solution directly affected the properties of the film. Increase in protein concentration resulted in an increase in TS, EAB as well as WVP. The film prepared by acid solubilizing process had an increase in yellowish color as evidenced by the continuous increase in b* and E* values during the storage at r oom temperature. The acid and alkali solubilizing processes caused the degradation of muscle protein in surimi, especially with increasing exposure time. Therefore, solubilizing process had the influence on the properties of the protein film from threadfin bream surimi.

  2. Characterization of titanium thin films anodically grown in phosphoric acid; Caracterisation des films d'oxyde de titane obtenus anodiquement dans l'acide phosphorique

    Energy Technology Data Exchange (ETDEWEB)

    Khadiri, M.E.; Benyaich [Faculte des Sciences Semlalia, Lab. d' Electrochimie et Chimie Analytique, Marakech (Morocco); Oueriagli, A.; Outzourhit, A.; Ameziane, E.L. [Faculte des Sciences Semlalia, Lab. de Physique du Solide et des Couches Minces, Marakech (Morocco)

    2004-08-01

    Ti-Cu(2%) alloy was anodized in a 5 M phosphoric acid solution under various voltages ranging from 10 to 35 V. The composition, the structural and optical properties of the as-grown oxide films were studied. It was found that the color of the anodized substrates varied from yellow to blue depending on the anodizing voltage. The films formed on the alloy are amorphous and the oxidation state of Ti on their surface is mainly +4. On the other hand it was found that the thickness of the films increases linearly with anodization voltage at rate of 1.94 nm/V, while the refractive index at the wavelength corresponding to the reflectance minimum was practically constant. These films were also found to have excellent protective properties for the examined alloy. (authors)

  3. The structure study of boron carbonitride films obtained by use of trimethylamine borane complex

    CERN Document Server

    Kosinova, M L; Fainer, N I; Maximovski, E A; Kuznetsov, F A

    2001-01-01

    Diffraction of synchrotron radiation (SR) was used to investigate crystalline structure and phase composition of thin films (1500-5000 A) of boron carbonitride. These films were synthesized by plasma-enhanced chemical vapor deposition using nontraditional volatile single source precursor trimethylamine borane complex (CH sub 3) sub 3 N centre dot BH sub 3 and its mixture with ammonia. The effect of the gas ratio and substrate temperature on chemical and phase composition as well as the structure of the films were investigated. The XRD peculiarities of texture films and ways of increasing sensibility of measurements were considered. A possibility of the information density rise of the thin film XRD was shown due to application of different methods for recording diffraction patterns.

  4. Crosslinked collagen-gelatin-hyaluronic acid biomimetic film for cornea tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Ren, Li, E-mail: psliren@scut.edu.cn; Wang, Yingjun, E-mail: imwangyj@163.com

    2013-01-01

    Cornea disease may lead to blindness and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents the crosslinked collagen (Col)-gelatin (Gel)-hyaluronic acid (HA) films developed by making use of 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as the crosslinker. The test results on the physical and biological properties indicate that the CGH631 film (the mass ratio of Col:Gel:HA = 6:3:1) has appropriate optical performance, hydrophilicity and mechanical properties. The diffusion properties of the CGH631 film to NaCl and tryptophan are also satisfactory and the measured data are 2.43 Multiplication-Sign 10{sup -6} cm{sup 2}/s and 7.97 Multiplication-Sign 10{sup -7} cm{sup 2}/s, respectively. In addition, cell viability studies demonstrate that the CGH631 film has good biocompatibility, on which human corneal epithelial cells attached and proliferated well. This biocompatible film may have potential use in cornea tissue engineering. - Highlights: Black-Right-Pointing-Pointer Crosslinked collagen-gelatin-hyaluronic acid films were fabricated in this study. Black-Right-Pointing-Pointer The film had appropriate physical properties. Black-Right-Pointing-Pointer Diffusion coefficient of the film was comparable with the human cornea. Black-Right-Pointing-Pointer HCEC viability studies confirmed the biocompatibility of the film.

  5. Thermally driven stability of octadecylphosphonic acid thin films grown on SS316L.

    Science.gov (United States)

    Lim, Min Soo; Smiley, Katelyn J; Gawalt, Ellen S

    2010-01-01

    Stainless steel 316L is widely used as a biomedical implant material; however, there is concern about the corrosion of metallic implants in the physiological environment. The corrosion process can cause mechanical failure due to resulting cracks and cavities in the implant. Alkyl phosphonic acid forms a thin film by self-assembly on the stainless steel surface and this report conclusively shows that thermal treatment of the octadecylphosphonic acid (ODPA) film greatly enhances the stability of the ODPA molecules on the substrate surface. AFM images taken from the modified substrates revealed that thermally treated films remain intact after methanol, THF, and water flushes, whereas untreated films suffer substantial loss. Water contact angles also show that the hydrophobicity of thermally treated films does not diminish after being incubated in a dynamic flow of water for a 3-hour period, whereas the untreated film becomes increasingly hydrophilic due to loss of ODPA. IR spectra taken of both treated and untreated films after water and THF flushes show that the remaining film retains its initial crystallinity. A model is suggested to explain the stability of ODPA film enhanced by thermal treatment. An ODPA molecule is physisorbed to the surface weakly by hydrogen bonding. Heating drives away water molecules leading to the formation of strong monodentate or mixed mono/bi-dentate bonds of ODPA molecule to the surface. PMID:20648546

  6. Aggregation properties of tetrachloroperylene-tetracarboxylic acid in binary Langmuir and Langmuir–Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Modlińska, Anna; Piosik, Emilia [Faculty of Technical Physics, Poznan University of Technology, Poznan (Poland); Paluszkiewicz, Joanna [Institute of Polymers and Dyes Technology, Lodz University of Technology, Lodz (Poland); Martyński, Tomasz, E-mail: tomasz.martynski@put.poznan.pl [Faculty of Technical Physics, Poznan University of Technology, Poznan (Poland)

    2014-04-15

    The Langmuir and Langmuir–Blodgett films formed of tetra-n-butyl-1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxylate and its binary mixtures with 4-octyl-4′-cyanobiphenyl and arachidic acid have been studied. The Langmuir films were characterized by surface pressure versus mean molecular area isotherms and the films morphology observations were made by means of a Brewster angle microscope. The miscibility of the compounds was determined. Subsequently, the Langmuir films were transferred onto hydrophilic quartz substrates forming the monolayer Langmuir–Blodgett films. The electronic absorption and fluorescence spectra reveal aggregation of the chromophores in ground state driven by π–π molecular orbitals interactions. Perylene-like dye aggregation depends upon the dye concentration in the dye/liquid crystal mixed films and is concentration-independent in dye/arachidic acid one. -- Highlights: • A new perylene derivative with four chlorine atoms in the core was synthetized. • Langmuir films of pure dye and its binary mixtures were studied thermodynamically. • The miscibility of the components in the films changes the π–π stacking of the dye. • We describe the dye aggregation in the pure and mixed films deposited onto quartz.

  7. Larger red-shift in optical emissions obtained from the thin films of globular proteins (BSA, lysozyme) - polyelectrolyte (PAA) complexes

    Science.gov (United States)

    Talukdar, Hrishikesh; Kundu, Sarathi; Basu, Saibal

    2016-09-01

    Globular proteins (lysozyme and BSA) and polyelectrolyte (sodium polyacrylic acid) are used to form protein-polyelectrolyte complexes (PPC). Out-of-plane structures of ≈30-60 nm thick PPC films and their surface morphologies have been studied by using X-ray reflectivity and atomic force microscopy, whereas optical behaviors of PPC and protein conformations have been studied by using UV-vis, photoluminescence and FTIR spectroscopy respectively. Our study reveals that thin films of PPC show a larger red-shift of 23 and 16 nm in the optical emissions in comparison to that of pure protein whereas bulk PPC show a small blue-shift of ≈3 nm. A small amount of peak-shift is found to occur due to the heat treatment or concentration variation of the polyelectrolyte/protein in bulk solution but cannot produce such film thickness independent larger red-shift. Position of the emission peak remains nearly unchanged with the film thickness. Mechanism for such larger red-shift has been proposed.

  8. Citric acid as multifunctional agent in blowing films of starch/PBAT

    Directory of Open Access Journals (Sweden)

    Patrícia Salomão Garcia

    2011-09-01

    Full Text Available Citric acid was used as a compatibilizer in the production of starch and PBAT films plasticized with glycerol and processed by blow extrusion. Films produced were characterized by WVP, mechanical properties, FT-IR-ATR and SEM. WPV ranged from 3.71 to 12.73×10-11 g m-1 s-1 Pa-1, while tensile strength and elongation at break ranged from 1.81 to 7.15 MPa and from 8.61 to 23.63%, respectively. Increasing the citric acid concentration improved WVP and slightly decreased film resistance and elongation. The films micrographs revealed a more homogeneous material with the addition of citric acid. However, the infrared spectra revealed little about cross-linking esterification reaction

  9. Self-assembled monolayer and multilayer formation using redox-active Ru complex with phosphonic acids on silicon oxide surface

    International Nuclear Information System (INIS)

    The formation of self-assembled monolayer and multilayer using redox-active Ru complex molecules with phosphonic acids on SiO2 surface has been examined using X-ray photoelectron spectroscopy (XPS), ellipsometry, and time of flight secondary mass-ion spectroscopy (TOF-SIMS). We found that an introduction of a Zr adlayer leads to higher surface molecular density of Ru complex SAMs on the SiO2 surface, compared to that of obtained from the direct adsorption of Ru complex monolayer on the SiO2 surface. We further tried to fabricate a multilayer film using this molecule with Zr(IV) ion acting as a chemical glue by a successive immersion process. The XPS data revealed that the molecular densities of the multilayers were also higher for the immobilization with Zr adlayer between Ru complex and SiO2 surface than those without the Zr adlayer, suggesting that Zr adlayer is effective in forming highly packed molecular layer of phosphonic acids on SiO2 surface. We found the film growth reached a saturation point after 6 layers on the SiO2 surface. The film growth saturation can be explained by a molecular domain boundary effect encountered due to the large tilt angle of the molecular layer.

  10. Fear conditioning with film clips: a complex associative learning paradigm

    NARCIS (Netherlands)

    A.E. Kunze; A. Arntz; M. Kindt

    2014-01-01

    Background and objectives: We argue that the stimuli used in traditional fear conditioning paradigms are too simple to model the learning and unlearning of complex fear memories. We therefore developed and tested an adapted fear conditioning paradigm, specifically designed for the study of complex a

  11. Glass Difractive Optical Elements (DOEs with complex modulation DLC thin film coated

    Directory of Open Access Journals (Sweden)

    Marina Sparvoli

    2008-09-01

    Full Text Available We developed a complex (amplitude and phase modulation Diffractive Optical Element (DOE with four phase levels, which is based in a glass substrate coated with DLC (Diamond Like Carbon thin film as the amplitude modulator. The DLC film was deposited by magnetron reactive sputtering with a graphite target and methane gas in an optical glass surface. The glass and DLC film roughness were measured using non destructive methods, such as a high step meter, Atomic Force Microscopy and Diffuse Reflectance. Other properties, such as refractive index of both materials were measured. The DOEs were tested using 632.8 nm HeNe laser.

  12. CVD of pure copper films from novel iso-ureate complexes.

    Science.gov (United States)

    Willcocks, Alexander M; Pugh, Thomas; Hamilton, Jeff A; Johnson, Andrew L; Richards, Stephen P; Kingsley, Andrew J

    2013-04-21

    We report the synthesis and characterisation of a new family of copper(i) metal precursors based around alkoxy-N,N'-di-alkyl-ureate ligands, and their subsequent application in the production of pure copper thin films. The molecular structure of the complexes bis-copper(i)(methoxy-N,N'-di-isopropylureate) (1) and bis-copper(i)(methoxy-N,N'-di-cyclohexylureate)(5) are described, as determined by single crystal X-ray diffraction analysis. Thermogravimetric analysis of the complexes highlighted complex 1 as a possible copper CVD precursor. Low pressure chemical vapour deposition (LP-CVD) was employed using precursor 1, to synthesise thin films of metallic copper on ruthenium substrates under an atmosphere of hydrogen (H2). Analysis of the thin films deposited at substrate temperatures of 225 °C, 250 °C and 300 °C, respectively, by SEM and AFM reveal the films to be continuous and pin hole free, and show the presence of temperature dependent growth features on the surface of the thin films. Energy dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (PXRD) and X-ray photoelectron spectroscopy (XPS) all show the films to be high purity metallic copper. PMID:23425976

  13. Characterization of perivascular poly(lactic-co-glycolic acid) films containing paclitaxel.

    Science.gov (United States)

    Jackson, John K; Smith, Janet; Letchford, Kevin; Babiuk, Kelly Anne; Machan, Lindsay; Signore, Pierre; Hunter, William L; Wang, Kaiyue; Burt, Helen M

    2004-09-28

    The objectives of this study were to investigate the use of poly(lactic-co-glycolic acid) (PLGA) for the formulation of paclitaxel loaded films and to characterize these films for potential application as perivascular "wraps" to prevent restenosis. Films were manufactured from PLGA blended with either methoxypolyethylene glycol (MePEG) or a diblock copolymer composed of poly(D,L-lactic acid)-block-methoxypolyethylene glycol, PDLLA-MePEG (diblock) by solvent evaporation on teflon discs. Elasticity was determined by gravimetric stress/strain analysis. Thermal analysis was determined using differential scanning calorimetry (DSC). Changes in film composition and degradation in aqueous media were determined using gel permeation chromatography (GPC). Paclitaxel release from films was measured by incubation of the films in phosphate buffered saline (PBS) with drug analysis by HPLC methods. The addition of MePEG or diblock to PLGA caused a concentration dependent increase in the elasticity of films, due to plasticizing effects. DSC analysis showed that MePEG and diblock caused a concentration dependent decrease in the glass transition temperature (Tg) of PLGA indicating miscibility of the polymers. When placed in aqueous media, more than 75% of MePEG dissolved out of the PLGA films within 2 days, whereas diblock partitioned slowly and in a controlled manner out of the films. Paclitaxel release from PLGA/MePEG films was very slow with less than 5% of the encapsulated drug being released over 2 weeks. The addition of 30% diblock to paclitaxel loaded PLGA films caused a substantial increase (five- to eight-fold) in the release rate of paclitaxel. PLGA films containing 30% diblock and either 1% or 5% paclitaxel were partially or completely degraded following perivascular implantation in rats. PMID:15363506

  14. Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films.

    Science.gov (United States)

    Li, Rui-Yun; Liu, Zhi-Gang; Liu, Huan-Qiu; Chen, Lei; Liu, Jian-Feng; Pan, Yue-Hai

    2015-01-01

    Regeneration and functional recovery of nerves after peripheral nerve injury is the key to peripheral nerve repair. One of the putative therapeutic strategies is to use anti-adhesion polymer films, made of polymeric biomaterials. Recently, a novel biodegradable poly (DL-lactic acid) (PDLLA) film has been prepared using a method of phase transformation with biodegradable polylactic acid polymer as the substrate. This novel, anti-adhesion film has a porous structure, which provides better mechanical properties, better flexibility, more complete diffusion through the polymer of tissue biologic factors like growth factors, and more controllable degradation compared to traditional non-porous films. Little is known, however, about the in vitro and in vivo biocompatibility and cytotoxicity of this type of PDLLA film. Therefore, our aim was to evaluate the biocompatibility and cytotoxicity of this novel PDLLA film using various experimental methods, including a skin irritation test, MTT analysis, and the mouse bone marrow cell micronucleus test, as well as hematology or clinical chemistry measurements in rats after receiving sciatic nerve transection and anastomosis with wrapping of the anastomosis with DLLA films. We demonstrated that exposure to PDLLA film extracts did not generate apparent erythema or edema in rabbit skin and had no effect on the proliferation of Vero cells. Additionally, treatment with PDLLA film extracts did not alter the incidence of micronucleated polychromatic erythrocytes as compared with saline Treated group. Furthermore, implantation of PDLLA film did not alter liver or renal function as measured by serum levels of ALT, AST, TP, A/G, Cr, and BUN, and pathologic examinations showed that implantation of PDLLA film did not cause pathologic changes to the rat liver, kidney, pancreas, or spleen. Taken together, these results suggest that PDLLA films have excellent biocompatibility and no obvious toxicity in vivo, and may be used to prevent nerve

  15. Dynamics of the layer-by-layer assembly of a poly(acrylic acid)-lanthanide complex colloid and poly(diallyldimethyl ammonium).

    Science.gov (United States)

    Xu, Jiali; Wang, Zhiliang; Wen, Lingang; Zhou, Xianju; Xu, Jian; Yang, Shuguang

    2016-01-21

    Poly(acrylic acid) (PAA) and lanthanide (Ln) ions, such as Ce(3+), Eu(3+), and Tb(3+), were prepared as dispersed complex colloidal particles through three different protocols with rigorous control of the pH value and mixing ratio. The negatively charged PAA-Ln complex particles were layer-by-layer (LbL) assembled with positively charged poly(diallyldimethyl ammonium) (PDDA) to prepare a thin film. The film thickness growth is much quicker than PDDA/PAA film. Due to the incorporation of Ln(3+) ions, the film exhibits fluorescence. During LbL assembly, PDDA-PAA association based on electrostatic force and PAA-Ce association based on coordination are in competition, which leads to the LbL assembly of PDDA and PAA-Ln complex colloidal particles being a complicated dynamic process. PMID:26549538

  16. Multilayered Thin Films from Boronic Acid-Functional Poly(amido amine)s

    NARCIS (Netherlands)

    Hujaya, S.D.; Engbersen, J.F.J.; Paulusse, J.M.J.

    2015-01-01

    Purpose To investigate the properties of phenylboronic acid-functional poly(amido amine) polymers (BA-PAA) in forming multilayered thin films with poly(vinyl alcohol) (PVA) and chondroitin sulfate (ChS), and to evaluate their compatibility with COS-7 cells. Methods Copolymers of phenylboronic acid-

  17. Synthesis of cadmium sulphide in pure and mixed Langmuir-Blodgett films of -octadecylsuccinic acid

    Indian Academy of Sciences (India)

    G Hemakanthi; Balachandran Unni Nair; Aruna Dhathathreyan

    2000-04-01

    Cadmium sulphide (CdS) nanoparticles were grown by the reaction of sodium sulphide (Na2S) with Langmuir-Blodgett (LB) films of cadmium salts of -octadecylsuccinic acid (ODSU) and with LB films of ODSU in mixtures of octadecylamine and octadecyl alcohol. The results indicate that heterogeneous nucleation and aggregation in the pure ODSU LB films due to processes like Ostwald ripening are destabilized by the presence of the long-chain amine and alcohol in mixed systems. CdS nanoparticles in the LB films were monitored by UV-visible absorption spectra, which allow an estimation of the size of the particles. The morphology, size and nature of the nanocrystallites formed depend on whether the sulphidation was done on the pure film or in the mixed films. It is seen that particles of size around 1.6 nm were formed in ODSU/octadecylalcohol and ODSU/octadecylamine mixed LB films while in pure ODSU films the size was about 2.7 nm. These films showed typical needle-shaped structures, as observed by the optical microscopic technique. Mean size and morphology were confirmed by transmission and scanning electron microscopy, while selective area electron diffraction patterns showed six-fold symmetry and indicated that the CdS crystals grow epitaxially with respect to the monolayer. Further, the crystallisation enhanced in the mixed LB films showed a characteristic zinc oxide (Wurtzite) structure compared with the pure ODSU matrix.

  18. Electrical properties of biodegradable poly(ε-caprolactone): lithium thiocyanate complexed polymer electrolyte films

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The minimum Tm and χc values are observed in 15 wt% LiSCN complexed film. • The conductivity of PCL:LiSCN complexed films follows Johnscher's power law. • Conductivity and dielectric constant follows the same trend. • The charge carriers responsible for both conduction and relaxation are the same. - Abstract: Lithium ion conducting polymer electrolyte films based on biodegradable poly(ε-caprolactone) (PCL) complexed with lithium thiocyanate (LiSCN) salt were prepared by solution cast technique. Thermal and electrical properties of the polymer electrolyte films were studied using differential scanning calorimetry (DSC) and ac impedance spectroscopy. In order to investigate the ion conduction mechanism and relaxation behavior of complex polymer electrolyte films, the conductivity, dielectric constant, loss tangent and electric modulus were analyzed as a function of frequency and temperature. The variation of conductivity with frequency obeyed the Johnscher's power law. The dielectric constant exhibited a higher value at a lower frequency and increased with rising temperature due to the polar nature of host polymer. The activation energies for both dc conductivity and relaxation had the same value (∼0.87 eV), implying that the charge carriers responsible for both conduction and relaxation were the same

  19. Fabrication of superhydrophobic surface of hierarchical ZnO thin films by using stearic acid

    Science.gov (United States)

    Wang, Yanfen; Li, Benxia; Xu, Chuyang

    2012-01-01

    Flower-like hierarchical ZnO microspheres were successfully synthesized by a simple, template-free, and low-temperature aqueous solution route. The morphology and microstructure of the ZnO microspheres were examined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The bionic films with hydrophobicity were fabricated by the hierarchical ZnO microspheres modified by stearic acid. It was found that the hydrophobicity of the thin films was very sensitive to the added amount of stearic acid. The thin films modified with 8% stearic acid took on strong superhydrophobicity with a water contact angle (CA) almost to be 178° and weak adhersion. The remarkable superhydrophobicity could be attributed to the synergistic effect of micro/nano hierarchical structure of ZnO and low surface energy of stearic acid.

  20. Cataluminescence sensor for gaseous acetic acid using a thin film of In2O3

    International Nuclear Information System (INIS)

    We report on a cataluminescence sensor for the determination of gaseous acetic acid. It is based on a 60-nm thick sol-gel film of In2O3 on a ceramic support. SEM, XPS and surface profiling were applied for its characterization. It is found that aluminum ions of the ceramic substrate penetrate into the film and produce a synergetic catalytic effect. The sensor displays high sensitivity and specificity for acetic acid, a low detection limit, a wide linear range and a fast response. No (or only very low) interference was observed by formic acid, ammonia, acrolein, benzene, formaldehyde, ethanol, and acetaldehyde. The sensor was successfully applied to the determination of acetic acid in spiked air samples. We also discuss a conceivable mechanism (based on the reaction products) for the cataluminescence resulting from the oxidation reaction on the surface of the sensor film. (author)

  1. Graft Polymerization of Acrylic Acid and Acrylamide onto BOPET Corona Films

    Institute of Scientific and Technical Information of China (English)

    SUN Jie; TIAN Hua-yu; BAI Yong-ping

    2004-01-01

    The graft polymerization of acrylic acid ( A ) and acrylamide (B) was carried out onto bi- ori ented polyester BOPET corona film. The influence of monomer concentration, reducer concentration and reaction time on the graft polymerization was investigated. The surface tension of the films increased with an increase of monomer concentration, till the concentration of monomer A reached 1.5 × 10-2 g/mL and the concentration of monomer B reached 4.0× 10-2 g/ mL. The surface tension of the films reached a maximum value at 7 × 10 4 M of reducer concentration and subsequently decreased with further increase in reducer concentration. The surface tension of the films increased with the increase of the reaction time apparently within 50min. The grafted corona BO PET films were characterized with IR and XPS. The presence of graft on the film surface was confirmed. The atten uation experiments on grafted corona BOPET films in air at 50℃ and in water were carried out to investigate the persistence of graft polymerization of acrylic acid and arylamide onto BOPET corona films.

  2. Ibuprofen-loaded poly(lactic-co-glycolic acid films for controlled drug release

    Directory of Open Access Journals (Sweden)

    Pang JM

    2011-04-01

    Full Text Available Jianmei Pang1, Yuxia Luan1, Feifei Li1, Xiaoqing Cai1, Jimin Du2, Zhonghao Li31School of Pharmaceutical Science, Shandong University, Jinan, Shandong Province, PR China; 2School of Chemistry and Chemical Engineering, Anyang Normal University, Henan Province, PR China; 3School of Materials Science and Engineering, Shandong University, Jinan, Shandong Province, PR ChinaAbstract: Ibuprofen- (IBU loaded biocompatible poly(lactic-co-glycolic acid (PLGA films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.Keywords: ibuprofen, controlled release, poly(lactic-co-glycolic acid, films

  3. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)

    Science.gov (United States)

    Zhao, Hang; Lu, Yinxiang

    2016-01-01

    Nickel films were grown on citric acid (CA), malic acid (MA) and oxalic acid (OA) modified cuprammonium fabric (CF) substrates via electroless nickel deposition. The nickel films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and electromagnetic interference (EMI) shielding effectiveness (SE) were also investigated to compare the properties of electroless nickel films. SEM images illustrated that the nickel film on MA modified CF substrate was smooth and uniform, and the density of nickel nuclei was much higher. Compared with that of CA modified CF, the coverage of nickel nuclei on OA and MA modified CF substrate was very limited and the nickel particles size was too big. XRD analysis showed that the nickel films deposited on the different modified CF substrates had a structure with Ni (1 1 1) preferred orientation. All the nickel coatings via different acid modification were firmly adhered to the CF substrates, as demonstrated by an ultrasonic washing test. The result of tensile test indicated that the electroless nickel plating on CF has ability to strengthen the CF substrate while causes limited effect on tensile elongation. Moreover, the nickel film deposited on MA modified CF substrate showed more predominant in EMI SE than that deposited on CA or OA modified CF.

  4. Complexes of carborane acids linked by strong hydrogen bonds: acidity scales.

    Science.gov (United States)

    Grabowski, Sławomir J

    2016-06-28

    Carborane acids, currently known as the strongest acis, are analyzed and compared with other species classified as superacids as well as with selected mineral acids and carbocations. Calculations (B3LYP/6-311++G(d,p) level) on these moieties as well as on their conjugate bases were performed to evaluate corresponding proton affinities. In addition, the complexes of these species with the CHB11F11(-) anion and the complexes of the conjugate bases with the trimethylammonium cation were analyzed. The scales, based on spectroscopic results, DFT energies and on the topological QTAIM (Quantum Theory of Atoms in Molecules) parameters, are introduced and discussed to order the acidity of the species analyzed here. The properties of the bond critical points corresponding to the intermolecular contacts are discussed. The majority of the results show that HCHB11F11 carborane acid is the strongest in agreement with the previous experimental studies of Reed and coworkers. Very often the abovementioned acidity scales show that carborane acids are able to protonate hydrocarbons. PMID:27253195

  5. Spectrophotometric study of lanthanoid complexes with antipyrine and salicylic acid

    International Nuclear Information System (INIS)

    The extraction-spectrophotometric method has been used to study lanthanoid ion complexing (Pr, Nd, Ho and Er) with antipyrine (Ant) and salicylic acid (Sal). The component relationship in different-ligand compounds Ln:Aut:Sal=2:3:6 and solvate number equal to 5 are determined; molar extinction coefficients of binary and different-ligand compounds are calculated. Oscillator strengths of absorption bands corresponding to supersensitive transitions of neodymium, holmium, erbium and some most intensive praseodymium bands are calculated. The study of IR spectra of investigated compounds allows to conclude on formation of coordination bonds of the central atom with the antipyrine molecule through the oxygen of the carbonyl group as well as on carboxyl group hydrogen substitution for metal and formation of coordination bond with OH group in salicylic acid molecules

  6. Injectable hydrogels derived from phosphorylated alginic acid calcium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Sem; Song, Minsoo, E-mail: minsoosong00@gmail.com; Lee, Eun-Jung; Shin, Ueon Sang, E-mail: usshin12@dankook.ac.kr

    2015-06-01

    Phosphorylation of sodium alginate salt (NaAlg) was carried out using H{sub 3}PO{sub 4}/P{sub 2}O{sub 5}/Et{sub 3}PO{sub 4} followed by acid–base reaction with Ca(OAc){sub 2} to give phosphorylated alginic acid calcium complexes (CaPAlg), as a water dispersible alginic acid derivative. The modified alginate derivatives including phosphorylated alginic acid (PAlg) and CaPAlg were characterized by nuclear magnetic resonance spectroscopy for {sup 1}H, and {sup 31}P nuclei, high resolution inductively coupled plasma optical emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. CaPAlg hydrogels were prepared simply by mixing CaPAlg solution (2 w/v%) with NaAlg solution (2 w/v%) in various ratios (2:8, 4:6, 6:4, 8:2) of volume. No additional calcium salts such as CaSO{sub 4} or CaCl{sub 2} were added externally. The gelation was completed within about 3–40 min indicating a high potential of hydrogel delivery by injection in vivo. Their mechanical properties were tested to be ≤ 6.7 kPa for compressive strength at break and about 8.4 kPa/mm for elastic modulus. SEM analysis of the CaPAlg hydrogels showed highly porous morphology with interconnected pores of width in the range of 100–800 μm. Cell culture results showed that the injectable hydrogels exhibited comparable properties to the pure alginate hydrogel in terms of cytotoxicity and 3D encapsulation of cells for a short time period. The developed injectable hydrogels showed suitable physicochemical and mechanical properties for injection in vivo, and could therefore be beneficial for the field of soft tissue engineering. - Highlights: • Preparation of water-soluble alginic acid complexes with calcium phosphate • Self-assembly of the phosphorylated alginic acid calcium complexes with sodium alginate • Preparation of injectable hydrogels with diverse gelation times within about 3–40 min.

  7. Formation and characterization of thioglycolic acid-silver cluster complexes.

    Science.gov (United States)

    Bellina, Bruno; Antoine, Rodolphe; Broyer, Michel; Gell, Lars; Sanader, Željka; Mitrić, Roland; Bonačić-Koutecký, Vlasta; Dugourd, Philippe

    2013-06-21

    Gas phase reactivity observed in an ion trap was used to produce silver clusters protected with thioglycolic acid. Fragmentation pathways as well as optical properties were explored experimentally and theoretically. Sequential losses of SCH2 and CO2 in the ion trap lead to redox reactions with charge transfers between the metal part and the carboxylate and thiolate groups. This allows us to control the number of electrons in the metallic subunit and thus optical properties of the complexes. The presented formation process can be used as a prototype for tuning optical and chemical properties of ligated metal clusters by varying the number of confined electrons within the metallic subunit.

  8. Electrical Transport in Nanoscale Complex Oxide Thin Films: Strontium titanate and RNiO3

    Science.gov (United States)

    Son, Junwoo

    Complex oxide thin films have attracted significant attention due to a wealth of physical phenomena, such as ferroelectricity and Mott transitions arising from strong interactions in d-bands. Moreover, the physical phenomena observed in these materials exhibit sensitivities, which are not found in conventional semiconductors and give rise to abrupt changes in their physical properties. The richness of electronic phases and unique functionalities of complex oxides are attractive for applications in next-generation electronic devices. To realize new electronic devices with complex oxides, it is essential to understand the mechanisms of the electrical transport and to control the transport properties of complex oxide thin films. In this dissertation, electrical transport phenomena and their electrical control are experimentally studied in two different complex oxide thin film systems, exhibiting resistive switching and Mott metal-insulator transitions. The first part will briefly discuss resistive switching in ultrathin SrTiO3 tunnel junctions in metal-insulator-metal (MIM) geometry. The current-voltage characteristics provide hints of the origin of the resistive switching phenomena in SrTiO3 tunnel barriers, which are also relevant for resistive switching in thicker films. The second part focuses on the control of metal-insulator transitions in RNiO3, where R = trivalent rare earth ion, using different strategies: band-width control and band-filling control. The electrical transport in low-dimensional, strongly correlated LaNiO3 is explored in terms of band-width control by strain and dimensionality. A new concept of band-filling control in nanoscale NdNiO3 thin films by modulation doping is discussed, and the experimental charge injection from high-quality La-doped SrTiO3 into NdNiO3 thin films is experimentally studied. The potential and limitations of a Modulation-doped Mott Field Effect Transistor (MM-FET) for future "Mott" electronic devices is discussed.

  9. Application of Lemongrass Oil-Containing Polylactic Acid Films to the Packaging of Pork Sausages

    Science.gov (United States)

    2016-01-01

    Polylactic acid (PLA) is a biodegradable and renewable polymer, which represents a valuable alternative to plastic packaging films, often associated with environmental problems. In this study, we tested the suitability of PLA as a biodegradable packaging film and assessed the antimicrobial activity of lemongrass oil (LO), incorporated into the PLA film in different concentrations. To obtain the optimal physical properties for PLA films, tensile strength, elongation at break, and water vapor permeability were measured under different preparation conditions. In addition, the antimicrobial activity of the LO contained in the PLA film against Listeria monocytogenes was investigated by disc diffusion and viable cell count. Among all concentrations tested, 2% LO was the most suitable in terms of antimicrobial activity and physical properties of the PLA film. Based on these results, we used the PLA film containing 2% LO to pack pork sausages; after 12 d of storage at 4℃, the population of inoculated L. monocytogenes in the sausage samples wrapped with the PLA film containing 2% LO was reduced by 1.47 Log CFU/g compared with the control samples. Our data indicate that PLA films containing 2% LO represent a valuable means for antimicrobial sausage packaging. PMID:27433114

  10. Storage stability of ascorbic acid incorporated in edible whey protein films.

    Science.gov (United States)

    Janjarasskul, Theeranun; Min, Sea C; Krochta, John M

    2011-12-14

    The stability of ascorbic acid (AA) incorporated in whey protein isolate (WPI) film and the related color changes during storage were studied. No significant loss of AA content was found in any films prepared from pH 2.0 casting solution stored at 30% relative humidity (RH) and 22 °C over 84 days. Total visible color difference (ΔE*(ab)) of all films slowly increased over storage time. The ΔE*(ab) values of pH 3.5 films were significantly higher than those of pH 2.0 films. The stability of AA-WPI films was found to be mainly affected by the pH of the film-forming solution and storage temperature. Oxidative degradation of AA-WPI films followed Arrhenius behavior. Reduction of the casting solution pH to below the pK(a1) (4.04 at 25 °C) of AA effectively maintained AA-WPI storage stability by greatly reducing oxidative degradation, whereas anaerobic and nonenzymatic browning were insignificant. The half-life of pH 2.0 AA-WPI film at 30% RH and 22 °C was 520 days.

  11. Application of Lemongrass Oil-Containing Polylactic Acid Films to the Packaging of Pork Sausages.

    Science.gov (United States)

    Yang, Hyun-Ju; Song, Kyung Bin

    2016-01-01

    Polylactic acid (PLA) is a biodegradable and renewable polymer, which represents a valuable alternative to plastic packaging films, often associated with environmental problems. In this study, we tested the suitability of PLA as a biodegradable packaging film and assessed the antimicrobial activity of lemongrass oil (LO), incorporated into the PLA film in different concentrations. To obtain the optimal physical properties for PLA films, tensile strength, elongation at break, and water vapor permeability were measured under different preparation conditions. In addition, the antimicrobial activity of the LO contained in the PLA film against Listeria monocytogenes was investigated by disc diffusion and viable cell count. Among all concentrations tested, 2% LO was the most suitable in terms of antimicrobial activity and physical properties of the PLA film. Based on these results, we used the PLA film containing 2% LO to pack pork sausages; after 12 d of storage at 4℃, the population of inoculated L. monocytogenes in the sausage samples wrapped with the PLA film containing 2% LO was reduced by 1.47 Log CFU/g compared with the control samples. Our data indicate that PLA films containing 2% LO represent a valuable means for antimicrobial sausage packaging.

  12. Application of Lemongrass Oil-Containing Polylactic Acid Films to the Packaging of Pork Sausages.

    Science.gov (United States)

    Yang, Hyun-Ju; Song, Kyung Bin

    2016-01-01

    Polylactic acid (PLA) is a biodegradable and renewable polymer, which represents a valuable alternative to plastic packaging films, often associated with environmental problems. In this study, we tested the suitability of PLA as a biodegradable packaging film and assessed the antimicrobial activity of lemongrass oil (LO), incorporated into the PLA film in different concentrations. To obtain the optimal physical properties for PLA films, tensile strength, elongation at break, and water vapor permeability were measured under different preparation conditions. In addition, the antimicrobial activity of the LO contained in the PLA film against Listeria monocytogenes was investigated by disc diffusion and viable cell count. Among all concentrations tested, 2% LO was the most suitable in terms of antimicrobial activity and physical properties of the PLA film. Based on these results, we used the PLA film containing 2% LO to pack pork sausages; after 12 d of storage at 4℃, the population of inoculated L. monocytogenes in the sausage samples wrapped with the PLA film containing 2% LO was reduced by 1.47 Log CFU/g compared with the control samples. Our data indicate that PLA films containing 2% LO represent a valuable means for antimicrobial sausage packaging. PMID:27433114

  13. Photoluminescent behavior of heat-treated porous alumina films formed in malonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Vrublevsky, I., E-mail: vrublevsky@bsuir.edu.by [Department of Micro and Nanoelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka str, Minsk 220013 (Belarus); Jagminas, A. [Institute of Chemistry, A.Gostauto 9, LT-01108 Vilnius (Lithuania); Hemeltjen, S.; Goedel, W.A. [Institut fuer Chemie, Technische Universitaet Chemnitz, D-09107 (Germany)

    2010-01-15

    In the present work IR spectroscopy, electron probe microanalysis (EPMA) and photoluminescence (PL) spectral measurements were applied to study the effect of treatment temperature (T) on compositional and luminescent properties of malonic acid alumina films. Our studies have shown that the heat treatment of anodic alumina films at investigated temperatures from 100 up to 700 deg. C changes their photoluminescence spectra considerably. An increase in T results in the PL intensity growth. When reaching its maximum at 600 deg. C the luminescence intensity then decreases drastically with further T growth. The films heat-treated at 500 and 600 deg. C demonstrate asymmetrical PL band with Gaussian peaks at 437 and 502 nm. We proved that the malonic acid species incorporated into the alumina bulk during the film formation are responsible for photoluminescence band with its peak at 437 nm.

  14. Highly Sensitive Bisphenol-A Electrochemical Aptasensor Based on Poly(Pyrrole-Nitrilotriacetic Acid)-Aptamer Film.

    Science.gov (United States)

    Kazane, Imen; Gorgy, Karine; Gondran, Chantal; Spinelli, Nicolas; Zazoua, Ali; Defrancq, E; Cosnier, Serge

    2016-07-19

    An electrochemical highly sensitive aptasensor was developed based on electropolymerized poly(pyrrole-nitrilotriacetic) acid film and a new aptamer functionalized by a pentahistidine peptide for the quantification of bisphenol A. A surface coverage of antibisphenol A aptamer of 1.84 × 10(-10) mol cm(-2) was estimated from the electrochemical signal of the [Ru(III)(NH3)6](3+) complex bound by electrostatic interactions onto the aptamer-modified electrode. The binding of bisphenol A onto the polymer film was successfully characterized by electrochemical methods as square wave voltammetry and electrochemical impedance spectroscopy measurements. The designed label-free impedimetric aptasensor displayed a wide linear range from 10(-11) to 10(-6) mol L(-1) with a sensitivity of 372 Ω per unit of log of concentration and an excellent specificity toward interfering agents such as 4,4'-dihydroxybiphenyl and bisphenol P. PMID:27332710

  15. Platinum thin film anodes for solid acid fuel cells

    OpenAIRE

    Louie, Mary W.; Haile, Sossina M.

    2011-01-01

    Hydrogen electro-oxidation kinetics at the Pt | CsH_2PO_4 interface have been evaluated. Thin films of nanocrystalline platinum 7.5–375 nm thick and 1–19 mm in diameter were sputtered atop polycrystalline discs of the proton-conducting electrolyte, CsH_2PO_4, by shadow-masking. The resulting Pt | CsH_2PO_4 | Pt symmetric cells were studied under uniform H_2-H_2O-Ar atmospheres at temperatures of 225–250 °C using AC impedance spectroscopy. For thick platinum films (>50 nm), electro-oxidation o...

  16. Photophysical characterization of layer-by-layer self-assembled films of deoxyribonucleic acid

    Indian Academy of Sciences (India)

    D Dey; S A Islam; S A Hussain; D Bhattacharjee

    2008-08-01

    This communication reports the photophysical characterization of self-assembled layer-by-layer (LbL) films of DNA (deoxyribonucleic acid) fabricated at different temperatures by electrostatic interaction with a polycation, poly(allylamine hydrochloride). It was observed that there was a successful incorporation of DNA molecules in DNA–PAH LbL films at room temperature as well as after melting temperature. An abrupt increase in intensity was observed in the absorption spectra of the films fabricated at high temperature which is an indication of the immobilization of unzipped DNA after melting of DNA. The films were observed to remain unaffected even after 250 h of film fabrication. The total electrostatic interaction time between DNA and PAH is about 15 min, that is, no PAH binding site is free.

  17. Poly(acrylic acid surface grafted polypropylene films: Near surface and bulk mechanical response

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available Radical photo-grafting polymerization constitutes a promising technique for introducing functional groups onto surfaces of polypropylene films. According to their final use, surface grafting should be done without affecting overall mechanical properties. In this work the tensile drawing, fracture and biaxial impact response of biaxially oriented polypropylene commercial films grafted with poly(acrylic acid (PAA were investigated in terms of film orientation and surface modification. The variations of surface roughness, elastic modulus, hardness and resistance to permanent deformation induced by the chemical treatment were assessed by depth sensing indentation. As a consequence of chemical modification the optical, transport and wettability properties of the films were successfully varied. The introduced chains generated a PAA-grafted layer, which is stiffer and harder than the neat polypropylene surface. Regardless of the surface changes, it was proven that this kind of grafting procedure does not detriment bulk mechanical properties of the PP film.

  18. Electrochromic iridium oxide films: Compatibility with propionic acid, potassium hydroxide, and lithium perchlorate in propylene carbonate

    OpenAIRE

    Wen, Rui-Tao; Niklasson, Gunnar A.; Granqvist, Claes G.

    2013-01-01

    Porous thin films of It oxide were prepared by reactive dc magnetron sputtering onto unheated substrates. The crystallite size was similar to 5 nm, and a small amount of unoxidized Ir was present. The electrochromic performance was studied by optical transmittance measurements and cyclic voltammetry applied to films in aqueous and non-aqueous electrolytes, specifically being 1 M propionic acid, 1 M potassium hydroxide (KOH), and 1 M lithium perchlorate in propylene carbonate (Li-PC). Cyclic v...

  19. Optical properties of the Eu(III)-La(III)-complex-doped polyolefine film and rod samples

    Science.gov (United States)

    Pogreb, Roman; Popov, Oleg; Lirtsman, Vlad; Pyshkin, Oleg; Kazachkov, Alexander; Musin, Albina; Finkelshtein, Binyamin; Shmukler, Yuri; Davidov, Dan; Bormashenko, Edward

    2005-04-01

    The work is devoted to luminescent properties of trivalent lanthanide complexes dispersed in thermoplastic host matrices. Polyethylene-based film and polypropylene-based rod both doped with these complexes were manufactured using an extrusion technique. Two kinds of dopants were used: Eu(III)-thenoyltrifluoroacetone-1,10-phenanthroline complex (Eu(III)) and Eu(III)-La(III)-1,10-phenanthroline complex (Eu(III)-La(III)). Comparison was made between these samples regarding absorption, excitation, emission and a lifetime of luminescence. Dependence of emission intensity on the excitation energy was determined. Emission spectra of the films were studied at room and helium temperatures. Optical properties of Eu(III) samples are different from Eu(III)-La(III) samples. Significant difference in spectra of these two types of samples may be attributed to the La(III) action.

  20. Polyurethane films modified by antithrombin-heparin complex to enhance endothelialization: An original impedimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, S.; Zanina, N. [Biophysic Laboratory, Faculty of Medicine of Monastir, 5019 Monastir (Tunisia) and INSERM U 698 Laboratoire de Bio-Ingenierie de Polymeres Cardiovasculaires, Universite Paris 13, 99, av JB Clement, Institut Galilee, 93430 Villetaneuse (France); Othmane, A. [Biophysic Laboratory, Faculty of Medicine of Monastir, 5019 Monastir (Tunisia); Mora, L., E-mail: Laurence.mora@univ-paris13.fr [INSERM U 698 Laboratoire de Bio-Ingenierie de Polymeres Cardiovasculaires, Universite Paris 13, 99, av JB Clement, Institut Galilee, 93430 Villetaneuse (France)

    2011-08-30

    In this paper, polyurethane (PU) was deposited as a thin layer onto the surface of ITO (indium tin oxide) and was then modified with an antithrombin-heparin complex (ATH). The resulting films were characterized by ATR spectroscopy, contact angle measurements and electrochemical impedance spectroscopy (EIS). Physicochemical characterization confirmed the surface modifications. The obtained films were used as substrates for endothelial cell attachment and growth. These processes were characterized using electrochemical impedance spectroscopy (EIS). We observed that the addition of a small amount of heparin and AT additives onto the polymer surface resulted in a considerable change in the surface characteristics, and we found that PU films that were modified by the ATH complex were able to greatly enhance adhesion and proliferation of endothelial cells (ECs).

  1. Influencing of resorption and side-effects of salicylic acid by complexing with β-cyclodextrin

    International Nuclear Information System (INIS)

    After oral administration of 14C-labelled salicylic acid and its β-cyclodextrin complex to rats, the radioactivity level of the blood reached its maximum during the first 2 h. The blood level obtained with the complex is somewhat but not significantly lower than with free acid. Since the resorption of cyclodextrin is a considerably slower process, it is very likely that the resorption of salicylic acid takes place in the form of free acid after dissociation of the complex. The urinary excretion cumulative curves showed that the free salicylic acid was completely excreted, while about 10% of the salicylic acid administered in the form of complex is lost. The cyclodextrin complex formation increased the pK values of all hydroxybenzoic acids. Direct observations revealed that complex formation decreased the stomach-irritating effect of salicylic acid. The ratio of radioactivity was nearly the same in the organs of animals treated by both free salicylic and cyclodextrin complex. (author)

  2. Investigations of corrosion films formed on API-X52 pipeline steel in acid sour media

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Espejel, A. [Instituto Politecnico Nacional, Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico); Dominguez-Crespo, M.A. [Instituto Politecnico Nacional, CICATA-Unidad Altamira-Tamaulipas, km 14.5, Carretera Tampico-Puerto Industrial Altamira, 89600 Altamira, Tamps (Mexico); Cabrera-Sierra, R. [Instituto Politecnico Nacional, Departamento de Ingenieria Quimica Industrial, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico); Rodriguez-Meneses, C. [Instituto Politecnico Nacional, Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico); Arce-Estrada, E.M., E-mail: earce@ipn.m [Instituto Politecnico Nacional, Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico)

    2010-07-15

    Corrosion films formed by voltammetry using different switching potentials and by immersion on API-X52 pipeline steel in simulated acid sour media (NACE ID182) have been characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Linear Polarization and Electrochemical Impedance Spectroscopy (EIS) techniques. XRD and EDS analysis showed that the films are mainly composed of sulphide compounds (mackinawite, troilite, marcasite and pyrite) as well as iron oxides, as steel damage increases. Across SEM micrographs the corrosion films formed by potentiodynamic and immersion tests are very similar, covering most of the steel. Polarization and EIS results corroborate poor behavior against corrosion.

  3. Investigations of corrosion films formed on API-X52 pipeline steel in acid sour media

    International Nuclear Information System (INIS)

    Corrosion films formed by voltammetry using different switching potentials and by immersion on API-X52 pipeline steel in simulated acid sour media (NACE ID182) have been characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Linear Polarization and Electrochemical Impedance Spectroscopy (EIS) techniques. XRD and EDS analysis showed that the films are mainly composed of sulphide compounds (mackinawite, troilite, marcasite and pyrite) as well as iron oxides, as steel damage increases. Across SEM micrographs the corrosion films formed by potentiodynamic and immersion tests are very similar, covering most of the steel. Polarization and EIS results corroborate poor behavior against corrosion.

  4. Calcination/acid-activation treatment of an anodic oxidation TiO2/Ti film catalyst

    Institute of Scientific and Technical Information of China (English)

    YAO Zhongping; JIANG Yanli; JIANG Zhaohua; ZHU Hongkui; BAI Xuefeng

    2009-01-01

    The aim of this work was to investigate the effects of calcination/acid-activation on the composition, structure, and photocatalytic (PC) re-duction property of an anodic oxidation TiO2/Ti film catalyst. The surface morphology and phase composition were examined by scanning electron microscopy and X-ray diffraction. The catalytic property of the film catalysts was evaluated through the removal rate of potassium chromate during the PC reduction process. The results showed that the film catalysts were composed of anatase and mtile TiO2 with a mi-cro-porous surface structure. The calcination treatment increased the content of TiO2 in the film, changed the relative ratio of anatase and rutile TiO2, and decreased the size of the micro pores of the film cat.a/ysts. The removal rate of potassium chromate was related to the tech-nique parameters of calcination/acid-activation treatment. When the anodic oxidation TiO2Ti film catalyst was calcined at 873 K for 30 min and then acid-activated in the concentrated H2SO4 for 60 min, it presented the highest catalytic property, with the removal rate of potassium chromate of 96.3% during the PC reduction process under the experimental conditions.

  5. Physicochemical Properties of Edible Chitosan/Hydroxypropyl Methylcellulose/Lysozyme Films Incorporated with Acidic Electrolyzed Water

    Directory of Open Access Journals (Sweden)

    Ewa Brychcy

    2015-01-01

    Full Text Available The treatment with acidic electrolyzed water (AEW is a promising disinfection method due to its effectiveness in reducing microbial population. The aim of the study was to evaluate physicochemical properties of chitosan/HPMC films incorporated with lysozyme and acidic electrolyzed water. In the composite films, decreasing film solubility and increasing concentration of sodium chloride solution and prolongation of electrolysis time were observed. Electrolysis process with sodium chloride induces spongy network of film structure. The use of AEW has not changed chemical composition of films which was proved by 1H NMR, MALDI-TOF, and FT-IR spectroscopy. The research confirmed that electrolysis significantly improved thermomechanical properties of the examined films. The contact angle values of the films were quite similar and ranged between 56° and 73°. The increase of salt concentration used in the electrolysis process had an impact on increasing flexibility of samples. Application of electrolyzed water in commonly used food processing systems is possible. Fusion of AEW and biopolymers may provide better integration with coated food product and multidirectional protecting effect.

  6. Comparative evaluation on fatty acid and Matricaria recutita essential oil incorporated into casein-based film.

    Science.gov (United States)

    Aliheidari, Nahal; Fazaeli, Mahboubeh; Ahmadi, Reza; Ghasemlou, Mehran; Emam-Djomeh, Zahra

    2013-05-01

    Sodium caseinate composite films containing lipids-oleic acid (OA), stearic acid (SA), or Matricaria recutita essential oil (MEO) - were prepared through emulsification and their physical, thermal, mechanical, and barrier properties were evaluated and compared. Furthermore, their antimicrobial effectiveness against Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli was studied. Emulsified films were softer, less rigid, and more stretchable than pure films. The films' water vapor barrier properties were found to decrease upon the addition of lipid content; this effect was greatly reduced when MEO was added. The presence of OA/SA and MEO decreased tensile strength and elastic modulus but increased the elongation at break. Thermal analysis of all emulsified films showed two endothermic peaks; these results confirmed those obtained by SEM studies, where a partial separation of the two phases occurred. The films' antimicrobial activities were increased by incorporating lipids, particularly those containing MEO, which were more effective against the studied bacteria. This work showed that when taking all the studied variables into account, films formulated with MEO were found most suitable for various food applications. PMID:23415659

  7. Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor.

    Science.gov (United States)

    Battaglia-Brunet, Fabienne; Crouzet, Catherine; Burnol, André; Coulon, Stéphanie; Morin, Dominique; Joulian, Catherine

    2012-08-01

    Arsenic (As) is a toxic element frequently present in acid mine waters and effluents. Precipitation of trivalent arsenic sulphide in sulphate-reducing conditions at low pH has been studied with the aim of removing this hazardous element in a waste product with high As content. To achieve this, a 400m L fixed-film column bioreactor was fed continuously with a synthetic solution containing 100mg L(-1) As(V), glycerol and/or hydrogen, at pH values between 2.7 and 5. The highest global As removal rate obtained during these experiments was close to 2.5mg L(-1)h(-1). A switch from glycerol to hydrogen when the biofilm was mature induced an abrupt increase in the sulphate-reducing activity, resulting in a dramatic mobilisation of arsenic due to the formation of soluble thioarsenic complexes. A new analytical method, based on ionic chromatography, was used to evaluate the proportion of As present as thioarsenic complexes in the bioreactor. Profiles of pH, total As and sulphate concentrations suggest that As removal efficiency was linked to solubility of orpiment (As(2)S(3)) depending on pH conditions. Molecular fingerprints revealed fairly homogeneous bacterial colonisation throughout the reactor. The bacterial community was diverse and included fermenting bacteria and Desulfosporosinus-like sulphate-reducing bacteria. arrA genes, involved in dissimilatory reduction of As(V), were found and the retrieved sequences suggested that As(V) was reduced by a Desulfosporosinus-like organism. This study was the first to show that As can be removed by bioprecipitation of orpiment from acidic solution containing up to 100mg L(-1) As(V) in a bioreactor.

  8. Dual Fatty Acid Elongase Complex Interactions in Arabidopsis.

    Science.gov (United States)

    Morineau, Céline; Gissot, Lionel; Bellec, Yannick; Hematy, Kian; Tellier, Frédérique; Renne, Charlotte; Haslam, Richard; Beaudoin, Frédéric; Napier, Johnathan; Faure, Jean-Denis

    2016-01-01

    Very long chain fatty acids (VLCFAs) are involved in plant development and particularly in several cellular processes such as membrane trafficking, cell division and cell differentiation. However, the precise role of VLCFAs in these different cellular processes is still poorly understood in plants. In order to identify new factors associated with the biosynthesis or function of VLCFAs, a yeast multicopy suppressor screen was carried out in a yeast mutant strain defective for fatty acid elongation. Loss of function of the elongase 3 hydroxyacyl-CoA dehydratase PHS1 in yeast and PASTICCINO2 in plants prevents growth and induces cytokinesis defects. PROTEIN TYROSIN PHOSPHATASE-LIKE (PTPLA) previously characterized as an inactive dehydratase was able to restore yeast phs1 growth and VLCFAs elongation but not the plant pas2-1 defects. PTPLA interacted with elongase subunits in the Endoplasmic Reticulum (ER) and its absence induced the accumulation of 3-hydroxyacyl-CoA as expected from a dehydratase involved in fatty acid (FA) elongation. However, loss of PTPLA function increased VLCFA levels, an effect that was dependent on the presence of PAS2 indicating that PTPLA activity repressed FA elongation. The two dehydratases have specific expression profiles in the root with PAS2, mostly restricted to the endodermis, while PTPLA was confined in the vascular tissue and pericycle cells. Comparative ectopic expression of PTPLA and PAS2 in their respective domains confirmed the existence of two independent elongase complexes based on PAS2 or PTPLA dehydratase that are functionally interacting. PMID:27583779

  9. α-Lactalbumin:Oleic Acid Complex Spontaneously Delivers Oleic Acid to Artificial and Erythrocyte Membranes.

    Science.gov (United States)

    Wen, Hanzhen; Strømland, Øyvind; Halskau, Øyvind

    2015-09-25

    Human α-lactalbumin made lethal to tumor cells (HAMLET) is a tumoricidal complex consisting of human α-lactalbumin and multiple oleic acids (OAs). OA has been shown to play a key role in the activity of HAMLET and its related complexes, generally known as protein-fatty acid (PFA) complexes. In contrast to what is known about the fate of the protein component of such complexes, information about what happens to OA during their action is still lacking. We monitored the membrane, OA and protein components of bovine α-lactalbumin complexed with OA (BLAOA; a HAMLET-like substance) and how they associate with each other. Using ultracentrifugation, we found that the OA and lipid components follow each other closely. We then firmly identify a transfer of OA from BLAOA to both artificial and erythrocyte membranes, indicating that natural cells respond similarly to BLAOA treatment as artificial membranes. Uncomplexed OA is unable to similarly affect membranes at the conditions tested, even at elevated concentrations. Thus, BLAOA can spontaneously transfer OA to a lipid membrane. After the interaction with the membrane, the protein is likely to have lost most or all of its OA. We suggest a mechanism for passive import of mainly uncomplexed protein into cells, using existing models for OA's effect on membranes. Our results are consistent with a membrane destabilization mediated predominantly by OA insertion being a significant contribution to PFA cytotoxicity. PMID:26297199

  10. Complexes of light lanthanides with 2,3-dimethoxybenzoic acid

    Directory of Open Access Journals (Sweden)

    AGNIESZKA WALKÓW-DZIEWULSKA

    2001-08-01

    Full Text Available The complexes of light lanthanides with 2,3-dimethoxybenzoic acid of the formula: Ln(C9H9O43, where Ln = La(III, Ce(III, Pr(III, Nd(III, Sm(III, Eu(III and Gd(III have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric studies, as well as X-ray and magnetic measurements. The complexes have colours typical for Ln3+ ions (La, Ce, Eu, Gd–white, Sm–cream, Pr–green, Nd–violet. The carboxylate group in these complexes is a bidentate, chelating ligand or a tridentate chelating and bridging one. They are crystalline compounds characterized by low symmetry. On heating in air to 1173 K, the 2,3-dimethoxybenzoates of the light lanthanides decompose in various ways. The complexes of Ce(III, Pr(III, Sm(III, Eu(III and Gd(III decompose directly to oxides of the respective metals while those of La(III and Nd(III via the intermediate formation of La2O2CO3 and Nd2O2CO3. The solubilities of the 2,3-dimethoxybenzoates of the light lanthanides in water at 293 K are in the orders of 10-3 – 10-2 mol dm-3. The magnetic moments were determined in the range 4.2–298 K and the complexes are found to obey the Curie-Weiss law.

  11. Investigation of molecular interactions in the complex formation of tartaric acid derivatives with di(2-ethylhexyl) phosphoric acid

    Institute of Scientific and Technical Information of China (English)

    TAN Bin; ZHAI Zheng; LUO GuangSheng; WANG JiaDing

    2008-01-01

    The molecular interactions in the complex formation of two tartaric acid derivatives with di(2-ethylhexyl) phosphoric acid are investigated. The complex formation with a 1:1 stoichiometry between tartaric acid derivatives and D2EHPA can be obtained through UV-Vis titration, NMR chemical shifts and molecular dynamic simulations. Furthermore, the differences of the two complexes on the binding constants and strength of hydrogen bonds can also be determined. Such research will ideally provide insight into ways of regulating the complex forming properties of tartaric acid derivatives for composing or syn-thesizing new chiral resolving agents.

  12. Investigation of molecular interactions in the complex formation of tartaric acid derivatives with di(2-ethylhexyl) phosphoric acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The molecular interactions in the complex formation of two tartaric acid derivatives with di(2-ethylhexyl) phosphoric acid are investigated. The complex formation with a 1:1 stoichiometry between tartaric acid derivatives and D2EHPA can be obtained through UV-Vis titration, NMR chemical shifts and molecular dynamic simulations. Furthermore, the differences of the two complexes on the binding constants and strength of hydrogen bonds can also be determined. Such research will ideally provide insight into ways of regulating the complex forming properties of tartaric acid derivatives for composing or syn- thesizing new chiral resolving agents.

  13. Properties of polyvinyl alcohol/xylan composite films with citric acid.

    Science.gov (United States)

    Wang, Shuaiyang; Ren, Junli; Li, Weiying; Sun, Runcang; Liu, Shijie

    2014-03-15

    Composite films of xylan and polyvinyl alcohol were produced with citric acid as a new plasticizer or a cross-linking agent. The effects of citric acid content and polyvinyl alcohol/xylan weight ratio on the mechanical properties, thermal stability, solubility, degree of swelling and water vapor permeability of the composite films were investigated. The intermolecular interactions and morphology of composite films were characterized by FTIR spectroscopy and SEM. The results indicated that polyvinyl alcohol/xylan composite films had good compatibility. With an increase in citric acid content from 10% to 50%, the tensile strength reduced from 35.1 to 11.6 MPa. However, the elongation at break increased sharply from 15.1% to 249.5%. The values of water vapor permeability ranged from 2.35 to 2.95 × 10(-7)g/(mm(2)h). Interactions between xylan and polyvinyl alcohol in the presence of citric acid become stronger, which were caused by hydrogen bond and ester bond formation among the components during film forming.

  14. Refractive index modulation in polymer film doped with diazo Meldrum's acid

    Science.gov (United States)

    Zanutta, Alessio; Villa, Filippo; Bertarelli, Chiara; Bianco, Andrea

    2016-08-01

    Diazo Meldrum's acid undergoes a photoreaction induced by UV light and it is used as photosensitizer in photoresists. Upon photoreaction, a change in refractive index occurs, which makes this system interesting for volume holography. We report on the sublimation effect at room temperature and the effect of photoirradiation on the refractive index in thin films of CAB (Cellulose acetate butyrate) doped with different amount of diazo Meldrum's acid. A net modulation of the refractive index of 0.01 is achieved with 40% of doping ratio together with a reduction of the film thickness.

  15. Ultra-Thin Films of Poly(acrylic acid)/Silver Nanocomposite Coatings for Antimicrobial Applications

    OpenAIRE

    Alaa Fahmy; Eisa, Wael H.; Mohamed Yosef; Ali Hassan

    2016-01-01

    In this work not only colloids of poly(acrylic acid) (PAA) embedded with silver nanoparticles (Ag-NPs) but thin films (10 nm) also were deposited using electrospray deposition technique (ESD). A mixture of sodium borohydride (NaBH4) and ascorbic acid (AA) were utilized to reduce the silver ions to generate Ag-NPs in the PAA matrix. Moreover, sodium tricitrate was used to stabilize the prepared colloids. The obtained colloids and films were characterized using UV-visible, transmission electron...

  16. Kinetics of Photocatalytic Degradation of Formic Acid over Silica Composite Films Based on Polyoxometalates

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The composite films, XW11O39n-/SiO2, (X refers to Si, Ge or P, respectively) were prepared by tetraethoxysilane (TEOS) hydrolysis sol-gel method via spin-coating technique. Formation of the composite films is due to strong chemical reaction of organic silanol group with the surface oxygen atoms of XW11O39n-, resulted in the saturation of the surface of the lacunary polyoxometalates (POMs). Therefore, the coordination structural model of the films was proposed. As for the films, retention of the primary Keggin structure was confirmed by UV-vis, FT-IR spectra and MAS NMR. The surface morphology of the films was characterized by SEM, indicating that the film surface is relatively uniform, and the layer thickness is in the range of 250~350 nm. Aqueous formic acid (FA) (0-20 mmol/L) was degraded into CO2 and H2O by irradiating the films in the near-UV area. The results show that all the films have photocatalytic activities and the degradation reaction follows Langmuir-Hinshelwood first order kinetics.

  17. Porous poly(DL-lactic acid) matrix film with antimicrobial activities for wound dressing application.

    Science.gov (United States)

    Chitrattha, Sasiprapa; Phaechamud, Thawatchai

    2016-01-01

    Poly(lactic acid) (PLA) is polymeric biomaterial that has been used for wound dressing due to its biodegradability and biocompatibility. However, PLA has some limitations including poor toughness, low degradation rate and high hydrophobicity. The aim of this study is to develop an antibiotic drug-loaded PLA porous film as wound dressing with antibacterial activity. PLA porous film was fabricated by temperature change technique using solvent casting method. Polyethylene glycol (PEG) 400 was added for improving the pore interconnectivity of film. Gentamicin sulfate (GS) or metronidazole (MZ) was incorporated into PLA porous films. PLA containing PEG 400 exhibited the more amorphous form than plain PLA film and contained 55.31 ± 2.85% porosity and 20 μm of the pore size which significantly improved the water vapor transmission rate, oxygen transmission rate, degradation rate and percentage of drug release, respectively. Drug-loaded porous films efficiently inhibited the bacteria growth. GS-loaded film inhibited Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, whereas MZ-loaded film inhibited Bacteroides fragilis and the sustainable antibacterial activity was attained for 7 days.

  18. Preparation, characterization and evaluation of drug-delivery systems: Pectin and mefenamic acid films

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, R.B. [Universidade Federal de Mato Grosso, Rodovia MT-100, Km 3,5, Barra do Garças, MT CEP 78600-000 (Brazil); Teixeira, J.A. [Universidade Federal de Mato Grosso, Cuiabá, MT CEP 78060-900 (Brazil); Furuyama-Lima, A.M. [Universidade Estadual Paulista, IBILCE, São José do Rio Preto, SP CEP 15054-000 (Brazil); Souza, N.C. de [Universidade Federal de Mato Grosso, Rodovia MT-100, Km 3,5, Barra do Garças, MT CEP 78600-000 (Brazil); Siqueira, A.B., E-mail: buzutti@cpd.ufmt.br [Universidade Federal de Mato Grosso, Rodovia MT-100, Km 3,5, Barra do Garças, MT CEP 78600-000 (Brazil)

    2014-08-20

    Highlights: • The films were prepared and characterized by FTIR, TG–DSC/FTIR and AFM microscopy. • The results provided information on the composition, dehydration, thermal stability, thermal decomposition. • DSC results of CaHCl shows two overlapping endothermic peaks. • The AFM image shows great similarity for A5 and A6 films. • A5 and A6 films functioned well as a topical delivery system. - Abstract: Mefenamic acid (H-Mef) is a nonsteroidal anti-inflammatory drug (NSAID). Various adhesive dosage forms of NSAIDs have been developed, which include adhesive tablets, gels, ointments, patches and more recently, polymeric films. The objective of this study was the development of H-Mef adhesive films to be used as a drug-delivery system with different ratios of pectin and calcium chloride dihydrate by the casting technique. The materials were characterized by TG–DSC coupled FTIR, AFM (atomic force microscopy) and spectroscopic techniques. The results provided information about the dehydration, film roughness, surface morphology, thermal decomposition, as well as identification of gaseous products evolved during thermal decomposition. The characterizations indicated the A5 and A6 films functioned well, with 99% H-Mef released within 15 min at pH 5, suggesting these degradable films could be used as a topical delivery system.

  19. Influence of the use of acids and films in post-harvest lychee conservation

    Directory of Open Access Journals (Sweden)

    Danielle Fabíola Pereira da Silva

    2012-12-01

    Full Text Available Lychee (Litchi chinensis Sonn. has a high commercial value; however, it has a short shelf-life because of its rapid pericarp browning. The objective of this study was to evaluate the shelf-life of 'Bengal' lychee fruits stored after treatment with hydrochloric acid and citric acid, associated with cassava starch and plastic packaging. Uniformly red pericarp fruits were submitted to treatments: 1-(immersion in citric acid 100 mM for 5 minutes + cassava starch 30 g L-1 for 5 minutes, 2-(immersion in hydrochloric acid 1 M for 2 minutes + starch cassava 30 g L-1 for 5 minutes, 3-(immersion in citric acid 100 mM for 5 minutes + polyvinyl chloride film (PVC, 14 µm thick and 4-(immersion in hydrochloric acid 1 M for 2 minutes + PVC film. During 20 days, the fruits were evaluated for mass loss, pericarp color, pH, soluble solids and titratable acidity, vitamin C of the pulp and pericarp and activities of polyphenol oxidase and peroxidase of the pericarp. The treatment with hydrochloric acid associated with PVC was the most effective in maintaining the red color of the pericarp for a period of 20 days and best preservation of the fruit. The cassava starch associated with citric acid, and hydrochloric acid did not reduce the mass loss and did not prevent the browning of lychee fruit pericarp.

  20. Investigation of chemical bath deposition of CdO thin films using three different complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Khallaf, Hani [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Chen, Chia-Ta; Chang, Liann-Be [Graduate Institute of Electro-Optical Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Green Technology Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Lupan, Oleg [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, 168 Stefan cel Mare Boulevard, MD-2004 Chisinau, Republic of Moldova (Moldova, Republic of); Dutta, Aniruddha; Heinrich, Helge [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Advanced Materials Processing and Analysis Centre, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Shenouda, A. [Central Metallurgical R and D Institute (CMRDI), Tebbin, P.O. Box 87, Helwan (Egypt); Chow, Lee, E-mail: Lee.Chow@ucf.edu [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Advanced Materials Processing and Analysis Centre, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2011-09-01

    Chemical bath deposition of CdO thin films using three different complexing agents, namely ammonia, ethanolamine, and methylamine is investigated. CdSO{sub 4} is used as Cd precursor, while H{sub 2}O{sub 2} is used as an oxidation agent. As-grown films are mainly cubic CdO{sub 2}, with some Cd(OH){sub 2} as well as CdO phases being detected. Annealing at 400 deg. C in air for 1 h transforms films into cubic CdO. The calculated optical band gap of as-grown films is in the range of 3.37-4.64 eV. Annealed films have a band gap of about 2.53 eV. Rutherford backscattering spectroscopy of as-grown films reveals cadmium to oxygen ratio of 1.00:1.74 {+-} 0.01 while much better stoichiometry is obtained after annealing, in accordance with the X-ray diffraction results. A carrier density as high as 1.89 x 10{sup 20} cm{sup -3} and a resistivity as low as 1.04 x 10{sup -2} {Omega}-cm are obtained.

  1. Syntheses,characteristics,and fluorescence properties of complexes of europium with benzoic acid and its derivatives

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhongcheng; SHU Wangen; RUAN Jianming; HUANG Boyun; LIU Younian

    2004-01-01

    The binary complexes of europium with benzoic acid and its derivatives (phthalic acid, m-phthalic acid,o-aminobenzoic acid, salicylic acid, and sulfosalicylic acid) were synthesized and their compositions were identified by elemental analyses. UV and IR of the complexes have been investigated. The UV spectra indicated that the complexes' ultraviolet absorption were mainly the ligands' absorption. The IR spectra showed that the IR spectra of complexes are different from those of free ligands. The fluorescence properties of them were investigated by using luminescence spectroscopy, the results showed that only three complexes appear as better luminescence, they were Eu-benzoic acid,Eu-m-phthalic acid and Eu-phthalic acid, while the others exhibited the ligands' wideband emission.

  2. Complex coacervation for the development of composite edible films based on LM pectin and sodium caseinate.

    Science.gov (United States)

    Eghbal, Noushin; Yarmand, Mohammad Saeid; Mousavi, Mohammad; Degraeve, Pascal; Oulahal, Nadia; Gharsallaoui, Adem

    2016-10-20

    Coacervation between sodium caseinate (CAS) and low methoxyl pectin (LMP) at pH 3 was investigated as a function of protein/polysaccharide ratio. The highest amount of complex coacervates was formed at a CAS/LMP ratio of 2 at which the ζ-potential value was zero and the turbidity reached its highest value. Then, the properties of films based on these complex coacervates were studied. Coacervation resulted in decreasing water content and water sorption of films as the protein concentration increased. The mechanical properties of films were highly influenced by the formation of electrostatic complexes. The highest values of Young's modulus (182.97± 6.48MPa) and tensile strength (15.64±1.74MPa) with a slight increase of elongation at break (9.35±0.10%) were obtained for films prepared at a CAS/LMP ratio equal to 0.05. These findings show that interactions between LMP and CAS can be used to develop innovative packaging containing active molecules. PMID:27474643

  3. Cadmium sulfate complexing with thiourea during preparation of cadmium sulfide films

    International Nuclear Information System (INIS)

    Composition of complexes deposited from cadmium sulfate and thiourea(TU) aqueous solution is studied. Its influence on cadmium sulfide film deposition during solution spraying is ascertained. It is shown that with increase of TU concentration in aqueous solution gradual substitution of TU molecules for the first sphere SO42- ions takes place. As a result CdS deposition from these solutions is initiated when the ratio of CdSO4:TU concentrations is 1:2 and for prepartation of uniform films a five-fold TU excess as a minimum is necessary

  4. Formation of complex bis(β-mercaptobenzothiazole)-zinc(II) films by pulsed laser deposition

    Science.gov (United States)

    Zhang, Kejie; Yarmolenko, M. A.; Rogachev, A. A.; Zhou, Bing; Jiang, Xiaohong; Shen, Ruiqi; Liu, Xiaoheng

    2013-05-01

    Bis(β-mercaptobenzothiazole)-zinc (Zn(MBT)2) films were successfully deposited onto silicon substrate by pulsed laser deposition (PLD) method using Zn(MBT)2 powder as the raw material. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and room-temperature photoluminescence (PL) spectroscopy were used to characterize the as-prepared product. The obtained results indicate the structure and composition of Zn(MBT)2 are preserved during the mild PLD process. The approach provides new possibility to produce special metal complex film material.

  5. Preparation and Characterization of Films Extruded of Polyethylene/Chitosan Modified with Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Jesús Manuel Quiroz-Castillo

    2014-12-01

    Full Text Available The use of mixtures of synthetic and natural polymers is a potential option to reduce the pollution by plastic waste. In this work, the method for the chemical modification of chitosan with poly(lactic acid was developed; then, the preparation of films of blends of polyethylene and chitosan-poly(lactic acid produced by an extrusion method using polyethylene-graft maleic anhydride as a compatibilizer. It was possible to obtain films with a maximum content of 20 wt% and 30 wt%, chitosan, with and without compatibilizer, respectively. Scanning electron microscope (SEM analysis showed a homogeneous surface on all films. The addition of the compatibilizer had a significant effect on the mechanical properties of the films, such as an increase in Young’s modulus and a decrease in the elongation at break; additionally, the compatibilizer promotes thermal degradation in a single step and gives the film a slight increase in thermal resistance. These results are attributed to an improved interaction in the interface of polyethylene and chitosan-poly(lactic acid, promoted by the compatibilizer.

  6. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    Science.gov (United States)

    Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.

    2016-04-01

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  7. A selective voltammetric detection for dopamine using poly(gallic acid) film modified electrode

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The electrochemistry behavior of dopamine was investigated by cyclic voltammetry and differential pulse voltammetry at a poly (gallic acid) film modified glassy carbon electrode.Two electrons and two protons participated in the diffusion-controlled electrocatalytic oxidation of dopamine with a diffusion coefficient of 2.186×10~(-5) cm~2/s.The interference of ascorbic acid with the determination of dopamine could be efficiently eliminated.This work provided a simple approach to selectively and sensitively...

  8. Formation of Porous Anodic Oxide Film on Titanium in Phosphoric Acid Electrolyte

    Science.gov (United States)

    Liu, Z.; Thompson, G. E.

    2015-01-01

    A sequential breakdown anodizing conditions on cp-Ti in phosphoric acid has been investigated in the present study. Anodic oxide films were formed at 100, 150, and 200 V, examined by scanning electron microscopy, Raman spectroscopy, glow discharge optical emission spectrometry, and electrochemical impedance spectroscopy. A porous oxide texture was formed at each voltage. The thickness of anodic porous oxide increased with the increase of anodic voltage. Nano-particulates were formed around and within the pores, and the size of pores increased with increased voltage due to the expansion of particulates. The amorphous-to-crystalline transition was initiated during the film growth. The degree of crystallinity in the anodic oxide film fabricated at 200 V is more abundant than 150 and 100 V. Increased content of the phosphorus species was incorporated into the porous film with the increase of anodic voltage, stabilizing for the nanocrystals developed within the oxide.

  9. Development and Characterization of Novel Polyurethane Films Impregnated with Tolfenamic Acid for Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Hilal Istanbullu

    2013-01-01

    Full Text Available The present study deals with the preparation of polyurethane (PU films impregnated with a nonsteroidal anti-inflammatory drug, tolfenamic acid (TA. Solvent evaporation technique has been employed for the preparation of TA-PU films in two different ratios of 1 : 2 and 1 : 5 in Tetrahydrofuran (THF or THF-ethanol mixtures. The prepared films were characterized using X-Ray Diffraction (XRD, Differential Scanning Calorimetry (DSC, Fourier Transform Infrared Spectroscopy (FTIR, Scanning Electron Microscopy (SEM, and release studies. The results indicate transformation of crystalline TA to its amorphous form. The degree of crystallinity changes both by increasing the polymer concentration and solvent used for the film preparations. The release profiles of TA were also found to be affected, showing a decrease from approximately 50% to 25% from 1 : 2 to 1 : 5 ratios, respectively.

  10. Characteristic of hyaluronic acid derivative films cross-linked by polyethylene glycol of low water content

    Institute of Scientific and Technical Information of China (English)

    Chen Jinghua; Chen Jingtao; Xu Zheng; Gu Qisheng

    2008-01-01

    Objective: To test the characteristics of byaluronic acid (HA) derivative cross-linked by polyethylene glycol films of low water content. Methods: The cross-linked HA film with 200 μm thickness was got at atmospheric pressure at 25℃ for 5 d. After dried, cross-linked films of 10 mm×10 mm were weighed and immersed in phosphate buffered saline (PBS pH 7.45) at 37℃ for 24 h. Then the solution fraction and water content were estimated. Meanwhile, cross-linked HA derivative films were immersed in phosphate buffered saline (PBS: pH 7.45) at 37℃ for determined time and then implanted subcutaneously in the back of white rats to test in vitro or in vivo degradation characteristic. Results and Conclusion: HA hydrogel cross-linked by polyethylene glycol with water content is as low as 60% and this kind of HA derivative has a slow degradation rate.

  11. Friction reducing behavior of stearic acid film on a textured aluminum substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Quan [School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033 (China); Wan, Yong, E-mail: wanyong@qtech.edu.cn [School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033 (China); Li, Yang; Yang, Shuyan [School of Mechanical Engineering, Qingdao Technological University, Qingdao 266033 (China); Yao, Wenqing [Analysis Center of Tsinghua University, Beijing 100084 (China)

    2013-09-01

    A simple two-step process was developed to render the aluminum hydrophobicity with lower friction. The textured aluminum substrate was firstly fabricated by immersed in a sodium hydroxide solution at 100 °C for 1 h. Stearic acid film was then deposited to acquire high hydrophobicity. Scanning electron microscopy, IR spectroscopy and water contact angle measurements were used to analyze the morphological features, chemical structure and hydrophobicity of prepared samples, respectively. Moreover, the friction reducing behavior of the organic–inorganic composite film on aluminum sliding against steel was evaluated in a ball-on-plate configuration. It was found that the stearic acid film on the textured aluminum led to decreased friction with significantly extended life.

  12. Nanomechanical properties of poly(lactic-co-glycolic) acid film during degradation.

    Science.gov (United States)

    Shirazi, Reyhaneh Neghabat; Aldabbagh, Fawaz; Erxleben, Andrea; Rochev, Yury; McHugh, Peter

    2014-11-01

    Despite the potential applications of poly(lactic-co-glycolic) acid (PLGA) coatings in medical devices, the mechanical properties of this material during degradation are poorly understood. In the present work, the nanomechanical properties and degradation of PLGA film were investigated. Hydrolysis of solvent-cast PLGA film was studied in buffer solution at 37 °C. The mass loss, water uptake, molecular weight, crystallinity and surface morphology of the film were tracked during degradation over 20 days. Characterization of the surface hardness and Young's modulus was performed using the nanoindentation technique for different indentation loads. The initially amorphous films were found to remain amorphous during degradation. The molecular weight of the film decreased quickly during the initial days of degradation. Diffusion of water into the film resulted in a reduction in surface hardness during the first few days, followed by an increase that was due to the surface roughness. There was a significant delay between the decrease in the mechanical properties of the film and the decrease in the molecular weight. A sudden decline in mechanical properties indicated that significant bulk degradation had occurred.

  13. Micromachined dense palladium electrodes for thin-film solid acid fuel cells

    NARCIS (Netherlands)

    Unnikrishnan, Sandeep

    2009-01-01

    This thesis paves the way towards the microfabrication of a solid acid electrolyte based fuel cell (µSAFC), which has a membrane electrode assembly (MEA) consisting of a thin-film of water soluble electrolyte encapsulated between two dense palladium electrode membranes. This project work investigate

  14. Synthesis and spectroscopic characterization of fluorescent solid rare earth complexes with hydroxamic acids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The complexes RE2(DHYA)3 .nH2O in the title bar were synthesized through some reactions oftrivalent rareearth ions. In the process of synthesis, dihydroxamic acids were taken as ligands while the alcohol was taken as a solvent.The ligands included adipylhydroxamic acid (ADHA), p-phthalichydroxamic acid (PPHA), oxalohydroxamic acid (OXHA), butadihydroxamic acid (BDHA), o-phthalichydroxamic acid (OPHA), benzoylhydroxamic acid (BHA), etc.Measured at 25 ℃, the molar conductances in various modes are 13.00-21.05 S. cm2. mol-1, which shows that rare-earth complexes are nonelectrolytes and the hydroxamino groups of the complexes have taken part in bonding. Infrared spectra, ultraviolet spectra, nuclear magnetic resonance (1HNMR) spectra, and fluorescence spectra were used to investigate the complexes. Experiments have proved that the complexes of Eu3+ and Tb3+ with aromatic hydroxamic acids have good fluorescent characteristics.

  15. Reversible, electrical and optical switching on silver 3-phenyl-1-ureidonitrile complex thin films

    Institute of Scientific and Technical Information of China (English)

    张昊旭; 时东霞; 宋延林; 刘虹雯; 侯士敏; 薛增泉; 高鸿钧

    2002-01-01

    We report on the reversible, electrical and optical switching on silver 3-phenyl-l-ureidonitrile complex thin films.The films can switch from a high impedance state to a low impedance state with an applied electric field at the thresholdof 3.5 × 107V/m. Furthermore, the films can be switched back to the original state by treating the samples at about80℃. The optical recording is fulfilled using a semiconductor laser with a wavelength of 780nm. Erasure can beaccomplished by bulk heating or by the laser working with the power beneath the threshold. No loss of the organic wasfound in the experiments. This material may have a potential application in ultrahigh data density storage.

  16. Transition Metal–α-Amino Acid Complexes with Antibiotic Activity against Mycobacterium spp.

    OpenAIRE

    Karpin, George W.; Merola, Joseph S.; Joseph O. Falkinham

    2013-01-01

    Synthetic iridium-, rhodium-, and ruthenium-amino acid complexes with hydrophobic l-amino acids have antibiotic activity against Mycobacterium spp., including Mycobacterium bovis BCG and the rapidly growing species Mycobacterium abscessus and Mycobacterium chelonae. Concentrations of transition metal-amino acid complexes demonstrating hemolysis or cytotoxicity were 10- to 25-fold higher than were the MICs.

  17. Structural basis for the dysfunctioning of human 2-oxo acid dehydrogenase complexes

    NARCIS (Netherlands)

    Hengeveld, A.F.; Kok, de A.

    2002-01-01

    2-oxo acid dehydrogenase complexes are a ubiquitous family of multienzyme systems that catalyse the oxidative decarboxylation of various 2-oxo acid substrates. They play a key role in the primary energy metabolism: in glycolysis (pyruvate dehydrogenase complex), the citric acid cycle (2-oxoglutarate

  18. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  19. Physicochemical properties of poly(lactic acid-co-glycolic acid film modified via blending with poly(butyl acrylate-co-methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Guoquan Zhu

    2013-01-01

    Full Text Available A series of poly(lactic acid-co-glycolic acid (PLGA/poly(butyl acrylate-co-methyl methacrylate (P(BA-co-MMA blend films with different P(BA-co-MMA mole contents were prepared by casting the polymer blend solution in chloroform. Surface morphologies of the PLGAP(BA-co-MMA blend films were studied by scanning electron microscopy (SEM. Thermal, mechanical, and chemical properties of PLGAP(BA-co-MMA blend films were investigated by differential scanning calorimeter (DSC, thermogravimetric analysis (TGA, tensile tests, and surface contact angle tests. The introduction of P(BA-co-MMA could modify the properties of PLGA films.

  20. The response of quartz crystals coated with thin fatty acid film to organic gases

    CERN Document Server

    Jin, C N; Kim, K H; Kwon, Y S

    1999-01-01

    We tried to apply a quartz crystal as a sensor by using the resonant frequency and the resistance properties of quartz crystals. Four kinds of fatty acids that have the same head groups were coated on the surfaces of the quartz crystals, and the shift of the resonant frequency and the resistance were observed based on the lengths of the tail groups. Myristic acid (C sub 1 sub 4), palmitic acid (C sub 1 sub 6), stearic acid (C sub 1 sub 8), and arachidic acid (C sub 2 sub 0) were deposited on the surfaces of quartz crystals by using the Langmuir-Blodgett (LB) method. As a result, the resonant frequency change was more sensitive to high molecular-weight fatty acids than to low molecular-weight ones. We also observed the effect of temperature on stearic acid LB films, and the response properties of quartz crystals coated with stearic-acid LB films to organic gases were investigated. As a result, the sensitivity of quartz crystals to organic gases was higher for higher molecular-weight gas, and we found that quar...

  1. Tricolor microcavity OLEDs based on P-nc-Si:H films as the complex anodes

    Institute of Scientific and Technical Information of China (English)

    Li Yang; Liu Xingyuan; Wu Chunya; Meng Zhiguo; Wang Yi; Xiong Shaozhen

    2009-01-01

    A P+-nc-Si:H film (boron-doped nc-Si:H thin film) was used as a complex anode of an OLED. As an ideal candidate for the composite anode, the P+-nc-Si:H thin film has a good conductivity with a high work function (~5.7 eV) and outstanding optical properties of high reflectivity, transmission, and a very low absorption. As a result, the combination of the relatively high reflectivity of a P+-nc-Si:H film/ITO complex anode with the very high reflectivity of an Al cathode could form a micro-cavity structure with a certain Q to improve the efficiency of the OLED fabricated on it. An RGB pixel generated by microcavity OLEDs is beneficial for both the reduction of the light loss and the improvement of the color purity and the efficiency. The small molecule Alq would be useful for the emitting light layer (EML) of the MOLED, and the P+-nc-Si film would be used as a complex anode of the MOLED, whose configuration can be constructed as Glass/LTO/P+-nc-Si:H/ITO/MoO3/NPB/Alq/LiF/Al. By adjusting the thickness of the organic layer NPB/Alq, the optical length of the microcavity and the REB colors of the device can be obtained. The peak wavelengths of an OLED are located at 486, 550, and 608 nm, respectively.The CIE coordinates are (0.21,0.45), (0.33,0.63), and (0.54,0.54), and the full widths at half maximum (FWHM)are 35, 32, and 39 nm for red, green, and blue, respectively.

  2. Indium tin oxide thin films elaborated by sol-gel routes: The effect of oxalic acid addition on optoelectronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kesim, Mehmet Tumerkan; Durucan, Caner, E-mail: cdurucan@metu.edu.tr

    2013-10-31

    Single layer indium tin oxide (ITO) thin films were deposited on glass using modified sol-gel formulations. The coating sols were prepared using indium (InCl{sub 3}∙ 4H{sub 2}O) and tin salts (SnCl{sub 4}∙ 5H{sub 2}O). The stable sols were obtained using ethanol (C{sub 2}H{sub 5}OH) and acetylacetone (C{sub 5}H{sub 8}O{sub 2}) as solvents and by the addition of oxalic acid dihydrate (C{sub 2}H{sub 2}O{sub 4}∙ 2H{sub 2}O) in different amounts. The effect of oxalic acid content in the sol formulation and post-coating calcination treatment (in air at 300–600 °C) on electrical/optical properties of ITO films have been reported. It was shown that film formation efficiency, surface coverage and homogeneity were all enhanced with oxalic acid addition. Oxalic acid modification also leads to a significant improvement in electrical conductivity without affecting the film thickness (45 ± 3 nm). ITO films exhibiting high transparency (≈ 93%, visible region) with a sheet resistance as low as 3.8 ± 0.4 kΩ/sqr have been formed by employing coating sols with optimized oxalic acid amount. The mechanisms and factors affecting the functional performance of oxalic acid-modified films have been thoroughly discussed and related to the microstructural and chemical characteristic of the films achieved by oxalic acid addition. - Highlights: • A solution-based method for processing indium tin oxide (ITO) thin film is reported. • Oxalic acid (OAD) modification leads to a highly compacted film microstructure. • Bulk resistivity of a single layer OAD-modified ITO film was determined as 0.02 Ωcm. • Thin films with transparency values higher than 90% were produced.

  3. Complex Formation of Selected Radionuclides with Ligands Commonly Found in Ground Water: Low Molecular Organic Acids

    DEFF Research Database (Denmark)

    Jensen, Bror Skytte; Jensen, H.

    1985-01-01

    A general approach to the analysis of potentiometric data on complex formation between cations and polybasic amphoteric acids is described. The method is used for the characterisation of complex formation between Cs+, Sr2+, Co2+, La 3+, and Eu3+ with a α-hydroxy acids, tartaric acid and citric acid......, and with the α-amino acids, aspartic acid and L-cysteine. The cations have been chosen as typical components of reactor waste, and the acids because they are often found as products of microbial activity in pits or wherever organic material decays...

  4. A redox-active porous coordination network film based on a Ru complex as a building block on an ITO electrode.

    Science.gov (United States)

    Shinomiya, Takuya; Ozawa, Hiroaki; Mutoh, Yuichiro; Haga, Masa-Aki

    2013-12-01

    The combination of self-assembled monolayer (SAM) and layer-by-layer (LbL) growth methods for the construction of a surface porous film has the potential to incorporate a wide range of chemical functionalities on a solid surface. A novel redox-active Ru complex with 2,6-bis(N-pyridylbenzimidazolyl)-pyridine ligands (Ru complex 1), in which four peripheral pyridine groups act as coordination sites, was used as a building block for a porous coordination network film. By using (4-pyridyl)phenylphosphonic acid as a SAM primer layer on an ITO surface, the Ru complex 1 was immobilized by the successive reaction of PdCl2 on the ITO electrode in the LbL growth method. Multilayer growth was monitored by UV-vis spectra and cyclic voltammetry, in which the linear increases of both absorbance and the peak current were observed. This result indicated that the regular accumulation of Ru complex 1 onto the ITO surface took place. The permselectivity of the present porous coordination network structure was examined using redox-active molecular probes with different sizes and charges such as ferrocene, trimethylaminomethylferrocene, the Os bis(2,6-bis(N-methylbenzimidazolyl)-pyridine) complex, and tetrathiofulvarene (TTF). With the Os complex and cationic ferrocene, only the catalytic peak was observed as a prewave of the adsorbed Ru(II/III) peak at +0.73 V. On the other hand, the oxidation peak of ferrocene was observed around 0 V vs. Fc(+)/Fc even for nine-layered films in addition to the adsorbed Ru(II/III) peak. From these results, not only molecular size but also electrostatic interaction plays an important role in the permeation into the Ru complex 1 porous network film.

  5. Influence of HF acid catalyst concentration on properties of aerogel low-k thin films

    Science.gov (United States)

    Gaikwad, A. S.; Gupta, S. A.; Mahajan, A. M.

    2016-08-01

    The effect of hydrofluoric acid (HF) catalyst concentration in coating solution on chemical, physical and structural properties of silica aerogel thin films was investigated. The aerogel films were synthesized by using a sol-gel spin coating method followed by aging in ethanol and CO2 supercritical drying. The refractive index (RI) is observed to be reduced from 1.32 to 1.13 and porosity percentage increased from 30.21% to 71.64% in accordance with increasing HF concentration. Deposition of silica aerogel was confirmed from Fourier transform infrared spectroscopy measurement. The nanoporous nature of deposited films was confirmed from field effect scanning electron microscopy and observed pore diameter is in the range of 3.33 to 6.69 nm. The nanoporous nature of the film was also validated from atomic force microscopy and root mean square roughness was observed to be increased from 2.31 nm to 3.2 nm with increasing acid catalyst concentration in the coating solution. The calculated dielectric constant from CV measurement of fabricated metal-insulator-semiconductor structure for the silica aerogel formed at 0.8 ml HF concentration is observed to be 1.73. These deposited nanoporous silica aerogel low-k films with lower k value and smaller pore size have application as interlayer dielectric materials to minimize the disadvantages of porous materials.

  6. Preliminary characterization of dexamethasone-loaded cross-linked hyaluronic acid films for topical ocular therapy.

    Science.gov (United States)

    Calles, J A; López-García, A; Vallés, E M; Palma, S D; Diebold, Y

    2016-07-25

    The aim of this work was to design and characterize cross-linked hyaluronic acid (HA)-itaconic acid (IT) films loaded with dexamethasone sodium phosphate salt (DEX) for topical therapy of inflammatory ocular surface diseases. Films were chemically cross-linked with polyethylene glycol diglycidyl ether (PEGDE), then physical and mechanical characterization by stress-strain, X-ray diffraction, X-ray fluorescence spectrometry and swelling assays was conducted. A sequential in vitro therapeutic efficacy model was designed to assess changes in interleukin (IL)-6 production in an inflamed human corneal epithelial (HCE) cell line after film exposure. Changes in cell proliferation after film exposure were assessed using the alamarBlue(®) proliferation assay. Experimental findings showed desirable mechanical properties and in vitro efficacy to reduce cell inflammation. A moderately decreased proliferation rate was induced in HCE cells by DEX-loaded films, compared to commercial DEX eye drops. These results suggest that DEX and HA have opposite effects. The sequential in vitro therapeutic efficacy model arises as an efficient tool to study drug release from delivery systems by indirect measurement of a biological response. PMID:27242313

  7. Copper(II and lead(II complexation by humic acid and humic-like ligands

    Directory of Open Access Journals (Sweden)

    IVANA KOSTIĆ

    2011-09-01

    Full Text Available The stability of metal–humate complexes is an important factor determining and predicting speciation, mobility and bioavailability of heavy metals in the environment. A comparative investigation of the complexation of Cu(II and Pb(II with humic acid and humic-like ligands, such as benzoic and salicylic acid, was performed. The analysis was realized at pH 4.0, a temperature of 25 °C and at an ionic strength of 0.01 mol dm-3 (NaCl using the Schubert ion-exchange method and its modified form. The stability constants were calculated from the experimental data by the Schubert method for complexes with benzoic and humic acid. A modified Schubert method was used for the determination of the stability constants of the complexes with salicylic acid. It was found that Cu(II and Pb(II form mononuclear complexes with benzoic and humic acid while with salicylic acid both metals form polynuclear complexes. The results indicate that Pb(II has a higher binding ability than Cu(II to all the investigated ligands. The Cu(II–salicylate and Pb(II–salicylate complexes showed noticeable higher stability constants compared with their complexes with humic acid, while the stabilities of the complexes with benzoic acid differed less. Salicylic and benzoic acids as humic-like ligands can be used for setting the range of stability constants of humic complexes with Cu(II and Pb(II.

  8. Mediated participation: Using filmed narratives in complex multi-stakeholder settings

    OpenAIRE

    Witteveen, L.M.; Enserink, B.; Lie, R

    2009-01-01

    Mediated participation aims to bring `distanced¿ or `overlooked¿ stakeholders in a mediated way to the doorstep of decision makers. It promotes inclusion of their stories, concerns and proposals in decision-making processes because it allows policy and decision makers to `learn¿ in mediated interaction with distant stakeholders. Visual Problem Appraisal (VPA) is a film-based methodology for analysis and social learning, which is produced and used in settings of complex problems and sustainabl...

  9. Characterization of the effects of lignin and lignin complex particles as filler on a polystyrene film

    International Nuclear Information System (INIS)

    Highlights: ► We have studied the use of Co(II) to form a complex with the lignin. We use first vanillin as the lignin model and we observed a change in color for the produced complex depending on the light wavelength. The use of other transition metals does not give the same observation. ► The use of the transition metal with the lignin precipitated from the black liquor after pulping of agricultural residues, gave a fluorescent color under fluorescent microscope. ► We applied the resulted lignin complex to prepare polymer film that can be used as special polymer packaging which can be color changed under different wavelengths. - Abstract: The work in this research outlines the use of lignin precipitated from lignocellulosic substrate as fillers after modified with transition metal cations, Fe(III), Ni(II) and Co(II), in the production of a polystyrene based composite for polymer packaging applications. Virgin polystyrene was compared with lignin and lignin complex filled composites with loading of 5% by weight prepared using twin screw extrusion. The lignin complexes were first characterized by the UV spectra to identify the new absorption bands occurred due to the complex formation. Moreover, lignin model, namely vanillin, was used to notify the geometric structure of the resulting complexes applying the GC mass spectra. Scanning electron microscopy was used to indicate the change in the morphological structure of the filler particles. On the other hand, the mechanical and thermal analysis for the resulting polymer composites was studied and it was noticed that the type of lignin or lignin complex plays a roll in the results. The inclusion of the Co(II)–lignin complex was observed to increase the tensile strength of the resulting polymer composite and a decrease of the glass transition temperature. Furthermore, light wave lengths and UV fluorescent microscope were used to identify the change of color for the resulting polymer film.

  10. Characterization of the effects of lignin and lignin complex particles as filler on a polystyrene film

    Energy Technology Data Exchange (ETDEWEB)

    El-Zawawy, Waleed K., E-mail: wkzawawy@yahoo.com [Cellulose and Paper Department, National Research Center, El-Tahrir St., Giza (Egypt); Ibrahim, Maha M. [Cellulose and Paper Department, National Research Center, El-Tahrir St., Giza (Egypt); Belgacem, Mohamed Naceur; Dufresne, Alain [Grenoble Institute of Technology (INP) - The International School of Paper, Print Media and Biomaterials (PAGORA), BP 65, 38402 Saint Martin d' Heres cedex, Grenoble (France)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We have studied the use of Co(II) to form a complex with the lignin. We use first vanillin as the lignin model and we observed a change in color for the produced complex depending on the light wavelength. The use of other transition metals does not give the same observation. Black-Right-Pointing-Pointer The use of the transition metal with the lignin precipitated from the black liquor after pulping of agricultural residues, gave a fluorescent color under fluorescent microscope. Black-Right-Pointing-Pointer We applied the resulted lignin complex to prepare polymer film that can be used as special polymer packaging which can be color changed under different wavelengths. - Abstract: The work in this research outlines the use of lignin precipitated from lignocellulosic substrate as fillers after modified with transition metal cations, Fe(III), Ni(II) and Co(II), in the production of a polystyrene based composite for polymer packaging applications. Virgin polystyrene was compared with lignin and lignin complex filled composites with loading of 5% by weight prepared using twin screw extrusion. The lignin complexes were first characterized by the UV spectra to identify the new absorption bands occurred due to the complex formation. Moreover, lignin model, namely vanillin, was used to notify the geometric structure of the resulting complexes applying the GC mass spectra. Scanning electron microscopy was used to indicate the change in the morphological structure of the filler particles. On the other hand, the mechanical and thermal analysis for the resulting polymer composites was studied and it was noticed that the type of lignin or lignin complex plays a roll in the results. The inclusion of the Co(II)-lignin complex was observed to increase the tensile strength of the resulting polymer composite and a decrease of the glass transition temperature. Furthermore, light wave lengths and UV fluorescent microscope were used to identify

  11. Phase transitions via selective elemental vacancy engineering in complex oxide thin films

    Science.gov (United States)

    Lee, Sang A.; Jeong, Hoidong; Woo, Sungmin; Hwang, Jae-Yeol; Choi, Si-Young; Kim, Sung-Dae; Choi, Minseok; Roh, Seulki; Yu, Hosung; Hwang, Jungseek; Kim, Sung Wng; Choi, Woo Seok

    2016-04-01

    Defect engineering has brought about a unique level of control for Si-based semiconductors, leading to the optimization of various opto-electronic properties and devices. With regard to perovskite transition metal oxides, O vacancies have been a key ingredient in defect engineering, as they play a central role in determining the crystal field and consequent electronic structure, leading to important electronic and magnetic phase transitions. Therefore, experimental approaches toward understanding the role of defects in complex oxides have been largely limited to controlling O vacancies. In this study, we report on the selective formation of different types of elemental vacancies and their individual roles in determining the atomic and electronic structures of perovskite SrTiO3 (STO) homoepitaxial thin films fabricated by pulsed laser epitaxy. Structural and electronic transitions have been achieved via selective control of the Sr and O vacancy concentrations, respectively, indicating a decoupling between the two phase transitions. In particular, O vacancies were responsible for metal-insulator transitions, but did not influence the Sr vacancy induced cubic-to-tetragonal structural transition in epitaxial STO thin film. The independent control of multiple phase transitions in complex oxides by exploiting selective vacancy engineering opens up an unprecedented opportunity toward understanding and customizing complex oxide thin films.

  12. Glucose-lowering Activity of Amino Acid-N-phosphonic Acid Oxovanadium Complexes and Its Interaction with DNA

    Institute of Scientific and Technical Information of China (English)

    LIU, Ju-Tao; FAN, Sheng-Di; LI, Chuan-Bi; LI, De-Qian

    2006-01-01

    Vanadium has well-documented lowering glucose properties both in vitro and in vivo. The design of new oxovanadium(Ⅳ) coordination compounds, intended for use as insulin-enhancing agents in the treatment of diabetes mellitus, can potentially benefit from a synergistic approach, in which the whole complex has more than an additive effect from its component parts. Biological testing with oxovanadium(Ⅳ) organic phosphonic acid, for insulin-enhancing potential included acute administration, by oral gavage in streptozotocin (STZ) diabetic rats. The complexes of oxovanadium(Ⅳ) amino acid-N-phosphonic acid exhibit higher lowering glucose activity in vivo. The interaction of the complexes of oxovanadium(Ⅳ) amino acid-N-phosphonic acid with DNA was investigated by agarose gel electrophoresis. The results indicated that these complexes have strong interaction with DNA.

  13. Quartz crystal microbalance and spectroscopy measurements for acid doping in polyaniline films

    Directory of Open Access Journals (Sweden)

    Mohamad M Ayad and Eman A Zaki

    2008-01-01

    Full Text Available We investigated the doping of thin polyaniline (PANI films, prepared by the chemical oxidation of aniline, with different acids. The initial step in the investigation is the preparation of PANI films from aqueous hydrochloric acid solution. This is followed by dedoping with ammonia to obtain a PANI base, which is subsequently doped with strong acids (e.g. hydrochloric, sulfuric, phosphoric and trichloroacetic acids and with a weak acid (acetic acid. The dopant weight fraction (w, which is connected with the gain of mass during the doping of PANI, was determined in situ using a quartz crystal microbalance (QCM. The behavior of PANI upon doping with different anions derived from strong acids indicates that both proton and the anion uptake into the polymer chains occur sharply, rapidly, completely, and reversibly. However the uptake in the case in acetic acid is characterized by slow diffusion. The doping was studied at different concentrations of acetic acid. A second cycle of dedoping–redoping was also performed. The kinetics of the doping reaction is dominated by Fickian diffusion kinetics. The diffusion coefficients (D of the dopant ions into the PANI chains were determined using the QCM and by UV–Vis absorption spectroscopy in the range of (0.076–1.64× 10−15 cm2 s−1. It was found that D in the second cycle of doping is larger than that evaluated from the first cycle of doping for high concentrations of acetic acid. D for the diffusion and for the dopant ion expulsion from the PANI chains was also determined during the redoping process. It was found that D for acetic acid ions in the doping process is larger than that calculated for the dedoping process.

  14. Development and characterization of sugar palm starch and poly(lactic acid) bilayer films.

    Science.gov (United States)

    Sanyang, M L; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-08-01

    The development and characterization of environmentally friendly bilayer films from sugar palm starch (SPS) and poly(lactic acid) (PLA) were conducted in this study. The SPS-PLA bilayer films and their individual components were characterized for their physical, mechanical, thermal and water barrier properties. Addition of 50% PLA layer onto 50% SPS layer (SPS50-PLA50) increased the tensile strength of neat SPS film from 7.74 to 13.65MPa but reduced their elongation at break from 46.66 to 15.53%. The incorporation of PLA layer significantly reduced the water vapor permeability as well as the water uptake and solubility of bilayer films which was attributed to the hydrophobic characteristic of the PLA layer. Furthermore, scanning electron microscopy (SEM) image of SPS50-PLA50 revealed lack of strong interfacial adhesion between the SPS and PLA. Overall, the incorporation of PLA layer onto SPS films enhances the suitability of SPS based films for food packaging. PMID:27112848

  15. Characterization of biodegradable film based on zein and oleic acid added with nanocarbonate

    Directory of Open Access Journals (Sweden)

    Wanessa Ximenes Ribeiro

    2015-10-01

    Full Text Available Zein oleic acid films added with 1, 2 and 3 % (w/w of nanocarbonate and 30 % glycerol as plasticizer, were produced and evaluated according to their structure and functional properties. Structural characteristics were analyzed by optical and scanning electron microscopy (SEM. Water solubility and mechanical properties were determined according to ASTM methods. The increase of nanocarbonate concentration increased water solubility and influenced the color and mechanical properties. Optical and SEM of film samples added with nanocarbonate, shown low amount of pores and great fat globules size.

  16. Electrochemical and electrochromic response of poly(thiophene-3-acetic acid) films

    Energy Technology Data Exchange (ETDEWEB)

    Giglioti, M.; Trivinho-Strixino, F.; Matsushima, J.T.; Bulhoes, L.O.S.; Pereira, E.C. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Departamento de Quimica, Universidade Federal de Sao Carlos, Caixa Postal 676, Sao Carlos SP 13565-905 (Brazil)

    2004-05-15

    Thiophene-3-acetic acid has been polymerized in chloroform by a chemical method using FeCl{sub 3} as oxidant. The films were prepared casting the solubilized polymer on ITO electrodes and studied using cyclic voltammetry, chronoamperometry and spectroelectrochemistry. During the potential sweep, an electrochromic process is observed in which the film color changes from red to black. High electrochromic efficiency was observed for more than 600 cycles, although it decreases to 73% of the initial value. Until 264 cycles, the electrochromic efficiency at 750nm is stable and the value is 242cm{sup 2}C{sup -1}.

  17. Influence of Oxide Film to Stress Corrosion Cracking of Zirconium in Boiling Nitric Acid Solution

    International Nuclear Information System (INIS)

    Nuclear fuel reprocessing process acts an important role of nuclear energy cycle. In Japan, a commercial reprocessing plant has been operating at the Rokkasho reprocessing plant. Purex process that is used nitric acid and dodecane with tributyl phosphate for solvent has been adopted in the plant. Boiling nitric acid is applied to dissolve oxide spent nuclear fuel. In the boiling nitric acid solution, plant material corrodes severely and intergranular corrosion is observed in stainless steels. In order to avoid corrosion in such severe environment, some equipment in the plants has been made of zirconium, which has excellent corrosion resistance in nitric acid solutions. However, it has been known that zirconium has stress corrosion cracking (SCC) susceptibility in concentrated HNO3 with nobler corrosion potential. Nobler corrosion potential causes breakdowns of passive film having excellent protective performance and raises SCC susceptibility of zirconium in nitric acid solutions. Therefore, it is important to clarify the relationship among potential, growth and the breakdown of oxide film for the SCC initiation mechanism. In this study, we investigated the oxide film growth of zirconium with various potentials in boiling nitric acid solutions. Electrochemical tests and immersion tests with various applied potentials conducted in boiling 3. 6 and 9 mol.dm-3 HNO3. The potentials in the immersion tests were set at 1.3, 1.4 and 1.5 V vs. sat. KCl-Ag/AgCl electrode (SSE). These were in the region of trans-passive state of zirconium in boiling nitric acid solution. The test durations were 10, 100 and 500 h. After the corrosion tests, cross-sectional observations of oxide films were conducted. From the results of anodic polarization curves of zirconium in boiling nitric acid, passivity region was observed through rest potential to about 1.5 V in boiling 6 mol.dm-3 HNO3. Rapid increase of current density was observed at the potential attributed to transition from passivity

  18. Fabrication of carbon nanotube films from alkyne-transition metal complexes

    Science.gov (United States)

    Iyer, Vivekanantan S.; Vollhardt, K. Peter C.

    2007-08-28

    A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

  19. Evaporation of water and uptake of HCl and HBr through hexanol films at the surface of supercooled sulfuric acid.

    Science.gov (United States)

    Glass, Samuel V; Park, Seong-Chan; Nathanson, Gilbert M

    2006-06-22

    Vacuum evaporation and molecular beam scattering experiments have been used to monitor the loss of water and dissolution of HCl and HBr in deuterated sulfuric acid at 213 K containing 0 to 100 mM hexanol. The addition of 1-hexanol to the acid creates a surface film of hexyl species. This film becomes more compact with decreasing acidity, ranging from approximately 62% to approximately 68% of maximum packing on 68 to 56 wt % D(2)SO(4), respectively. D(2)O evaporation from 68 wt % acid remains unaltered by the hexyl film, where it is most porous, but is impeded by approximately 20% from 56 and 60 wt % acid. H --> D exchange experiments further indicate that the hexyl film on 68 wt % acid enhances conversion of HCl and HBr into DCl and DBr, which is interpreted as an increase in HCl and HBr entry into the bulk acid. For this permeable hexyl film, the hydroxyl groups of surface hexanol molecules may assist uptake by providing extra sites for HCl and HBr hydrogen bonding and dissociation. In contrast, HCl --> DCl exchange in 60 wt % D(2)SO(4) at first rises with hexyl surface coverage but then drops back to the bare acid value as the hexyl species pack more tightly. HCl entry is actually diminished by the hexyl film on 56 wt % acid, where the film is most compact. These experiments reveal a transition from a porous hexanol film on 68 wt % sulfuric acid that enhances HCl and HBr uptake to one on 56 wt % acid that slightly impedes HCl and D(2)O transport.

  20. Quantum chemical prediction of paramagnetic NMR spectra of lanthanide complexes with salicylic acid in water solution

    International Nuclear Information System (INIS)

    17O and 13C paramagnetic NMR (PNMR) shifts have been calculated for Gd complexes with salicylic acid in water solution. These complexes served us as model compounds for simulation of more complicated lanthanide complexes with humic acids. The obtained data demonstrate that paramagnetic NMR spectra are very sensitive to the bonding details of the ligand. Our calculations suggest that formation of Gd(III) complex with salicylic acid in water solution via carboxyl group with uni-dentate coordination is preferable. New experimental studies with the enriched 17O and 13C nuclei of carboxylate groups of the salicylic and humic acids are extremely desirable

  1. Solar-thermochromism of pseudocrystalline nanodroplets of ionic liquid-Ni{sup II} complexes immobilized inside translucent microporous PVDF films

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xianjun; Yu, Linpo; Jin, Xianbo; Wang, Dihua [College of Chemistry and Molecular Sciences, Wuhan University Wuhan (China); Chen, George Z. [College of Chemistry and Molecular Sciences, Wuhan University Wuhan (China); Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom)

    2009-02-16

    Translucent composite films of poly(vinylidene fluoride), ionic liquid, and nickel complexes are successfully fabricated using thermal modulation of dissolution, casting, and drying. These films exhibit high stability in ambient storage and reversible thermochromic responses in air at temperatures achievable under sunlight, promising intelligent windows for controlling solar heat entering the built environment. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Wei, Aixiang, E-mail: weiax@gdut.edu.cn; Zhao, Yu

    2014-03-05

    Highlights: • To fabricate high quality ZnS films need to promote the ion-by-ion process and restrain cluster-by-cluster process. • The complexation ability of tri-sodium citrate is stronger than that of hydrazine hydrate. • The nucleation density of nuclei determine the performance of ZnS thin films. -- Abstract: Zinc sulfide (ZnS) thin films were deposited on glass substrates using the chemical bath deposition (CBD) technique. The effects of different complexing agents (tri-sodium citrate, hydrazine hydrate) and their concentrations on the structure, composition, morphology, optical properties and growth mechanism of ZnS thin films were investigated. The results indicated that the chemical-bath-deposited ZnS thin films exhibit poor crystallinity and a high Zn/S atomic ratio with an average transmittance of 75% in the range of visible light. The ZnS thin films prepared using hydrazine hydrate as the complexing agent present a more compact surface, a smaller average particle size, and a sharper absorption edge at 300–340 nm compared with those prepared using tri-sodium citrate. Based on our experimental observations and analysis, we conclude that the predominant growth mechanism of ZnS thin films is an ion-by-ion process. The nucleation density of Zn(OH){sub 2} nuclei on the substrate in the initial stage produces the different morphologies and properties of the ZnS thin films prepared using the two complexing agents.

  3. Thermodynamics of the complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions

    Science.gov (United States)

    Mudarisova, R. Kh.; Badykova, L. A.

    2016-03-01

    The thermodynamics of complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions is studied by means spectroscopy. The standard thermodynamic characteristics (Δ H°; Δ G°; Δ S°) of complexation are calculated.

  4. Biodegradable polyester films from renewable aleuritic acid: surface modifications induced by melt-polycondensation in air

    Science.gov (United States)

    Jesús Benítez, José; Alejandro Heredia-Guerrero, José; Inmaculada de Vargas-Parody, María; Cruz-Carrillo, Miguel Antonio; Morales-Flórez, Victor; de la Rosa-Fox, Nicolás; Heredia, Antonio

    2016-05-01

    Good water barrier properties and biocompatibility of long-chain biopolyesters like cutin and suberin have inspired the design of synthetic mimetic materials. Most of these biopolymers are made from esterified mid-chain functionalized ω-long chain hydroxyacids. Aleuritic (9,10,16-trihydroxypalmitic) acid is such a polyhydroxylated fatty acid and is also the major constituent of natural lac resin, a relatively abundant and renewable resource. Insoluble and thermostable films have been prepared from aleuritic acid by melt-condensation polymerization in air without catalysts, an easy and attractive procedure for large scale production. Intended to be used as a protective coating, the barrier's performance is expected to be conditioned by physical and chemical modifications induced by oxygen on the air-exposed side. Hence, the chemical composition, texture, mechanical behavior, hydrophobicity, chemical resistance and biodegradation of the film surface have been studied by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), nanoindentation and water contact angle (WCA). It has been demonstrated that the occurrence of side oxidation reactions conditions the surface physical and chemical properties of these polyhydroxyester films. Additionally, the addition of palmitic acid to reduce the presence of hydrophilic free hydroxyl groups was found to have a strong influence on these parameters.

  5. Optical and thermal properties of azo derivatives of salicylic acid thin films

    Science.gov (United States)

    Ghoneim, M. M.; El-Ghamaz, N. A.; El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Serag, L. S.

    2015-02-01

    N-acryloyl-4-aminosalicylic acid (4-AMSA), monomer (HL) and 5-(4‧-alkyl phenylazo)-N-acryloyl-4-aminosalicylic acid (HLn) are synthesized and characterized with various physico-chemical techniques. Thin films of 5-(4‧-alkyl phenylazo)-N-acryloyl-4-aminosalicylic acid (HLn) are prepared by spin coating technique. The X-ray diffraction (XRD) patterns of 4-aminosalicylic acid (4-ASA) and its derivatives are investigated in powder and thin film forms. Thermal properties of the compounds are investigated by thermogravemetric analysis (TGA). The optical energy gap and the type of optical transition are investigated in the wavelength range (200-2500 nm) for 4-ASA, HL and HLn. The values of fundamental energy gap (Eg) are in the range 3.60-3.69 eV for all compounds and the type of optical transition is found to be indirect allowed. The onset energy gap Eg∗ appeared only for azodye compounds is found to be in the range 0.95-1.55 eV depending on the substituent function groups. The refractive index, n, shows a normal dispersion in the wavelength range 650-2500 nm, while shows anomalous dispersion in the wavelength rang 200-650 nm. The dispersion parameters ε∞, εL, Ed, Eo and N /m∗ are calculated. The photoluminescence phenomena (PL) appear for thin films of 4-ASA and its derivatives show three main emission transitions.

  6. Biocatalyzed approach for the surface functionalization of poly(L-lactic acid) films using hydrolytic enzymes.

    Science.gov (United States)

    Pellis, Alessandro; Acero, Enrique Herrero; Weber, Hansjoerg; Obersriebnig, Michael; Breinbauer, Rolf; Srebotnik, Ewald; Guebitz, Georg M

    2015-09-01

    Poly(lactic acid) as a biodegradable thermoplastic polyester has received increasing attention. This renewable polyester has found applications in a wide range of products such as food packaging, textiles and biomedical devices. Its major drawbacks are poor toughness, slow degradation rate and lack of reactive side-chain groups. An enzymatic process for the grafting of carboxylic acids onto the surface of poly(L-lactic acid) (PLLA) films was developed using Candida antarctica lipase B as a catalyst. Enzymatic hydrolysis of the PLLA film using Humicola insolens cutinase in order to increase the number of hydroxyl and carboxylic groups on the outer polymer chains for grafting was also assessed and showed a change of water contact angle from 74.6 to 33.1° while the roughness and waviness were an order of magnitude higher in comparison to the blank. Surface functionalization was demonstrated using two different techniques, (14) C-radiochemical analysis and X-ray photoelectron spectroscopy (XPS) using (14) C-butyric acid sodium salt and 4,4,4-trifluorobutyric acid as model molecules, respectively. XPS analysis showed that 4,4,4-trifluorobutyric acid was enzymatically coupled based on an increase of the fluor content from 0.19 to 0.40%. The presented (14) C-radiochemical analyses are consistent with the XPS data indicating the potential of enzymatic functionalization in different reaction conditions.

  7. Structural investigations of complex perovskite oxide films with X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Boldyreva, Ksenia; Rata, Diana; Herklotz, Andreas; Bilani-Zeneli, Orkidia; Huehne, Ruben; Schultz, Ludwig; Doerr, Kathrin [IFW Dresden (Germany)

    2009-07-01

    The electronic and magnetic properties of many complex oxides are highly sensitive to external parameters which include mechanical deformation or strain. Thus, X-ray diffraction methods such as reciprocal space mapping are powerful and indispensable for the characterization of thin films, particularly for evaluating the in-plane strain state. The direct influence of strain on the magnetization of epitaxial La{sub 1-x}Sr{sub x}MnO{sub 3} (LSMO) films has been studied utilizing piezoelectric PMN-PT substrates. On the other hand, La{sub 1-x}Sr{sub x}CoO{sub 3} (LSCO) films also reveal large strain-induced changes of the magnetization and the electrical conductivity. Since the in-plane lattice parameter of the piezoelectric substrate, PMN-PT, of {proportional_to}4.02A is larger than that of most correlated oxides, LaSc{sub 1-x}Al{sub x}O{sub 3} (LSAO) has been explored as a buffer layer showing a lattice parameter that is tunable by the composition x. The lattice structure of (i) LSAO buffers depending on the composition and (ii) of magnetic films (LSMO, LSCO) grown in various strain states is discussed.

  8. Highly luminescent polycaprolactone films doped with diaquatris(thenoyltrifluoroacetonate)europium(III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Forster, Pedro L., E-mail: plforster@ipen.br [Nuclear and Energy Research Institute, National Nuclear Energy Commission, Avenida Professor Lineu Prestes 2242, Cidade Universitária, CEP 05508-000 São Paulo, SP (Brazil); Parra, Duclerc F., E-mail: dfparra@ipen.br [Nuclear and Energy Research Institute, National Nuclear Energy Commission, Avenida Professor Lineu Prestes 2242, Cidade Universitária, CEP 05508-000 São Paulo, SP (Brazil); Lugao, Ademar B. [Nuclear and Energy Research Institute, National Nuclear Energy Commission, Avenida Professor Lineu Prestes 2242, Cidade Universitária, CEP 05508-000 São Paulo, SP (Brazil); Kai, Jiang, E-mail: jkai@puc-rio.br [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente 225, Gávea, CEP 22451-900 Rio de Janeiro, RJ (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.br [Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, Cidade Universitária, CEP 05508-000 São Paulo, SP (Brazil)

    2015-11-15

    In this work we report the preparation, characterization, thermal and luminescence properties of highly luminescent polycaprolactone (PCL) polymer films incorporated with diaquatris(thenoyltrifluoroacetonate)europium(III) complex [Eu(tta){sub 3}(H{sub 2}O){sub 2}] (doping concentration at 1, 2, 5, 10 and 15 wt%). Thermogravimetry analysis (TGA) showed no weight loss in the range of 323–473 K for the polymeric systems, suggesting that the interaction between the polymer matrix and the Eu{sup 3+}-complex occurs when the carbonyl groups along the polymer backbone substitute the water molecules in the complex precursor. Differential scanning calorimetry (DSC) showed no significant changes in T{sub m} for the film samples, however crystallinity is affected by non combined complex in the polymer chains. The changes in the curve-fitted FTIR spectral areas for each component peak are gradually changed with the increase of doping concentration. The displacement of the C–O for the β-diketonate complex to new positions in PCLE systems provide good evidence that the metal ion is coordinated through the oxygen atoms deriving from PCL. The observation of characteristic emission bands arising from the {sup 5}D{sub 0}→{sup 7}F{sub J} transitions (J=0–4) dominated by the hypersensitive {sup 5}D{sub 0}→{sup 7}F{sub 2} transition at around 614 nm of Eu{sup 3+} ion indicates the incorporation of the Eu{sup 3+} ions in the system corroborating with the CHN and IR data. Luminescence quenching is observed, with the film of 5% doping concentration of the Eu{sup 3+} complexes showing the highest luminescence intensity among all samples. - Highlights: • Distribution of metal ion along polymer chains influences the fluorescence properties. • PCL acts as co-sensitizer to improve energy transfer from the tta{sup −} ligand to the Eu{sup 3+}. • PCL polymer films doped with Eu{sup 3+} enhance quantum yield and lifetimes. • PCL doping process restrains the polymeric

  9. Photoluminescent study of Polycarbonate (PC) and Poly(9-vinylcarbazole) (PVK) doped films with europium complex

    International Nuclear Information System (INIS)

    Polymers doped with rare earth complexes are advantaged in film production for many applications in the luminescent field. In this study luminescent polymer obtained from polycarbonate (PC) and poly(9-vinylcarbazole) films doped with diaquatris(thenoyltrifluoroacetonate)europium(III) complex [Eu(tta)3(H20)2] were prepared and their calorimetric and luminescent properties in the solid state are reported. The thermal behavior was investigated by differential scanning calorimetry (OSC) and thermogravimetry analysis (TGA). Due of the addition of rare earth Eu(tta)3(H20)2] into PC and PVK matrices, changes were observed in the thermal behavior concerning the glass transition and thermal stability. Characteristic broadened narrow bands arising from the 5D0 -→ 7FJ transitions (J = 0-4) of Eu3+ ion indicate the incorporation of the Eu3+ ions into those polymers. The luminescent films show enhancement emission intensity with an increase in the rare earth concentration in polymeric matrix accompanied by decrease in thermal stability. (author)

  10. CdS thin films obtained by thermal treatment of cadmium(II) complex precursor deposited by MAPLE technique

    International Nuclear Information System (INIS)

    Thin films of [Cd{SSi(O-But)3}(S2CNEt2)]2, precursor for semiconducting CdS layers, were deposited on silicon substrates by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. Structural analysis of the obtained films by Fourier transform infrared spectroscopy (FTIR) confirmed the viability of the procedure. After the deposition of the coordination complex, the layers are manufactured by appropriate thermal treatment of the system (thin film and substrate), according to the thermal analysis of the compound. Surface morphology of the thin films was investigated by atomic force microscopy (AFM) and spectroscopic-ellipsometry (SE) measurements.

  11. Chemical sporulation and germination: cytoprotective nanocoating of individual mammalian cells with a degradable tannic acid-FeIII complex

    Science.gov (United States)

    Lee, Juno; Cho, Hyeoncheol; Choi, Jinsu; Kim, Doyeon; Hong, Daewha; Park, Ji Hun; Yang, Sung Ho; Choi, Insung S.

    2015-11-01

    Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-FeIII nanocoat effectively protected the coated mammalian cells against UV-C irradiation and a toxic compound. More importantly, the cell proliferation was controlled by programmed formation and degradation of the TA-FeIII nanocoat, mimicking the sporulation and germination processes found in nature.Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-FeIII nanocoat effectively protected the coated mammalian cells against UV-C irradiation and a toxic compound. More importantly, the cell proliferation was controlled by programmed formation and degradation of the TA-FeIII nanocoat, mimicking the sporulation and germination processes found in nature. Electronic supplementary information (ESI) available: Experimental details, LSCM images, and SEM and TEM images. See DOI: 10.1039/c5nr05573c

  12. Influences of acid on molecular forms of fluorescein and photoinduced electron transfer in fluorescein-dispersing sol-gel titania films.

    Science.gov (United States)

    Nishikiori, Hiromasa; Setiawan, Rudi Agus; Miyashita, Kyohei; Teshima, Katsuya; Fujii, Tsuneo

    2014-01-01

    Fluorescein-dispersing titania gel films were prepared by the acid-catalyzed sol-gel reaction using a titanium alkoxide solution containing fluorescein. The molecular forms of fluorescein in the films, depending on its acid-base equilibria, and the complex formation and photoinduced electron transfer process between the dye and titania surface were investigated by fluorescence and photoelectric measurements. The titanium species were coordinated to the carboxylate and phenolate-like groups of the fluorescein species. The quantum efficiencies of the fluorescence quenching and photoelectric conversion were higher upon excitation of the dianion species interacting with the titania, i.e. the dye-titania complex. This result indicated that the dianion form was the most favorable for formation of the dye-titania complex exhibiting the highest electron transfer efficiency. Using nitric acid as the catalyst, the titania surface bonded to the fluorescein instead of the adsorbed nitrate ion during the steam treatment. The dye-titania complex formation played an important role in the electron injection from the dye to the titania conduction band.

  13. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    Science.gov (United States)

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging

  14. Synthesis, Characterization of α-Oxopentanedioic Acid-Isonicotinoyl Hydrazone Rare Earth-Complexes and Relaxivity of Gd-complex

    Institute of Scientific and Technical Information of China (English)

    杨正银; 杨汝栋

    2004-01-01

    α-Oxopentanedioic acid isonicotinoyl hydrazone (H2L) and its five rare earth complexes were synthesized with a view to further investigating MRI activities of the polycarboxylic Schiff base complexes. The complexes were characterized on the basis of elemental analyses, IR, UV, 1H NMR spectra and thermal analyses. The general formula of the complexes is [Ln(HL)(H2O)2]Cl2·H2O (where Ln(Ⅲ)=La, Pr, Nd, Eu and Gd). In addition, the relaxivity (R1) of the Gd-complex was determined by INVREC Au program.

  15. Starch-based Antimicrobial Films Incorporated with Lauric Acid and Chitosan

    Science.gov (United States)

    Salleh, E.; Muhamad, I. I.

    2010-03-01

    Antimicrobial (AM) packaging is one of the most promising active packaging systems. Starch-based film is considered an economical material for antimicrobial packaging. This study aimed at the development of food packaging based on wheat starch incorporated with lauric acid and chitosan as antimicrobial agents. The purpose is to restrain or inhibit the growth of spoilage and/or pathogenic microorganisms that are contaminating foods. The antimicrobial effect was tested on B. substilis and E. coli. Inhibition of bacterial growth was examined using two methods, i.e. zone of inhibition test on solid media and liquid culture test (optical density measurements). The control and AM films (incorporated with chitosan and lauric acid) were produced by casting method. From the observations, AM films exhibited inhibitory zones. Interestingly, a wide clear zone on solid media was observed for B. substilis growth inhibition whereas inhibition for E. coli was not as effective as B. substilis. From the liquid culture test, the AM films clearly demonstrated a better inhibition against B. substilis than E. coli.

  16. Investigation of Carboxylic Acid-Neodymium Conversion Films on Magnesium Alloy

    Science.gov (United States)

    Cui, Xiufang; Liu, Zhe; Lin, Lili; Jin, Guo; Wang, Haidou; Xu, Binshi

    2015-01-01

    The new carboxylic acid-neodymium anhydrous conversion films were successfully prepared and applied on the AZ91D magnesium alloy surface by taking absolute ethyl alcohol as solvent and four kinds of soluble carboxylic acid as activators. The corrosion resistance of the coating was measured by potentiodynamic polarization test in 3.5 wt.% NaCl solution in pH 7.0. The morphology, structure, and constituents of the coating were observed by scanning electron microscope, energy dispersivespectrum, x-ray photoelectron spectrum, and Fourier infrared spectrometer. Results show that corrosion resistance properties of samples coated with four different anhydrous conversion films were improved obviously. The corrosion potential increased, corrosion current density decreased, and polarization resistance increased. Among these four kinds of conversion films the one added with phytic exhibits the best corrosion resistant property. The mechanism of anhydrous-neodymium conversion film formation is also analyzed in this paper. It reveals that the gadolinium conversion coating is mainly composed of stable Nd2O3, MgO, Mg(OH)2, and carboxylate of Nd. And that the sample surface is rich in organic functional groups.

  17. Oxidation states of molybdenum in oxide films formed in sulphuric acid and sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Okonkwo, I.A.; Doff, J.; Baron-Wiechec, A. [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Jones, G. [Waters Corporation, Floats Rd, Roundthorn Ind. Est., Manchester M23 9LZ (United Kingdom); Koroleva, E.V. [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Skeldon, P., E-mail: p.skeldon@manchester.ac.uk [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2012-07-31

    X-ray photoelectron spectroscopy is used to investigate the oxidation states of molybdenum in thin films formed potentiostatically, over a range of potentials, in either 1 mol dm{sup -3} H{sub 2}SO{sub 4} or 10 mol dm{sup -3} NaOH at 20 Degree-Sign C. Mo 3d spectra suggested that MoO{sub 2} and Mo(OH){sub 2} were the main components of the films, with smaller amounts of MoO{sub 3} and possibly Mo{sub 2}O{sub 5}. O 1s spectra indicated the presence of oxygen as oxide and hydroxide species and as bound water. Ion beam analysis revealed the formation of thin films at all potentials, with significant losses of oxidized molybdenum to the electrolyte. - Highlights: Black-Right-Pointing-Pointer Oxides are formed on molybdenum in sulphuric acid and sodium hydroxide solutions. Black-Right-Pointing-Pointer Molybdenum IV and VI are identified by XPS, with MoO2 species dominating. Black-Right-Pointing-Pointer Thicknesses of films are determined by ion beam analysis for a range of potentials. Black-Right-Pointing-Pointer Films form at low efficiency due to loss of molybdenum species to electrolyte.

  18. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment.

    Science.gov (United States)

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David

    2015-12-16

    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved.

  19. Preparation of Porous Alumina Film on Aluminum Substrate by Anodization in Oxalic Acid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Self-ordering of the cell arrangement of the anodic porous alumina was prepared in oxalic acid solution at a constant potential of 40V and at a temperature of 20°C. The honeycomb structure made by one step anodization method and two step anodization method is different.Pores in the alumina film prepared by two step anodization method were more ordered than those by one step anodization method.

  20. Study of Complexes of Lanthanum with Amino Acids by Titration Calorimeter

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The stability constants and thermodynamic functions for complexes of lanthanum with eight kind of amino acids according to 1:1 and 1:2 in proportion have been determined by titration calorimeter at 298. 15 K. The enthalpy change makes a predominant contribution to the stability of these complexes. The ring in amino acid associated with lanthanum ion helps to enhance the stability of complexes. Steric effectsbetween rings in complexes leads to that the equilibrium constants of reaction of the complexes (1:2) ismuch less than that of the complexes (l:1).

  1. Complex behaviour of vacancy point-defects in SrRuO3 thin films.

    Science.gov (United States)

    Schraknepper, Henning; Bäumer, Christoph; Dittmann, Regina; De Souza, Roger A

    2015-01-14

    The behaviour of point defects in thin, epitaxial films of the oxide electrode SrRuO3 was probed by means of diffusion measurements. Thin-film SrRuO3 was deposited by means of pulsed laser deposition (PLD) on (100) oriented, undoped single crystal SrTiO3 substrates. (16)O/(18)O exchange anneals were employed to probe the behavior of oxygen vacancies. Anneals were performed in the temperature range 850 ≤T/K≤ 1100 at an oxygen partial pressure of pO2 = 500 mbar. Samples were subsequently analyzed by means of Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The measured oxygen isotope penetration profiles comprised, surprisingly, two features. Oxygen tracer diffusion coefficients determined for thin-film SrRuO3 are amongst the lowest measured for nominally undoped perovskite-type oxides. The activation enthalpy of oxygen tracer diffusion was found to be ≈ 2 eV. Diffusion of Ti from the SrTiO3 substrates into the SrRuO3 thin films, probing the cation defects, was also observed in ToF-SIMS profiles; here, too, the diffusion profiles showed two features. The activation enthalpy of titanium diffusion was found to be ΔHDTi≈ 4 eV. We propose a model-cation sublattice equilibration-that accounts for the appearance of two features in both anion and cation diffusion profiles. We suggest that the observed complex behavior arises from the metastable defect structure of PLD thin films and the unusual defect structure of SrRuO3. PMID:25413988

  2. Radiation grafting of 4-vinylpyridine onto PP-g-AAc hydrogel films, and its copper (II) complexes

    International Nuclear Information System (INIS)

    Complete text of publication follows. A new polymeric system consisting of a comb type copolymer of 4VP onto PAAc hydrogel, grafted onto PP film net-(PP-g-AAc)-g-4VP, was synthesized by gamma radiation in three consecutive steps. This polymeric system has better mechanical properties that the studied hydrogels, pH sensitivity and the ability to form complex with transition metal ions. The synthesized system has chelating ability with transition metal ions due to its structure containing nitrogen and oxygen atoms. In this work we present the swelling behavior of the supported comb-type hydrogel and its complexes with copper (II) ions in acidic aqueous medium. These systems were studied by IR, UVVis and EPR spectroscopy. Two critical pH values were found for net-(PP-g-AAc)-g-4VP at 4.5 and 7.2. Adsorption capacity of Cu(II) ions by the system is 40 mg/g dry polymer, the capacity increases with the increase of pH. The FTIR spectrum of the supported comb-type hydrogel-copper (II) complex shows the appearance of carboxilate groups due to the ion exchange reaction between the supported comb-type hydrogel and Cu(II) ions. The results suggest pH dependence and a coordination mechanism through carboxylate groups of acrylic acid and the nitrogen atom of the pyridine groups of the supported comb-type hydrogel is propose. The chelating ability and pH-responsive behavior of synthesized system make it an attractive material for possible applications in adsorption, enrichment and separation processes from low level wastewater. The authors are grateful to PAPIIT-UNAM, IN200108; CONACyT and Posgrado de Ingenieria, Facultad de Quimica, for support and to S. Castillo, F. Garcia and B. Leal from the ICN-UNAM, for technical assistance.

  3. Nanopatterned Protein Films Directed by Ionic Complexation with Water-Soluble Diblock Copolymers.

    Science.gov (United States)

    Kim, Bokyung; Lam, Christopher N; Olsen, Bradley D

    2012-06-12

    The use of ionic interactions to direct both protein templating and block copolymer self-assembly into nanopatterned films with only aqueous processing conditions is demonstrated using block copolymers containing both thermally responsive and pH responsive blocks. Controlled reversible addition-fragmentation chain-transfer (RAFT) polymerization is employed to synthesize poly(N-isopropylacrylamide-b-2-(dimethylamino)ethyl acrylate) (PNIPAM-b-PDMAEA) diblock copolymers. The pH-dependent ionic complexation between the fluorescent protein, mCherry, and the ionic PDMAEA block is established using dynamic light scattering (DLS) and UV-Vis spectroscopy. DLS shows that the size of the resulting coacervate micelles depends strongly on pH, while UV-Vis spectroscopy shows a correlation between the protein's absorption maximum and the ionic microenvironment. Zeta potential measurements clearly indicate the ionic nature of the complex-forming interactions. Spin casting was used to prepare nanostructured films from the protein-block copolymer coacervates. After film formation, the lower critical solution temperature (LCST) of the PNIPAM blocks allows the nanomaterial to be effectively immobilized in aqueous environments at physiological temperatures, enabling potential use as a controlled protein release material or polymer matrix for protein immobilization. At pH 9.2 and 7.8, the release rates are at least 10 times faster than that at pH 6.4 due to weaker interaction between protein and PNIPAM-b-PDMAEA (PND) diblock copolymer. Due to the ionic environment in which protein is confined, the majority of the protein (80%) remains active, independent of pH, even after having been dehydrated in vacuum and confined in the films. PMID:24904186

  4. Characterisation of quaternary polymethacrylate films containing tartaric acid, metoprolol free base or metoprolol tartrate.

    Science.gov (United States)

    Glaessl, B; Siepmann, F; Tucker, I; Siepmann, J; Rades, T

    2009-11-01

    The aim of this study was to better understand the interactions between metoprolol tartrate and quaternary polymethacrylate (Eudragit RL and Eudragit RS) films. For reasons of comparison, polymeric films containing the free base metoprolol or free tartaric acid were also prepared. Systems containing various amounts of the free base, free acid and the salt were characterised using polarising light microscopy, X-ray powder diffraction, differential scanning calorimetry and mechanical analysis (puncture test). The free base is the most efficient plasticiser of the three species for Eudragit RL and Eudragit RS, but with limited solubility in the polymers. Due to its hydrophobicity, it can interact with the hydrophobic polymer backbones. In contrast, in salt containing films, ionic interactions between the positively charged quaternary ammonium groups and the negatively charged tartrate anions apparently occur, this being suggested by the different effects on Eudragit RL versus RS, which have different contents of quaternary ammonium groups. Importantly, the combination of acid and base as a salt avoids drug precipitation at higher metoprolol contents. The obtained new insight into the occurring drug-polymer interactions can help to facilitate the development/optimisation of this type of dosage forms.

  5. Electrical conduction of polyimide films prepared from polyamic acid (PAA and pre-imidized polyimide (PI solution

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available Electrical conduction characteristics in two different polyimide films prepared by the imidization of polyamic acid (PAA and pre-imidized polyimide (PI solution were investigated. It is found that the current density of the polyimide film from PAA was higher than that of the polyimide film from PI at the same electric field, even though the conduction mechanism in both polyimide films follows the ionic hopping model. The hopping distance was calculated to be 2.8 nm for PAA type and 3.2 nm for PI type polyimide film. It is also found that the decay rate of the residual electrostatic charges on the polyimide films becomes faster in the PAA type than in the PI type polyimide film.

  6. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic); Goncharova, I. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague (Czech Republic); Kolarova, K.; Svanda, J.; Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2015-04-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag{sup +} had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag{sup +} doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching.

  7. Syntheses and characterizations of three acid-base supramolecular complexes

    International Nuclear Information System (INIS)

    Three acid-base compounds with supramolecular architectures, namely, (1,2-H2bdc)(dmt) (1), (trans-1,4-H2ccdc)0.5(phdat) (2) and (1,3-H2bdc)(phdat) (3) (1,2-H2bdc = 1,2-benzenedicarboxylic acid, trans-1, 4-H2ccdc = trans-1, 4-cyclohexanedicarboxylic acid, 1,3-H2bdc = 1,3-benzenedicarboxylic acid, dmt = 2,4-diamino-6-methyl-s-triazine, phdat = 2,4-diamino-6-phenyl-s-triazine) have been synthesized and characterized by IR spectra, elemental analyses, single-crystal X-ray diffractions and TGA. (author)

  8. Spectrophotometric study into complexing of vanadium(3) with salicylic acid derivatives

    International Nuclear Information System (INIS)

    Complexing of vanadium (3) with 5 amino-salicylic acid and amide of salicylhydroxamic acid has been studied. It has been shown that in acidic medium V3+ forms yellow complexes of the composition 1:1 with instability constants 2.2x10-19, 7.8x10-11, and 2.2x10-12, respectively. Complexes of V3+ with derivatives of salicylic acid can be used for determining V(3) content in the presence of V(4)

  9. Fluorescence of complexes of Eu( Ⅱ ) with aromatic carboxylic acid-1, 1O-phenanthroline

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The 1, 10-phenanthroline-aromatic carboxylic acid (benzoic acid and o-phthalic acid) binary and ternary complexes of europium were synthesized. The fluorescence and FT-IR spectroscopy, elemental analysis, UV spectroscopic studies on these complexes were also performed. These complexes can emit strong red fluorescence of Eu( m ) excited by UV light. At the same excited wavelength, the fluorescence spectra of the complexes were also studied. The results indi cated that the fluorescence intensities of ternary complexes are stronger than that of binary complexes. The reason is that phenanthroline has higher electron density and higher orbit scope in the conjugated system and consequently an easier ener gy transfer to the europium ion, which makes the fluorescence intensity of ternary complexes be stronger than that of bi nary complexes.

  10. Peptide Nucleic Acids Complexes of Two Peptide Nucleic Acid Strands and One

    DEFF Research Database (Denmark)

    1999-01-01

    Peptide nucleic acids and analogues of peptide nucleic acids are used to form duplex, triplex, and other structures with nucleic acids and to modify nucleic acids. The peptide nucleic acids and analogues thereof also are used to modulate protein activity through, for example, transcription arrest...

  11. Interface Engineering of Organic Thin Film Transistors with Self-assembled Organophosphonic Acids

    Science.gov (United States)

    Liu, Danqing

    Organic thin film transistors (OTFTs) are interface devices with their performance highly dependent on the interface between organic semiconductors and gate dielectrics no matter whether the organic semiconductors are processed by vacuum deposition or solution-based methods. Detailed in this thesis are studies of interface engineering for OTFTs with self-assembled organophosphonic acids, which play important roles in tuning the properties of the dielectric surface for high-performance OTFTs. The poor crystallinity of rubrene in conventional vacuum deposited films is a well-known obstacle limiting practical applications of rubrene in thin film transistors. As described in Chapter 2, a template layer of diazapentacene (DAP) is introduced to induce crystallization of rubrene in thin film transistors. This study demonstrates that DAP is a suitable template molecule with negligible contribution to the conduction channel leading to polycrystalline thin films of rubrene with field effect mobility as high as 0.68 cm2 V --1 s--1. This induced-crystallization strategy highly depends on a unique octadecylphosphonic acid (ODPA) bilayer-step surface, which plays important roles in controlling the growth of both DAP and rubrene. In solution-processed OTFTs, one key factor that affects the nucleation and growth of semiconductor molecules during solution-based processing is the wetting behavior of the semiconductor solution on the dielectric surface. Reported in Chapter 3 is a new strategy for preparing solution-processed OTFTs based on enhancing the surface energy of self-assembled monolayers (SAMs) by inserting polar oxygen atoms into the long alkyl chain of phosphonic acids. SAMs of these phosphonic acids on a high-k metal oxide layer of AlOy /TiOx lead to solution-processed n-channel OTFTs with high field effect mobility of up to 2.5 cm2 V--1 s--1 and low operational voltage. Chapter 4 puts forth a new design of SAMs for interface engineering of high-performance OTFTs. This

  12. Constitution of novel polyamic acid/polypyrrole composite films by in-situ electropolymerization

    International Nuclear Information System (INIS)

    The preparation and characterization of polyamic acid-polypyrrole (PAA/PPy) composite films are reported in this paper. The thin films were synthesized by electrochemical method from a solution containing controlled molar ratio of chemically synthesized polyamic acid (PAA) and pyrrole monomer. Homogenous films were obtained by incorporating PAA into electropolymerized polypyrrole (PPy) thin film. The concentration of PAA (1.37 × 10−6 M) was kept fixed throughout the composite ratio analysis, whilst the concentration of PPy was varied from 1.90 × 10−3 M to 9.90 × 10−3 M. The PAA/PPy thin films were electrodeposited at a glassy carbon electrode (GCE) and characterized using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Atomic force microscopy (AFM), Scanning electron microscopy (SEM) and voltammetry. The composition that best represented the homogenous incorporation of PAA into PPy matrix was observed at a PAA/PPy ratio of 1: 4.13 × 10−3. This composite was observed to have two sets of coupled peaks with formal potential 99 mV and 567 mV respectively. The De determined from cyclic voltammetry using the anodic peak currents were found to be twice as high (5.82 × 10−4 cm2/s) compared to the De calculated using the cathodic peak currents (2.60 × 10−4 cm2/s), indicating that the composite favours anodic electron mobility. Surface morphology and spectroscopy data support the formation of a homogenous polymer blend at the synthesis ratio of 1: 4.13 × 10−3

  13. Laser-induced periodic surface structures of thin, complex multi-component films

    Science.gov (United States)

    Reif, Juergen; Varlamova, Olga; Ratzke, Markus; Uhlig, Sebastian

    2016-04-01

    Femtosecond laser-induced regular nanostructures are generated on a complex multilayer target, namely a piece of a commercial, used hard disk memory. It is shown that after single-shot 800-nm irradiation at 0.26 J/cm2 only the polymer cover layer and—in the center—a portion of the magnetic multilayer are ablated. A regular array of linearly aligned spherical 450-nm features at the uncovered interface between cover and magnetic layers appears not to be produced by the irradiation. Only after about 10 pulses on one spot, classical ripples perpendicular to the laser polarization with a period of ≈700 nm are observed, with a modulation between 40 nm above and 40 nm below the pristine surface and an ablation depth only slightly larger than the thickness of the multilayer magnetic film. Further increase of the pulse number does not result in deeper ablation. However, 770-nm ripples become parallel to the polarization and are swelling to more than 120 nm above zero, much more than the full multilayer film thickness. In the spot periphery, much shallower 300-nm ripples are perpendicular to the strong modulation and the laser polarization. Irradiation with 0.49-J/cm2 pulses from an ultrafast white-light continuum results—in the spot periphery—in the formation of 200-nm ripples, only swelling above zero after removal of the polymer cover, without digging into the magnetic film.

  14. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.

    Science.gov (United States)

    Goh, Kunli; Heising, Jenneke K; Yuan, Yang; Karahan, Huseyin E; Wei, Li; Zhai, Shengli; Koh, Jia-Xuan; Htin, Nanda M; Zhang, Feimo; Wang, Rong; Fane, Anthony G; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan

    2016-04-20

    Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor and oxygen barrier properties compared to many petroleum-derived ones. A key challenge is, therefore, to simultaneously enhance both the water vapor and oxygen barrier properties of the PLA food packaging. To address this issue, we design a sandwich-architectured PLA-graphene composite film, which utilizes an impermeable reduced graphene oxide (rGO) as the core barrier and commercial PLA films as the outer protective encapsulation. The synergy between the barrier and the protective encapsulation results in a significant 87.6% reduction in the water vapor permeability. At the same time, the oxygen permeability is reduced by two orders of magnitude when evaluated under both dry and humid conditions. The excellent barrier properties can be attributed to the compact lamellar microstructure and the hydrophobicity of the rGO core barrier. Mechanistic analysis shows that the large rGO lateral dimension and the small interlayer spacing between the rGO sheets have created an extensive and tortuous diffusion pathway, which is up to 1450-times the thickness of the rGO barrier. In addition, the sandwiched architecture has imbued the PLA-rGO composite film with good processability, which increases the manageability of the film and its competency to be tailored. Simulations using the PLA-rGO composite food packaging film for edible oil and potato chips also exhibit at least eight-fold extension in the shelf life of these oxygen and moisture sensitive food products. Overall, these qualities have demonstrated the high potential of a sandwich-architectured PLA-graphene composite film for food packaging applications.

  15. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties.

    Science.gov (United States)

    Aulin, Christian; Karabulut, Erdem; Tran, Amy; Wågberg, Lars; Lindström, Tom

    2013-08-14

    The layer-by-layer (LbL) deposition method was used for the build-up of alternating layers of nanofibrillated cellulose (NFC) or carboxymethyl cellulose (CMC) with a branched, cationic polyelectrolyte, polyethyleneimine (PEI) on flexible poly (lactic acid) (PLA) substrates. With this procedure, optically transparent nanocellulosic films with tunable gas barrier properties were formed. 50 layer pairs of PEI/NFC and PEI/CMC deposited on PLA have oxygen permeabilities of 0.34 and 0.71 cm(3)·μm/m(2)·day·kPa at 23 °C and 50% relative humidity, respectively, which is in the same range as polyvinyl alcohol and ethylene vinyl alcohol. The oxygen permeability of these multilayer nanocomposites outperforms those of pure NFC films prepared by solvent-casting. The nanocellulosic LbL assemblies on PLA substrates was in detailed characterized using a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) reveals large structural differences between the PEI/NFC and the PEI/CMC assemblies, with the PEI/NFC assembly showing a highly entangled network of nanofibrils, whereas the PEI/CMC surfaces lacked structural features. Scanning electron microscopy images showed a nearly perfect uniformity of the nanocellulosic coatings on PLA, and light transmittance results revealed remarkable transparency of the LbL-coated PLA films. The present work demonstrates the first ever LbL films based on high aspect ratio, water-dispersible nanofibrillated cellulose, and water-soluble carboxymethyl cellulose polymers that can be used as multifunctional films and coatings with tailorable properties, such as gas barriers and transparency. Owing to its flexibility, transparency and high-performance gas barrier properties, these thin film assemblies are promising candidates for several large-scale applications, including flexible electronics and renewable packaging. PMID:23834391

  16. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.

    Science.gov (United States)

    Goh, Kunli; Heising, Jenneke K; Yuan, Yang; Karahan, Huseyin E; Wei, Li; Zhai, Shengli; Koh, Jia-Xuan; Htin, Nanda M; Zhang, Feimo; Wang, Rong; Fane, Anthony G; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan

    2016-04-20

    Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor and oxygen barrier properties compared to many petroleum-derived ones. A key challenge is, therefore, to simultaneously enhance both the water vapor and oxygen barrier properties of the PLA food packaging. To address this issue, we design a sandwich-architectured PLA-graphene composite film, which utilizes an impermeable reduced graphene oxide (rGO) as the core barrier and commercial PLA films as the outer protective encapsulation. The synergy between the barrier and the protective encapsulation results in a significant 87.6% reduction in the water vapor permeability. At the same time, the oxygen permeability is reduced by two orders of magnitude when evaluated under both dry and humid conditions. The excellent barrier properties can be attributed to the compact lamellar microstructure and the hydrophobicity of the rGO core barrier. Mechanistic analysis shows that the large rGO lateral dimension and the small interlayer spacing between the rGO sheets have created an extensive and tortuous diffusion pathway, which is up to 1450-times the thickness of the rGO barrier. In addition, the sandwiched architecture has imbued the PLA-rGO composite film with good processability, which increases the manageability of the film and its competency to be tailored. Simulations using the PLA-rGO composite food packaging film for edible oil and potato chips also exhibit at least eight-fold extension in the shelf life of these oxygen and moisture sensitive food products. Overall, these qualities have demonstrated the high potential of a sandwich-architectured PLA-graphene composite film for food packaging applications. PMID:27028268

  17. Antioxidant activity of bovine serum albumin binding amino acid Schiff-bases metal complexes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Glutamic acid-salicylaldehyde Schiff-base metal complexes are bound into bovine serum albumin (BSA), which afforded BSA binding Schiff-base metal complexes (BSA-SalGluM, M=Cu, Co, Ni, Zn). The BSA binding metal complexes were characterized by UV-vis spectra and Native PAGE. It showed that the protein structures of BSA kept after coordinating amino acid Schiff-bases metal complexes. The effect of the antioxidant activity was investigated. The results indicate that the antioxidant capacity of BSA increased more than 10 times after binding Schiff-base metal complexes.

  18. Ferulic acid-coupled chitosan: thermal stability and utilization as an antioxidant for biodegradable active packaging film.

    Science.gov (United States)

    Woranuch, Sarekha; Yoksan, Rangrong; Akashi, Mitsuru

    2015-01-22

    The aim of the present research was to study the thermal stability of ferulic acid after coupling onto chitosan, and the possibility of using ferulic acid-coupled chitosan (FA-CTS) as an antioxidant for biodegradable active packaging film. FA-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperatures up to 150°C followed by blown film extrusion at temperatures up to 175°C. Although incorporation of FA-CTS with a content of 0.02-0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the biodegradable films possessed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of film containing FA-CTS were higher than those of film containing naked ferulic acid, by about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by the addition of FA-CTS with a content of 0.02-0.08% (w/w). The above results suggested that FA-CTS could potentially be used as an antioxidant for active packaging film.

  19. Photoactive layer-by-layer films of cellulose phosphate and titanium dioxide containing phosphotungstic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Sajjad [Instituto de Química de São Carlos, Universidade de São Paulo, PO Box 780, São Carlos, São Paulo 13564-970 (Brazil); Acuña, José Javier Sáez [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo Andre, Sao Paulo, 09210-170 (Brazil); Pasa, André Avelino [Surface and Thin Film Laboratory, Physics Department, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900 (Brazil); Bilmes, Sara A. [Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Instituto de Química Física de los Materiales, Medio Ambiente y Energía – INQUIMAE, Ciudad Universitaria, Pab. 2, Buenos Aires C1428EHA (Argentina); Vela, Maria Elena; Benitez, Guillermo [Laboratorio de Nanoscopías y Fisicoquímica de Superficies, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata – CONICET, diagonal 113 esquina 64. C.C.16.Suc.4, 1900 La Plata (Argentina); Rodrigues-Filho, Ubirajara Pereira, E-mail: uprf@iqsc.usp.br [Instituto de Química de São Carlos, Universidade de São Paulo, PO Box 780, São Carlos, São Paulo 13564-970 (Brazil)

    2013-07-15

    A versatile layer-by-layer (LbL) procedure for the preparation of highly dispersed, adherent and porous multilayer films of TiO{sub 2} nanoparticles (NPs) and phosphotungstic acid (HPW) on a variety of substrates at room temperature was developed based on the use of cellulose phosphate (CP) as an efficient and non-conventional polyelectrolyte. UV/vis absorption spectroscopy confirmed the linear and regular growth of the films with the number of immersion cycles and a strong adsorption ability of CP towards TiO{sub 2} NPs. FTIR spectroscopy showed that HPW binds to the surface of TiO{sub 2} through the oxygen atom at the corner of the Keggin structure. XPS results showed that the interaction between TiO{sub 2} and CP is through Ti–O–P linkage. A model is proposed for the TiO{sub 2}–HPW interaction based on XPS and FTIR results. FEG/SEM study of the surface morphology revealed a porous film structure with a homogenous distribution of the TiO{sub 2} NPs induced by CP. HRTEM studies showed that the resulting composite films consist of crystalline anatase and rutile phases and poly-nano-crystalline HPW with a semi-crystalline TiO{sub 2}–HPW interface. These CP/TiO{sub 2} and CP/TiO{sub 2}/HPW LbL films showed good photoactivity against both saturated and unsaturated species, for instance, stearic acid (SA), crystal violet (CV) and methylene blue (MB) under UV irradiation. The CP/HPW films formed on bacterial cellulose (BC) showed good photochromic response which is enhanced in presence of TiO{sub 2} due to an interfacial electron transfer from TiO{sub 2} to HPW. This simple and environmentally safe method can be used to form coatings on a variety of surfaces with photoactive TiO{sub 2} and TiO{sub 2}/HPW films.

  20. Neodymium(3) complexing with bischloromethylphosphinic acid in aqueous solution

    International Nuclear Information System (INIS)

    High resolution spectrography is used to study Nd3+ complexing with (ClCH2)2POOH(HL) in aqueous solution. NdL2+ complex (lg Kstab = 0.44±0.04) with the corresponding absorption band with a maximum at λ=4283 A is formed in a system

  1. Organic Film Photovoltaic Cells with Gadolinium Complex as an Electron Acceptor

    Institute of Scientific and Technical Information of China (English)

    范镝; 初蓓; 李文连; 洪自若

    2004-01-01

    A series of organic photovoltaic (PV) cells in which the electron acceptor and donor are gadolinium (dibenzoylmethanato)3(bathophenanthroline) [Gd(DBM)3bath] and N,N′-diphenyl-N,N′bis(3-methylphenyl)-1,1′-diphenyl-4,4′-diamine [TPD], respectively, were fabricated. Although TPD acts as an active layer in the bilayered cells, insertion of a Gd-complex film between TPD and the alloy cathode is necessary for efficient carrier photogeneration. Open-circuit voltage of 3.2 V was obtained due to efficient exciton dissociation near the interface between Gd(DBM)3bath and TPD. By incorporating an ultrathin mixed layer of Gd-complex and TPD, external quantum efficiency is improved significantly. Photovoltaic performance of the devices has a common origin, exciplex formation, which results in broadband emission during both photoluminescent and the electroluminescent processes.

  2. Ascorbic acid and BSA protein in solution and films: interaction and surface morphological structure.

    Science.gov (United States)

    Maciel, Rafael R G; de Almeida, Adriele A; Godinho, Odin G C; Gorza, Filipe D S; Pedro, Graciela C; Trescher, Tarquin F; Silva, Josmary R; de Souza, Nara C

    2013-01-01

    This paper reports on the study of the interactions between ascorbic acid (AA) and bovine serum albumin (BSA) in aqueous solution as well as in films (BSA/AA films) prepared by the layer-by-layer technique. Regarding to solution studies, a hyperchromism (in the range of ultraviolet) was found as a function of AA concentration, which suggested the formation of aggregates from AA and BSA. Binding constant, K, determined for aggregates from BSA and AA was found to be about 10(2) M(-1), which indicated low affinity of AA with BSA. For the BSA/AA films, it was also noted that the AA adsorption process and surface morphological structures depended on AA concentration. By changing the contact time between the AA and BSA, a hypochromism was revealed, which was associated to decrease of accessibility of solvent to tryptophan due to formation of aggregates. Furthermore, different morphological structures of aggregates were observed, which were attributed to the diffusion-limited aggregation. Since most of studies of interactions of drugs and proteins are performed in solution, the analysis of these processes by using films can be very valuable because this kind of system is able to employ several techniques of investigation in solid state.

  3. Ascorbic Acid and BSA Protein in Solution and Films: Interaction and Surface Morphological Structure

    Directory of Open Access Journals (Sweden)

    Rafael R. G. Maciel

    2013-01-01

    Full Text Available This paper reports on the study of the interactions between ascorbic acid (AA and bovine serum albumin (BSA in aqueous solution as well as in films (BSA/AA films prepared by the layer-by-layer technique. Regarding to solution studies, a hyperchromism (in the range of ultraviolet was found as a function of AA concentration, which suggested the formation of aggregates from AA and BSA. Binding constant, , determined for aggregates from BSA and AA was found to be about 102 M−1, which indicated low affinity of AA with BSA. For the BSA/AA films, it was also noted that the AA adsorption process and surface morphological structures depended on AA concentration. By changing the contact time between the AA and BSA, a hypochromism was revealed, which was associated to decrease of accessibility of solvent to tryptophan due to formation of aggregates. Furthermore, different morphological structures of aggregates were observed, which were attributed to the diffusion-limited aggregation. Since most of studies of interactions of drugs and proteins are performed in solution, the analysis of these processes by using films can be very valuable because this kind of system is able to employ several techniques of investigation in solid state.

  4. Photoelectrocatalytic degradation of oxalic acid by spray deposited nanocrystalline zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, S.S. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Shinde, P.S. [Department of Nano-Engineering, Kyungnam University, Masan 631-701 (Korea, Republic of); Sapkal, R.T. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Oh, Y.W. [Department of Nano-Engineering, Kyungnam University, Masan 631-701 (Korea, Republic of); Haranath, D. [National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110 012 (India); Bhosale, C.H. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Rajpure, K.Y., E-mail: rajpure@yahoo.com [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Influence of substrate temperature onto the physico-chemical properties. Black-Right-Pointing-Pointer Photochemical, structural, luminescent, optoelectrical and thermal properties. Black-Right-Pointing-Pointer The kinetics of oxalic acid degradation with reaction mechanism. Black-Right-Pointing-Pointer Extent of mineralization by COD and TOC. - Abstract: The high quality nano-crystalline zinc oxide thin films are deposited onto corning glasses by spray pyrolysis technique. The influence of reaction temperature onto their photoelectrochemical, structural, morphological, optoelectronic, luminescence and thermal properties has been investigated. The structural characteristics studied by X-ray diffractometry has complemented by resistivity measurements and UV-Vis spectroscopy. The photoelectrochemical activity shows enhancement in short circuit current (I{sub sc} = 0.357 mA) and open circuit voltage (V{sub oc} = 0.48 V). Direct band gap calculated by considering R and T values of ZnO thin films increases from 3.14-3.21 eV exhibiting a slight blue shift in band edge. Three characteristic luminescence peaks having near band-edge, blue and green emission are observed in the photoluminescence spectra. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in films. Photocatalytic degradation of oxalic acid followed with reaction mechanism by using zinc oxide photoelectrode under solar illumination has been investigated.

  5. Photoelectrocatalytic degradation of oxalic acid by spray deposited nanocrystalline zinc oxide thin films

    International Nuclear Information System (INIS)

    Highlights: ► Influence of substrate temperature onto the physico-chemical properties. ► Photochemical, structural, luminescent, optoelectrical and thermal properties. ► The kinetics of oxalic acid degradation with reaction mechanism. ► Extent of mineralization by COD and TOC. - Abstract: The high quality nano-crystalline zinc oxide thin films are deposited onto corning glasses by spray pyrolysis technique. The influence of reaction temperature onto their photoelectrochemical, structural, morphological, optoelectronic, luminescence and thermal properties has been investigated. The structural characteristics studied by X-ray diffractometry has complemented by resistivity measurements and UV–Vis spectroscopy. The photoelectrochemical activity shows enhancement in short circuit current (Isc = 0.357 mA) and open circuit voltage (Voc = 0.48 V). Direct band gap calculated by considering R and T values of ZnO thin films increases from 3.14–3.21 eV exhibiting a slight blue shift in band edge. Three characteristic luminescence peaks having near band-edge, blue and green emission are observed in the photoluminescence spectra. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in films. Photocatalytic degradation of oxalic acid followed with reaction mechanism by using zinc oxide photoelectrode under solar illumination has been investigated.

  6. Obtaining a Flexible Film Elaborated from Cassava Thermoplastic Starch and Polylactic Acid

    Directory of Open Access Journals (Sweden)

    Germán A. Arboleda

    2015-01-01

    Full Text Available A flexible film was obtained from a blend of cassava thermoplastic starch and polylactic acid, using maleic anhydride as coupling agent. For this, an experimental design with three factors was used: polylactic acid content, coupling agent content, and temperature profile of the blown extrusion. It was found that the three factors generated significant differences on the response variables of tensile mechanical properties individually as in their triple interaction. Differential scanning calorimetry (DSC was used by understanding the behavior of thermal properties of TPS/PLA blends with and without coupling agent, finding similar results between both. From this, the combination with 28% polylactic acid, 0.87% coupling agent, and 155.75°C temperature profile permitted the obtaining of a material with outstanding mechanical properties and offered advantages from the economic point of view.

  7. Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and raman spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Marcelo M. Nobrega

    2012-01-01

    Full Text Available Biodegradable films of thermoplastic starch and poly (butylene adipate co-terephthalate (PBAT containing fatty acids were characterized thermally and with infrared and Raman spectroscopies. The symmetrical character of the benzene ring in PBAT provided a means to illustrate the difference between these spectroscopic techniques, because a band appeared in the Raman spectrum but not in the infrared. The thermal analysis showed three degradation stages related to fatty acids, starch and PBAT. The incorporation of saturated fatty acids with different molecular mass (caproic, lauric and stearic did not change the nature of the chemical bonds among the components in the blends of starch, PBAT and glycerol, according to the thermal analysis, infrared and Raman spectroscopies.

  8. Syntheses,characteristics and fluorescence properties of complexes of terbium with benzoic acid and its derivatives

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhong-cheng; SHU Wan-gen; RUAN Jian-ming; HUANG Bai-yun; LIU You-nian

    2005-01-01

    The binary complexes of terbium with benzoic acid and its derivatives (phthalic acid,iso-phthalic acid,oaminobenzoic acid,salicylic acid,sulfosalicylic acid) were synthesized and their compositions were identified by elemental analyses.UV,IR of the complexes were investigated.The UV spectra indicate that the complexes'ultraviolet absorption is mainly the ligands' absorption,but the location of peak drifts.The IR spectra show that the IR spectra of complexes are different from those of free ligands,and the band at 400-500 cm-1,due to the stretching vibration of Tb-O,is absent for free ligands.The fluorescence properties were investigated by using luminescence spectroscope,the results show that all the six complexes of terbium exhibit excellent luminescence,due to the transition from the lowest excited state 5D4 to 7F ground state manifold,the complexes of terbium with sulfosalicylic acid have the strongest fluorescence intensity,and is stronger than o-aminobenzoic acid-terbium,whose fluorescence intensity is regarded as the strongest one in the literature,and even stronger than some phosphor of terbium.

  9. Design of stereoelectronically promoted super lewis acids and unprecedented chemistry of their complexes.

    Science.gov (United States)

    Foroutan-Nejad, Cina; Vicha, Jan; Marek, Radek

    2014-09-01

    A new family of stereoelectronically promoted aluminum and scandium super Lewis acids is introduced on the basis of state-of-the-art computations. Structures of these molecules are designed to minimize resonance electron donation to central metal atoms in the Lewis acids. Acidity of these species is evaluated on the basis of their fluoride-ion affinities relative to the antimony pentafluoride reference system. It is demonstrated that introduced changes in the stereochemistry of the designed ligands increase acidity considerably relative to Al and Sc complexes with analogous monodentate ligands. The high stability of fluoride complexes of these species makes them ideal candidates to be used as weakly coordinating anions in combination with highly reactive cations instead of conventional Lewis acid-fluoride complexes. Further, the interaction of all designed molecules with methane is investigated. All studied acids form stable pentavalent-carbon complexes with methane. In addition, interactions of the strongest acid of this family with very weak bases, namely, H2, N2, carbon oxides, and noble gases were investigated; it is demonstrated that this compound can form considerably stable complexes with the aforementioned molecules. To the best of our knowledge, carbonyl and nitrogen complexes of this species are the first hypothetical four-coordinated carbonyl and nitrogen complexes of aluminum. The nature of bonding in these systems is studied in detail by various bonding analysis approaches. PMID:25055748

  10. Design of stereoelectronically promoted super lewis acids and unprecedented chemistry of their complexes.

    Science.gov (United States)

    Foroutan-Nejad, Cina; Vicha, Jan; Marek, Radek

    2014-09-01

    A new family of stereoelectronically promoted aluminum and scandium super Lewis acids is introduced on the basis of state-of-the-art computations. Structures of these molecules are designed to minimize resonance electron donation to central metal atoms in the Lewis acids. Acidity of these species is evaluated on the basis of their fluoride-ion affinities relative to the antimony pentafluoride reference system. It is demonstrated that introduced changes in the stereochemistry of the designed ligands increase acidity considerably relative to Al and Sc complexes with analogous monodentate ligands. The high stability of fluoride complexes of these species makes them ideal candidates to be used as weakly coordinating anions in combination with highly reactive cations instead of conventional Lewis acid-fluoride complexes. Further, the interaction of all designed molecules with methane is investigated. All studied acids form stable pentavalent-carbon complexes with methane. In addition, interactions of the strongest acid of this family with very weak bases, namely, H2, N2, carbon oxides, and noble gases were investigated; it is demonstrated that this compound can form considerably stable complexes with the aforementioned molecules. To the best of our knowledge, carbonyl and nitrogen complexes of this species are the first hypothetical four-coordinated carbonyl and nitrogen complexes of aluminum. The nature of bonding in these systems is studied in detail by various bonding analysis approaches.

  11. Complexation of U(VI) with 1-Hydroxyethane-1,1-diphosphonicAcid (HEDPA) in Acidic to Basic Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Reed, W A; Rao, L; Zanonato, P; Garnov, A; Powell, B A; Nash, K L

    2007-01-24

    Complexation of U(VI) with 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) in acidic to basic solutions has been studied with multiple techniques. A number of 1:1 (UO{sub 2}H{sub 3}L), 1:2 (UO{sub 2}H{sub j}L{sub 2} where j = 4, 3, 2, 1, 0 and -1) and 2:2 ((UO{sub 2}){sub 2}H{sub j}L{sub 2} where j = 1, 0 and -1) complexes form, but the 1:2 complexes are the major species in a wide pH range. Thermodynamic parameters (formation constants, enthalpy and entropy of complexation) were determined by potentiometry and calorimetry. Data indicate that the complexation of U(VI) with HEDPA is exothermic, favored by the enthalpy of complexation. This is in contrast to the complexation of U(VI) with dicarboxylic acids in which the enthalpy term usually is unfavorable. Results from electrospray ionization mass spectrometry (ESI-MS) and {sup 31}P NMR have confirmed the presence of 1:1, 1:2 and 2:2 U(VI)-HEDPA complexes.

  12. Structural, chemical and optical properties of the polyethylene-copper sulfide composite thin films synthesized using polythionic acid as sulfur source

    Science.gov (United States)

    Ancutiene, Ingrida; Navea, Juan G.; Baltrusaitis, Jonas

    2015-08-01

    Synthesis and properties of thin copper sulfide films deposited on polyethylene were explored for the development of low cost hybrid organic-inorganic photovoltaic materials. Polyethylene was used as a model organic host material for thin copper sulfide film formation. Adsorption-diffusion method was used which utilized consecutive exposure of polyethylene to polythionic acid followed by aqueous Cu(II/I) solution. Several crystalline copper sulfide phases were obtained in synthesized samples and elucidated using X-ray diffraction. Surface chemical composition determined using X-ray photoelectron spectroscopy showed the presence of copper sulfides in combination with copper hydroxide. Thickness of the composite material films ranged from several microns to ∼18 μm and depended on the Cu(II/I) exposure time. Bandgap of the materials obtained was measured and ranged from 1.88 to 1.17 eV. Importantly, heating these complex copper sulfide crystalline phase containing films at 100 °C in inert atmosphere invariably resulted in a single copper sulfide, anilite (Cu1.75S), phase. Anilite possesses a bandgap of 1.36 eV and has demonstrated excellent photovoltaic properties. Thus, the method described in this work can be used for a low cost large scale composite thin film photovoltaic material deposition based on anilite as photoactive material.

  13. [Thermodynamic characteristics of nucleic acid complexes with silver ions].

    Science.gov (United States)

    Minasian, K A; Poletaev, A I; Borob'ev, A F

    1981-01-01

    By means of mixing reaction calorimetry the enthalpy of the complexes formation between Ag+ ions and DNA and dsRNA was measured. It was shown that Ag+ ions are able to form two types of complexes (I and II) with dsRNA. Using the method of the competitive reaction with chloride ions the stability constants of complex formation were obtained for dsRNA-Ag+ complexes for different temperatures. These measurements gave the delta H and delta S values for both complexes: delta HI = -74,9 +/- 7,1 kjouls/mol, delta SI = -100.0 +/- 25.0 jouls/mol deg; delta HII = -39,8 +/- 4,2 kjouls/mol, delta SII = +2 +/- 14 jouls/mol deg. The calorimetric results of delta H determination are the same within the limits of experimental errors. The enthalpy term of dsRNA-Ag+ complexes proved to bring the main contribution into the free energy of complex formation.

  14. Formation and characterization of thin films from phthalocyanine complexes: An electrosynthesis study using the atomic-force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vergara, M.E. [Departamento de Ingenieria Mecatronica, Escuela de Ingenieria, Universidad Anahuac del Norte, Avenida Lomas de la Anahuac s/n, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico)]. E-mail: elena.sanchez@anahuac.mx; Islas Bernal, I.F. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510, Mexico D.F. (Mexico); Rivera, M. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510, Mexico D.F. (Mexico); Ortiz Rebollo, A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, Coyoacan, 04510, Mexico, D.F. (Mexico); Alvarez Bada, J.R. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Ciudad de Mexico, Calle del Puente 222, Col. Ejidos de Huipulco, 14380, Mexico D.F. (Mexico)

    2007-05-07

    ({mu}-Cyano)(phthalocyaninato)metal(III) [PcMCN]{sub n} species with a central transition metal ion, such as Fe(III) and Co(III), were used to prepare molecular films on a highly oriented pyrolytic graphite electrode substrate by using the cyclic voltammetry technique. In order to investigate the influence of the ligand on the film properties, 1,8-dihydroxyanthraquinone and 2,6-dihydroxyanthraquinone as bivalent ligands were employed. The structure of the molecular materials was analyzed by infrared spectroscopy. The in situ film formation, texture, composition and conductivity of each film were further investigated using atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and the four-probe technique, respectively. The [PcMCN]{sub n} complexes provided conductive films with an electrical conductivity of 1 x 10{sup -6} {omega}{sup -1} cm{sup -1} at 298 K.

  15. Formation and characterization of thin films from phthalocyanine complexes: An electrosynthesis study using the atomic-force microscope

    International Nuclear Information System (INIS)

    (μ-Cyano)(phthalocyaninato)metal(III) [PcMCN]n species with a central transition metal ion, such as Fe(III) and Co(III), were used to prepare molecular films on a highly oriented pyrolytic graphite electrode substrate by using the cyclic voltammetry technique. In order to investigate the influence of the ligand on the film properties, 1,8-dihydroxyanthraquinone and 2,6-dihydroxyanthraquinone as bivalent ligands were employed. The structure of the molecular materials was analyzed by infrared spectroscopy. The in situ film formation, texture, composition and conductivity of each film were further investigated using atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and the four-probe technique, respectively. The [PcMCN]n complexes provided conductive films with an electrical conductivity of 1 x 10-6 Ω-1 cm-1 at 298 K

  16. Dye sensitized solar cell applications of CdTiO3–TiO2 composite thin films deposited from single molecular complex

    International Nuclear Information System (INIS)

    A heterobimetallic complex [Cd2Ti4(μ-O)6(TFA)8(THF)6]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO3–TiO2 composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity, phase identification and chemical composition of microspherical architectured CdTiO3–TiO2 composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application. - Graphical abstarct: Microspherical designed CdTiO3–TiO2 composite oxides photoanode film has been fabricated from single source precursor [Cd2Ti4(μ-O)6(TFA)8(THF)6]·1.5THF via aerosol assisted chemical vapor deposition technique for dye sensitized solar cell application. - Highlights: • Synthesis and characterization of a heterobimetallic Cd–Ti complex. • Fabrication of CdTiO3–TiO2 thin film photoelectrode. • Application as dye sensitized photoanode for solar application

  17. Dye sensitized solar cell applications of CdTiO{sub 3}–TiO{sub 2} composite thin films deposited from single molecular complex

    Energy Technology Data Exchange (ETDEWEB)

    Ehsan, Muhammad Ali [Nanotechnology and Catalysis Centre (NANOCAT), University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Khaledi, Hamid [Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Pandikumar, Alagarsamy; Huang, Nay Ming [Department of Physics, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Arifin, Zainudin [Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2015-10-15

    A heterobimetallic complex [Cd{sub 2}Ti{sub 4}(μ-O){sub 6}(TFA){sub 8}(THF){sub 6}]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO{sub 3}–TiO{sub 2} composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity, phase identification and chemical composition of microspherical architectured CdTiO{sub 3}–TiO{sub 2} composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application. - Graphical abstarct: Microspherical designed CdTiO{sub 3}–TiO{sub 2} composite oxides photoanode film has been fabricated from single source precursor [Cd{sub 2}Ti{sub 4}(μ-O){sub 6}(TFA){sub 8}(THF){sub 6}]·1.5THF via aerosol assisted chemical vapor deposition technique for dye sensitized solar cell application. - Highlights: • Synthesis and characterization of a heterobimetallic Cd–Ti complex. • Fabrication of CdTiO{sub 3}–TiO{sub 2} thin film photoelectrode. • Application as dye sensitized photoanode for solar application.

  18. Improvement on stability of square planar rhodium (Ⅰ) complexes for carbonylation of methanol to acetic acid

    Institute of Scientific and Technical Information of China (English)

    蒋华; 潘平来; 袁国卿; 陈新滋

    1999-01-01

    A series of square planar cis-dicarbonyl polymer coordinated rhodium complexes with uncoordinated donors near the central rhodium atoms for carbonylation of methanol to acetic acid are reported. Data of IR, XPS and thermal analysis show that these complexes are very stable. The intramolecular substitution reaction is proposed for their high stability. These complexes show excellent catalytic activity, selectivity and less erosion to the equipment for the methanol carbonylation to acetic acid. The distillation process may be used instead of flash vaporization in the manufacture of acetic acid, which reduces the investment on the equipment.

  19. Luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid

    International Nuclear Information System (INIS)

    In this paper, we have investigated luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid. For the first time we have measured weak luminescence during anodization of aluminum in this electrolyte (so-called galvanoluminescence GL) and showed that there are wide GL bands in the visible region of the spectrum and observed two dominant spectral peaks. The first one is at about 425 nm, and the second one shifts with anodization voltage. As the anodization voltage approaches the breakdown voltage, a large number of sparks appear superimposed on the anodic GL. Several intensive band peaks were observed under breakdown caused by electron transitions in W, P, Al, O, H atoms. Furthermore, photoluminescence (PL) of anodic oxide films and anodic-spark formed oxide coatings were performed. In both cases wide PL bands in the range from 320 nm to 600 nm were observed.

  20. Chitosan-bound pyridinedicarboxylate Ni(II) and Fe(III) complex biopolymer films as waste water decyanidation agents.

    Science.gov (United States)

    Adewuyi, Sheriff; Jacob, Julianah Modupe; Olaleye, Oluwatoyin Omolola; Abdulraheem, Taofiq Olanrewaju; Tayo, Jubril Ayopo; Oladoyinbo, Fatai Oladipupo

    2016-10-20

    Chitosan is a biopolymer with immense structural advantage for chemical and mechanical modifications to generate novel properties, functions and applications. This work depicts new pyridinedicarboxylicacid (PDC) crosslinked chitosan-metal ion films as veritable material for cyanide ion removal from aqueous solution. The PDC-crosslinked chitosan-metal films (PDC-Chit-Ni(II) and PDC-Chit-Fe(III)) were formed by complexing PDC-crosslinked chitosan film with anhydrous nickel(II) and iron(III) chloride salts respectively. The PDC-Chit and its metal films were characterized employing various analytical and spectroscopic techniques. The FT-IR, UV-vis and the XRD results confirm the presence of the metal ions in the metal coordinated PDC-crosslinked chitosan film. The surface morphological difference of PDC-Chit-Ni(II) film before and after decyanidation was explored with scanning electron microscopy. Furthermore, the quantitative amount of nickel(II) and iron(III) present in the complex were determined using Atomic Absorption Spectrophotometer as 32.3 and 37.2μg/g respectively which portends the biopolymer film as a good complexing agent. Removal of cyanide from aqueous solution with PDC-Chit, PDC-Chit-Ni(II) and PDC-Chit-Fe(III) films was studied with batch equilibrium experiments. At equilibrium, decyanidation capacity (DC) followed the order PDC-Chit-Ni (II)≈PDC-Chit-Fe(III)>PDC-Chit. PDC-Chit-Ni(II) film gave 100% CN(-) removal within 40min decyanidation owing to favorable coordination geometry. PMID:27474675

  1. Synthesis of zincosilicate mordenite using citric acid as complexing agent

    Institute of Scientific and Technical Information of China (English)

    MeiDong; JianjuoWang; YuhanSun

    2001-01-01

    The zincosilicate analog of zeolite mordenite was hydrothermally synthesized in the presence of citric acid and characterized with several spectroscopic techniques.The zeolite thus prepared had a higher crystallinity and Zn concentration in the framework compared with the one obtained in the absence of citric acid.XRD and FTIR provided evidence for the incorporation of Zn in the framework.Results of XAFS indicated a tetrahedral structure of Zn in the lattice framework with a Zn-O distancd of 0.1938nm.It is speculated that the citric acid might decrease the concentration of Zn2 in the synthesis mixture,there by preventing the unfavorable-formation of oxide or hydroxide species.2001 Elsevier Science B.V.All rights reserved.

  2. Trifluoroacetic acid as excipient destabilizes melittin causing the selective aggregation of melittin within the centrin-melittin-trifluoroacetic acid complex.

    Science.gov (United States)

    Pastrana-Rios, Belinda; Del Valle Sosa, Liliana; Santiago, Jorge

    2015-07-01

    Trifluoroacetic acid (TFA) may be the cause of the bottleneck in high resolution structure determination for protein-peptide complexes. Fragment based drug design often involves the use of synthetic peptides which contain TFA (excipient). Our goal was to explore the effects of this excipient on a model complex: centrin-melittin-TFA. We performed Fourier transform infrared, two-dimensional infrared correlation spectroscopies and spectral simulations to analyze the amide I'/I'* band for the components and the ternary complex. Melittin (MLT) was observed to have increased helicity upon its interaction with centrin, followed by the thermally induced aggregation of MLT within the ternary complex in the TFA presence. PMID:26798810

  3. CEC mechanism in electrochemical oxidation of nitrocatechol-boric acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, Mohammad, E-mail: rafiee@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan (Iran, Islamic Republic of); Nematollahi, Davood; Salehzadeh, Hamid [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2011-11-30

    Graphical abstract: Display Omitted Highlights: > Nitrochetechol and its anionic form undergo complex reaction with boric acid. > The electron transfer of complex is coupled with both proceeding and following chemical reactions. > Electrochemical behavior of complex is resolved by diagnostic criteria and digital simulation. - Abstract: The electrochemical behavior of nitrocatechols-boric acid complexes in aqueous solution has been studied using cyclic voltammetry. The results indicate that nitrocatechol-boric acid complex derivatives are involved in the CEC mechanism. In this work, the impact of empirical parameters on the shape of the voltammograms is examined based on a CEC mechanism. In addition, homogeneous rate constants of both the preceding and the following reactions were estimated by comparing the experimental cyclic voltammograms with the digitally simulated results. The calculated dissociation constants for the complexes (K{sub d}) and for ring cleavage of nitroquinone (k{sub f2}) were found to vary in the following order: 4-nitrocatechol > 3-methylnitrocatechol > 3-metoxynitrocatechol.

  4. Cold Oxygen Plasma Treatments for the Improvement of the Physicochemical and Biodegradable Properties of Polylactic Acid Films for Food Packaging.

    Science.gov (United States)

    Song, Ah Young; Oh, Yoon Ah; Roh, Si Hyeon; Kim, Ji Hyeon; Min, Sea C

    2016-01-01

    The effects of cold plasma (CP) treatment on the physicochemical and biodegradable properties of polylactic acid (PLA) films were studied. The PLA films were exposed to CP for 40 min at 900 W and 667 Pa using oxygen as the plasma-forming gas. The tensile, optical, and dynamic mechanical thermal properties, surface morphology, printability, water contact angle, chemical structure, weight change, and biodegradability properties of the films were evaluated during storage for up to 56 d. The tensile and optical properties of the PLA films were not significantly affected by CP treatment (CPT; P > 0.05). The surface roughness and water contact angle of PLA films increased by CPT and further increased during storage for 56 d. The printability of the PLA films increased following CPT and remained stable throughout the storage period. CP-induced hydrophilicity was also sustained during the storage period. The PLA films lost 1.9% of their weight after CPT, but recovered 99.5% of this loss after 14 d in storage. Photodegradation, thermal, and microbial biodegradable properties of the films were significantly improved by CPT (P < 0.05). Accelerated biodegradation of CP-treated PLA sachets with and without cheese was observed in compost. These results demonstrate the potential of CPT for modifying the stiffness, water contact angle, and chemical structure of PLA films and improving the printability and biodegradability of the films for food packaging.

  5. Polymetallic citric complexes as precursors for spray-pyrolysis deposition of thin LaFeO3 films

    International Nuclear Information System (INIS)

    A method for the deposition of thin films of the perovskite LaFeO3 on glass is proposed. The films are prepared by spray pyrolysis using an ethylene glycol solution of mixed metal citrate complexes and O2 or N2 as carrier gas at substrate temperatures between 350 °C and 400 °C and post-deposition annealing at 350–480 °C in air. The phase composition, crystal structure, morphology and adhesion of the prepared films (40–600 nm thick) are studied by X-ray diffraction, energy dispersive X-ray microanalysis, scanning electron microscopy, and atomic force microscopy. The influence of the conditions of deposition and post-deposition annealing is studied and optimal parameters of the procedure are described. Single phase dense uniform films with crystallites of approx. 30 nm are obtained. - Highlights: • A method for spray-pyrolysis deposition of thin films of LaFeO3 is proposed. • Mixed metal citrate complexes in ethylene glycol are used as a starting material. • Films with thickness varying from 40 to 600 nm are prepared. • Stoichiometric, uniform and dense films with good adhesion are obtained

  6. High Throughput Screening of Valganciclovir in Acidic Microenvironments of Polyester Thin Films

    Directory of Open Access Journals (Sweden)

    Teilo Schaller

    2015-04-01

    Full Text Available Ganciclovir and valganciclor are antiviral agents used for the treatment of cytomegalovirus retinitis. The conventional method for administering ganciclovir in cytomegalovirus retinitis patients is repeated intravitreal injections. In order to obviate the possible detrimental effects of repeated intraocular injections, to improve compliance and to eliminate systemic side-effects, we investigated the tuning of the ganciclovir pro-drug valganciclovir and the release from thin films of poly(lactic-co-glycolic acid (PLGA, polycaprolactone (PCL, or mixtures of both, as a step towards prototyping periocular valganciclovir implants. To investigate the drug release, we established and evaluated a high throughput fluorescence-based quantification screening assay for the detection of valganciclovir. Our protocol allows quantifying as little as 20 ng of valganciclovir in 96-well polypropylene plates and a 50× faster analysis compared to traditional HPLC measurements. This improvement can hence be extrapolated to other polyester matrix thin film formulations using a high-throughput approach. The acidic microenvironment within the polyester matrix was found to protect valganciclovir from degradation with resultant increases in the half-life of the drug in the periocular implant to 100 days. Linear release profiles were obtained using the pure polyester polymers for 10 days and 60 days formulations; however, gross phase separations of PCL and acid-terminated PLGA prevented tuning within these timeframes due to the phase separation of the polymer, valganciclovir, or both.

  7. Immobilization of Tyrosinase from Avocado Crude Extract in Polypyrrole Films for Inhibitive Detection of Benzoic Acid

    Directory of Open Access Journals (Sweden)

    André Brisolari

    2014-07-01

    Full Text Available Inhibition-based biosensors were developed by immobilizing tyrosinase (Tyr, polyphenol oxidase from the crude extract of avocado fruit on electrochemically prepared polypyrrole (PPy films. The biosensors were prepared during the electropolymerization of pyrrole in a solution containing a fixed volume of the crude extract of avocado. The dependence of the biosensor responses on the volume used from the crude extract, values of pH and temperature was studied, and a substrate, catechol, at different concentrations, was amperometrically detected by these biosensors. Benzoic acid, a competitive inhibitor of Try, was added to the catechol solutions at specific concentrations aimed at obtaining the inhibition constant, K’m, which ranged from 1.7 to 4.6 mmol∙L−1 for 0.0 and 60 µmol∙L−1 of benzoic acid, respectively. Studies on the inhibition caused by benzoic acid by using PPy/Try films, and catechol as a substrate, allowed us propose how to develop, under optimized conditions, simple and low-cost biosensors based on the use of avocado fruit.

  8. Reaction of Pb(II) and Zn(II) with Ethyl Linoleate To Form Structured Hybrid Inorganic–Organic Complexes: A Model for Degradation in Historic Paint Films

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; Berrie, Barbara H. (NGA); (Bordeaux)

    2016-09-23

    To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K+, Zn2+, Pb2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm–1 for Pb(II) and ca. 1580 cm–1 for Zn(II) are consistent with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.

  9. Aldol Condensation Products and Polyacetals in Organic Films Formed from Reactions of Propanal in Sulfuric Acid at Upper Troposphere/Lower Stratosphere (UT/LS) Aerosol Acidities

    Science.gov (United States)

    Bui, J. V. H.; Perez-Montano, S.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.; Van Wyngarden, A. L.

    2015-12-01

    Aerosols in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt. %) which is highly reflective towards UV and visible radiation. However, airborne measurements have shown that these particles may also contain a significant amount of organic material. Experiments combining organics (propanal, glyoxal and/or methylglyoxal) with sulfuric acid at concentrations typical of UT/LS aerosols produced highly colored surface films (and solutions) that have the potential to impact chemical, optical and/or cloud-forming properties of aerosols. In order to assess the potential for such films to impact aerosol chemistry or climate properties, experiments were performed to identify the chemical processes responsible for film formation. Surface films were analyzed via Attenuated Total Reflectance-FTIR and Nuclear Magnetic Resonance spectroscopies and are shown to consist primarily of aldol condensation products and cyclic and linear polyacetals, the latter of which are likely responsible for separation from the aqueous phase.

  10. Delivering drug-polymer complex via quick dissolving film: A step towards the development of an appropriate pediatric formulation

    Directory of Open Access Journals (Sweden)

    Viralkumar Patel

    2013-01-01

    Full Text Available Lack of suitable prednisolone formulations for treatment of asthma could limit treatment compliance in pediatric population and hence the aim of this study was to develop prednisolone-polymer complexes with enhanced solubility and to incorporate this complex into orally disintegrating films to enable rapid drug delivery. The prednisolone-polymeric complexes were prepared using solvent evaporation and freeze drying techniques with a drug-polymer ratio of 1:1 using hydroxypropyl β-cyclodextrin (HP β-CD, hydroxypropyl methylcellulose 4 cps, and polyvinylpyrrolidone K-30 as polymeric carriers and the parameters such as an aqueous solubility, dissolution profile, and solid-state characterization using differential scanning calorimetry (DSC of the complexes determined. The optimized complex was then incorporated into films prepared using solvent casting technique and the weight variation, thickness, solid-state characterization, in vitro disintegration and dissolution profiles of the films were then determined. The highest prednisolone solubility was seen with the prednisolone-HP β-CD complex prepared by freeze drying (1.82 mg/mL followed by the same complex prepared by solvent evaporation (1.70 mg/mL. The solubility′s were significantly higher compared to prednisolone powder (0.2 mg/mL ( P < 0.05. DSC analysis of complexes revealed a reduction in area of the endothermic peak indicating the presence of amorphous drug while in comparison, the DSC analysis of films did not show endothermic peak showing complete absence of crystalline drug. The film was thin, uniform in weight and thickness, showing rapid disintegration of 55 s with almost complete drug release within 3 min. The study revealed the incorporated drug-polymer complex have maintained the amorphous state and enabled rapid drug release.

  11. Transition Metal Complexes of Phosphinous Acids Featuring a Quasichelating Unit: Synthesis, Characterization, and Hetero-bimetallic Complexes.

    Science.gov (United States)

    Allefeld, Nadine; Bader, Julia; Neumann, Beate; Stammler, Hans-Georg; Ignat'ev, Nikolai; Hoge, Berthold

    2015-08-17

    Diorganophosphane oxides were employed as preligands for the synthesis of catalytically active transition metal complexes of the phosphinous acids (CF3)2POH and (C2F5)2POH. Their reactions with solid PtCl2 and PdCl2 led to the formation of mononuclear phosphinous acid complexes [Cl2M{P(R(f))2OH}2] (M = Pd, Pt; R(f) = C2F5, CF3), which can be crystallized, for example, as its pyridinium salts, 2[HPy](+)[Cl2Pd{P(CF3)2O}2](2-). In vacuo HCl is liberated from the neutral palladium complexes affording mixtures of di- and polynuclear complexes. Moreover, (C2F5)2POH was reacted with several β-diketonato complexes of palladium, platinum, and nickel yielding air- and moisture-stable complexes [(acac)M{[P(R(f))2O]2H}], featuring a quasichelating phosphinous acid phosphinito unit {P(R(f))2O···H···O(R(f))2P}(-). Treatment of [Ni(Cp)2] (Cp = cyclopentadienyl) and [(cod)RhCl]2 (cod = 1,5-cyclooctadiene) with (C2F5)2POH leads to the substitution of one Cp or chloro ligand by a quasichelating unit. The novel coordination compounds were characterized by NMR and IR spectroscopies, mass spectrometry, and X-ray diffraction analysis. The platinum complex [(acac)Pt{[P(C2F5)2O]2H}] (acac = acetylacetonato) was used for the construction of hetero-bimetallic complexes by the treatment with [(cod)RhCl]2 and [Ni(Cp)2]. The trinuclear bimetallic complex [{(acac)Pt[P(C2F5)2O]2}2Ni] is the first structurally characterized hetero-bimetallic species containing a bis(perfluoroalkyl)phosphinito bridge. PMID:26242286

  12. Concentration of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) of Asian catfish oil by urea complexation: optimization of reaction conditions

    OpenAIRE

    Pornpisanu Thammapat; Sirithon Siriamornpun; Patcharin Raviyan

    2016-01-01

    Optimization of the concentrating conditions of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) extracted from Asian catfish oil was studied to obtain a maximum concentration. The crude fish oil was extracted from the belly flap and adipose tissue of Asian catfish, and the extracted oil was used as fresh crude oil. The EPA and DHA were concentrated by the urea complexation method. A hexagonal rotatable design was applied to examine the effects of crystallization temperatur...

  13. Self-assembled hybrid films of phosphotungstic acid and aminoalkoxysilanes on SiO{sub 2}/Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Adriano L. [Universidade de Sao Paulo (USP), Instituto de Quimica de Sao Carlos, P.O. Box 780, 13560-970, Sao Carlos, Sao Paulo (Brazil); Marques, Lygia A.; Eberlin, Marcos N. [Universidade Estadual de Campinas (UNICAMP), Instituto de Quimica, Laboratorio Thomson de Espectrometria de Massas, 13083-970, Campinas, Sao Paulo (Brazil); Nascente, Pedro A.P. [Universidade Federal de Sao Carlos (UFSCar), Departamento de Engenharia de Materiais, 13565-905, Sao Carlos, Sao Paulo (Brazil); Herrmann, Paulo S.P. [Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Instrumentacao Agropecuaria, Laboratorio Nacional de Nanotecnologia para o Agronegocio, 13560-970, P.O.Box 741, Sao Carlos, Sao Paulo (Brazil); Leite, Fabio L. [Universidade Federal de Sao Carlos (UFSCar), Campus de Sorocaba, P. O. Box 3031, 18052-780, Sorocaba, Sao Paulo (Brazil); Rodrigues-Filho, Ubirajara P., E-mail: uprf@iqsc.usp.br [Universidade de Sao Paulo (USP), Instituto de Quimica de Sao Carlos, P.O. Box 780, 13560-970, Sao Carlos, Sao Paulo (Brazil)

    2012-02-29

    The present paper describes the influence of the chemical structure of two aminoalkoxysilanes: 3-aminopropyltriethoxysilane (APTS) and N-(3-(trimethoxysilyl)-propyl)-ethylenediamine (TSPEN) on the morphology of thin layer hybrid films with phosphotungstic acid (HPW), a Keggin heteropolyanion. X-ray photoelectron spectroscopy analyses indicated that both silane films showed protonated amine species interacting with the heteropolyanion by electrostatic forces as well as the presence of secondary carbamate anions. The hybrid films have different surface morphology according to atomic force microscopy analyses. The hybrid film with TSPEN forms flatter surfaces than the hybrid film with APTS. This effect is ascribed to higher flexibility and chelating ability of the TSPEN on adsorbed molecules. Ultrasonication effect on surface morphology of the hybrid film with APTS plays a fundamental role on surface roughness delivering enough energy to promote surface diffusion of the HPW heteropolyanions. This diffusion results in agglomerate formation, which corroborates with the assumption of electrostatic bonding between the HPW heteropolyanions and the protonated amine surface. These hybrid films could be used for electrochemical sensor design or to build photochromic and electrochromic multilayers. - Highlights: Black-Right-Pointing-Pointer Formation of phosphotungstate-aminosilylated surfaces. Black-Right-Pointing-Pointer Dependence of the surface roughness on the aminosilane structure. Black-Right-Pointing-Pointer Phosphotungstic acid chelation by N-(3-(trimethoxysilyl)-propyl)-ethylenediamine. Black-Right-Pointing-Pointer Ultrasonic promotion of clustering of phosphotungstic acid.

  14. Surface properties of self-assembled monolayer films of tetra-substituted cobalt, iron and manganese alkylthio phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Akinbulu, Isaac Adebayo; Khene, Samson [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.z [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa)

    2010-09-30

    Self-assembled monolayer (SAM) films of iron (SAM-1), cobalt (SAM-2) and manganese (SAM-3) phthalocyanine complexes, tetra-substituted with diethylaminoethanethio at the non-peripheral positions, were formed on gold electrode in dimethylformamide (DMF). Electrochemical, impedimentary and surface properties of the SAM films were investigated. Cyclic voltammetry was used to investigate the electrochemical properties of the films. Ability of the films to inhibit common faradaic processes on bare gold surface (gold oxidation, solution redox chemistry of [Fe(H{sub 2}O){sub 6}]{sup 3+}/[Fe(H{sub 2}O){sub 6}]{sup 2+} and underpotential deposition (UDP) of copper) was investigated. Electrochemical impedance spectroscopy (EIS), using [Fe(CN){sub 6}]{sup 3-/4-} redox process as a probe, offered insights into the electrical properties of the films/electrode interfaces. Surface properties of the films were probed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The films were employed for the electrocatalytic oxidation of the pesticide, carbofuran. Electrocatalysis was evidenced from enhanced current signal and less positive oxidation potential of the pesticide on each film, relative to that observed on the bare gold electrode. Mechanism of electrocatalytic oxidation of the pesticide was studied using rotating disc electrode voltammetry.

  15. Molecular Processes Underlying the Structure and Assembly of Thin Films and Nanoparticles at Complex interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Geraldine [Univ. of Oregon, Eugene, OR (United States)

    2016-06-03

    differences in how water behaves at hydrophobic self-assembled monolayer (SAMS)/water interfaces relative to the organic liquid/water interfaces. Several monolayer films have been examined in these studies using a combination of vibrational sum frequency spectroscopy (VSFS), contact angle measurements and AFM. At the hydrocarbon monolayer/water interface we find that water has a weak bonding interaction with the monolayer film that results in an orientation of water at the terminus of these hydrocarbon chains. The water-film interaction is still present for fluorinated films but it is found to be considerably weaker. Hydration and Surfactant Adsorption at Salt/Water Interfaces This set of studies has examined the molecular characteristics of the CaF2/water interface using VSFS. Our first studies detailed the structure and orientation of water molecules adsorbed at this mineral surfaces including studies of the surface in the presence of aqueous solutions of salts. These studies have been followed by a series of static and time-resolved studies of the adsorption of carboxylic acid containing organics at this surface, specifically carboxylic acid surfactants and acetic acid. In the latter we have developed a new method for time resolved studies that involve sequential wavelength tuning and automated control of spatial beam overlap at the target can probe amplitude changes of sum-frequency resonances in widely spaced infrared regions. This offers great advantages for the study of the synchronism of molecular processes at interfaces. This approach is particularly suitable to investigate the synchronization of interfacial processes such as surfactant adsorption at charged mineral surfaces. Macromolecular Assembly at Liquid/Liquid Interfaces Macromolecular assembly at the interface between water and a hydrophobic surface underlies some of the most important biological and environmental processes on the planet. Our work has examined polymer adsorption and assembly of

  16. Effect of acetic acid on electrochemical deposition of carbon-nitride thin film

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Electrochemical deposition method was employed to prepare CNx thin film from methanol-urea solution,and it was shown that adding a little acetic acid in the solution significantly affected the deposition process.After optimizing the experiment conditions,we obtained polycrystalline grains with sizes of about 3―7μm on the faces of single crystal silicon.X-ray diffraction spectrua indicate that the grains are mainly composed of cubic phase mixed with a small amount of β and α phases.

  17. Structure and properties of moisture-resistant konjac glucomannan films coated with shellac/stearic acid coating.

    Science.gov (United States)

    Wei, Xueqin; Pang, Jie; Zhang, Changfeng; Yu, Chengcheng; Chen, Han; Xie, Bingqing

    2015-03-15

    A series of moisture-resistant konjac glucomannan films were prepared by coating shellac/stearic acid emulsion on deacetylated konjac glucomannan films (dKGM). The effect of stearic acid content on structure and properties of the coated films were investigated by field emission scanning electron microscopy (FE SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet spectroscopy (UV), water vapor permeability (WVP), water uptake, water contact angle, and tensile testing. The results revealed that shellac in the coating adhered intimately to the surface of dKGM film, and provided a substrate for the dispersion of stearic acid which played an important role in enhancement of the moisture barrier properties and mechanical properties of the coated films. The WVP of the coated films decreased from 2.63×10(-11) to 0.37×10(-11)g/(msPa) and the water contact angle increased from 68° to 101.2° when stearic acid content increased from 0wt% to 40wt%, showing the potential applications in food preservation. PMID:25542116

  18. Water-free Alkaline Polymer-inorganic Acid Complexes with High Conductivity at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    O.V.Chervakov; M.V.Andriianova; V.V.Riabenko; A.V.Markevich; E.M.Shembel; D.Meshri

    2007-01-01

    1 Results Recently increased interest is shown to proton conducting materials based on the alkaline polymer-inorganic acid complexes that is caused by a possibility of their application as the high-temperature electrolyte systems for various electrochemical devices (fuel cells,sensors,lithium power sources etc.).Complexes of inorganic acids with the alkaline polymers (polybenzimidazoles[1],polyvinylpyridines[2]) are characterized by high ionic conductivity at ambient temperatures (up to 10-2 Ω-1·cm-1) a...

  19. Spectroscopic studies of Cr3+ ions doped in poly(vinylalcohol) complexed polyethylene glycol polymer films

    Science.gov (United States)

    Rao, T. Rajavardhana; Brahmam, K. Veera; Raju, Ch. Linga

    2015-05-01

    Polymer films of Poly(vinylalcohol) (PVA) complexed with Polyethylene glycol (PEG) with different dopant concentrations of Cr3+ ions are prepared by solution cast technique. Electron paramagnetic resonance (EPR), Optical absorption and FT-IR studies have been carried out on the polymer films. The EPR spectra of the entire samples exhibit resonance signal at g ≈1.97 which is attributed to the isolated Cr3+ pairs. The temperature variation EPR studies show that the population of spin-levels participating in the resonance decreases with an increase in temperature, which is in accordance with the Boltzmann Law. The paramagnetic susceptibilities (X) have been calculated from the EPR data at different temperatures. The linewidth of the g ≈1.97 resonance signal has been found to be decreasing with an increase in temperature, which confirms the pairing mechanism between Cr3+ ions. The Optical absorption spectrum of chromium ions in (PVA+PEG) polymer films exhibits three bands, corresponding to the d-d transitions 4A2g(F)→4T1g(F), 4A2g(F)→4T2g(F) and 4A2g(F)→2T1g(G), in the order of decreasing energy. The crystal field parameter Dq and the Racah interelectronic repulsion parameters B and C have been evaluated. From the ultraviolet absorption edges, Optical band gap (Eopt) and Urbach (ΔE) energies are evaluated. FT-IR spectrum exhibits few bands which are attributed to O-H, CH, C=C and C=O groups of stretching and bending vibrations.

  20. Contribution to the study of pertechnetate (sup(99m)Tc) stannous citrate - citric acid complexation

    International Nuclear Information System (INIS)

    Pertechnetate/citric acid/stannous citrate complexation carried out from a lyophilisate of stannous citrate in citric medium at pH5 leads to the formation of separable compounds. These compounds are tin-free technetium citrates. Similar results have been described in the case of complexation reactions with glycolic, thioglycolic and thiomalic acids and with other carboxylates such as dimercaptosuccinic acid. These processes include the reduction of Tcsup(VIII) by Snsup(II) in the presence of thiomalic acid under conditions similar to our own: stannous thiomalate in thiomalic medium to which is added the pertechnetate solution producing Tc-thiomalate complexes variable with the reaction pH. Also worth considering is the possible complexation between pertechnetate and the same acid in the absence of reducing ion, following a special procedure (heating). The complexes described here contain the oxotechnetium bond (terminal oxygen-technetium) and a strong probability exists in favour of dimerisation. Their stability, for a reaction in acid solution: pH 5.0/5.5, becomes satisfactory if: the solution is concentrated enough; bubbling by an inert gas is carried out; room temperature is not exceeded. The development takes place through a partial reoxidation characterised by colour change. An original interaction between reduced states of Tc and citric acid may be claimed with certainty under our experimental conditions. The difficulty then lies in the passage to the tracer stage when the isotope sup(99m)Tc is used

  1. The properties of solid Zn(II)-amino acid complexes in the form of suspensions.

    Science.gov (United States)

    Dolińska, B

    2001-10-01

    An investigation was made into the experimental conditions for the formation of poorly soluble complexes of the divalent Zinc(II) combined with the following selected amino acids: tyrosine, tryptophan, cysteine, histidine, and alanine, in the form of suspensions for parenteral administration. The number of Zn(II)-binding sites in the amino acid (n) as well as the amino acid affinity to Zn(II) (Ka), were determined. Cysteine was found to have the highest number of Zn(II)-binding sites--3, whereas alanine the lowest--1. In the conditions described herein, Zn(II) amino acid complexes of diverse stability (durability) were obtained. The analysis of the kinetics of the binding revealed that the most stable complexes were those formed by Zn(II) in combination with tryptophan (Ka = 405.78 microM(-1) +/- 12.17), and with tyrosine (Ka = 343.88 microM +/- 22.35); whereas the least stable complexes were those formed by Zn(II) in combination with histidine (Ka = 29.90 microM +/- 4.78), and with alanine (Ka = 13.0 microM(-1) +/- 1.04). Cysteine formed complexes of intermediate stability (Ka = 168.53 microM(-1) +/- 12.36). The stability ofthe Zn(II) amino acid complexes obtained was conditioned by both the molecular weight (P = 0.033) of the amino acid and its isoelectric point (P < 0.001). PMID:11718265

  2. Zeolite-Encapsulated Copper(II) Amino Acid Complexes: Synthesis, Spectroscopy, and Catalysis

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Verberckmoes, A.A.; Fu, L.; Schoonheydt, R.A.

    2001-01-01

    The spectroscopic properties and catalytic behavior of Cu(AA)n m+ complexes (AA ) amino acid (glycine, lysine, histidine, alanine, serine, proline, tyrosine, phenylalanine, glutamine, glutamic acid, cysteine, tryptophan, leucine, and arginine)) in faujasite-type zeolites have been investigated. Succ

  3. An Amperometric Biosensor for Uric Acid Determination Prepared From Uricase Immobilized in Polyaniline-Polypyrrole Film

    Directory of Open Access Journals (Sweden)

    Fatma Arslan

    2008-09-01

    Full Text Available A new amperometric uric acid biosensor was developed by immobilizing uricase by a glutaraldehyde crosslinking procedure on polyaniline-polypyrrole (pani-ppy composite film on the surface of a platinum electrode. Determination of uric acid was performed by the oxidation of enzymatically generated H2O2 at 0.4 V vs. Ag/AgCl. The linear working range of the biosensor was 2.5×10-6 – 8.5×10-5 M and the response time was about 70 s. The effects of pH, temperature were investigated and optimum parameters were found to be 9.0, 55 oC, respectively. The stability and reproducibility of the enzyme electrode have been also studied.

  4. Metals complexation with humic acids in surface water of different natural–climatic zones

    OpenAIRE

    Dinu M. I.

    2013-01-01

    Humic acids extracted from different soils. The stability constants of metal humates and acid dissociation constant humic acids were calculated. Forms of metals in natural waters was determined with use account their chemical composition and content and properties of organic matter. We assessed metals speciation in water objects with account for competitive reactions resulting in formation of hydroxide, hydrocarbonate, sulfate, and chloride metal complexes and obtained a competitive series of...

  5. Metals complexation with humic acids in surface water of different natural–climatic zones

    Directory of Open Access Journals (Sweden)

    Dinu M. I.

    2013-04-01

    Full Text Available Humic acids extracted from different soils. The stability constants of metal humates and acid dissociation constant humic acids were calculated. Forms of metals in natural waters was determined with use account their chemical composition and content and properties of organic matter. We assessed metals speciation in water objects with account for competitive reactions resulting in formation of hydroxide, hydrocarbonate, sulfate, and chloride metal complexes and obtained a competitive series of metal activity in natural waters of the zones considered.

  6. Microstructural Models of Alumina Nanotubes and Anodic Porous Alumina Film Formed in Sulphuric Acid

    Institute of Scientific and Technical Information of China (English)

    濮林; 陈志强; 谭超; 杨铮; 邹建平; 鲍希茂; 冯端; 施毅; 郑有蚪

    2002-01-01

    Electrochemical stepwise anodization of aluminium in dilute sulphuric acid results in the formation of alumina nanotubes (ANTs) due to the hexagonal split of the anodic porous alumina (APA) film along the cell boundaries containing many voids; that is, the ANTs are the completely detached cell of the APA film. The inner diameters of the ANTs are in the range of 10 - 20 nm, and the aspect ratio (inner diameter/length) of the ANTs can be about 80. The relations found for pore diameter, cell diameter and barrier layer thickness are around 1, 2.7 and 0.85 nm/V, respectively. Transmission electron microscopy (TEM) reveals that the ANT wall has a three-shell structure: an outer shell (metal/oxide interface) consisting of pure alumina oxide, a middle shell of the hydrated oxide or/and hydroxide and an inner shell (oxide/electrolyte interface) of anion incorporated oxide with the thickness ratio of 1:1:2. The structural change of ANTs induced by e-beam irradiation in TEM indicates that the thermal instability of the hydrated oxide or/and hydroxide within the cell wall might be an alternative origin contributing to the self-organization of the cells, leading to a densely packed triangular cell lattice of the APA film.

  7. Comparison of chondroitin sulfate and hyaluronic Acid doped conductive polypyrrole films for adipose stem cells.

    Science.gov (United States)

    Björninen, Miina; Siljander, Aliisa; Pelto, Jani; Hyttinen, Jari; Kellomäki, Minna; Miettinen, Susanna; Seppänen, Riitta; Haimi, Suvi

    2014-09-01

    Polypyrrole (PPy) is a conductive polymer that has aroused interest due to its biocompatibility with several cell types and high tailorability as an electroconductive scaffold coating. This study compares the effect of hyaluronic acid (HA) and chondroitin sulfate (CS) doped PPy films on human adipose stem cells (hASCs) under electrical stimulation. The PPy films were synthetized electrochemically. The surface morphology of PPy-HA and PPy-CS was characterized by an atomic force microscope. A pulsed biphasic electric current (BEC) was applied via PPy films non-stimulated samples acting as controls. Viability, attachment, proliferation and osteogenic differentiation of hASCs were evaluated by live/dead staining, DNA content, Alkaline phosphatase activity and mineralization assays. Human ASCs grew as a homogenous cell sheet on PPy-CS surfaces, whereas on PPy-HA cells clustered into small spherical structures. PPy-CS supported hASC proliferation significantly better than PPy-HA at the 7 day time point. Both substrates equally triggered early osteogenic differentiation of hASCs, although mineralization was significantly induced on PPy-CS compared to PPy-HA under BEC. These differences may be due to different surface morphologies originating from the CS and HA dopants. Our results suggest that PPy-CS in particular is a potential osteogenic scaffold coating for bone tissue engineering. PMID:24823653

  8. Natamycin based sol-gel antimicrobial coatings on polylactic acid films for food packaging.

    Science.gov (United States)

    Lantano, Claudia; Alfieri, Ilaria; Cavazza, Antonella; Corradini, Claudio; Lorenzi, Andrea; Zucchetto, Nicola; Montenero, Angelo

    2014-12-15

    In this work a comprehensive study on a new active packaging obtained by a hybrid organic-inorganic coating with antimicrobial properties was carried out. The packaging system based on polylactic acid was realised by sol-gel processing, employing tetraethoxysilane as a precursor of the inorganic phase and polyvinyl alcohol as the organic component, and incorporating natamycin as the active agent. Films with different organic-inorganic ratios (in a range between 1:19 and 1:4) were prepared, and the amount of antimycotic entrapped was found to be modulated by the sol composition, and was between 0.18 and 0.25mg/dm(2). FTIR microspectroscopic measurements were used to characterise the prepared coatings. The antifungal properties of the films were investigated against mould growth on the surface of commercial semi-soft cheese. The release of natamycin from the films to ethanol 50% (v/v) was studied by means of HPLC UV-DAD. The maximal level released was about 0.105 mg/dm(2), which is far below the value allowed by legislation.

  9. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    Science.gov (United States)

    Stojadinović, Stevan; Tadić, Nenad; Radić, Nenad; Stefanov, Plamen; Grbić, Boško; Vasilić, Rastko

    2015-11-01

    This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb2O5 hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  10. Complex high-frequency magnetization dynamics and magnetoimpedance in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.B. da [Departamento de Fisica, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)]. E-mail: rbarreto1975@gmail.com; Viegas, A.D.C. [Departamento de Fisica, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Correa, M.A. [Departamento de Fisica, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Andrade, A.M.H. de [Departamento de Fisica, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Sommer, R.L. [Centro Brasileiro de Pesquisas Fisicas-CBPF, Rua Dr. Xavier Sigaud 150, Urca, 22290-180, Rio de Janeiro, RJ (Brazil)

    2006-10-01

    High-frequency differential magnetic permeability and magnetoimpedance measurements were performed in Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9} as-made and annealed thin films at frequencies up to 1.8 GHz. The results show complex dynamical properties characterized by multiple ferromagnetic resonance modes at relatively low frequencies for the amorphous as-made sample. After the thermal treatments, the resonance frequencies increase drastically exceeding the upper limit of 1.8 GHz for our equipment. This increase can possibly associated to higher local magnetic fields that are, in turn, associated to the formation of nanocrystalline grains randomly oriented.

  11. Data of thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid as crosslinking agent

    Science.gov (United States)

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-01-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: “Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent” González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature. PMID:27158645

  12. Data of thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid as crosslinking agent

    Directory of Open Access Journals (Sweden)

    Paula González Seligra

    2016-06-01

    Full Text Available Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid (CA as crosslinking agent described in the article titled: “Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent” González Seligra et al. (2016 [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature.

  13. Rhenium(V)-Carbohydrate Complexes with Amino Acids

    OpenAIRE

    Grimminger, Philipp

    2009-01-01

    This thesis is about the coordination chemistry of rhenium(V) with small biomolecules. Such rhenium complexes may be of medical significance in the field of radiopharmacy, since radioactive isotopes such as 186Re or 188Re are used for the diagnosis or treatment of tumors. But fundamental research is still necessary for the attachment of radiometals to biologically active molecules. Most rhenium(V)-based radiopharmaceuticals lack stability (at physiological conditions) or selectivity (in terms...

  14. Laser-induced electron transfer desorption/ionization of metal complexes on TiO2 films

    Science.gov (United States)

    Grechnikov, A. A.; Georgieva, V.; Borodkov, A. S.; Nikiforov, S. M.; Raicheva, Z.; Lazarov, J.; Donkov, N.

    2014-12-01

    Thin titanium dioxide (TiO2) films were studied as ion emitters for the laser-induced electron transfer desorption/ionization (LETDI) of metal complexes with organic reagents. The TiO2 films (350 nm thick) were deposited on the silicon substrates by e-beam evaporation of TiO2 powder. Copper complex with phthalocyanine, rhenium complex with thiocarbanilide and platinum complex with 8-quinolinethiol were studied as the test analytes. Reflectron time-of- flight mass spectrometer with the rotating ball interface was used for analysis. The analytes were applied on the surface of TiO2 film using an electrospray deposition. All tested compounds are detected as the radical molecular ions with no fragmentation. It is found, that TiO2 films are very stable and show good sensitivity in examined range of the analyte concentrations. The limits of detection of studied complexes were at the subfemtomole range, and the relative standard deviation was less than 10%.

  15. Effect of Sn content on the properties of passive film on PbSn alloy in sulfuric acid solution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of Sn content on properties of anodic film formed on PbSn alloys in sulfuric acid solution was investigated using linear sweeping voltage (LSV), cyclic voltammetry (CV), and a.c. voltammetry (ACV), based on the Mott-Schottky analysis. The results revealed that the addition of Sn into lead alloys can promote the corrosion resistance property and could decrease the impedance of anodic film; these results were more remarkable with enhancing the Sn content. The over potential of oxygen evolution on lead alloys enhanced with the increase of Sn content. The Mott-Schottky analysis indicated that the passive film appeared an n-type semiconductor, and the donor density of passive film increased with increasing Sn content. The increased vacancies in the passive film with Sn content increasing could illustrate this trend.

  16. Phase behavior, interaction and properties of acetic acid lignin-containing polyurethane films coupled with aminopropyltriethoxy silane

    OpenAIRE

    Wang, H. H.; Mou, J; Y. H. Ni; G. Q. Fei; C. L. Si; J. Zou

    2013-01-01

    A series of novel acetic acid lignin-containing polyurethane (LPU) films coupled with aminopropyltriethoxy silane (APTS) (LPUSi) or the mixture of APTS and trimethylol propane (TMP) (LPUSiT) were prepared. With 2% APTS addition, the crosslinking density increased, and the resultant films were endowed with good mechanical properties and water resistance. It was also found that the hydrogen bonding interaction between –NH and –C=O of urethane was destroyed, and new hydrogen bonds between APTS a...

  17. Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin

    OpenAIRE

    Sousa, Isabel; Pintado, Cristina M.B.S.; Ferreira, Maria A.S.S.

    2010-01-01

    The inhibitory effects of nisin, natamycin and malic acid, incorporated in whey protein films with pH 3, were investigated alone or with addition of sucrose esters, Tween80 or EDTA. Water vapour permeability measurements and mechanical and rheological tests were also assessed. EDTA and Tween80 did not sig- nificantly (P < 0.05) influence the inhibitory activity of films against Pseudomonas aeruginosa and Yarrow- ia lipolytica in contrast with the improved effect against Listeria m...

  18. Synthesis, structure and spectroscopic studies of europium complex with S(+)-mandelic acid

    Institute of Scientific and Technical Information of China (English)

    M. Babij; A. Mondry

    2011-01-01

    The Eu3+ complexes with S(+)-mandelic acid were synthesized in the form of powders by mixing aqueous solutions of EuCl3,S(+)-mandelic acid and NaOH in different molar ratios.The powders were characterized by elemental analysis,X-ray powder diffraction (XRPD) method,Fourier transform infrared (FTIR) and Raman spectroscopy,UV-vis reflectance and luminescence spectra as well as luminescence lifetime measurements.It was found that all studied powders of Eu3+ complexes with S(+)-mandelic acid were isostructural and crystalline and formed compounds with the formula Eu(Man)3(H2O)2.

  19. Oxidation of aromatic alcohols on zeolite-encapsulated copper amino acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Teixeira Florencio, J.M. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    1998-12-31

    Copper complexes of the amino acids histidine, arginine and lysine have been introduced into the supercages of zeolite Y and, for the first time, into the large intracrystalline cavities of zeolites EMT and MCM-22. The resulting host/guest compounds are characterized by X-ray powder diffraction, UV/VIS-spectroscopy in the diffuse reflectance mode and by catalytic tests in the liquid-phase oxidation of aromatic alcohols (viz. benzyl alcohol, 2- and 3-methylbenzyl alcohol and 2,5-dimethylbenzyl alcohol) with tertiary-butylhydroperoxide as oxidant. It was observed that intracrystalline copper-amino acid complexes possess remarkable catalytic activity, yielding the corresponding aromatic aldehydes and acids. (orig.)

  20. CdS thin films obtained by thermal treatment of cadmium(II) complex precursor deposited by MAPLE technique

    Energy Technology Data Exchange (ETDEWEB)

    Rotaru, Andrei [INFLPR - National Institute for Laser, Plasma and Radiation Physics, PPAM - Lasers Department, 409 Atomistilor Bvd., Magurele RO-077125, Bucharest (Romania); Mietlarek-Kropidlowska, Anna [Gdansk University of Technology, Chemistry Faculty, 11/12 G. Narutowicza Str., PL-90-233 Gdansk (Poland); Constantinescu, Catalin, E-mail: catalin.constantinescu@inflpr.ro [INFLPR - National Institute for Laser, Plasma and Radiation Physics, PPAM - Lasers Department, 409 Atomistilor Bvd., Magurele RO-077125, Bucharest (Romania); Scarisoreanu, Nicu; Dumitru, Marius [INFLPR - National Institute for Laser, Plasma and Radiation Physics, PPAM - Lasers Department, 409 Atomistilor Bvd., Magurele RO-077125, Bucharest (Romania); Strankowski, Michal [Gdansk University of Technology, Chemistry Faculty, 11/12 G. Narutowicza Str., PL-90-233 Gdansk (Poland); Rotaru, Petre [University of Craiova, Faculty of Physics, 13 A.I. Cuza St., Craiova RO-200585, Dolj (Romania); Ion, Valentin [INFLPR - National Institute for Laser, Plasma and Radiation Physics, PPAM - Lasers Department, 409 Atomistilor Bvd., Magurele RO-077125, Bucharest (Romania); Vasiliu, Cristina [INOE 2000 - National Institute for Optoelectronics, 1 Atomistilor Bvd., Magurele RO-077125, Bucharest (Romania); Becker, Barbara [Gdansk University of Technology, Chemistry Faculty, 11/12 G. Narutowicza Str., PL-90-233 Gdansk (Poland); Dinescu, Maria [INFLPR - National Institute for Laser, Plasma and Radiation Physics, PPAM - Lasers Department, 409 Atomistilor Bvd., Magurele RO-077125, Bucharest (Romania)

    2009-05-15

    Thin films of [Cd{l_brace}SSi(O-Bu{sup t}){sub 3}{r_brace}(S{sub 2}CNEt{sub 2})]{sub 2}, precursor for semiconducting CdS layers, were deposited on silicon substrates by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. Structural analysis of the obtained films by Fourier transform infrared spectroscopy (FTIR) confirmed the viability of the procedure. After the deposition of the coordination complex, the layers are manufactured by appropriate thermal treatment of the system (thin film and substrate), according to the thermal analysis of the compound. Surface morphology of the thin films was investigated by atomic force microscopy (AFM) and spectroscopic-ellipsometry (SE) measurements.

  1. Fabrication and Protein Conjugation of Aligned Polypyrrole-Poly(L-lactic acid) Fibers Film with the Conductivity and Stability.

    Science.gov (United States)

    Qin, Jiabang; Huang, Zhongbing; Yin, Guangfu; Yang, Anneng; Han, Wei

    2016-03-01

    The conducting composite scaffold, including fiber-cores of aligned poly(L-lactic acid) (PLLA) and shell-layer of polypyrrole (PPy), was fabricated, and then bovine serum albumin (BSA) was conjugated on the PPy shell-layer. Aligned PLLA fibers (about 300 nm diameter) were obtained by electrospinning and rotating drum collection, and then coated by PPy nanoparticles (NPs, about 50 nm diameter) via chemical oxidation. The surface resistivity of PPy-PLLA fibers film were 0.971, 0.874 kΩ. cm at the fiber's vertical and parallel directions, respectively. The results of PPy-PLLA fibers film immersed in phosphate buffer saline for 8 d indicated that the fibers morphology and the film conductivity were not significantly changed, and the fluorescent images showed that FITC-labeled BSA (FITC-BSA) were successfully conjugated in the fibers film with carbodiimide chemistry, and the largest amount of FITC-BSA conjugated in the fibers film from 100 μg/mL proteins solution was 31.31 μg/cm2 due to lots of poly(glutamic acid) in surface-nanogrooves of the fibers surface. Under electrical stimulation of 100 mV, the fibers film was accompanied the release of all conjugated FITC-BSA with the detachment of some PPy NPs. These results suggested that PPy-PLLA fibers film would be potentially applied in the construction of degradable tissue engineering scaffold with protein factors, especially neurotrophic factors for nerve tissue repair.

  2. Hydrolytic activity of -alkoxide/acetato-bridged binuclear Cu(II) complexes towards carboxylic acid ester

    Indian Academy of Sciences (India)

    Weidong Jiang; Bin Xu; Zhen Xiang; Shengtian Huang; Fuan Liu; Ying Wang

    2013-09-01

    Two -alkoxide/acetate-bridged small molecule binuclear copper(II) complexes were synthesized, and used to promote the hydrolysis of a classic carboxylic acid ester, -nitrophenyl picolinate (PNPP). Both binuclear complexes exhibited good hydrolytic reactivity, giving rise to . 15547- and 17462-fold acceleration over background value for PNPP hydrolysis at neutral conditions, respectively. For comparing, activities of the other two mononuclear analogues were evaluated, revealing that binuclear complexes show approximately 150- and 171-fold kinetic advantage over their mononuclear analogues.

  3. Database of amino acid-nucleotide contacts in the DNA complexes with homeodomain family proteins

    International Nuclear Information System (INIS)

    The analysis of amino acid-nucleotide contacts in interfaces of the protein-DNA complexes, intended to find consistencies in the protein-DNA recognition, is a complex problem that requires analysis of the physicochemical characteristics of these contacts, of the positions of the participating amino acids and nucleotides in the chains of the protein and the DNA, respectively, as well as conservatism of these contacts. Thus, those heterogeneous data should be systematized. For this purpose we have developed a database of amino acid-nucleotide contacts ANTPC (Amino acid Nucleotide Type Position Conservation) following the archetypal example of the proteins in the homeodomain family. We show that it can be used for comparison and classification of interfaces of the protein-DNA complexes

  4. Zinc complexes as fluorescent chemosensors for nucleic acids: new perspectives for a "boring" element.

    Science.gov (United States)

    Terenzi, Alessio; Lauria, Antonino; Almerico, Anna Maria; Barone, Giampaolo

    2015-02-28

    Zinc(II) complexes are effective and selective nucleic acid-binders and strongly fluorescent molecules in the low energy range, from the visible to the near infrared. These two properties have often been exploited to quantitatively detect nucleic acids in biological samples, in both in vitro and in vivo models. In particular, the fluorescent emission of several zinc(II) complexes is drastically enhanced or quenched by the binding to nucleic acids and/or upon visible light exposure, in a different fashion in bulk solution and when bound to DNA. The twofold objective of this perspective is (1) to review recent utilisations of zinc(II) complexes as selective fluorescent probes for nucleic acids and (2) to highlight their novel potential applications as diagnostic tools based on their photophysical properties.

  5. Novel rhenium(V) complexes with thiosemicarbazones of pyruvic or phenylglyoxylic acids

    International Nuclear Information System (INIS)

    New rhenium(V) complexes with thiosemicarbazones of pyruvic (L') or phenylglyoxylic (L'') acids were synthesized and isolated in solid state in aqueous solutions of concentrated hydrohalic acids. By the method of elementary analysis formation of complexes, featuring the following composition [ReOL'Cl3]·2H2O, [ReOL''2Br]Br2·2H2O, [ReOL'Br2(OH)]·2H2O, [ReOL''2(OH)]Cl·2H2O, [Re2O3L'2Cl4]·2H2O, was ascertained. Solubility of the complexes in organic solvents was determined

  6. Leaching of complex sulphide concentrate in acidic cupric chloride solutions

    Institute of Scientific and Technical Information of China (English)

    M. TCHOUMOU; M. ROYNETTE

    2007-01-01

    The chemical analysis of a complex sulphide concentrate by emission spectrometry and X-ray diffraction shows that it contains essentially copper, lead, zinc and iron in the form of chalcopyrite, sphalerite and galena. A small amount of pyrite is also present in the ore but does not be detected with X-ray diffraction. The cupric chloride leaching of the sulphide concentrate at various durations and solid/liquid ratios at 100 ℃ shows that the rate of dissolution of the ore is the fastest in the first several hours, and after 12 h it does not evolve significantly. If oxygen is excluded from the aqueous cupric chloride solution during the leaching experiment at 100 ℃, the pyrite in the ore will not be leached. The determination of principal dissolved metals in the leaching liquor by flame atomic absorption spectrometry, and the chemical analysis of solid residues by emission spectrometry and X-ray diffraction allow to conclude that the rate of dissolution of the minerals contained in the complex sulphide concentrate are in the order of galena>sphalerite>chalcopyrite.

  7. XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films.

    Science.gov (United States)

    Kiss, E; Bertóti, I; Vargha-Butler, E I

    2002-01-01

    Poly(lactic acid) (PLA) and poly(lactic/glycolic acid) copolymers (PLGA) are biodegradable drug carriers of great importance, although successful pharmaceutical application requires adjustment of the surface properties of the polymeric drug delivery system to be compatible with the biological environment. For that reason, reduction of the original hydrophobicity of the PLA or PLGA surfaces was performed by applying a hydrophilic polymer poly(ethylene oxide) (PEO) with the aim to improve biocompatibility of the original polymer. PEO-containing surfaces were prepared by incorporation of block copolymeric surfactants, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic), into the hydrophobic surface. Films of polymer blends from PLA or PLGA (with lactic/glycolic acid ratios of 75/25 and 50/50) and from Pluronics (PE6800, PE6400, and PE6100) were obtained by the solvent casting method, applying the Pluronics at different concentrations between 1 and 9.1% w/w. Wettability was measured to monitor the change in surface hydrophobicity, while X-ray photoelectron spectroscopy (XPS) was applied to determine the composition and chemical structure of the polymer surface and its change with surface modification. Substantial reduction of surface hydrophobicity was achieved on both the PLA homopolymer and the PLGA copolymers by applying the Pluronics at various concentrations. In accordance with the wettability changes the accumulation of Pluronics in the surface layer was greatly affected by the initial hydrophobicity of the polymer, namely, by the lactide content of the copolymer. The extent of surface modification was also found to be dependent on the type of blended Pluronics. Surface activity of the modifying Pluronic component was interpreted by using the solubility parameters. PMID:16290340

  8. Metal complexation inhibits the effect of oxalic acid in aerosols as cloud condensation nuclei (CCN

    Directory of Open Access Journals (Sweden)

    T. Furukawa

    2010-11-01

    Full Text Available Atmospheric aerosols have both a direct and an indirect cooling effect that influences the radiative balance at the Earth's surface. It has been estimated that the degree of cooling is large enough to cancel the warming effect of carbon dioxide. Among the cooling factors, secondary organic aerosols (SOA play a key role in the solar radiation balance in the troposphere as SOA can act as cloud condensation nuclei (CCN and extend the lifespan of clouds because of their high hygroscopic and water soluble nature. Oxalic acid is one of the major components of SOA, and is produced via several formation pathways in the atmosphere. However, it is not certain whether oxalic acid exists as free oxalic acid or as metal oxalate complexes in aerosols, although there is a marked difference in their solubility in water and their hygroscopicity. We employed X-ray absorption fine structure spectroscopy to characterize the calcium (Ca and zinc (Zn in aerosols collected at Tsukuba in Japan with fractionation based on particle size using an impactor aerosol sampler. It was shown that 10–60% and 20–100% of the total Ca and Zn in the finer particles (<2.1 μm were present as Ca and Zn oxalate complexes, respectively. Oxalic acid can act as CCN because of its hygroscopic properties, while metal complexes are not hygroscopic, and so cannot be CCN. Based on the concentration of noncomplexed and metal-complexed oxalate species, we found that most of the oxalic acid is present as metal oxalate complexes in the aerosols, suggesting that oxalic acid does not act as CCN in the atmosphere. Similar results are expected for other dicarboxylic acids, such as malonic and succinic acids. Thus, it is possible that the cooling effect of organic aerosols assumed in various climate modeling studies is overestimated because of the lack of information on metal oxalate complexes in aerosols.

  9. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes

    Science.gov (United States)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif

    2016-05-01

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.

  10. Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode?

    Science.gov (United States)

    Chen, Y-X; Heinen, M; Jusys, Z; Behm, R J

    2006-12-01

    We present and discuss the results of an in situ IR study on the mechanism and kinetics of formic acid oxidation on a Pt film/Si electrode, performed in an attenuated total reflection (ATR) flow cell configuration under controlled mass transport conditions, which specifically aimed at elucidating the role of the adsorbed bridge-bonded formates in this reaction. Potentiodynamic measurements show a complex interplay between formation and desorption/oxidation of COad and formate species and the total Faradaic current. The notably faster increase of the Faradaic current compared to the coverage of bridge-bonded formate in transient measurements at constant potential, but with different formic acid concentrations, reveals that adsorbed formate decomposition is not rate-limiting in the dominant reaction pathway. If being reactive intermediate at all, the contribution of formate adsorption/decomposition to the reaction current decreases with increasing formic acid concentration, accounting for at most 15% for 0.2 M DCOOH at 0.7 VRHE. The rapid build-up/removal of the formate adlayer and its similarity with acetate or (bi-)sulfate adsorption/desorption indicate that the formate adlayer coverage is dominated by a fast dynamic adsorption-desorption equilibrium with the electrolyte, and that formate desorption is much faster than its decomposition. The results corroborate the proposal of a triple pathway reaction mechanism including an indirect pathway, a formate pathway, and a dominant direct pathway, as presented previously (Chen, Y. X.; et al. Angew. Chem. Int. Ed. 2006, 45, 981), in which adsorbed formates act as a site-blocking spectator in the dominant pathway rather than as an active intermediate.

  11. Crystal structural analysis of human serum albumin complexed with hemin and fatty acid

    Directory of Open Access Journals (Sweden)

    Tsuchida Eishun

    2003-07-01

    Full Text Available Abstract Background Human serum albumin (HSA is an abundant plasma protein that binds a wide variety of hydrophobic ligands including fatty acids, bilirubin, thyroxine and hemin. Although HSA-heme complexes do not bind oxygen reversibly, it may be possible to develop modified HSA proteins or heme groups that will confer this ability on the complex. Results We present here the crystal structure of a ternary HSA-hemin-myristate complex, formed at a 1:1:4 molar ratio, that contains a single hemin group bound to subdomain IB and myristate bound at six sites. The complex displays a conformation that is intermediate between defatted HSA and HSA-fatty acid complexes; this is likely to be due to low myristate occupancy in the fatty acid binding sites that drive the conformational change. The hemin group is bound within a narrow D-shaped hydrophobic cavity which usually accommodates fatty acid; the hemin propionate groups are coordinated by a triad of basic residues at the pocket entrance. The iron atom in the centre of the hemin is coordinated by Tyr161. Conclusion The structure of the HSA-hemin-myristate complex (PDB ID 1o9x reveals the key polar and hydrophobic interactions that determine the hemin-binding specificity of HSA. The details of the hemin-binding environment of HSA provide a structural foundation for efforts to modify the protein and/or the heme molecule in order to engineer complexes that have favourable oxygen-binding properties.

  12. Comparison of complexation properties of humic acids and simple organic ligands

    Directory of Open Access Journals (Sweden)

    Martina Klucakova*

    2010-12-01

    Full Text Available Simple organic compounds as citric acid, phthalic acid, salicylicacid, EDTA, hydroquinone and pyrocatechol were used as structural models of active sites of humic acids. Combination of high resolution ultrasound spectrometry with potentiometry,conductometry and UV/VIS spectrometry were utilized forcomplexation of copper (II ions by humic acids and modelcompounds. Changes in the slope of measured quantities were used to find the saturation of binding. Ultrasound spectrometry showed follow changes of hydration of interacting species. The differences observed for individual model compounds show that there are active centres not only with various strength and stability of formed complexes but also with their various rigidity and ability of conformational changes.

  13. The formation mechanism and photocatalytic activity of hierarchical NiAl-LDH films on an Al substrate prepared under acidic conditions.

    Science.gov (United States)

    Xue, Li; Cheng, Yingzhi; Sun, Xiuyu; Zhou, Ziyan; Xiao, Xiaoling; Hu, Zhongbo; Liu, Xiangfeng

    2014-03-01

    NiAl-LDH films with hierarchical morphology have been fabricated by immersion of an Al substrate in Ni(2+)-containing solutions under strong acidic conditions, and the growth processes of the films are discussed in this communication. The as-prepared LDH films exhibit high activity in the photocatalytic degradation of organic contaminants. PMID:24445754

  14. Fabrication of a novel bone ash-reinforced gelatin/alginate/hyaluronic acid composite film for controlled drug delivery.

    Science.gov (United States)

    Alemdar, Neslihan

    2016-10-20

    In this study, a novel pH-sensitive composite film with enhanced thermal and mechanical properties was prepared by the incorporation of bone ash at varying concentrations from 0 to 10v.% into gelatin/sodium alginate/hyaluronic acid (Gel/SA/HyA) polymeric structure for colon-specific drug delivery system. Films were characterized by FT-IR, SEM, and XRD analyses. Thermal and mechanical performances of films were determined by DSC, TGA and universal mechanical tester, respectively. Results proved that thermal stability and mechanical properties of bone ash-reinforced composite films improved significantly with respect to that of neat Gel/SA/HyA film. Cytotoxicity assay for composite films was carried out by using L929 cells. Water uptake capacity of films was determined by swelling test. Herein, release experiments of 5-Fluorouracil (5-FU) were performed in two different solutions (pH 2.1 and 7.4). The results assured that Gel/SA/HyA film containing BA could be considered as a potential biomaterial for controlled drug delivery systems. PMID:27474650

  15. Characterization of Active Packaging Films Made from Poly(Lactic Acid)/Poly(Trimethylene Carbonate) Incorporated with Oregano Essential Oil.

    Science.gov (United States)

    Liu, Dong; Li, Hongli; Jiang, Lin; Chuan, Yongming; Yuan, Minglong; Chen, Haiyun

    2016-01-01

    Antimicromial and antioxidant bioactive films based on poly(lactic acid)/poly(trimenthylene carbonate) films incorporated with different concentrations of oregano essential oil (OEO) were prepared by solvent casting. The antimicrobial, antioxidant, physical, thermal, microstructural, and mechanical properties of the resulting films were examined. Scanning electron microscopy analysis revealed that the cross-section of films became rougher when OEO was incorporated into PLA/PTMC blends. Differential scanning calorimetry analysis indicated that crystallinity of PLA phase decreased by the addition of OEO, but this did not affect the thermal stability of the films. Water vapor permeability of films slightly increased with increasing concentration of OEO. However, active PLA/PTMC/OEO composite films showed adequate barrier properties for food packaging application. The antimicrobial and antioxidant capacities were significantly improved with the incorporation of OEO (p < 0.05). The results demonstrated that an optimal balance between the mechanical, barrier, thermal, antioxidant, and antimicrobial properties of the films was achieved by the incorporation of 9 wt % OEO into PLA/PTMC blends. PMID:27240336

  16. Characterization of Active Packaging Films Made from Poly(Lactic Acid/Poly(Trimethylene Carbonate Incorporated with Oregano Essential Oil

    Directory of Open Access Journals (Sweden)

    Dong Liu

    2016-05-01

    Full Text Available Antimicromial and antioxidant bioactive films based on poly(lactic acid/poly(trimenthylene carbonate films incorporated with different concentrations of oregano essential oil (OEO were prepared by solvent casting. The antimicrobial, antioxidant, physical, thermal, microstructural, and mechanical properties of the resulting films were examined. Scanning electron microscopy analysis revealed that the cross-section of films became rougher when OEO was incorporated into PLA/PTMC blends. Differential scanning calorimetry analysis indicated that crystallinity of PLA phase decreased by the addition of OEO, but this did not affect the thermal stability of the films. Water vapor permeability of films slightly increased with increasing concentration of OEO. However, active PLA/PTMC/OEO composite films showed adequate barrier properties for food packaging application. The antimicrobial and antioxidant capacities were significantly improved with the incorporation of OEO (p < 0.05. The results demonstrated that an optimal balance between the mechanical, barrier, thermal, antioxidant, and antimicrobial properties of the films was achieved by the incorporation of 9 wt % OEO into PLA/PTMC blends.

  17. Molecular Processes Underlying the Structure and Assembly of Thin Films and Nanoparticles at Complex interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Geraldine [Univ. of Oregon, Eugene, OR (United States)

    2016-06-03

    differences in how water behaves at hydrophobic self-assembled monolayer (SAMS)/water interfaces relative to the organic liquid/water interfaces. Several monolayer films have been examined in these studies using a combination of vibrational sum frequency spectroscopy (VSFS), contact angle measurements and AFM. At the hydrocarbon monolayer/water interface we find that water has a weak bonding interaction with the monolayer film that results in an orientation of water at the terminus of these hydrocarbon chains. The water-film interaction is still present for fluorinated films but it is found to be considerably weaker. Hydration and Surfactant Adsorption at Salt/Water Interfaces This set of studies has examined the molecular characteristics of the CaF2/water interface using VSFS. Our first studies detailed the structure and orientation of water molecules adsorbed at this mineral surfaces including studies of the surface in the presence of aqueous solutions of salts. These studies have been followed by a series of static and time-resolved studies of the adsorption of carboxylic acid containing organics at this surface, specifically carboxylic acid surfactants and acetic acid. In the latter we have developed a new method for time resolved studies that involve sequential wavelength tuning and automated control of spatial beam overlap at the target can probe amplitude changes of sum-frequency resonances in widely spaced infrared regions. This offers great advantages for the study of the synchronism of molecular processes at interfaces. This approach is particularly suitable to investigate the synchronization of interfacial processes such as surfactant adsorption at charged mineral surfaces. Macromolecular Assembly at Liquid/Liquid Interfaces Macromolecular assembly at the interface between water and a hydrophobic surface underlies some of the most important biological and environmental processes on the planet. Our work has examined polymer adsorption and assembly of

  18. Amino acid detection using fluoroquinolone–Cu{sup 2+} complex as a switch-on fluorescent probe by competitive complexation without derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Farokhcheh, Alireza; Alizadeh, Naader, E-mail: alizaden@modares.ac.ir

    2014-01-15

    In this work, we describe the use of fluoroquinolone–Cu{sup 2+} complex as a competitive switch-on fluorescence probe for amino acid determination without derivatization. The fluorescence intensity of this probe, which has been reduced due to effective quenching by Cu{sup 2+} ion, increases drastically by an addition of amino acid (glycine, phenylalanine, sarcosine, aspargine, alanine, proline, arginine, aspartic acid, glutamic acid, lysine, leucine and isoleucine). The overall stability constants of Cu{sup 2+} ion complexes with amino acids were determined by fluorometric titration of fluoroquinolone-Cu{sup 2+} complex with the amino acid solution. Furthermore, the probe shows high calibration sensitivity toward aspartic acid. The fluorescence signal depends linearly on the amino acid concentration within the range of concentration from 1.2×10{sup −7} to 1.1×10{sup −5} mol L{sup −1} for aspartic acid. The detection limit was found 2.7×10{sup −8} mol L{sup −1} with the relative standard deviation (RSD%) about 2.1% (five replicate). -- Highlights: • Amino acids are detected by using fluoroquinolone–Cu{sup 2+} complex as fluorescent probe. • Amino acids were detected based on a competitive complexation reaction. • Probe has been able to recognize amino acids through switch-on fluorescence behavior. • Ultra-trace level of aspartic and glutamic acid is determined without derivatization.

  19. Amino acid detection using fluoroquinolone–Cu2+ complex as a switch-on fluorescent probe by competitive complexation without derivatization

    International Nuclear Information System (INIS)

    In this work, we describe the use of fluoroquinolone–Cu2+ complex as a competitive switch-on fluorescence probe for amino acid determination without derivatization. The fluorescence intensity of this probe, which has been reduced due to effective quenching by Cu2+ ion, increases drastically by an addition of amino acid (glycine, phenylalanine, sarcosine, aspargine, alanine, proline, arginine, aspartic acid, glutamic acid, lysine, leucine and isoleucine). The overall stability constants of Cu2+ ion complexes with amino acids were determined by fluorometric titration of fluoroquinolone-Cu2+ complex with the amino acid solution. Furthermore, the probe shows high calibration sensitivity toward aspartic acid. The fluorescence signal depends linearly on the amino acid concentration within the range of concentration from 1.2×10−7 to 1.1×10−5 mol L−1 for aspartic acid. The detection limit was found 2.7×10−8 mol L−1 with the relative standard deviation (RSD%) about 2.1% (five replicate). -- Highlights: • Amino acids are detected by using fluoroquinolone–Cu2+ complex as fluorescent probe. • Amino acids were detected based on a competitive complexation reaction. • Probe has been able to recognize amino acids through switch-on fluorescence behavior. • Ultra-trace level of aspartic and glutamic acid is determined without derivatization

  20. Dye sensitized solar cell applications of CdTiO3-TiO2 composite thin films deposited from single molecular complex

    Science.gov (United States)

    Ehsan, Muhammad Ali; Khaledi, Hamid; Pandikumar, Alagarsamy; Huang, Nay Ming; Arifin, Zainudin; Mazhar, Muhammad

    2015-10-01

    A heterobimetallic complex [Cd2Ti4(μ-O)6(TFA)8(THF)6]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO3-TiO2 composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity, phase identification and chemical composition of microspherical architectured CdTiO3-TiO2 composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application.

  1. Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands

    International Nuclear Information System (INIS)

    The pseudotetrahedral complexes of [Cu(PPh3)2(L)], where L=8-hydroxy-2-methylquinoline-7-carboxylic acid (1), 8-hydroxy-2,5-dimethylquinoline-7-carboxylic acid (2) or 5-chloro-8-hydroxy-2-methylquinoline-7-carboxylic acid (3) have been synthesized and structurally characterized by X-ray crystallography. Their properties have been examined through combinations of IR, NMR, electronic absorption spectroscopy and cyclic voltammetry. The complexes exhibit extraordinary photophysical properties. Complex (1) in solid state exhibits an emission quantum yield of 4.67% and an excited life time of 1.88 ms (frozen DCM solution up to 6.7 ms). When dissolved in a coordinating solvent (acetonitrile) the charge transfer emission was quenched on a microsecond scale. - Highlights: • Synthesis of copper(I) complexes with 8-hydroxyquinoline carboxylic acid ligands. • Very long lived phosphorescent copper(I) complexes. • [Cu(PPh3)2(L)] where L=8-hydroxy-2-methylquinoline-7-carboxylic acid luminesce in the solid state exhibits extremely long lifetime on millisecond scale (1.9 ms). • In frozen MeOH:EtOH solution lifetime increases to 7 ms. • Quantum efficiency equal to 4.7%

  2. A complex of equine lysozyme and oleic acid with bactericidal activity against Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Emily A Clementi

    Full Text Available HAMLET and ELOA are complexes consisting of oleic acid and two homologous, yet functionally different, proteins with cytotoxic activities against mammalian cells, with HAMLET showing higher tumor cells specificity, possibly due to the difference in propensity for oleic acid binding, as HAMLET binds 5-8 oleic acid molecules per protein molecule and ELOA binds 11-48 oleic acids. HAMLET has been shown to possess bactericidal activity against a number of bacterial species, particularly those with a respiratory tropism, with Streptococcus pneumoniae displaying the greatest degree of sensitivity. We show here that ELOA also displays bactericidal activity against pneumococci, which at lower concentrations shows mechanistic similarities to HAMLET's bactericidal activity. ELOA binds to S. pneumoniae and causes perturbations of the plasma membrane, including depolarization and subsequent rupture, and activates an influx of calcium into the cells. Selective inhibition of calcium channels and sodium/calcium exchange activity significantly diminished ELOA's bactericidal activity, similar to what we have observed with HAMLET. Finally, ELOA-induced death was also accompanied by DNA fragmentation into high molecular weight fragments - an apoptosis-like morphological phenotype that is seen during HAMLET-induced death. Thus, in contrast to different mechanisms of eukaryote cell death induced by ELOA and HAMLET, these complexes are characterized by rather similar activities towards bacteria. Although the majority of these events could be mimicked using oleic acid alone, the concentrations of oleic acid required were significantly higher than those present in the ELOA complex, and for some assays, the results were not identical between oleic acid alone and the ELOA complex. This indicates that the lipid, as a common denominator in both complexes, is an important component for the complexes' bactericidal activities, while the proteins are required both to solubilize

  3. Trifluoroacetic acid as excipient destabilizes melittin causing the selective aggregation of melittin within the centrin-melittin-trifluoroacetic acid complex

    Directory of Open Access Journals (Sweden)

    Belinda Pastrana-Rios

    2015-07-01

    Full Text Available Trifluoroacetic acid (TFA may be the cause of the bottleneck in high resolution structure determination for protein-peptide complexes. Fragment based drug design often involves the use of synthetic peptides which contain TFA (excipient. Our goal was to explore the effects of this excipient on a model complex: centrin-melittin-TFA. We performed Fourier transform infrared, two-dimensional infrared correlation spectroscopies and spectral simulations to analyze the amide I'/I'* band for the components and the ternary complex. Melittin (MLT was observed to have increased helicity upon its interaction with centrin, followed by the thermally induced aggregation of MLT within the ternary complex in the TFA presence.

  4. Stability study of polyacrylic acid films plasma-polymerized on polypropylene substrates at medium pressure

    International Nuclear Information System (INIS)

    Plasma polymerization of acrylic acid has become an interesting research subject, since these coatings are expected to be beneficial for biomedical applications due to their high surface density of carboxylic acid functional groups. However, the application of these monomers is counteracted by their low stability in humid environments, since a high stability is a required characteristic for almost any biological application. The present work investigates whether it is possible to obtain stable deposits with a high retention of carboxylic acid functions by performing plasma polymerization on polypropylene substrates with a dielectric barrier discharge operating at medium pressure. In order to obtain coatings with the desired properties, the plasma parameters need to be optimized. Therefore, in this paper, the influence of discharge power and location of the substrate in the discharge chamber is examined in detail. The properties of the deposited films are studied using contact angle measurements, X-ray photoelectron spectroscopy, atomic force microscopy and Fourier transform infrared spectroscopy. Moreover, to determine whether the obtained deposits are soluble in water, the coatings are once again analyzed after rinsing in water. This paper will clearly show that stable COOH-rich surfaces can be obtained at high discharge power and close to the monomer inlet, which might open perspectives for future biomedical applications.

  5. Comparative thermodynamic study on complex formation of native and hydroxypropylated cyclodextrins with benzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Terekhova, Irina V., E-mail: ivt@isc-ras.ru [Institute of Solution Chemistry of RAS, Ivanovo (Russian Federation)

    2011-11-10

    Highlights: Black-Right-Pointing-Pointer Comparative calorimetric study on complexation of benzoic acid by native and modified cyclodextrins was performed. Black-Right-Pointing-Pointer Van der Waals interactions are responsible for complex formation with {alpha}-cyclodextrins. Black-Right-Pointing-Pointer Complex formation of {beta}-cyclodextrins is governed by dehydration and hydrophobic interactions. Black-Right-Pointing-Pointer Binding of two benzoic acid molecules by {gamma}-cyclodextrins is driven by van der Waals interactions and solvent reorganization. Black-Right-Pointing-Pointer Hydroxypropyl groups favor binding of benzoic acid only with hydroxypropyl-{beta}-cyclodextrin. - Abstract: Complex formation of native and hydroxypropylated {alpha}-, {beta}- and {gamma}-cyclodextrins with benzoic acid in water was studied by means of calorimetry of solution at 298.15 K. The 1:1 complexes are formed with {alpha}- and {beta}-cyclodextrins, while 1:2 binding stoichiometry was observed for {gamma}-cyclodextrins. Thermodynamic parameters of complex formation of hydroxypropylated cyclodextrins were determined for the first time and analyzed. Comparison of binding affinity of native and modified cyclodextrins was carried out.

  6. Water Soluble Usnic Acid-Polyacrylamide Complexes with Enhanced Antimicrobial Activity against Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    Iolanda Francolini

    2013-04-01

    Full Text Available Usnic acid, a potent antimicrobial and anticancer agent, poorly soluble in water, was complexed to novel antimicrobial polyacrylamides by establishment of strong acidic-base interactions. Thermal and spectroscopic analysis evidenced a molecular dispersion of the drug in the polymers and a complete drug/polymer miscibility for all the tested compositions. The polymer/drug complexes promptly dissolved in water and possessed a greater antimicrobial activity against Staphylococcus epidermidis than both the free drug and the polymer alone. The best results were obtained with the complex based on the lowest molecular weight polymer and containing a low drug content. Such a complex showed a larger inhibition zone of bacterial growth and a lower minimum inhibitory concentration (MIC with respect to usnic acid alone. This improved killing effect is presumably due to the reduced size of the complexes that allows an efficient cellular uptake of the antimicrobial complexes. The killing effect extent seems to be not significantly dependent on usnic acid content in the samples.

  7. Copper Complexes of Nicotinic-Aromatic Carboxylic Acids as Superoxide Dismutase Mimetics

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul

    2008-12-01

    Full Text Available Nicotinic acid (also known as vitamin B3 is a dietary element essential for physiological and antihyperlipidemic functions. This study reports the synthesis of novel mixed ligand complexes of copper with nicotinic and other select carboxylic acids (phthalic, salicylic and anthranilic acids. The tested copper complexes exhibited superoxide dismutase (SOD mimetic activity and antimicrobial activity against Bacillus subtilis ATCC 6633, with a minimum inhibition concentration of 256 μg/mL. Copper complex of nicotinic-phthalic acids (CuNA/Ph was the most potent with a SOD mimetic activity of IC50 34.42 μM. The SOD activities were observed to correlate well with the theoretical parameters as calculated using density functional theory (DFT at the B3LYP/LANL2DZ level of theory. Interestingly, the SOD activity of the copper complex CuNA/Ph was positively correlated with the electron affinity (EA value. The two quantum chemical parameters, highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO, were shown to be appropriate for understanding the mechanism of the metal complexes as their calculated energies show good correlation with the SOD activity. Moreover, copper complex with the highest SOD activity were shown to possess the lowest HOMO energy. These findings demonstrate a great potential for the development of value-added metallovitamin-based therapeutics.

  8. Isotherms and Kinetics of Water Vapor Sorption/Desorption for Surface Films of Polyion-Surfactant Ion Complex Salts.

    Science.gov (United States)

    Gustavsson, Charlotte; Piculell, Lennart

    2016-07-14

    Thin films of "complex salts" (CS = ionic surfactants with polymeric counterions) have recently been shown to respond to humidity changes in ambient air by changing their liquid crystalline structure. We here report isotherms and kinetics of water sorption/desorption for ∼10-100 μm films of alkyltrimethylammonium polyacrylate CS, measured in a dynamic gravimetric vapor sorption instrument over a 0-95% relative humidity (RH) range. The sorption per ion pair was similar to that observed for common ionomers. A kinetic model for the water exchange is presented, assuming that the "external" transport between the vapor reservoir and the film surface is rate-determining. The model predicts that the water content, after a small stepwise change of the reservoir RH, should vary exponentially with time, with a time constant proportional to both the slope of the sorption isotherm and the film thickness. These predictions were confirmed for our films over large RH ranges, and the external mass transfer coefficient in our setup was calculated from the experimental data. Expressions derived for the Biot number (ratio of characteristic times for internal and external water transport) for the considered limiting case strongly indicate that external water transport should quite generally affect, or even dominate, the measured kinetics for similarly thin hydrated films. PMID:27327628

  9. Transition Metal Complexes of 5-bromo Salicylaldehyde-2-furoic acid hydrazide; Synthesis and Characterisation

    Directory of Open Access Journals (Sweden)

    MANISH KUMAR

    2012-12-01

    Full Text Available A series of transition metal complexes of the ligand 5-bromo salicylaldehyde-2-furoic acid hydrazide have been prepared using Ti(III, Mn(III, V(III, Co(III, Fe(III, Ru(III and Rh(III. The complexes have been characterized by elemental analyses, melting points, molar conductance, magnetic susceptibility measurement, electronic and infra red spectral studies. Based on these studies octahedral structures have been proposed for these complexes. The ligand has behaved in dibasic tridentate manner. The I.R. spectra of the complexes revealed non-participation of furan ring oxygen in coordination with the metal ions.

  10. Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes

    Directory of Open Access Journals (Sweden)

    Selvaraj S

    2011-10-01

    Full Text Available Abstract Background Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology. Methods We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such as binding propensity, neighboring residues in the vicinity of binding sites, conservation score and conformational switching. Results We observed that the binding propensities of amino acid residues are specific for protein-protein complexes. Further, typical dipeptides and tripeptides showed high preference for binding, which is unique to protein-protein complexes. Most of the binding site residues are highly conserved among homologous sequences. Our analysis showed that 7% of residues changed their conformations upon protein-protein complex formation and it is 9.2% and 6.6% in the binding and non-binding sites, respectively. Specifically, the residues Glu, Lys, Leu and Ser changed their conformation from coil to helix/strand and from helix to coil/strand. Leu, Ser, Thr and Val prefer to change their conformation from strand to coil/helix. Conclusions The results obtained in this study will be helpful for understanding and predicting the binding sites in protein-protein complexes.

  11. Effects of acetic acid on microstructure and electrochemical properties of nano cerium oxide films coated on AA7020-T6 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    H. Hasannejad; T. Shahrabi; M. Aliofkhazraei

    2009-01-01

    Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), crack-flee films with well-developed grains were obtained and grain sizes of the films decreased. Elimination of cracks and decreasing grain size of the nano cerium oxide films caused corrosion resistance to increase.

  12. Electrochemical synthesis of FeS{sub 2} thin film: An effective material for peroxide sensing and terephthalic acid degradation

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Sumanta [Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103 WB (India); Mondal, Palash; Tripathi, Subhankar [Department of Chemistry, Vivekananda Mahavidyalaya, Burdwan, 713103 WB (India); Mondal, Anup [Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103 WB (India); Chakraborty, Biswajit, E-mail: biswajitmailbag@gmail.com [Department of Chemistry, Vivekananda Mahavidyalaya, Burdwan, 713103 WB (India)

    2015-10-15

    Electrochemically FeS{sub 2} thin films have been synthesized on ITO substrates at room temperature (25 °C). UV–Vis, X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) were used for the characterization of nanostructure FeS{sub 2} thin films. Two probe I–V measurements convey that the material is p type and a p-n junction (diode) was found to be developed between FeS{sub 2} and ITO layer. Cyclic voltametry study shows that FeS{sub 2}/ITO electrode facilitates the reduction of hydrogen peroxide and exhibits excellent electro-catalytic activity towards its sensing. Photocatalytic study reveals that the synthesized thin films are also efficient to degrade terephthalic acid (TA). - Graphical abstract: Electrochemically FeS{sub 2} thin films have been synthesized on ITO substrate. The synthesized material is effective for the reduction of H{sub 2}O{sub 2} and the sensitivity of the material is strongly dependent on pH and temperature. Photocatalytic study reveals that the material is quite effective towards decomposition of terephthalic acid. These results indicate that the material can play a dual role as pollutant cleanup for environmental interest. - Highlights: • Electrochemically FeS{sub 2} thin films are synthesized. • The material is effective to sense the H{sub 2}O{sub 2} and degrade terephthalic acid. • It plays a dual role as pollutant cleanup for environmental interest.

  13. Rare earth(III) complexes with an amino acid derived from isonicotinic acid hydrazide: synthesis, characterization and antifungal activities

    Energy Technology Data Exchange (ETDEWEB)

    Shen, X.; Shi, X.F.; Liu, Y.S.; Yao, T.M. [Department of Chemistry, Tongji University, Shanghai (China); Xie, Y.Y. [Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China)

    1998-12-31

    Rare earth(III) complexes, RE{sub 2}(CPI){sub 3}{center_dot}nH{sub 2}O (RE = La, Ce, Pr, Sm, Gd, Tb, Dy, Er, Yb, Sc, n =3; RE = Nd, Eu, n = 4; H{sub 2}CPI 1-[(N-carboxymethyl-N-phenyl) amino] [acetylisonicotinic acid hydrazide]), have been synthesized and characterized by IR, UV and {sup 1}H NMR spectroscopy, magnetic susceptibility, elemental analysis, molar conductivity and TGA measurement. Preliminary pharmaceutical tests showed that these complex exhibit definite inhibition activities against S. Sake Yake and C. Albicans (Robin) Berkh 50. (author) 16 refs, 4 figs, 3 tabs

  14. Rare earth(III) complexes with an amino acid derived from isonicotinic acid hydrazide: synthesis, characterization and antifungal activities

    International Nuclear Information System (INIS)

    Rare earth(III) complexes, RE2(CPI)3·nH2O (RE = La, Ce, Pr, Sm, Gd, Tb, Dy, Er, Yb, Sc, n =3; RE = Nd, Eu, n = 4; H2CPI 1-[(N-carboxymethyl-N-phenyl)amino]acetylisonicotinic acid hydrazide], have been synthesized and characterized by IR, UV and 1H NMR spectroscopy, magnetic susceptibility, elemental analysis, molar conductivity and TGA measurement. Preliminary pharmaceutical tests showed that these complex exhibit definite inhibition activities against S. Sake Yake and C. Albicans (Robin) Berkh 50. (author)

  15. Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Woo; Choi, Hyun Muk [Kyonggi University, Suwon (Korea, Republic of)

    2016-01-15

    To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.

  16. Antimicrobial Hyaluronic Acid-Cefoxitin Sodium Thin Films Produced by Electrospraying.

    Science.gov (United States)

    Ahire, Jayesh J; Dicks, Leon M T

    2016-08-01

    The healing properties of hyaluronic acid (HA) in the recovery of wounds are well known. Cefoxitin (Cef), a cephalosporin antibiotic, is generally used to prevent and treat postoperative infections. In this study, we describe the incorporation of Cef in HA thin films (Cef-HAF) by using electrospraying. Scanning electron microscopy images showed that HA-containing thin films (HAF) were composed of numerous nanoparticles (255 ± 177 nm in diameter) with irregular surfaces, connected to each other with nanofibers of 50 ± 11 nm in diameter. Cef-HAF contained fewer, but larger, particles (551 ± 293 nm) with smooth surfaces and were interconnected with nanofibers of 61 ± 13 nm in diameter. Differences in surface morphology between HAF and Cef-HAF were confirmed by atomic force microscopy. Fourier transform infrared and X-ray diffraction analyses revealed that Cef was not modified when incorporated into Cef-HAF and remained active against Klebsiella pneumoniae Xen 39, Staphylococcus aureus Xen 36 and Listeria monocytogenes EDGe. Nanofiber scaffolds of HA-containing Cef may be used in dressings to control postoperative infections. PMID:27146506

  17. Electrochemical determination of ascorbic acid at p-phenylenediamine film-holes modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Olana Bikila Nagasa

    2015-01-01

    Full Text Available In this work the determination of ascorbic acid (AA at glassy carbon electrode (GCE modified with a perforated film produced by reduction of diazonium generated in situ from p-phenylenediamine (PD is reported. Holes were intentionally created in the modifier film by stripping a pre-deposited gold nanoparticles. The modified electrodes were electrochemically characterized by common redox probes: hydroquinone, ferrocyanide and hexamineruthenium(III. The cyclic voltammetric and amperometric response of AA using the modified electrodes was compared with that of bare GCE. The bare GCE showed a linear response to AA in the concentration range of 5 mM to 45 mM with detection limit of 1.656 mM and the modified GCE showed a linear response to AA in the concentration range of 5 μM to 45 μM with detection limit of 0.123 μM. The effect of potential intereferents on amperometric signal of AA at the modified GCE was examined and found to be minimal. The inter-electrode reproducibility, stability, and accuracy were determined. The modified electrode showed excellent inter-electrode reproducibility, accuracy and stability. The modified electrode reported is a promising candidate for use in electroanalysis of AA.

  18. Transfer molding processes for nanoscale patterning of poly-L-lactic acid (PLLA) films

    Science.gov (United States)

    Dhakal, Rabin; Peer, Akshit; Biswas, Rana; Kim, Jaeyoun

    2016-03-01

    Nanoscale patterned structures composed of biomaterials exhibit great potential for the fabrication of functional biostructures. In this paper, we report cost-effective, rapid, and highly reproducible soft lithographic transfer-molding techniques for creating periodic micro- and nano-scale textures on poly (L-lactic acid) (PLLA) surface. These artificial textures can increase the overall surface area and change the release dynamics of the therapeutic agents coated on it. Specifically, we use the double replication technique in which the master pattern is first transferred to the PDMS mold and the pattern on PDMS is then transferred to the PLLA films through drop-casting as well as nano-imprinting. The ensuing comparison studies reveal that the drop-cast PLLA allows pattern transfer at higher levels of fidelity, enabling the realization of nano-hole and nano-cone arrays with pitch down to ~700 nm. The nano-patterned PLLA film was then coated with rapamycin to make it drug-eluting.

  19. Effects of polylactic acid film on middle ear mucosa and cochlear function in Guinea pigs.

    Science.gov (United States)

    Ensari, Nuray; Tutar, Hakan; Ekinci, Ozgur; Ugur, Mehmet Birol; Bayazıt, Yıldırım A; Gokdogan, Cagil; Goksu, Nebil

    2015-05-01

    Our aim was to assess the effects of polylactic acid (PLA) on middle ear mucosa and cochlea, to be used as a film barrier for postoperative adhesion prevention in the middle ear. Twenty-one albino Guinea pigs were included in the study. A window was opened on both tympanic bulla and on one side PLA material was placed in the middle ear and on the other side only fenestration was performed and used as a control. All Guinea pigs underwent evaluation of tympanic membranes microscopically; functional hearing was analyzed by auditory brainstem responses preoperatively, in the first and the sixth month. All Guinea pigs were killed on the sixth month for histopathologic evaluation of their temporal bones. There was no statistical difference between both groups regarding hearing thresholds, interpeak wave latencies preoperatively and on first and the sixth months postoperatively. Histopathological evaluation revealed no specific changes. There was a mild local inflammation both in the PLA implanted and control ears. PLA film barrier most likely has no toxic effects on Guinea pig middle ear and does not show any ototoxic side effects.

  20. Preparation and spectral investigation of inclusion complex of caffeic acid with hydroxypropyl-beta-cyclodextrin.

    Science.gov (United States)

    Zhang, Min; Li, Jinxia; Zhang, Liwei; Chao, Jianbin

    2009-01-01

    The inclusion complexation behavior of caffeic acid (CA) with hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was studied by UV-vis, fluorescence spectroscopy and nuclear magnetic resonance spectroscopy (NMR). Experimental conditions including the concentration of HP-beta-CD and media acidity were investigated in detail. The result suggested HP-beta-CD was more suitable for including CA in acidity solution. The binding contants (K) of the inclusion complexes were determined by linear regression analysis and the inclusion ratio was found to be 1:1. The water solubility of CA was increased by inclusion with HP-beta-CD according to the phase-solubility diagram. The spatial configuration of complex has been proposed based on (1)H NMR and two-dimensional (2D) NMR, the result suggested that CA was entrapped inside the hydrophobic core of HP-beta-CD with the lipophilic aromatic ring and the portion of ethylene.

  1. Separation and PurificationHomologous Compounds byof Dodecanedioic Acid from Its Falling Film Crystallization

    Institute of Scientific and Technical Information of China (English)

    李裕; 刘有智; 齐雪琴

    2004-01-01

    Separation and purification of dodecanedioic acid (DDDA) from its homologous compounds were studied experimentally by falling film crystallization (FFC). The influences of various operation parameters, including crystallizing time, flow rate of melt and temperature of glycerine bath, on purity of DDDA and crystallizing rate were investigated. Over 99% (by mole) DDDA was obtained for a feed composition of 96% (by mole). The main factors affecting the separation efficiency are flow rate of melt and temperature of glycerine bath. The crystallizing layer of DDDA was further purified by sweating and blasting. A set of optimized operation data are provided for better understanding the mechanism of heat and mass transfer in FFC, and for further industrial application of DDDA purification process.

  2. Holographic gratings recorded in poly(lactic acid)/azo-dye films

    Science.gov (United States)

    Cambiasso, Javier; Goyanes, Silvia; Ledesma, Silvia

    2015-09-01

    Diffraction gratings were recorded in biodegradable polymer films of poly(lactic acid) doped with the photoisomerisable azo-dye (Disperse Orange 3). It is shown that the diffraction efficiency of the recorded grating can be improved by 220% via an all-optical treatment. This all-optical treatment consists of a pre-irradiation of the sample with the writing laser beam at high power during a short period of time, preventing damage of the material, followed by a much longer inscription at relatively low power. Furthermore, it is shown that the addition of a small amount of 0.05 wt% of multi-walled carbon nanotubes to the photoresponsive polymer increases the maximum diffraction efficiency as well as the remanent efficiency by 20%. Finally, this last photoresponsive nano-composite is also sensitive to the pre-irradiation treatment.

  3. Combining mixed titania morphologies into a complex assembly thin film by iterative block-copolymer-based sol-gel templating

    Science.gov (United States)

    Niedermeier, M. A.; Magerl, D.; Zhong, Q.; Nathan, A.; Körstgens, V.; Perlich, J.; Roth, S. V.; Müller-Buschbaum, P.

    2012-04-01

    Sol-gel templating combined with iterative spin-coating steps are used to custom-tailor hierarchically structured titania thin films. Using poly(styrene-block-ethylene oxide) P(S-b-PEO) as the structure directing agent, a foam-like structure is combined with nanogranules. Both structural elements are merged into a complex assembly in thin film geometry. The resulting morphology is pictured by SEM and probed with GISAXS. The installed mesoporous titania sandwich structure exhibits holes with a size of 45 nm which makes it promising for applications in photovoltaics or photocatalysis. An optical characterization completes the structural investigation.

  4. Utilization of nata de coco as a matrix for preparation of thin film containing spin crossover iron (II) complexes

    Science.gov (United States)

    Onggo, D.; Putri, O. K.; Aminah, M.

    2015-06-01

    Spin crosoveriron(II) complexes have potential applications as smart materials since the complexes show reversible transition between diamagnetic low-spin(LS) state and a paramagnetic high spin(HS) state under the application of temperature change, pressure or light irradiation. The complexes generally prepared as a powder compound isolated from direct reaction between aqueous iron(II) solutions with ligand in ethanol or methanol solution. For application as electronic molecular devices, the complex was prepared as a thin film using several matrixes derived from nafion, silica and other synthetic polymer. In this work, natade coco, a natural bacterial cellulose polymer, has been utilized as a matrix for preparation spin crossover triazoleiron(II) complexes. The morphology of the complex and the composition of elements on the surface of natade coco have been explored using SEM-EDX analysis.

  5. The Synergistic Biologic Activity of Oleanolic and Ursolic Acids in Complex with Hydroxypropyl-γ-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Codruţa Soica

    2014-04-01

    Full Text Available Oleanolic and ursolic acids are natural triterpenic compounds with pentacyclic cholesterol-like structures which gives them very low water solubility, a significant disadvantage in terms of bioavailability. We previously reported the synthesis of inclusion complexes between these acids and cyclodextrins, as well as their in vivo evaluation on chemically induced skin cancer experimental models. In this study the synergistic activity of the acid mixture included inside hydroxypropyl-gamma-cyclodextrin (HPGCD was monitored using in vitro tests and in vivo skin cancer models. The coefficient of drug interaction (CDI was used to characterize the interactions as synergism, additivity or antagonism. Our results revealed an increased antitumor activity for the mixture of the two triterpenic acids, both single and in complex with cyclodextrin, thus proving their complementary biologic activities.

  6. Communication: Physical origins of ionization potential shifts in mixed carboxylic acids and water complexes

    Science.gov (United States)

    Gu, Quanli; Tang, Zhen; Su, Peifeng; Wu, Wei; Yang, Zhijun; Trindle, Carl O.; Knee, Joseph L.

    2016-08-01

    The ionization potential (IP) of the aromatic alpha hydroxy carboxylic acid, 9-hydroxy-9-fluorene carboxylic acid (9HFCA), is shifted by complexation with hydrogen bonding ligands such as water and formic acid. Generalized Kohn-Sham energy decomposition analysis decomposes the intermolecular binding energies into a frozen energy term, polarization, correlation, and/or dispersion energy terms, as well as terms of geometric relaxation and zero point energy. We observe that in each dimer the attractive polarization always increases upon ionization, enhancing binding in the cation and shifting the IP toward the red. For 9HFCA—H2O, a substantial decrease of the repulsive frozen energy in cation further shifts the IP toward red. For 9HFCA—HCOOH, the increase of the frozen energy actually occurs in the cation and shifts the IP toward blue. Consistent with the experimental measurements, our analysis provides new, non-intuitive perspectives on multiple hydrogen bonds interactions in carboxylic acids and water complexes.

  7. Oxidation of formic acid on platinum surfaces decorated with cobalt(III) macrocyclic complexes

    Science.gov (United States)

    Stevanović, S.; Babić-Samardžija, K.; Sovilj, S. P.; Tripković, A.; Jovanović, V. M.

    2009-09-01

    Platinum electrode decorated with three different mixed-ligand cobalt(III) complexes of the general formula [Co(Rdtc)cyclam](ClO4)2 [cyclam = 1,4,8,11-tetraazacyclotetradecane, Rdtc- = morpholine-(Morphdtc), piperidine-(Pipdtc), and 4-methylpiperidine-(4-Mepipdtc) dithiocarbamates, respectively] was used to study oxidation of formic acid in acidic solution. The complexes were adsorbed on differently prepared Pt surfaces, at open circuit potential. The preliminary results show increased catalytic activity of Pt for formic acid oxidation with complex ion adsorbed on the polycrystalline surfaces. The increase in catalytic activity depends on the structure of the complex applied and follows the order of metal-coordinated bidentate ligand as Morphdtc > Pipdtc > 4-Mepipdtc. Based on IR and NMR data, the main characteristics of the Rdtc ligands do not vary dramatically, but high symmetry of the corresponding complexes decreases in the same order. Accordingly, the complexes are distinctively more mobile, causing chemical interactions to occur on the surface with appreciable speed and enhanced selectivity. The effect of the complexes on catalytic activity presumably depends on structural changes on Pt surfaces caused by their adsorption.

  8. Electrocatalytic oxidation and voltammetric determination of ciprofloxacin employing poly(alizarin red)/graphene composite film in the presence of ascorbic acid, uric acid and dopamine.

    Science.gov (United States)

    Zhang, Xin; Wei, Youli; Ding, Yaping

    2014-07-01

    A glassy carbon electrode modified with poly(alizarin red)/electrodeposited graphene (PAR/EGR) composite film was prepared and applied to detect ciprofloxacin (CPFX) in the presence of ascorbic, uric acid and dopamine. The morphology and interface property of PAR/EGR films were examined by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrocatalytic oxidation of CPFX on AR/EGR was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The linearity ranged from 4 × 10(-8) to 1.2 × 10(-4) M with a detection limit (S/N=3) of 0.01 μM. The modified electrode could be applied to the individual determination of CPFX as well as the simultaneous determination of CPFX, ascorbic acid, uric acid and dopamine. This method proved to be a simple, selective and rapid way to determine CPFX in pharmaceutical preparation and biological media. PMID:24952626

  9. A facile route for the preparation of nanoparticles of the spin-crossover complex [Fe(Htrz)2(trz)](BF4) in xerogel transparent composite films.

    Science.gov (United States)

    Faulmann, Christophe; Chahine, Joe; Malfant, Isabelle; de Caro, Dominique; Cormary, Benoît; Valade, Lydie

    2011-03-21

    Films and monoliths containing the spin crossover complex [Fe(Htrz)(2)(trz)](BF(4)) (trz = 1,2,4-triazole) as nanoparticles have been obtained. The dispersion and consecutive inclusion of the Fe complex in a silica matrix prepared from tetramethoxysilane or tetraethoxysilane afford monoliths or films with a violet colour at room temperature, which turns white above 380 K. This change of colour is reversible. This thermochromic behaviour has been characterized by measuring the magnetic properties together with thermogravimetric studies and Raman spectroscopy, the result of which all demonstrate that both films and monoliths undergo a spin crossover. Microscopy studies confirm the occurrence of the Fe complex as nanoparticles, in both the monoliths and the films. The facile synthesis of these materials as nanoparticles in transparent films should open the possibility of the synthesis of high quality films. PMID:21290082

  10. Luminescent polymethacrylate composite nanofibers containing a benzoic acid rare earth complex: Morphology and luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fulai [Tianjin Municipal Key Lab of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, 300387 Tianjin (China); Xi, Peng, E-mail: xpsyq0007@sina.com [Tianjin Municipal Key Lab of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, 300387 Tianjin (China); State Key laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100080 Beijing (China); Xia, Haiying; Wang, Chaohua; Gao, Li [Tianjin Municipal Key Lab of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, 300387 Tianjin (China); Cheng, Bowen, E-mail: Bowen@tjpu.edu.cn [Tianjin Municipal Key Lab of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, 300387 Tianjin (China)

    2015-08-25

    Highlights: • We synthesize PMMA composite nanofibers containing benzoic acid rare earth complex. • We investigate the effects of nanofiber morphology on luminescence properties. • Nanofibers with different morphologies had different luminescence characteristics. • Fluorescence intensity and emission lifetime of porous nanobeads were the highest. • Nanofibers with a porous structure showed the stronger fluorescent recognition ability. - Abstract: In this study, we systematically investigated the morphologies and luminescence properties of luminescent polymethacrylate composite nanofibers containing a benzoic acid rare earth complex. The analysis results indicated that the benzoic acid rare earth complex, Tb(4-methylbenzoic acid){sub 3}phen, was distributed uniformly in the polymethacrylate nanofibers, which were fabricated by electrostatic spinning. The Tb(4-methylbenzoic acid){sub 3}phen content in the polymethacrylate nanofibers was as high as 20% (mass%). The emission peaks of the as-prepared polymethacrylate composite nanofibers corresponded to the characteristic {sup 5}D{sub 4}–{sup 7}F{sub 6,5,4,3} transitions of Tb{sup 3+} ions. The highest emission peak was observed at 548 nm and corresponded to the {sup 5}D{sub 4}–{sup 7}F{sub 5} transition. When the Tb(4-methylbenzoic acid){sub 3}phen content was less than 1%, even a 0.2% increase in the content increased the fluorescence intensity markedly. The thermal stability of the rare earth complex was higher in the as-prepared nanofibers; the initial decomposition temperature of the polymethacrylate composite nanofiber reached 291 °C. Composite nanofibers with different morphologies exhibited different luminescence characteristics. The fluorescence intensity and emission lifetime of porous nanobeads were nine and two times higher, respectively, than those of smooth nanofibers. The better morphological and luminescence properties exhibited by the synthesized luminescent polymethacrylate composite

  11. MORPHOLOGICAL STUDY ON THE ORIENTED CHITOSAN FILM OBTAINED FROM PRE-SHEARED LIQUID CRYSTALLINE SOLUTION IN DICHLOROACETIC ACID

    Institute of Scientific and Technical Information of China (English)

    Zhong-ming Hu; Li-heng Wu; Da-cheng Wu; Shou-xi Chen

    2001-01-01

    The oriented chitosan films obtained from pre-sheared liquid crystalline chitosan/dichloroacetic acid (DCA)solutions were studied by means of polarized optical microscopy (POM), scanning electron microscopy (SEM), infra-red dichroism technique and wide angle X-ray diffraction (WAXD). The shear induced band texture in the film was found to correspond to the sinusoidal fibrillar microstructure along the shearing direction on the basis of POM and SEM observations.The sinusoidal fibril was found to be lying within the film plane. The model of chitosan molecular orientation in the presheared film with band texture can be established assuming that the main chain orients in the shearing direction and the side group is perpendicular to the shearing direction. The WAXD azimuthal scanning at 2θ = 20° indicates that the (002) plane orients perpendicular to the shearing direction.``

  12. Effect of Phosphoric Acid Concentration on the Optical Properties of Partially Phosphorylated PVA Complexes

    Directory of Open Access Journals (Sweden)

    Asmalina Mohamed Saat

    2014-01-01

    Full Text Available Partially phosphorylated polyvinyl alcohol (PPVA films were prepared at five mole ratios of phosphoric acid (PA using solution casting technique. The optical properties of the PPVA films were examined using UV-visible (UV and photoluminescence (PL spectroscopy. The UV absorption spectra reveal that the absorption peaks are blue-shifted with an increase in PA concentration added to the pure PVA. The PL spectra show the presence of peaks which are characteristic of isotactic (389–398, 460–462 nm, syndiotactic (418–420 nm, and atactic (440–446 nm configurations of the PPVA. The results also show the peak of O–P–O bonding at a wavelength range of 481–489 nm.

  13. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II

    OpenAIRE

    Koenitzer, Jeffrey R; Gustavo Bonacci; Woodcock, Steven R.; Chen-Shan Chen; Nadiezhda Cantu-Medellin; Kelley, Eric E.; Schopfer, Francisco J.

    2016-01-01

    Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the s...

  14. Structure and energy of formation of β- and γ-cyclodextrin complexes with amino acid enantiomers

    Science.gov (United States)

    Borisov, Yu. A.; Kiselev, S. S.

    2016-09-01

    The interaction between cyclodextrins (CyD), β-CyD, and γ-CyD, and the L- and D-optical isomers of several amino acids (Ala, Leu, His, Phe) are calculated using DFT. It is found that the L-forms of the investigated amino acids bond more strongly to CyD, due to the different numbers of hydrogen bonds that form. The structures of the resulting complexes are analyzed.

  15. Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Beitollahi, Hadi, E-mail: h.beitollahi@yahoo.com [Environment Department, Research Institute of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Sheikhshoaie, Iran [Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133 (Iran, Islamic Republic of)

    2011-11-30

    Highlights: > A molybdenum (VI) complex-carbon nanotube paste electrode have been fabricated. > This electrode reduced the oxidation potential of isoproterenol by about 175 mV. > It resolved the voltammetric waves of isoproterenol, uric acid and folic acid. - Abstract: This paper describes the development, electrochemical characterization and utilization of a novel modified molybdenum (VI) complex-carbon nanotube paste electrode for the electrocatalytic determination of isoproterenol (IP). The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV) that showed a shift of the oxidation peak potential of IP at 175 mV to less positive value, compared with an unmodified carbon paste electrode. Differential pulse voltammetry (DPV) in 0.1 M phosphate buffer solution (PBS) at pH 7.0 was performed to determine IP in the range from 0.7 to 600.0 {mu}M, with a detection limit of 35.0 nM. Then the modified electrode was used to determine IP in an excess of uric acid (UA) and folic acid (FA) by DPV. Finally, this method was used for the determination of IP in some real samples.

  16. Removal of Aqueous Boron by Using Complexation of Boric Acid with Polyols: A Raman Spectroscopic Study

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Ki Heon; Jeong, Hui Cheol; An, Hye Young; Lim, Jun-Heok; Lee, Jea-Keun; Won, Yong Sun [Pukyong National University, Busan (Korea, Republic of)

    2015-12-15

    Boron is difficult to be removed from seawater by simple RO (reverse osmosis) membrane process, because the size of boric acid (B(OH){sub 3}), the major form of aqueous boron, is as small as the nominal pore size of RO membrane. Thus, the complexation of boric acid with polyols was suggested as an alternative way to increase the size of aqueous boron compounds and the complexation behavior was investigated with Raman spectroscopy. As a reference, the Raman peak for symmetric B-O stretching vibrational mode both in boric acid and borate ion (B(OH){sub 4}{sup -}) was selected. A Raman peak shift (877 cm{sup -1} →730 cm{sup -1}) was observed to confirm that boric acid in water is converted to borate ion as the pH increases, which is also correctly predicted by frequency calculation. Meanwhile, the Raman peak of borate ion (730 cm{sup -1}) did not appear as the pH increased when polyols were applied into aqueous solution of boric acid, suggesting that the boric acid forms complexing compounds by combining with polyols.

  17. Functionalization of conducting polymer with novel Co(II) complex: Electroanalysis of ascorbic acid

    International Nuclear Information System (INIS)

    We report for the first time the functionalization of a conducting polymer with a metal complex in order to develop a new type of catalytic material exhibiting better electronic communication through their delocalized π electrons. The Co(II) complex having hydroxyl group as functional moiety is chemically coupled with carboxyl group of polyanthranilic acid which itself is a self doped conducting polymer. The covalent linkage between Co(II) and -OH group is confirmed using UV-vis, FT-IR and NMR spectroscopic techniques. The Co(II) complex functionalized polymer does exhibit excellent redox behavior and stability with mixed properties of Co(II) complex and π-conjugated polymer. The material possesses potential benefits in sensors/biosensor applications and it is demonstrated for the electroanalysis of ascorbic acid at a level of nano molar concentration.

  18. Synthesis and Structure Elucidation of Cr(III Complexes of Polydentate Hydroxamic Acid Ligands

    Directory of Open Access Journals (Sweden)

    K.P. SRIVASTAVA

    2013-06-01

    Full Text Available The ligands α-mercaptobenzacetohydroxamic acid (MBAHA-H and 2-amino-α-mercaptobenzacetohydroxamic acid (AMBAHA-H and their different mixed ligand novel complexes with CrIII having specific formulae have been synthesized and characterised by elemental analyses, magnetic and conductance measurements, IR and electronic spectral studies. The ligands were found to behave as monobasic tridentate (SO’O donor and tetradentate (SO’ ON donor manner respectively. All the synthesized CrIII complexes were non-electrolyte with magnetic moment ranging from 3.79 to 3.87 BM. The structural assessment of the complexes has been carried out based on spectral studies (electronic&infrared and molar conductivity values. All the complexes were found to be of octahedral geometry.

  19. Functionalization of conducting polymer with novel Co(II) complex: Electroanalysis of ascorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Swati [School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Prakash, Rajiv, E-mail: rajivprakash12@yahoo.com [School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi 221005 (India)

    2010-06-15

    We report for the first time the functionalization of a conducting polymer with a metal complex in order to develop a new type of catalytic material exhibiting better electronic communication through their delocalized {pi} electrons. The Co(II) complex having hydroxyl group as functional moiety is chemically coupled with carboxyl group of polyanthranilic acid which itself is a self doped conducting polymer. The covalent linkage between Co(II) and -OH group is confirmed using UV-vis, FT-IR and NMR spectroscopic techniques. The Co(II) complex functionalized polymer does exhibit excellent redox behavior and stability with mixed properties of Co(II) complex and {pi}-conjugated polymer. The material possesses potential benefits in sensors/biosensor applications and it is demonstrated for the electroanalysis of ascorbic acid at a level of nano molar concentration.

  20. Recognition of amino acids and anions by a Zn(Ⅱ)-methylazacalix[4]pyridine complex

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    As a powerful macrocyclic host molecule with unique conformation and cavity structure that are fine-tuned by the bridging nitrogen atoms, methylazacalix[4]pyridine (MACP-4) has been shown to selectively recognize Zn2+ and form stable Zn(Ⅱ)-MACP-4 complexes both in solid state and solution with an association constant up to 5.97 (logKs). The molecular recognition of Zn(Ⅱ)-MACP-4 complexes towards various amino acids and anions with different geometry was investigated by using the spectral titration methods and X-ray analysis. The Zn(Ⅱ)-MACP-4 complex was found to recognize the 17 amino acids tested with the association constant up to 3.97 (logKs). On the other hand, the Zn(Ⅱ)-MACP-4 complex selectively interacted with anions and the maximum association constant of 3.9 (logKs) was obtained.

  1. Study of molecular complexation of glycyrrhizic acid with chloramphenicol by electrospray ionization mass spectrometry

    OpenAIRE

    Vetrova, Elena V.; Lekar, Anna V.; Filonova, Olga V.; Borisenko, Sergey N.; Maksimenko, Elena V.; Borisenko, Nikolay I.

    2015-01-01

    Context: Glycyrrhizic acid (GA) is a triterpene glycoside representing the main active component of licorice root extract obtained from plants of the Glycyrrhiza glabra L. and widely used as a complex-forming agent for the synthesis of new transport forms of the well-known drugs. Aims: For the first time, the complexation of GA with chloramphenicol antibiotic (ChlA) was investigated by electrospray ionization mass spectrometry (ESI MS). Subjects and Methods: ESI MS was utilized in order to de...

  2. Synthesis and spectroscopic studies of iron (III) complex with a quinolone family member (pipemidic acid)

    Science.gov (United States)

    Skrzypek, D.; Szymanska, B.; Kovala-Demertzi, Dimitra; Wiecek, Joanna; Talik, E.; Demertzis, Mavroudis A.

    2006-12-01

    The interaction of iron (III) with pipemidic acid, Hpipem, afforded the complex [Fe (pipem) (HO)2 (H2O)]2. The new complex has been characterised by elemental analyses, infra-red, EPR and XPS spectroscopies. The monoanion, pipem, exhibits O, O ligation through the carbonyl and carboxylato oxygen atoms. Six coordinate dimer distorted octahedral configuration has been proposed for [Fe (pipem) (HO)2 (H2O)]2.

  3. INFLUENCE OF AROMATIC AMINO ACID DERIVATIVES ON THE LEVELS OF IMMUNE COMPLEXES UNDER IONIZED RADIATION

    OpenAIRE

    A. S. Boyajyan; S. A. Bajinyan; M. H. Malakyan; L. A. Manukyan; E. A. Arakelova; D. E. Yeghiazaryan

    2009-01-01

    Abstract. In the present study, blood levels of circulating immune complexes and of their pathogenic subpopulations were determined in rats following ionizing irradiation. Experimental animals were treated with synthetic Schiff base aromatic amino acid derivatives, nicotinyl-L-tyrosinate or nicotinyl-L-tryptophanate, before irradiation, whereas untreated irradiated rats served as controls. The results obtained demonstrate significantly increased levels of immune complexes, as well as presence...

  4. Oxidation of saturated hydrocarbons with peroxyacetic acid catalyzed by vanadium complexes

    OpenAIRE

    Gonzalez Cuervo, Laura; Kozlov, Yuriy N.; Süss-Fink, Georg; Shul’pin, Georgiy B.

    2009-01-01

    Peroxyacetic acid (PAA) oxidizes alkanes in acetonitrile or acetic acid at 60 °C if a soluble vanadium(V) salt, n-Bu4NVO3 (1), is used as a catalyst. Corresponding ketones, alcohols and alkyl hydroperoxides are the main products. Methane, ethane, propane, cyclohexane, and other higher alkanes were substrates in the oxidations. The proposed mechanism involves the formation of a complex between (1) and PAA with equilibrium constants 3.3 and 6.8 dm3 mol−1 for acetonitrile and acetic acid as solv...

  5. Hydrogen bonding in oxalic acid and its complexes: A database study of neutron structures

    Indian Academy of Sciences (India)

    R Chitra; Amit Das; R R Choudhury; M Ramanadham; R Chidambaram

    2004-08-01

    The basic result of carboxylic group that the oxygen atom of the –OH never seems to be a hydrogen bond acceptor is violated in the cases, namely urea oxalic acid and bis urea oxalic acid complexes, where the hydroxyl oxygen atom is an acceptor of a weak N–H... O hydrogen bond. The parameters of this hydrogen bond, respectively in these structures are: hydrogen acceptor distance 2.110 Å and 2.127 Å and the bending angle at hydrogen, 165.6° and 165.8°. The bond strength around the hydroxyl oxygen is close to 1.91 valence units, indicating that it has hardly any strength left to form hydrogen bonds. These two structures being highly planar, force the formation of this hydrogen bond. As oxalic acid is the common moiety, the structures of the two polymorphs, -oxalic acid and -oxalic acid, also were looked into in terms of hydrogen bonding and packing.

  6. Highly selective single-use fluoride ion optical sensor based on aluminum(III)-salen complex in thin polymeric film

    Energy Technology Data Exchange (ETDEWEB)

    Badr, Ibrahim H.A. [University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48105-1055 (United States); Meyerhoff, Mark E. [University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48105-1055 (United States)]. E-mail: mmeyerho@umich.edu

    2005-11-30

    A highly selective optical sensor for fluoride ion based on the use of an aluminum(III)-salen complex as an ionophore within a thin polymeric film is described. The sensor is prepared by embedding the aluminum(III)-salen ionophore and a suitable lipophilic pH-sensitive indicator (ETH-7075) in a plasticized poly(vinyl chloride) (PVC) film. Optical response to fluoride occurs due to fluoride extraction into the polymer via formation of a strong complex with the aluminum(III)-salen species. Co-extraction of protons occurs simultaneously, with protonation of the indicator dye yielding the optical response at 529 nm. Films prepared using dioctylsebacate (DOS) are shown to exhibit better response (e.g., linear range, detection limit, and optical signal stability) compared to those prepared using ortho-nitrophenyloctyl ether (o-NPOE). Films formulated with aluminum(III)-salen and ETH-7075 indicator in 2 DOS:1 PVC, exhibit a significantly enhanced selectivity for fluoride over a wide range of lipophilic anions including salicylate, perchlorate, nitrate, and thiocyanate. The optimized films exhibit a sub-micromolar detection limit, using glycine-phosphate buffer, pH 3.00, as the test sample. The response times of the fluoride optical sensing films are in the range of 1-10 min depending on the fluoride ion concentration in the sample. The sensor exhibits very poor reversibility owing to a high co-extraction constant (log K = 8.5 {+-} 0.4), indicating that it can best be employed as a single-use transduction device. The utility of the aluminum(III)-salen based fluoride sensitive films as single-use sensors is demonstrated by casting polymeric films on the bottom of standard polypropylene microtiter plate wells (96 wells/plate). The modified microtiter plate optode format sensors exhibit response characteristics comparable to the classical optode films cast on quartz slides. The modified microtiter is utilized for the analysis of fluoride in diluted anti-cavity fluoride rinse

  7. Arsenic speciation and identification of monomethylarsonous acid and monomethylthioarsonic acid in a complex matrix.

    Science.gov (United States)

    Yathavakilla, Santha Ketavarapu V; Fricke, Michael; Creed, Patricia A; Heitkemper, Douglas T; Shockey, Nohora V; Schwegel, Carol; Caruso, Joseph A; Creed, John T

    2008-02-01

    Anion-exchange chromatography was utilized for speciation of arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA(V)), monomethylarsonic acid (MMA(V)), monomethylarsonous acid (MMA(III)), and the new As species monomethylthioarsonic acid (MMTA), using inductively coupled plasma mass spectrometric (ICPMS) detection. MMA(III) and MMTA were identified for the first time in freeze-dried carrot samples that were collected over 25 years ago as part of a joint U.S. EPA, U.S. FDA, and USDA study on trace elements in agricultural crops. The discovery of MMA(III) and MMTA in terrestrial foods necessitated the analytical characterization of synthetic standards of both species, which were used for standard addition in carrot extracts. The negative ion mode, high-resolution electrospray mass spectrometry (HR-ESI-MS) data produced molecular ions of m/z 122.9418 and 154.9152 for MMA(III) and MMTA, respectively. However, ESI-MS was not sensitive enough to directly identify MMA(III) and MMTA in the carrot extracts. Therefore, to further substantiate the identification of MMA(III) and MMTA, two additional separations using an Ion-120 column were developed using the more sensitive ICPMS detection. The first separation used 20 mM tetramethylammonium hydroxide at pH 12.2 with MMA(III) eluting in less than 7 min. In the second separation, MMTA eluted at 11.2 min by utilizing 40 mM ammonium carbonate at pH 9.0. Oxidation of MMA(III) and MMTA to MMA(V) with hydrogen peroxide was observed for standards and carrot extracts alike. Several samples of carrots collected from local markets in 2006 were also analyzed and found to contain low levels of inorganic arsenic species. PMID:18181583

  8. Stability constants of mixed ligand complexes of lanthanide(III) and yttrium(III) with complexone and substituted salicylic acids

    International Nuclear Information System (INIS)

    Salicylic acid and substituted salicylic acids are potential antimicrobial agents. Binary complexes of salicylic acid and its substituted derivatives with lanthanide(III) and yttrium(III) metal ions have been reported. There are reports on the ternary metal complexing equilibria with some lanthanide(III) and yttrium(III) metal ions involving aminopolycarboxylic acid as one ligand and salicylic acid (SA) and other related compounds as the second ligands. Ethylene glycol bis(2-aminoethylether)- N, N, N', N'-tetraacetic acid (EGTA) is an important member of aminopolycarboxylic acid and finds many applications in medicine and biology. Recently, few ternary complexes have been reported using EGTA as ligand. In view of biological importance of simple and mixed ligand complexes EGTA, SA and DNSA (3,5-dinitrosalicylic acid), a systematic study has been undertaken for the determination of stability constant and the results are reported. (author). 6 refs., 1 fig., 2 tabs

  9. Effect of complex amino acid imbalance on growth of tumor in tumor-bearing rats

    Institute of Scientific and Technical Information of China (English)

    Yin-Cheng He; Yuan-Hong Wang; Jun Cao; Ji-Wei Chen; Ding-Yu Pan; Ya-Kui Zhou

    2003-01-01

    AIM: To investigate the effect of complex amino acid imbalance on the growth of tumor in tumor-bearing (TB) rats.METHODS: Sprague-Dawlley (SD) rats underwent jejunostomy for nutritional support. A suspension of Walker256 carcinosarcoma cells was subcutaneously inoculated.TB rats were randomly divided into groups A, B, C and D according to the formula of amino acids in enteral nutritional solutions, respectively. TB rats received jejunal feedings supplemented with balanced amino acids (group A),methionine-depleted amino acids (group B), valine-depleted amino acids (group C) and methionine- and valine-depleted complex amino acid imbalance (group D) for 10 days. Tumor volume, inhibitory rates of tumor, cell cycle and life span of TB rats were investigated.RESULTS: The G0/G1 ratio of tumor cells in group D (80.5±9.0) % was higher than that in groups A, B and C which was 67.0±5.1 %, 78.9±8.5 %, 69.2±6.2 %, respectively (P<0.05). The ratio of S/G2M and PI in group D were lower than those in groups A, B and C. The inhibitory rate of tumor in groups B, C and D was 37.2 %, 33.3 % and 43.9 %,respectively (P<0.05). The life span of TB rats in group D was significantly longer than that in groups B, C, and A.CONCLUSION: Methionine/valine-depleted amino acid imbalance can inhibit tumor growth. Complex amino acids of methionine and valine depleted imbalance have stronger inhibitory effects on tumor growth.

  10. Characterization of folic acid/native cyclodextrins host-guest complexes in solution

    Science.gov (United States)

    Ceborska, Magdalena; Zimnicka, Magdalena; Wszelaka-Rylik, Małgorzata; Troć, Anna

    2016-04-01

    The complexation of folic acid (FA) with native cyclodextrins was studied and this process was used for the comparison of 1H NMR, ITC and ESIMS for the evaluation of association constants. The stability increases in the series: α-cyclodextrin/FA cyclodextrin/FA cyclodextrin/FA. 1H NMR and ITC gave comparable results in regard to association constant values, while results obtained for MS were considerably higher due to different interactions (electrostatic instead of hydrophobic) responsible for the stabilization of the complexes. The dimerization of FA in water was also studied, as well as its impact on the process of complexation with native cyclodextrins.

  11. Characterization of folic acid/native cyclodextrins host-guest complexes in solution

    Science.gov (United States)

    Ceborska, Magdalena; Zimnicka, Magdalena; Wszelaka-Rylik, Małgorzata; Troć, Anna

    2016-04-01

    The complexation of folic acid (FA) with native cyclodextrins was studied and this process was used for the comparison of 1H NMR, ITC and ESIMS for the evaluation of association constants. The stability increases in the series: α-cyclodextrin/FA < γ-cyclodextrin/FA < β-cyclodextrin/FA. 1H NMR and ITC gave comparable results in regard to association constant values, while results obtained for MS were considerably higher due to different interactions (electrostatic instead of hydrophobic) responsible for the stabilization of the complexes. The dimerization of FA in water was also studied, as well as its impact on the process of complexation with native cyclodextrins.

  12. Synthesis and structural studies of some trivalent lanthanide complexes of isonicotinic acid hydrazide

    International Nuclear Information System (INIS)

    Trivalent lanthanides have been found to form complexes with isonicotinic acid hydrazide (INH) of the type M(INH)3X3 [X=Cl, SCN; M=La(III), Pr(III), Nd(III), Sm(III) and Gd(III)]. The complexes have been characterized by elemental analysis, molar conductance, magnetic susceptibility, infrared and electronic spectral studies. The nephelauxetic ratio (β), covalency (δ) and bonding parameter (b1/1) have been calculated from the electronic spectra. Infrared spectral studies reveal that INH acts as a neutral bidentate chelating ligand in all the complexes and that thiocyanate is N-bonded. (author)

  13. Studies on vanadium salicyl hydroxamic acid complexes - a 1:4 metal-ligand system

    International Nuclear Information System (INIS)

    Vanadium reacts with salicyl hydroxamic acid to form a blue-violet coloured complex with lambdasub(max) at 475 nm at pH 3.3. The metal-ligand ratio in the complex is 1:4. The step-wise formation constants of the complexes have been evaluated by Yatsimirskii's and Leden's graphical extrapolation methods from extractive photometric data. The values from log K1, log K3 and log K2, and log K4 are 3.65 +- 0.05, 2.50 +- 0.05, 2.30 +- 0.05 and 2.15 +- 0.05 respectively. (author)

  14. Decomposition Reaction of Zn-MPA(3-Mercaptopropionic Acid) Complex Under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    JIAN Wen-ping; LIU Sheng; LI Jun; YANG Wen-sheng

    2008-01-01

    The thermal decomposition of Zn-MPA complex was investigated under microwave irradiation. ZnO and ZnS nanocrystals could be obtained by decomposing Zn-MPA(3-mercaptopropionic acid) complex under different reaction conditions. It was found that both the pH value of the solution and the molar ratio of Zn2+ and MPA can play an important role in the formation of ZnO and ZnS nanocrystals. MPA mainly acts as an S source or as a complexing agent.This study provides a new route for the controllable preparation of semiconductor nanocrystals.

  15. Complex formation and solubility of Pu(IV) with malonic and succinic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T.; Kobayashi, T.; Takagi, I.; Moriyama, H. [Kyoto Univ. (Japan). Dept. of Nuclear Engineering; Fujiwara, A. [Radioactive Waste Management Funding and Research Center, Tokyo (Japan); Kulyako, Y.M.; Perevalov, S.A.; Myasoedov, B.F. [Russian Academy of Sciences (RAS), Moscow (RU). V.I. Vernadsky Inst. of Geochemistry and Analytical Chemistry (GEOKHI)

    2009-07-01

    The complex formation constants of tetravalent plutonium ion with malonic and succinic acids in aqueous solution were determined by the solvent-extraction method. Also, by taking the known values of the solubility products, the hydrolysis constants and the formation constants, the experimental solubility data of plutonium in the presence of carboxylates were analyzed. (orig.)

  16. Oxalic acid complexes: Promising draw solutes for forward osmosis (FO) in protein enrichment

    KAUST Repository

    Ge, Qingchun

    2015-01-01

    Highly soluble oxalic acid complexes (OACs) were synthesized through a one-pot reaction. The OACs exhibit excellent performance as draw solutes in FO processes with high water fluxes and negligible reverse solute fluxes. Efficient protein enrichment was achieved. The diluted OACs can be recycled via nanofiltration and are promising as draw solutes.

  17. Influence of solvent on proton transport in complexes of pyridine alkalines with trifluoroacetic acid

    International Nuclear Information System (INIS)

    The influence of solvent on proton transport in complexes of pyridine alkalines with trifluoroacetic acid was studied by nuclear magnetic resonance. The values of proton chemical shift are given. The influence of solution strength on chemical shift is also presented. (A.S.)

  18. Controlled Release of Doxorubicin from Doxorubicin/γ-Polyglutamic Acid Ionic Complex

    Directory of Open Access Journals (Sweden)

    Bhavik Manocha

    2010-01-01

    Full Text Available Formation of drug/polymer complexes through ionic interactions has proven to be very effective for the controlled release of drugs. The stability of such drug/polymer ionic complexes can be greatly influenced by solution pH and ionic strength. The aim of the current work was to evaluate the potential of γ-polyglutamic acid (γ-PGA as a carrier for the anticancer drug, Doxorubicin (DOX. We investigated the formation of ionic complexes between γ-PGA and DOX using scanning electron microscopy, spectroscopy, thermal analysis, and X-ray diffraction. Our studies demonstrate that DOX specifically interacts with γ-PGA forming random colloidal aggregates and results in almost 100% complexation efficiency. In vitro drug release studies illustrated that these complexes were relatively stable at neutral pH but dissociates slowly under acidic pH environments, facilitating a pH-triggered release of DOX from the complex. Hydrolytic degradation of γ-PGA and DOX/γ-PGA complex was also evaluated in physiological buffer. In conclusion, these studies clearly showed the feasibility of γ-PGA to associate cationic drug such as DOX and that is may serve as a new drug carrier for the controlled release of DOX in malignant tissues.

  19. Biodegradation of novel amino acid derivatives suitable for complexing agents in pulp bleaching applications.

    Science.gov (United States)

    Metsärinne, Sirpa; Ronkainen, Erja; Tuhkanen, Tuula; Aksela, Reijo; Sillanpää, Mika

    2007-05-01

    The biodegradability of four novel diethanolamine derivative complexing agents was examined by using two biodegradation tests standardised by OECD (301B and 301F). Ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) were employed as reference substances. Biodegradation of the new complexing agents was studied both with unacclimated and acclimated inocula as well as by simulating wastewater treatment in sequencing batch reactors (SBRs). These new complexing agents were of technical grade, and therefore, the results are only indicative but these new compounds hold promise for use as complexing agents in the pulp and paper industry. The novel complexing agents were not readily biodegradable but they showed slight biodegradation. Around 10-30% degradation was found in the SBR where degradation was followed by measurement of concentration. Moreover the novel complexing agents did not have any negative impact on reactor performance as measured by chemical oxygen demand reduction. In the standardised biodegradation tests at best around 50% degradation was observed with the acclimated inoculum and in the prolonged test whereas EDTA and DTPA exhibited no biodegradation. The elevated degradation in acclimated sludge indicates that the water treatment plant microbes are capable of decomposing these molecules under favourable conditions. The total concentration of novel complexing agents decreased slightly during biodegradation tests, while the EDTA and DTPA concentrations remained stable. PMID:17346781

  20. Methods of staining target chromosomal DNA employing high complexity nucleic acid probes

    Science.gov (United States)

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Ol'li-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2006-10-03

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  1. Investigation of complexing reactions of terbium(3) ions with anions of salicylic and 5-sulfosalicylic acids in aqueous solutions

    International Nuclear Information System (INIS)

    Complexing of terbium(3) ions with anions of salicylic and 5-sulfosalicylic acids was investigated by luminescence-kinetic method. Values of stability and dissociation constants of formed complexes were obtained

  2. Red Electroluminescence and Photoluminescence from Novel Binuclear Europium Complex with Squaric Acid Ligand

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel binuclear europium β-diketone complex with squaric acid ligand was synthesized for the first time. Its structure was elucidated by IR, UV, and Elemental Analysis.Red light emitting diode (LED) was fabricated by using the novel europium complex as an emitting layer, tris(8-quinolinolate) aluminum (III) (Alq3) as an electron-transporting layer, N,N′-diphenyl-N, N′-(3-methylphenyl)-l,l′-biphenyl-4,4′-diamine (TPD) as a hole-transporting layer.A cell structure of indium-tin-oxide/TPD/Eu-complex/Alq3/Mg: Ag was employed. Red electroluminescence was observed at room temperature with dc bias voltage of 2 V in this cell.Red emission peaks at about 613 nm with maximum luminance of over 106 cd/m2. Compared with the EL luminance from those europium complexes reported before, one from the Eu-complex is best in the same cells.

  3. Synthesis, characterisation and biological evaluation of copper and silver complexes based on acetylsalicylic acid.

    Science.gov (United States)

    Rubner, Gerhard; Bensdorf, Kerstin; Wellner, Anja; Bergemann, Silke; Gust, Ronald

    2011-10-01

    Metalcarbonyl complexes with ligands derived from acetylsalicylic acid demonstrated high cytotoxic potential against various tumor cell lines and strong inhibition of the cyclooxygenase enzymes COX-1 and 2. In this study we tried to achieve comparable effects with [alkyne]silver or copper trifluoromethanesulfonate complexes which are more hydrophilic then the uncharged metalcarbonyl derivatives. All compounds were evaluated for growth inhibition against breast (MCF-7, MDA-MB 231) and colon cancer (HT-29) cell lines and for COX-1 and COX-2 inhibitory effects at isolated isoenzymes. Pure ligands showed neither cytotoxic nor COX-inhibitory effects. While the silver complexes of (but-2-ynyl)-2-acetoxybenzoate (But-ASS-Ag) and (but-2-yne-1,4-diyl)-bis(2-acetoxybenzoate) (Di-ASS-But-Ag) were strong cytostatics, only the copper complex Di-ASS-But-Cu was active. At the COX enzymes the complexes were more effective than their ligands and aspirin.

  4. A comparative study of the complexation of uranium(VI) withoxydiacetic acid and its amide derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Linfeng; Tian, Guoxin

    2005-05-01

    There has been significant interest in recent years in the studies of alkyl-substituted amides as extractants for actinide separation because the products of radiolytic and hydrolytic degradation of amides are less detrimental to separation processes than those of organophosphorus compounds traditionally used in actinide separations. Stripping of actinides from the amide-containing organic solvents is relatively easy. In addition, the amide ligands are completely incinerable so that the amount of secondary wastes generated in nuclear waste treatment could be significantly reduced. One group of alkyl-substituted oxa-diamides have been shown to be promising in the separation of actinides from nuclear wastes. For example, tetraoctyl-3-oxa-glutaramide and tetraisobutyl-oxa-glutaramide form actinide complexes that can be effectively extracted from nitric acid solutions. To understand the thermodynamic principles governing the complexation of actinides with oxa-diamides, we have studied the complexation of U(VI) with dimethyl-3-oxa-glutaramic acid (DMOGA) and tetramethyl-3-oxa-glutaramide (TMOGA) in aqueous solutions, in comparison with oxydiacetic acid (ODA) (Figure 1). Previous studies have indicated that the complexation of U(VI) with ODA is strong and entropy-driven. Comparing the results for DMOGA and TMOGA with those for ODA could provide insight into the energetics of amide complexation with U(VI) and the relationship between the thermodynamic properties and the ligand structure.

  5. Theoretical and spectroscopic studies of lanthanum (III) complex of 5-aminoorotic acid

    Science.gov (United States)

    Kostova, Irena; Peica, Niculina; Kiefer, Wolfgang

    2006-09-01

    The lanthanum (III) complex of 5-aminoorotic acid (HAOA) was synthesized and its structure was determined by means of elemental analysis and IR, Raman, and 1H NMR spectroscopies. Significant differences in the IR, Raman, and 1H NMR spectra of the complex were observed as compared to the spectra of the ligand. The geometry of 5-aminoorotic acid was computed and optimized with the Gaussian 03 program employing the B3PW91 and B3LYP methods with the 6-311++G and LANL2DZ basis sets, while the geometry of the La(III) complex of 5-aminoorotic acid was also calculated and optimized with B3PW91/LANL2DZ and B3LYP/LANL2DZ methods. The density functional calculations revealed that the binding mode in the complex was bidentate through the carboxylic oxygen atoms. Detailed vibrational analysis of HAOA and La(III)-AOA systems based on both the calculated and experimental spectra confirmed the suggested metal-ligand binding mode. The density functional theory (DFT) calculated geometries, harmonic vibrational wavenumbers including IR and Raman scattering activities for the ligand and its La(III) complex were in good agreement with the experimental data, a complete vibrational assignment being proposed.

  6. Synthesis, Crystal Structure, and Thermal Decomposition of the Cobalt(II Complex with 2-Picolinic Acid

    Directory of Open Access Journals (Sweden)

    Di Li

    2014-01-01

    Full Text Available The cobalt(II complex of 2-picolinic acid (Hpic, namely, [Co(pic2(H2O2]·2H2O, was synthesized with the reaction of cobalt acetate and 2-picolinic acid as the reactants by solid-solid reaction at room temperature. The composition and structure of the complex were characterized by elemental analysis, infrared spectroscopy, single crystal X-ray diffraction, and thermogravimetry-differential scanning calorimetry (TG-DSC. The crystal structure of the complex belongs to monoclinic system and space group P2(1/n, with cell parameters of a=9.8468(7 Å, b=5.2013(4 Å, c=14.6041(15 Å, β=111.745(6°, V=747.96(11 Å3, Z=2, Dc=1.666 g cm−3, R1=0.0297, and wR2=0.0831. In the title complex, the Co(II ion is six-coordinated by two pyridine N atoms and two carboxyl O atoms from two 2-picolinic acid anions, and two O atoms from two H2O molecules, and forming a slightly distorted octahedral geometry. The thermal decomposition processes of the complex under nitrogen include dehydration and pyrolysis of the ligand, and the final residue is cobalt oxalate at about 450°C.

  7. Stability on the 109Cd, 65Zn Complex with Humus Acids

    Institute of Scientific and Technical Information of China (English)

    HUA Luo; CHEN Shi-bao; BAI Ling-yu; WEI Dong-pu

    2002-01-01

    The radioactive isotope tracer and ion exchange balanced method was used to study the stability of 109Cd, 65 Zn complexes with humus acids. In the 109Cd and 65 Zn single existing system with humic acids,the stability constants of the humic-109 Cd (65 Zn) complex compound was higher than the fulvic-109 Cd (65 Zn)complex compound. The stability constant of the humic (fulvic) -65Zn was higher than that of the humic (fulvic)-109Cd. In the 109Cd and 65 Zn coexisting system, the stability constant and the co-ordination number of the humic (fulvic)-65Zn complex obviously increased, but the stability constant and the co-ordination number of the humic (fulvic)-109Cd complex obviously decreased as compared with its respectively single existing system.The result showed that the humus matter with higher molecular weight could more effectively reduce plant availability of heavy metals than that with lower molecular weight in polluted soil by heavy metals. The humus matter could more effectively reduce plant availability of Zn than that of Cd. Application of humus-acid increased the harm of Cd and decreased the harm of Zn to plants in Cd-Zn coexisting system.

  8. Thermodynamics of mixed-ligand complex formation of mercury (II) ethylenediaminetetraacetate with amino acids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Pyreu, Dmitrii, E-mail: pyreu@mail.ru [Department of Inorganic and Analytic Chemistry, Ivanovo State University, Ermak 39, Ivanovo 153025 (Russian Federation); Kozlovskii, Eugenii [Department of Inorganic and Analytic Chemistry, Ivanovo State University, Ermak 39, Ivanovo 153025 (Russian Federation); Gruzdev, Matvei; Kumeev, Roman [Institute of Solution Chemistry, Ivanovo (Russian Federation)

    2012-11-20

    Highlights: Black-Right-Pointing-Pointer Stable mixed ligand complexes of HgEdta with amino acids at physiological pH value. Black-Right-Pointing-Pointer The thermodynamic and NMR data evident the ambidentate coordination mode of arginine. Black-Right-Pointing-Pointer Participation of the guanidinic group of Arg in coordination process. Black-Right-Pointing-Pointer Binuclear complexes (HgEdta){sub 2}L with the bridging function of amino acid. - Abstract: The mixed-ligand complex formation in the systems Hg{sup 2+} - Edta{sup 4-} - L{sup -}(L = Arg, Orn, Ser) has been studied by means of calorimetry, pH-potentiometry and NMR spectroscopy in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO{sub 3}). The thermodynamic parameters of formation of the HgEdtaL, HgEdtaHL and (HgEdta){sub 2}L complexes have been determined. The most probable coordination mode for the complexone and the amino acid in the mixed-ligand complexes was discussed.

  9. Luminescence Quenching Behavior of Oxygen Sensing ORMOSIL Films Based on Ruthenium Complex

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An organically modified silicate (ORMOSIL) based optical sensor response to gaseous O2 or O2 dissolved in water is presented. The oxygen sensing film mechanism is based on the principle of fluorescence quenching of tris(4,7-diphenyl-1,10-phenanthroline) ruthenium ( Ⅱ )([Ru(dpp)3]2+), which has been entrapped in a porous ORMOSIL film. In order to establish optimum film-processing parameters, comprehensive investigations, including the effects of the polarity and the hydrophobicity of the sensing film on oxygen quenching response and response time, were carried out. The film hydrophobicity increased as a function of dimethyldimethoxysilane (DiMe-DMOS) content, which is correlated with enhanced oxygen sensor performance. The sensor developed in the present work exhibits the advantages of fast response time and good reversibility. The detection limits are 0. 50% and 0. 3μg/Ml for O2 in the gaseous and the aqueous phases, respectively.

  10. Optical and structural characterization of oleic acid-stabilized CdTe nanocrystals for solution thin film processing

    OpenAIRE

    Claudio Davet Gutiérrez-Lazos; Mauricio Ortega-López; Pérez-Guzmán, Manuel A; A. Mauricio Espinoza-Rivas; Francisco Solís-Pomar; Rebeca Ortega-Amaya; L. Gerardo Silva-Vidaurri; Virginia C. Castro-Peña; Eduardo Pérez-Tijerina

    2014-01-01

    This work presents results of the optical and structural characterization of oleic acid-stabilized cadmium telluride nanocrystals (CdTe-NC) synthesized by an organometallic route. After being cleaned, the CdTe-NC were dispersed in toluene to obtain an ink-like dispersion, which was drop-cast on glass substrate to deposit a thin film. The CdTe-NC colloidal dispersion as well as the CdTe drop-cast thin films were characterized with regard to the optical and structural properties. TEM analysis i...

  11. Nature-Inspired One-Step Green Procedure for Enhancing the Antibacterial and Antioxidant Behavior of a Chitin Film: Controlled Interfacial Assembly of Tannic Acid onto a Chitin Film.

    Science.gov (United States)

    Wang, Yuntao; Li, Jing; Li, Bin

    2016-07-20

    The final goal of this study was to develop antimicrobial food-contact materials based on a natural phenolic compound (tannic acid) and chitin, which is the second most abundant polysaccharide on earth, using an interfacial assembly approach. Chitin film has poor antibacterial and antioxidant ability, which limits its application in industrial fields such as active packaging. Therefore, in this study, a novel one-step green procedure was applied to introduce antibacterial and antioxidant properties into a chitin film simultaneously by incorporation of tannic acid into the chitin film through interfacial assembly. The antibacterial and antioxidant behavior of chitin film has been greatly enhanced. Hydrogen bonds and hydrophobic interaction were found to be the main driving forces for interfacial assembly. Therefore, controlled interfacial assembly of tannic acid onto a chitin film demonstrated a good way to develop functional materials that can be potentially applied in industry. PMID:27378105

  12. Nature-Inspired One-Step Green Procedure for Enhancing the Antibacterial and Antioxidant Behavior of a Chitin Film: Controlled Interfacial Assembly of Tannic Acid onto a Chitin Film.

    Science.gov (United States)

    Wang, Yuntao; Li, Jing; Li, Bin

    2016-07-20

    The final goal of this study was to develop antimicrobial food-contact materials based on a natural phenolic compound (tannic acid) and chitin, which is the second most abundant polysaccharide on earth, using an interfacial assembly approach. Chitin film has poor antibacterial and antioxidant ability, which limits its application in industrial fields such as active packaging. Therefore, in this study, a novel one-step green procedure was applied to introduce antibacterial and antioxidant properties into a chitin film simultaneously by incorporation of tannic acid into the chitin film through interfacial assembly. The antibacterial and antioxidant behavior of chitin film has been greatly enhanced. Hydrogen bonds and hydrophobic interaction were found to be the main driving forces for interfacial assembly. Therefore, controlled interfacial assembly of tannic acid onto a chitin film demonstrated a good way to develop functional materials that can be potentially applied in industry.

  13. Binding modes of aromatic ligands to mammalian heme peroxidases with associated functional implications: crystal structures of lactoperoxidase complexes with acetylsalicylic acid, salicylhydroxamic acid, and benzylhydroxamic acid.

    Science.gov (United States)

    Singh, Amit K; Singh, Nagendra; Sinha, Mau; Bhushan, Asha; Kaur, Punit; Srinivasan, Alagiri; Sharma, Sujata; Singh, Tej P

    2009-07-24

    The binding and structural studies of bovine lactoperoxidase with three aromatic ligands, acetylsalicylic acid (ASA), salicylhydoxamic acid (SHA), and benzylhydroxamic acid (BHA) show that all the three compounds bind to lactoperoxidase at the substrate binding site on the distal heme side. The binding of ASA occurs without perturbing the position of conserved heme water molecule W-1, whereas both SHA and BHA displace it by the hydroxyl group of their hydroxamic acid moieties. The acetyl group carbonyl oxygen atom of ASA forms a hydrogen bond with W-1, which in turn makes three other hydrogen-bonds, one each with heme iron, His-109 N(epsilon2), and Gln-105 N(epsilon2). In contrast, in the complexes of SHA and BHA, the OH group of hydroxamic acid moiety in both complexes interacts with heme iron directly with Fe-OH distances of 3.0 and 3.2A respectively. The OH is also hydrogen bonded to His-109 N(epsilon2) and Gln-105N(epsilon2). The plane of benzene ring of ASA is inclined at 70.7 degrees from the plane of heme moiety, whereas the aromatic planes of SHA and BHA are nearly parallel to the heme plane with inclinations of 15.7 and 6.2 degrees , respectively. The mode of ASA binding provides the information about the mechanism of action of aromatic substrates, whereas the binding characteristics of SHA and BHA indicate the mode of inhibitor binding.

  14. Compostability assessment of nano-reinforced poly(lactic acid) films.

    Science.gov (United States)

    Balaguer, M P; Aliaga, C; Fito, C; Hortal, M

    2016-02-01

    Nanomaterials can provide plastics with great advantages on mechanical and active properties (i.e. release and capture of specific substances). Therefore, packaging is expected to become one of the leading applications for these substances by 2020. There are some applications already in the market. Nevertheless, there is still some areas under development. A key issue to be analyzed is the end-of-life of these materials once they become waste, and specifically when nanomaterials are used in biodegradable products. The present study evaluated the disintegration, biodegradability, and ecotoxicity of poly(lactic acid) films reinforced with the three following nanomaterials: (1) montmorillonite modified with an ammonium quaternary salt, (2) calcium carbonate and (3) silicon dioxide. Results on disintegration showed that films completely disintegrated into visually indistinguishable residues after 6-7weeks of incubation in composting environment. Moreover, no differences were observed in the evolution of the bioresidue with respect to color, aspect, and odor in comparison with the control. It was also observed that nanomaterials did not significantly reduce the level of biodegradability of PLA (p>0.05). In fact, biodegradation was higher, without finding significant differences (p>0.05), in all the nano-reinforced samples with respect to PLA after 130days in composting (9.4% in PLA+Nano-SiO2; 34.0% in PLA+Clay1; 48.0% in PLA+Nano-CaCO3). Finally, no significant differences (p>0.05) in ecotoxicity in plants were observed as a result of the incorporation of nanoparticles in the PLA matrix. PMID:26589869

  15. Synthesis and physicochemical study of rhenium(V) complexes with phenylglyoxylic acid thiosemicarbazone

    International Nuclear Information System (INIS)

    With high yield (75-93 %) rhenium(V) complexes were prepared with thiosemicarbazone of phenylglyoxylic acid (L) of the composition [ReOLX3]·2H2O, [ReOL2X]X2·2H2O, [ReOLX2(OH)]·2H2O, [ReOL2(OH)]X2 (X = Cl, Br). The compounds prepared were characterized by the methods of elementary and thermal analyses, IR spectroscopy and conductometry. It was ascertained that depending on synthesis conditions, initial concentration of hydrohalic acid first of all, rhenium(V) complexes are formed with different number of ligands in the inner sphere. In all the complexes studied ligand L is coordinated by rhenium atom in bidentate way via sulfur and nitrogen atoms of hydrazine fragment, forming a five-member chelate node

  16. Probing inclusion complexes of cyclodextrins with amino acids by physicochemical approach.

    Science.gov (United States)

    Roy, Mahendra Nath; Roy, Aditi; Saha, Subhadeep

    2016-10-20

    Formations of host-guest inclusion complexes of two natural amino acids, viz., l-Leucine and l-Isoleucine as guests with α and β-cyclodextrins have been investigated which include diverse applications in modern science such as controlled delivery in the field of pharmaceuticals, food processing etc. Surface tension and conductivity studies establish the formation of inclusion complexes with 1:1 stoichiometry. The interactions of cyclodextrins with amino acids have been supported by density, viscosity, refractive index, hydration and solvation number measurements indicating higher degree of inclusion in case of α-cyclodextrin. l-Leucine interacts more with the hydrophobic cavity of cyclodextrin than its isomer. With the help of stability constant by NMR titration, hydrophobic effect, H-bonds and structural effects the formations of inclusion complexes have been explained. PMID:27474589

  17. Separation of glycols from dilute aqueous solutions via complexation with boronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Randel, L.A.; King, C.J.

    1991-07-01

    This work examines methods of separating low molecular weight glycols from dilute aqueous solution. Extraction into conventional solvents is generally not economical, since, in the literature reviewed, distribution ratios for the two- to four-carbon glycols are all less than one. Distribution ratios can be increased, however, by incorporating into the organic phase an extracting agent that will complex with the solute of interest. The extracting agent investigated in this work is 3-nitrophenylboronic acid (NPBA). NPBA, a boric acid derivative, reversibly complexes with many glycols. The literature on complexation of borate and related compounds with glycols, including mechanistic data, measurement techniques, and applications to separation processes, provides information valuable for designing experiments with NPBA and is reviewed herein. 88 refs., 15 figs., 24 tabs.

  18. Competition effect of some metal ions on the complexation of strontium with humic acid. Vol. 4

    International Nuclear Information System (INIS)

    Interaction of radioactive strontium with humic acid present in water streams is of main importance to learn about the fate of strontium in case of accidental release. In this work, formation of Sr-humate precipitate was studied radiometrically and colorimetric at different PH's. The investigations indicated that formation of the precipitated complex increases with increasing strontium concentration till saturation. The competition effect of other cations in solution such as Ca, Mg, Ba, and Ni was investigated. The humate complexes of these cations were studied colorimetric, and the competition behaviour was investigated using the radiotracer of strontium. The results indicated that presence of Ba, Mg and Ni decreases the Sr-humate complex, while increasing Ca concentration enhances precipitation of Sr with humic acid. 10 figs

  19. Aromatic Amino Acids-Guanidinium Complexes through Cation-π Interactions

    Directory of Open Access Journals (Sweden)

    Cristina Trujillo

    2015-05-01

    Full Text Available Continuing with our interest in the guanidinium group and the different interactions than can establish, we have carried out a theoretical study of the complexes formed by this cation and the aromatic amino acids (phenylalanine, histidine, tryptophan and tyrosine using DFT methods and PCM-water solvation. Both hydrogen bonds and cation-π interactions have been found upon complexation. These interactions have been characterized by means of the analysis of the molecular electron density using the Atoms-in-Molecules approach as well as the orbital interactions using the Natural Bond Orbital methodology. Finally, the effect that the cation-π and hydrogen bond interactions exert on the aromaticity of the corresponding amino acids has been evaluated by calculating the theoretical NICS values, finding that the aromatic character was not heavily modified upon complexation.

  20. Structural, chemical and optical properties of the polyethylene–copper sulfide composite thin films synthesized using polythionic acid as sulfur source

    Energy Technology Data Exchange (ETDEWEB)

    Ancutiene, Ingrida [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas (Lithuania); Navea, Juan G. [Chemistry Department, Skidmore College, 815N. Broadway, Saratoga Springs, NY 12866 (United States); Baltrusaitis, Jonas, E-mail: job314@lehigh.edu [Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States)

    2015-08-30

    Graphical abstract: Several crystalline copper sulfide phases (spionkopite, anilite, digenite, djurleite, chalcocite) were obtained in as synthesized samples (PE-Cu{sub x}S) and elucidated using XRD. Thickness of the films obtained ranged from several microns to ∼18 μm and depended on the Cu(II/I) exposure time. Bandgap of the materials obtained was measured and ranged from 1.88 to 1.17 eV. Importantly, heating samples, many copper sulfide crystalline phase containing films at 100 °C in inert atmosphere invariably resulted in a single copper sulfide, anilite (Cu{sub 1.75}S), phase. - Highlights: • We investigated deposition of a single phase copper sulfide on polyethylene. • A single sulfur precursor – H{sub 2}S{sub 33}O{sub 6} – was used. • Increasing exposure time to Cu(II/I) yielded Cu{sub x}S with higher x values. • Heating at 100 °C in N{sub 2} resulted in a single anilite (Cu{sub 1.75}S) phase. • Cu(I) and Cu(II) compounds were detected using XPS. - Abstract: Synthesis and properties of thin copper sulfide films deposited on polyethylene were explored for the development of low cost hybrid organic–inorganic photovoltaic materials. Polyethylene was used as a model organic host material for thin copper sulfide film formation. Adsorption–diffusion method was used which utilized consecutive exposure of polyethylene to polythionic acid followed by aqueous Cu(II/I) solution. Several crystalline copper sulfide phases were obtained in synthesized samples and elucidated using X-ray diffraction. Surface chemical composition determined using X-ray photoelectron spectroscopy showed the presence of copper sulfides in combination with copper hydroxide. Thickness of the composite material films ranged from several microns to ∼18 μm and depended on the Cu(II/I) exposure time. Bandgap of the materials obtained was measured and ranged from 1.88 to 1.17 eV. Importantly, heating these complex copper sulfide crystalline phase containing films at 100

  1. Effect of environmental factors on the complexation of iron and humic acid

    Institute of Scientific and Technical Information of China (English)

    Kai Fang; Dongxing Yuan; Lei Zhang; Lifeng Feng; Yaojin Chen; Yuzhou Wang

    2015-01-01

    A method of size exclusion chromatography coupled with ultraviolet spectrophotometry and off-line graphite furnace atomic absorption spectrometry was developed to assess the complexation properties of iron (Fe) and humic acid (HA) in a water environment.The factors affecting the complexation of Fe and HA,such as ionic strength,pH,temperature and UV radiation,were investigated.The Fe-HA complex residence time was also studied.Experimental results showed that pH could influence the deprotonation of HA and hydrolysis of Fe,and thus affected the complexation of Fe and HA.The complexation was greatly disrupted by the presence of NaCl.Temperature had some influence on the complexation.The yield of Fe-HA complexes showed a small decrease at high levels of UV radiation,but the effect of UV radiation on Fe-HA complex formation at natural levels could be neglected.It took about 10 hr for the complexation to reach equilibrium,and the Fe-HA complex residence time was about 20 hr.Complexation of Fe and HA reached a maximum level under the conditions of pH 6,very low ionic strength,in the dark and at a water temperature of about 25℃,for 10 hr.It was suggested that the Fe-HA complex could form mainly in freshwater bodies and reach high levels in the warm season with mild sunlight radiation.With changing environmental parameters,such as at lower temperature in winter or higher pH and ionic strength in an estuary,the concentration of the Fe-HA complex would decrease.

  2. Oleic acid is a key cytotoxic component of HAMLET-like complexes.

    Science.gov (United States)

    Permyakov, Sergei E; Knyazeva, Ekaterina L; Khasanova, Leysan M; Fadeev, Roman S; Zhadan, Andrei P; Roche-Hakansson, Hazeline; Håkansson, Anders P; Akatov, Vladimir S; Permyakov, Eugene A

    2012-01-01

    HAMLET is a complex of α-lactalbumin (α-LA) with oleic acid (OA) that selectively kills tumor cells and Streptococcus pneumoniae. To assess the contribution of the proteinaceous component to cytotoxicity of HAMLET, OA complexes with proteins structurally and functionally distinct from α-LA were prepared. Similar to HAMLET, the OA complexes with bovine β-lactoglobulin (bLG) and pike parvalbumin (pPA) (bLG-OA-45 and pPA-OA-45, respectively) induced S. pneumoniae D39 cell death. The activation mechanisms of S. pneumoniae death for these complexes were analogous to those for HAMLET, and the cytotoxicity of the complexes increased with OA content in the preparations. The half-maximal inhibitory concentration for HEp-2 cells linearly decreased with rise in OA content in the preparations, and OA concentration in the preparations causing HEp-2 cell death was close to the cytotoxicity of OA alone. Hence, the cytotoxic action of these complexes against HEp-2 cells is induced mostly by OA. Thermal stabilization of bLG upon association with OA implies that cytotoxicity of bLG-OA-45 complex cannot be ascribed to molten globule-like conformation of the protein component. Overall, the proteinaceous component of HAMLET-like complexes studied is not a prerequisite for their activity; the cytotoxicity of these complexes is mostly due to the action of OA.

  3. Synthesis, characterization, cytotoxicity, DNA cleavage and antimicrobial activity of homodinuclear lanthanide complexes of phenylthioacetic acid

    Institute of Scientific and Technical Information of China (English)

    T. F. Abbs Fen Reji; A. Jeena Pearl; Bojaxa A. Rosy

    2013-01-01

    Lanthanide complexes of Eu(III), Gd(III), Nd(III), Sm(III), and Tb(III) with phenylthioacetic acid were synthesized and characterized by elemental analysis, mass, infrared radiation (IR), electronic spectra, molar conductance, thermogravimetric analysis (TGA), and powder X-ray diffraction (XRD). The results showed that the lanthanide complexes were homodinuclear in nature. The two lanthanide ions were bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles were consis-tent with the proposed formulations. Powder XRD studies showed that all the complexes were amorphous in nature. Antimicrobial studies indicated that these complexes exhibited more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on CT DNA using gel electrophoresis in the presence of H2O2. The result showed that the Eu(III) and Nd(III) complexes completely cleaved the DNA. The anticancer activities of the complexes were also studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the Eu(III) and Nd(III) complexes were more active than the corresponding Gd(III), Sm(III), Tb(III) complexes and the free ligand on both the cancer cells.

  4. Homodinuclear lanthanide complexes of phenylthiopropionic acid: Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity

    Science.gov (United States)

    Shiju, C.; Arish, D.; Kumaresan, S.

    2013-03-01

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H2O2. The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  5. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, Hunter [School of Packaging, Michigan State University, East Lansing, Michigan (United States); Li, Yana [Mechanical Engineering College, Wuhan Polytechnic University (China); Almenar, Eva, E-mail: ealmenar@msu.edu [School of Packaging, Michigan State University, East Lansing, Michigan (United States)

    2015-03-30

    Graphical abstract: - Highlights: • Surface tension between PLA/CS blend solution and PLA film modified by MDI. • Better wettability between PLA/CS blend solution and PLA film by increasing MDI. • Increased breaking strength by increasing MDI due to the increased H-bonding. • Increased number of physical entanglements between PLA/CS coating and PLA film. • Development of a suitable bio-based multilayer film for food packaging applications. - Abstract: The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41–35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228–303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  6. Complexes of molybdenum (6) and tungsten (6) with amino- and pyridine carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Spitsyn, V.I.; Mozgin, S.V.; Felin, M.G.; Subbotina, N.A.; Ajzenberg, M.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1984-01-01

    By interaction of Na/sub 2/MO/sub 4/ with amino acid excess in muriatic medium the complexes Mo/sub 2/O/sub 4/ (OH)/sub 3/L (LH-anthranilic, nicotinic acids, histidine), Mo/sub 2/O/sub 5/ (OH)L' (L'H-..cap alpha..- and ..beta..-alanine, valine, isonicotinic acid), W/sub 3/O/sub 8/ (OH) (H/sub 2/O)/sub 4/ L'' (L'H-nicotinic, isonicotinic acids, histidine) are isolated. On the basis of the data of elementary analysis, IR spectroscopy and thermogravimetry assumptions on their composition and structure have been suggested.

  7. Performance Evolution of Phytic Acid Conversion Film in the Forming Process

    OpenAIRE

    Xiufang Cui; Lili Lin; Erbao Liu; Guo Jin; Jie Jin

    2013-01-01

    To improve conversion film techniques, control film properties and improve quality of following techniques, in this study, the environment-friendly phytic conversion films were deposited on AZ91D magnesium alloy. The performance evolution of the film during the forming process such as mechanical property, residual stress, corrosion resistance, micromorphology, composition, and roughness was investigated by nanomechanical testing system, electrochemical workstation, scanning electron microscop...

  8. Free radical grafting of gallic acid (GA) on cellulose nanocrystals (CNCS) and evaluation of antioxidant reinforced gellan gum films

    Science.gov (United States)

    Criado, P.; Fraschini, C.; Salmieri, S.; Becher, D.; Safrany, A.; Lacroix, M.

    2016-01-01

    Antiradical properties were introduced on cellulose nanocrystals (CNCs) by redox pair (RP) initiator and γ-radiation treatments. Different procedures were tested on CNC, first a 2 h reaction of hydrogen peroxide (H2O2)/ascorbic acid (AA) was performed on CNC solution. γ-Radiation treatment at 20 kGy dose was then applied and immediately after GA was reacted during 24 h with the pretreated CNCs, giving CNC-H2O2-AA-γ-GA. The formation of new carboxylic acids and carbonyl groups were characterized by FT-IR at 1650 and 1730 cm-1 respectively. Carboxylic acid functionalities were also analyzed by conductometric titration where an increase from 49 to 134 mmol COOH kg-1 was found from native to irradiated CNCs. A similar increase in the carboxylic acid content (132 mmol kg-1) was observed for CNC-H2O2-AA-γ-GA, showing the highest radical scavenging properties (8 mM Trolox eq/mg CNC). Thermogravimetric analysis confirmed the structural changes onto CNC. Film packaging containing 20% of CNC-H2O2-AA-γ-GA was then added to a gellan-based film packaging. A significant improvement (p<0.05) of the tensile strength (TS), the tensile modulus (TM) and the elongation at break (EB) and water vapor permeability reduction was observed when CNC-H2O2-AA-γ-GA was added to the film packaging formulation.

  9. Effects of Lanthanum-Amino Acid Complexes on Egg Hatching and Nauplius Metamorphosis of Penaeus chinensis

    Institute of Scientific and Technical Information of China (English)

    Xin Fuyan; Qu Keming

    2002-01-01

    Studies have been carried out on the effect of lanthanum-amino acid complexes on embryo development and nauplius growth ofPenaeus chinensis. The experimental results indicate that: (1)The optimum concentrations of lanthanum-proline and Lanthanumphenylalanine for the development of eggs in monocell and dicell stages are 1.50~ 4.00mg/L and 0.50~3.00 mg/L, respectively, the egg hatching rates being raised by 21.0 ~ 46.0% and 23.0 ~42.8% ( P < 0.05 ) respectively. (2)The optimum concentrations of lanthanum- proline complex and Lanthanum-phenylalanine complex for the growth ofnauplii are 1.50~4.00 mg/L and 0.50~3.00 mg/L, the metamorphosis rate from nauplius to protozoea being raised by 16.4 ~27.5% and 20.4~26.7% (P < 0.05 ) respectively. (3)The positive effect of lanthanum-amino acid complexes on egg hatching and nauplius metamorphosis of Penaeus chinensis is better than that of lanthanum. With regard to the positive effect, lanthanum-proline complex is better than Lanthanum-phenylalanine complex.

  10. Electrocatalytic oxidation and voltammetric determination of ciprofloxacin employing poly(alizarin red)/graphene composite film in the presence of ascorbic acid, uric acid and dopamine

    International Nuclear Information System (INIS)

    Graphical abstract: An electrochemical sensor based on PAR/EGR/GCE via a cooperation of the potentiostatic technique and cyclic voltammetry was first fabricated for the determination of CPFX with satisfied detecting result of real samples. - Highlights: • PAR/EGR composite film was prepared for the first time. • The sensor can be applied to determinate CPFX in the presence of AA, UA and DA. • The sensor indicated the feasibility in drug samples and biological media. - Abstract: A glassy carbon electrode modified with poly(alizarin red)/electrodeposited graphene (PAR/EGR) composite film was prepared and applied to detect ciprofloxacin (CPFX) in the presence of ascorbic, uric acid and dopamine. The morphology and interface property of PAR/EGR films were examined by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrocatalytic oxidation of CPFX on AR/EGR was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The linearity ranged from 4 × 10−8 to 1.2 × 10−4 M with a detection limit (S/N = 3) of 0.01 μM. The modified electrode could be applied to the individual determination of CPFX as well as the simultaneous determination of CPFX, ascorbic acid, uric acid and dopamine. This method proved to be a simple, selective and rapid way to determine CPFX in pharmaceutical preparation and biological media

  11. Electrocatalytic oxidation and voltammetric determination of ciprofloxacin employing poly(alizarin red)/graphene composite film in the presence of ascorbic acid, uric acid and dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; Wei, Youli; Ding, Yaping, E-mail: wdingyp@sina.com

    2014-07-04

    Graphical abstract: An electrochemical sensor based on PAR/EGR/GCE via a cooperation of the potentiostatic technique and cyclic voltammetry was first fabricated for the determination of CPFX with satisfied detecting result of real samples. - Highlights: • PAR/EGR composite film was prepared for the first time. • The sensor can be applied to determinate CPFX in the presence of AA, UA and DA. • The sensor indicated the feasibility in drug samples and biological media. - Abstract: A glassy carbon electrode modified with poly(alizarin red)/electrodeposited graphene (PAR/EGR) composite film was prepared and applied to detect ciprofloxacin (CPFX) in the presence of ascorbic, uric acid and dopamine. The morphology and interface property of PAR/EGR films were examined by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrocatalytic oxidation of CPFX on AR/EGR was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The linearity ranged from 4 × 10{sup −8} to 1.2 × 10{sup −4} M with a detection limit (S/N = 3) of 0.01 μM. The modified electrode could be applied to the individual determination of CPFX as well as the simultaneous determination of CPFX, ascorbic acid, uric acid and dopamine. This method proved to be a simple, selective and rapid way to determine CPFX in pharmaceutical preparation and biological media.

  12. Investigation on the syntheses and structures of YIII complexes with aminopolycarboxylic acids (IV)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper deals with the structure of the YIII complex with aminopolycarboxylic acids, synthesis and structural determination of the complex (NH4)[YIII(edta)(H2O)3]3H2O (edta = ethylenediaminetetraacetic acid). The crystal and molecular structures of the (NH4)[YIII(edta)(H2O)3]3H2O complex have been determined by single-crystal X-ray structure analysis. The crystal of the complex (NH4)[YIII(edta)(H2O)3]3H2O belongs to orthorhombic crystal system and fdd2 space group. The crystal data are as follows: a = 1.944 1(9) nm, b = 3.545 9(18) nm, c = 1.219 6(6) nm, V = 8.407(7) nm3, Z = 16, Mr = 503.25, Dc = 1.590 gcm 3,  = 2.844 mm 1 and F(000) = 4 160. The final R and Rw are 0.048 6 and 0.133 2 for 3 388 (I>2 (I)) unique reflections, respectively. The complex anion [YIII(edta)(H2O)3]  has a pseudo-monocapped square antiprismatic nine-coordinate structure in which the six coordinate atoms (two N and four O) are from an edta ligand and three water molecules coordinate to the central YIII ion directly. From the results it can be predicted that the YIII ion can also form a nine-coordinate complex with ttha (=triethylenetetraminehexaacetic acid) ligand, so the radioactive complex anion [90YIII(Httha)]2  can supply a free carboxyl group ( CH2COOH) being used for molecular embellishment to form the TDDS for the treatment of cancers.

  13. Fluorescence and Judd-Ofelt analysis of rare earth complexes with maleic anhydride and acrylic acid

    Institute of Scientific and Technical Information of China (English)

    WEN Shipeng; ZHANG Xiaoping; HU Shui; ZHANG Liqun; LIU Li

    2008-01-01

    Two kinds of Eu-complexes, Eu(TTA)2(Phen)(AA) and Eu(TTA)2(Phen)(MA) (HTFA=2-Thenoyltrifluoroacetone, Phen=1,10-phenanthroline, AA=acrylic acid, MA=Maleic anhydride), which combined the excellent fluorescence properties of Eu(TTA)2(Phen)(H2O) and the reactivity of acrylic acid and maleic anhydride with radicals, were synthesized. The two complexes were characterized by elemental analysis, infrared (IR) spectra, and X-ray photoelectron spectroscopy (XPS). Based on the data shown from the fluorescent spectra of the Eu-MA and Eu-AA complexes, the Ωλ (λ=2 and 4) experimental intensity parameters were calculated. The results demonstrated that the Ω2 intensity parameters for the two complexes were smaller than those for the Eu(TTA)2(Phen)(H2O) complex, indicating that a less symmetri-cal chemical environment existed in the complexes. It implied that the radiative efficiency of the 5D0 of these two complexes could be en-hanced by ligand of MA and AA, respectively. The luminescent lifetime of the Eu-AA (τ=7.26×10-4 s) or Eu-MA complex (τ=-8.12×10-4 s) was higher than that of the Eu(TTA)2(Phen)(H2O) complex, which was attributed to the substitution of the water molecule (H2O) in Eu(TTA)2(Phen)(H2O) by the MA or AA ligand.

  14. Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xuan; Liu, Yang; Li, Weichang; Long, Kai; Wang, Lin; Liu, Sa; Wang, Yingjun [School of Materials Science and Engineering, South China University of Technology, Guangzhou (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou (China); Ren, Li, E-mail: psliren@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou (China)

    2015-10-01

    Corneal disease can lead to vision loss. It has become the second greatest cause of blindness in the world, and keratoplasty is considered as an effective treatment method. This paper presents the crosslinked collagen (Col)–citric acid (CA) films developed by making use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The results showed that the Col–CA films had necessary optical performance, water content. The collagenase resistance of CA crosslinked films was superior to that of EDC crosslinked films. And CA5 film (Col:CA:EDC:NHS = 60:3:10:10) had the best mechanical properties. Cell experiments showed that CA5 film was non-cytotoxic and human corneal epithelial cells could proliferate well on the films. Lamellar keratoplasty showed that the CA5 film could be sutured in the rabbit eyes and was epithelialized completely in about 10 days, and the transparency was restored quickly in 30 ± 5 days. No inflammation and corneal neovascularization were observed at 6 months. Corneal stroma had been repaired; stromal cells and neo-stroma could be seen in the area of operation from the hematoxylin–eosin stained histologic sections and anterior segment optical coherence tomography images. These results indicated that Col–CA films were highly promising biomaterials that could be used in corneal tissue engineering and a variety of other tissue engineering applications. - Highlights: • Adding different amounts of citric acid could change the properties of films. • The crosslinked films had better mechanical property than non-modified films. • Crosslinked collagen–citric acid films could tolerate suture during operation. • The films showed good ability of epithelial and stromal repair.

  15. The influence of nanotexturing of poly(lactic-co-glycolic acid) films upon human ovarian cancer cell attachment

    Science.gov (United States)

    Yaşayan, Gökçen; Xue, Xuan; Collier, Pamela; Clarke, Philip; Alexander, Morgan R.; Marlow, Maria

    2016-06-01

    In this study, we have produced nanotextured poly(lactic-co-glycolic acid) (PLGA) films by using polystyrene (PS) particles as a template to make a polydimethylsiloxane mould against which PLGA is solvent cast. Biocompatible, biodegradable and nanotextured PLGA films were prepared with PS particles of diameter of 57, 99, 210, and 280 nm that produced domes of the same dimension in the PLGA surface. The effect of the particulate monolayer templating method was investigated to enable preparation of the films with uniformly ordered surface nanodomes. Cell attachment of a human ovarian cancer cell line (OVCAR3) alone and co-cultured with mesenchymal stem cells (MSCs) was evaluated on flat and topographically nano-patterned surfaces. Cell numbers were observed to increase on the nanotextured surfaces compared to non-textured surfaces both with OVCAR3 cultures and OVCAR3-MSC co-cultures at 24 and 48 h time points.

  16. Phase behavior, interaction and properties of acetic acid lignin-containing polyurethane films coupled with aminopropyltriethoxy silane

    Directory of Open Access Journals (Sweden)

    H. H. Wang

    2013-05-01

    Full Text Available A series of novel acetic acid lignin-containing polyurethane (LPU films coupled with aminopropyltriethoxy silane (APTS (LPUSi or the mixture of APTS and trimethylol propane (TMP (LPUSiT were prepared. With 2% APTS addition, the crosslinking density increased, and the resultant films were endowed with good mechanical properties and water resistance. It was also found that the hydrogen bonding interaction between –NH and –C=O of urethane was destroyed, and new hydrogen bonds between APTS and LPU were formed. However, when APTS content was greater than 4%, significant phase aggregation were detected, resulting in poor mechanical properties and water resistance. In contrast, the crosslinking density, tensile strength and water resistance can be further improved with TMP addition at 2% APTS. The simultaneous addition of APTS and TMP was beneficial for phase mixing and the formation of uniform network. And the surface morphology of LPUSiT films became smoother and more homogeneous.

  17. Sunlight-initiated chemistry of aqueous pyruvic acid: building complexity in the origin of life.

    Science.gov (United States)

    Griffith, Elizabeth C; Shoemaker, Richard K; Vaida, Veronica

    2013-10-01

    Coupling chemical reactions to an energy source is a necessary step in the origin of life. Here, we utilize UV photons provided by a simulated sun to activate aqueous pyruvic acid and subsequently prompt chemical reactions mimicking some of the functions of modern metabolism. Pyruvic acid is interesting in a prebiotic context due to its prevalence in modern metabolism and its abiotic availability on early Earth. Here, pyruvic acid (CH3COCOOH, a C3 molecule) photochemically reacts to produce more complex molecules containing four or more carbon atoms. Acetoin (CH3CHOHCOCH3), a C4 molecule and a modern bacterial metabolite, is produced in this chemistry as well as lactic acid (CH3CHOHCOOH), a molecule which, when coupled with other abiotic chemical reaction pathways, can provide a regeneration pathway for pyruvic acid. This chemistry is discussed in the context of plausible environments on early Earth such as near the ocean surface and atmospheric aerosol particles. These environments allow for combination and exchange of reactants and products of other reaction environments (such as shallow hydrothermal vents). The result could be a contribution to the steady increase in chemical complexity requisite in the origin of life.

  18. Titania nanotubes from weak organic acid electrolyte: Fabrication, characterization and oxide film properties

    Energy Technology Data Exchange (ETDEWEB)

    Munirathinam, Balakrishnan, E-mail: blkrish88@gmail.com; Neelakantan, Lakshman

    2015-04-01

    In this study, TiO{sub 2} nanotubes were fabricated using anodic oxidation in fluoride containing weak organic acid for different durations (0.5 h, 1 h, 2 h and 3 h). Scanning electron microscope (SEM) micrographs reveal that the morphology of titanium oxide varies with anodization time. Raman spectroscopy and X-ray diffraction (XRD) results indicate that the as-formed oxide nanotubes were amorphous in nature, yet transform into crystalline phases (anatase and rutile) upon annealing at 600 °C. Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. The electrochemical behavior was ascertained by DC polarization and AC electrochemical impedance spectroscopy (EIS) measurements in 0.9% NaCl solution. The results suggest that the annealed nanotubes showed higher impedance (10{sup 5}–10{sup 6} Ω cm{sup 2}) and lower passive current density (10{sup −7} A cm{sup −2}) than the as-formed nanotubes. In addition, we investigated the influence of post heat treatment on the semiconducting properties of the oxides by capacitance measurements. In vitro bioactivity test in simulated body fluid (SBF) showed that precipitation of Ca/P is easier in crystallized nanotubes than the amorphous structure. Our study uses a simple strategy to prepare nano-structured titania films and hints the feasibility of tailoring the oxide properties by thermal treatment, producing surfaces with better bioactivity. - Highlights: • TiO{sub 2} nanotubes were synthesized in a citric acid and sodium fluoride environment. • Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. • TiO{sub 2} nanotube layer behaves as an n-type semiconductor. • Annealed TiO{sub 2} nanotubes had a higher impedance magnitude compared to as-formed nanotubes.

  19. Fabrication of phytic acid sensor based on mixed phytase-lipid Langmuir-Blodgett films.

    Science.gov (United States)

    Caseli, Luciano; Moraes, Marli L; Zucolotto, Valtencir; Ferreira, Marystela; Nobre, Thatyane M; Zaniquelli, Maria Elisabete D; Rodrigues Filho, Ubirajara P; Oliveira, Osvaldo N

    2006-09-26

    This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers (when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-)(1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements. PMID:16981769

  20. Morphology characterization of phenyl-C61-butyric acid methyl ester films via an electrohydrodynamic spraying route

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Eun; Park, Ji-Woon; Hwang, Jungho, E-mail: hwangjh@yonsei.ac.kr

    2014-01-01

    In this study, we fabricated a thin film layer of phenyl-C61-butyric acid methyl ester (PCBM) fine particles using electrohydrodynamic (EHD) spray and evaluated the effects of the process parameters on the film morphology. After the PCBM was dissolved in dichloromethane, the solution was sprayed onto a substrate using the stable cone-jet mode of EHD spraying at various flow rates ranging from 5 to 15 μl/min and electric potentials ranging from 3 to 5 kV. The effects of the liquid flow rate, nozzle-plate distance, solute fraction, and electrical conductivity on the spray characteristics were investigated. The sizes of the PCBM particles deposited on the substrate were calculated using a scaling law and a mass balance equation, the results of which were in agreement with those obtained by scanning electron microscopy. A thin film was obtained with the structure of PCBM particles deposited without any void or agglomeration from the EHD spraying technique. The electrical conductivity of the PCBM solution was the dominant parameter in controlling the size of the PCBM particles. As the conductivity was increased to 2.4 × 10{sup −3} S/m from 4.3 × 10{sup −9} S/m, the particle size decreased from 6.7 μm to 320 nm. The size distribution measured using a scanning mobility particle sizer also supported the generation of nano-scale PCBM particles. The decrease of the particle size with increasing electrical conductivity may lead to a better morphology of PCBM films. - Highlights: • The phenyl-C61-butyric acid methyl ester thin film was obtained by electrospray. • The morphology of film consisting of microparticles was investigated. • The particle size was controlled by adjusting experimental parameters. • The nanoparticle was obtained by increasing the solution conductivity. • The particle size distribution was studied using a scanning mobility particle sizer.

  1. Morphology characterization of phenyl-C61-butyric acid methyl ester films via an electrohydrodynamic spraying route

    International Nuclear Information System (INIS)

    In this study, we fabricated a thin film layer of phenyl-C61-butyric acid methyl ester (PCBM) fine particles using electrohydrodynamic (EHD) spray and evaluated the effects of the process parameters on the film morphology. After the PCBM was dissolved in dichloromethane, the solution was sprayed onto a substrate using the stable cone-jet mode of EHD spraying at various flow rates ranging from 5 to 15 μl/min and electric potentials ranging from 3 to 5 kV. The effects of the liquid flow rate, nozzle-plate distance, solute fraction, and electrical conductivity on the spray characteristics were investigated. The sizes of the PCBM particles deposited on the substrate were calculated using a scaling law and a mass balance equation, the results of which were in agreement with those obtained by scanning electron microscopy. A thin film was obtained with the structure of PCBM particles deposited without any void or agglomeration from the EHD spraying technique. The electrical conductivity of the PCBM solution was the dominant parameter in controlling the size of the PCBM particles. As the conductivity was increased to 2.4 × 10−3 S/m from 4.3 × 10−9 S/m, the particle size decreased from 6.7 μm to 320 nm. The size distribution measured using a scanning mobility particle sizer also supported the generation of nano-scale PCBM particles. The decrease of the particle size with increasing electrical conductivity may lead to a better morphology of PCBM films. - Highlights: • The phenyl-C61-butyric acid methyl ester thin film was obtained by electrospray. • The morphology of film consisting of microparticles was investigated. • The particle size was controlled by adjusting experimental parameters. • The nanoparticle was obtained by increasing the solution conductivity. • The particle size distribution was studied using a scanning mobility particle sizer

  2. The Effect of Dye Density on the Efficiency of Photosensitization of TiO2 Films: Light-Harvesting by Phenothiazine-Labelled Dendritic Ruthenium Complexes

    Directory of Open Access Journals (Sweden)

    Lin-Yong Zhu

    2009-09-01

    Full Text Available A family of dendritic tris-bipyridyl ruthenium coordination complexes incorporating two or four carboxylate groups for binding to a TiO2 surface site and another dendritic linker between the metal complex and highly absorptive dyes were formulated as thin films on TiO2 coated glass. The family included phenothiazine-substituted dendrons of increasing structural complexity and higher optical density. The dye-loaded films were characterized by steady-state emission and absorption measurements and by kinetic studies of luminescence and transient absorption. Upon photoexcitation of the bound dyes, rapid electron injection into the metal oxide film was the dominant observed process, producing oxidized dye that persisted for hundreds of milliseconds. Complex decay profiles for emission, transient absorption, and optical bleaching of the dendritic dyes point to highly heterogeneous behavior for the films, with observed persistence lifetimes related directly to structurally enhance electronic coupling between the metal oxide support and the dendritic dyes.

  3. Fluorescence Properties of Eu3+/Gd3+/Citric Acid Mixed Complexes Doping in Silicon Rubber Matrix

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Series of doped rare earth complexes-EuxGd(1-x)(CA)3·nH2O (CA=citric acid) were synthesized. Some characterizations were taken for these complexes. The experimental results shows that the doped rare earth complexes have the best fluorescence property when the ratio of Eu and Gd is from 0.7 to 0.3. Silicon rubber-based composites were prepared by mechanical blending the EuxGd(1-x)(CA)3·nH2O and silicon rubber. Then, the fluorescent property of the composites was studied. It is found that the fluorescence intensity of the composites increase linearly with the contents of the rare earth complexes increasing.

  4. Ruthenium(II) multi carboxylic acid complexes: chemistry and application in dye sensitized solar cells.

    Science.gov (United States)

    Shahroosvand, Hashem; Nasouti, Fahimeh; Sousaraei, Ahmad

    2014-04-01

    Novel ruthenium multi carboxylic complexes (RMCCs) have been synthesized by using ruthenium nitrosyl nitrate, 1,2,4,5-benzenetetracarboxylic acid (H4btec) and 4,7-diphenyl-1,10-phenanthroline (BPhen) as photosensitizers for titanium dioxide semiconductor solar cells. The complexes were characterized by (1)H-NMR, FT-IR, UV-Vis, ICP and CHN analyses. The reaction details and features were then described. SEM analysis revealed that the penetration of dyes into the pores of the nanocrystalline TiO2 surface was improved by increasing the number of btec units. The solar energy to electricity conversion efficiency of complexes shows that the number of attached carboxylates on a dye has an influence on the photoelectrochemical properties of the dye-sensitized electrode. An incident photon-to-current conversion efficiency (IPCE) of 13% at 510 nm was obtained for ruthenium complexes with three btec units. PMID:24500312

  5. Hybrid Luminescent Films Obtained by Covalent Anchoring Terbium Complex to Silica-based Network

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    New monomer N-(4-carboxyphenyl)-NL-(propyltriethoxysilyl)urea (1) which acts as both a ligand for Tb3+ ion and a sol-gel precursor has been synthesized and characterized by 1H NMR, and MS. Hybrid luminescent thin films consisting of organoterbium covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. Strong line emission of Tb3+ ion was observed from the hybrid luminescent films under UV excitation.

  6. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  7. First principles-based multiparadigm, multiscale strategy for simulating complex materials processes with applications to amorphous SiC films

    International Nuclear Information System (INIS)

    Progress has recently been made in developing reactive force fields to describe chemical reactions in systems too large for quantum mechanical (QM) methods. In particular, ReaxFF, a force field with parameters that are obtained solely from fitting QM reaction data, has been used to predict structures and properties of many materials. Important applications require, however, determination of the final structures produced by such complex processes as chemical vapor deposition, atomic layer deposition, and formation of ceramic films by pyrolysis of polymers. This requires the force field to properly describe the formation of other products of the process, in addition to yielding the final structure of the material. We describe a strategy for accomplishing this and present an example of its use for forming amorphous SiC films that have a wide variety of applications. Extensive reactive molecular dynamics (MD) simulations have been carried out to simulate the pyrolysis of hydridopolycarbosilane. The reaction products all agree with the experimental data. After removing the reaction products, the system is cooled down to room temperature at which it produces amorphous SiC film, for which the computed radial distribution function, x-ray diffraction pattern, and the equation of state describing the three main SiC polytypes agree with the data and with the QM calculations. Extensive MD simulations have also been carried out to compute other structural properties, as well the effective diffusivities of light gases in the amorphous SiC film

  8. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex

    Directory of Open Access Journals (Sweden)

    Lin Yuheng

    2012-04-01

    Full Text Available Abstract Background Caffeic acid (3,4-dihydroxycinnamic acid is a natural phenolic compound derived from the plant phenylpropanoid pathway. Caffeic acid and its phenethyl ester (CAPE have attracted increasing attention for their various pharmaceutical properties and health-promoting effects. Nowadays, large-scale production of drugs or drug precursors via microbial approaches provides a promising alternative to chemical synthesis and extraction from plant sources. Results We first identified that an Escherichia coli native hydroxylase complex previously characterized as the 4-hydroxyphenylacetate 3-hydroxylase (4HPA3H was able to convert p-coumaric acid to caffeic acid efficiently. This critical enzymatic step catalyzed in plants by a membrane-associated cytochrome P450 enzyme, p-coumarate 3-hydroxylase (C3H, is difficult to be functionally expressed in prokaryotic systems. Moreover, the performances of two tyrosine ammonia lyases (TALs from Rhodobacter species were compared after overexpression in E. coli. The results indicated that the TAL from R. capsulatus (Rc possesses higher activity towards both tyrosine and L-dopa. Based on these findings, we further designed a dual pathway leading from tyrosine to caffeic acid consisting of the enzymes 4HPA3H and RcTAL. This heterologous pathway extended E. coli native tyrosine biosynthesis machinery and was able to produce caffeic acid (12.1 mg/L in minimal salt medium. Further improvement in production was accomplished by boosting tyrosine biosynthesis in E. coli, which involved the alleviation of tyrosine-induced feedback inhibition and carbon flux redirection. Finally, the titer of caffeic acid reached 50.2 mg/L in shake flasks after 48-hour cultivation. Conclusion We have successfully established a novel pathway and constructed an E. coli strain for the production of caffeic acid. This work forms a basis for further improvement in production, as well as opens the possibility of microbial synthesis

  9. Effect of polyaspartic acid on hydroxyapatite deposition in silk fibroin blend films

    Directory of Open Access Journals (Sweden)

    2010-05-01

    Full Text Available Polyaspartic acid/silk fibroin/hydroxyapatite (PASP/SF-HA composites have been synthesized by biomimetic processing. SF solution was mixed with different contents of PASP to prepare the PASP/SF blend membranes. After ethanol treatment and premineralization process, the blend membranes were immersed into 1.5 simulated body fluid (1.5 SBF for 24 h to induce apatite deposition at 37±0.5°C. Fourier transform infrared spectroscopy (FTIR and X-ray diffraction (XRD results revealed that a conformation transition of SF occurred after the addition of PASP and ethanol treatment. The FTIR and XRD results also confirmed that the main component of apatite deposition was HA. Scanning electron microscopy (SEM showed that the content of HA increased with increasing PASP concentration .Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP results revealed that the Ca/P molar ratio could reach 1.45, which was close to the Ca/P ratio of apatite. It was appropriate to conclude that the increasing content of PASP had a distinct effect on HA deposition in the blend films.

  10. Titania nanotubes from weak organic acid electrolyte: fabrication, characterization and oxide film properties.

    Science.gov (United States)

    Munirathinam, Balakrishnan; Neelakantan, Lakshman

    2015-04-01

    In this study, TiO2 nanotubes were fabricated using anodic oxidation in fluoride containing weak organic acid for different durations (0.5h, 1h, 2h and 3h). Scanning electron microscope (SEM) micrographs reveal that the morphology of titanium oxide varies with anodization time. Raman spectroscopy and X-ray diffraction (XRD) results indicate that the as-formed oxide nanotubes were amorphous in nature, yet transform into crystalline phases (anatase and rutile) upon annealing at 600°C. Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. The electrochemical behavior was ascertained by DC polarization and AC electrochemical impedance spectroscopy (EIS) measurements in 0.9% NaCl solution. The results suggest that the annealed nanotubes showed higher impedance (10(5)-10(6)Ωcm(2)) and lower passive current density (10(-7)Acm(-2)) than the as-formed nanotubes. In addition, we investigated the influence of post heat treatment on the semiconducting properties of the oxides by capacitance measurements. In vitro bioactivity test in simulated body fluid (SBF) showed that precipitation of Ca/P is easier in crystallized nanotubes than the amorphous structure. Our study uses a simple strategy to prepare nano-structured titania films and hints the feasibility of tailoring the oxide properties by thermal treatment, producing surfaces with better bioactivity. PMID:25686985

  11. Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution

    Science.gov (United States)

    Du, Cui-wei; Zhao, Tian-liang; Liu, Zhi-yong; Li, Xiao-gang; Zhang, Da-wei

    2016-02-01

    The short-term corrosion behavior of API X100 steel in an acidic simulated soil was investigated by electrochemical measurements and soaking experiments, followed by corrosion morphology observations and X-ray photoelectron spectroscopy analyses. The results show that X100 steel exhibits an obvious pitting susceptibility in an acidic soil environment. Pits nucleate after approximately 10 h of immersion. Along with the nucleation and growth of the pits, the charge-transfer resistance and open-circuit potential first increase sharply, then decrease slowly, and eventually reach a steady state. The maxima of the charge-transfer resistance and open-circuit potential are attained at approximately 10 h. The evolution of the electrochemical process is confirmed by the analysis of the product film. The product film exhibits a porous and loose structure and could not protect the substrate well. The product film is primarily composed of ferrous carbonate and ferrous hydroxide (Fe(OH)2). The concentration of Fe(OH)2 in the product film increases from the inside to the outside layer.

  12. A curious interplay in the films of N-heterocyclic carbene PtII complexes upon deposition of alkali metals

    Science.gov (United States)

    Makarova, Anna A.; Grachova, Elena V.; Niedzialek, Dorota; Solomatina, Anastasia I.; Sonntag, Simon; Fedorov, Alexander V.; Vilkov, Oleg Yu.; Neudachina, Vera S.; Laubschat, Clemens; Tunik, Sergey P.; Vyalikh, Denis V.

    2016-05-01

    The recently synthesized series of PtII complexes containing cyclometallating (phenylpyridine or benzoquinoline) and N-heterocyclic carbene ligands possess intriguing structures, topologies, and light emitting properties. Here, we report curious physicochemical interactions between in situ PVD-grown films of a typical representative of the aforementioned PtII complex compounds and Li, Na, K and Cs atoms. Based on a combination of detailed core-level photoelectron spectroscopy and quantum-chemical calculations at the density functional theory level, we found that the deposition of alkali atoms onto the molecular film leads to unusual redistribution of electron density: essential modification of nitrogen sites, reduction of the coordination PtII centre to Pt0 and decrease of electron density on the bromine atoms. A possible explanation for this is formation of a supramolecular system “Pt complex-alkali metal ion” the latter is supported by restoration of the system to the initial state upon subsequent oxygen treatment. The discovered properties highlight a considerable potential of the PtII complexes for a variety of biomedical, sensing, chemical, and electronic applications.

  13. Antimicrobial and Thermal Properties of Metal Complexes of Grafted Fabrics with Acrylic Acid by Gamma Irradiation

    International Nuclear Information System (INIS)

    Cotton, cotton/PET blend and PET fabrics were treated against microbial effect by radiation - induced grafting of acrylic acid followed by metal complexation with some divalent transition metal ions Co (II), Ni (II) and Cu (II). The microbial resistance was evaluated by testing the mechanical properties of the treated fabrics after burring for one and two weeks in a moist soil reach with microorganisms. Also, the growth of microorganisms was examined by scanning electron microscope (SEM). Moreover, the effect of this treatment on the thermal decomposition behavior was investigated by thermogravimetric analysis (TGA). On the basis of microbial studies, it was found that the metal complexation of the grafted fabrics with acrylic acid enhanced the antimicrobial resistance of the fabrics and the antimicrobial resistance could be arranged according to the metal ions as follows: copper> nickel> cobalt. Also, the thermal stability of different fabrics could be arranged as follow: grafted fabrics complexed with Cu (II) > grafted fabrics complexed with Ni (II) > grafted fabrics complexed with Co (II)

  14. Thermal properties of some pyrimidine, purine, amino-acid and mixed ligand complexes

    Energy Technology Data Exchange (ETDEWEB)

    Masoud, Mamdouh S. [Department of Chemistry, Faculty of Science, Alexandria University, Alexandria (Egypt); Ramadan, Ahmed M., E-mail: dramramadan@yahoo.com [Department of Chemistry, Faculty of Science, Alexandria University, Alexandria (Egypt); Chemistry Department, Faculty of Science, King Khalid University (Saudi Arabia); El-Ashry, Ghada M. [Central Laboratory for Food and Feed, Agriculture Research Centre, Ministry of Agriculture (Egypt)

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer Synthesis of novel complexes from barbital, thiouracil, adenine, amino acids. Black-Right-Pointing-Pointer We examine their thermal stability using DTA and TG techniques. Black-Right-Pointing-Pointer The thermodynamic parameters of the decomposition reaction were evaluated. Black-Right-Pointing-Pointer We proposed mechanisms for the decomposition processes. - Abstract: Mn(II), Fe(III), Co(II), Ni(II), Zn(II) and Cd(II) complexes of barbital, thiouracil, adenine, amino acids, beside mixed metals and mixed ligands were prepared. The structures of the complexes are of Oh, distorted Oh, Td and distorted Td geometries. Differential thermal (DTA) and thermogravimetric analysis (TG) of the complexes pointed to their stability. The change of entropy values, {Delta}S{sup numbersign}, showed that the transition states are more ordered than the reacting complexes. The fractions appeared in the calculated order of the thermal reactions, n, confirmed that the thermal reactions proceed in complicated mechanisms where the bond between the central metal ion and the ligands dissociates after losing small molecules such as H{sub 2}O. In most cases, the free radical species of the ligands are assigned to exist through decomposition mechanisms.

  15. Spectroscopic Study on the Ternary Complex Formation of U(VI) with Salicylic Acid

    International Nuclear Information System (INIS)

    From the nuclear chemical point of view, ternary complex formation of actinide ions with ligands has attracted attention for understanding radionuclides' migration in the environment. There are various ligands in natural aquatic systems which can form stable ternary actinide complexes. Humic substance in a near-neutral groundwater is one of them and carboxylic groups in a humic substance are considered as the most likely functional group which interacts with actinides. In this work, the formation of the ternary complex of U(VI) with salicylic acid (SAH2) was investigated by two different laser-based spectroscopic methods, i.e., laser-induced breakdown detection (LIBD) and time-resolved laser fluorescence spectroscopy (TRLFS). The notable features are as follows: (i) the breakdown probability increases slightly, (ii) the absorbance of U(VI) increases, whereas the fluorescence intensity decreases with increasing salicylic acid concentration. The increase of the breakdown probability indicates that insoluble species are formed due to the complexation of U(VI) with SAH2. The decrease of the fluorescence intensity is due to the quenching effect of the SAH2 in the complexes. With regards to the instrumentation, the characteristics of a newly developed LIBD system adopting a probe beam deflection method are presented. We report also on the improved speciation sensitivity (∼10-9M for UO22+) of the TRLFS system

  16. Inhibition of acid, alkaline, and tyrosine (PTP1B) phosphatases by novel vanadium complexes.

    Science.gov (United States)

    McLauchlan, Craig C; Hooker, Jaqueline D; Jones, Marjorie A; Dymon, Zaneta; Backhus, Emily A; Greiner, Bradley A; Dorner, Nicole A; Youkhana, Mary A; Manus, Lisa M

    2010-03-01

    In the course of our investigations of vanadium-containing complexes for use as insulin-enhancing agents, we have generated a series of novel vanadium coordination complexes with bidentate ligands. Specifically we have focused on two ligands: anthranilate (anc(-)), a natural metabolite of tryptophan, and imidizole-4-carboxylate (imc(-)), meant to mimic naturally occurring N-donor ligands. For each ligand, we have generated a series of complexes containing the V(III), V(IV), and V(V) oxidation states. Each complex was investigated using phosphatase inhibition studies of three different phosphatases (acid, alkaline, and tyrosine (PTP1B) phosphatase) as prima facia evidence for potential use as an insulin-enhancing agent. Using p-nitrophenyl phosphate as an artificial phosphatase substrate, the levels of inhibition were determined by measuring the absorbance of the product at 405nm using UV/vis spectroscopy. Under our experimental conditions, for instance, V(imc)(3) appears to be as potent an inhibitor of alkaline phosphatase as sodium orthovanadate when comparing the K(cat)/K(m) term. VO(anc)(2) is as potent an inhibitor of acid phosphatase and tyrosine phosphatase as the Na(3)VO(4). Thus, use of these complexes can increase our mechanistic understanding of the effects of vanadium in vivo. PMID:20071031

  17. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    Science.gov (United States)

    Provine, J.; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin; Kim, Ki-Hyun; Prinz, Fritz B.

    2016-06-01

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiNx), particularly for use a low k dielectric spacer. One of the key material properties needed for SiNx films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiNx and evaluate the film's WER in 100:1 dilutions of HF in H2O. The remote plasma capability available in PEALD, enabled controlling the density of the SiNx film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiNx of 6.1 Å/min, which is similar to WER of SiNx from LPCVD reactions at 850 °C.

  18. Acidichromism in the Mixed Langmuir-Blodgett Films of Stearic Acid with a Carbazole-containing Schiff Base

    Institute of Scientific and Technical Information of China (English)

    LIU,Yao-Hu(刘耀虎); LIU,Ming-Hua(刘鸣华)

    2002-01-01

    A new Schiff base containing carbazole group (CzSB) was synthesized. Although the compound can not form stable monolayer at air/water interface itself, it does form stable monolayers by mixing with stearic acids as verified from the surface pressure-area measurements. The mixed monolayers can be deposited by vertical dipping method. UV Spectroscopic studies of the mixed LB films reveal a broadening and red shift of the absorption spectra compared to those of CzSB in the ethanol solution, which confirms the formation of organized aggregates of the compounds in the mixed LB films. An ordered LB film was obtained as confirmed by using low-angle X-ray diffraction.The mixed LB film shows acidichromism, that is, the colors of theLB films can be reversibly changed upon exposing to HCl and NH3 gas alternatively. On the basis of FT-IR measurement, it is proposed fhat the protontatopm of the imine group in the compound is the reason for the acidichromism.

  19. Study on the passive film formed on 2205 stainless steel in acetic acid by AAS and XPS

    Institute of Scientific and Technical Information of China (English)

    Xue-qun Cheng; Xiao-gang Li; Chao-fang Dong

    2009-01-01

    The properties of the passive film formed on 2205 stainless steel in acetic acid at high temperature that contained chloride ions were studied by atomic absorption spectrometry (AAS), X-ray photoelectron spectroscopy (XPS), and electrochemical polariza-tion measurements.AAS results show that molybdenum is enriched on the surface as the passive film is dissolved.This enrichment decreases the corrosion resistance because it hinders chloride adsorption and Fe ion dissolution, and acts as a local pH buffer because it consumes protons.The dissolution ratio of Fe/Cr is approximately 10 during the active dissolution of the passive film.XPS results indicate that when the potential is in the passivation region, Cr comprises about 50% of the metal cations in the near-surface region of the passive film and is the main metal constituent in this region.When the polarization potential is much greater than the transpas-sivation potential, the Mo content accounts for approximately 45% of the metal cations in the near-surface region; Fe and Ni have no obvious influence on the formation, dissolution, or puncture of the passive film.

  20. Investigation of Regenerated Cellulose/Poly(acrylic acid Composite Films for Potential Wound Healing Applications: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Manjula Bajpai

    2014-01-01

    Full Text Available Regenerated cellulose/poly(acrylic acid composite films have been synthesized for wound dressing applications. The water absorbency of these films was studied as a function of amount of cross-linker N,N′-methylenebisacrylamide and cellulose contents in the feed mixture. The samples, having different compositions, showed tensile strength and percent elongation in the range of 9.98×105 to 13.40×105 N/m2 and 110 to 265, respectively. The water vapor transmission rate (WVTR for various films was found to be in the range of 2.03 to 7.18 mg/cm2/h. These films were loaded with antibacterial drug miconazole nitrate and their release was studied in the physiological pH at 37°C. The release data was found to fit well the diffusion controlled Higuchi model. Finally the films demonstrated fair antibacterial and antifungal action, thus establishing their strong candidature as wound dressing materials.

  1. Spectroscopy of charge transfer complexes of four amino acids as organic two-dimensional conductors

    Energy Technology Data Exchange (ETDEWEB)

    Padhiyar, Ashvin; Patel, A J; Oza, A T [Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388 120, Gujarat (India)

    2007-12-05

    It is found in this study that four amino acids, namely asparagine, arginine, histidine and glutamine form two-dimensional conducting systems which are charge transfer complexes (CTCs) with organic acceptors like TCNQ, TCNE, chloranil, DDQ, TNF and iodine. It is verified using optical absorption edges that these are 2d conductors like transition metal dichalcogenides obeying absorption functions different from 1d and 3d conductors. This 2d nature is related to the network of intermolecular H-bonding in these complexes, which leads to a global H-bonded network resulting in the absence of local deformation due to the relaxation of strain.

  2. Spectroscopy of charge transfer complexes of four amino acids as organic two-dimensional conductors

    Science.gov (United States)

    Padhiyar, Ashvin; Patel, A. J.; Oza, A. T.

    2007-12-01

    It is found in this study that four amino acids, namely asparagine, arginine, histidine and glutamine form two-dimensional conducting systems which are charge transfer complexes (CTCs) with organic acceptors like TCNQ, TCNE, chloranil, DDQ, TNF and iodine. It is verified using optical absorption edges that these are 2d conductors like transition metal dichalcogenides obeying absorption functions different from 1d and 3d conductors. This 2d nature is related to the network of intermolecular H-bonding in these complexes, which leads to a global H-bonded network resulting in the absence of local deformation due to the relaxation of strain.

  3. A New Complex with Good Catalytic Properties in Asymmetric Synthesis of Cyclopropanecarboxylic Acids

    Institute of Scientific and Technical Information of China (English)

    CAI Ya; ZHENG He-Gen; XIN Xin-Quan

    2003-01-01

    @@ The chemistry of transition metal-sulfur clusters has attracted much attention recently owing to their relevance to certain biological and industrial catalyses, rich structural chemistry, and special reactive properties as well as potential application in nonlinear optical materials. [1~ 3] In this article, a new complex, WCu2S4 (dppf)2 [ dppf = 1, 1′bis(diphenylphosphino)ferrocene] was synthesized through solid state reaction, and it was found that this complex had good catalytic properties in asymmetric synthesis of cyclopropanecarboxylic acids.

  4. Amino acids and their Cu complexes covalently grafted onto a polystyrene resin A vibrational spectroscopic study

    Science.gov (United States)

    Korbély, B.; Kiss, J. T.; Hernadi, K.; Pálinkó, I.

    2007-05-01

    Immobilised Cu(II)- L-tyrosine methylester and Cu(II)-BOC- L-histidine complexes were prepared through covalently grafting the amino acid ligands onto chlorine-functionalised polystyrene. The steps of the syntheses were followed by IR spectroscopy. The ligand to central ion ratio was four in both anchored complexes, and the most probable coordination sites were the carboxylic, the amino and the phenolic OH groups and the imidazole nitrogens for the tyrosine methylester and the BOC- L-histidine, respectively.

  5. NMR studies of inclusion complexes formed by (R)-α-lipoic acid with α-, β-, and γ-cyclodextrins

    International Nuclear Information System (INIS)

    The structures of inclusion complexes of (R)-α-lipoic acid with α-, β-, and γ-cyclodextrin (CD) were constructed using restraints derived from ROESY spectra and MMFF94 molecular mechanics calculations. (R)-α-lipoic acid and α-CD generate a single stable inclusion complex, in which the 1,2-dithiolane ring of the (R)-α-lipoic acid is oriented toward the secondary hydroxy side of the α-CD. NMR data suggests that β-CD produces two kinds of inclusion complexes with α-lipoic acid. Finally, γ-CD yields 1:1 and 1:2 host/guest complexes with (R)-α-lipoic acid. The estimated structure of the 1:1 γ-CD inclusion complex has the 1,2-dithiolane ring oriented toward the primary hydroxy side of the γ-CD. (author)

  6. Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging

    OpenAIRE

    ARRIETA, Marina Patricia; Samper, María D.; López, Juan; Jiménez, Alfonso

    2014-01-01

    Poly(lactic acid) PLA, and poly(hydroxybutyrate) PHB, blends were processed as films and characterized for their use in food packaging. PLA was blended with PHB to enhance the crystallinity. Therefore, PHB addition strongly increased oxygen barrier while decreased the wettability. Two different environmentally-friendly plasticizers, poly(ethylene glycol) (PEG) and acetyl(tributyl citrate) (ATBC), were added to these blends to increase their processing performance, while improving their ductil...

  7. A study on the distribution of polystyrene sulfonic acid grafts over the cross-section of a PFA film

    International Nuclear Information System (INIS)

    In this study, the distribution behaviors of polystyrene sulfonic acid (PSSA) grafts over the cross-section of grafted PFA membranes (PFA-g-PSSA) were investigated by using SEM-EDX analysis. Membranes with various degrees of grafting (DOG) and thicknesses were prepared by a simultaneous radiation grafting of styrene and a subsequent sulfonation with chlorosulfonic acid. A SEM-EDX instrument was utilized to directly observe that the distribution behaviors of the PSSA grafts over the cross-section of grafted PFA membranes and the results showed that the distribution behaviors were largely affected by the grafting conditions such as the degree of grafting, monomer concentration, and film thickness.

  8. A Complex Prime Numerical Representation of Amino Acids for Protein Function Comparison.

    Science.gov (United States)

    Chen, Duo; Wang, Jiasong; Yan, Ming; Bao, Forrest Sheng

    2016-08-01

    Computationally assessing the functional similarity between proteins is an important task of bioinformatics research. It can help molecular biologists transfer knowledge on certain proteins to others and hence reduce the amount of tedious and costly benchwork. Representation of amino acids, the building blocks of proteins, plays an important role in achieving this goal. Compared with symbolic representation, representing amino acids numerically can expand our ability to analyze proteins, including comparing the functional similarity of them. Among the state-of-the-art methods, electro-ion interaction pseudopotential (EIIP) is widely adopted for the numerical representation of amino acids. However, it could suffer from degeneracy that two different amino acid sequences have the same numerical representation, due to the design of EIIP. In light of this challenge, we propose a complex prime numerical representation (CPNR) of amino acids, inspired by the similarity between a pattern among prime numbers and the number of codons of amino acids. To empirically assess the effectiveness of the proposed method, we compare CPNR against EIIP. Experimental results demonstrate that the proposed method CPNR always achieves better performance than EIIP. We also develop a framework to combine the advantages of CPNR and EIIP, which enables us to improve the performance and study the unique characteristics of different representations. PMID:27249328

  9. Enhanced photoluminescence in transparent thin films of polyaniline–zinc oxide nanocomposite prepared from oleic acid modified zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sajimol Augustine, M., E-mail: sajimollazar@gmail.com [Department of Physics, St. Teresa' s College, Kochi-11, Kerala (India); Jeeju, P.P.; Varma, S.J.; Francis Xavier, P.A. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: lakshminathcusat@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India)

    2014-07-01

    Oleic acid capped zinc oxide (ZnO) nanoparticles have been synthesized by a wet chemical route. The chemical oxidative method is employed to synthesize polyaniline (PANI) and PANI/ZnO nanocomposites doped with four different dopants such as orthophosphoric acid (H{sub 3}PO{sub 4}), hydrochloric acid (HCl), naphthalene-2-sulphonic acid and camphor sulphonic acid (CSA). The samples have been structurally characterized by X-ray diffraction (XRD), field emission scanning electron microscopy and Fourier transform infrared (FT-IR) spectroscopic techniques. A comparison of the photoluminescence (PL) emission intensity of PANI and PANI/ZnO nanocomposites is attempted. The enhanced PL intensity in PANI/ZnO nanocomposites is caused by the presence of nanostructured and highly fluorescent ZnO in the composites. It has been observed that, among the composites, the H{sub 3}PO{sub 4} doped PANI/ZnO nanocomposite is found to exhibit the highest PL intensity because of the higher extent of (pi) conjugation and the more orderly arrangement of the benzenoid and quinonoid units. In the present work, transparent thin films of PANI and PANI/ZnO nanocomposite for which PL intensity is found to be maximum, have been prepared after re-doping with CSA by the spin-coating technique. The XRD pattern of the PANI/ZnO film shows exceptionally good crystallanity compared to that of pure PANI, which suggests that the addition of ZnO nanocrystals helps in enhancing the crystallanity of the PANI/ZnO nanocomposite. There is a significant increase in the PL emission intensity of the PANI/ZnO nanocomposite film making it suitable for the fabrication of optoelectronic devices. - Highlights: • Oleic acid capped zinc oxide nanoparticles are synthesized by wet chemical method. • Polyaniline/zinc oxide nanocomposites are prepared by in-situ polymerization. • Polyaniline and polyaniline/zinc oxide thin films are deposited using spin-coating. • Enhanced photoluminescence is observed in polyaniline

  10. Thermodynamics of Np(IV) complexes with gluconic acid under alkaline conditions. Sorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Rojo, H.; Garcia-Gutierrez, M.; Missana, T. [CIEMAT, Madrid (Spain). Sorption, Migration and Colloids Lab.; Tits, J.; Wieland, E. [Paul Scherrer Institut, Villigen (Switzerland). Lab. for Waste Management; Gaona, X. [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung

    2013-05-01

    The complexation of Np(IV) with gluconic acid (GLU) under alkaline conditions was investigated in the absence of Ca by carrying out a series of sorption experiments. The decrease of Np(IV) sorption on the sorbing material at increasing concentrations of GLU was interpreted as the formation of Np(IV)-GLU aqueous complexes. The modelling of experimental data according to the Schubert method [1] confirmed the formation of a complex with a Np:GLU ratio 1: 1. The stoichiometry of the complex Np(OH){sub 4}GLU{sup -} was proposed based on the experimental observation that no proton exchange occurred during the course of the complexation reaction and that Np(OH){sub 4}(aq) was the predominant hydrolysis product in the absence of GLU. A log *{beta}{sup 0}{sub 1,4,1} = -2.92 {+-} 0.30 for the formation reaction Np{sup 4+} + 4H{sub 2}O + GLU{sup -} <=> Np(OH){sub 4}GLU{sup -} + 4H{sup +} was calculated based on the conditional stability constants determined from sorption experiments and using the Np(IV) thermodynamic data selected in the NEA reviews [2]. Linear free energy relationships (LFER) confirmed that the stoichiometry and stability of the Np(IV)-GLU complex characterized in this work are consistent with data available for Th(IV)-, U(IV)- and Pu(IV)-GLU complexes. (orig.)

  11. Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes

    Science.gov (United States)

    Li, Hui; Yue, Fan; Wen, Hongmei

    2016-01-01

    This paper introduces the structural characterization and studies on reversible oxygenation behavior of a new oxygen carrier Co(II)-2,4-diaminobutanoic acid (DABA) complex in aqueous solution. The composition of the oxygenated complex was determined by gas volumetric method, molar ratio method, and mass spectrometry, and the formula of the oxygenated complex was determined to be [Co(DABA)2O2]. In aqueous solution, the complex can continuously uptake and release dioxygen and exhibit excellent reversibility of oxygenation and deoxygenation ability. This complex can maintain 50% of its original oxygenation capacity after 30 cycles in 24 h and retain 5% of the original oxygenation capacity after more than 260 cycles after 72 h. When a ligand analogue was linked to histidine (His), the new complex exhibited as excellent reversible oxygenation property as His-Co(II) complex. Insight into the relationship between structural detail and oxygenation properties will provide valuable suggestion for a new family of oxygen carriers.

  12. STRUCTURE AND REDOX TRANSFORMATIONS OF IRON(III COMPLEXES WITH SOME BIOLOGICALLY IMPORTANT INDOLE-3-ALKANOIC ACIDS IN AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Krisztina Kovács

    2007-06-01

    Full Text Available Interactions of a series of indole-3-alkanoic acids (with n-alkanoic acid side-chains from C1 to C4 with iron(III in acidic aqueous solutions have been shown to comprise two parallel processes including complexation and redox transformations giving iron(II hexaaquo complexes. The structure and composition of the reaction products are discussed, as analysed using a combination of instrumental techniques including 57Fe Mössbauer, vibrational and HNMR spectroscopies.

  13. Effect of citric acid on photoelectrochemical properties of tungsten trioxide films prepared by the polymeric precursor method

    International Nuclear Information System (INIS)

    Effect of citric acid (CA) on microstructure and photoelectrochemical properties of WO3 films prepared by the polymeric precursor method was investigated. The obtained materials were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The results showed that samples prepared with adding different amounts of citric acid had a pure phase of cubic. The addition of citric acid could significantly increase the particle size and change the surface of WO3 films. The photoelectrochemical measurements were performed using a standard three-electrode system cell. The films prepared from mass ratios of CA/PEG (R = 0, 0.2, 0.4, 0.6 and 1) showed 1.0, 1.4, 1.7, 2.1 and 0.9 mA cm-2 at 1.2 V under illumination with a 500 W xenon lamp (I0 = 100 mW/cm2), respectively.

  14. Fabrication of ZnFe2O4 films and its application in photoelectrocatalytic degradation of salicylic acid.

    Science.gov (United States)

    Kumbhar, S S; Mahadik, M A; Shinde, S S; Rajpure, K Y; Bhosale, C H

    2015-01-01

    ZnFe2O4 thin films are successfully deposited onto bare and fluorine doped tin oxide (FTO) coated quartz substrate using the spray pyrolysis method. The structure and morphology of ZnFe2O4 photoelectrodes were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). The X-ray diffraction pattern confirms the polycrystalline nature of films with a spinel cubic crystal structure. The AFM micrographs shows the granular nature of the films. The dielectric constant and dielectric loss shows dispersion behavior as a function of frequency measured in the range from 20Hz to 1MHz. Photoelectrocatalysis degradation of salicylic acid using ZnFe2O4 photoelectrode under sunlight illumination has been investigated. The result shows that the degradation percentage of salicylic acid on ZnFe2O4 photoelectrodes is reached 49% under neutral conditions after 320min illumination. The decrease in values of COD from 19.4mg/L to 6.4mg/L indicates there is mineralization of salicylic acid with time. PMID:25528302

  15. Electrocatalytic oxidation of some amino acids on a nickel-curcumin complex modified glassy carbon electrode

    International Nuclear Information System (INIS)

    This study investigated the electrocatalytic oxidation of alanine, L-arginine, L-phenylalanine, L-lysine and glycine on poly-Ni(II)-curcumin film (curcumin: 1,7-bis [4-hydroxy-3-methoxy phenyl]-1,6-heptadiene-3,5-dione) electrodeposited on a glassy carbon electrode in alkaline solution. The process of oxidation and its kinetics were established by using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of amino acids the anodic peak current of low valence nickel species increased, followed by a decrease in the corresponding cathodic current. This indicates that amino acids were oxidized on the redox mediator which was immobilized on the electrode surface via an electrocatalytic mechanism. Using Laviron's equation, the values of α and k s for the immobilized redox species were determined as 0.43 ± 0.03 and 2.47 ± 0.02 x 106 s-1, respectively. The rate constant, the electron transfer coefficient and the diffusion coefficients involved in the electrocatalytic oxidation of amino acids were determined

  16. Electrocatalytic oxidation of some amino acids on a nickel-curcumin complex modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Majdi, S. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)]. E-mail: jabbari@kntu.ac.ir; Heli, H. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2007-04-01

    This study investigated the electrocatalytic oxidation of alanine, L-arginine, L-phenylalanine, L-lysine and glycine on poly-Ni(II)-curcumin film (curcumin: 1,7-bis [4-hydroxy-3-methoxy phenyl]-1,6-heptadiene-3,5-dione) electrodeposited on a glassy carbon electrode in alkaline solution. The process of oxidation and its kinetics were established by using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of amino acids the anodic peak current of low valence nickel species increased, followed by a decrease in the corresponding cathodic current. This indicates that amino acids were oxidized on the redox mediator which was immobilized on the electrode surface via an electrocatalytic mechanism. Using Laviron's equation, the values of {alpha} and k {sub s} for the immobilized redox species were determined as 0.43 {+-} 0.03 and 2.47 {+-} 0.02 x 10{sup 6} s{sup -1}, respectively. The rate constant, the electron transfer coefficient and the diffusion coefficients involved in the electrocatalytic oxidation of amino acids were determined.

  17. The Effect of the Serum Amino Acid Levels Thiosemicarbazone Derivatives and its Metal Complexes on Rats

    OpenAIRE

    Karatepe, Mustafa; Kaman, Dilara

    2013-01-01

    Advers biological activities of Thiosemicarbazone (TSC) and Schiff base (SB) derivatives have been widely studied in rats and in other animal species using different doses, times and routes of administration. To date, no attempt has been made to study alterations occurring in the amino acid profile in the effects of the thiosemicarbazone derivative and its metal complexes on the rats. At this study, the rats were injected subcutaneously with a new thiosemicarbazone and its LH-Zn and LH-Cu com...

  18. Design and evaluation of Lumefantrine – Oleic Acid Self Nanoemulsifying Ionic Complex for Enhanced Dissolution

    Directory of Open Access Journals (Sweden)

    Pradeep Vavia

    2013-03-01

    Full Text Available Background:Lumefantrine, an antimalarial molecule has very low and variable bioavailability owing to its extremely poor solubility in water. It is recommended to be taken with milk to enhance its solubility and bioavailability. The aim of present study was to develop a Self Nanoemulsifying Delivery system (SNEDs of lumefantrine (LF to achieve rapid and complete dissolution independent of food-fat and surfactant in dissolution media.Methods:Solubility of LF in oil, co-solvent/co-surfactant and surfactant solution and emulsification efficiency of surfactant were analyzed to optimize the LF loaded self nanoemulsifying preconcentrate. Effect of LF-oleic acid complexation on emulsification, droplet size, zeta potential and dissolution were investigated. Effect of milk concentration and fat content on saturation solubility and dissolution of LF was investigated. Dissolution of marketed formulation and LF-SNEDs was carried out in pH 1.2 and pH 6.8 phosphate buffer.Results:LF exhibited very high solubility in oleic acid owing to complexation between tertiary amine of LF and carboxyl group of oleic acid (OA. Cremophore EL and medium chain monoglyceride were selected surfactant and co-surfactant, respectively. Significantly smaller droplet size (37 nm, shift in zeta potential from negative to positive value, very high drug loading in lipid based system (> 10%, no precipitation after dissolution are the major distinguish characteristics contributed by LF-OA complex in the SNED system. Saturation solubility and dissolution study in milk containing media pointed the significant increment in solubility of LF in the presence of milk-food fat. LF-SNEDs showed > 90% LF release within 30 min in pH 1.2 while marketed tablet showed almost 0% drug release.Conclusion:Self nanoemulsification promoting ionic complexation between basic drug and oleic acid hold great promise in enhancing solubility of hydrophobic drugs.

  19. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows

    OpenAIRE

    Pessione, Enrica

    2012-01-01

    Lactic Acid Bacteria (LAB) are ancient organisms that cannot biosynthesize functional cytochromes, and cannot get ATP from respiration. Besides sugar fermentation, they evolved electrogenic decarboxylations and ATP-forming deiminations. The right balance between sugar fermentation and decarboxylation/deimination ensures buffered environments thus enabling LAB to survive in human gastric trait and colonize gut. A complex molecular cross-talk between LAB and host exists. LAB moonlight proteins ...

  20. Antibacterial activity of chitosan and the interpolyelectrolyte complexes of poly(acrylic acid-chitosan

    Directory of Open Access Journals (Sweden)

    Hortensia Ortega-Ortiz

    2010-06-01

    Full Text Available The antimicrobial activity of chitosan and water soluble interpolyelectrolyte complexes of poly(acrylic acid-chitosan was studied. Chitosans of two different molecular weights were tested at different concentration for 0.5 to 5 g·L-1 as antimicrobial agents against P. aeruginosa and P. oleovorans. In both cases, the best microbial inhibition was obtained with the concentration of 5 g·L-1. However, the interpolyelectrolyte complexes of poly(acrylic acid-chitosan with composition φ =2 produced higher antibacterial activity than the two chitosans at the concentration of 0.5 g·L-1. The NPEC2 complex was more effective than chitosans. This could be attributed to the number of moles of the amino groups of chitosan and the carboxylic acid groups of the interpolyelectrolyte complexes poly(acrylic acid.A atividade antimicrobiana de quitosana e complexos interpolieletrolíticos hidrossoluvéis de poli(ácido acrílico-quitosana foi estudada. Quitosanas de dois diferentes pesos moleculares foram testados em diferentes concentrações, 0,5 a 5 g • L-1, como agentes antimicrobianos nas P. aeruginosa e P. oleovorans. Em ambos os casos, obteu-se a melhor inibição microbiana com a concentração de 5 g • L-1, no entanto os complexos interpolieletrolíticos de poli (ácido acrílico-quitosana com composição φ = 2 apresentaram maior atividade antibacteriana do que os dois quitosans na concentração de 0,5 g • L-1. O complexo NPEC2 foi mais eficaz do que as quitosanas, sendo que o resultado pode ser atribuído ao número de moles dos grupos aminos da quitosana e aos grupos carboxílicos dos complexos de poli(ácido acrílico.