WorldWideScience

Sample records for acid binding sites

  1. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  2. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  3. GABAA [gamma-aminobutyric acid] type binding sites on membranes of spermatozoa

    International Nuclear Information System (INIS)

    Erdoe, S.L.; Wekerle, L.

    1990-01-01

    The binding of [ 3 H] gamma-aminobutyric acid (GABA) to seminal membranes of swines and rams was examined. Specific, GABA binding was demonstrated in both species, which showed the features of GABA A type receptors. The affinity of binding was similar in both species, whereas the density of seminal GABA binding sites was 5 times higher in swine. Our findings suggest that GABA may have a direct effect on spermatozoa

  4. Identification of nucleic acid binding sites on translin-associated factor X (TRAX protein.

    Directory of Open Access Journals (Sweden)

    Gagan Deep Gupta

    Full Text Available Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity.

  5. Identification of Nucleic Acid Binding Sites on Translin-Associated Factor X (TRAX) Protein

    Science.gov (United States)

    Gupta, Gagan Deep; Kumar, Vinay

    2012-01-01

    Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity. PMID:22427937

  6. Location and nature of calcium-binding sites in salivary acidic proline-rich phosphoproteins

    International Nuclear Information System (INIS)

    Bennick, A.; McLaughlin, A.C.; Grey, A.A.; Madapallimattam, G.

    1981-01-01

    The location of the calcium-binding sites in the human acidic proline-rich proteins, salivary proteins A and C, was determined by equilibrium dialysis of the tryptic peptides with buffers containing 45 Ca. All the calcium-binding sites are located in the NH 2 -terminal tryptic peptide (TX peptide). The nature of the calcium binding sites in the TX peptide and native salivary proteins A and C, as well as dephosphorylated proteins was compared. Two types of sites can be distinguished in peptide TX. Type I sites have an apparent dissociation constant (K) of 38 μM and are responsible for the binding of 2.6 mol of Ca/mol of peptide. The corresponding figures for Type II sites are 780 μM and 5.3 mol of Ca/mol of peptide. In the native proteins, the amount of calcium bound at the type II sites decreases to 3.9 mol of Ca/mol of proteins A and C and K increases to 1100 μM. The amount of calcium bound at type I sites decreases to 1.5 mol/mol of protein A and 0.6 mol/mol of protein C, but there is no change in K. Dephosphorylation affects the calcium binding at both types of sites. The experiments indicate that the COOH-terminal parts of the native proteins affect the number and the nature of the protein calcium-binding sites. Proton and phosphorous NMR data demonstrate that β-COOH in aspartic acid, as well as phosphoserine, are part of the calcium-binding sites. The difference in calcium binding to salivary proteins A and C may be due at least partially to differences in the environment of one or more aspartic acids

  7. Interaction of Palmitic Acid with Metoprolol Succinate at the Binding Sites of Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Mashiur Rahman

    2014-12-01

    Full Text Available Purpose: The aim of this study was to characterize the binding profile as well as to notify the interaction of palmitic acid with metoprolol succinate at its binding site on albumin. Methods: The binding of metoprolol succinate to bovine serum albumin (BSA was studied by equilibrium dialysis method (ED at 27°C and pH 7.4, in order to have an insight in the binding chemistry of the drug to BSA in presence and absence of palmitic acid. The study was carried out using ranitidine as site-1 and diazepam as site-2 specific probe. Results: Different analysis of binding of metoprolol succinate to bovine serum albumin suggested two sets of association constants: high affinity association constant (k1 = 11.0 x 105 M-1 with low capacity (n1 = 2 and low affinity association (k2 = 4.0×105 M-1 constant with high capacity (n2 = 8 at pH 7.4 and 27°C. During concurrent administration of palmitic acid and metoprolol succinate in presence or absence of ranitidine or diazepam, it was found that palmitic acid displaced metoprolol succinate from its binding site on BSA resulting reduced binding of metoprolol succinate to BSA. The increment in free fraction of metoprolol succinate was from 26.27% to 55.08% upon the addition of increased concentration of palmitic acid at a concentration of 0×10-5 M to 16×10-5 M. In presence of ranitidine and diazepam, palmitic acid further increases the free fraction of metoprolol succinate from 33.05% to 66.95% and 40.68% to 72.88%, respectively. Conclusion: This data provided the evidence of interaction at higher concentration of palmitic acid at the binding sites on BSA, which might change the pharmacokinetic properties of metoprolol succinate.

  8. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    International Nuclear Information System (INIS)

    Lummis, S.C.R.; Johnston, G.A.R.; Nicoletti, G.; Holan, G.

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial [ 3 H]diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli [ 3 H]diazepam binding are those that are active in displacing [ 3 H]benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligand spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed

  9. Locations of the three primary binding sites for long-chain fatty acids on bovine serum albumin

    International Nuclear Information System (INIS)

    Hamilton, J.A.; Era, S.; Bhamidipati, S.P.; Reed, R.G.

    1991-01-01

    Binding of 13 C-enriched oleic acid to bovine serum albumin and to three large proteolytic fragments of albumin - two complementary fragments corresponding to the two halved of albumin and one fragment corresponding to the carboxyl-terminal domain - yielded unique patterns of NMR resonances (chemical shifts and relative intensities) that were used to identify the locations of binding of the first 5 mol of oleic acid to the multidomain albumin molecule. The first 3 mol of oleic acid added to intact albumin generated three distinct NMR resonances as a result of simultaneous binding of oleic acid to three heterogeneous sites (primary sites). This distribution suggests albumin to be a less symmetrical binding molecule than theoretical models predict. This work also demonstrates the power of NMR for the study of microenvironments of individual fatty acid binding sites in specific domain

  10. Identification of metal ion binding sites based on amino acid sequences.

    Science.gov (United States)

    Cao, Xiaoyong; Hu, Xiuzhen; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html.

  11. Dansyl labeling to modulate the relative affinity of bile acids for the binding sites of human serum albumin.

    Science.gov (United States)

    Rohacova, Jana; Sastre, German; Marin, M Luisa; Miranda, Miguel A

    2011-09-08

    Binding of natural bile acids to human serum albumin (HSA) is an important step in enterohepatic circulation and provides a measure of liver function. In this article, we report on the use of four dansyl (Dns) derivatives of cholic acid (ChA) to demonstrate a regiodifferentiation in their relative affinity for the two binding sites of HSA. Using both steady-state and time-resolved fluorescence, formation of Dns-ChA@HSA complexes was confirmed; the corresponding binding constants were determined, and their distribution between bulk solution and HSA microenvironment was estimated. By means of energy transfer from Trp to the Dns moiety, donor-acceptor distances were estimated (21-25 Å) and found to be compatible with both site 1 and site 2 occupancies. Nevertheless, titration using warfarin and ibuprofen as specific displacement probes clearly indicated that 3α- and 3β-Dns-ChA bind to HSA at site 2, whereas their C-7 regioisomers bind to HSA at site 1. Furthermore, the C-3-labeled compounds are displaced by lithocholic acid, whereas they are insensitive to ChA, confirming the assumption that the former binds to HSA at site 2. Thus, Dns labeling provides a useful tool to modulate the relative affinity of ChA to the major binding sites of HSA and, in combination with other fluorescent ChA analogs, to mimic the binding behavior of natural bile acids.

  12. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site.

    Directory of Open Access Journals (Sweden)

    Helena Kellett-Clarke

    Full Text Available CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA, a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the-LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies.

  13. Tannic acid and chromic chloride-induced binding of protein to red cells: a preliminary study of possible binding sites and reaction mechanisms.

    Science.gov (United States)

    Hunt, A F; Reed, M I

    1990-07-01

    The binding mechanisms and binding sites involved in the tannic acid and chromic chloride-induced binding of protein to red cells were investigated using the binding of IgA paraprotein to red cells as model systems. Inhibition studies of these model systems using amino acid homopolymers and compounds (common as red cell membrane constituents) suggest that the mechanisms involved are similar to those proposed for the conversion of hide or skin collagen to leather, as in commercial tanning. These studies also suggest that tannic acid-induced binding of IgA paraprotein to red cells involves the amino acid residues of L-arginine, L-lysine, L-histidine, and L-proline analogous to tanning with phenolic plant extracts. The amino acid residues of L-aspartate, L-glutamate and L-asparagine are involved in a similar manner in chronic chloride-induced binding of protein to red cells.

  14. Long chain fatty acids alter the interactive binding of ligands to the two principal drug binding sites of human serum albumin.

    Directory of Open Access Journals (Sweden)

    Keishi Yamasaki

    Full Text Available A wide variety of drugs bind to human serum albumin (HSA at its two principal sites, namely site I and site II. A number of reports indicate that drug binding to these two binding sites are not completely independent, and that interactions between ligands of these two discrete sites can play a role. In this study, the effect of the binding of long-chain fatty acids on the interactive binding between dansyl-L-asparagine (DNSA; site I ligand and ibuprofen (site II ligand at pH6.5 was examined. Binding experiments showed that the binding of sodium oleate (Ole to HSA induces conformational changes in the molecule, which, in turn, changes the individual binding of DNSA and ibuprofen, as well as the mode of interaction between these two ligands from a 'competitive-like' allosteric interaction in the case of the defatted HSA conformer to a 'nearly independent' binding in the case of non-defatted HSA conformer. Circular dichroism measurements indicated that ibuprofen and Ole are likely to modify the spatial orientation of DNSA at its binding site. Docking simulations suggest that the long-distance electric repulsion between DNSA and ibuprofen on defatted HSA contributes to a 'competitive-like' allosteric interaction, whereas extending the distance between ligands and/or increasing the flexibility or size of the DNSA binding site in fatted HSA evokes a change in the interaction mode to 'nearly independent' binding. The present findings provide further insights into the structural dynamics of HSA upon the binding of fatty acids, and its effects on drug binding and drug-drug interactions that occur on HSA.

  15. Signaling-sensitive amino acids surround the allosteric ligand binding site of the thyrotropin receptor.

    Science.gov (United States)

    Kleinau, Gunnar; Haas, Ann-Karin; Neumann, Susanne; Worth, Catherine L; Hoyer, Inna; Furkert, Jens; Rutz, Claudia; Gershengorn, Marvin C; Schülein, Ralf; Krause, Gerd

    2010-07-01

    The thyrotropin receptor [thyroid-stimulating hormone receptor (TSHR)], a G-protein-coupled receptor (GPCR), is endogenously activated by thyrotropin, which binds to the extracellular region of the receptor. We previously identified a low-molecular-weight (LMW) agonist of the TSHR and predicted its allosteric binding pocket within the receptor's transmembrane domain. Because binding of the LMW agonist probably disrupts interactions or leads to formation of new interactions among amino acid residues surrounding the pocket, we tested whether mutation of residues at these positions would lead to constitutive signaling activity. Guided by molecular modeling, we performed site-directed mutagenesis of 24 amino acids in this spatial region, followed by functional characterization of the mutant receptors in terms of expression and signaling, measured as cAMP accumulation. We found that mutations V421I, Y466A, T501A, L587V, M637C, M637W, S641A, Y643F, L645V, and Y667A located in several helices exhibit constitutive activity. Of note is mutation M637W at position 6.48 in transmembrane helix 6, which has a significant effect on the interaction of the receptor with the LMW agonist. In summary, we found that a high proportion of residues in several helices surrounding the allosteric binding site of LMW ligands in the TSHR when mutated lead to constitutively active receptors. Our findings of signaling-sensitive residues in this region of the transmembrane bundle may be of general importance as this domain appears to be evolutionarily retained among GPCRs.

  16. Food deprivation modulates gamma-aminobutyric acid receptors and peripheral benzodiazepine binding sites in rats.

    Science.gov (United States)

    Weizman, A; Bidder, M; Fares, F; Gavish, M

    1990-12-03

    The effect of 5 days of food deprivation followed by 5 days of refeeding on gamma-aminobutyric acid (GABA) receptors, central benzodiazepine receptors (CBR), and peripheral benzodiazepine binding sites (PBzS) was studied in female Sprague-Dawley rats. Starvation induced a decrease in the density of PBzS in peripheral organs: adrenal (35%; P less than 0.001), kidney (33%; P less than 0.01), and heart (34%; P less than 0.001). Restoration of [3H]PK 11195 binding to normal values was observed in all three organs after 5 days of refeeding. The density of PBzS in the ovary, pituitary, and hypothalamus was not affected by starvation. Food deprivation resulted in a 35% decrease in cerebellar GABA receptors (P less than 0.01), while CBR in the hypothalamus and cerebral cortex remained unaltered. The changes in PBzS observed in the heart and kidney may be related to the long-term metabolic stress associated with starvation and to the functional changes occurring in these organs. The down-regulation of the adrenal PBzS is attributable to the suppressive effect of hypercortisolemia on pituitary ACTH release. The reduction in cerebellar GABA receptors may be an adaptive response to food deprivation stress and may be relevant to the proaggressive effect of hunger.

  17. Defining proximity relationships in the tertiary structure of the dopamine transporter. Identification of a conserved glutamic acid as a third coordinate in the endogenous Zn(2+)-binding site

    DEFF Research Database (Denmark)

    Løland, Claus Juul; Norregaard, L; Gether, U

    1999-01-01

    , high affinity Zn(2+)-binding site. To achieve further insight into the tertiary organization of hDAT, we set out to identify additional residues involved in Zn(2+) binding and subsequently to engineer artificial Zn(2+)-binding sites. Ten aspartic acids and glutamic acids, predicted...

  18. Biogenic and Synthetic Peptides with Oppositely Charged Amino Acids as Binding Sites for Mineralization.

    Science.gov (United States)

    Lemloh, Marie-Louise; Altintoprak, Klara; Wege, Christina; Weiss, Ingrid M; Rothenstein, Dirk

    2017-01-28

    Proteins regulate diverse biological processes by the specific interaction with, e.g., nucleic acids, proteins and inorganic molecules. The generation of inorganic hybrid materials, such as shell formation in mollusks, is a protein-controlled mineralization process. Moreover, inorganic-binding peptides are attractive for the bioinspired mineralization of non-natural inorganic functional materials for technical applications. However, it is still challenging to identify mineral-binding peptide motifs from biological systems as well as for technical systems. Here, three complementary approaches were combined to analyze protein motifs consisting of alternating positively and negatively charged amino acids: (i) the screening of natural biomineralization proteins; (ii) the selection of inorganic-binding peptides derived from phage display; and (iii) the mineralization of tobacco mosaic virus (TMV)-based templates. A respective peptide motif displayed on the TMV surface had a major impact on the SiO₂ mineralization. In addition, similar motifs were found in zinc oxide- and zirconia-binding peptides indicating a general binding feature. The comparative analysis presented here raises new questions regarding whether or not there is a common design principle based on acidic and basic amino acids for peptides interacting with minerals.

  19. Iodine 125-lysergic acid diethylamide binds to a novel serotonergic site on rat choroid plexus epithelial cells

    International Nuclear Information System (INIS)

    Yagaloff, K.A.; Hartig, P.R.

    1985-01-01

    125 I-Lysergic acid diethylamide ( 125 I-LSD) binds with high affinity to serotonergic sites on rat choroid plexus. These sites were localized to choroid plexus epithelial cells by use of a novel high resolution stripping film technique for light microscopic autoradiography. In membrane preparations from rat choroid plexus, the serotonergic site density was 3100 fmol/mg of protein, which is 10-fold higher than the density of any other serotonergic site in brain homogenates. The choroid plexus site exhibits a novel pharmacology that does not match the properties of 5-hydroxytryptamine-1a (5-HT1a), 5-HT1b, or 5-HT2 serotonergic sites. 125 I-LSD binding to the choroid plexus site is potently inhibited by mianserin, serotonin, and (+)-LSD. Other serotonergic, dopaminergic, and adrenergic agonists and antagonists exhibit moderate to weak affinities for this site. The rat choroid plexus 125 I-LSD binding site appears to represent a new type of serotonergic site which is located on non-neuronal cells in this tissue

  20. Subnucleosomes and their relationships to the arrangement of histone binding sites along nucleosome deoxyribonucleic acid

    International Nuclear Information System (INIS)

    Nelson, D.A.; Mencke, A.J.; Chambers, S.A.; Oosterhof, D.K.; Rill, R.L.

    1982-01-01

    Micrococcal nuclease cleaves within nucleosomes at sites spaced about 10.4 base pairs (bp) apart. Cleavages at sites equivalent to 30-35 bp from the ends of 146-bp cores cause spontaneous loss of an H2a-H2b pair associated with 30-40 bp length DNA. Cleavages at certain other sites do not affect the nucleosome integrity unless a solvent perturbant such as urea is added. Chromatin moderately digested with micrococcal nuclease, when fractionated by sedimentation or electrophoresis in the presence of 3 M urea, yielded four previously unobserved subnucleosomes with the following histone/DNA compositions: (H3) 2 (H4) 2 (H2a)(H2b)/95-115 bp; (H3)(H4)/70-80 bp DNA; (H2a)(H2b)/50-60 bp DNA; and (H1)/60-70 bp DNA. All but the latter subnucleosome were also obtained upon DNase I digestion of purified nucleosome cores labeled on the 5' ends with 32 P. Only subnucleosomes that retained H2a and H2b also retained labeled ends. These results show that H2a and H2b are paired on the terminal 30-40 bp of core DNA, as suggested from analyses of histone-DNA cross-link products by Mirzabekov and coworkers. Considerations of the orgins and compositions of subnucleosomes and of cross-linking data suggest an expanded model for the locations of histone binding sites along nucleosome core DNA. The principal features of this model are (i) strong electrostatic binding sites of H2a and H2b occur at positions approximately 20-30 bp from the core ends, (ii) strong electrostatic binding sites of H3 and H4 occur primarily on the central 40 bp of core DNA, (iii) strong nonelectrostatic, urea-sensitive binding sites of H3 and H4 occur at positions approximately 30-50 bp from the core ends, and (iv) urea-sensitive binding sites of H2a or H2b may occur on the terminal 10-20 bp of core DNA

  1. Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes.

    Science.gov (United States)

    Olsen, Richard W

    2015-01-01

    GABAA receptors (GABA(A)Rs) mediate rapid inhibitory transmission in the brain. GABA(A)Rs are ligand-gated chloride ion channel proteins and exist in about a dozen or more heteropentameric subtypes exhibiting variable age and brain regional localization and thus participation in differing brain functions and diseases. GABA(A)Rs are also subject to modulation by several chemotypes of allosteric ligands that help define structure and function, including subtype definition. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABA(A)Rs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Two classes of pharmacologically important allosteric modulatory ligand binding sites reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site and the high-affinity, relevant to intoxication, ethanol site. The benzodiazepine site is specific for certain GABA(A)R subtypes, mainly synaptic, while the ethanol site is found at a modified benzodiazepine site on different, extrasynaptic, subtypes. In the transmembrane domain are allosteric modulatory ligand sites for diverse chemotypes of general anesthetics: the volatile and intravenous agents, barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are endogenous positive allosteric modulators. X-ray crystal structures of prokaryotic and invertebrate pentameric ligand-gated ion channels, and the mammalian GABA(A)R protein, allow homology modeling of GABA(A)R subtypes with the various ligand sites located to suggest the structure and function of these proteins and their pharmacological modulation. © 2015 Elsevier Inc. All rights reserved.

  2. Dephosphorylation of microtubule-binding sites at the neurofilament-H tail domain by alkaline, acid, and protein phosphatases.

    Science.gov (United States)

    Hisanaga, S; Yasugawa, S; Yamakawa, T; Miyamoto, E; Ikebe, M; Uchiyama, M; Kishimoto, T

    1993-06-01

    The dephosphorylation-induced interaction of neurofilaments (NFs) with microtubules (MTs) was investigated by using several phosphatases. Escherichia coli alkaline and wheat germ acid phosphatases increased the electrophoretic mobility of NF-H and NF-M by dephosphorylation, and induced the binding of NF-H to MTs. The binding of NFs to MTs was observed only after the electrophoretic mobility of NF-H approached the exhaustively dephosphorylated level when alkaline phosphatase was used. The number of phosphate remaining when NF-H began to bind to MTs was estimated by measuring phosphate bound to NF-H. NF-H did not bind to MTs even when about 40 phosphates from the total of 51 had been removed by alkaline phosphatase. The removal of 6 further phosphates finally resulted in the association of NF-H with MTs. A similar finding, that the restricted phosphorylation sites in the NF-H tail domain, but not the total amount of phosphates, were important for binding to MTs, was also obtained with acid phosphatases. In contrast to alkaline and acid phosphatases, four classes of protein phosphatases (protein phosphatases 1, 2A, 2B, and 2C) were ineffective for shifting the electrophoretic mobility of NF proteins and for inducing the association of NFs to MTs.

  3. A single acidic residue can guide binding site selection but does not govern QacR cationic-drug affinity.

    Directory of Open Access Journals (Sweden)

    Kate M Peters

    Full Text Available Structures of the multidrug-binding repressor protein QacR with monovalent and bivalent cationic drugs revealed that the carboxylate side-chains of E90 and E120 were proximal to the positively charged nitrogens of the ligands ethidium, malachite green and rhodamine 6G, and therefore may contribute to drug neutralization and binding affinity. Here, we report structural, biochemical and in vivo effects of substituting these glutamate residues. Unexpectedly, substitutions had little impact on ligand affinity or in vivo induction capabilities. Structures of QacR(E90Q and QacR(E120Q with ethidium or malachite green took similar global conformations that differed significantly from all previously described QacR-drug complexes but still prohibited binding to cognate DNA. Strikingly, the QacR(E90Q-rhodamine 6G complex revealed two mutually exclusive rhodamine 6G binding sites. Despite multiple structural changes, all drug binding was essentially isoenergetic. Thus, these data strongly suggest that rather than contributing significantly to ligand binding affinity, the role of acidic residues lining the QacR multidrug-binding pocket is primarily to attract and guide cationic drugs to the "best available" positions within the pocket that elicit QacR induction.

  4. Pharmacology of morphine and morphine-3-glucuronide at opioid, excitatory amino acid, GABA and glycine binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, S.E.; Smith, M.T. (Department of Pharmacy, The University of Queensland (Australia)); Dood, P.R. (Clinical Research Centre, Royal Brisbane Hospital Foundation, Brisbane (Australia))

    1994-07-01

    Morphine in high doses and its major metabolite, morphine-3-glucuronide, cause CNS excitation following intrathecal and intracerebroventricular administration by an unknown mechanism. This study investigated whether morphine and morphine-3-glucuronide interact at major excitatory (glutamate), major inhibitory (GABA or glycine), or opioid binding sites. Homogenate binding assays were performed using specific radioligands. At opioid receptors, morphine-3-glucuronide and morphine caused an equipotent sodium shift, consistent with morphine-3-glucuronide behaving as an agonist. This suggests that morphine-3-glucuronide-mediated excitation is not caused by an interaction at opioid receptors. Morphine-3-glucuronide and morphine caused a weak inhibition of the binding of [sup 3]H-MK801 (non-competitive antagonist) and [sup 125]I-ifenprodil (polyamine site antagonist), but at unphysiologically high concentrations. This suggests that CNS excitation would not result from an interaction of morphine-3-glucuronide and high-dose morphine with these sites on the NMDA receptor. Morphine-3-glucuronide and morphine inhibited the binding of [sup 3]H-muscimol (GABA receptor agonist), [sup 3]H-diazepam and [sup 3]H-flunitraxepam (benzodiazepine agonists) binding very weakly, suggesting the excitatory effects of morphine-3-glucuronide and high-dose morphine are not elicited through GABA[sub A] receptors. Morphine-3-glucuronide and high-dose morphine did not prevent re-uptake of glutamate into presynaptic nerve terminals. In addition, morphine-3-glucuronide and morphine did not inhibit the binding of [sup 3]H-strychnine (glycine receptor antagonist) to synaptic membranes prepared from bovine spinal cord. It is concluded that excitation caused by high-dose morphine and morphine-3-glucuronide is not mediated by an interaction with postsynaptic amino acid receptors. (au) (30 refs.).

  5. Binding site of ribosomal proteins on prokaryotic 5S ribonucleic acids: a study with ribonucleases

    DEFF Research Database (Denmark)

    Douthwaite, S; Christensen, A; Garrett, R A

    1982-01-01

    The binding sites of ribosomal proteins L18 and L25 on 5S RNA from Escherichia coli were probed with ribonucleases A, T1, and T2 and a double helix specific cobra venom endonuclease. The results for the protein-RNA complexes, which were compared with those for the free RNA [Douthwaite, S...... stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution....... stearothermophilus 5S RNA, which may have been due to a third ribosomal protein L5....

  6. Fatty Acid-Mediated Inhibition of Metal Binding to the Multi-Metal Site on Serum Albumin: Implications for Cardiovascular Disease.

    Science.gov (United States)

    Blindauer, Claudia A; Khazaipoul, Siavash; Yu, Ruitao; Stewart, Alan J

    2016-01-01

    Human serum albumin (HSA) is the major protein in blood plasma and is responsible for circulatory transport of a range of small molecules including fatty acids, metal ions and drugs. We previously identified the major plasma Zn2+ transport site on HSA and revealed that fatty-acid binding (at a distinct site called the FA2 site) and Zn2+ binding are interdependent via an allosteric mechanism. Since binding affinities of long-chain fatty acids exceed those of plasma Zn2+, this means that under certain circumstances the binding of fatty acid molecules to HSA is likely to diminish HSA Zn2+-binding, and hence affects the control of circulatory and cellular Zn2+ dynamics. This relationship between circulatory fatty acid and Zn2+ dynamics is likely to have important physiological and pathological implications, especially since it has been recognised that Zn2+ acts as a signalling agent in many cell types. Fatty acid levels in the blood are dynamic, but most importantly, chronic elevation of plasma fatty acid levels is associated with some metabolic disorders and disease states - including myocardial infarction and other cardiovascular diseases. In this article, we briefly review the metal-binding properties of albumin and highlight the importance of their interplay with fatty acid binding. We also consider the impact of this dynamic link upon levels and speciation of plasma Zn2+, its effect upon cellular Zn2+ homeostasis and its relevance to cardiovascular and circulatory processes in health and disease.

  7. Design, Synthesis, and in Vitro Pharmacology of New Radiolabeled γ-Hydroxybutyric Acid Analogues Including Photolabile Analogues with Irreversible Binding to the High-Affinity γ-Hydroxybutyric Acid Binding Sites

    DEFF Research Database (Denmark)

    Sabbatini, Paola; Wellendorph, Petrine; Høg, Signe

    2010-01-01

    γ-Hydroxybutyric acid (GHB) is a psychotropic compound endogenous to the brain. Despite its potential physiological significance, the complete molecular mechanisms of action remain unexplained. To facilitate the isolation and identification of the high-affinity GHB binding site, we herein report ...

  8. TmiRUSite and TmiROSite scripts: searching for mRNA fragments with miRNA binding sites with encoded amino acid residues.

    Science.gov (United States)

    Berillo, Olga; Régnier, Mireille; Ivashchenko, Anatoly

    2014-01-01

    microRNAs are small RNA molecules that inhibit the translation of target genes. microRNA binding sites are located in the untranslated regions as well as in the coding domains. We describe TmiRUSite and TmiROSite scripts developed using python as tools for the extraction of nucleotide sequences for miRNA binding sites with their encoded amino acid residue sequences. The scripts allow for retrieving a set of additional sequences at left and at right from the binding site. The scripts presents all received data in table formats that are easy to analyse further. The predicted data finds utility in molecular and evolutionary biology studies. They find use in studying miRNA binding sites in animals and plants. TmiRUSite and TmiROSite scripts are available for free from authors upon request and at https: //sites.google.com/site/malaheenee/downloads for download.

  9. TmiRUSite and TmiROSite scripts: searching for mRNA fragments with miRNA binding sites with encoded amino acid residues

    OpenAIRE

    Berillo, Olga; Régnier, Mireille; Ivashchenko, Anatoly

    2014-01-01

    microRNAs are small RNA molecules that inhibit the translation of target genes. microRNA binding sites are located in the untranslated regions as well as in the coding domains. We describe TmiRUSite and TmiROSite scripts developed using python as tools for the extraction of nucleotide sequences for miRNA binding sites with their encoded amino acid residue sequences. The scripts allow for retrieving a set of additional sequences at left and at right from the binding site. The scripts presents ...

  10. Mapping Substance P Binding Sites on the Neurokinin-1 Receptor Using Genetic Incorporation of a Photoreactive Amino Acid

    DEFF Research Database (Denmark)

    Valentin-Hansen, Louise; Park, Minyoung; Huber, Thomas

    2014-01-01

    that the binding site for SP includes multiple domains in the N-terminal (Nt) segment and the second extracellular loop (ECLII) of NK1. To map precisely the NK1 residues that interact with SP, we applied a novel receptor-based targeted photocross-linking approach. We used amber codon suppression to introduce...... the photoreactive unnatural amino acid p-benzoyl-l-phenylalanine (BzF) at 11 selected individual positions in the Nt tail (residues 11-21) and 23 positions in the ECLII (residues 170(C-10)-193(C+13)) of NK1. The 34 NK1 variants were expressed in mammalian HEK293 cells and retained the ability to interact...

  11. Radiosynthesis and Evaluation of [(11)C]3-Hydroxycyclopent-1-enecarboxylic Acid as Potential PET Ligand for the High-Affinity γ-Hydroxybutyric Acid Binding Sites

    DEFF Research Database (Denmark)

    Jensen, Claus H; Hansen, Hanne D; Bay, Tina

    2017-01-01

    understanding of this population of binding sites. With its high specific affinity and monocarboxylate transporter (MCT1) mediated transport across the blood-brain barrier in pharmacological doses, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) seems like a suitable PET radiotracer candidate. Here, we report...... autoradiography on sections of pig brain was performed using [(3)H]HOCPCA. In vivo evaluation of [(11)C]HOCPCA showed no brain uptake, possibly due to a limited uptake of HOCPCA by the MCT1 transporter at tracer doses of [(11)C]HOCPCA....

  12. Phenylacetic acids and the structurally related non-steroidal anti-inflammatory drug diclofenac bind to specific gamma-hydroxybutyric acid sites in rat brain

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Høg, Signe; Skonberg, Christian

    2009-01-01

    with a twofold higher affinity than GHB. Measuring the affinities of structurally related NSAIDs for the [(3)H]NCS-382 site identified diclofenac, a clinically relevant NSAID (Voltaren, Diclon) of the phenylacetic acid (PAA) type, as a GHB ligand (K(i) value of 5.1 microM). Other non-NSAID PAAs also exhibited...... affinities similar to GHB. Our data raise the interesting possibility that the widely used over-the-counter drug compound, diclofenac, might affect GHB binding at relevant clinical dosages. Furthermore, the identification of PAAs as GHB ligands supplies new information about the structural preferences...

  13. Ion binding by humic and fulvic acids: A computational procedure based on functional site heterogeneity and the physical chemistry of polyelectrolyte solutions

    International Nuclear Information System (INIS)

    Marinsky, J.A.; Reddy, M.M.; Ephraim, J.; Mathuthu, A.

    1988-04-01

    Ion binding equilibria for humic and fulvic acids are examined from the point of view of functional site heterogeneity and the physical chemistry of polyelectrolyte solutions. A detailed explanation of the potentiometric properties of synthetic polyelectrolytes and ion-exchange gels is presented first to provide the basis for a parallel consideration of the potentiometric properties exhibited by humic and fulvic acids. The treatment is then extended to account for functional site heterogeneity. Sample results are presented for analysis of the ion-binding reactions of a standard soil fulvic acid (Armadale Horizons Bh) with this approach to test its capability for anticipation of metal ion removal from solution. The ultimate refined model is shown to be adaptable, after appropriate consideration of the heterogeneity and polyelectrolyte factors, to programming already available for the consideration of ion binding by inorganics in natural waters. (orig.)

  14. Aspartic acid 397 in subunit B of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae forms part of a sodium-binding site, is involved in cation selectivity, and affects cation-binding site cooperativity.

    Science.gov (United States)

    Shea, Michael E; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca

    2013-10-25

    The Na(+)-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC).

  15. Effects of neonatal. gamma. -ray irradiation on rat hippocampus: Pt. 2; Development of excitatory amino acid binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Dessi, F; Represa, A; Ben-Ari, Y [Institut National de la Sante et de la Recherche Medicale (INSERM), 75 - Paris (France)

    1991-01-01

    In the rat, neonatal irradiation produces a destruction of denate granule cells and prevents the development of the mossy fibre-CA3 pyramidal cell synapse. The developmental increase of high affinity kainate binding sites in the stratum lucidum was reduced on the irradiated side as compared with the control side. This suggests that a proportion of high affinity kainate binding sites is associated with mossy fibres. In contrast, the development profile of N-methyl-D-aspartate binding sites, which are associated with associational and commissural synapses in CA3, was not affected by irradiation. The role that afferent fibres may play in the development of pyramidal cells is discussed in connection with the modulatory effects of glutamate receptors on the development of neurons. (author).

  16. ETMB-RBF: discrimination of metal-binding sites in electron transporters based on RBF networks with PSSM profiles and significant amino acid pairs.

    Science.gov (United States)

    Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng

    2013-01-01

    Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation-reduction reactions. In these oxidation-reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins.

  17. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein II addresses the relationship between structural integrity and ligand binding

    International Nuclear Information System (INIS)

    Vaezeslami, Soheila; Jia, Xiaofei; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H.

    2008-01-01

    A water network stabilizes the structure of cellular retionic acid binding protein II. The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending from Arg111 deep inside the cavity to the α2 helix at its entrance. This chain of interactions acts as a ‘pillar’ that maintains the integrity of the protein. The disruption of the water network upon loss of Arg111 leads to decreased structural integrity of the protein. A water-mediated network can be re-established by introducing the hydrophilic Glu121 inside the cavity, which results in a rigid protein with the α2 helix adopting an altered conformation compared with wild-type CRABPII

  18. Characterization of the N-Acetyl-5-neuraminic Acid-binding Site of the Extracytoplasmic Solute Receptor (SiaP) of Nontypeable Haemophilus influenzae Strain 2019

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jason W.; Coussens, Nathan P.; Allen, Simon; Houtman, Jon C.D.; Turner, Keith H.; Zaleski, Anthony; Ramaswamy, S.; Gibson, Bradford W.; Apicella, Michael A. (Iowa); (Buck Inst.)

    2012-11-14

    Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. In this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4 {angstrom} resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.

  19. Effects of mutagenesis of aspartic acid residues in the putative phosphoribosyl diphosphate binding site of Escherichia coli phosphoribosyl diphosphate synthetase on metal ion specificity and ribose-5-phosphate binding

    DEFF Research Database (Denmark)

    Willemoës, Martin; Nilsson, Dan; Hove-Jensen, Bjarne

    1996-01-01

    The three conserved aspartic acid residues of the 5-phospho-d-ribosyl a-1-diphosphate binding site (213-GRDCVLVDDMIDTGGT-228) of Escherichia coli phosphoribosyl diphosphate synthetase were studied by analysis of the mutant enzymes D220E, D220F, D221A, D224A, and D224S. The mutant enzymes showed...... enzymes were dependent on the metal ion present, suggesting a function of the investigated aspartic acid residues both in the binding of ribose 5-phosphate, possibly via a divalent metal ion, and in the interaction with a divalent metal ion during catalysis....

  20. Specific labeling of the thyroxine binding site in thyroxine-binding globulin: determination of the amino acid composition of a labeled peptide fragment isolated from a proteolytic digest of the derivatized protein.

    Science.gov (United States)

    Tabachnick, M; Perret, V

    1987-08-01

    [125I] Thyroxine has been covalently bound to the thyroxine binding site in thyroxine-binding globulin by reaction with the bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. An average of 0.47 mol of [125I] thyroxine was incorporated per mol protein; nonspecific binding amounted to 8%. A labeled peptide fragment was isolated from a proteolytic digest of the derivatized protein by HPLC and its amino acid composition was determined. Comparison with the amino acid sequence of thyroxine-binding globulin indicated partial correspondence of the labeled peptide with two possible regions in the protein. These regions also coincide with part of the barrel structure present in the closely homologous protein, alpha 1-antitrypsin.

  1. Structure of a highly acidic β-lactamase from the moderate halophile Chromohalobacter sp. 560 and the discovery of a Cs{sup +}-selective binding site

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Shigeki; Yonezawa, Yasushi; Okazaki, Nobuo; Matsumoto, Fumiko; Shibazaki, Chie; Shimizu, Rumi; Yamada, Mitsugu; Adachi, Motoyasu; Tamada, Taro [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195 (Japan); Kawamoto, Masahide [Kyushu Synchrotron Light Research Center, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan); Tokunaga, Hiroko; Ishibashi, Matsujiro [Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Blaber, Michael [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195 (Japan); Florida State University, 1115 West Call Street, Tallahassee, FL 32306-4300 (United States); Tokunaga, Masao [Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Kuroki, Ryota, E-mail: kuroki.ryota@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195 (Japan)

    2015-03-01

    The tertiary structure of a β-lactamase derived from the halobacterium Chromohalobacter sp. 560 (HaBLA) was determined by X-ray crystallography. Three unique Sr{sup 2+}-binding sites and one Cs{sup +}-binding site were discovered in the HaBLA molecule. Environmentally friendly absorbents are needed for Sr{sup 2+} and Cs{sup +}, as the removal of the radioactive Sr{sup 2+} and Cs{sup +} that has leaked from the Fukushima Nuclear Power Plant is one of the most important problems in Japan. Halophilic proteins are known to have many acidic residues on their surface that can provide specific binding sites for metal ions such as Cs{sup +} or Sr{sup 2+}. The crystal structure of a halophilic β-lactamase from Chromohalobacter sp. 560 (HaBLA) was determined to resolutions of between 1.8 and 2.9 Å in space group P3{sub 1} using X-ray crystallography. Moreover, the locations of bound Sr{sup 2+} and Cs{sup +} ions were identified by anomalous X-ray diffraction. The location of one Cs{sup +}-specific binding site was identified in HaBLA even in the presence of a ninefold molar excess of Na{sup +} (90 mM Na{sup +}/10 mM Cs{sup +}). From an activity assay using isothermal titration calorimetry, the bound Sr{sup 2+} and Cs{sup +} ions do not significantly affect the enzymatic function of HaBLA. The observation of a selective and high-affinity Cs{sup +}-binding site provides important information that is useful for the design of artificial Cs{sup +}-binding sites that may be useful in the bioremediation of radioactive isotopes.

  2. Structure of a highly acidic β-lactamase from the moderate halophile Chromohalobacter sp. 560 and the discovery of a Cs+-selective binding site

    International Nuclear Information System (INIS)

    Arai, Shigeki; Yonezawa, Yasushi; Okazaki, Nobuo; Matsumoto, Fumiko; Shibazaki, Chie; Shimizu, Rumi; Yamada, Mitsugu; Adachi, Motoyasu; Tamada, Taro; Kawamoto, Masahide; Tokunaga, Hiroko; Ishibashi, Matsujiro; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota

    2015-01-01

    The tertiary structure of a β-lactamase derived from the halobacterium Chromohalobacter sp. 560 (HaBLA) was determined by X-ray crystallography. Three unique Sr 2+ -binding sites and one Cs + -binding site were discovered in the HaBLA molecule. Environmentally friendly absorbents are needed for Sr 2+ and Cs + , as the removal of the radioactive Sr 2+ and Cs + that has leaked from the Fukushima Nuclear Power Plant is one of the most important problems in Japan. Halophilic proteins are known to have many acidic residues on their surface that can provide specific binding sites for metal ions such as Cs + or Sr 2+ . The crystal structure of a halophilic β-lactamase from Chromohalobacter sp. 560 (HaBLA) was determined to resolutions of between 1.8 and 2.9 Å in space group P3 1 using X-ray crystallography. Moreover, the locations of bound Sr 2+ and Cs + ions were identified by anomalous X-ray diffraction. The location of one Cs + -specific binding site was identified in HaBLA even in the presence of a ninefold molar excess of Na + (90 mM Na + /10 mM Cs + ). From an activity assay using isothermal titration calorimetry, the bound Sr 2+ and Cs + ions do not significantly affect the enzymatic function of HaBLA. The observation of a selective and high-affinity Cs + -binding site provides important information that is useful for the design of artificial Cs + -binding sites that may be useful in the bioremediation of radioactive isotopes

  3. Extended hormone binding site of the human thyroid stimulating hormone receptor: distinctive acidic residues in the hinge region are involved in bovine thyroid stimulating hormone binding and receptor activation.

    Science.gov (United States)

    Mueller, Sandra; Kleinau, Gunnar; Jaeschke, Holger; Paschke, Ralf; Krause, Gerd

    2008-06-27

    The human thyroid stimulating hormone receptor (hTSHR) belongs to the glycoprotein hormone receptors that bind the hormones at their large extracellular domain. The extracellular hinge region of the TSHR connects the N-terminal leucine-rich repeat domain with the membrane-spanning serpentine domain. From previous studies we reasoned that apart from hormone binding at the leucine-rich repeat domain, additional multiple hormone contacts might exist at the hinge region of the TSHR by complementary charge-charge recognition. Here we investigated highly conserved charged residues in the hinge region of the TSHR by site-directed mutagenesis to identify amino acids interacting with bovine TSH (bTSH). Indeed, the residues Glu-297, Glu-303, and Asp-382 in the TSHR hinge region are essential for bTSH binding and partially for signal transduction. Side chain substitutions showed that the negative charge of Glu-297 and Asp-382 is necessary for recognition of bTSH by the hTSHR. Multiple combinations of alanine mutants of the identified positions revealed an increased negative effect on hormone binding. An assembled model suggests that the deciphered acidic residues form negatively charged patches at the hinge region resulting in an extended binding mode for bTSH on the hTSHR. Our data indicate that certain positively charged residues of bTSH might be involved in interaction with the identified negatively charged amino acids of the hTSHR hinge region. We demonstrate that the hinge region represents an extracellular intermediate connector for both hormone binding and signal transduction of the hTSHR.

  4. Various Bee Pheromones Binding Affinity, Exclusive Chemosensillar Localization, and Key Amino Acid Sites Reveal the Distinctive Characteristics of Odorant-Binding Protein 11 in the Eastern Honey Bee, Apis cerana.

    Science.gov (United States)

    Song, Xin-Mi; Zhang, Lin-Ya; Fu, Xiao-Bin; Wu, Fan; Tan, Jing; Li, Hong-Liang

    2018-01-01

    Odorant-binding proteins (OBPs) are the critical elements responsible for binding and transporting odors and pheromones in the sensitive olfactory system in insects. Honey bees are representative social insects that have complex odorants and pheromone communication systems relative to solitary insects. Here, we first cloned and characterized OBP11 ( AcerOBP11 ), from the worker bees antennae of Eastern honey bee, Apis cerana . Based on sequence and phylogenetic analysis, most sequences homologous to AcerOBP11 belong to the typical OBPs family. The transcriptional expression profiles showed that AcerOBP11 was expressed throughout the developmental stages and highly specifically expressed in adult antennae. Using immunofluorescence localization, AcerOBP11 in worker bee's antennae was only localized in the sensilla basiconica (SB) near the fringe of each segment. Fluorescence ligand-binding assay showed that AcerOBP11 protein had strong binding affinity with the tested various bee pheromones components, including the main queen mandibular pheromones (QMPs), methyl p-hydroxybenzoate (HOB), and ( E )-9-oxo-2-decanoic acid (9-ODA), alarm pheromone (n-hexanol), and worker pheromone components. AcerOBP11 also had strong binding affinity to plant volatiles, such as 4-Allylveratrole. Based on the docking and site-directed mutagenesis, two key amino acid residues (Ile97 and Ile140) were involved in the binding of AcerOBP11 to various bee pheromones. Taken together, we identified that AcerOBP11 was localized in a single type of antennal chemosensilla and had complex ligand-binding properties, which confer the dual-role with the primary characteristics of sensing various bee pheromones and secondary characteristics of sensing general odorants. This study not only prompts the theoretical basis of OBPs-mediated bee pheromones recognition of honey bee, but also extends the understanding of differences in pheromone communication between social and solitary insects.

  5. Various Bee Pheromones Binding Affinity, Exclusive Chemosensillar Localization, and Key Amino Acid Sites Reveal the Distinctive Characteristics of Odorant-Binding Protein 11 in the Eastern Honey Bee, Apis cerana

    Directory of Open Access Journals (Sweden)

    Xin-Mi Song

    2018-04-01

    Full Text Available Odorant-binding proteins (OBPs are the critical elements responsible for binding and transporting odors and pheromones in the sensitive olfactory system in insects. Honey bees are representative social insects that have complex odorants and pheromone communication systems relative to solitary insects. Here, we first cloned and characterized OBP11 (AcerOBP11, from the worker bees antennae of Eastern honey bee, Apis cerana. Based on sequence and phylogenetic analysis, most sequences homologous to AcerOBP11 belong to the typical OBPs family. The transcriptional expression profiles showed that AcerOBP11 was expressed throughout the developmental stages and highly specifically expressed in adult antennae. Using immunofluorescence localization, AcerOBP11 in worker bee's antennae was only localized in the sensilla basiconica (SB near the fringe of each segment. Fluorescence ligand-binding assay showed that AcerOBP11 protein had strong binding affinity with the tested various bee pheromones components, including the main queen mandibular pheromones (QMPs, methyl p-hydroxybenzoate (HOB, and (E-9-oxo-2-decanoic acid (9-ODA, alarm pheromone (n-hexanol, and worker pheromone components. AcerOBP11 also had strong binding affinity to plant volatiles, such as 4-Allylveratrole. Based on the docking and site-directed mutagenesis, two key amino acid residues (Ile97 and Ile140 were involved in the binding of AcerOBP11 to various bee pheromones. Taken together, we identified that AcerOBP11 was localized in a single type of antennal chemosensilla and had complex ligand-binding properties, which confer the dual-role with the primary characteristics of sensing various bee pheromones and secondary characteristics of sensing general odorants. This study not only prompts the theoretical basis of OBPs-mediated bee pheromones recognition of honey bee, but also extends the understanding of differences in pheromone communication between social and solitary insects.

  6. Conversion of the low affinity ouabain-binding site of non-gastric H,K-ATPase into a high affinity binding site by substitution of only five amino acids.

    NARCIS (Netherlands)

    Qiu, L.Y.; Swarts, H.G.P.; Tonk, E.C.; Willems, P.H.G.M.; Koenderink, J.B.; Pont, J.J.H.H.M. de

    2006-01-01

    P-type ATPases of the IIC subfamily exhibit large differences in sensitivity toward ouabain. This allows a strategy in which ouabain-insensitive members of this subfamily are used as template for mutational elucidation of the ouabain-binding site. With this strategy, we recently identified seven

  7. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    Science.gov (United States)

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.

  8. The DNA binding site specificity and antiproliferative property of ternary Pt(II) and Zn(II) complexes of phenanthroline and N,N'-ethylenediaminediacetic acid.

    Science.gov (United States)

    Nakamura, Yusuke; Taruno, Yoko; Sugimoto, Masashi; Kitamura, Yusuke; Seng, Hoi Ling; Kong, Siew Ming; Ng, Chew Hee; Chikira, Makoto

    2013-03-14

    The binding site specificity of the ternary complexes, [M(II)(phen)(edda)] (M(II) = Pt(2+) and Zn(2+); phen = 1,10-phenanthroline; edda = N,N'-ethylenediaminediacetic acid), for the self-complementary oligonucleotides (ODNs), ds(C(1)G(2)C(3)G(4)A(5)A(6)T(7)T(8)C(9)G(10)C(11)G(12))(2) (ODN1) and ds(C(1)G(2)C(3)G(4)T(5)A(6)T(7)A(8)C(9)G(10)C(11)G(12))(2) (ODN2), was studied by NMR measurements. The results indicated that [Pt(ii)(phen)(edda)] was partially intercalated between C(3)/G(10) and G(4)/C(9) base pairs of ODN1 and ODN2 in the major grooves, whereas [Zn(II)(phen)(edda)] was bound specifically to the TATA region of ODN2 in the minor groove and to the terminal G(2)/C(11) base pair of ODN1 in the major groove. The preference for the TATA sequence over the AATT sequence in the binding of [Zn(phen)(edda)] was attributed to the wider minor groove width of the TATA sequence. The bindings of the complexes to ct-DNA were also studied by UV, CD, and fluorescence spectroscopy. Additionally, the antiproliferative property of [Pt(II)(phen)(edda)] towards MCF7 breast cancer cells and normal MCF10-A cells was compared with that of [Zn(II)(phen)(edda)].

  9. Adaptive evolution of transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Berg Johannes

    2004-10-01

    Full Text Available Abstract Background The regulation of a gene depends on the binding of transcription factors to specific sites located in the regulatory region of the gene. The generation of these binding sites and of cooperativity between them are essential building blocks in the evolution of complex regulatory networks. We study a theoretical model for the sequence evolution of binding sites by point mutations. The approach is based on biophysical models for the binding of transcription factors to DNA. Hence we derive empirically grounded fitness landscapes, which enter a population genetics model including mutations, genetic drift, and selection. Results We show that the selection for factor binding generically leads to specific correlations between nucleotide frequencies at different positions of a binding site. We demonstrate the possibility of rapid adaptive evolution generating a new binding site for a given transcription factor by point mutations. The evolutionary time required is estimated in terms of the neutral (background mutation rate, the selection coefficient, and the effective population size. Conclusions The efficiency of binding site formation is seen to depend on two joint conditions: the binding site motif must be short enough and the promoter region must be long enough. These constraints on promoter architecture are indeed seen in eukaryotic systems. Furthermore, we analyse the adaptive evolution of genetic switches and of signal integration through binding cooperativity between different sites. Experimental tests of this picture involving the statistics of polymorphisms and phylogenies of sites are discussed.

  10. Thioredoxin binding site of phosphoribulokinase overlaps the catalytic site

    International Nuclear Information System (INIS)

    Porter, M.A.; Hartman, F.C.

    1986-01-01

    The ATP-regulatory binding site of phosphoribulokinase was studied using bromoacetylethanolamine phosphate (BrAcNHEtOP). BrAcNHEtOP binds to the active-regulatory binding site of the protein. Following trypsin degradation of the labeled protein, fragments were separated by HPLC and sequenced. (DT)

  11. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site.

    Science.gov (United States)

    Hardwicke, Mary Ann; Rendina, Alan R; Williams, Shawn P; Moore, Michael L; Wang, Liping; Krueger, Julie A; Plant, Ramona N; Totoritis, Rachel D; Zhang, Guofeng; Briand, Jacques; Burkhart, William A; Brown, Kristin K; Parrish, Cynthia A

    2014-09-01

    Human fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer. We describe here the identification of GSK2194069, a potent and specific inhibitor of the β-ketoacyl reductase (KR) activity of hFAS; the characterization of its enzymatic and cellular mechanism of action; and its inhibition of human tumor cell growth. We also present the design of a new protein construct suitable for crystallography, which resulted in what is to our knowledge the first co-crystal structure of the human KR domain and includes a bound inhibitor.

  12. Binding of 3,4,5,6-Tetrahydroxyazepanes to the Acid-[beta]-glucosidase Active Site: Implications for Pharmacological Chaperone Design for Gaucher Disease

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, Susan D.; Tan, Yun Lei; Grimster, Neil P.; Yu, Zhanqian; Powers, Evan T.; Kelly, Jeffery W.; Lieberman, Raquel L. (Scripps); (GIT)

    2013-03-07

    Pharmacologic chaperoning is a therapeutic strategy being developed to improve the cellular folding and trafficking defects associated with Gaucher disease, a lysosomal storage disorder caused by point mutations in the gene encoding acid-{beta}-glucosidase (GCase). In this approach, small molecules bind to and stabilize mutant folded or nearly folded GCase in the endoplasmic reticulum (ER), increasing the concentration of folded, functional GCase trafficked to the lysosome where the mutant enzyme can hydrolyze the accumulated substrate. To date, the pharmacologic chaperone (PC) candidates that have been investigated largely have been active site-directed inhibitors of GCase, usually containing five- or six-membered rings, such as modified azasugars. Here we show that a seven-membered, nitrogen-containing heterocycle (3,4,5,6-tetrahydroxyazepane) scaffold is also promising for generating PCs for GCase. Crystal structures reveal that the core azepane stabilizes GCase in a variation of its proposed active conformation, whereas binding of an analogue with an N-linked hydroxyethyl tail stabilizes GCase in a conformation in which the active site is covered, also utilizing a loop conformation not seen previously. Although both compounds preferentially stabilize GCase to thermal denaturation at pH 7.4, reflective of the pH in the ER, only the core azepane, which is a mid-micromolar competitive inhibitor, elicits a modest increase in enzyme activity for the neuronopathic G202R and the non-neuronopathic N370S mutant GCase in an intact cell assay. Our results emphasize the importance of the conformational variability of the GCase active site in the design of competitive inhibitors as PCs for Gaucher disease.

  13. Piracetam Defines a New Binding Site for Allosteric Modulators of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors§

    Science.gov (United States)

    Ahmed, Ahmed H.; Oswald, Robert E.

    2010-01-01

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to both GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators. PMID:20163115

  14. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.

    Science.gov (United States)

    Ahmed, Ahmed H; Oswald, Robert E

    2010-03-11

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.

  15. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings.

    OpenAIRE

    Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R

    1985-01-01

    We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere ap...

  16. Bitopic Ligands and Metastable Binding Sites

    DEFF Research Database (Denmark)

    Fronik, Philipp; Gaiser, Birgit I; Sejer Pedersen, Daniel

    2017-01-01

    of orthosteric binding sites. Bitopic ligands have been employed to address the selectivity problem by combining (linking) an orthosteric ligand with an allosteric modulator, theoretically leading to high-affinity subtype selective ligands. However, it remains a challenge to identify suitable allosteric binding...... that have been reported to date, this type of bitopic ligands would be composed of two identical pharmacophores. Herein, we outline the concept of bitopic ligands, review metastable binding sites, and discuss their potential as a new source of allosteric binding sites....

  17. [3]tetrahydrotrazodone binding. Association with serotonin binding sites

    International Nuclear Information System (INIS)

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-01-01

    High (17 nM) and low (603 nM) affinity binding sites for [ 3 ]tetrahydrotrazodone ([ 3 ] THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of [ 3 ]THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, [ 3 ] THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that [ 3 ]THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors

  18. LIBRA: LIgand Binding site Recognition Application.

    Science.gov (United States)

    Hung, Le Viet; Caprari, Silvia; Bizai, Massimiliano; Toti, Daniele; Polticelli, Fabio

    2015-12-15

    In recent years, structural genomics and ab initio molecular modeling activities are leading to the availability of a large number of structural models of proteins whose biochemical function is not known. The aim of this study was the development of a novel software tool that, given a protein's structural model, predicts the presence and identity of active sites and/or ligand binding sites. The algorithm implemented by ligand binding site recognition application (LIBRA) is based on a graph theory approach to find the largest subset of similar residues between an input protein and a collection of known functional sites. The algorithm makes use of two predefined databases for active sites and ligand binding sites, respectively, derived from the Catalytic Site Atlas and the Protein Data Bank. Tests indicate that LIBRA is able to identify the correct binding/active site in 90% of the cases analyzed, 90% of which feature the identified site as ranking first. As far as ligand binding site recognition is concerned, LIBRA outperforms other structure-based ligand binding sites detection tools with which it has been compared. The application, developed in Java SE 7 with a Swing GUI embedding a JMol applet, can be run on any OS equipped with a suitable Java Virtual Machine (JVM), and is available at the following URL: http://www.computationalbiology.it/software/LIBRAv1.zip. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, J.; Kuriyama, K. (Kyoto Prefectural Univ. of Medicine (Japan))

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  20. Second site escape of a T20-dependent HIV-1 variant by a single amino acid change in the CD4 binding region of the envelope glycoprotein

    Directory of Open Access Journals (Sweden)

    Berkhout Ben

    2006-11-01

    Full Text Available Abstract Background We previously described the selection of a T20-dependent human immunodeficiency virus type-1 (HIV-1 variant in a patient on T20 therapy. The fusion inhibitor T20 targets the viral envelope (Env protein by blocking a conformational switch that is critical for viral entry into the host cell. T20-dependent viral entry is the result of 2 mutations in Env (GIA-SKY, creating a protein that undergoes a premature conformational switch, and the presence of T20 prevents this premature switch and rescues viral entry. In the present study, we performed 6 independent evolution experiments with the T20-dependent HIV-1 variant in the absence of T20, with the aim to identify second site compensatory changes, which may provide new mechanistic insights into Env function and the T20-dependence mechanism. Results Escape variants with improved replication capacity appeared within 42 days in 5 evolution cultures. Strikingly, 3 cultures revealed the same single amino acid change in the CD4 binding region of Env (glycine at position 431 substituted for arginine: G431R. This mutation was sufficient to abolish the T20-dependence phenotype and restore viral replication in the absence of T20. The GIA-SKY-G431R escape variant produces an Env protein that exhibits reduced syncytia formation and reduced cell-cell fusion activity. The escape variant was more sensitive to an antibody acting on an early gp41 intermediate, suggesting that the G431R mutation helps preserve a pre-fusion Env conformation, similar to T20 action. The escape variant was also less sensitive to soluble CD4, suggesting a reduced CD4 receptor affinity. Conclusion The forced evolution experiments indicate that the premature conformational switch of the T20-dependent HIV-1 Env variant (GIA-SKY can be corrected by a second site mutation in Env (GIA-SKY-G431R that affects the interaction with the CD4 receptor.

  1. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    Science.gov (United States)

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  2. Prediction of FAD binding sites in electron transport proteins according to efficient radial basis function networks and significant amino acid pairs.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Ou, Yu-Yen

    2016-07-30

    Cellular respiration is a catabolic pathway for producing adenosine triphosphate (ATP) and is the most efficient process through which cells harvest energy from consumed food. When cells undergo cellular respiration, they require a pathway to keep and transfer electrons (i.e., the electron transport chain). Due to oxidation-reduction reactions, the electron transport chain produces a transmembrane proton electrochemical gradient. In case protons flow back through this membrane, this mechanical energy is converted into chemical energy by ATP synthase. The convert process is involved in producing ATP which provides energy in a lot of cellular processes. In the electron transport chain process, flavin adenine dinucleotide (FAD) is one of the most vital molecules for carrying and transferring electrons. Therefore, predicting FAD binding sites in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. We used an independent data set to evaluate the performance of the proposed method, which had an accuracy of 69.84 %. We compared the performance of the proposed method in analyzing two newly discovered electron transport protein sequences with that of the general FAD binding predictor presented by Mishra and Raghava and determined that the accuracy of the proposed method improved by 9-45 % and its Matthew's correlation coefficient was 0.14-0.5. Furthermore, the proposed method enabled reducing the number of false positives significantly and can provide useful information for biologists. We developed a method that is based on PSSM profiles and SAAPs for identifying FAD binding sites in newly discovered electron transport protein sequences. This approach achieved a significant improvement after we added SAAPs to PSSM features to analyze FAD binding proteins in the electron transport chain. The proposed method can serve as an effective tool for predicting FAD binding sites in electron

  3. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings.

    Science.gov (United States)

    Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R

    1985-09-01

    We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere apparently shifts the allosteric equilibrium toward the low affinity state, it greatly diminishes the cofactor effects by anions. The oxygen affinity of the patient's erythrocytes is substantially lowered by the presence of bezafibrate, which combines with sites different from those of 2,3-diphosphoglycerate in either hemoglobin Rahere or hemoglobin A.

  4. Impact of ursodeoxycholic acid on a CCK1R cholesterol-binding site may contribute to its positive effects in digestive function.

    Science.gov (United States)

    Desai, Aditya J; Dong, Maoqing; Harikumar, Kaleeckal G; Miller, Laurence J

    2015-09-01

    Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation. Copyright © 2015 the American Physiological Society.

  5. RBPmap: a web server for mapping binding sites of RNA-binding proteins.

    Science.gov (United States)

    Paz, Inbal; Kosti, Idit; Ares, Manuel; Cline, Melissa; Mandel-Gutfreund, Yael

    2014-07-01

    Regulation of gene expression is executed in many cases by RNA-binding proteins (RBPs) that bind to mRNAs as well as to non-coding RNAs. RBPs recognize their RNA target via specific binding sites on the RNA. Predicting the binding sites of RBPs is known to be a major challenge. We present a new webserver, RBPmap, freely accessible through the website http://rbpmap.technion.ac.il/ for accurate prediction and mapping of RBP binding sites. RBPmap has been developed specifically for mapping RBPs in human, mouse and Drosophila melanogaster genomes, though it supports other organisms too. RBPmap enables the users to select motifs from a large database of experimentally defined motifs. In addition, users can provide any motif of interest, given as either a consensus or a PSSM. The algorithm for mapping the motifs is based on a Weighted-Rank approach, which considers the clustering propensity of the binding sites and the overall tendency of regulatory regions to be conserved. In addition, RBPmap incorporates a position-specific background model, designed uniquely for different genomic regions, such as splice sites, 5' and 3' UTRs, non-coding RNA and intergenic regions. RBPmap was tested on high-throughput RNA-binding experiments and was proved to be highly accurate. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    International Nuclear Information System (INIS)

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-01-01

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme

  7. 5-(Piperidin-4-yl)-3-Hydroxypyrazole: A Novel Scaffold for Probing the Orthosteric γ-Aminobutyric Acid Type A Receptor Binding Site

    DEFF Research Database (Denmark)

    Krall, Jacob; Kongstad, Kenneth Thermann; Nielsen, Birgitte

    2014-01-01

    A series of bioisosteric N1- and N2-substituted 5-(piperidin-4-yl)-3-hydroxypyrazole analogues of the partial GABAAR agonists 4-PIOL and 4-PHP have been designed, synthesized, and characterized pharmacologically. The unsubstituted 3-hydroxypyrazole analogue of 4-PIOL (2 a; IC50∼300 μM) is a weak...... indicate that the N1-substituted analogues of 4-PIOL and 4-PHP, 2 a–k, and previously reported 3-substituted 4-PHP analogues share a common binding mode to the orthosteric binding site in the receptor. Interestingly, the core scaffold of the N2-substituted analogues of 4-PIOL and 4-PHP, 3 b...

  8. Probing binding hot spots at protein-RNA recognition sites.

    Science.gov (United States)

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Unusual binding of ursodeoxycholic acid to ileal bile acid binding protein: role in activation of FXRα[S

    Science.gov (United States)

    Fang, Changming; Filipp, Fabian V.; Smith, Jeffrey W.

    2012-01-01

    Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA. PMID:22223860

  10. Fatty Acid Binding Proteins in Prostate Cancer

    National Research Council Canada - National Science Library

    Jett, Marti

    2000-01-01

    We have shown that there is a distinct pattern of fatty acid binding protein (FAEP) expression in prostate cancer vs normal cells and that finding has be confirmed in patient samples of biopsy specimens...

  11. Micro-ribonucleic acid-binding site variants of type 2 diabetes candidate loci predispose to gestational diabetes mellitus in Chinese Han women.

    Science.gov (United States)

    Wang, Xiaojing; Li, Wei; Ma, Liangkun; Ping, Fan; Liu, Juntao; Wu, Xueyan; Mao, Jiangfeng; Wang, Xi; Nie, Min

    2018-01-20

    Emerging evidence has suggested that the genetic background of gestational diabetes mellitus (GDM) was analogous to type 2 diabetes mellitus. In contrast to type 2 diabetes mellitus, the genetic studies for GDM were limited. Accordingly, the aim of the present study was to extensively explore the influence of micro-ribonucleic acid-binding single-nucleotide polymorphisms (SNPs) in type 2 diabetes mellitus candidate loci on GDM susceptibility in Chinese. A total of 839 GDM patients and 900 controls were enrolled. Six micro-ribonucleic acid-binding SNPs were selected from 30 type 2 diabetes mellitus susceptibility loci and genotyped using TaqMan allelic discrimination assays. The minor allele of three SNPs, PAX4 rs712699 (OR 1.366, 95% confidence interval 1.021-1.828, P = 0.036), KCNB1 rs1051295 (OR 1.579, 95% confidence interval 1.172-2.128, P = 0.003) and MFN2 rs1042842 (OR 1.398, 95% confidence interval 1.050-1.862, P = 0.022) were identified to significantly confer higher a risk of GDM in the additive model. The association between rs1051295 and increased fasting plasma glucose (b = 0.006, P = 0.008), 3-h oral glucose tolerance test plasma glucose (b = 0.058, P = 0.025) and homeostatic model assessment of insulin resistance (b = 0.065, P = 0.017) was also shown. Rs1042842 was correlated with higher 3-h oral glucose tolerance test plasma glucose (b = 0.056, P = 0.028). However, no significant correlation between the other included SNPs (LPIN1 rs1050800, VPS26A rs1802295 and NLRP3 rs10802502) and GDM susceptibility were observed. The present findings showed that micro-ribonucleic acid-binding SNPs in type 2 diabetes mellitus candidate loci were also associated with GDM susceptibility, which further highlighted the similar genetic basis underlying GDM and type 2 diabetes mellitus. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  12. Phosphorus Binding Sites in Proteins: Structural Preorganization and Coordination

    DEFF Research Database (Denmark)

    Gruber, Mathias Felix; Greisen, Per Junior; Junker, Märta Caroline

    2014-01-01

    to individual structures that bind to phosphate groups; here, we investigate a total of 8307 structures obtained from the RCSB Protein Data Bank (PDB). An analysis of the binding site amino acid propensities reveals very characteristic first shell residue distributions, which are found to be influenced...... by the characteristics of the phosphorus compound and by the presence of cobound cations. The second shell, which supports the coordinating residues in the first shell, is found to consist mainly of protein backbone groups. Our results show how the second shell residue distribution is dictated mainly by the first shell...

  13. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    International Nuclear Information System (INIS)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-01-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. 14 C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell

  14. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    Energy Technology Data Exchange (ETDEWEB)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-05-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. /sup 14/C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell.

  15. MetalS2: a tool for the structural alignment of minimal functional sites in metal-binding proteins and nucleic acids.

    Science.gov (United States)

    Andreini, Claudia; Cavallaro, Gabriele; Rosato, Antonio; Valasatava, Yana

    2013-11-25

    We developed a new software tool, MetalS(2), for the structural alignment of Minimal Functional Sites (MFSs) in metal-binding biological macromolecules. MFSs are 3D templates that describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. On our example data sets, MetalS(2) unveiled structural similarities that other programs for protein structure comparison do not consistently point out and overall identified a larger number of structurally similar MFSs. MetalS(2) supports the comparison of MFSs harboring different metals and/or with different nuclearity and is available both as a stand-alone program and a Web tool ( http://metalweb.cerm.unifi.it/tools/metals2/).

  16. Chloride binding site of neurotransmitter sodium symporters

    DEFF Research Database (Denmark)

    Kantcheva, Adriana Krassimirova; Quick, Matthias; Shi, Lei

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs...

  17. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  18. Systemic administration of kainic acid induces selective time dependent decrease in [125I]insulin-like growth factor I, [125I]insulin-like growth factor II and [125I]insulin receptor binding sites in adult rat hippocampal formation

    International Nuclear Information System (INIS)

    Quirion, R.; Chabot, J.-G.; Dore, S.; Seto, D.; Kar, S.

    1997-01-01

    Administration of kainic acid evokes acute seizure in hippocampal pathways that results in a complex sequence of functional and structural alterations resembling human temporal lobe epilepsy. The structural alterations induced by kainic acid include selective loss of neurones in CA1-CA3 subfields and the hilar region of the dentate gyrus followed by sprouting and permanent reorganization of the synaptic connections of the mossy fibre pathways. Although the neuronal degeneration and process of reactive synaptogenesis have been extensively studied, at present little is known about means to prevent pathological conditions leading to kainate-induced cell death. In the present study, to address the role of insulin-like growth factors I and II, and insulin in neuronal survival as well as synaptic reorganization following kainate-induced seizure, the time course alterations of the corresponding receptors were evaluated. Additionally, using histological preparations, the temporal profile of neuronal degeneration and hypertrophy of resident astroglial cells were also studied. [ 125 I]Insulin-like growth factor I binding was found to be decreased transiently in almost all regions of the hippocampal formation at 12 h following treatment with kainic acid. The dentate hilar region however, exhibited protracted decreases in [ 125 I]insulin-like growth factor I receptor sites throughout (i.e. 30 days) the study. [ 125 I]Insulin-like growth factor II receptor binding sites in the hippocampal formation were found to be differentially altered following systemic administration of kainic acid. A significant decrease in [ 125 I]insulin-like growth factor II receptor sites was observed in CA1 subfield and the pyramidal cell layer of the Ammon's horn at all time points studied whereas the hilar region and the stratum radiatum did not exhibit alteration at any time. A kainate-induced decrease in [ 125 I]insulin receptor binding was noted at all time points in the molecular layer of the

  19. Autoradiographic localization of benzomorphan binding sites in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Crain, B.J.; Kwenjen Chang; McNamara, J.O.; Valdes, F.

    1985-07-17

    The benzomorphan subpopulation of opiate binding sites was labeled by (TH)diprenorphine in the presence of unlabeled ligands selected to quench and delta opiate binding sites. The distribution of benzomorphan binding sites was then localized autoradiographically. The distribution differs from the distributions of , delta and kappa opiate binding and is quite similar to the distribution of US -endorphin immunoreactivity. These observations support the hypothesis, based on biochemical studies in brain membranes, that benzomorphan binding sites may represent the ligand recognition sites of putative epsilon receptors. (Auth.). 34 refs.; 3 figs.

  20. Iodine binding to humic acid.

    Science.gov (United States)

    Bowley, H E; Young, S D; Ander, E L; Crout, N M J; Watts, M J; Bailey, E H

    2016-08-01

    The rate of reactions between humic acid (HA) and iodide (I(-)) and iodate (IO3(-)) have been investigated in suspensions spiked with (129)I at concentrations of 22, 44 and 88 μg L(-1) and stored at 10 °C. Changes in the speciation of (129)I(-), (129)IO3(-) and mixed ((129)I(-) + (129)IO3(-)) spikes were monitored over 77 days using liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS). In suspensions spiked with (129)I(-) 25% of the added I(-) was transformed into organic iodine (Org-(129)I) within 77 days and there was no evidence of (129)IO3(-) formation. By contrast, rapid loss of (129)IO3(-) and increase in both (129)I(-) and Org-(129)I was observed in (129)IO3(-)-spiked suspensions. However, the rate of Org-(129)I production was greater in mixed systems compared to (129)IO3(-)-spiked suspensions with the same total (129)I concentration, possibly indicating IO3(-)I(-) redox coupling. Size exclusion chromatography (SEC) demonstrated that Org-(129)I was present in both high and low molecular weight fractions of the HA although a slight preference to bond with the lower molecular weight fractions was observed indicating that, after 77 days, the spiked isotope had not fully mixed with the native (127)I pool. Iodine transformations were modelled using first order rate equations and fitted rate coefficients determined. However, extrapolation of the model to 250 days indicated that a pseudo-steady state would be attained after ∼200 days but that the proportion of (129)I incorporated into HA was less than that of (127)I indicating the presence of a recalcitrant pool of (127)I that was unavailable for isotopic mixing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  2. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites.

    Directory of Open Access Journals (Sweden)

    Daniel M Dupont

    Full Text Available Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126 with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA. We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A controlling uPA activities. One of the aptamers (upanap-126 binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12 binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.

  3. Mcm1p binding sites in ARG1 positively regulate Gcn4p binding and SWI/SNF recruitment

    OpenAIRE

    Yoon, Sungpil; Hinnebusch, Alan G.

    2009-01-01

    Transcription of the arginine biosynthetic gene ARG1 is activated by Gcn4p, a transcription factor induced by starvation for any amino acid. Previously we showed that Gcn4p binding stimulates the recruitment of Mcm1p and co-activator SWI/SNF to ARG1 in cells via Gcn4p induction through amino acid starvation. Here we report that Gcn4p binding is reduced by point mutations of the Mcm1p binding site and increased by overexpression of Mcm1p. This result suggests that Mcm1p plays a positive role i...

  4. Nucleic acid binding and other biomedical properties of artificial oligolysines

    Directory of Open Access Journals (Sweden)

    Roviello GN

    2016-11-01

    Full Text Available Giovanni N Roviello,1 Caterina Vicidomini,1 Vincenzo Costanzo,1 Valentina Roviello2 1CNR Istituto di Biostrutture e Bioimmagini, Via Mezzocannone site and Headquarters, 2Centro Regionale di Competenza (CRdC Tecnologie, Via Nuova Agnano, Napoli, Italy Abstract: In the present study, we report the interaction of an artificial oligolysine (referred to as AOL realized in our laboratory with targets of biomedical importance. These included polyinosinic acid (poly rI and its complex with polycytidylic acid (poly I:C, RNAs with well-known interferon-inducing ability, and double-stranded (ds DNA. The ability of the peptide to bind both single-stranded poly rI and ds poly I:C RNAs emerged from our circular dichroism (CD and ultraviolet (UV studies. In addition, we found that AOL forms complexes with dsDNA, as shown by spectroscopic binding assays and UV thermal denaturation experiments. These findings are encouraging for the possible use of AOL in biomedicine for nucleic acid targeting and oligonucleotide condensation, with the latter being a key step preceding their clinical application. Moreover, we tested the ability of AOL to bind to proteins, using serum albumin as a model protein. We demonstrated the oligolysine–protein binding by CD experiments which suggested that AOL, positively charged under physiological conditions, binds to the protein regions rich in anionic residues. Finally, the morphology characterization of the solid oligolysine, performed by scanning electron microscopy, showed different crystal forms including cubic-shaped crystals confirming the high purity of AOL. Keywords: nucleic acid binding, polyinosinic acid, double-stranded nucleic acids, oligolysine, circular dichroism

  5. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug binding site.

    Science.gov (United States)

    Handing, Katarzyna B; Shabalin, Ivan G; Szlachta, Karol; Majorek, Karolina A; Minor, Wladek

    2016-03-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1Å. Cetirizine is bound in two sites--a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizine binding sites. We show that the residues forming the binding pockets in ESA are highly conserved in human serum albumin (HSA), and suggest that binding of cetirizine to HSA will be similar. In support of that hypothesis, we show that the dissociation constants for cetirizine binding to CBS2 in ESA and HSA are identical using tryptophan fluorescence quenching. Presence of lysine and arginine residues that have been previously reported to undergo nonenzymatic glycosylation in CBS1 and CBS2 suggests that cetirizine transport in patients with diabetes could be altered. A review of all available SA structures from the PDB shows that in addition to the novel drug binding site we present here (CBS1), there are two pockets on SA capable of binding drugs that do not overlap with fatty acid binding sites and have not been discussed in published reviews. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The 18-kilodalton Chlamydia trachomatis histone H1-like protein (Hc1) contains a potential N-terminal dimerization site and a C-terminal nucleic acid-binding domain

    DEFF Research Database (Denmark)

    Pedersen, Lotte Bang; Birkelund, S; Holm, A

    1996-01-01

    The Chlamydia trachomatis histone H1-like protein (Hc1) is a DNA-binding protein specific for the metabolically inactive chlamydial developmental form, the elementary body. Hc1 induces DNA condensation in Escherichia coli and is a strong inhibitor of transcription and translation. These effects may......-hydroxysuccinimide ester), purified recombinant Hc1 was found to form dimers. The dimerization site was located in the N-terminal part of Hc1 (Hc1(2-57)). Moreover, circular dichroism measurements indicated an overall alpha-helical structure of this region. By using limited proteolysis, Southwestern blotting, and gel...... retardation assays, Hc1(53-125) was shown to contain a domain capable of binding both DNA and RNA. Under the same conditions, Hc1(2-57) had no nucleic acid-binding activity. Electron microscopy of Hc1-DNA and Hc1(53-125)-DNA complexes revealed differences suggesting that the N-terminal part of Hc1 may affect...

  7. Zinc Binding by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Jasna Mrvčić

    2009-01-01

    Full Text Available Zinc is an essential trace element in all organisms. A common method for the prevention of zinc deficiency is pharmacological supplementation, especially in a highly available form of a metalloprotein complex. The potential of different microbes to bind essential and toxic heavy metals has recently been recognized. In this work, biosorption of zinc by lactic acid bacteria (LAB has been investigated. Specific LAB were assessed for their ability to bind zinc from a water solution. Significant amount of zinc ions was bound, and this binding was found to be LAB species-specific. Differences among the species in binding performance at a concentration range between 10–90 mg/L were evaluated with Langmuir model for biosorption. Binding of zinc was a fast process, strongly influenced by ionic strength, pH, biomass concentration, and temperature. The most effective metal-binding LAB species was Leuconostoc mesenteroides (27.10 mg of Zn2+ per gram of dry mass bound at pH=5 and 32 °C, during 24 h. FT-IR spectroscopy analysis and electron microscopy demonstrated that passive adsorption and active uptake of the zinc ions were involved.

  8. Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection.

    Science.gov (United States)

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-07-01

    The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides. © 2015 Wiley Periodicals, Inc.

  9. Mu opioid receptor binding sites in human brain

    International Nuclear Information System (INIS)

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand [ 3 H]DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of [ 3 H]DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas

  10. Impact of germline and somatic missense variations on drug binding sites.

    Science.gov (United States)

    Yan, C; Pattabiraman, N; Goecks, J; Lam, P; Nayak, A; Pan, Y; Torcivia-Rodriguez, J; Voskanian, A; Wan, Q; Mazumder, R

    2017-03-01

    Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and

  11. Chromatin immunoprecipitation to analyze DNA binding sites of HMGA2.

    Directory of Open Access Journals (Sweden)

    Nina Winter

    Full Text Available BACKGROUND: HMGA2 is an architectonic transcription factor abundantly expressed during embryonic and fetal development and it is associated with the progression of malignant tumors. The protein harbours three basically charged DNA binding domains and an acidic protein binding C-terminal domain. DNA binding induces changes of DNA conformation and hence results in global overall change of gene expression patterns. Recently, using a PCR-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment procedure two consensus sequences for HMGA2 binding have been identified. METHODOLOGY/PRINCIPAL FINDINGS: In this investigation chromatin immunoprecipitation (ChIP experiments and bioinformatic methods were used to analyze if these binding sequences can be verified on chromatin of living cells as well. CONCLUSION: After quantification of HMGA2 protein in different cell lines the colon cancer derived cell line HCT116 was chosen for further ChIP experiments because of its 3.4-fold higher HMGA2 protein level. 49 DNA fragments were obtained by ChIP. These fragments containing HMGA2 binding sites have been analyzed for their AT-content, location in the human genome and similarities to sequences generated by a SELEX study. The sequences show a significantly higher AT-content than the average of the human genome. The artificially generated SELEX sequences and short BLAST alignments (11 and 12 bp of the ChIP fragments from living cells show similarities in their organization. The flanking regions are AT-rich, whereas a lower conservation is present in the center of the sequences.

  12. Heterogeneity of Opioid Binding Sites in Guinea Pig Spinal Cord

    Science.gov (United States)

    1984-11-30

    MEDICAL CENTER WILFORD HALL AIR FORCE MEDICAL CENTER Title of Thesis: "Heterogeneity of Opioid Binding Sites in Guinea Pig Spinal Cord" Name of...that the use of any copyrighted material in the dissertation manuscript entitled: "Heterogeneity of Opioid Binding Sites in Guinea Pig Spinal Cord...University of the Health Sciences 11 Abstract Title of Thesis: Heterogenity of Opioid Binding Sites In Guinea Pig Spinal Cord Gary Dean Zarr MAJ/ANC

  13. Defining the bacteroides ribosomal binding site.

    Science.gov (United States)

    Wegmann, Udo; Horn, Nikki; Carding, Simon R

    2013-03-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3' end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5' untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order.

  14. Muscarinic acetylcholine receptors: location of the ligand binding site

    International Nuclear Information System (INIS)

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-01-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, 3 H-propylbenzilycholine mustard aziridinium ion ( 3 H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that 3 H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin

  15. GenProBiS: web server for mapping of sequence variants to protein binding sites.

    Science.gov (United States)

    Konc, Janez; Skrlj, Blaz; Erzen, Nika; Kunej, Tanja; Janezic, Dusanka

    2017-07-03

    Discovery of potentially deleterious sequence variants is important and has wide implications for research and generation of new hypotheses in human and veterinary medicine, and drug discovery. The GenProBiS web server maps sequence variants to protein structures from the Protein Data Bank (PDB), and further to protein-protein, protein-nucleic acid, protein-compound, and protein-metal ion binding sites. The concept of a protein-compound binding site is understood in the broadest sense, which includes glycosylation and other post-translational modification sites. Binding sites were defined by local structural comparisons of whole protein structures using the Protein Binding Sites (ProBiS) algorithm and transposition of ligands from the similar binding sites found to the query protein using the ProBiS-ligands approach with new improvements introduced in GenProBiS. Binding site surfaces were generated as three-dimensional grids encompassing the space occupied by predicted ligands. The server allows intuitive visual exploration of comprehensively mapped variants, such as human somatic mis-sense mutations related to cancer and non-synonymous single nucleotide polymorphisms from 21 species, within the predicted binding sites regions for about 80 000 PDB protein structures using fast WebGL graphics. The GenProBiS web server is open and free to all users at http://genprobis.insilab.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Cation binding at the node of Ranvier: I. Localization of binding sites during development.

    Science.gov (United States)

    Zagoren, J C; Raine, C S; Suzuki, K

    1982-06-17

    Cations are known to bind to the node of Ranvier and the paranodal regions of myelinated fibers. The integrity of these specialized structures is essential for normal conduction. Sites of cation binding can be microscopically identified by the electrondense histochemical reaction product formed by the precipitate of copper sulfate/potassium ferrocyanide. This technique was used to study the distribution of cation binding during normal development of myelinating fibers. Sciatic nerves of C57B1 mice, at 1, 3, 5, 6, 7, 8, 9, 13, 16, 18, 24 and 30 days of age, were prepared for electron microscopy following fixation in phosphate-buffered 2.5% glutaraldehyde and 1% osmic acid, microdissection and incubation in phosphate-buffered 0.1 M cupric sulfate followed by 0.1 M potassium ferrocyanide. Localization of reaction product was studied by light and electron microscopy. By light microscopy, no reaction product was observed prior to 9 days of age. At 13 days, a few nodes and paranodes exhibited reaction product. This increased in frequency and intensity up to 30 days when almost all nodes or paranodes exhibited reaction product. Ultrastructurally, diffuse reaction product was first observed at 3 days of age in the axoplasm of the node, in the paranodal extracellular space of the terminal loops, in the Schwann cell proper and in the terminal loops of Schwann cell cytoplasm. When myelinated axons fulfilled the criteria for mature nodes, reaction product was no longer observed in the Schwann cell cytoplasm, while the intensity of reaction product in the nodal axoplasm and paranodal extracellular space of the terminal loops increased. Reaction product in the latter site appeared to be interrupted by the transverse bands. These results suggest that cation binding accompanies nodal maturity and that the Schwann cell may play a role in production or storage of the cation binding substance during myelinogenesis and development.

  17. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.; Stemmler, T.L.; Gil, J.A.; Mateos, L.M.; Rosen, B.P.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.

  18. Osteopontin: A uranium phosphorylated binding-site characterization

    International Nuclear Information System (INIS)

    Safi, Samir; Jeanson, Aurelie; Roques, Jerome; Simoni, Eric; Creff, Gaelle; Qi, Lei; Basset, Christian; Vidaud, Claude; Solari, Pier Lorenzo; Den Auwer, Christophe

    2013-01-01

    Herein, we describe the structural investigation of one possible uranyl binding site inside a non structured protein. This approach couples spectroscopy, thermodynamics, and theoretical calculations (DFT) and studies the interaction of uranyl ions with a phospho-peptide, thus mimicking a possible osteopontin (OPN) hydroxyapatite growth-inhibition site. Although thermodynamical aspects were investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) and isothermal titration calorimetry (ITC), structural characterization was performed by extended X-ray absorption fine structure (EXAFS) at the U L(III)-edge combined with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. From the vibrational and fluorescence spectra, several structural models of a UO 2 2+ /peptide complex were developed and subsequently refined by using theoretical calculations to fit the experimental EXAFS obtained. The structural effect of the pH value was also considered under acidic to moderately acidic conditions (pH 1.5-5.5). Most importantly, the uranyl/peptide coordination environment was similar to that of the native protein. (authors)

  19. Computational characteristics of valproic acid binding to histone deacetylase

    International Nuclear Information System (INIS)

    Abou-Zeid, Laila A.; El-Mowafy, Abdalla M.; Eikel, D.; Nau, H.; El-Mazar, M.

    2007-01-01

    Recently, the anticpileptic drug valproic acid (VPA) has also demonstrated efficacy in the management of cancer and bipolar disorders. These actions are largely mediated by inhibition of the HDAC enzyme/induction of certain genes. Relative to other HDAC inhibitors such as trichostatin-A (TSA), VPA offers higher selectivity on cancer cells with virtually no detrimental effects on normal cells. The molecular underpinnings of these biological profiles for VPA remain undefined. We currently propose for an attempt to identify differences in the binding of VPA and TSA to HDAC. In this paper, conformational changes and energy calculations have derived. VPA had to accomplish conformational changes in its structure for best accommodation at the HDAC binding site. Energy computations showed that VPA has a lower binding affinitythan TSA (-53.80 vs. -66.30 Kcal/mol). These findings demonstrate that VPA binding to HDAC confers catalytic, conformational and computational characteristics that are distinct from those of TSA. These findings of VPA are consistent with a moderate inhibition of HDAC, a low toxicity on normal cells, and a higher selectivity on cancer cells than TSA. Accordingly, these newly identified binding properties of VPA can state a framework strategy for the rational design of VPA-related anticancer drugs with superior cytodifferentiating-and/or safety-profiles. (author)

  20. Quantitative autoradiography of [3H]ouabain binding sites in rat brain

    International Nuclear Information System (INIS)

    Spyropoulos, A.C.; Rainbow, T.C.

    1984-01-01

    In vitro quantitative autoradiography was used to localize in rat brain binding sites for [ 3 H]ouabain, an inhibitor of the Na + ,K + -ATPase. High levels of [ 3 H]ouabain sites were found in the superior and inferior colliculi, the mammillary nucleus, the interpeduncular nucleus, and in various divisions of the olfactory, auditory and somatomotor systems. The heterogeneous distribution of [ 3 H]ouabain binding closely parallels the regional brain glucose consumption as determined by the [ 14 C]deoxyglucose method. Lesion studies of the rat hippocampus using the excitotoxin, ibotenic acid, showed both a marked decrease of neuronal cell types on the injected side and a corresponding decrease in [ 3 H]ouabain binding, indicating that some of the [ 3 H]ouabain binding sites are localized to neurons. The close correlation between [ 3 H]ouabain binding and regional glucose utilization provides further evidence for a linkage between glucose utilization and the neuronal Na + ,K + -ATPase. (Auth.)

  1. An Overview of the Prediction of Protein DNA-Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-03-01

    Full Text Available Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  2. An overview of the prediction of protein DNA-binding sites.

    Science.gov (United States)

    Si, Jingna; Zhao, Rui; Wu, Rongling

    2015-03-06

    Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  3. High- and low-affinity binding of S-citalopram to the human serotonin transporter mutated at 20 putatively important amino acid positions

    DEFF Research Database (Denmark)

    Plenge, Per; Wiborg, Ove

    2005-01-01

    of presumed importance. Binding of S-citalopram, both to the high-affinity-binding site and to the allosteric binding site, was measured in these mutants with the purpose of investigating the connection between the two binding sites. The amino acid substitutions did not introduce large changes in the two...

  4. Localization of gonadotropin binding sites in human ovarian neoplasms

    International Nuclear Information System (INIS)

    Nakano, R.; Kitayama, S.; Yamoto, M.; Shima, K.; Ooshima, A.

    1989-01-01

    The binding of human luteinizing hormone and human follicle-stimulating hormone to ovarian tumor biopsy specimens from 29 patients was analyzed. The binding sites for human luteinizing hormone were demonstrated in one tumor of epithelial origin (mucinous cystadenoma) and in one of sex cord-stromal origin (theca cell tumor). The binding sites for human follicle-stimulating hormone were found in three tumors of epithelial origin (serous cystadenoma and mucinous cystadenoma) and in two of sex cord-stromal origin (theca cell tumor and theca-granulosa cell tumor). The surface-binding autoradiographic study revealed that the binding sites for gonadotropins were localized in the stromal tissue. The results suggest that gonadotropic hormones may play a role in the growth and differentiation of a certain type of human ovarian neoplasms

  5. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    International Nuclear Information System (INIS)

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-01-01

    Autoradiography using 125 I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat

  6. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-04-01

    Autoradiography using /sup 125/I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat.

  7. Combined fluorescence and electrochemical investigation on the binding interaction between organic acid and human serum albumin

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-Min; GUO Liang-Hong

    2009-01-01

    Human serum albumin (HSA) is a plasma protein responsible for the binding and transport of fatty acids and a variety of exogenous chemicals such as drugs and environmental pollutants. Such binding plays a crucial role in determining the ADME (absorption, distribution, metabolism, and excretion) and bioavailability of the pollutants. We report investigation on the binding interaction between HSA and acetic acid (C2), octanoic acid (C8) and dodecanoic acid (C12) by the combination of site-specific fluorescent probe, tryptophan intrinsic fluorescence and tyrosine electrochemistry. Two fluorescent probes, dansylamide and dansyl-L-proline, were employed in the displacement measurement to study fatty acid interaction with the two drug-binding sites on HSA. Intrinsic fluorescence of tryptophan in HSA was monitored upon addition of the fatty acids into HSA. Electrocatalyzed response of the tyrosine residues in HSA by a redox mediator was used to investigate the binding interaction. Qualitatively, observations made by the three approaches are very similar. HSA did not show any change in either fluorescence or electrochemistry after mixing with C2, suggesting there is no significant interaction with the short-chain fatty acid. For C8, the measured signal dropped in a single-exponential fashion, indicative of independent and non-cooperative binding. The calculated association constant and binding ratio is 3.1×106 L/mol and 1 with drug binding Site I, 1.1×107 L/mol and 1 with Site II, and 7.0×104 L/mol and 4 with the tryptophan site. The measurement with C12 displayed multiple phases of fluorescence change, suggesting cooperativity and allosteric effect of C12 binding. These results correlate well with those obtained by the established methods, and validate the new approach as a viable tool to study the interactions of environmental pollutants with biological molecules.

  8. 2[125I]Iodomelatonin binding sites in spleens of guinea pigs

    International Nuclear Information System (INIS)

    Poon, A.M.S.; Pang, S.F.

    1992-01-01

    2-[ 125 I]Iodomelatonin was found to bind specifically to the membrane preparations of the spleens of guinea pigs with high affinity. The binding was rapid, stable, saturable and reversible. Scatchard analysis of the binding assays revealed an equilibrium dissociation constant (Kd) of 49.8±4.12 pmol/l and binding site density (Bmax) of 0.69±0.082 fmol/mg protein at mid-light. There was no significant change in the Kd or the Bmax at mid-dark. Kinetic analysis showed a Kd of 23.13±4.81 pmol/l, in agreement to that derived from the saturation studies. The 2-[ 125 I]iodomelatonin binding sites have the following order of potency: 2-iodomelatonin > melatonin > 6-chloromelatonin much-gt N-acetylserotonin, 6-hydroxymelatonin > 5-methoxytryptamine, 5-methoxytryptophol > serotonin, 5-methoxyindole-3-acetic acid > 5-hydroxytryptophol, 3-acetylindole, 1-acetylindole-3-carboxyaldehyde, L-tryptophan > tryptamine, 5-hydroxyindole-3-acetic acid. Differential centrifugation studies showed that the binding sites are localized mainly in the nuclear fraction, the rest are distributed in the microsomal fraction, mitochondrial fraction and cytosolic fraction. The demonstration of 2-[ 125 I]iodomelatonin binding sites in the spleen suggests the presence of melatonin receptors and a direct mechanism of action of melatonin on the immune system

  9. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin

    Energy Technology Data Exchange (ETDEWEB)

    Makyio, Hisayoshi [Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Shimabukuro, Junpei; Suzuki, Tatsuya [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Imamura, Akihiro; Ishida, Hideharu [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Kiso, Makoto [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Ando, Hiromune, E-mail: hando@gifu-u.ac.jp [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Kato, Ryuichi, E-mail: ryuichi.kato@kek.jp [Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

    2016-08-26

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity. - Highlights: • The six-bladed β-propeller structure of AOL was solved by seleno-sugar phasing. • The mode of fucose binding is essentially conserved at all six binding sites. • The seleno-fucosides exhibit slightly different interactions and electron densities. • These findings suggest that the affinity for fucose is not identical at each site.

  10. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin

    International Nuclear Information System (INIS)

    Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Ando, Hiromune; Kato, Ryuichi

    2016-01-01

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity. - Highlights: • The six-bladed β-propeller structure of AOL was solved by seleno-sugar phasing. • The mode of fucose binding is essentially conserved at all six binding sites. • The seleno-fucosides exhibit slightly different interactions and electron densities. • These findings suggest that the affinity for fucose is not identical at each site.

  11. Mapping the Binding Site for Escitalopram and Paroxetine in the Human Serotonin Transporter Using Genetically Encoded Photo-Cross-Linkers

    DEFF Research Database (Denmark)

    Rannversson, Hafsteinn; Andersen, Jacob; Bang-Andersen, Benny

    2017-01-01

    amber codon suppression in hSERT to encode the photo-cross-linking unnatural amino acid p-azido-l-phenylalanine into the suggested high- and low-affinity binding sites. We then employ UV-induced cross-linking with azF to map the binding site of escitalopram and paroxetine, two prototypical selective...... serotonin reuptake inhibitors (SSRIs). We find that the two antidepressant drugs exclusively cross-link to azF incorporated at the high-affinity binding site of hSERT, while cross-linking is not observed at the low-affinity binding site. Combined with previous homology models and recent structural data on h...

  12. Sugar-binding sites of the HA1 subcomponent of Clostridium botulinum type C progenitor toxin.

    Science.gov (United States)

    Nakamura, Toshio; Tonozuka, Takashi; Ide, Azusa; Yuzawa, Takayuki; Oguma, Keiji; Nishikawa, Atsushi

    2008-02-22

    Clostridium botulinum type C 16S progenitor toxin contains a hemagglutinin (HA) subcomponent, designated HA1, which appears to play an important role in the effective internalization of the toxin in gastrointestinal epithelial cells and in creating a broad specificity for the oligosaccharide structure that corresponds to various targets. In this study, using the recombinant protein fused to glutathione S-transferase, we investigated the binding specificity of the HA1 subcomponent to sugars and estimated the binding sites of HA1 based on X-ray crystallography and soaking experiments using various sugars. N-Acetylneuraminic acid, N-acetylgalactosamine, and galactose effectively inhibited the binding that occurs between glutathione S-transferase-HA1 and mucins, whereas N-acetylglucosamine and glucose did not inhibit it. The crystal structures of HA1 complex with N-acetylneuraminic acid, N-acetylgalactosamine, and galactose were also determined. There are two sugar-binding sites, sites I and II. Site I corresponds to the electron densities noted for all sugars and is located at the C-terminal beta-trefoil domain, while site II corresponds to the electron densities noted only for galactose. An aromatic amino acid residue, Trp176, at site I has a stacking interaction with the hexose ring of the sugars. On the other hand, there is no aromatic residue at site II; thus, the interaction with galactose seems to be poor. The double mutant W176A at site I and D271F at site II has no avidity for N-acetylneuraminic acid but has avidity for galactose. In this report, the binding specificity of botulinum C16S toxin HA1 to various sugars is demonstrated based on its structural features.

  13. Opioid binding sites in the guinea pig and rat kidney: Radioligand homogenate binding and autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C. (Parke-Davis Research Unit, Addenbrookes Hospital Site, Cambridge (England))

    1991-07-01

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE bound with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.

  14. (-)PPAP: a new and selective ligand for sigma binding sites.

    Science.gov (United States)

    Glennon, R A; Battaglia, G; Smith, J D

    1990-11-01

    Most agents employed for the investigation of sigma (sigma) binding sites display relatively low affinity for these sites, bind both at sigma sites and at either phencyclidine (PCP) sites or dopamine receptors with similar affinity, and/or produce some dopaminergic activity in vivo. We describe a new agent, (-)PPAP or R(-)-N-(3-phenyl-n-propyl)-1-phenyl-2-aminopropane hydrochloride, that binds with high affinity and selectivity at sigma (IC50 = 24 nM) versus either PCP sites (IC50 greater than 75,000 nM) or D1 and D2 dopamine receptors (IC50 greater than 5,000 nM). The sigma affinity of this agent is comparable to that of the standard ligands (+)-3-PPP and DTG. Furthermore, although (-)PPAP is structurally related to amphetamine, it neither produces nor antagonizes amphetamine-like stimulus effect in rats trained to discriminate 1 mg/kg of S(+)amphetamine from saline.

  15. The clinical significance of fatty acid binding proteins

    Directory of Open Access Journals (Sweden)

    Barbara Choromańska

    2011-11-01

    Full Text Available Excessive levels of free fatty acids are toxic to cells. The human body has evolved a defense mechanism in the form of small cytoplasmic proteins called fatty acid binding proteins (FABPs that bind long-chain fatty acids (LCFA, and then refer them to appropriate intracellular disposal sites (oxidation in mitochondria and peroxisomes or storage in the endoplasmic reticulum. So far, nine types of these proteins have been described, and their name refers to the place in which they were first identified or where they can be found in the greatest concentration. The most important FABPs were isolated from the liver (L-FABP, heart (H-FABP, intestine (I-FABP, brain (B-FABP, epidermis (E-FABP and adipocytes (A-FABP. Determination of H-FABP is used in the diagnosis of myocardial infarction, and L-FABP in kidney lesions of different etiologies. It is postulated that FABPs play an important role in the pathogenesis of metabolic diseases. Elevated levels of A-FABP have been found in the pericardial fat tissue and were associated with cardiac dysfunction in obese people. A rise in A-FABP has been observed in patients with type II diabetes. I-FABP is known as a marker of cell damage in the small intestine. Increased concentration of B-FABP has been associated with human brain tumors such as glioblastoma and astrocytoma, as well as with neurodegenerative diseases (Alzheimer’s, Parkinson’s and other disorders of cognitive function. The aim of this work was to present current data on the clinical significance of fatty acid binding proteins.

  16. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    Science.gov (United States)

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2017-03-17

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    Science.gov (United States)

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

  18. Specificity of cellular DNA-binding sites of microbial populations in a Florida reservoir

    International Nuclear Information System (INIS)

    Paul, J.H.; Pichard, S.L.

    1989-01-01

    The substrate specificity of the DNA-binding mechanism(s) of bacteria in a Florida reservoir was investigated in short- and long-term uptake studies with radiolabeled DNA and unlabeled competitors. Thymine oligonucleotides ranging in size from 2 base pairs to 19 to 24 base pairs inhibited DNA binding in 20-min incubations by 43 to 77%. Deoxynucleoside monophosphates, thymidine, and thymine had little effect on short-term DNA binding, although several of these compounds inhibited the uptake of the radiolabel from DNA in 4-h incubations. Inorganic phosphate and glucose-1-phosphate inhibited neither short- nor long-term binding of [ 3 H]- or [ 32 P]DNA, indicating that DNA was not utilized as a phosphorous source in this reservoir. RNA inhibited both short- and long-term radiolabeled DNA uptake as effectively as unlabeled DNA. Collectively these results indicate that aquatic bacteria possess a generalized nuclei acid uptake/binding mechanism specific for compounds containing phosphodiester bonds and capable of recognizing oligonucleotides as short as dinucleotides. This binding site is distinct from nucleoside-, nucleotide-, phosphomonoester-, and inorganic phosphate-binding sites. Such a nucleic acid-binding mechanism may have evolved for the utilization of extracellular DNA (and perhaps RNA), which is abundant in many marine and freshwater environments

  19. Natural flavonoids as antidiabetic agents. The binding of gallic and ellagic acids to glycogen phosphorylase b.

    Science.gov (United States)

    Kyriakis, Efthimios; Stravodimos, George A; Kantsadi, Anastassia L; Chatzileontiadou, Demetra S M; Skamnaki, Vassiliki T; Leonidas, Demetres D

    2015-07-08

    We present a study on the binding of gallic acid and its dimer ellagic acid to glycogen phosphorylase (GP). Ellagic acid is a potent inhibitor with Kis of 13.4 and 7.5 μM, in contrast to gallic acid which displays Kis of 1.7 and 3.9 mM for GPb and GPa, respectively. Both compounds are competitive inhibitors with respect to the substrate, glucose-1-phoshate, and non-competitive to the allosteric activator, AMP. However, only ellagic acid functions with glucose in a strongly synergistic mode. The crystal structures of the GPb-gallic acid and GPb-ellagic acid complexes were determined at high resolution, revealing that both ligands bind to the inhibitor binding site of the enzyme and highlight the structural basis for the significant difference in their inhibitory potency. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Opioid binding site in EL-4 thymoma cell line

    International Nuclear Information System (INIS)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of [ 3 H] bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10 6 cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of [ 3 H] bremazocine with an IC 50 value = 0.57μM. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, [D-Pen 2 , D-Pen 5 ] enkephalin and β-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC 50 = 60μM, that was similar to naloxone. 32 references, 3 figures, 2 tables

  1. Human chorionic ganodotropin binding sites in the human endometrium

    International Nuclear Information System (INIS)

    Bhattacharya, S.; Banerjee, J.; Sen, S.; Manna, P.R.

    1993-01-01

    The existence of high-affinity and low-capacity specific binding sites for luteinizing hormone/human chorionic gonadotropin (hCG) has been reported in porcine, rabbit and rat uteri. The authors have identified the hCG binding sites in the human endometrium collected from 35-42-year-old ovulatory and anovulatory women. The binding characteristics of hCG to endometrial tissue preparations from ovulatory and anovulatory women showed saturability with high affinity and low capacity. Scatchard plot analysis showed the dissociation constant of specific binding sites in the ovulatory women to be 3.5x10 -10 mol/l and in anovulatory women to be 3.1x10 -10 mol/l. The maximum binding capacity varied considerably between ovulatory and anovulatory endometrium. Among the divalent metal ions tested Zn 2+ effected a remarkable increase in [ 125 I]hCG binding to the endometrium, whereas Mn 2+ showed a marginal increase and other metal ions did not have any effect. Data obtained with human endometrium indicate an influence of the functional state of the ovary on [ 125 I]hCG binding to endometrium. 14 refs., 3 figs

  2. Domain-based small molecule binding site annotation

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2006-03-01

    Full Text Available Abstract Background Accurate small molecule binding site information for a protein can facilitate studies in drug docking, drug discovery and function prediction, but small molecule binding site protein sequence annotation is sparse. The Small Molecule Interaction Database (SMID, a database of protein domain-small molecule interactions, was created using structural data from the Protein Data Bank (PDB. More importantly it provides a means to predict small molecule binding sites on proteins with a known or unknown structure and unlike prior approaches, removes large numbers of false positive hits arising from transitive alignment errors, non-biologically significant small molecules and crystallographic conditions that overpredict ion binding sites. Description Using a set of co-crystallized protein-small molecule structures as a starting point, SMID interactions were generated by identifying protein domains that bind to small molecules, using NCBI's Reverse Position Specific BLAST (RPS-BLAST algorithm. SMID records are available for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is calculated based on E-value, ligand residue identity and domain entropy to assign a level of confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental small molecule interactions from the PDB, of which 472 (60% of predicted interactions identically matched the experimental small molecule and of these, 344 had greater than 80% of the binding site residues correctly identified. Further, we estimate that 45% of predictions which were not observed in the PDB validation set may be true positives. Conclusion By

  3. Transcription factor binding sites prediction based on modified nucleosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad Talebzadeh

    Full Text Available In computational methods, position weight matrices (PWMs are commonly applied for transcription factor binding site (TFBS prediction. Although these matrices are more accurate than simple consensus sequences to predict actual binding sites, they usually produce a large number of false positive (FP predictions and so are impoverished sources of information. Several studies have employed additional sources of information such as sequence conservation or the vicinity to transcription start sites to distinguish true binding regions from random ones. Recently, the spatial distribution of modified nucleosomes has been shown to be associated with different promoter architectures. These aligned patterns can facilitate DNA accessibility for transcription factors. We hypothesize that using data from these aligned and periodic patterns can improve the performance of binding region prediction. In this study, we propose two effective features, "modified nucleosomes neighboring" and "modified nucleosomes occupancy", to decrease FP in binding site discovery. Based on these features, we designed a logistic regression classifier which estimates the probability of a region as a TFBS. Our model learned each feature based on Sp1 binding sites on Chromosome 1 and was tested on the other chromosomes in human CD4+T cells. In this work, we investigated 21 histone modifications and found that only 8 out of 21 marks are strongly correlated with transcription factor binding regions. To prove that these features are not specific to Sp1, we combined the logistic regression classifier with the PWM, and created a new model to search TFBSs on the genome. We tested the model using transcription factors MAZ, PU.1 and ELF1 and compared the results to those using only the PWM. The results show that our model can predict Transcription factor binding regions more successfully. The relative simplicity of the model and capability of integrating other features make it a superior method

  4. LIGAND-BINDING SITES ON THE MYCOBACTERIUM TUBERCULOSIS UREASE

    Directory of Open Access Journals (Sweden)

    Lisnyak Yu. V.

    2017-10-01

    Full Text Available Introduction. Mycobacterium tuberculosis is the causative agent of tuberculosis that remains a serious medical and social health problem. Despite intensive efforts have been made in the past decade, there are no new efficient anti-tuberculosis drugs today, and that need is growing due to the spread of drug-resistant strains of M.tuberculosis. M. tuberculosis urease (MTU, being an important factor of the bacterium viability and virulence, is an attractive target for anti-tuberculosis drugs acting by inhibition of urease activity. However, the commercially available urease inhibitors are toxic and unstable, that prevent their clinical use. Therefore, new more potent anti-tuberculosis drugs inhibiting new targets are urgently needed. A useful tool for the search of novel inhibitors is a computational drug design. The inhibitor design is significantly easier if binding sites on the enzyme are identified in advance. This paper aimed to determine the probable ligand binding sites on the surface of M. tuberculosis urease. Methods. To identify ligand binding sites on MTU surface, сomputational solvent mapping method FTSite was applied by the use of MTU homology model we have built earlier. The method places molecular probes (small organic molecules containing various functional groups on a dense grid defined around the enzyme, and for each probe finds favorable positions. The selected poses are refined by free energy minimization, the low energy conformations are clustered, and the clusters are ranked on the basis of the average free energy. FTSite server outputs the protein residues delineating a binding sites and the probe molecules representing each cluster. To predict allosteric pockets on MTU, AlloPred and AlloSite servers were applied. AlloPred uses the normal mode analysis (NMA and models how the dynamics of a protein would be altered in the presence of a modulator at a specific pocket. Pockets on the enzyme are predicted using the Fpocket

  5. Penicillin-binding site on the Escherichia coli cell envelope

    International Nuclear Information System (INIS)

    Amaral, L.; Lee, Y.; Schwarz, U.; Lorian, V.

    1986-01-01

    The binding of 35 S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and free epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin

  6. Differential trace labeling of calmodulin: investigation of binding sites and conformational states by individual lysine reactivities. Effects of beta-endorphin, trifluoperazine, and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Giedroc, D.P.; Sinha, S.K.; Brew, K.; Puett, D.

    1985-11-05

    The CaS -dependent association of beta-endorphin and trifluoperazine with porcine testis calmodulin, as well as the effects of removing CaS by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) treatment, were investigated by the procedure of differential kinetic labeling. This technique permitted determination of the relative rates of acylation of each of the epsilon-amino groups of the seven lysyl residues on calmodulin by (TH)acetic anhydride under the different conditions. In all cases, less than 0.52 mol of lysyl residue/mol of calmodulin was modified, thus ensuring that the labeling pattern reflects the microenvironments of these groups in the native protein. Lysines 75 and 94 were found to be the most reactive amino groups in CaS -saturated calmodulin. In the presence of CaS and under conditions where beta-endorphin and calmodulin were present at a molar ratio of 2.5:1, the amino groups of lysines 75 and 148 were significantly reduced in reactivity compared to calmodulin alone. At equimolar concentrations of peptides and proteins, essentially the same result was obtained except that the magnitudes of the perturbation of these two lysines were less pronounced. With trifluoperazine, at a molar ratio to calmodulin of 2.5:1, significant perturbations of lysines 75 and 148, as well as Lys 77, were also found. These results further substantiate previous observations of a commonality between phenothiazine and peptide binding sites on calmodulin. Lastly, an intriguing difference in CaS -mediated reactivities between lysines 75 and 77 of calmodulin is demonstrated. In the CaS -saturated form of the protein, both lysines are part of the long connecting helix between the two homologous halves of the protein.

  7. Functional analysis of a potential regulatory K+-binding site in the Na+, K+-ATPase

    DEFF Research Database (Denmark)

    Schack, Vivien Rodacker; Vilsen, Bente

    The Na+, K+-ATPase functions by actively transporting 3 Na+ ions out of and 2 K+ ions into the cell, thereby creating ion gradients crucial for many physiological processes. Recently, a combined structural and functional study of the closely related Ca2+-ATPase indicated the presence...... of a regulatory K+-binding site in the P-domain of the enzyme, identifying E732 as being of particular importance (Sorensen, Clausen et al. 2004). In addition, P709 is thought to play a significant role in the structural organization of this site. Both E732 and P709 are highly conserved among P-type ATPases (E732...... is present as either glutamic acid or aspartic acid), which supports their importance and additionally raises the question whether this site may play a general role among P-type ATPases. In Na+, K+-ATPase, K+ functions directly as a substrate for membrane binding sites, however, an additional regulatory...

  8. Oligomycin frames a common drug-binding site in the ATP synthase

    Energy Technology Data Exchange (ETDEWEB)

    Symersky, Jindrich; Osowski, Daniel; Walters, D. Eric; Mueller, David M. (Rosalind)

    2015-12-01

    We report the high-resolution (1.9 {angstrom}) crystal structure of oligomycin bound to the subunit c10 ring of the yeast mitochondrial ATP synthase. Oligomycin binds to the surface of the c10 ring making contact with two neighboring molecules at a position that explains the inhibitory effect on ATP synthesis. The carboxyl side chain of Glu59, which is essential for proton translocation, forms an H-bond with oligomycin via a bridging water molecule but is otherwise shielded from the aqueous environment. The remaining contacts between oligomycin and subunit c are primarily hydrophobic. The amino acid residues that form the oligomycin-binding site are 100% conserved between human and yeast but are widely different from those in bacterial homologs, thus explaining the differential sensitivity to oligomycin. Prior genetics studies suggest that the oligomycin-binding site overlaps with the binding site of other antibiotics, including those effective against Mycobacterium tuberculosis, and thereby frames a common 'drug-binding site.' We anticipate that this drug-binding site will serve as an effective target for new antibiotics developed by rational design.

  9. Gephyrin-binding peptides visualize postsynaptic sites and modulate neurotransmission

    DEFF Research Database (Denmark)

    Maric, Hans Michael; Hausrat, Torben Johann; Neubert, Franziska

    2017-01-01

    is associated with perturbation of the basic physiological action. Here we pursue a fundamentally different approach, by instead targeting the intracellular receptor-gephyrin interaction. First, we defined the gephyrin peptide-binding consensus sequence, which facilitated the development of gephyrin super......-binding peptides and later effective affinity probes for the isolation of native gephyrin. Next, we demonstrated that fluorescent super-binding peptides could be used to directly visualize inhibitory postsynaptic sites for the first time in conventional and super-resolution microscopy. Finally, we demonstrate...

  10. Pactamycin binding site on archaebacterial and eukaryotic ribosomes

    International Nuclear Information System (INIS)

    Tejedor, F.; Amils, R.; Ballesta, J.P.G.

    1987-01-01

    The presence of a photoreactive acetophenone group in the protein synthesis inhibitor pactamycin and the possibility of obtaining active iodinated derivatives that retain full biological activity allow the antibiotic binding site on Saccharomyces cerevisiae and archaebacterium Sulfolobus solfataricus ribosomes to be photoaffinity labeled. Four major labeled proteins have been identified in the yeast ribosomes, i.e., YS10, YS18, YS21/24, and YS30, while proteins AL1a, AS10/L8, AS18/20, and AS21/22 appeared as radioactive spots in S. solfataricus. There seems to be a correlation between some of the proteins labeled in yeast and those previously reported in Escherichia coli indicating that the pactamycin binding sites of both species, which are in the small subunit close to the initiation factors and mRNA binding sites, must have similar characteristics

  11. Radiotracers for per studies of neurotransmitter binding sites: Design considerations

    International Nuclear Information System (INIS)

    Kilbourn, M.R.

    1991-01-01

    Neurotransmitter binding sites, such as receptors, neuronal uptake systems, and vesicular uptake systems, are important targets for new radiopharmaceutical design. Selection of potential radioligands can be guided by in vitro laboratory data including such characteristics as selectivity and affinity for specific binding sites. However, development of PET radiotracers for use in vivo must include considerations of in vivo pharmacokinetics and metabolism. Introduction of potential radioligands is further narrowed by the demands of the radiochemical synthesis, which must produce radioligands of high chemical and radiochemical purity and of high specific activity. This paper will review examples of previous and current attempts by radiopharmaceutical chemists to meet these demands for new positron emitter-labeled radioligands for PET studies of a wide array of neurotransmitter binding sites

  12. Ascorbic acid prevents nonreceptor specific binding of [3H]-5-hydroxytryptamine to bovine cerebral cortex membranes

    International Nuclear Information System (INIS)

    Hamblin, M.W.; Adriaenssens, P.I.; Ariani, K.; Cawthon, R.M.; Stratford, C.A.; Tan, G.L.; Ciaranello, R.D.

    1987-01-01

    [ 3 H]-5-Hydroxytryptamine ([ 3 H]-5-HT) decomposes rapidly when exposed to air in solution at physiological pH if antioxidants are not present. The decomposition products appear to bind to two saturable sites on brain membranes (apparent Kd values = 1-2 and 100-1000 nM). This binding mimics ''specific'' ligand/receptor binding in that it is inhibited by 10 microM unlabeled 5-HT. This inhibition is not competitive, but rather is due to the prevention of [ 3 H]-5-HT breakdown by excess unlabeled 5-HT. Unlike genuine ligand/receptor binding, the binding of [ 3 H]-5-HT breakdown products is essentially irreversible and does not display a tissue distribution consistent with binding to authentic 5-HT receptors. [ 3 H]-5-HT decomposition can be eliminated by the inclusion of 0.05 to 5 mM ascorbic acid. At these concentrations ascorbic acid is not deleterious to reversible [ 3 H]-5-HT binding. When [ 3 H] 5-HT exposure to air occurs in the presence of brain membranes, the apparent antioxidant activity of brain membranes themselves affords protection against [ 3 H]-5-HT degradation equal to ascorbic acid. This protection is effective below final [ 3 H]-5-HT concentrations of 10 nM. Above 10 nM [ 3 H]-5-HT, addition of ascorbic acid or other antioxidants is necessary to avoid the occurrence of additional low affinity (apparent Kd = 15-2000 nM) binding sites that are specific but nonetheless irreversible. When care is taken to limit [ 3 H]-5-HT oxidation, the only reversible and saturable specific binding sites observed are of the 5-HT1 high affinity (Kd = 1-2 nM) type. Radioligand oxidation artifacts may be involved in previous reports of low affinity (Kd = 15-250 nM) [ 3 H]-5-HT binding sites in brain membrane preparations

  13. Thermodynamics of Molybdate Binding to Humic Acid

    Science.gov (United States)

    Thalhammer, K.; Gilbert, B.

    2016-12-01

    Molybdenum is an essential nutrient for diazotrophic bacteria that use nitrogenase I to fix atmospheric nitrogen in soils into bioavailable forms such as ammonia. This metalloid is released during rock weathering processes and at neutral pH it exists primarily as the soluble oxyanion molybdate, MoO42-. It has been established that molybdate mobility and bioavailability in soils is influenced by sorption to mineral surfaces and complexation by natural organic matter (NOM). The molybdate ion is readily bound by ortho dihydroxybenzene molecules such as catechol and catechol groups in siderophores. Humic acids (HA) found in NOM contain abundant phenolic groups and extended X-ray absorption fine structure (EXAFS) spectroscopy demonstrated that molybdate is bound by catechol-containing molecules in soil organic matter1. However, to our knowledge no quantitative determination of the affinity of molybdate to HA has been reported. We studied the interactions of molybdate with Suwannee River HA using ultraviolet-visible (UV-vis) absorption spectroscopy and isothermal titration calorimetry (ITC) to determine the conditional equilibrium constant for complexation at neutral pH. We further used ITC to investigate the thermodynamic contributions to complexation and the interaction kinetics. Addition of molybdate to HA caused the formation of complexes with UV-vis absorption spectra in good agreement with molybdate-catechol species indicating catechol groups to be the primary ligands in HA. ITC data revealed that binding enthalpies and kinetics were strongly influenced by ionic strength, suggesting a role for macromolecular reorganization driven by metalloid addition. 1. Wichard et al., Nature Geoscience 2, 625 - 629 (2009).

  14. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.

    Science.gov (United States)

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M

    2016-01-13

    Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. PocketMatch: A new algorithm to compare binding sites in protein structures

    Directory of Open Access Journals (Sweden)

    Chandra Nagasuma

    2008-12-01

    Full Text Available Abstract Background Recognizing similarities and deriving relationships among protein molecules is a fundamental requirement in present-day biology. Similarities can be present at various levels which can be detected through comparison of protein sequences or their structural folds. In some cases similarities obscure at these levels could be present merely in the substructures at their binding sites. Inferring functional similarities between protein molecules by comparing their binding sites is still largely exploratory and not as yet a routine protocol. One of the main reasons for this is the limitation in the choice of appropriate analytical tools that can compare binding sites with high sensitivity. To benefit from the enormous amount of structural data that is being rapidly accumulated, it is essential to have high throughput tools that enable large scale binding site comparison. Results Here we present a new algorithm PocketMatch for comparison of binding sites in a frame invariant manner. Each binding site is represented by 90 lists of sorted distances capturing shape and chemical nature of the site. The sorted arrays are then aligned using an incremental alignment method and scored to obtain PMScores for pairs of sites. A comprehensive sensitivity analysis and an extensive validation of the algorithm have been carried out. A comparison with other site matching algorithms is also presented. Perturbation studies where the geometry of a given site was retained but the residue types were changed randomly, indicated that chance similarities were virtually non-existent. Our analysis also demonstrates that shape information alone is insufficient to discriminate between diverse binding sites, unless combined with chemical nature of amino acids. Conclusion A new algorithm has been developed to compare binding sites in accurate, efficient and high-throughput manner. Though the representation used is conceptually simplistic, we demonstrate that

  16. The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro.

    Science.gov (United States)

    Horton, R W; Lowther, S; Chivers, J; Jenner, P; Marsden, C D; Testa, B

    1988-08-01

    1. The interaction of substituted benzamides with brain benzodiazepine (BDZ) binding sites was examined by their ability to displace [3H]-flunitrazepam ([3H]-FNM) from specific binding sites in bovine cortical membranes in vitro. 2. Clebopride, Delagrange 2674, Delagrange 2335 and BRL 20627 displayed concentration-dependent displacement of [3H]-FNM with IC50 values of 73 nM, 132 nM, 7.7 microM and 5.9 microM, respectively. Other substituted benzamides including metoclopramide, sulpiride, tiapride, sultopride and cisapride were inactive at 10(-5) M. 3. Inhibition by clebopride and Delagrange 2674 of [3H]-FNM binding was apparently competitive and readily reversible. 4. In the presence of gamma-aminobutyric acid (GABA), the ability of diazepam and Delagrange 2674 to displace [3H]-Ro 15-1788 binding was increased 3.6 and 1.6 fold respectively, compared to the absence of GABA, while ethyl beta-carboline-3-carboxylate (beta CCE) and clebopride were less potent in the presence of GABA. 5. Diazepam was 30 fold less potent at displacing [3H]-Ro 15-1788 in membranes that had been photoaffinity labelled with FNM than in control membranes, whereas the potency of beta CCE did not differ. Clebopride and Delagrange 2674 showed a less than two fold loss of potency in photoaffinity labelled membranes. 6. The pattern of binding of clebopride and Delagrange 2674 in these in vitro tests is similar to that found previously with partial agonists or antagonists at BDZ binding sites. 7. Clebopride and Delagrange 2674 inhibited [3H]-FNM binding with similar potency in rat cerebellar and hippocampal membranes, suggesting they have no selectivity for BDZ1 and BDZ2 binding sites. 8. Clebopride and Delagrange 2674 are structurally dissimilar to other BDZ ligands and represent another chemical structure to probe brain BDZ binding sites.

  17. Multiple [3H]-nemonapride binding sites in calf brain.

    Science.gov (United States)

    Helmeste, D M; Tang, S W; Li, M; Fang, H

    1997-07-01

    [3H]-Nemonapride has been the ligand of choice to label D4 dopamine receptors. Its specificity was questioned when it was discovered that sigma (sigma) sites were also labeled by [3H]-nemonapride. To further characterize the binding of [3H]-nemonapride, three areas of calf brain (striatum, frontal cortex and cerebellum) were examined. In all three areas, [3H]-nemonapride labeled multiple sites. Dopaminergic and sigma sites were the most prominent. The sigma binding profile was sigma-1 like with a Ki binding profile as follows (in order of decreasing potency): haloperidol, PPAP, pentazocine, DTG, U-50488, R(+)-3-PPP. Experiments using sulpiride and pentazocine to block striatal dopaminergic and sigma sites, respectively, revealed additional, not previously characterized binding sites for [3H]-nemonapride. One component which was present in striatum but not in frontal cortex or cerebellum, had affinity for some neuroleptics and WB-4101, but not for typical serotonergic agents. Thus, [3H]-nemonapride has no selectivity for dopamine receptors unless stringent experimental conditions are met.

  18. Binding-site assessment by virtual fragment screening.

    Directory of Open Access Journals (Sweden)

    Niu Huang

    2010-04-01

    Full Text Available The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock approximately 11,000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors.

  19. Eel calcitonin binding site distribution and antinociceptive activity in rats

    International Nuclear Information System (INIS)

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-01-01

    The distribution of binding site for [ 125 I]-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing [ 125 I]-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain

  20. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    Science.gov (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  1. Understanding the physical and chemical nature of the warfarin drug binding site in human serum albumin: experimental and theoretical studies.

    Science.gov (United States)

    Abou-Zied, Osama K

    2015-01-01

    Human serum albumin (HSA) is one of the major carrier proteins in the body and constitutes approximately half of the protein found in blood plasma. It plays an important role in lipid metabolism, and its ability to reversibly bind a large variety of pharmaceutical compounds makes it a crucial determinant of drug pharmacokinetics and pharmacodynamics. This review deals with one of the protein's major binding sites "Sudlow I" which includes a binding pocket for the drug warfarin (WAR). The binding nature of this important site can be characterized by measuring the spectroscopic changes when a ligand is bound. Using several drugs, including WAR, and other drug-like molecules as ligands, the results emphasize the nature of Sudlow I as a flexible binding site, capable of binding a variety of ligands by adapting its binding pockets. The high affinity of the WAR pocket for binding versatile molecular structures stems from the flexibility of the amino acids forming the pocket. The binding site is shown to have an ionization ability which is important to consider when using drugs that are known to bind in Sudlow I. Several studies point to the important role of water molecules trapped inside the binding site in molecular recognition and ligand binding. Water inside the protein's cavity is crucial in maintaining the balance between the hydrophobic and hydrophilic nature of the binding site. Upon the unfolding and refolding of HSA, more water molecules are trapped inside the binding site which cause some swelling that prevents a full recovery from the denatured state. Better understanding of the mechanism of binding in macromolecules such as HSA and other proteins can be achieved by combining experimental and theoretical studies which produce significant synergies in studying complex biochemical phenomena.

  2. Dangerous connections : on binding site models of infectious disease dynamics

    NARCIS (Netherlands)

    Leung, Ka Yin; Diekmann, Odo

    2017-01-01

    We formulate models for the spread of infection on networks that are amenable to analysis in the large population limit. We distinguish three different levels: (1) binding sites, (2) individuals, and (3) the population. In the tradition of physiologically structured population models, the

  3. Fabrication of supramolecular frameworks by tuning the binding site ...

    Indian Academy of Sciences (India)

    Administrator

    Fabrication of supramolecular frameworks by tuning the binding site of a tripodal ligand with d. 10 metal ions 803. Table 1. Crystal data and structure refinement parameters for 1 and 2. 1 .... e-mail: deposit@ccdc.cam.ac.uk web: http://www. ccdc. cam.ac.uk/deposit]. Supplementary figures and tables can be found in website ...

  4. Autologous peptides constitutively occupy the antigen binding site on Ia

    DEFF Research Database (Denmark)

    Buus, S; Sette, A; Colon, S M

    1988-01-01

    Low molecular weight material associated with affinity-purified class II major histocompatibility complex (MHC) molecules of mouse (Ia) had the expected properties of peptides bound to the antigen binding site of Ia. Thus, the low molecular weight material derived from the I-Ad isotype...

  5. Incorporating evolution of transcription factor binding sites into ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Identifying transcription factor binding sites (TFBSs) is essential to elucidate ... alignments with parts annotated as gap lessly aligned TFBSs (pair-profile hits) are generated. Moreover, the pair- profile related parameters are derived in a sound statistical framework. ... Much research has gone into the study of the evolution of.

  6. Structural Fingerprints of Transcription Factor Binding Site Regions

    Directory of Open Access Journals (Sweden)

    Peter Willett

    2009-03-01

    Full Text Available Fourier transforms are a powerful tool in the prediction of DNA sequence properties, such as the presence/absence of codons. We have previously compiled a database of the structural properties of all 32,896 unique DNA octamers. In this work we apply Fourier techniques to the analysis of the structural properties of human chromosomes 21 and 22 and also to three sets of transcription factor binding sites within these chromosomes. We find that, for a given structural property, the structural property power spectra of chromosomes 21 and 22 are strikingly similar. We find common peaks in their power spectra for both Sp1 and p53 transcription factor binding sites. We use the power spectra as a structural fingerprint and perform similarity searching in order to find transcription factor binding site regions. This approach provides a new strategy for searching the genome data for information. Although it is difficult to understand the relationship between specific functional properties and the set of structural parameters in our database, our structural fingerprints nevertheless provide a useful tool for searching for function information in sequence data. The power spectrum fingerprints provide a simple, fast method for comparing a set of functional sequences, in this case transcription factor binding site regions, with the sequences of whole chromosomes. On its own, the power spectrum fingerprint does not find all transcription factor binding sites in a chromosome, but the results presented here show that in combination with other approaches, this technique will improve the chances of identifying functional sequences hidden in genomic data.

  7. [Adenylate cyclase from rabbit heart: substrate binding site].

    Science.gov (United States)

    Perfil'eva, E A; Khropov, Iu V; Khachatrian, L; Bulargina, T V; Baranova, L A

    1981-08-01

    The effects of 17 ATP analogs on the solubilized rabbit heart adenylate cyclase were studied. The triphosphate chain, position 8 of the adenine base and the ribose residue of the ATP molecule were modified. Despite the presence of the alkylating groups in two former types of the analogs tested, no covalent blocking of the active site of the enzyme was observed. Most of the compounds appeared to be competitive reversible inhibitors. The kinetic data confirmed the importance of the triphosphate chain for substrate binding in the active site of adenylate cyclase. (Formula: See Text) The inhibitors with different substituents in position 8 of the adenine base had a low affinity for the enzyme. The possible orientation of the triphosphate chain and the advantages of anti-conformation of the ATP molecule for their binding in the active site of adenylate cyclase are discussed.

  8. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  9. Substrate-Triggered Exosite Binding: Synergistic Dendrimer/Folic Acid Action for Achieving Specific, Tight-Binding to Folate Binding Protein.

    Science.gov (United States)

    Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M

    2016-03-14

    Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.

  10. Neuropeptide Y binding sites in rat brain identified with purified neuropeptide Y-I125

    International Nuclear Information System (INIS)

    Walker, M.W.; Miller, R.J.

    1986-01-01

    Neuropeptide Y (NPY) is a widely distributed neuronally localized peptide with 36 amino acids, 5 of which are tyrosines. The authors wished to investigate the properties of specific receptors for NPY. They therefore labeled the tyrosines with I125 using chloramine T and then purified the peptide using HPLC. A single mono-iodinated species of NPY which yielded > 85% specific binding in rat forebrain synaptosomes was selected as the ligand for all subsequent experiments. A time course of binding showed that equilibrium conditions were reached in 60 minutes at 21 0 C. Scatchard plots revealed a single class of binding sites with a Kd and a Bmax of 3 x 10-10 M and 28 pmol/mg, respectively. Competition binding with unlabeled NPY showed 50% displacement of bound ligand at 1 x 10-10 M NPY. Competition binding with rat pancreatic polypeptide (RPP), a homologous peptide possessing little NPY-like activity, showed 50% displacement of bound ligand at 2 x 10 -7 M RPP. No binding was observed on F-11 or PC12 neuronal cell lines, or on HSWP fibroblast cells. They conclude that NPY-I125 purified to homogeneity with HPLC is a highly selective ligand for NPY receptor sites. They are currently investigating such sites in brain, gut, and other tissues

  11. The 18-kilodalton Chlamydia trachomatis histone H1-like protein (Hc1) contains a potential N-terminal dimerization site and a C-terminal nucleic acid-binding domain

    DEFF Research Database (Denmark)

    Pedersen, LB; Birkelund, Svend; Holm, A

    1996-01-01

    The Chlamydia trachomatis histone H1-like protein (Hc1) is a DNA-binding protein specific for the metabolically inactive chlamydial developmental form, the elementary body. Hc1 induces DNA condensation in Escherichia coli and is a strong inhibitor of transcription and translation. These effects may......-hydroxysuccinimide ester), purified recombinant Hc1 was found to form dimers. The dimerization site was located in the N-terminal part of Hc1 (Hc1(2-57)). Moreover, circular dichroism measurements indicated an overall alpha-helical structure of this region. By using limited proteolysis, Southwestern blotting, and gel...

  12. Endogenously generated plasmin at the vascular wall injury site amplifies lysine binding site-dependent plasminogen accumulation in microthrombi.

    Directory of Open Access Journals (Sweden)

    Tomasz Brzoska

    Full Text Available The fibrinolytic system plays a pivotal role in the regulation of hemostasis; however, it remains unclear how and when the system is triggered to induce thrombolysis. Using intra-vital confocal fluorescence microscopy, we investigated the process of plasminogen binding to laser-induced platelet-rich microthrombi generated in the mesenteric vein of transgenic mice expressing green fluorescent protein (GFP. The accumulation of GFP-expressing platelets as well as exogenously infused Alexa Fluor 568-labeled Glu-plasminogen (Glu-plg on the injured vessel wall was assessed by measuring the increase in the corresponding fluorescence intensities. Glu-plg accumulated in a time-dependent manner in the center of the microthrombus, where phosphatidylserine is exposed on platelet surfaces and fibrin formation takes place. The rates of binding of Glu-plg in the presence of ε-aminocaproic acid and carboxypeptidase B, as well as the rates of binding of mini-plasminogen lacking kringle domains 1-4 and lysine binding sites, were significantly lower than that of Glu-plg alone, suggesting that the binding was dependent on lysine binding sites. Furthermore, aprotinin significantly suppressed the accumulation of Glu-plg, suggesting that endogenously generated plasmin activity is a prerequisite for the accumulation. In spite of the endogenous generation of plasmin and accumulation of Glu-plg in the center of microthrombi, the microthrombi did not change in size during the 2-hour observation period. When human tissue plasminogen activator was administered intravenously, Glu-plg further accumulated and the microthrombi were lysed. Glu-plg appeared to accumulate in the center of microthrombi in the early phase of microthrombus formation, and plasmin activity and lysine binding sites were required for this accumulation.

  13. Nucleic acids encoding a cellulose binding domain

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  14. Opioid binding site in EL-4 thymoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of (/sup 3/H) bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10/sup 6/ cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of (/sup 3/H) bremazocine with an IC/sub 50/ value = 0.57..mu..M. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, (D-Pen/sup 2/, D-Pen/sup 5/) enkephalin and ..beta..-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC/sub 50/ = 60..mu..M, that was similar to naloxone. 32 references, 3 figures, 2 tables.

  15. Medium-chain fatty acid binding to albumin and transfer to phospholipid bilayers

    International Nuclear Information System (INIS)

    Hamilton, J.A.

    1989-01-01

    Temperature-dependent (5-42 degree C) 13 C NMR spectra of albumin complexes with 90% isotopically substituted [1- 13 C]octanoic or [1- 13 C]decanoic acids showed a single peak at >30 degree C but three peaks at lower temperatures. The chemical-shift differences result from different ionic and/or hydrogen-bonding interactions between amino acid side chains and the fatty acid carboxyl carbon. Rapid exchange of fatty acid among binding sites obscures these sites at temperatures >30 degree C. Rate constants for exchange at 33 degree C were 350 sec -1 for octanoate and 20 sec -1 for decanoate. Temperature-dependent data for octanoate showed an activation energy of 2 kcal/mol for exchange. Spectra of albumin complexes with the 12-carbon saturated fatty acid, lauric acid, had several narrow laurate carboxyl peaks at 35 degree C, indicating longer lifetimes in the different binding sites. Fatty acid exchange between albumin and model membranes (phosphatidylcholine bilayers) occurred on a time scale comparable to that for exchange among albumin binding sites, following the order octanoate > decanoate > laurate. The equilibrium distribution of fatty acid between lipid bilayers and protein was measured directly from NMR spectra. Decreasing pH increased the relative affinity of fatty acid for the lipid bilayer. The results predict that the relative affinity of octanoic acid for albumin and membranes will be similar to that of long-chain fatty acids, but the rate of equilibration will be ∼ 10 4 faster for octanoic acid

  16. Binding Sites for Amyloid-β Oligomers and Synaptic Toxicity

    Science.gov (United States)

    Smith, Levi M.; Strittmatter, Stephen M.

    2017-01-01

    In Alzheimer’s disease (AD), insoluble and fibrillary amyloid-β (Aβ) peptide accumulates in plaques. However, soluble Aβ oligomers are most potent in creating synaptic dysfunction and loss. Therefore, receptors for Aβ oligomers are hypothesized to be the first step in a neuronal cascade leading to dementia. A number of cell-surface proteins have been described as Aβ binding proteins, and one or more are likely to mediate Aβ oligomer toxicity in AD. Cellular prion protein (PrPC) is a high-affinity Aβ oligomer binding site, and a range of data delineates a signaling pathway leading from Aβ complexation with PrPC to neuronal impairment. Further study of Aβ binding proteins will define the molecular basis of this crucial step in AD pathogenesis. PMID:27940601

  17. Structural analysis and binding domain of albumin complexes with natural dietary supplement humic acid

    International Nuclear Information System (INIS)

    Ding Fei; Diao Jianxiong; Yang Xinling; Sun Ying

    2011-01-01

    Humic acid, a natural ionic molecule, is rapidly being recognized as one of the crucial elements in our modern diets of the new century. A biophysical protocol utilizing circular dichroism (CD), steady state and time-resolved fluorescence for the investigation of the complexation of the humic acid to the staple in vivo transporter, human serum albumin (HSA), as a model for protein-humic substances, is proclaimed. The alterations of CD and three-dimensional fluorescence suggest that the polypeptide chain of HSA partially folded after complexation with humic acid. The data of fluorescence emission displayed that the binding of humic acid to HSA is the formation of HSA-humic acid complex with an association constant of 10 4 M -1 ; this corroborates the fluorescence lifetime measurements that the static mechanism was operated. The precise binding domain of humic acid in HSA has been verified from the denaturation of albumin, hydrophobic ANS displacement, and site-specific ligands; subdomain IIA (Sudlow's site I) was earmarked to possess high-affinity for humic acid. The observations are relevant for other albumin-humic substance systems when the ligands have analogous configuration with humic acid. - Highlights: → Albumin structure partially folds upon humic acid complexation. → Static type is dominance for the diminution in the Trp-214 fluorescence.→ Subdomain IIA is designate to possess high-affinity site for humic acid.

  18. Visualization of specific binding sites of benzodiazepine in human brain

    International Nuclear Information System (INIS)

    Shinotoh, H.; Yamasaki, T.; Inoue, O.; Itoh, T.; Suzuki, K.; Hashimoto, K.; Tateno, Y.; Ikehira, H.

    1986-01-01

    Using 11C-labeled Ro15-1788 and positron emission tomography, studies of benzodiazepine binding sites in the human brain were performed on four normal volunteers. Rapid and high accumulation of 11C activity was observed in the brain after i.v. injection of [11C]Ro15-1788, the maximum of which was within 12 min. Initial distribution of 11C activity in the brain was similar to the distribution of the normal cerebral blood flow. Ten minutes after injection, however, a high uptake of 11C activity was observed in the cerebral cortex and moderate uptake was seen in the cerebellar cortex, the basal ganglia, and the thalamus. The accumulation of 11C activity was low in the brain stem. This distribution of 11C activity was approximately parallel to the known distribution of benzodiazepine receptors. Saturation experiments were performed on four volunteers with oral administration of 0.3-1.8 mg/kg of cold Ro15-1788 prior to injection. Initial distribution of 11C activity following injection peaked within 2 min and then the accumulation of 11C activity decreased rapidly and remarkably throughout the brain. The results indicated that [11C] Ro15-1788 associates and dissociates to specific and nonspecific binding sites rapidly and has a high ratio of specific receptor binding to nonspecific binding in vivo. Carbon-11 Ro15-1788 is a suitable radioligand for the study of benzodiazepine receptors in vivo in humans

  19. Identification of Ubiquinol Binding Motifs at the Qo-Site of the Cytochrome bc1 Complex

    DEFF Research Database (Denmark)

    Barragan, Angela M.; Crofts, Antony R.; Schulten, Klaus

    2015-01-01

    for the function of the bc1 complex is the initial redox process that involves a bifurcated electron transfer in which the two electrons from a quinol substrate are passed to different electron acceptors in the bc1 complex. The electron transfer is coupled to proton transfer. The overall mechanism of quinol...... all atom molecular dynamics and quantum chemical calculations to reveal the binding modes of quinol at the Qo-site of the bc1 complex from Rhodobacter capsulatus. The calculations suggest a novel configuration of amino acid residues responsible for quinol binding and support a mechanism for proton...

  20. SP-A binding sites on bovine alveolar macrophages.

    Science.gov (United States)

    Plaga, S; Plattner, H; Schlepper-Schaefer, J

    1998-11-25

    Surfactant protein A (SP-A) binding to bovine alveolar macrophages was examined in order to characterize SP-A binding proteins on the cell surface and to isolate putative receptors from these cells that could be obtained in large amounts. Human SP-A, unlabeled or labeled with gold particles, was bound to freshly isolated macrophages and analyzed with ELISA or the transmission electron microscope. Binding of SP-A was inhibited by Ca2+ chelation, by an excess of unlabeled SP-A, or by the presence of 20 mg/ml mannan. We conclude that bovine alveolar macrophages expose binding sites for SP-A that are specific and that depend on Ca2+ and on mannose residues. For isolation of SP-A receptors with homologous SP-A as ligand we isolated SP-A from bovine lung lavage. SDS-PAGE analysis of the purified SP-A showed a protein of 32-36 kDa. Functional integrity of the protein was demonstrated. Bovine SP-A bound to Dynabeads was used to isolate SP-A binding proteins. From the fractionated and blotted proteins of the receptor preparation two proteins bound SP-A in a Ca2+-dependent manner, a 40-kDa protein showing mannose dependency and a 210-kDa protein, showing no mannose sensitivity. Copyright 1998 Academic Press.

  1. A systems biology approach to transcription factor binding site prediction.

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    2010-03-01

    Full Text Available The elucidation of mammalian transcriptional regulatory networks holds great promise for both basic and translational research and remains one the greatest challenges to systems biology. Recent reverse engineering methods deduce regulatory interactions from large-scale mRNA expression profiles and cross-species conserved regulatory regions in DNA. Technical challenges faced by these methods include distinguishing between direct and indirect interactions, associating transcription regulators with predicted transcription factor binding sites (TFBSs, identifying non-linearly conserved binding sites across species, and providing realistic accuracy estimates.We address these challenges by closely integrating proven methods for regulatory network reverse engineering from mRNA expression data, linearly and non-linearly conserved regulatory region discovery, and TFBS evaluation and discovery. Using an extensive test set of high-likelihood interactions, which we collected in order to provide realistic prediction-accuracy estimates, we show that a careful integration of these methods leads to significant improvements in prediction accuracy. To verify our methods, we biochemically validated TFBS predictions made for both transcription factors (TFs and co-factors; we validated binding site predictions made using a known E2F1 DNA-binding motif on E2F1 predicted promoter targets, known E2F1 and JUND motifs on JUND predicted promoter targets, and a de novo discovered motif for BCL6 on BCL6 predicted promoter targets. Finally, to demonstrate accuracy of prediction using an external dataset, we showed that sites matching predicted motifs for ZNF263 are significantly enriched in recent ZNF263 ChIP-seq data.Using an integrative framework, we were able to address technical challenges faced by state of the art network reverse engineering methods, leading to significant improvement in direct-interaction detection and TFBS-discovery accuracy. We estimated the accuracy

  2. Urinary excretion of fatty acid-binding proteins in idiopathic membranous nephropathy.

    NARCIS (Netherlands)

    Hofstra, J.M.; Deegens, J.K.J.; Steenbergen, E.; Wetzels, J.F.M.

    2008-01-01

    BACKGROUND: It is suggested that proteinuria contributes to progressive renal failure by inducing tubular cell injury. The site of injury is unknown. Most studies have used markers of proximal tubular cell damage. Fatty acid-binding proteins (FABPs) are intracellular carrier proteins with different

  3. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Photoaffinity labeling of the pactamycin binding site on eubacterial ribosomes

    International Nuclear Information System (INIS)

    Tejedor, F.; Amils, R.; Ballesta, J.P.

    1985-01-01

    Pactamycin, an inhibitor of the initial steps of protein synthesis, has an acetophenone group in its chemical structure that makes the drug a potentially photoreactive molecule. In addition, the presence of a phenolic residue makes it easily susceptible to radioactive labeling. Through iodination, one radioactive derivative of pactamycin has been obtained with biological activities similar to the unmodified drug when tested on in vivo and cell-free systems. With the use of [ 125 I]iodopactamycin, ribosomes of Escherichia coli have been photolabeled under conditions that preserve the activity of the particles and guarantee the specificity of the binding sites. Under these conditions, RNA is preferentially labeled when free, small ribosomal subunits are photolabeled, but proteins are the main target in the whole ribosome. This indicates that an important conformational change takes place in the binding site on association of the two subunits. The major labeled proteins are S2, S4, S18, S21, and L13. These proteins in the pactamycin binding site are probably related to the initiation step of protein synthesis

  5. Receptor-ligand binding sites and virtual screening.

    Science.gov (United States)

    Hattotuwagama, Channa K; Davies, Matthew N; Flower, Darren R

    2006-01-01

    Within the pharmaceutical industry, the ultimate source of continuing profitability is the unremitting process of drug discovery. To be profitable, drugs must be marketable: legally novel, safe and relatively free of side effects, efficacious, and ideally inexpensive to produce. While drug discovery was once typified by a haphazard and empirical process, it is now increasingly driven by both knowledge of the receptor-mediated basis of disease and how drug molecules interact with receptors and the wider physiome. Medicinal chemistry postulates that to understand a congeneric ligand series, or set thereof, is to understand the nature and requirements of a ligand binding site. Likewise, structural molecular biology posits that to understand a binding site is to understand the nature of ligands bound therein. Reality sits somewhere between these extremes, yet subsumes them both. Complementary to rules of ligand design, arising through decades of medicinal chemistry, structural biology and computational chemistry are able to elucidate the nature of binding site-ligand interactions, facilitating, at both pragmatic and conceptual levels, the drug discovery process.

  6. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  7. Predicting nucleic acid binding interfaces from structural models of proteins.

    Science.gov (United States)

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  8. Acid-base and copper-binding properties of three organic matter fractions isolated from a forest floor soil solution

    Science.gov (United States)

    van Schaik, Joris W. J.; Kleja, Dan B.; Gustafsson, Jon Petter

    2010-02-01

    Vast amounts of knowledge about the proton- and metal-binding properties of dissolved organic matter (DOM) in natural waters have been obtained in studies on isolated humic and fulvic (hydrophobic) acids. Although macromolecular hydrophilic acids normally make up about one-third of DOM, their proton- and metal-binding properties are poorly known. Here, we investigated the acid-base and Cu-binding properties of the hydrophobic (fulvic) acid fraction and two hydrophilic fractions isolated from a soil solution. Proton titrations revealed a higher total charge for the hydrophilic acid fractions than for the hydrophobic acid fraction. The most hydrophilic fraction appeared to be dominated by weak acid sites, as evidenced by increased slope of the curve of surface charge versus pH at pH values above 6. The titration curves were poorly predicted by both Stockholm Humic Model (SHM) and NICA-Donnan model calculations using generic parameter values, but could be modelled accurately after optimisation of the proton-binding parameters (pH ⩽ 9). Cu-binding isotherms for the three fractions were determined at pH values of 4, 6 and 9. With the optimised proton-binding parameters, the SHM model predictions for Cu binding improved, whereas the NICA-Donnan predictions deteriorated. After optimisation of Cu-binding parameters, both models described the experimental data satisfactorily. Iron(III) and aluminium competed strongly with Cu for binding sites at both pH 4 and pH 6. The SHM model predicted this competition reasonably well, but the NICA-Donnan model underestimated the effects significantly at pH 6. Overall, the Cu-binding behaviour of the two hydrophilic acid fractions was very similar to that of the hydrophobic acid fraction, despite the differences observed in proton-binding characteristics. These results show that for modelling purposes, it is essential to include the hydrophilic acid fraction in the pool of 'active' humic substances.

  9. The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.S.; Prakash, L. (Univ. of Rochester School of Medicine, NY (USA)); Weber, S. (Kodak Research Park, Rochester, NY (USA))

    1988-07-25

    The RAD18 gene of Saccharomyces cerevisiae is required for postreplication repair of UV damaged DNA. The authors have isolated the RAD18 gene, determined its nucleotide sequence and examined if deletion mutations of this gene show different or more pronounced phenotypic effects than the previously described point mutations. The RAD18 gene open reading frame encodes a protein of 487 amino acids, with a calculated molecular weight of 55,512. The RAD18 protein contains three potential zinc finger domains for nucleic acid binding, and a putative nucleotide binding sequence that is present in many proteins that bind and hydrolyze ATP. The DNA binding and nucleotide binding activities could enable the RAD18 protein to bind damaged sites in the template DNA with high affinity. Alternatively, or in addition, RAD18 protein may be a transcriptional regulator. The RAD18 deletion mutation resembles the previously described point mutations in its effects on viability, DNA repair, UV mutagenesis, and sporulation.

  10. Characterization of the proton binding sites of extracellular polymeric substances in an anaerobic membrane bioreactor.

    Science.gov (United States)

    Liu, Yi; Chang, Sheng; Defersha, Fantahun M

    2015-07-01

    This paper focuses on the characterization of the chemical compositions and acidic constants of the extracellular polymeric substances (EPSs) in an anaerobic membrane bioreactor treating synthetic brewery wastewater by using chemical analysis, linear programming analysis (LPA) of titration data, and FT-IR analysis. The linear programming analysis of titration data revealed that the EPSs have proton binding sites with pKa values from pKa ≤ 6, between 6 and 7, and approximately 9.8. The strong acidic sites (pKa ≤ 6) and some weak acidic sites (7.5 membrane filtration. In addition, the FT-IR analysis confirmed the presence of proteins, carbohydrates, nucleic acids, and lipids in the EPS samples. Based on the FT-IR analysis and the main chemical functional groups at the bacterial cell surfaces, the identified proton binding sites were related to carboxyl, phosphate, and hydroxyl/amine groups with pKa values of 4.6 ± 0.7, 6.6 ± 0.01, and 9.7 ± 0.1, respectively, with the corresponding respective intensities of 0.31 ± 0.05, 0.96 ± 0.3, and 1.53 ± 0.3 mmole/g-EPS. The pKa values and intensities of the proton binding sites are the fundamental molecular properties of EPSs that affect the EPS charge, molecular interactions, and metal complexation characteristics. Determination of such properties can advance Derjaguin-Landau-Verwey-Overbeek (DLVO)-based concentration polarization modeling, facilitate the estimation of the osmotic pressure of the EPS concentration polarization layers, and lead to a deeper understanding of the role of metal complexation in membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug-binding site

    OpenAIRE

    Handing, Katarzyna B.; Shabalin, Ivan G.; Szlachta, Karol; Majorek, Karolina A.; Minor, Wladek

    2016-01-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1 ?. Cetirizine is bound in two sites ? a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizi...

  12. Alcohol-Binding Sites in Distinct Brain Proteins: The Quest for Atomic Level Resolution

    Science.gov (United States)

    Howard, Rebecca J.; Slesinger, Paul A.; Davies, Daryl L.; Das, Joydip; Trudell, James R.; Harris, R. Adron

    2011-01-01

    Defining the sites of action of ethanol on brain proteins is a major prerequisite to understanding the molecular pharmacology of this drug. The main barrier to reaching an atomic-level understanding of alcohol action is the low potency of alcohols, ethanol in particular, which is a reflection of transient, low-affinity interactions with their targets. These mechanisms are difficult or impossible to study with traditional techniques such as radioligand binding or spectroscopy. However, there has been considerable recent progress in combining X-ray crystallography, structural modeling, and site-directed mutagenesis to define the sites and mechanisms of action of ethanol and related alcohols on key brain proteins. We review such insights for several diverse classes of proteins including inwardly rectifying potassium, transient receptor potential, and neurotransmit-ter-gated ion channels, as well as protein kinase C epsilon. Some common themes are beginning to emerge from these proteins, including hydrogen bonding of the hydroxyl group and van der Waals interactions of the methylene groups of ethanol with specific amino acid residues. The resulting binding energy is proposed to facilitate or stabilize low-energy state transitions in the bound proteins, allowing ethanol to act as a “molecular lubricant” for protein function. We discuss evidence for characteristic, discrete alcohol-binding sites on protein targets, as well as evidence that binding to some proteins is better characterized by an interaction region that can accommodate multiple molecules of ethanol. PMID:21676006

  13. The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide-Localization of a putative binding site.

    Science.gov (United States)

    Dayan, Avraham; Babin, Gilad; Ganoth, Assaf; Kayouf, Nivin Samir; Nitoker Eliaz, Neta; Mukkala, Srijana; Tsfadia, Yossi; Fleminger, Gideon

    2017-08-01

    Titanium (Ti) and its alloys are widely used in orthodontic and orthopedic implants by virtue to their high biocompatibility, mechanical strength, and high resistance to corrosion. Biointegration of the implants with the tissue requires strong interactions, which involve biological molecules, proteins in particular, with metal oxide surfaces. An exocellular high-affinity titanium dioxide (TiO 2 )-binding protein (TiBP), purified from Rhodococcus ruber, has been previously studied in our lab. This protein was shown to be homologous with the orthologous cytoplasmic rhodococcal dihydrolipoamide dehydrogenase (rhDLDH). We have found that rhDLDH and its human homolog (hDLDH) share the TiO 2 -binding capabilities with TiBP. Intrigued by the unique TiO 2 -binding properties of hDLDH, we anticipated that it may serve as a molecular bridge between Ti-based medical structures and human tissues. The objective of the current study was to locate the region and the amino acids of the protein that mediate the protein-TiO 2 surface interaction. We demonstrated the role of acidic amino acids in the nonelectrostatic enzyme/dioxide interactions at neutral pH. The observation that the interaction of DLDH with various metal oxides is independent of their isoelectric values strengthens this notion. DLDH does not lose its enzymatic activity upon binding to TiO 2 , indicating that neither the enzyme undergoes major conformational changes nor the TiO 2 binding site is blocked. Docking predictions suggest that both rhDLDH and hDLDH bind TiO 2 through similar regions located far from the active site and the dimerization sites. The putative TiO 2 -binding regions of both the bacterial and human enzymes were found to contain a CHED (Cys, His, Glu, Asp) motif, which has been shown to participate in metal-binding sites in proteins. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Where's water? The many binding sites of hydantoin.

    Science.gov (United States)

    Gruet, Sébastien; Pérez, Cristóbal; Steber, Amanda L; Schnell, Melanie

    2018-02-21

    Prebiotic hydantoin and its complexes with one and two water molecules are investigated using high-resolution broadband rotational spectroscopy in the 2-8 GHz frequency range. The hyperfine structure due to the nuclear quadrupole coupling of the two 14 N atoms is analysed for the monomer and the complexes. This characteristic hyperfine structure will support a definitive assignment from low frequency radioastronomy data. Experiments with H 2 18 O provide accurate experimental information on the preferred binding sites of water, which are compared with quantum-chemically calculated coordinates. In the 2-water complexes, the water molecules bind to hydantoin as a dimer instead of individually, indicating the strong water-water interactions. This information provides first insight on how hydantoin interacts with water on the molecular level.

  15. Measurement of binding of ascorbic acid to myrosinase by rate of dialysis

    International Nuclear Information System (INIS)

    Ohtsuru, Masaru; Hata, Tadao

    1975-01-01

    The activation mechanism of myrosinase by L-ascorbic acid depends on the slight conformational change of enzyme protein induced by ascorbic acid. Ascorbic acid binds to enzyme like Michaelis-complex, and then the value of Km had been evaluated to be 1 x 10 -3 M. The authors determined the binding constant and the number of binding sites using dialysis rate technique. Rate dialysis was carried out with a dialysis cell, and the ordinary cellophane tubing membrane was used. ( 14 C) - ascorbic acid was added, and counted by liquid scintillation counting. By the time course of two dialysis rate measurement with and without enzyme. The concentrations of free and bound ascorbic acids were counted. From the results, the enzyme was activated to the maximum level at 10 -3 M of ascorbic acid, and four molecules of ascorbic acid bound to the enzyme on Kd=0.1x10 -4 M. However, when more than 4 molecules of L-ascorbic acid bound to the enzyme, Kd increased to 0.9x10 -4 M, and L-ascorbic acid acted as an inhibitor. (Kubatake, H.)

  16. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    Science.gov (United States)

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  17. Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type

    International Nuclear Information System (INIS)

    Chalmers, D.T.; Dewar, D.; Graham, D.I.; Brooks, D.N.; McCulloch, J.

    1990-01-01

    Involvement of cortical glutamatergic mechanisms in senile dementia of the Alzheimer type (SDAT) has been investigated with quantitative ligand-binding autoradiography. The distribution and density of Na(+)-dependent glutamate uptake sites and glutamate receptor subtypes--kainate, quisqualate, and N-methyl-D-aspartate--were measured in adjacent sections of frontal cortex obtained postmortem from six patients with SDAT and six age-matched controls. The number of senile plaques was determined in the same brain region. Binding of D-[3H]aspartate to Na(+)-dependent uptake sites was reduced by approximately 40% throughout SDAT frontal cortex relative to controls, indicating a general loss of glutamatergic presynaptic terminals. [3H]Kainate receptor binding was significantly increased by approximately 70% in deep layers of SDAT frontal cortex compared with controls, whereas this binding was unaltered in superficial laminae. There was a positive correlation (r = 0.914) between kainate binding and senile plaque number in deep cortical layers. Quisqualate receptors, as assessed by 2-amino-3-hydroxy-5-[3H]methylisoxazole-4-propionic acid binding, were unaltered in SDAT frontal cortex compared with controls. There was a small reduction (25%) in N-methyl-D-aspartate-sensitive [3H]glutamate binding only in superficial cortical layers of SDAT brains relative to control subjects. [3H]Glutamate binding in SDAT subjects was unrelated to senile plaque number in superficial cortical layers (r = 0.104). These results indicate that in the presence of cortical glutamatergic terminal loss in SDAT plastic alterations occur in some glutamate receptor subtypes but not in others

  18. ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites.

    Science.gov (United States)

    Konc, Janez; Janežič, Dušanka

    2014-07-01

    The ProBiS-ligands web server predicts binding of ligands to a protein structure. Starting with a protein structure or binding site, ProBiS-ligands first identifies template proteins in the Protein Data Bank that share similar binding sites. Based on the superimpositions of the query protein and the similar binding sites found, the server then transposes the ligand structures from those sites to the query protein. Such ligand prediction supports many activities, e.g. drug repurposing. The ProBiS-ligands web server, an extension of the ProBiS web server, is open and free to all users at http://probis.cmm.ki.si/ligands. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Polymorphisms A387P in thrombospondin-4 and N700S in thrombospondin-1 perturb calcium binding sites.

    Science.gov (United States)

    Stenina, Olga I; Ustinov, Valentin; Krukovets, Irene; Marinic, Tina; Topol, Eric J; Plow, Edward F

    2005-11-01

    Recent genetic studies have associated members of the thrombospondin (TSP) gene family with premature cardiovascular disease. The disease-associated polymorphisms lead to single amino acid changes in TSP-4 (A387P) and TSP-1 (N700S). These substitutions reside in adjacent domains of these highly homologous proteins. Secondary structural predictive programs and the homology of the domains harboring these amino acid substitutions to those in other proteins pointed to potential alterations of putative Ca2+ binding sites that reside in close proximity to the polymorphic amino acids. Since Ca2+ binding is critical for the structure and function of TSP family members, direct evidence for differences in Ca2+ binding by the polymorphic forms was sought. Using synthetic peptides and purified recombinant variant fragments bearing the amino acid substitutions, we measured differences in Tb3+ luminescence as an index of Ca2+ binding. The Tb3+ binding constants placed the TSP-1 region affected by N700S polymorphism among other high-affinity Ca2+ binding sites. The affinity of Ca2+ binding was lower for peptides (3.5-fold) and recombinant fragments (10-fold) containing the S700 vs. the N700 form. In TSP-4, the P387 form acquired an additional Ca2+ binding site absent in the A387 form. The results of our study suggest that both substitutions (A387P in TSP-4 and N700S in TSP-1) alter Ca2+ binding properties. Since these substitutions exert the opposite effects on Ca2+ binding, a decrease in TSP-1 and an increase in TSP-4, the two TSP variants are likely to influence cardiovascular functions in distinct but yet pathogenic ways.

  20. A Unified Model of the GABA(A) Receptor Comprising Agonist and Benzodiazepine Binding Sites

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Bergmann, Rikke; Sørensen, Pernille Louise

    2013-01-01

    We present a full-length a1b2c2 GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate......-gated chloride channel (GluCl) from C. elegans and includes additional structural information from the prokaryotic ligand-gated ion channel ELIC in a few regions. Available mutational data of the binding sites are well explained by the model and the proposed ligand binding poses. We suggest a GABA binding mode...... of the agonists in the orthosteric site. The carbonyl group of DZP is predicted to interact with two threonines a1T206 and c2T142, similar to the acidic moiety of GABA. The chlorine atom of DZP is placed near the important a1H101 and the N-methyl group near a1Y159, a1T206, and a1Y209. We present a binding mode...

  1. Further investigations on the inorganic phosphate binding site of beef heart mitochondrial F1-ATPase

    International Nuclear Information System (INIS)

    Pougeois, R.; Lauquin, G.J.

    1985-01-01

    The possibility that 4-azido-2-nitrophenyl phosphate (ANPP), a photoreactive derivative of inorganic phosphate (P /sub i/ ), could mimic ATP was investigated. ANPP was hydrolyzed in the dark by sarcoplasmic reticulum Ca 2+ -ATPase in the presence of Ca 2+ but not in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. ANPP was not hydrolyzed by purified mitochondrial F1-ATPase; however, ADP and ATP protected F1-ATPase against ANPP photoinactivation. On the other hand, the trinitrophenyl nucleotide analogues (TNP-ADP, TNP-ATP, and TNP-AMP-PNP), which bind specifically at the two catalytic sites of F1-ATPase, abolished P /sub i/ binding on F1-ATPase; they do not protect F1-ATPase against ANPP photoinactivation. Furthermore, ANPP-photoinactivated F1-ATPase binds the TNP analogues in the same way as the native enzyme. The Pi binding site of F1-ATPase, which is shown to be photolabeled by ANPP, does not appear to be at the gamma-phosphate position of the catalytic sites

  2. The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain.

    Science.gov (United States)

    Lorentsen, R H; Graversen, J H; Caterer, N R; Thogersen, H C; Etzerodt, M

    2000-04-01

    Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element. Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6-15) are shown to be of primary importance in heparin binding.

  3. The Antinociceptive Agent SBFI-26 Binds to Anandamide Transporters FABP5 and FABP7 at Two Different Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hao-Chi [Cryo-EM Structural; Tong, Simon [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States; Zhou, Yuchen [Department of Applied Mathematics; Elmes, Matthew W. [Department of Biochemistry and; Yan, Su [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States; Kaczocha, Martin [Department of Biochemistry and; Department of Anesthesiology, Stony Brook University, Stony; Deutsch, Dale G. [Department of Biochemistry and; Institute of Chemical Biology and; Rizzo, Robert C. [Department of Applied Mathematics; Institute of Chemical Biology and; Laufer; Ojima, Iwao [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States; Institute of Chemical Biology and; Li, Huilin [Cryo-EM Structural; Institute of Chemical Biology and

    2017-06-28

    Human FABP5 and FABP7 are intracellular endocannabinoid transporters. SBFI-26 is an α-truxillic acid 1-naphthyl monoester that competitively inhibits the activities of FABP5 and FABP7 and produces antinociceptive and anti-inflammatory effects in mice. The synthesis of SBFI-26 yields several stereoisomers, and it is not known how the inhibitor binds the transporters. Here we report co-crystal structures of SBFI-26 in complex with human FABP5 and FABP7 at 2.2 and 1.9 Å resolution, respectively. We found that only (S)-SBFI-26 was present in the crystal structures. The inhibitor largely mimics the fatty acid binding pattern, but it also has several unique interactions. Notably, the FABP7 complex corroborates key aspects of the ligand binding pose at the canonical site previously predicted by virtual screening. In FABP5, SBFI-26 was unexpectedly found to bind at the substrate entry portal region in addition to binding at the canonical ligand-binding pocket. Our structural and binding energy analyses indicate that both R and S forms appear to bind the transporter equally well. We suggest that the S enantiomer observed in the crystal structures may be a result of the crystallization process selectively incorporating the (S)-SBFI-26–FABP complexes into the growing lattice, or that the S enantiomer may bind to the portal site more rapidly than to the canonical site, leading to an increased local concentration of the S enantiomer for binding to the canonical site. Our work reveals two binding poses of SBFI-26 in its target transporters. This knowledge will guide the development of more potent FABP inhibitors based upon the SBFI-26 scaffold.

  4. Identification of steroid-binding and phosphorylated sites within the glucocorticoid receptor

    International Nuclear Information System (INIS)

    Smith, L.I.

    1989-01-01

    The primary goal of these studies was to localize the steroid-binding and phosphorylated sites of the glucocorticoid receptor. The synthetic steroid, dexamethasone 21-mesylate (DM) forms a covalent thioether bond via the sulfhydryl group of a cysteine residue in the receptor. To determine the covalent site of attachment of this ligand, receptors in WEHI-7 mouse thymoma cells were labeled with [ 3 H]DM and purified with a monoclonal antibody. The receptor was completely digested with trypsin and a single peptide covalently labeled with steroid identified by reversed-phase HPLC. This peptide was analyzed by automated Edman degradation to determine the location of the steroid-labeled residue. A similar analysis was performed on an overlapping peptide produced by Staphylococcus aureus protease digestion. Analysis of tryptic peptides from receptors labeled with both [ 3 H]DM and L-[ 35 S]methionine indicated that this peptide contained methionine. These analyses, coupled with the published amino acid sequence of the receptor, identified Cysteine-644 in the steroid-binding domain of the mouse glucocorticoid receptor as the residue involved in covalent steroid-binding. A synthetic peptide representing amino acids 640-650 of the mouse receptor was prepared and analyzed to confirm the identification. These biochemical studies represent a direct demonstration of an amino acid important in receptor function. It has been proposed that the receptor functions through a phosphorylation-dephosphorylation cycle to explain the dependence of hormone binding capacity upon cellular ATP. The glucocorticoid receptor has been shown to be a phosphoprotein. As an initial step to identifying a role of phosphorylation in receptor action, phosphorylated sites within the functional domains of the protein were identified

  5. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical...

  6. Binding of polycyclic aromatic hydrocarbons by humic acids formed during composting

    International Nuclear Information System (INIS)

    Plaza, Cesar; Xing Baoshan; Fernandez, Jose M.; Senesi, Nicola; Polo, Alfredo

    2009-01-01

    Binding of two model polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene, by humic acids (HAs) isolated from an organic substrate at different stages of composting and a soil was investigated using a batch fluorescence quenching method and the modified Freundlich model. With respect to soil HA, the organic substrate HA fractions were characterized by larger binding affinities for both phenanthrene and pyrene. Further, isotherm deviation from linearity was larger for soil HA than for organic substrate HAs, indicating a larger heterogeneity of binding sites in the former. The composting process decreased the binding affinity and increased the heterogeneity of binding sites of HAs. The changes undergone by the HA fraction during composting may be expected to contribute to facilitate microbial accessibility to PAHs. The results obtained also suggest that bioremediation of PAH-contaminated soils with matured compost, rather than with fresh organic amendments, may result in faster and more effective cleanup. - Composting of organic materials decreases the binding affinity of the humic acid fraction for polycyclic aromatic hydrocarbons

  7. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase

    DEFF Research Database (Denmark)

    Cuyvers, Sven; Dornez, Emmie; Abou Hachem, Maher

    2012-01-01

    Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first...

  8. Effects of cytosine methylation on transcription factor binding sites

    KAUST Repository

    Medvedeva, Yulia A

    2014-03-26

    Background: DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important.Results: We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines " traffic lights" We observed a strong selection against CpG " traffic lights" within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions.Conclusions: Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. 2013 Medvedeva et al.; licensee BioMed Central Ltd.

  9. Atrial natriuretic factor binding sites in experimental congestive heart failure

    International Nuclear Information System (INIS)

    Bianchi, C.; Thibault, G.; Wrobel-Konrad, E.; De Lean, A.; Genest, J.; Cantin, M.

    1989-01-01

    A quantitative in vitro autoradiographic study was performed on the aorta, renal glomeruli, and adrenal cortex of cardiomyopathic hamsters in various stages of heart failure and correlated, in some instances, with in vivo autoradiography. The results indicate virtually no correlation between the degree of congestive heart failure and the density of 125I-labeled atrial natriuretic factor [(Ser99, Tyr126)ANF] binding sites (Bmax) in the tissues examined. Whereas the Bmax was increased in the thoracic aorta in moderate and severe heart failure, there were no significant changes in the zona glomerulosa. The renal glomeruli Bmax was lower in mild and moderate heart failure compared with control and severe heart failure. The proportion of ANF B- and C-receptors was also evaluated in sections of the aorta, adrenal, and kidney of control and cardiomyopathic hamsters with severe heart failure. (Arg102, Cys121)ANF [des-(Gln113, Ser114, Gly115, Leu116, Gly117) NH2] (C-ANF) at 10(-6) M displaced approximately 505 of (Ser99, Tyr126)125I-ANF bound in the aorta and renal glomeruli and approximately 20% in the adrenal zona glomerulosa in both series of animals. These results suggest that ANF may exert a buffering effect on the vasoconstriction of heart failure and to a certain extent may inhibit aldosterone secretion. The impairment of renal sodium excretion does not appear to be related to glomerular ANF binding sites at any stage of the disease

  10. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein

    DEFF Research Database (Denmark)

    Rolf, B; Oudenampsen-Krüger, E; Börchers, T

    1995-01-01

    The coding part of the cDNA for bovine liver-type fatty acid binding protein (L-FABP) has been amplified by RT-PCR, cloned and used for the construction of an Escherichia coli (E. coli) expression system. The recombinant protein made up to 25% of the soluble E. coli proteins and could be isolated...

  11. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  12. The inhibition of anti-DNA binding to DNA by nucleic acid binding polymers.

    Directory of Open Access Journals (Sweden)

    Nancy A Stearns

    Full Text Available Antibodies to DNA (anti-DNA are the serological hallmark of systemic lupus erythematosus (SLE and can mediate disease pathogenesis by the formation of immune complexes. Since blocking immune complex formation can attenuate disease manifestations, the effects of nucleic acid binding polymers (NABPs on anti-DNA binding in vitro were investigated. The compounds tested included polyamidoamine dendrimer, 1,4-diaminobutane core, generation 3.0 (PAMAM-G3, hexadimethrine bromide, and a β-cylodextrin-containing polycation. As shown with plasma from patients with SLE, NABPs can inhibit anti-DNA antibody binding in ELISA assays. The inhibition was specific since the NABPs did not affect binding to tetanus toxoid or the Sm protein, another lupus autoantigen. Furthermore, the polymers could displace antibody from preformed complexes. Together, these results indicate that NABPs can inhibit the formation of immune complexes and may represent a new approach to treatment.

  13. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor

    Directory of Open Access Journals (Sweden)

    Kratochwil Nicole A

    2007-10-01

    Full Text Available Abstract Background Differences in sweet taste perception among species depend on structural variations of the sweet taste receptor. The commercially used isovanillyl sweetener neohesperidin dihydrochalcone activates the human but not the rat sweet receptor TAS1R2+TAS1R3. Analysis of interspecies combinations and chimeras of rat and human TAS1R2+TAS1R3 suggested that the heptahelical domain of human TAS1R3 is crucial for the activation of the sweet receptor by neohesperidin dihydrochalcone. Results By mutational analysis combined with functional studies and molecular modeling we identified a set of different amino acid residues within the heptahelical domain of human TAS1R3 that forms the neohesperidin dihydrochalcone binding pocket. Sixteen amino acid residues in the transmembrane domains 2 to 7 and one in the extracellular loop 2 of hTAS1R3 influenced the receptor's response to neohesperidin dihydrochalcone. Some of these seventeen residues are also part of the binding sites for the sweetener cyclamate or the sweet taste inhibitor lactisole. In line with this observation, lactisole inhibited activation of the sweet receptor by neohesperidin dihydrochalcone and cyclamate competitively, whereas receptor activation by aspartame, a sweetener known to bind to the N-terminal domain of TAS1R2, was allosterically inhibited. Seven of the amino acid positions crucial for activation of hTAS1R2+hTAS1R3 by neohesperidin dihydrochalcone are thought to play a role in the binding of allosteric modulators of other class C GPCRs, further supporting our model of the neohesperidin dihydrochalcone pharmacophore. Conclusion From our data we conclude that we identified the neohesperidin dihydrochalcone binding site at the human sweet taste receptor, which overlaps with those for the sweetener cyclamate and the sweet taste inhibitor lactisole. This readily delivers a molecular explanation of our finding that lactisole is a competitive inhibitor of the receptor

  14. DeepSite: protein-binding site predictor using 3D-convolutional neural networks.

    Science.gov (United States)

    Jiménez, J; Doerr, S; Martínez-Rosell, G; Rose, A S; De Fabritiis, G

    2017-10-01

    An important step in structure-based drug design consists in the prediction of druggable binding sites. Several algorithms for detecting binding cavities, those likely to bind to a small drug compound, have been developed over the years by clever exploitation of geometric, chemical and evolutionary features of the protein. Here we present a novel knowledge-based approach that uses state-of-the-art convolutional neural networks, where the algorithm is learned by examples. In total, 7622 proteins from the scPDB database of binding sites have been evaluated using both a distance and a volumetric overlap approach. Our machine-learning based method demonstrates superior performance to two other competitive algorithmic strategies. DeepSite is freely available at www.playmolecule.org. Users can submit either a PDB ID or PDB file for pocket detection to our NVIDIA GPU-equipped servers through a WebGL graphical interface. gianni.defabritiis@upf.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the

  16. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    International Nuclear Information System (INIS)

    Singh, S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 (angstrom) above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  17. Delineation of the peptide binding site of the human galanin receptor.

    Science.gov (United States)

    Kask, K; Berthold, M; Kahl, U; Nordvall, G; Bartfai, T

    1996-01-01

    Galanin, a neuroendocrine peptide of 29 amino acids, binds to Gi/Go-coupled receptors to trigger cellular responses. To determine which amino acids of the recently cloned seven-transmembrane domain-type human galanin receptor are involved in the high-affinity binding of the endogenous peptide ligand, we performed a mutagenesis study. Mutation of the His264 or His267 of transmembrane domain VI to alanine, or of Phe282 of transmembrane domain VII to glycine, results in an apparent loss of galanin binding. The substitution of Glu271 to serine in the extracellular loop III of the receptor causes a 12-fold loss in affinity for galanin. We combined the mutagenesis results with data on the pharmacophores (Trp2, Tyr9) of galanin and with molecular modelling of the receptor using bacteriorhodopsin as a model. Based on these studies, we propose a binding site model for the endogenous peptide ligand in the galanin receptor where the N-terminus of galanin hydrogen bonds with Glu271 of the receptor, Trp2 of galanin interacts with the Zn2+ sensitive pair of His264 and His267 of transmembrane domain VI, and Tyr9 of galanin interacts with Phe282 of transmembrane domain VII, while the C-terminus of galanin is pointing towards the N-terminus of th Images PMID:8617199

  18. Substance P and substance K receptor binding sites in the human gastrointestinal tract: localization by autoradiography

    International Nuclear Information System (INIS)

    Gates, T.S.; Zimmerman, R.P.; Mantyh, C.R.; Vigna, S.R.; Maggio, J.E.; Welton, M.L.; Passaro, E.P. Jr.; Mantyh, P.W.

    1988-01-01

    Quantitative receptor autoradiography was used to localize and quantify the distribution of binding sites for 125 I-radiolabeled substance P (SP), substance K (SK) and neuromedin K (NK) in the human GI tract using histologically normal tissue obtained from uninvolved margins of resections for carcinoma. The distribution of SP and SK binding sites is different for each gastrointestinal (GI) segment examined. Specific SP binding sites are expressed by arterioles and venules, myenteric plexus, external circular muscle, external longitudinal muscle, muscularis mucosa, epithelial cells of the mucosa, and the germinal centers of lymph nodules. SK binding sites are distributed in a pattern distinct from SP binding sites and are localized to the external circular muscle, external longitudinal muscle, and the muscularis mucosa. Binding sites for NK were not detected in any part of the human GI tract. These results demonstrate that: (1) surgical specimens from the human GI tract can be effectively processed for quantitative receptor autoradiography; (2) of the three mammalian tachykinins tested, SP and SK, but not NK binding sites are expressed in detectable levels in the human GI tract; (3) whereas SK receptor binding sites are expressed almost exclusively by smooth muscle, SP binding sites are expressed by smooth muscle cells, arterioles, venules, epithelial cells of the mucosa and cells associated with lymph nodules; and (4) both SP and SK binding sites expressed by smooth muscle are more stable than SP binding sites expressed by blood vessels, lymph nodules, and mucosal cells

  19. Identification of leukotriene D4 specific binding sites in the membrane preparation isolated from guinea pig lung

    International Nuclear Information System (INIS)

    Mong, S.; Wu, H.L.; Clark, M.A.; Stadel, J.M.; Gleason, J.G.; Crooke, S.T.

    1984-01-01

    A radioligand binding assay has been established to study leukotriene specific binding sites in the guinea pig and rabbit tissues. Using high specific activity [ 3 H]-leukotriene D4 [( 3 H]-LTD4), in the presence or absence of unlabeled LTD4, the diastereoisomer of LTD4 (5R,6S-LTD4), leukotriene E4 (LTE4) and the end-organ antagonist, FPL 55712, the authors have identified specific binding sites for [ 3 H]-LTD4 in the crude membrane fraction isolated from guinea pig lung. The time required for [ 3 H]-LTD4 binding to reach equilibrium was approximately 20 to 25 min at 37 degrees C in the presence of 10 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl. The binding of [ 3 H]-LTD4 to the specific sites was saturable, reversible and stereospecific. The maximal number of binding sites (Bmax), derived from Scatchard analysis, was approximately 320 +/- 200 fmol per mg of crude membrane protein. The dissociation constants, derived from kinetic and saturation analyses, were 9.7 nM and 5 +/- 4 nM, respectively. The specific binding sites could not be detected in the crude membrane fraction prepared from guinea pig ileum, brain and liver, or rabbit lung, trachea, ileum and uterus. In radioligand competition experiments, LTD4, FPL 55712 and 5R,6S-LTD4 competed with [ 3 H]-LTD4. The metabolic inhibitors of arachidonic acid and SKF 88046, an antagonist of the indirectly-mediated actions of LTD4, did not significantly compete with [ 3 H]-LTD4 at the specific binding sites. These correlations indicated that these specific binding sites may be the putative leukotriene receptors in the guinea-pig lung

  20. Evaluation of simultaneous binding of Chromomycin A3 to the multiple sites of DNA by the new restriction enzyme assay.

    Science.gov (United States)

    Murase, Hirotaka; Noguchi, Tomoharu; Sasaki, Shigeki

    2018-06-01

    Chromomycin A3 (CMA3) is an aureolic acid-type antitumor antibiotic. CMA3 forms dimeric complexes with divalent cations, such as Mg 2+ , which strongly binds to the GC rich sequence of DNA to inhibit DNA replication and transcription. In this study, the binding property of CMA3 to the DNA sequence containing multiple GC-rich binding sites was investigated by measuring the protection from hydrolysis by the restriction enzymes, AccII and Fnu4HI, for the center of the CGCG site and the 5'-GC↓GGC site, respectively. In contrast to the standard DNase I footprinting method, the DNA substrates are fully hydrolyzed by the restriction enzymes, therefore, the full protection of DNA at all the cleavable sites indicates that CMA3 simultaneously binds to all the binding sites. The restriction enzyme assay has suggested that CMA3 has a high tendency to bind the successive CGCG sites and the CGG repeat. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Cellulase enzyme: Homology modeling, binding site identification and molecular docking

    Science.gov (United States)

    Selvam, K.; Senbagam, D.; Selvankumar, T.; Sudhakar, C.; Kamala-Kannan, S.; Senthilkumar, B.; Govarthanan, M.

    2017-12-01

    Cellulase is an enzyme that degrades the linear polysaccharide like cellulose into glucose by breaking the β-1,4- glycosidic bonds. These enzymes are the third largest enzymes with a great potential towards the ethanol production and play a vital role in degrading the biomass. The production of ethanol depends upon the ability of the cellulose to utilize the wide range of substrates. In this study, the 3D structure of cellulase from Acinetobacter sp. was modeled by using Modeler 9v9 and validated by Ramachandran plot. The accuracy of the predicted 3D structure was checked using Ramachandran plot analysis showed that 81.1% in the favored region, compatibility of an atomic model (3D) with amino acid sequence (1D) for the model was observed as 78.21% and 49.395% for Verify 3D and ERRAT at SAVES server. As the binding efficacy with the substrate might suggests the choice of the substrate as carbon and nitrogen sources, the cellobiose, cellotetraose, cellotetriose and laminaribiose were employed in the docking studies. The docking of cellobiose, cellotetraose, cellotetriose and laminaribiose with cellulase exhibited the binding energy of -6.1523 kJ/mol, -7.8759 kJ/mol,-6.1590 kJ/mol and -6.7185 kJ/mol, respectively. These docking studies revealed that cellulase has the greater potential towards the cellotetraose as a substrate for the high yield of ethanol.

  2. Demonstration of specific binding sites for 3H-RRR-alpha-tocopherol on human erythrocytes

    International Nuclear Information System (INIS)

    Kitabchi, A.E.; Wimalasena, J.

    1982-01-01

    Previous work from our laboratory demonstrated specific binding sites for 3 H-RRR-alpha-tocopherol ( 3 H-d alpha T) in membranes of rat adrenal cells. As tocopherol deficiency is associated with increased susceptibility of red blood cells to hemolysis, we investigated tocopherol binding sites in human RBCs. Erythrocytes were found to have specific binding sites for 3 H-d alpha T that exhibited saturability and time and cell-concentration dependence as well as reversibility of binding. Kinetic studies of binding demonstrated two binding sites--one with high affinity (Ka of 2.6 x 10(7) M-1), low capacity (7,600 sites per cell) and the other with low affinity (1.2 x 10(6) M-1), high capacity (150,000 sites per cell). In order to localize the binding sites further, RBCs were fractionated and greater than 90% of the tocopherol binding was located in the membranes. Similar to the findings in intact RBCs, the membranes exhibited two binding sites with a respective Ka of 3.3 x 10(7) M-1 and 1.5 x 10(6) M-1. Specificity data for binding demonstrated 10% binding for RRR-gamma-tocopherol, but not other tocopherol analog exhibited competition for 3 H-d alpha T binding sites. Instability data suggested a protein nature for these binding sites. Preliminary studies on Triton X-100 solubilized fractions resolved the binding sites to a major component with an Mr of 65,000 and a minor component with an Mr of 125,000. We conclude that human erythrocyte membranes contain specific binding sites for RRR-alpha-tocopherol. These sites may be of physiologic significance in the function of tocopherol on the red blood cell membrane

  3. Tentative identification of the second substrate binding site in Arabidopsis phytochelatin synthase.

    Directory of Open Access Journals (Sweden)

    Ju-Chen Chia

    Full Text Available Phytochelatin synthase (PCS uses the substrates glutathione (GSH, γGlu-Cys-Gly and a cadmium (Cd-bound GSH (Cd∙GS2 to produce the shortest phytochelatin product (PC2, (γGlu-Cys2-Gly through a ping-pong mechanism. The binding of the 2 substrates to the active site, particularly the second substrate binding site, is not well-understood. In this study, we generated a structural model of the catalytic domain of Arabidopsis AtPCS1 (residues 12-218 by using the crystal structure of the γGlu-Cys acyl-enzyme complex of the PCS of the cyanobacterium Nostoc (NsPCS as a template. The modeled AtPCS1 revealed a cavity in proximity to the first substrate binding site, consisting of 3 loops containing several conserved amino acids including Arg152, Lys185, and Tyr55. Substitutions of these amino acids (R152K, K185R, or double mutation resulted in the abrogation of enzyme activity, indicating that the arrangement of these 2 positive charges is crucial for the binding of the second substrate. Recombinant AtPCS1s with mutations at Tyr55 showed lower catalytic activities because of reduced affinity (3-fold for Y55W for the Cd∙GS2, further suggesting the role of the cation-π interaction in recognition of the second substrate. Our study results indicate the mechanism for second substrate recognition in PCS. The integrated catalytic mechanism of PCS is further discussed.

  4. Surface binding sites in carbohydrate active enzymes: An emerging picture of structural and functional diversity

    DEFF Research Database (Denmark)

    Svensson, Birte; Cockburn, Darrell

    2013-01-01

    is not universal and is in fact rare among some families of enzymes. In some cases an alternative to possessing a CBM is for the enzyme to bind to the substrate at a site on the catalytic domain, but away from the active site. Such a site is termed a surface (or secondary) binding site (SBS). SBSs have been...

  5. Functional impact of HIV coreceptor-binding site mutations

    International Nuclear Information System (INIS)

    Biscone, Mark J.; Miamidian, John L.; Muchiri, John M.; Baik, Sarah S.W.; Lee, Fang-Hua; Doms, Robert W.; Reeves, Jacqueline D.

    2006-01-01

    The bridging sheet region of the gp120 subunit of the HIV-1 Env protein interacts with the major virus coreceptors, CCR5 and CXCR4. We examined the impact of mutations in and adjacent to the bridging sheet region of an X4 tropic HIV-1 on membrane fusion and entry inhibitor susceptibility. When the V3-loop of this Env was changed so that CCR5 was used, the effects of these same mutations on CCR5 use were assayed as well. We found that coreceptor-binding site mutations had greater effects on CXCR4-mediated fusion and infection than when CCR5 was used as a coreceptor, perhaps related to differences in coreceptor affinity. The mutations also reduced use of the alternative coreceptors CCR3 and CCR8 to varying degrees, indicating that the bridging sheet region is important for the efficient utilization of both major and minor HIV coreceptors. As seen before with a primary R5 virus strain, bridging sheet mutations increased susceptibility to the CCR5 inhibitor TAK-779, which correlated with CCR5 binding efficiency. Bridging sheet mutations also conferred increased susceptibility to the CXCR4 ligand AMD-3100 in the context of the X4 tropic Env. However, these mutations had little effect on the rate of membrane fusion and little effect on susceptibility to enfuvirtide, a membrane fusion inhibitor whose activity is dependent in part on the rate of Env-mediated membrane fusion. Thus, mutations that reduce coreceptor binding and enhance susceptibility to coreceptor inhibitors can affect fusion and enfuvirtide susceptibility in an Env context-dependent manner

  6. Kinetic Mechanism of Uracil Phosphoribosyltransferase from Escherichia coli and Catalytic Importance of the Conserved Proline in the PRPP Binding Site

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Jensen, Kaj Frank

    1999-01-01

    Phosphoribosyltransferases catalyze the formation of nucleotides from a nitrogenous base and 5-phosphoribosyl-a-1-pyrophosphate (PRPP). These enzymes and the PRPP synthases resemble each other in a short homologous sequence of 13 amino acid residues which has been termed the PRPP binding site and...

  7. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-Affinity γ-Hydroxybutyrate (GHB) Binding Sites

    DEFF Research Database (Denmark)

    Vogensen, Stine B.; Marek, Ales; Bay, Tina

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screen...

  8. Pet imaging of peripheral benzodiazepine binding sites in brain tumors

    International Nuclear Information System (INIS)

    Junck, L.; Jewett, D.M.; Olsen, J.M.; Kilbourn, M.R.; Koeppe, R.A.; Young, A.B.; Greenberg, H.S.; Kuhl, D.E.

    1991-01-01

    Studies in vitro have shown that the peripheral-type benzodiazepine binding site (PBBS) is present in moderate to high density on malignant gliomas as well as in areas of reactive gliosis, but in low density in normal brain. PK 11195 is an isoquinoline derivative that binds selectively to the PBBS but not to the central benzodiazepine receptor. We have used [ 11 C]PK 11195 with positron emission tomography (PET) to study brain tumors and cerebral infarcts. Preliminary results showed that, in 13 of 18 patients with astrocytomas, [ 11 C]PK 11195 radioactivity was increased in tumor compared to remote brain and that the concentration ratios of tumor-to-remote brain were higher for high grade astrocytomas than for low grade astrocytomas. Pharmacokinetic analysis suggests that the increased activity in tumor probably does not result from alterations in blood flow or vascular permeability. Patients with lymphoma, meningioma, medulloblastoma, brain metastasis, and neurosarcoidosis have also shown increased radioactivity in tumor. Among eight patients with acute and subacute cerebral infarcts, activity in the infarct was increased in seven and was often greatest at the periphery. We conclude that [ 11 C]PK 11195 is a promising radiopharmaceutical for further investigation of brain tumors as well as diseases characterized by reactive gliosis

  9. Distance between two binding sites of the same antibody molecule

    International Nuclear Information System (INIS)

    Cser, L.; Gladkikh, I.A.; Ostanevich, Y.M.; Franek, F.; Novotny, J.; Nezlin, R.S.

    1978-01-01

    Neutron small-angle scattering experiments are reported, aimed at determining the distance between the two binding sites of the same antibody molecule employing complexes of anti-Dnp antibody with an antigenically univalent, high molecular weight ligand. Although the distance values could be determined only with a large statistical error, the data allowed the conclusion that the geometrical parameters of the complexes formed with the early (i.e., precipitating) antibody are significantly different from those of the complexes formed with the late (i.e, non-precipitating) antibody. The data suggest that the precipitating antibody complexed with a high molecular weight antigen assumes an extended shape with an antigen to antigen distance of 35.8 +- 1.3 nm. (Auth.)

  10. Methods and systems for identifying ligand-protein binding sites

    KAUST Repository

    Gao, Xin

    2016-05-06

    The invention provides a novel integrated structure and system-based approach for drug target prediction that enables the large-scale discovery of new targets for existing drugs Novel computer-readable storage media and computer systems are also provided. Methods and systems of the invention use novel sequence order-independent structure alignment, hierarchical clustering, and probabilistic sequence similarity techniques to construct a probabilistic pocket ensemble (PPE) that captures even promiscuous structural features of different binding sites for a drug on known targets. The drug\\'s PPE is combined with an approximation of the drug delivery profile to facilitate large-scale prediction of novel drug- protein interactions with several applications to biological research and drug development.

  11. Topography of the high-affinity lysine binding site of plasminogen as defined with a specific antibody probe

    International Nuclear Information System (INIS)

    Miles, L.A.; Plow, E.F.

    1986-01-01

    An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound [ 125 I]EDP I, [ 125 I]Glu-plasminogen, and [ 125 I]Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of [ 125 I]EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and l730 μM, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region and did not react with those lacking an EDP I region, or with tissue plasminogen activator or prothrombin, which also contains kringles. By immunoblotting analyses, a chymotryptic degradation product of M/sub r/ 20,000 was derived from EDP I that retained reactivity with the antibody. α 2 -Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen. The binding of [ 125 I]EDP I to fibrin was also inhibited by the antiserum. The observations provide independent evidence for the role of the high-affinity lysine binding site in the functional interactions of plasminogen with its primary substrate and inhibitor

  12. 5'-azido-N-1-naphthylphthalamic acid, a photolabile analog of the auxin transport inhibitor, N-1-naphthylphthalamic acid: synthesis and binding properties

    International Nuclear Information System (INIS)

    Voet, J.G.; Howley, K.; Shumsky, J.S.

    1987-01-01

    The polar transport of the plant growth regulator, auxin (indole-3-acetic acid, IAAH), is thought to involve the participation of several proteins in the plasma membrane, including a specific, saturable, voltage independent H + /IAA - efflux carrier located preferentially at the basal end of each cell. Auxin transport is specifically inhibited by the herbicide, N-1-naphthylphthalamic acid (NPA), which binds specifically to a protein in the plasma membrane, thought to be either the IAA - efflux carrier or an allosteric effector protein. They have synthesized and characterized a photolabile analog of NPA, 5'-azido-N-1-naphthylphthalamic acid (Az-NPA). This potential photoaffinity label for the NPA binding protein competes with 3 H-NPA for binding sites on Curcurbita pepo L. (zucchini) stem cell membranes with K/sub j/ = 1.5 x 10 -7 M. The K/sub i/ for NPA under these conditions is 2 x 10 -8 M, indicating that the affinity of Az-NPA for the membranes is only 7.5 fold lower than NPA. While the binding of 4.6 x 10 -6 M Az-NPA to NPA binding sites is reversible in the dark, exposure to light results in a 30% loss in 3 H-NPA binding ability. Pretreatment with 10 -4 M NPA protects the membranes against photodestruction of 3 H-NPA binding sites by Az-NPA, supporting the conclusion that Az-NPA destroys these sites by specific covalent attachment

  13. Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins

    Science.gov (United States)

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478

  14. Nucleic acid-binding glycoproteins which solubilize nucleic acids in dilute acid: re-examination of the Ustilago maydis glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.; Champ, D.R.; Young, J.L.; Grant, C.E.

    1980-01-01

    Holloman reported the isolation from Ustilago maydis of a glycoprotein which prevented the precipitation of nucleic acids in cold 5% trichloroacetic acid. Two glycoprotein fractions from U. maydis with this nucleic acid-solubilizing activity were isolated in our laboratory using improved purification procedures. The activity was not due to nuclease contamination. The glycoproteins are distinguished by: their ability to bind to concanavalin A-Sepharose; their differential binding to double- and single-stranded deoxyribonucleic acid, and to ribonucleic acid; their molecular weights (46,000 and 69,000); and the relative amounts present in growing versus nongrowing cells. Both fractions required sulfhydryl-reducing conditions for optimal yields, specific activity, and stability. Nucleic acid binding was cooperative, the minimum number of glycoproteins required to make a native T7 DNA molecule soluble in dilute acid being estimated at 2 and 15, respectively.

  15. Interaction of D-LSD with binding sites in brain: a study in vivo and in vitro

    International Nuclear Information System (INIS)

    Ebersole, B.L.J.

    1985-01-01

    The localization of [ 3 H]-d-lysergic acid diethylamide ([ 3 H]LSD) binding sites in the mouse brain was compared in vivo and in vitro. Radioautography of brain sections incubated with [ 3 H]LSD in vitro revealed substantial specific [ 3 H]LSD binding in cortical layers III-IV and areas CA1 and dentate gyrus in hippocampus. In contrast, in brain sections from animals that received [ 3 H]LSD in vivo, binding in hippocampus was scant and diffuse, although the pattern of labeling in cortex was similar to that seen in vitro. The low specific binding in hippocampus relative to cortex was confirmed by homogenate filtration studies of brain areas from mice that received injections of [ 3 H]LSD. Time-course studies established that peak specific binding at ten minutes was the same in cortex and hippocampus. At all times, binding in hippocampus was about one-third of that in cortex; in contrast, the concentration of free [ 3 H]LSD did not vary between regions. This finding was unexpected, because binding studies in vitro in membrane preparations indicated that the density and affinity of [ 3 H]LSD binding sites were similar in both brain regions. Saturation binding studies in vivo showed that the lower amount of [ 3 H]LSD binding in hippocampus was attributable to a lower density of sites labeled by [ 3 H]LSD. The pharmacological identify of [ 3 H]LSD binding sites in vivo may be relevant to the hallucinogenic properties of LSD and of other related hallucinogens

  16. Three classes of ligands each bind to distinct sites on the orphan G protein-coupled receptor GPR84.

    Science.gov (United States)

    Mahmud, Zobaer Al; Jenkins, Laura; Ulven, Trond; Labéguère, Frédéric; Gosmini, Romain; De Vos, Steve; Hudson, Brian D; Tikhonova, Irina G; Milligan, Graeme

    2017-12-20

    Medium chain fatty acids can activate the pro-inflammatory receptor GPR84 but so also can molecules related to 3,3'-diindolylmethane. 3,3'-Diindolylmethane and decanoic acid acted as strong positive allosteric modulators of the function of each other and analysis showed the affinity of 3,3'-diindolylmethane to be at least 100 fold higher. Methyl decanoate was not an agonist at GPR84. This implies a key role in binding for the carboxylic acid of the fatty acid. Via homology modelling we predicted and confirmed an integral role of arginine 172 , located in the 2nd extracellular loop, in the action of decanoic acid but not of 3,3'-diindolylmethane. Exemplars from a patented series of GPR84 antagonists were able to block agonist actions of both decanoic acid and 3,3'-diindolylmethane at GPR84. However, although a radiolabelled form of a related antagonist, [ 3 H]G9543, was able to bind with high affinity to GPR84, this was not competed for by increasing concentrations of either decanoic acid or 3,3'-diindolylmethane and was not affected adversely by mutation of arginine 172 . These studies identify three separable ligand binding sites within GPR84 and suggest that if medium chain fatty acids are true endogenous regulators then co-binding with a positive allosteric modulator would greatly enhance their function in physiological settings.

  17. Identification of a Substrate-binding Site in a Peroxisomal β-Oxidation Enzyme by Photoaffinity Labeling with a Novel Palmitoyl Derivative*

    OpenAIRE

    Kashiwayama, Yoshinori; Tomohiro, Takenori; Narita, Kotomi; Suzumura, Miyuki; Glumoff, Tuomo; Hiltunen, J. Kalervo; Van Veldhoven, Paul P.; Hatanaka, Yasumaru; Imanaka, Tsuneo

    2010-01-01

    Peroxisomes play an essential role in a number of important metabolic pathways including β-oxidation of fatty acids and their derivatives. Therefore, peroxisomes possess various β-oxidation enzymes and specialized fatty acid transport systems. However, the molecular mechanisms of these proteins, especially in terms of substrate binding, are still unknown. In this study, to identify the substrate-binding sites of these proteins, we synthesized a photoreactive palmitic acid analogue bearing a d...

  18. Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site.

    Science.gov (United States)

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2017-10-01

    The paper extended the TMDD model to drugs with two identical binding sites (2-1 TMDD). The quasi-steady-state (2-1 QSS), quasi-equilibrium (2-1 QE), irreversible binding (2-1 IB), and Michaelis-Menten (2-1 MM) approximations of the model were derived. Using simulations, the 2-1 QSS approximation was compared with the full 2-1 TMDD model. As expected and similarly to the standard TMDD for monoclonal antibodies (mAb), 2-1 QSS predictions were nearly identical to 2-1 TMDD predictions, except for times of fast changes following initiation of dosing, when equilibrium has not yet been reached. To illustrate properties of new equations and approximations, several variations of population PK data for mAbs with soluble (slow elimination of the complex) or membrane-bound (fast elimination of the complex) targets were simulated from a full 2-1 TMDD model and fitted to 2-1 TMDD models, to its approximations, and to the standard (1-1) QSS model. For a mAb with a soluble target, it was demonstrated that the 2-1 QSS model provided nearly identical description of the observed (simulated) free drug and total target concentrations, although there was some minor bias in predictions of unobserved free target concentrations. The standard QSS approximation also provided a good description of the observed data, but was not able to distinguish between free drug concentrations (with no target attached and both binding site free) and partially bound drug concentrations (with one of the binding sites occupied by the target). For a mAb with a membrane-bound target, the 2-1 MM approximation adequately described the data. The 2-1 QSS approximation converged 10 times faster than the full 2-1 TMDD, and its run time was comparable with the standard QSS model.

  19. A conserved chloramphenicol binding site at the entrance to the ribosomal peptide exit tunnel

    DEFF Research Database (Denmark)

    Long, Katherine S; Porse, Bo T

    2003-01-01

    , of E.coli 23S rRNA and G2084 (2058 in E.coli numbering) in domain V of H.halobium 23S rRNA. The modification sites overlap with a portion of the macrolide binding site and cluster at the entrance to the peptide exit tunnel. The data correlate with the recently reported chloramphenicol binding site...... on an archaeal ribosome and suggest that a similar binding site is present on the E.coli ribosome....

  20. Cholinergic, opioid and glycine receptor binding sites localized in human spinal cord by in vitro autoradiography

    International Nuclear Information System (INIS)

    Gillberg, P.-G.; Aquilonius, S.-M.

    1985-01-01

    Binding sites for the receptor ligands 3 H-quinuclidinylbenzilate, 3 H-alpha-bungarotoxin ( 3 H-alpha-Btx), 3 H-etorphine and 3 H-strychnine were localized autoradiographically at cervical, thoracic and lumbar levels of spinal cords from post-mortem human control subjects and subjects with amyotrophic lateral sclerosis (ALS). The highest densities of muscarinic binding sites were found in the motor neuron areas and in the substantia gelatinosa, while the grey matter binding was very low within Clarke's column. Both 3 H-alpha-Btx and opioid receptor binding sites were numerous within the substantia gelatinosa, while glycine receptor binding sites were more uniformly distribute within the spinal grey matter. In ALS cases, muscarinic receptor binding sites were markedly reduced in motor neuron areas and slightly reduced in the dorsal horn, while the other binding sites studied were relatively unchanged. (author)

  1. Differential effect of detergents on [3H]Ro 5-4864 and [3H]PK 11195 binding to peripheral-type benzodiazepine-binding sites

    International Nuclear Information System (INIS)

    Awad, M.; Gavish, M.

    1988-01-01

    The present study demonstrates a differential effect of various detergent treatments on [ 3 H]Ro 5-4864 and [ 3 H]PK 11195 binding to peripheral benzodiazepine binding sites (PBS). Triton X-100 caused a decrease of about 70% in [ 3 H]Ro 5-4864 binding to membranes from various peripheral tissues of rat, but had only a negligible effect on [ 3 H]PK 11195 binding. A similar effect of Triton X-100 was observed on guinea pig and rabbit kidney membranes. The decrease in [ 3 H]Ro 5-4864 binding after treatment with Triton X-100 was apparently due to a decrease in the density of PBS, since the affinity remained unaltered. The detergents 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS), Tween 20, deoxycholic acid, or digitonin (0.0125%) caused only a minor change in [ 3 H]Ro 5-4864 and [ 3 H]PK 11195 binding to rat kidney membranes; but when concentrations were substantially increased (0.1%), all detergents caused a decrease of at least 50% in [ 3 H]Ro 5-4864 binding, while [ 3 H]PK 11195 binding to rat kidney membranes remained unaffected by the first three detergents, with only a minor decrease (15%) after treatment with digitonin

  2. Identification of critical residues in loop E in the 5-HT3ASR binding site

    Directory of Open Access Journals (Sweden)

    Muthalagi Mani

    2002-06-01

    Full Text Available Abstract Background The serotonin type 3 receptor (5-HT3R is a member of a superfamily of ligand gated ion channels. All members of this family share a large degree of sequence homology and presumably significant structural similarity. A large number of studies have explored the structure-function relationships of members of this family, particularly the nicotinic and GABA receptors. This information can be utilized to gain additional insights into specific structural and functional features of other receptors in this family. Results Thirteen amino acids in the mouse 5-HT3ASR that correspond to the putative E binding loop of the nicotinic α7 receptor were chosen for mutagenesis. Due to the presence of a highly conserved glycine in this region, it has been suggested that this binding loop is comprised of a hairpin turn and may form a portion of the ligand-binding site in this ion channel family. Mutation of the conserved glycine (G147 to alanine eliminated binding of the 5-HT3R antagonist [3H]granisetron. Three tyrosine residues (Y140, Y142 and Y152 also significantly altered the binding of 5-HT3R ligands. Mutations in neighboring residues had little or no effect on binding of these ligands to the 5-HT3ASR. Conclusion Our data supports a role for the putative E-loop region of the 5-HT3R in the binding of 5-HT, mCPBG, d-tc and lerisetron. 5-HT and mCPBG interact with Y142, d-tc with Y140 and lerisetron with both Y142 and Y152. Our data also provides support for the hypothesis that this region of the receptor is present in a loop structure.

  3. Fatty acid modulated human serum albumin binding of the β-carboline alkaloids norharmane and harmane.

    Science.gov (United States)

    Domonkos, Celesztina; Fitos, Ilona; Visy, Júlia; Zsila, Ferenc

    2013-12-02

    Harmane and norharmane are representative members of the large group of natural β-carboline alkaloids featured with diverse pharmacological activities. In blood, these agents are transported by human serum albumin (HSA) which has a profound impact on the pharmacokinetic and pharmacodynamic properties of many therapeutic drugs and xenobiotics. By combination of various spectroscopic methods, the present contribution is aimed to elucidate how nonesterified fatty acids (FAs), the primary endogenous ligands of HSA, affect the binding properties of harmane and norharmane. Analysis of induced circular dichroism (CD) and fluorescence spectroscopic data indicates the inclusion of the neutral form of both molecules into the binding pocket of subdomain IIIA, which hosts two FA binding sites, too. The induced CD and UV absorption spectra of harmane and norharmane exhibit peculiar changes upon addition of FAs, suggesting the formation of ternary complexes in which the lipid ligands significantly alter the binding mode of the alkaloids via cooperative allosteric mechanism. To our knowledge, it is the first instance of the demonstration of drug-FA cobinding at site IIIA. In line with these results, molecular docking calculations showed two distinct binding positions of norharmane within subdomain IIIA. The profound increase in the affinity constants of β-carbolines estimated in the presence of FAs predicts that the unbound, pharmacologically active serum fraction of these compounds strongly depends on the actual lipid binding profile of HSA.

  4. Characterization of a viral phosphoprotein binding site on the surface of the respiratory syncytial nucleoprotein.

    Science.gov (United States)

    Galloux, Marie; Tarus, Bogdan; Blazevic, Ilfad; Fix, Jenna; Duquerroy, Stéphane; Eléouët, Jean-François

    2012-08-01

    The human respiratory syncytial virus (HRSV) genome is composed of a negative-sense single-stranded RNA that is tightly associated with the nucleoprotein (N). This ribonucleoprotein (RNP) complex is the template for replication and transcription by the viral RNA-dependent RNA polymerase. RNP recognition by the viral polymerase involves a specific interaction between the C-terminal domain of the phosphoprotein (P) (P(CTD)) and N. However, the P binding region on N remains to be identified. In this study, glutathione S-transferase (GST) pulldown assays were used to identify the N-terminal core domain of HRSV N (N(NTD)) as a P binding domain. A biochemical characterization of the P(CTD) and molecular modeling of the N(NTD) allowed us to define four potential candidate pockets on N (pocket I [PI] to PIV) as hydrophobic sites surrounded by positively charged regions, which could constitute sites complementary to the P(CTD) interaction domain. The role of selected amino acids in the recognition of the N-RNA complex by P was first screened for by site-directed mutagenesis using a polymerase activity assay, based on an HRSV minigenome containing a luciferase reporter gene. When changed to Ala, most of the residues of PI were found to be critical for viral RNA synthesis, with the R132A mutant having the strongest effect. These mutations also reduced or abolished in vitro and in vivo P-N interactions, as determined by GST pulldown and immunoprecipitation experiments. The pocket formed by these residues is critical for P binding to the N-RNA complex, is specific for pneumovirus N proteins, and is clearly distinct from the P binding sites identified so far for other nonsegmented negative-strand viruses.

  5. Expression of a fatty acid-binding protein in yeast

    International Nuclear Information System (INIS)

    Scholz, H.

    1991-06-01

    The unicellular eukaryotic microorganism, Saccharomyces cerevisiae, transformed with a plasmid containing a cDNA fragment encoding bovine heart fatty acid-binding protein (H-FABP C ) under the control of the inducible yeast GAL10 promoter, expressed FABP during growth on galactose. The maximum level of immunoreactive FABP, identical in size and isoelectric point to native protein, was reached after approximately 16 hours of induction. In contrast, transcription of the gene was induced within half an hour. Both, protein and mRNA were unstable and degraded within 1 h after repression of transcription. Analysis of subcellular fractions showed that FABP was exclusively associated with the cytosol. FABP expressed in yeast cells was functional as was demonstrated by its capacity to bind long chain fatty acids in an in vitro assay. Growth of all transformants on galactose as the carbon source showed no phenotype at temperatures up to 37 deg C, but the growth of FABP-expressing cells at 37 deg C was significantly retarded. Among the biochemical effects of FABP expression on lipid metabolism is a marked reduction of chain elongation and desaturation of exogenously added 14 C-palmitic acid. This effect is most pronounced in triacylglycerols and phospholipids when cells grow at 30 deg C and 37 deg C, respectively. In an in vitro assay determining the desaturation of palmitoyl CoA by microsomal membranes cytosol with or without exo- or endogenous FABP showed the same stimulation of the reaction. The desaturation of exogenously added 14 C-stearic acid, the pattern of unlabelled fatty acids (saturated vs. unsaturated) and the distribution of exogenously added radioactive fatty acids (palmitic, stearic or oleic acid) among lipid classes was not significantly affected. Using high concentrations (1 mM) the uptake of fatty acids was first stimulated and then inhibited when FABP was expressed. (author)

  6. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively.

    Science.gov (United States)

    Clifford, Jacob; Adami, Christoph

    2015-09-02

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  7. Cyclic phosphopeptides to rationalize the role of phosphoamino acids in uranyl binding to biological targets

    Energy Technology Data Exchange (ETDEWEB)

    Starck, Matthieu; Laporte, Fanny A.; Oros, Stephane; Sisommay, Nathalie; Gathu, Vicky; Lebrun, Colette; Delangle, Pascale [INAC/SyMMES, UMR5819, Universite Grenoble Alpes, CEA, CNRS, Grenoble (France); Solari, Pier Lorenzo [Synchrotron SOLEIL, L' orme des Merisiers, Saint-Aubin, Gif-sur-Yvette (France); Creff, Gaelle; Den Auwer, Christophe [Institut de Chimie de Nice, UMR7272, Universite Cote d' Azur, Nice (France); Roques, Jerome [Institut de Physique Nucleaire d' Orsay, CNRS-IN2P3, Univ. Paris-Sud, Universite Paris-Saclay (France)

    2017-04-19

    The specific molecular interactions responsible for uranium toxicity are not yet understood. The uranyl binding sites in high-affinity target proteins have not been identified yet and the involvement of phosphoamino acids is still an important question. Short cyclic peptide sequences, with three glutamic acids and one phosphoamino acid, are used as simple models to mimic metal binding sites in phosphoproteins and to help understand the mechanisms involved in uranium toxicity. A combination of peptide design and synthesis, analytical chemistry, extended X-ray absorption fine structure (EXAFS) spectroscopy, and DFT calculations demonstrates the involvement of the phosphate group in the uranyl coordination sphere together with the three carboxylates of the glutamate moieties. The affinity constants measured with a reliable analytical competitive approach at physiological pH are significantly enhanced owing to the presence of the phosphorous moiety. These findings corroborate the importance of phosphoamino acids in uranyl binding in proteins and the relevance of considering phosphoproteins as potential uranyl targets in vivo. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Value of heart-type fatty acid-binding protein (H-FABP) for ...

    African Journals Online (AJOL)

    Key Words: heart-type fatty acid-binding protein, acute coronary syndrome, biomarker. ... is essential to prevent major complications and death. Routinely used biomarkers such ..... fatty acid binding proteins: their function and physiological sig-.

  9. Binding of the mannose-specific lectin, griffithsin, to HIV-1 gp120 exposes the CD4-binding site

    CSIR Research Space (South Africa)

    Alexandre, Kabamba B

    2011-09-01

    Full Text Available of the lectin griffithsin (GRFT) with HIV-1 gp120 and its effects on exposure of the CD4-binding site (CD4bs). We found that GRFT enhanced the binding of HIV-1 onto plates coated with anti-CD4bs antibodies b12, b6 or the CD4 receptor mimetic, CD4-IgG2...

  10. Prediction of nucleosome positioning based on transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Xianfu Yi

    Full Text Available BACKGROUND: The DNA of all eukaryotic organisms is packaged into nucleosomes, the basic repeating units of chromatin. The nucleosome consists of a histone octamer around which a DNA core is wrapped and the linker histone H1, which is associated with linker DNA. By altering the accessibility of DNA sequences, the nucleosome has profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is of great importance for the study of genomic control mechanisms. Transcription factors (TFs have been suggested to play a role in nucleosome positioning in vivo. PRINCIPAL FINDINGS: Here, the minimum redundancy maximum relevance (mRMR feature selection algorithm, the nearest neighbor algorithm (NNA, and the incremental feature selection (IFS method were used to identify the most important TFs that either favor or inhibit nucleosome positioning by analyzing the numbers of transcription factor binding sites (TFBSs in 53,021 nucleosomal DNA sequences and 50,299 linker DNA sequences. A total of nine important families of TFs were extracted from 35 families, and the overall prediction accuracy was 87.4% as evaluated by the jackknife cross-validation test. CONCLUSIONS: Our results are consistent with the notion that TFs are more likely to bind linker DNA sequences than the sequences in the nucleosomes. In addition, our results imply that there may be some TFs that are important for nucleosome positioning but that play an insignificant role in discriminating nucleosome-forming DNA sequences from nucleosome-inhibiting DNA sequences. The hypothesis that TFs play a role in nucleosome positioning is, thus, confirmed by the results of this study.

  11. Isolation and characterization of fatty acid binding protein in the liver of the nurse shark, Ginglymostoma cirratum.

    Science.gov (United States)

    Bass, N M; Manning, J A; Luer, C A

    1991-01-01

    1. A 14.5 kDa fatty acid binding protein was isolated from the liver of the nurse shark, Ginglymostoma cirratum. 2. Purified shark liver FABP (pI = 5.4) bound oleic acid at a single site with an affinity similar to that of mammalian FABP. 3. The apparent size, pI and amino acid composition of shark liver FABP indicate a close structural relationship between this protein and mammalian heart FABP.

  12. Binding of MCM-interacting proteins to ATP-binding site in MCM6

    Directory of Open Access Journals (Sweden)

    Hosoi A

    2016-03-01

    Full Text Available Atsutoshi Hosoi, Taku Sakairi, Yukio Ishimi Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki, Japan Abstract: The function of MCM2–7 complex that is a DNA helicase in DNA replication may be regulated by various MCM-interacting proteins, including CDC45, RPA, TIM, TIPIN, Claspin, MCM10, and MCM-BP. It has been shown by immunoprecipitation that human MCM6 interacts with all these proteins in coexpressed insect cells. To determine the region in MCM6 to interact with these proteins, we prepared various truncated forms of MCM6 and examined the interaction of these MCM6 fragments with the MCM-interacting proteins. All these proteins bound to C-terminal half of MCM6, and CDC45, RPA2, TIM, TIPIN, MCM-BP, and MCM10 bound to the fragments containing ATP-binding motifs. CDC45 and RPA2 bound to the smallest fragment containing Walker motif A. Only MCM-BP is bound to the N-terminal half of MCM6. Site-directed mutagenesis study suggests that hydrophobic interaction is involved in the interaction of MCM6 with CDC45 and TIM. These results suggest a possibility that MCM-interacting proteins regulate MCM2–7 function by modulating the ATP-binding ability of the MCM2–7. Keywords: DNA helicase, DNA replication, checkpoint, MCM2–7 proteins

  13. Residues in the H+ Translocation Site Define the pKa for Sugar Binding to LacY†

    Science.gov (United States)

    Smirnova, Irina; Kasho, Vladimir; Sugihara, Junichi; Choe, Jun-Yong; Kaback, H. Ronald

    2009-01-01

    A remarkably high pKa of approximately 10.5 has been determined for sugar-binding affinity to the lactose permease of Escherichia coli (LacY), indicating that, under physiological conditions, substrate binds to fully protonated LacY. We have now systematically tested site-directed replacements for the residues involved in sugar binding, as well as H+ translocation and coupling, in order to determine which residues may be responsible for this alkaline pKa. Mutations in the sugar-binding site (Glu126, Trp151, Glu269) markedly decrease affinity for sugar but do not alter the pKa for binding. In contrast, replacements for residues involved in H+ translocation (Arg302, Tyr236, His322, Asp240, Glu325, Lys319) exhibit pKa values for sugar binding that are either shifted toward neutral pH or independent of pH. Values for the apparent dissociation constant for sugar binding (Kdapp) increase greatly for all mutants except neutral replacements for Glu325 or Lys319, which are characterized by remarkably high affinity sugar binding (i.e., low Kdapp) from pH 5.5 to pH 11. The pH dependence of the on- and off-rate constants for sugar binding measured directly by stopped-flow fluorometry implicates koff as a major factor for the affinity change at alkaline pH and confirms the effects of pH on Kdapp inferred from steady-state fluorometry. These results indicate that the high pKa for sugar binding by wild-type LacY cannot be ascribed to any single amino acid residue but appears to reside within a complex of residues involved in H+ translocation. There is structural evidence for water bound in this complex, and the water could be the site of protonation responsible for the pH dependence of sugar binding. PMID:19689129

  14. Quantitative Autoradiography on [(35)S]TBPS Binding Sites of Gamma- Aminobutyric Acid(A) Receptors in Discrete Brain Regions of High- Alcohol-Drinking and Low-Alcohol- Drinking Rats Selectively Bred forHigh- and Low-Alcohol Preference.

    Science.gov (United States)

    Hwang, B.H.; Kunkler, P.E.; Lumeng, L.

    1997-01-01

    It has been documented that ethanol can potentiate brain gamma-aminobutyric acid (GABA)ergic function, and there is a close link between the GABA(A) receptor complex and effects of ethanol, including reinforcement of alcohol which is a fundamental element of alcohol preference. However, it is unknown in what discrete brain regions GABA(A) receptors might be associated with alcohol preference. In the present study, [(35)S]t-butylbicyclophosphorothionate ([(35)S]TBPS) was used to localize GABA(A) receptors in high-alcohol-drinking (HAD) rats and low-alcohol-drinking (LAD) rats which were selectively bred for high and low alcohol preference, respectively. Initial qualitative observations indicated that [(35)S]TBPS binding sites were abundant in many brain areas including the cerebral cortex, hypothalamus and amygdala of HAD and LAD rats. Furthermore, the quantitative autoradiographic analysis revealed fewer [(35)S]TBPS binding sites of GABA(A) receptors in the amygdaloid complex, central medial thalamic nucleus, lateral hypothalamic nucleus and anterior hypothalamic nucleus of HAD rats than LAD rats. Collectively, this study has indicated that HAD rats selectively bred for high alcohol preference possess lower [(35)S]TBPS binding in the brain. Since lower TBPS binding has been proposed to reflect enhanced GABAergic function, as evidenced in rats with seizure or under alcohol withdrawal, the results from the present study suggest that HAD rats might have an enhanced GABAergic function. It is thus likely that enhanced GABAergic function in the brain might be related to high alcohol preference which is characteristic in HAD rats. In addition, the present result showing no difference of [(35)S]TBPS binding in the nucleus accumbens is also in agreement with a notion that [(35)S]TBPS binding may represent only a small spectrum of the GABA(A) receptor complex which is constituted of a sophisticated subunit combination whose functional compositions are still unknown. In

  15. Studies on the digitalis binding site in Na, K-ATPase

    International Nuclear Information System (INIS)

    Ahmed, K.; McParland, R.; Becker, R.; From, A.; Schimerlik, M.; Fullerton, D.S.

    1986-01-01

    Na, K-ATPase is believed to be the receptor for digitalis glycosides. The authors have previously documented that C17 side group of the cardenolide molecule is crucial to α subunit receptor binding. They have attempted to identify the structure of this binding site by labelling the enzyme with a 3 H-labelled photoactive probe localized in the C17 side group of the genin molecule. 3 H-α-subunit was purified and subjected to tryptic digestion. The digest was fractionated by gel filtration on Sephadex G-100. Fractions containing 3 H-labelled peptide were pooled and rechromatographed. The central peak fractions of 3 H-peptide were pooled, analyzed by SDS-PAGE, and subjected to amino acid sequence analysis. The tryptic peptide containing the 3 H-probe showed considerable sequence heterogeneity. Comparison of the sequence data with the published cDNA-based α-subunit sequence revealed that this peptide material was indeed a mixture of two tryptic peptides of nearly identical size containing the sequences from residue 68 through residue 146, and residues 263 through 342. The latter peptide contains the sequence ... glu tyr thr try leu glu ... speculated by Shull et al. as a possible ouabain binding site

  16. Structure of Dioclea virgata lectin: relations between carbohydrate binding site and nitric oxide production

    International Nuclear Information System (INIS)

    Delatorre, P.; Gadelha, C.A.A.; Santi-Gadelha, T.; Nobrega, R.B.; Rocha, B.A.M.; Nascimento, K.S.; Naganao, C.S.; Sampaio, A.H.; Cavada, B.S.; Pires, A.F.; Assreuy, A.M.S.

    2012-01-01

    Full text: Lectins are proteins/glycoproteins with at least one noncatalytic domain binding reversibly to specific monosaccharides or oligosaccharides. By binding to carbohydrate moieties on the cell surface, lectins participate in a range of cellular processes without changing the properties of the carbohydrates involved. The lectin of Dioclea virgata (DvirL), both native and complexed with X-man, was submitted to X-ray diffraction analysis and the crystal structure was compared to that of other Diocleinae lectins in order to better understand differences in biological proper- ties, especially with regard to the ability of lectins to induce nitric oxide (NO) production. The DvirL diffraction analysis revealed that both the native crystal and the X-Man-complexed form are orthorhombic and belong to space group I222. The cell parameters were: a=65.4 , b=86.6 and c=90.2 (native structure), and a=61.89 , b=87.67 and c=88.78 (X-Man-complexed structure). An association was observed between the volume of the carbohydrate recognition domain (CRD), the ability to induce NO production and the relative positions of Tyr12, Arg228 and Leu99. Thus, differences in biological activity induced by Diocleinae lectins are related to the configuration of amino acid residues in the carbohydrate binding site and to the structural conformation of subsequent regions capable of influencing site-ligand interactions. In conclusion, the ability of Diocleinae lectins to induce NO production depends on CRD configuration. (author)

  17. Design of multiligand inhibitors for the swine flu H1N1 neuraminidase binding site

    Directory of Open Access Journals (Sweden)

    Narayanan MM

    2013-08-01

    Full Text Available Manoj M Narayanan,1,2 Chandrasekhar B Nair,2 Shilpa K Sanjeeva,2 PV Subba Rao,2 Phani K Pullela,1,2 Colin J Barrow11Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia; 2Bigtec Pvt Ltd, Rajajinagar, Bangalore, IndiaAbstract: Viral neuraminidase inhibitors such as oseltamivir and zanamivir prevent early virus multiplication by blocking sialic acid cleavage on host cells. These drugs are effective for the treatment of a variety of influenza subtypes, including swine flu (H1N1. The binding site for these drugs is well established and they were designed based on computational docking studies. We show here that some common natural products have moderate inhibitory activity for H1N1 neuraminidase under docking studies. Significantly, docking studies using AutoDock for biligand and triligand forms of these compounds (camphor, menthol, and methyl salicylate linked via methylene bridges indicate that they may bind in combination with high affinity to the H1N1 neuraminidase active site. These results also indicate that chemically linked biligands and triligands of these natural products could provide a new class of drug leads for the prevention and treatment of influenza. This study also highlights the need for a multiligand docking algorithm to understand better the mode of action of natural products, wherein multiple active ingredients are present.Keywords: neuraminidase, influenza, H1N1, multiligand, binding energy, molecular docking, virus

  18. Histochemistry of lectin-binding sites in Halicryptus spinulosus (Priapulida).

    Science.gov (United States)

    Busch, A; Schumacher, U; Storch, V

    2001-02-01

    Priapulida represent one of the phylogenetically oldest multicellular animal groups. In multicellular animals (Metazoa) cell-to-cell and cell-to-matrix interactions are often mediated by carbohydrate residues of glycoconjugates. To analyze the carbohydrate composition of a phylogenetically old species, lectin histochemistry was employed on 5 specimens of the priapulid Halicryptus spinulosus. Many lectins bound to the chitin-containing cuticle, including those specific for carbohydrates other than N-acetylglucosamine, the principle building block of chitin. The connective tissue of the animals contained both N-acetylglucosamine and N-acetylgalactosamine. Mannose residues were widely distributed with the exception of the cuticle, but complex type carbohydrates were not present in the entire animal. Sialic acid residues were only detected in the cuticle and brush border of the intestinal epithelium, while fucose was limited to the cuticle. Thus, the lectin-binding pattern indicated that sugars typical for the linking region of both N- and O-glycoproteins in mammals are also present in H. spinulosus. Carbohydrate residues that are typical for the complex type of N-linked glycans in vertebrates are not present as are carbohydrate residues typical for the termination of O-linked carbohydrate chains. Hence, a truncated form of both N- and O-linked glycosylation is present in H. spinulosus indicating that more complex patterns of glycosylation developed later during evolution.

  19. Chemical synthesis, 3D structure, and ASIC binding site of the toxin mambalgin-2.

    Science.gov (United States)

    Schroeder, Christina I; Rash, Lachlan D; Vila-Farrés, Xavier; Rosengren, K Johan; Mobli, Mehdi; King, Glenn F; Alewood, Paul F; Craik, David J; Durek, Thomas

    2014-01-20

    Mambalgins are a novel class of snake venom components that exert potent analgesic effects mediated through the inhibition of acid-sensing ion channels (ASICs). The 57-residue polypeptide mambalgin-2 (Ma-2) was synthesized by using a combination of solid-phase peptide synthesis and native chemical ligation. The structure of the synthetic toxin, determined using homonuclear NMR, revealed an unusual three-finger toxin fold reminiscent of functionally unrelated snake toxins. Electrophysiological analysis of Ma-2 on wild-type and mutant ASIC1a receptors allowed us to identify α-helix 5, which borders on the functionally critical acidic pocket of the channel, as a major part of the Ma-2 binding site. This region is also crucial for the interaction of ASIC1a with the spider toxin PcTx1, thus suggesting that the binding sites for these toxins substantially overlap. This work lays the foundation for structure-activity relationship (SAR) studies and further development of this promising analgesic peptide. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. SP Transcription Factor Paralogs and DNA-Binding Sites Coevolve and Adaptively Converge in Mammals and Birds

    Science.gov (United States)

    Yokoyama, Ken Daigoro; Pollock, David D.

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins. PMID:23019068

  1. Screening Mixtures of Small Molecules for Binding to Multiple Sites on the Surface Tetanus Toxin C Fragment by Bioaffinity NMR

    International Nuclear Information System (INIS)

    Cosman, M; Zeller, L; Lightstone, F C; Krishnan, V V; Balhorn, R

    2002-01-01

    The clostridial neurotoxins include the closely related tetanus (TeNT) and botulinum (BoNT) toxins. Botulinum toxin is used to treat severe muscle disorders and as a cosmetic wrinkle reducer. Large quantities of botulinum toxin have also been produced by terrorists for use as a biological weapon. Because there are no known antidotes for these toxins, they thus pose a potential threat to human health whether by an accidental overdose or by a hostile deployment. Thus, the discovery of high specificity and affinity compounds that can inhibit their binding to neural cells can be used as antidotes or in the design of chemical detectors. Using the crystal structure of the C fragment of the tetanus toxin (TetC), which is the cell recognition and cell surface binding domain, and the computational program DOCK, sets of small molecules have been predicted to bind to two different sites located on the surface of this protein. While Site-1 is common to the TeNT and BoNTs, Site-2 is unique to TeNT. Pairs of these molecules from each site can then be linked together synthetically to thereby increase the specificity and affinity for this toxin. Electrospray ionization mass spectroscopy was used to experimentally screen each compound for binding. Mixtures containing binders were further screened for activity under biologically relevant conditions using nuclear magnetic resonance (NMR) methods. The screening of mixtures of compounds offers increased efficiency and throughput as compared to testing single compounds and can also evaluate how possible structural changes induced by the binding of one ligand can influence the binding of the second ligand. In addition, competitive binding experiments with mixtures containing ligands predicted to bind the same site could identify the best binder for that site. NMR transfer nuclear Overhauser effect (trNOE) confirm that TetC binds doxorubicin but that this molecule is displaced by N-acetylneuraminic acid (sialic acid) in a mixture that

  2. Mutations and binding sites of human transcription factors

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-06-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, insertions are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. 2012 Kamanu, Medvedeva, Schaefer, Jankovic, Archer and Bajic.

  3. Interaction of LY171883 and other peroxisome proliferators with fatty-acid-binding protein isolated from rat liver.

    Science.gov (United States)

    Cannon, J R; Eacho, P I

    1991-01-01

    Fatty-acid-binding protein (FABP) is a 14 kDa protein found in hepatic cytosol which binds and transports fatty acids and other hydrophobic ligands throughout the cell. The purpose of this investigation was to determine whether LY171883, a leukotriene D4 antagonist, and other peroxisome proliferators bind to FABP and displace an endogenous fatty acid. [3H]Oleic acid was used to monitor the elution of FABP during chromatographic purification. [14C]LY171883 had a similar elution profile when substituted in the purification, indicating a common interaction with FABP. LY171883 and its structural analogue, LY189585, as well as the hypolipidaemic peroxisome proliferators clofibric acid, ciprofibrate, bezafibrate and WY14,643, displaced [3H]oleic acid binding to FABP. Analogues of LY171883 that do not induce peroxisome proliferation only weakly displaced oleate binding. [3H]Ly171883 bound directly to FABP with a Kd of 10.8 microM, compared with a Kd of 0.96 microM for [3H]oleate. LY171883 binding was inhibited by LY189585, clofibric acid, ciprofibrate and bezafibrate. These findings demonstrate that peroxisome proliferators, presumably due to their structural similarity to fatty acids, are able to bind to FABP and displace an endogenous ligand from its binding site. Interaction of peroxisome proliferators with FABP may be involved in perturbations of fatty acid metabolism caused by these agents as well as in the development of the pleiotropic response of peroxisome proliferation. Images Fig. 2. PMID:1747111

  4. In vitro site selection of a consensus binding site for the Drosophila melanogaster Tbx20 homolog midline.

    Directory of Open Access Journals (Sweden)

    Nima Najand

    Full Text Available We employed in vitro site selection to identify a consensus binding sequence for the Drosophila melanogaster Tbx20 T-box transcription factor homolog Midline. We purified a bacterially expressed T-box DNA binding domain of Midline, and used it in four rounds of precipitation and polymerase-chain-reaction based amplification. We cloned and sequenced 54 random oligonucleotides selected by Midline. Electromobility shift-assays confirmed that 27 of these could bind the Midline T-box. Sequence alignment of these 27 clones suggests that Midline binds as a monomer to a consensus sequence that contains an AGGTGT core. Thus, the Midline consensus binding site we define in this study is similar to that defined for vertebrate Tbx20, but differs from a previously reported Midline binding sequence derived through site selection.

  5. Displacement of specific serotonin and lysergic acid diethylamide binding by Ergalgin, a new antiserotonin drug

    International Nuclear Information System (INIS)

    Oelszner, W.

    1980-01-01

    [ 3 H]-serotonin and [ 3 H]-lysergic acid diethylamide (LSD) bind with a high affinity, Ksub(D) = 12 nM and 6 nM, respectively, to distinct receptors of rat caudate membranes in vitro. Displacement experiments with unlabeled serotonin and LSD support the hypothesis of serotonin receptors existing in an agonist and antagonist state. Methysergide and Ergalgin display quite similar potenties in displacing [ 3 H]-serontonin and [ 3 H]-LSD from their specific binding sites (Ksub(i) = 46.7 and 53.4 nM; 22.3 and 36.5 nM, respectively). Contrary to pharmacological findings these binding results are in favour of mixed agonist/antagonist properties of these compounds. (author)

  6. Interaction of aconitine with bovine serum albumin and effect of atropine sulphate and glycyrrhizic acid on the binding

    International Nuclear Information System (INIS)

    Huang Yun; Cui Lijian; Wang Jianming; Huo Kun; Chen Chen; Zhan Wenhong; Wang Yongli

    2012-01-01

    The interaction of aconitine with bovine serum albumin (BSA) and effect of atropine sulphate and glycyrrhizic acid on binding constant, binding sites, and conformation were studied in an aqueous buffer solution (pH 7.40) by ultraviolet absorption and fluorescence spectroscopy. The study results show that aconitine quenched the endogenous fluorescence of BSA via a dynamic quenching procedure. Predominant intermolecular forces between aconitine and BSA were hydrophobic interactions, which stabilized the complex of aconitine–BSA. The distance between the donor and acceptor was 2.62 nm. The conformation of BSA was investigated by synchronous fluorescence techniques, indicating that the microenvironment around tryptophan (Trp) residues was changed. Furthermore, with the addition of atropine sulphate or glycyrrhizic acid, binding constant and the number of binding sites of aconitine to BSA were decreased, and the conformation had no change, which provide an important theoretical support for aconitine detoxification by atropine sulphate and glycyrrhizic acid. - Highlights: ► Effect of atropine or glycyrrhizic acid on aconitine–BSA binding. ► UV–vis absorption and fluorescence spectroscopic techniques used. ► Aconitine quenched BSA fluorescence via dynamic quenching with r=2.62 nm. ► Atropine sulphate and glycyrrhizic acid decreased K A and n of aconitine–BSA. ► Support for aconitine detoxification by atropine and glycyrrhizic acid.

  7. Characterization of 6-mercaptopurine binding to bovine serum albumin and its displacement from the binding sites by quercetin and rutin

    Energy Technology Data Exchange (ETDEWEB)

    Ehteshami, Mehdi [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rasoulzadeh, Farzaneh [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Mahboob, Soltanali [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rashidi, Mohammad-Reza, E-mail: rashidi@tbzmed.ac.ir [Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of)

    2013-03-15

    Binding of a drug to the serum albumins as major serum transport proteins can be influenced by other ligands leading to alteration of its pharmacological properties. In the present study, binding characteristics of 6-mercaptopurine (6-MP) with bovine serum albumin (BSA) together with its displacement from its binding site by quercetin and rutin have been investigated by the spectroscopic method. According to the binding parameters, a static quenching component in overall dynamic quenching process is operative in the interaction between 6-MP and BSA. The binding of 6-MP to BSA occurred spontaneously due to entropy-driven hydrophobic interactions. The synchronous fluorescence spectroscopy study revealed that the secondary structure of BSA is changed in the presence of 6-MP and both Tyr and Trp residues participate in the interaction between 6-MP and BSA with the later one being more dominant. The binding constant value of 6-MP-BSA in the presence of quercetin and rutin increased. 6-MP was displaced by ibuprofen indicating that the binding site of 6-MP on albumin is site II. Therefore, the change of the pharmacokinetic and pharmacodynamic properties of 6-MP by quercetin and rutin through alteration of binding capacity of 6-MP to the serum albumin cannot be ruled out. In addition, the displacement study showed that 6-MP is located in site II of BSA. - Highlights: Black-Right-Pointing-Pointer Participation of both Tyr and particularly Trp residues in the interaction between 6-MP and BSA. Black-Right-Pointing-Pointer Involvement of a static quenching component in an overall dynamic quenching process. Black-Right-Pointing-Pointer Ability of quercetin and rutin to change the binding constants of 6-MP-BSA complex. Black-Right-Pointing-Pointer Binding of 6-MP to BSA through entropy-driven hydrophobic interactions.

  8. Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Amy L Bauer

    2010-11-01

    Full Text Available An important step in understanding gene regulation is to identify the DNA binding sites recognized by each transcription factor (TF. Conventional approaches to prediction of TF binding sites involve the definition of consensus sequences or position-specific weight matrices and rely on statistical analysis of DNA sequences of known binding sites. Here, we present a method called SiteSleuth in which DNA structure prediction, computational chemistry, and machine learning are applied to develop models for TF binding sites. In this approach, binary classifiers are trained to discriminate between true and false binding sites based on the sequence-specific chemical and structural features of DNA. These features are determined via molecular dynamics calculations in which we consider each base in different local neighborhoods. For each of 54 TFs in Escherichia coli, for which at least five DNA binding sites are documented in RegulonDB, the TF binding sites and portions of the non-coding genome sequence are mapped to feature vectors and used in training. According to cross-validation analysis and a comparison of computational predictions against ChIP-chip data available for the TF Fis, SiteSleuth outperforms three conventional approaches: Match, MATRIX SEARCH, and the method of Berg and von Hippel. SiteSleuth also outperforms QPMEME, a method similar to SiteSleuth in that it involves a learning algorithm. The main advantage of SiteSleuth is a lower false positive rate.

  9. Characterization of the catalytic and noncatalytic ADP binding sites of the F1-ATPase from the thermophilic bacterium, PS3

    International Nuclear Information System (INIS)

    Yoshida, M.; Allison, W.S.

    1986-01-01

    Two classes of ADP binding sites at 20 degrees C have been characterized in the F1-ATPase from the thermophilic bacterium, PS3 (TF1). One class is comprised of three sites which saturate with [ 3 H]ADP in less than 10 s with a Kd of 10 microM which, once filled, exchange rapidly with medium ADP. The binding of ADP to these sites is dependent on Mg2+. [ 3 H]ADP bound to these sites is removed by repeated gel filtrations on centrifuge columns equilibrated with ADP free medium. The other class is comprised of a single site which saturates with [ 3 H]ADP in 30 min with a Kd of 30 microM. [ 3 H]ADP bound to this site does not exchange with medium ADP nor does it dissociate on gel filtration through centrifuge columns equilibrated with ADP free medium. Binding of [ 3 H]ADP to this site is weaker in the presence of Mg2+ where the Kd for ADP is about 100 microM. [ 3 H]ADP dissociated from this site when ATP plus Mg2+ was added to the complex while it remained bound in the presence of ATP alone or in the presence of ADP, Pi, or ADP plus Pi with or without added Mg2+. Significant amounts of ADP in the 1:1 TF1.ADP complex were converted to ATP in the presence of Pi, Mg2+, and 50% dimethyl sulfoxide. Enzyme-bound ATP synthesis was abolished by chemical modification of a specific glutamic acid residue by dicyclohexylcarbodiimide, but not by modification of a specific tyrosine residue with 7-chloro-4-nitrobenzofurazan. Difference circular dichroism spectra revealed that the three Mg2+ -dependent, high affinity ADP binding sites that were not stable to gel filtration were on the alpha subunits and that the single ADP binding site that was stable to gel filtration was on one of the three beta subunits

  10. A tool for calculating binding-site residues on proteins from PDB structures

    Directory of Open Access Journals (Sweden)

    Hu Jing

    2009-08-01

    Full Text Available Abstract Background In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB that consists of the protein of interest and its interacting partner(s and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. Results In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. Conclusion The developed tool is very useful for the research on protein binding site analysis and prediction.

  11. Common structural features of cholesterol binding sites in crystallized soluble proteins.

    Science.gov (United States)

    Bukiya, Anna N; Dopico, Alejandro M

    2017-06-01

    Cholesterol-protein interactions are essential for the architectural organization of cell membranes and for lipid metabolism. While cholesterol-sensing motifs in transmembrane proteins have been identified, little is known about cholesterol recognition by soluble proteins. We reviewed the structural characteristics of binding sites for cholesterol and cholesterol sulfate from crystallographic structures available in the Protein Data Bank. This analysis unveiled key features of cholesterol-binding sites that are present in either all or the majority of sites: i ) the cholesterol molecule is generally positioned between protein domains that have an organized secondary structure; ii ) the cholesterol hydroxyl/sulfo group is often partnered by Asn, Gln, and/or Tyr, while the hydrophobic part of cholesterol interacts with Leu, Ile, Val, and/or Phe; iii ) cholesterol hydrogen-bonding partners are often found on α-helices, while amino acids that interact with cholesterol's hydrophobic core have a slight preference for β-strands and secondary structure-lacking protein areas; iv ) the steroid's C21 and C26 constitute the "hot spots" most often seen for steroid-protein hydrophobic interactions; v ) common "cold spots" are C8-C10, C13, and C17, at which contacts with the proteins were not detected. Several common features we identified for soluble protein-steroid interaction appear evolutionarily conserved. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. Secondary Structure Preferences of Mn2+ Binding Sites in Bacterial Proteins

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrovna Khrustaleva

    2014-01-01

    Full Text Available 3D structures of proteins with coordinated Mn2+ ions from bacteria with low, average, and high genomic GC-content have been analyzed (149 PDB files were used. Major Mn2+ binders are aspartic acid (6.82% of Asp residues, histidine (14.76% of His residues, and glutamic acid (3.51% of Glu residues. We found out that the motif of secondary structure “beta strand-major binder-random coil” is overrepresented around all the three major Mn2+ binders. That motif may be followed by either alpha helix or beta strand. Beta strands near Mn2+ binding residues should be stable because they are enriched by such beta formers as valine and isoleucine, as well as by specific combinations of hydrophobic and hydrophilic amino acid residues characteristic to beta sheet. In the group of proteins from GC-rich bacteria glutamic acid residues situated in alpha helices frequently coordinate Mn2+ ions, probably, because of the decrease of Lys usage under the influence of mutational GC-pressure. On the other hand, the percentage of Mn2+ sites with at least one amino acid in the “beta strand-major binder-random coil” motif of secondary structure (77.88% does not depend on genomic GC-content.

  13. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication.

    Science.gov (United States)

    Mukherjee, Sourav; Weiner, Warren S; Schroeder, Chad E; Simpson, Denise S; Hanson, Alicia M; Sweeney, Noreena L; Marvin, Rachel K; Ndjomou, Jean; Kolli, Rajesh; Isailovic, Dragan; Schoenen, Frank J; Frick, David N

    2014-10-17

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure-activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.

  14. Structural and binding properties of two paralogous fatty acid binding proteins of Taenia solium metacestode.

    Directory of Open Access Journals (Sweden)

    Seon-Hee Kim

    Full Text Available BACKGROUND: Fatty acid (FA binding proteins (FABPs of helminths are implicated in acquisition and utilization of host-derived hydrophobic substances, as well as in signaling and cellular interactions. We previously demonstrated that secretory hydrophobic ligand binding proteins (HLBPs of Taenia solium metacestode (TsM, a causative agent of neurocysticercosis (NC, shuttle FAs in the surrounding host tissues and inwardly transport the FAs across the parasite syncytial membrane. However, the protein molecules responsible for the intracellular trafficking and assimilation of FAs have remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: We isolated two novel TsMFABP genes (TsMFABP1 and TsMFABP2, which encoded 133- and 136-amino acid polypeptides with predicted molecular masses of 14.3 and 14.8 kDa, respectively. They shared 45% sequence identity with each other and 15-95% with other related-members. Homology modeling demonstrated a characteristic β-barrel composed of 10 anti-parallel β-strands and two α-helices. TsMFABP2 harbored two additional loops between β-strands two and three, and β-strands six and seven, respectively. TsMFABP1 was secreted into cyst fluid and surrounding environments, whereas TsMFABP2 was intracellularly confined. Partially purified native proteins migrated to 15 kDa with different isoelectric points of 9.2 (TsMFABP1 and 8.4 (TsMFABP2. Both native and recombinant proteins bound to 11-([5-dimethylaminonaphthalene-1-sulfonyl]aminoundecannoic acid, dansyl-DL-α-amino-caprylic acid, cis-parinaric acid and retinol, which were competitively inhibited by oleic acid. TsMFABP1 exhibited high affinity toward FA analogs. TsMFABPs showed weak binding activity to retinol, but TsMFABP2 showed relatively high affinity. Isolation of two distinct genes from an individual genome strongly suggested their paralogous nature. Abundant expression of TsMFABP1 and TsMFABP2 in the canal region of worm matched well with the histological distributions

  15. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity

    International Nuclear Information System (INIS)

    James, I.F.; Goldstein, A.

    1984-01-01

    A method for measuring and expressing the binding selectivity of ligands for mu, delta, and kappa opioid binding sites is reported. Radioligands are used that are partially selective for these sites in combination with membrane preparations enriched in each site. Enrichment was obtained by treatment of membranes with the alkylating agent beta-chlornaltrexamine in the presence of appropriate protecting ligands. After enrichment for mu receptors, [ 3 H] dihydromorphine bound to a single type of site as judged by the slope of competition binding curves. After enrichment for delta or kappa receptors, binding sites for [ 3 H] [D-Ala2, D-Leu5]enkephalin and [3H]ethylketocyclazocine, respectively, were still not homogeneous. There were residual mu sites in delta-enriched membranes but no evidence for residual mu or delta sites in kappa-enriched membranes were found. This method was used to identify ligands that are highly selective for each of the three types of sites

  16. Using TESS to predict transcription factor binding sites in DNA sequence.

    Science.gov (United States)

    Schug, Jonathan

    2008-03-01

    This unit describes how to use the Transcription Element Search System (TESS). This Web site predicts transcription factor binding sites (TFBS) in DNA sequence using two different kinds of models of sites, strings and positional weight matrices. The binding of transcription factors to DNA is a major part of the control of gene expression. Transcription factors exhibit sequence-specific binding; they form stronger bonds to some DNA sequences than to others. Identification of a good binding site in the promoter for a gene suggests the possibility that the corresponding factor may play a role in the regulation of that gene. However, the sequences transcription factors recognize are typically short and allow for some amount of mismatch. Because of this, binding sites for a factor can typically be found at random every few hundred to a thousand base pairs. TESS has features to help sort through and evaluate the significance of predicted sites.

  17. Characterization of melatonin binding sites in the Harderian gland and median eminence of the rat

    International Nuclear Information System (INIS)

    Lopez-Gonzalez, M.A.; Calvo, J.R.; Rubio, A.; Goberna, R.; Guerrero, J.M.

    1991-01-01

    The characterization of specific melatonin binding sites in the Harderian gland (HG) and median eminence (ME) of the rat was studied using [ 125 I]melatonin. Binding of melatonin to membrane crude preparations of both tissues was dependent on time and temperature. Thus, maximal binding was obtained at 37 degree C after 30-60 min incubation. Binding was also dependent on protein concentration. The specific binding of [ 125 I]melatonin was saturable, exhibiting only the class of binding sites in both tissues. The dissociation constants (Kd) were 170 and 190 pM for ME and HG, respectively. The concentration of the binding sites in ME was 8 fmol/mg protein, and in the HG 4 fmol/mg protein. In competition studies, binding of [ 125 I]melatonin to ME or HG was inhibited by increasing concentration of native melatonin; 50% inhibition was observed at about 702 and 422 nM for ME and HG, respectively. Additionally, the [ 125 I]melatonin binding to the crude membranes was not affected by the addition of different drugs such as norepinephrine, isoproterenol, phenylephrine, propranolol, or prazosin. The results confirm the presence of melatonin binding sites in median eminence and show, for the first time, the existence of melatonin binding sites in the Harderian gland

  18. Predicting Flavin and Nicotinamide Adenine Dinucleotide-Binding Sites in Proteins Using the Fragment Transformation Method

    Directory of Open Access Journals (Sweden)

    Chih-Hao Lu

    2015-01-01

    Full Text Available We developed a computational method to identify NAD- and FAD-binding sites in proteins. First, we extracted from the Protein Data Bank structures of proteins that bind to at least one of these ligands. NAD-/FAD-binding residue templates were then constructed by identifying binding residues through the ligand-binding database BioLiP. The fragment transformation method was used to identify structures within query proteins that resembled the ligand-binding templates. By comparing residue types and their relative spatial positions, potential binding sites were identified and a ligand-binding potential for each residue was calculated. Setting the false positive rate at 5%, our method predicted NAD- and FAD-binding sites at true positive rates of 67.1% and 68.4%, respectively. Our method provides excellent results for identifying FAD- and NAD-binding sites in proteins, and the most important is that the requirement of conservation of residue types and local structures in the FAD- and NAD-binding sites can be verified.

  19. Ondansetron and granisetron binding orientation in the 5-HT(3) receptor determined by unnatural amino acid mutagenesis.

    Science.gov (United States)

    Duffy, Noah H; Lester, Henry A; Dougherty, Dennis A

    2012-10-19

    The serotonin type 3 receptor (5-HT(3)R) is a ligand-gated ion channel found in the central and peripheral nervous systems. The 5-HT(3)R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT(3)A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket.

  20. Ondansetron and Granisetron Binding Orientation in the 5-HT3 Receptor Determined by Unnatural Amino Acid Mutagenesis

    Science.gov (United States)

    Duffy, Noah H.; Lester, Henry A.; Dougherty, Dennis A.

    2012-01-01

    The serotonin type 3 receptor (5-HT3R) is a ligand-gated ion channel that mediates fast synaptic transmission in the central and peripheral nervous systems. The 5-HT3R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT3A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket. PMID:22873819

  1. Characteristics of high affinity and low affinity adenosine binding sites in human cerebral cortex

    International Nuclear Information System (INIS)

    John, D.; Fox, I.V.

    1986-01-01

    The binding characteristics of human brain cortical membrane fractions were evaluated to test the hypothesis that there are A 1 and A 2 adenosine binding sites. The ligands used were 2-chloro(8- 3 H) adenosine and N 6 -(adenine-2, 8- 3 H) cyclohexayladenosine. Binding of chloroadenosine to human brain cortical membranes was time dependent, reversible and concentration dependent. The kinetic constant determinations from binding studies of the adenosine receptor are presented. Utilizing tritium-cyclohexyladenosine as ligand the authors observed evidence for a high affinity binding site in human brain cortical membranes with a kd of 5 nM

  2. 8-anilino-1-naphthaline sulfonate binds at the hemoglobin allosteric regulatory sites: inhibitory analyses

    International Nuclear Information System (INIS)

    Bokut', S.B.; Parul', D.A.; Yachnik, N.N.; Milyutin, A.A.

    2001-01-01

    The present study focused on the localization at least one of the ANS binding sites in the major form of human hemoglobin HbA. High-resolution docking predict ANS binding to the hemoglobin central cavity. Steady-state fluorescence titration data obtained in the absence/presence of natural effector inositol hexaphosphate (IHP) allowed to conclude that IHP competitively inhibited ANS binding to HbA. Thus, we must conclude that one of the ANS binding sites is central cavity, which makes it possible to monitor changes at this region upon ligation/deligation, effector binding and changes in hemoglobin structure

  3. Kinetics of fatty acid binding ability of glycated human serum albumin

    Indian Academy of Sciences (India)

    Unknown

    1-anilino-8-naphtharene sulphonic acid; diabetes, dissociation constant; fatty acids binding; fluorescence displacement ... thought to play an important role in the complications of ..... concentration of serum fatty acid level in type 2 diabetes,.

  4. Evidence for a non-opioid sigma binding site din the guinea-pig myenteric plexus

    International Nuclear Information System (INIS)

    Roman, F.; Pascaud, X.; Vauche, D.; Junien, J.

    1988-01-01

    The presence of a binding site to (+)-( 3 H)SKF 10,047 was demonstrated in a guinea-pig myenteric plexus (MYP) membrane preparation. Specific binding to this receptor was saturable, reversible, linear with protein concentration and consisted of two components, a high affinity site and a low affinity site. Morphine and naloxone 10 -4 M were unable to displace (+)-( 3 H)SKF 10,047 binding. Haloperidol, imipramine, ethylketocyclazocine and propranolol were among the most potent compounds to inhibit this specific binding. These results suggest the presence of a non-opioid haloperidol sensitive sigma receptor in the MYP of the guinea-pig

  5. Biomimetic conformation-specific assembly of proteins at artificial binding sites nano-patterned on silicon

    Science.gov (United States)

    de la Rica, Roberto; Matsui, Hiroshi

    2009-01-01

    Biomolecules such as enzymes and antibodies possess binding sites where the molecular architecture and the physicochemical properties are optimum for their interaction with a particular target, in some cases even differentiating between stereoisomers. Here, we mimic this exquisite specificity via the creation of a suitable chemical environment by fabricating artificial binding sites for the protein calmodulin (CaM). By downscaling well-known surface chemical modification methodologies to the nanometer scale via silicon nanopatterning, the Ca2+-CaM conformer was found to selectively bind the biomimetic binding sites. The methodology could be adapted to mimic other protein-receptor interactions for sensing and catalysis. PMID:19757782

  6. Statistical Profiling of One Promiscuous Protein Binding Site: Illustrated by Urokinase Catalytic Domain.

    Science.gov (United States)

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Petitjean, Michel; Flatters, Delphine; Camproux, Anne-Claude

    2017-10-01

    While recent literature focuses on drug promiscuity, the characterization of promiscuous binding sites (ability to bind several ligands) remains to be explored. Here, we present a proteochemometric modeling approach to analyze diverse ligands and corresponding multiple binding sub-pockets associated with one promiscuous binding site to characterize protein-ligand recognition. We analyze both geometrical and physicochemical profile correspondences. This approach was applied to examine the well-studied druggable urokinase catalytic domain inhibitor binding site, which results in a large number of complex structures bound to various ligands. This approach emphasizes the importance of jointly characterizing pocket and ligand spaces to explore the impact of ligand diversity on sub-pocket properties and to establish their main profile correspondences. This work supports an interest in mining available 3D holo structures associated with a promiscuous binding site to explore its main protein-ligand recognition tendency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Training increases the concentration of [3H]ouabain-binding sites in rat skeletal muscle

    DEFF Research Database (Denmark)

    Kjeldsen, K; Richter, Erik; Galbo, H

    1986-01-01

    ]ouabain-binding-site concentration in the diaphragm, but in the heart ventricles, the K+-dependent 3-O-methylfluorescein phosphatase activity increased by 20% (P less than 0.001). Muscle inactivity induced by denervation, plaster immobilisation or tenotomy reduced the [3H]ouabain-binding-site concentration by 20-30% (P less than 0...

  8. Discovery and mapping of an intracellular antagonist binding site at the chemokine receptor CCR2

    DEFF Research Database (Denmark)

    Zweemer, Annelien J M; Bunnik, Julia; Veenhuizen, Margo

    2014-01-01

    be divided into two groups with most likely two topographically distinct binding sites. The aim of the current study was to identify the binding site of one such group of ligands, exemplified by three allosteric antagonists, CCR2-RA-[R], JNJ-27141491, and SD-24. We first used a chimeric CCR2/CCR5 receptor...

  9. Overlapping binding site for the endogenous agonist, small-molecule agonists, and ago-allosteric modulators on the ghrelin receptor

    DEFF Research Database (Denmark)

    Holst, Birgitte; Frimurer, Thomas M; Mokrosinski, Jacek

    2008-01-01

    A library of robust ghrelin receptor mutants with single substitutions at 22 positions in the main ligand-binding pocket was employed to map binding sites for six different agonists: two peptides (the 28-amino-acid octanoylated endogenous ligand ghrelin and the hexapeptide growth hormone......, and PheVI:23 on the opposing face of transmembrane domain (TM) VI. Each of the agonists was also affected selectively by specific mutations. The mutational map of the ability of L-692,429 and GHRP-6 to act as allosteric modulators by increasing ghrelin's maximal efficacy overlapped with the common....... It is concluded that although each of the ligands in addition exploits other parts of the receptor, a large, common binding site for both small-molecule agonists--including ago-allosteric modulators--and the endogenous agonist is found on the opposing faces of TM-III and -VI of the ghrelin receptor....

  10. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    Science.gov (United States)

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Autoradiographic imaging and quantification of the high-affinity GHB binding sites in rodent brain using (3)H-HOCPCA

    DEFF Research Database (Denmark)

    Klein, A B; Bay, T; Villumsen, I S

    2016-01-01

    analogue, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) as a tritiated version ((3)H-HOCPCA) to radioactively label the specific GHB high-affinity binding site and gain further insight into the density, distribution and developmental profile of this protein. We show that, in low nanomolar concentrations...... brain development. Due to the high sensitivity of this radioligand, we were able to detect low levels of specific binding already at E15 in mouse brain, which increased progressively until adulthood. Collectively, we show that (3)H-HOCPCA is a highly sensitive radioligand, offering advantages over...

  12. Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin.

    Science.gov (United States)

    Lee, Chang Woo; Kim, Jung Eun; Do, Hackwon; Kim, Ryeo-Ok; Lee, Sung Gu; Park, Hyun Ho; Chang, Jeong Ho; Yim, Joung Han; Park, Hyun; Kim, Il-Chan; Lee, Jun Hyuck

    2015-09-11

    Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.

    Science.gov (United States)

    Luanloet, Thikumporn; Sucharitakul, Jeerus; Chaiyen, Pimchai

    2015-08-01

    2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (EC 1.14.12.4) from Pseudomonas sp. MA-1 is a flavin-dependent monooxygenase that catalyzes a hydroxylation and aromatic ring cleavage reaction. The functional roles of two residues, Tyr223 and Tyr82, located ~ 5 Å away from MHPC, were characterized using site-directed mutagenesis, along with ligand binding, product analysis and transient kinetic experiments. Mutation of Tyr223 resulted in enzyme variants that were impaired in their hydroxylation activity and had Kd values for substrate binding 5-10-fold greater than the wild-type enzyme. Because this residue is adjacent to the water molecule that is located next to the 3-hydroxy group of MHPC, the results indicate that the interaction between Tyr223, H2 O and the 3-hydroxyl group of MHPC are important for substrate binding and hydroxylation. By contrast, the Kd for substrate binding of Tyr82His and Tyr82Phe variants were similar to that of the wild-type enzyme. However, only ~ 40-50% of the substrate was hydroxylated in the reactions of both variants, whereas most of the substrate was hydroxylated in the wild-type enzyme reaction. In free solution, MHPC or 5-hydroxynicotinic acid exists in a mixture of monoanionic and tripolar ionic forms, whereas only the tripolar ionic form binds to the wild-type enzyme. The binding of tripolar ionic MHPC would allow efficient hydroxylation through an electrophilic aromatic substitution mechanism. For the Tyr82His and Tyr82Phe variants, both forms of substrates can bind to the enzymes, indicating that the mutation at Tyr82 abolished the selectivity of the enzyme towards the tripolar ionic form. Transient kinetic studies indicated that the hydroxylation rate constants of both Tyr82 variants are approximately two- to 2.5-fold higher than that of the wild-type enzyme. Altogether, our findings suggest that Tyr82 is important for the binding selectivity of MHPC oxygenase towards the tripolar ionic species, whereas the

  14. The role of pectin in Cd binding by orange peel biosorbents: A comparison of peels, depectinated peels and pectic acid

    Energy Technology Data Exchange (ETDEWEB)

    Schiewer, Silke, E-mail: sschiewer@alaska.edu [Department of Civil and Environmental Engineering, University of Alaska Fairbanks, PO Box 755900, Fairbanks, AK 99775 (United States); Iqbal, Muhammad, E-mail: iqbalmdr@brain.net.pk [Department of Civil and Environmental Engineering, University of Alaska Fairbanks, PO Box 755900, Fairbanks, AK 99775 (United States)

    2010-05-15

    Biosorption by cheaply and abundantly available materials such as citrus peels can be a cost efficient method for removing heavy metals from wastewater. To investigate the role pectin plays in metal binding by citrus peels, native orange peels, protonated peels, depectinated peels, and extracted pectic acid were compared. Kinetic experiments showed that equilibrium was achieved in 1 h. The 1st-order model was more effective in describing the kinetics than the 2nd-order model. Titrations showed two acidic sites with pK{sub a} values around 4 (carboxyl) and 10.5 (hydroxyl), respectively. The pH dependent surface charge was described well by a two-site model. Sorption isotherms were best modeled assuming a 1:2 binding stoichiometry, followed by the Langmuir and the Freundlich model. The binding capacity was highest for pectic acid (2.9 mequiv./g) followed by protonated peels and native peels, being lowest for depectinated peels (1.7 mequiv./g). This showed the importance of pectin in metal binding by citrus peels. However, even depectinated peels were still good sorbents which still provided carboxyl groups that were involved in metal binding. FTIR spectra confirmed the presence of carboxyl and hydroxyl groups in all materials and their involvement in metal binding.

  15. The role of pectin in Cd binding by orange peel biosorbents: A comparison of peels, depectinated peels and pectic acid

    International Nuclear Information System (INIS)

    Schiewer, Silke; Iqbal, Muhammad

    2010-01-01

    Biosorption by cheaply and abundantly available materials such as citrus peels can be a cost efficient method for removing heavy metals from wastewater. To investigate the role pectin plays in metal binding by citrus peels, native orange peels, protonated peels, depectinated peels, and extracted pectic acid were compared. Kinetic experiments showed that equilibrium was achieved in 1 h. The 1st-order model was more effective in describing the kinetics than the 2nd-order model. Titrations showed two acidic sites with pK a values around 4 (carboxyl) and 10.5 (hydroxyl), respectively. The pH dependent surface charge was described well by a two-site model. Sorption isotherms were best modeled assuming a 1:2 binding stoichiometry, followed by the Langmuir and the Freundlich model. The binding capacity was highest for pectic acid (2.9 mequiv./g) followed by protonated peels and native peels, being lowest for depectinated peels (1.7 mequiv./g). This showed the importance of pectin in metal binding by citrus peels. However, even depectinated peels were still good sorbents which still provided carboxyl groups that were involved in metal binding. FTIR spectra confirmed the presence of carboxyl and hydroxyl groups in all materials and their involvement in metal binding.

  16. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei.

    Science.gov (United States)

    Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J

    2016-02-01

    Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC(12) but not BODIPY-FLC(5) to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC(12) to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC(12) was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Characterization of [3H] oxymorphone binding sites in mouse brain

    DEFF Research Database (Denmark)

    Yoo, Ji Hoon; Borsodi, Anna; Tóth, Géza

    2017-01-01

    Oxymorphone, one of oxycodone's metabolic products, is a potent opioid receptor agonist which is thought to contribute to the analgesic effect of its parent compound and may have high potential abuse liability. Nonetheless, the in vivo pharmacological binding profile of this drug is still unclear....... This study uses mice lacking mu (MOP), kappa (KOP) or delta (DOP) opioid receptors as well as mice lacking all three opioid receptors to provide full characterisation of oxymorphone binding sites in the brain. Saturation binding studies using [3H]oxymorphone revealed high affinity binding sites in mouse......]Oxymorphone binding was completely abolished across the majority of the brain regions in mice lacking MOP as well as in mice lacking all three opioid receptors. DOP and KOP knockout mice retained [3H]oxymorphone binding sites suggesting oxymorphone may not target DOP or KOP. These results confirm that the MOP...

  18. Position specific variation in the rate of evolution intranscription factor binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Kellis, Manolis; Lander, EricS.; Eisen, Michael B.

    2003-08-28

    The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Here we analyze the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikataeto study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artifacts of computational motif finding algorithms. As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative

  19. Binding of C-reactive protein to human polymorphonuclear leukocytes: evidence for association of binding sites with Fc receptors

    International Nuclear Information System (INIS)

    Mueller, H.; Fehr, J.

    1986-01-01

    The functional similarities between C-reactive protein (CRP) and IgG raised the question as to whether human phagocytes are stimulated by CRP in the same way as by binding of antigen-complexes or aggregated IgG to their Fc receptors. Studies with the use of highly purified 125 I-labeled CRP showed specific and saturable binding to human polymorphonuclear leukocytes (PNM) with a K/sub D/ of 10.5 +/- 5.7 x 10 -8 M only when carried out in heat-inactivated plasma. The number of specific binding sites per cell was estimated at 1 to 3 x 10 6 . Competitive inhibition of CRP binding by antigen-complexed or aggregated IgG suggests CRP binding sites to be associated IgG suggests CRP binding sites to be associated with PMN Fc receptors. Only when assayed in heat-inactivated plasma did CRP binding induce adherence of cells to tissue culture dishes. However, no metabolic and potentially cytotoxic simulation of PMN was detected during CRP plasma-dependent attachment to surfaces: induction of aggregation, release of secondary granule constituents, and activation of the hexose monophosphate pathway were not observed. These results imply that CRP-PMN interactions is dependent on an additional factor present in heat-inactivated plasma and is followed only by a complement-independent increase in PMN attachment to surfaces. Because CRP was found to be deposits at sites of tissue injury, the CRP-mediated adherence of PMN may be an important step in localizing an inflammatory focus

  20. Site-directed mutational analysis of structural interactions of low molecule compounds binding to the N-terminal 8 kDa domain of DNA polymerase β

    International Nuclear Information System (INIS)

    Murakami, Shizuka; Kamisuki, Shinji; Takata, Kei-ichi; Kasai, Nobuyuki; Kimura, Seisuke; Mizushina, Yoshiyuki; Ohta, Keisuke; Sugawara, Fumio; Sakaguchi, Kengo

    2006-01-01

    We previously reported the mode of inhibition of DNA polymerase β (pol. β) by long chain fatty acids and a bile acid, involving binding analyses to the N-terminal 8-kDa DNA binding domain. Here we describe a site-directed mutational analysis in which the key amino acids (L11, K35, H51, K60, L77, and T79), which are direct interaction sites in the domain, were substituted with K, A, A, A, K, and A, respectively. And their pol. β interactions with a C24-long chain fatty acid, nervonic acid (NA), and a bile acid, lithocholic acid (LCA), were investigated by gel mobility shift assay and NMR spectroscopy. In the case of K35A, there was complete loss of DNA binding activity while K60A hardly has any activity. In contrast the other mutations had no appreciable effects. Thus, K35 and K60 are key amino acid sites for binding to template DNA. The DNA binding activities of L11K, H51A, and T79A as well as the wild type were inhibited by NA to the same extent. T79A demonstrated a disturbed interaction with LCA. 1 H- 15 N HSQC NMR analysis indicated that despite their many similarities, the wild-type and the mutant proteins displayed some significant chemical shift differences. Not only were the substituted amino acid residues three-dimensionally shifted, but some amino acids which are positioned far distant from the key amino acids showed a shift. These results suggest that the interaction surface was significantly distorted with the result that LCA could not bind to the domain. These findings confirm our previous biochemical and 3D structural proposals concerning inhibition by NA and LCA

  1. Up-regulation of serotonergic binding sites labeled by (3H) WB4101 following fimbrial transection and 5,7-dihydroxytryptamine-induced lesions

    International Nuclear Information System (INIS)

    Morrow, A.L.; Norman, A.B.; Battaglia, G.; Loy, R.; Creese, I.

    1985-01-01

    Lesions of the serotonergic afferents to the hippocampus, by fimbrial transection or by 5,7-dihydroxytryptamine treatment, produce an increase in the Bmax of ( 3 H)WB4101 to its nanomolar affinity binding site, with no effect on its picomolar affinity binding site or on ( 3 H)prazosin binding. The nanomolar site is serotonergic as the serotonergic agonists, serotonin and 8-hydroxy-dipropylaminotetraline (8-OH-DPAT) have nanomolar affinity for ( 3 H)WB4101 binding when studied in the presence of a prazosin mask (30nM) of the alpha-1 component of ( 3 H)WB4101 binding. The serotonin receptor antagonists metergoline, lysergic acid diethylamide and lisuride also have high nanomolar affinities while ketanserin, yohimbine, prazosin and noradrenergic agonists have affinities in the micromolar range. Fimbrial transection or 5,7-dihydroxytryptamine injections produced 32% and 44% increases in the Bmax of ( 3 H)WB4101 binding in the presence of a prazosin mask. Serotonin competition for ( 3 H)WB4101 binding was identical in control and experimental tissues from each lesion experiment. Although specific binding of ( 3 H)WB4101 was increased, there was no change in the affinities or the percentages of the two binding components for serotonin competition with ( 3 H)WB4101. These data suggest that removal of the serotonergic input to the hippocampus produces an increase in the Bmax of serotonin receptor binding sites labeled by ( 3 H)WB4101. 33 references, 3 figures, 3 tables

  2. Investigation and identification of functional post-translational modification sites associated with drug binding and protein-protein interactions.

    Science.gov (United States)

    Su, Min-Gang; Weng, Julia Tzu-Ya; Hsu, Justin Bo-Kai; Huang, Kai-Yao; Chi, Yu-Hsiang; Lee, Tzong-Yi

    2017-12-21

    Protein post-translational modification (PTM) plays an essential role in various cellular processes that modulates the physical and chemical properties, folding, conformation, stability and activity of proteins, thereby modifying the functions of proteins. The improved throughput of mass spectrometry (MS) or MS/MS technology has not only brought about a surge in proteome-scale studies, but also contributed to a fruitful list of identified PTMs. However, with the increase in the number of identified PTMs, perhaps the more crucial question is what kind of biological mechanisms these PTMs are involved in. This is particularly important in light of the fact that most protein-based pharmaceuticals deliver their therapeutic effects through some form of PTM. Yet, our understanding is still limited with respect to the local effects and frequency of PTM sites near pharmaceutical binding sites and the interfaces of protein-protein interaction (PPI). Understanding PTM's function is critical to our ability to manipulate the biological mechanisms of protein. In this study, to understand the regulation of protein functions by PTMs, we mapped 25,835 PTM sites to proteins with available three-dimensional (3D) structural information in the Protein Data Bank (PDB), including 1785 modified PTM sites on the 3D structure. Based on the acquired structural PTM sites, we proposed to use five properties for the structural characterization of PTM substrate sites: the spatial composition of amino acids, residues and side-chain orientations surrounding the PTM substrate sites, as well as the secondary structure, division of acidity and alkaline residues, and solvent-accessible surface area. We further mapped the structural PTM sites to the structures of drug binding and PPI sites, identifying a total of 1917 PTM sites that may affect PPI and 3951 PTM sites associated with drug-target binding. An integrated analytical platform (CruxPTM), with a variety of methods and online molecular docking

  3. Autoradiographic localization of peptide YY and neuropeptide Y binding sites in the medulla oblongata

    International Nuclear Information System (INIS)

    Leslie, R.A.; McDonald, T.J.; Robertson, H.A.

    1988-01-01

    Peptide YY is a highly potent emetic when given intravenously in dogs. We hypothesized that the area postrema, a small brain stem nucleus that acts as a chemoreceptive trigger zone for vomiting and lies outside the blood-brain barrier, might have receptors that PYY would bind to, in order to mediate the emetic response. We prepared [ 125 I]PYY and used autoradiography to show that high affinity binding sites for this ligand were highly localized in the area postrema and related nuclei of the dog medulla oblongata. Furthermore, the distribution of [ 125 I]PYY binding sites in the rat medulla oblongata was very similar to that in the dog; the distribution of [ 125 I]PYY binding sites throughout the rat brain was seen to be similar to the distribution of [ 125 I]NPY binding sites

  4. Mutations that silence constitutive signaling activity in the allosteric ligand-binding site of the thyrotropin receptor.

    Science.gov (United States)

    Haas, Ann-Karin; Kleinau, Gunnar; Hoyer, Inna; Neumann, Susanne; Furkert, Jens; Rutz, Claudia; Schülein, Ralf; Gershengorn, Marvin C; Krause, Gerd

    2011-01-01

    The thyrotropin receptor (TSHR) exhibits elevated cAMP signaling in the basal state and becomes fully activated by thyrotropin. Previously we presented evidence that small-molecule ligands act allosterically within the transmembrane region in contrast to the orthosteric extracellular hormone-binding sites. Our goal in this study was to identify positions that surround the allosteric pocket and that are sensitive for inactivation of TSHR. Homology modeling combined with site-directed mutagenesis and functional characterization revealed seven mutants located in the allosteric binding site that led to a decrease of basal cAMP signaling activity. The majority of these silencing mutations, which constrain the TSHR in an inactive conformation, are found in two clusters when mapped onto the 3D structural model. We suggest that the amino acid positions identified herein are indicating locations where small-molecule antagonists, both neutral antagonists and inverse agonists, might interfere with active TSHR conformations.

  5. Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites.

    Science.gov (United States)

    Laverty, Duncan; Thomas, Philip; Field, Martin; Andersen, Ole J; Gold, Matthew G; Biggin, Philip C; Gielen, Marc; Smart, Trevor G

    2017-11-01

    γ-Aminobutyric acid receptors (GABA A Rs) are vital for controlling excitability in the brain. This is emphasized by the numerous neuropsychiatric disorders that result from receptor dysfunction. A critical component of most native GABA A Rs is the α subunit. Its transmembrane domain is the target for many modulators, including endogenous brain neurosteroids that impact anxiety, stress and depression, and for therapeutic drugs, such as general anesthetics. Understanding the basis for the modulation of GABA A R function requires high-resolution structures. Here we present the first atomic structures of a GABA A R chimera at 2.8-Å resolution, including those bound with potentiating and inhibitory neurosteroids. These structures define new allosteric binding sites for these modulators that are associated with the α-subunit transmembrane domain. Our findings will enable the exploitation of neurosteroids for therapeutic drug design to regulate GABA A Rs in neurological disorders.

  6. The ligand-binding profile of HARE: hyaluronan and chondroitin sulfates A, C, and D bind to overlapping sites distinct from the sites for heparin, acetylated low-density lipoprotein, dermatan sulfate, and CS-E.

    Science.gov (United States)

    Harris, Edward N; Weigel, Paul H

    2008-08-01

    The hyaluronic acid receptor for endocytosis (HARE)/ Stabilin-2 is the primary systemic scavenger receptor for hyaluronan (HA), the chondroitin sulfates (CS), dermatan sulfate (DS), and nonglycosaminoglycan (GAG) ligands such as acetylated low-density lipoprotein (AcLDL), pro-collagen propeptides, and advanced glycation end products. We recently discovered that HARE is also a systemic scavenger receptor for heparin (Hep) (Harris EN, Weigel JA, Weigel PH. 2008. The human hyaluronan receptor for endocytosis [HARE/Stabilin-2] is a systemic clearance receptor for heparin. J Biol Chem. 283:17341-17350). Our goal was to map the binding sites of eight different ligands within HARE. We used biotinylated GAGs and radio-iodinated streptavidin or AcLDL to assess the binding activities of ligands directly or indirectly (by competition with unlabeled ligands) in endocytosis assays using stable cell lines expressing the 315 or 190 kDa HA receptor for endocytosis (315- or 190-HARE) isoforms, and ELISA-like assays, with purified recombinant soluble 190-HARE ecto-domain. For example, Hep binding to HARE was competed by DS, CS-E, AcLDL, and dextran sulfate, but not by other CS types, HA, dextran, or heparosan. (125)I-AcLDL binding to HARE was partially competed by Hep and dextran sulfate, but not competed by HA. Two ligands, DS and CS-E, competed with both Hep and HA to some degree. Hep and HA binding or endocytosis is mutually inclusive; binding of these two GAGs occurs with functionally separate, noncompetitive, and apparently noninteracting domains. Thus, HARE binds to HA and Hep simultaneously. Although the domain(s) responsible for Hep binding remains unknown, the Link domain was required for HARE binding to HA, CS-A, CS-C, and CS-D. These results enable us to outline, for the first time, a binding activity map for multiple ligands of HARE.

  7. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin.

    Science.gov (United States)

    Treuheit, Nicholas A; Beach, Muneera A; Komives, Elizabeth A

    2011-05-31

    Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethyl ketone to the active site serine, as well as noncovalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1; however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-l-arginine-(3-methyl-1,5-pantanediyl)amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause a similar reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or exosite 1.

  8. Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei.

    Science.gov (United States)

    Tavagnacco, Letizia; Mason, Philip E; Schnupf, Udo; Pitici, Felicia; Zhong, Linghao; Himmel, Michael E; Crowley, Michael; Cesàro, Attilio; Brady, John W

    2011-05-01

    Molecular dynamics simulations were carried out for a system consisting of the carbohydrate-binding module (CBM) of the cellulase CBH I from Trichoderma reesei (Hypocrea jecorina) in a concentrated solution of β-D-glucopyranose, to determine whether there is any tendency for the sugar molecules to bind to the CBM. In spite of the general tendency of glucose to behave as an osmolyte, a marked tendency for the sugar molecules to bind to the protein was observed. However, the glucose molecules tended to bind only to specific sites on the protein. As expected, the hydrophobic face of the sugar molecules, comprising the axial H1, H3, and H5 aliphatic protons, tended to adhere to the flat faces of the three tyrosine side chains on the planar binding surface of the CBM. However, a significant tendency to bind to a groove-like feature on the upper surface of the CBM was also observed. These results would not be inconsistent with a model of the mechanism for this globular domain in which the cellodextrin chain being removed from the surface of crystalline cellulose passes over the upper surface of the CBM, presumably then available for hydrolysis in the active site tunnel of this processive cellulase. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery.

    Science.gov (United States)

    Pérot, Stéphanie; Sperandio, Olivier; Miteva, Maria A; Camproux, Anne-Claude; Villoutreix, Bruno O

    2010-08-01

    Detection, comparison and analyses of binding pockets are pivotal to structure-based drug design endeavors, from hit identification, screening of exosites and de-orphanization of protein functions to the anticipation of specific and non-specific binding to off- and anti-targets. Here, we analyze protein-ligand complexes and discuss methods that assist binding site identification, prediction of druggability and binding site comparison. The full potential of pockets is yet to be harnessed, and we envision that better understanding of the pocket space will have far-reaching implications in the field of drug discovery, such as the design of pocket-specific compound libraries and scoring functions.

  10. Hyaluronic acid binding ability of human sperm reflects cellular maturity and fertilizing potential: selection of sperm for intracytoplasmic sperm injection.

    Science.gov (United States)

    Huszar, Gabor; Ozkavukcu, Sinan; Jakab, Attila; Celik-Ozenci, Ciler; Sati, G Leyla; Cayli, Sevil

    2006-06-01

    The current concepts of sperm biochemical markers and the central role of the HspA2 chaperone protein, a measure of sperm cellular maturity and fertilizing potential, are reviewed. Because HspA2 is a component of the synaptonemal complex, low HspA2 levels and increased frequency of chromosomal aneuploidies are related in diminished maturity sperm. We also suggest a relationship between HspA2 expression in elongating spermatids and events of late spermiogenesis, such as cytoplasmic extrusion and plasma membrane remodeling that aid the formation of the zona pellucida binding and hyaluronic acid binding sites. The presence of hyaluronic acid receptor on the plasma membrane of mature sperm, coupled with hyaluronic acid coated glass or plastic surfaces, facilitates testing of sperm function and selection of single mature sperm for intracytoplasmic sperm injection. The frequencies of sperm with chromosomal disomy are reduced approximately fourfold to fivefold in hyaluronic acid selected sperm compared with semen sperm, comparable to the increase in such abnormalities in intracytoplasmic sperm injection offspring. Hyaluronic acid binding also excludes immature sperm with cytoplasmic extrusion, persistent histones, and DNA chain breaks. Hyaluronic acid mediated sperm selection is a novel technique that is comparable to sperm zona pellucida binding. Hyaluronic acid selected sperm will also alleviate the risks related to intracytoplasmic sperm injection fertilization with sperm of diminished maturity that currently cause worldwide concern.

  11. Nucleos: a web server for the identification of nucleotide-binding sites in protein structures.

    Science.gov (United States)

    Parca, Luca; Ferré, Fabrizio; Ausiello, Gabriele; Helmer-Citterich, Manuela

    2013-07-01

    Nucleos is a web server for the identification of nucleotide-binding sites in protein structures. Nucleos compares the structure of a query protein against a set of known template 3D binding sites representing nucleotide modules, namely the nucleobase, carbohydrate and phosphate. Structural features, clustering and conservation are used to filter and score the predictions. The predicted nucleotide modules are then joined to build whole nucleotide-binding sites, which are ranked by their score. The server takes as input either the PDB code of the query protein structure or a user-submitted structure in PDB format. The output of Nucleos is composed of ranked lists of predicted nucleotide-binding sites divided by nucleotide type (e.g. ATP-like). For each ranked prediction, Nucleos provides detailed information about the score, the template structure and the structural match for each nucleotide module composing the nucleotide-binding site. The predictions on the query structure and the template-binding sites can be viewed directly on the web through a graphical applet. In 98% of the cases, the modules composing correct predictions belong to proteins with no homology relationship between each other, meaning that the identification of brand-new nucleotide-binding sites is possible using information from non-homologous proteins. Nucleos is available at http://nucleos.bio.uniroma2.it/nucleos/.

  12. A first principles study of the binding of formic acid in catalase complementing high resolution X-ray structures

    International Nuclear Information System (INIS)

    Rovira, Carme; Alfonso-Prieto, Mercedes; Biarnes, Xevi; Carpena, Xavi; Fita, Ignacio; Loewen, Peter C.

    2006-01-01

    Density functional molecular dynamics simulations using a QM/MM approach are used to get insight into the binding modes of formic acid in catalase. Two ligand binding sites are found, named A and B, in agreement with recent high resolution structures of catalase with bound formic acid. In addition, the calculations show that the His56 residue is protonated and the ligand is present as a formate anion. The lowest energy minimum structure (A) corresponds to the ligand interacting with both the heme iron and the catalytic residues (His56 and Asn129). The second minimum energy structure (B) corresponds to the situation in which the ligand interacts solely with the catalytic residues. A mechanism for the process of formic acid binding in catalase is suggested

  13. A first principles study of the binding of formic acid in catalase complementing high resolution X-ray structures

    Energy Technology Data Exchange (ETDEWEB)

    Rovira, Carme [Centre especial de Recerca en Quimica Teorica, Parc Cientific de Barcelona, Josep Samitier 1-5, 08028 Barcelona (Spain)], E-mail: crovira@pcb.ub.es; Alfonso-Prieto, Mercedes [Centre especial de Recerca en Quimica Teorica, Parc Cientific de Barcelona, Josep Samitier 1-5, 08028 Barcelona (Spain); Biarnes, Xevi [Centre especial de Recerca en Quimica Teorica, Parc Cientific de Barcelona, Josep Samitier 1-5, 08028 Barcelona (Spain); Carpena, Xavi [Consejo Superior de Investigaciones Cientificas y Parc Cientific de Barcelona (CSIC-PCB), Josep Samitier 1-5, 08028 Barcelona (Spain); Fita, Ignacio [Consejo Superior de Investigaciones Cientificas y Parc Cientific de Barcelona (CSIC-PCB), Josep Samitier 1-5, 08028 Barcelona (Spain); Loewen, Peter C. [Department of Microbiology, University of Manitoba, Winnipeg, Canada MB R3T 2N2 (Canada)

    2006-03-31

    Density functional molecular dynamics simulations using a QM/MM approach are used to get insight into the binding modes of formic acid in catalase. Two ligand binding sites are found, named A and B, in agreement with recent high resolution structures of catalase with bound formic acid. In addition, the calculations show that the His56 residue is protonated and the ligand is present as a formate anion. The lowest energy minimum structure (A) corresponds to the ligand interacting with both the heme iron and the catalytic residues (His56 and Asn129). The second minimum energy structure (B) corresponds to the situation in which the ligand interacts solely with the catalytic residues. A mechanism for the process of formic acid binding in catalase is suggested.

  14. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver

    DEFF Research Database (Denmark)

    Gao, Hui; Fält, Susann; Sandelin, Albin

    2007-01-01

    We report the genome-wide identification of estrogen receptor alpha (ERalpha)-binding regions in mouse liver using a combination of chromatin immunoprecipitation and tiled microarrays that cover all nonrepetitive sequences in the mouse genome. This analysis identified 5568 ERalpha-binding regions...... genes. The majority of ERalpha-binding regions lie in regions that are evolutionarily conserved between human and mouse. Motif-finding algorithms identified the estrogen response element, and variants thereof, together with binding sites for activator protein 1, basic-helix-loop-helix proteins, ETS...... signaling in mouse liver, by characterizing the first step in this signaling cascade, the binding of ERalpha to DNA in intact chromatin....

  15. 5,5'-Dithiobis-(2-nitrobenzoic acid) as a probe for a non-essential cysteine residue at the medium chain acyl-coenzyme A dehydrogenase binding site of the human 'electron transferring flavoprotein' (ETF).

    Science.gov (United States)

    Parker, A; Engel, P C

    1999-01-01

    Human 'electron transferring flavoprotein' (ETF) was inactivated by the thiol-specific reagent 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB). The kinetic profile showed the reaction followed pseudo-first-order kinetics during the initial phase of inactivation. Monitoring the release of 5-thio-2-nitrobenzoate (TNB) showed that modification of 1 cysteine residue was responsible for the loss of activity. The inactivation of ETF by DTNB could be reversed upon incubation with thiol-containing reagents. The loss of activity was prevented by the inclusion of medium chain acyl-CoA dehydrogenase (MCAD) and octanoyl-CoA. Cyanolysis of the DTNB modified-ETF with KCN led to the release of TNB accompanied presumably by the formation of the thio-cyano enzyme and with almost full recovery of activity. Conservation studies and the lack of 100% inactivation, however, suggested that this cysteine residue is not essential for the interaction with MCAD.

  16. Defining the plasticity of transcription factor binding sites by Deconstructing DNA consensus sequences: the PhoP-binding sites among gamma/enterobacteria.

    Directory of Open Access Journals (Sweden)

    Oscar Harari

    2010-07-01

    Full Text Available Transcriptional regulators recognize specific DNA sequences. Because these sequences are embedded in the background of genomic DNA, it is hard to identify the key cis-regulatory elements that determine disparate patterns of gene expression. The detection of the intra- and inter-species differences among these sequences is crucial for understanding the molecular basis of both differential gene expression and evolution. Here, we address this problem by investigating the target promoters controlled by the DNA-binding PhoP protein, which governs virulence and Mg(2+ homeostasis in several bacterial species. PhoP is particularly interesting; it is highly conserved in different gamma/enterobacteria, regulating not only ancestral genes but also governing the expression of dozens of horizontally acquired genes that differ from species to species. Our approach consists of decomposing the DNA binding site sequences for a given regulator into families of motifs (i.e., termed submotifs using a machine learning method inspired by the "Divide & Conquer" strategy. By partitioning a motif into sub-patterns, computational advantages for classification were produced, resulting in the discovery of new members of a regulon, and alleviating the problem of distinguishing functional sites in chromatin immunoprecipitation and DNA microarray genome-wide analysis. Moreover, we found that certain partitions were useful in revealing biological properties of binding site sequences, including modular gains and losses of PhoP binding sites through evolutionary turnover events, as well as conservation in distant species. The high conservation of PhoP submotifs within gamma/enterobacteria, as well as the regulatory protein that recognizes them, suggests that the major cause of divergence between related species is not due to the binding sites, as was previously suggested for other regulators. Instead, the divergence may be attributed to the fast evolution of orthologous target

  17. Ligand-binding sites in human serum amyloid P component

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Heegaard, Peter M. H.; Roepstorff, P.

    1996-01-01

    Amyloid P component (AP) is a naturally occurring glycoprotein that is found in serum and basement membranes, AP is also a component of all types of amyloid, including that found in individuals who suffer from Alzheimer's disease and Down's syndrome. Because AP has been found to bind strongly...

  18. Exploring the binding sites and binding mechanism for hydrotrope encapsulated griseofulvin drug on γ-tubulin protein.

    Directory of Open Access Journals (Sweden)

    Shubhadip Das

    Full Text Available The protein γ-tubulin plays an important role in centrosomal clustering and this makes it an attractive therapeutic target for treating cancers. Griseofulvin, an antifungal drug, has recently been used to inhibit proliferation of various types of cancer cells. It can also affect the microtubule dynamics by targeting the γ-tubulin protein. So far, the binding pockets of γ-tubulin protein are not properly identified and the exact mechanism by which the drug binds to it is an area of intense speculation and research. The aim of the present study is to investigate the binding mechanism and binding affinity of griseofulvin on γ-tubulin protein using classical molecular dynamics simulations. Since the drug griseofulvin is sparingly soluble in water, here we also present a promising approach for formulating and achieving delivery of hydrophobic griseofulvin drug via hydrotrope sodium cumene sulfonate (SCS cluster. We observe that the binding pockets of γ-tubulin protein are mainly formed by the H8, H9 helices and S7, S8, S14 strands and the hydrophobic interactions between the drug and γ-tubulin protein drive the binding process. The release of the drug griseofulvin from the SCS cluster is confirmed by the coordination number analysis. We also find hydrotrope-induced alteration of the binding sites of γ-tubulin protein and the weakening of the drug-protein interactions.

  19. Simple Ligand–Receptor Interaction Descriptor (SILIRID for alignment-free binding site comparison

    Directory of Open Access Journals (Sweden)

    Vladimir Chupakhin

    2014-06-01

    Full Text Available We describe SILIRID (Simple Ligand–Receptor Interaction Descriptor, a novel fixed size descriptor characterizing protein–ligand interactions. SILIRID can be obtained from the binary interaction fingerprints (IFPs by summing up the bits corresponding to identical amino acids. This results in a vector of 168 integer numbers corresponding to the product of the number of entries (20 amino acids and one cofactor and 8 interaction types per amino acid (hydrophobic, aromatic face to face, aromatic edge to face, H-bond donated by the protein, H-bond donated by the ligand, ionic bond with protein cation and protein anion, and interaction with metal ion. Efficiency of SILIRID to distinguish different protein binding sites has been examined in similarity search in sc-PDB database, a druggable portion of the Protein Data Bank, using various protein–ligand complexes as queries. The performance of retrieval of structurally and evolutionary related classes of proteins was comparable to that of state-of-the-art approaches (ROC AUC ≈ 0.91. SILIRID can efficiently be used to visualize chemogenomic space covered by sc-PDB using Generative Topographic Mapping (GTM: sc-PDB SILIRID data form clusters corresponding to different protein types.

  20. Simple Ligand-Receptor Interaction Descriptor (SILIRID) for alignment-free binding site comparison.

    Science.gov (United States)

    Chupakhin, Vladimir; Marcou, Gilles; Gaspar, Helena; Varnek, Alexandre

    2014-06-01

    We describe SILIRID (Simple Ligand-Receptor Interaction Descriptor), a novel fixed size descriptor characterizing protein-ligand interactions. SILIRID can be obtained from the binary interaction fingerprints (IFPs) by summing up the bits corresponding to identical amino acids. This results in a vector of 168 integer numbers corresponding to the product of the number of entries (20 amino acids and one cofactor) and 8 interaction types per amino acid (hydrophobic, aromatic face to face, aromatic edge to face, H-bond donated by the protein, H-bond donated by the ligand, ionic bond with protein cation and protein anion, and interaction with metal ion). Efficiency of SILIRID to distinguish different protein binding sites has been examined in similarity search in sc-PDB database, a druggable portion of the Protein Data Bank, using various protein-ligand complexes as queries. The performance of retrieval of structurally and evolutionary related classes of proteins was comparable to that of state-of-the-art approaches (ROC AUC ≈ 0.91). SILIRID can efficiently be used to visualize chemogenomic space covered by sc-PDB using Generative Topographic Mapping (GTM): sc-PDB SILIRID data form clusters corresponding to different protein types.

  1. Dissociation and metal-binding characteristics of yellow lichen substances suggest a relationship with site preferences of lichens.

    Science.gov (United States)

    Hauck, Markus; Jürgens, Sascha-René; Willenbruch, Karen; Huneck, Siegfried; Leuschner, Christoph

    2009-01-01

    Many species of lichen-forming fungi contain yellow or orange extracellular pigments belonging to the dibenzofurans (usnic acid), anthraquinones (e.g. parietin) or pulvinic acid group. These pigments are all equally efficient light screens, leading us to question the potential ecological and evolutionary significance of diversity in yellow and orange lichen substances. Here the hypothesis is tested that the different pigments differ in metal-binding characteristics, which suggest that they may contribute to adaptation to sites differing in pH and metal availability. UV spectroscopy was used to study the dissociation and the pH dependence of the metal-binding behaviour of seven isolated lichen substances in methanol. Metals applied were selected macro- and micro-nutrients (Cu(2+), Fe(2+), Fe(3+), Mg(2+), Mn(2+) and Zn(2+)). All the pigments studied are strong to moderate acids with pK(a1) values between 2.8 and 4.5. Metal complexation is common in the lichen substances studied. Complexation takes place under acidic conditions with usnic acid, but under alkaline conditions with parietin and most compounds of the pulvinic acid group. The pulvinic acid derivative rhizocarpic acid forms metal complexes both in the acidic and the alkaline range. Metal complexation by lichen substances could be a prerequisite for lichen substance-mediated control of metal uptake. Assuming such an effect at pH values where the affinity of the metal for the lichen substance is intermediate would explain the strong preference of lichens with usnic or rhizocarpic acids to acidic substrata. Moreover, it would explain the preference of lichens with parietin and some lichens with compounds of the pulvinic acid group either for nutrient-rich substrata at low pH or for calcareous substrata.

  2. Quantitative autoradiographic distribution of L-[3H]glutamate-binding sites in rat central nervous system

    International Nuclear Information System (INIS)

    Greenamyre, J.T.; Young, A.B.; Penney, J.B.

    1984-01-01

    Quantitative autoradiography was used to determine the distribution of L-[3H]glutamate-binding sites in the rat central nervous system. Autoradiography was carried out in the presence of Cl- and Ca2+ ions. Scatchard plots and Hill coefficients of glutamate binding suggested that glutamate was interacting with a single population of sites having a K-D of about 300 nM and a capacity of 14.5 pmol/mg of protein. In displacement studies, ibotenate also appeared to bind to a single class of non-interacting sites with a KI of 28 microM. However, quisqualate displacement of [3H]glutamate binding revealed two well-resolved sites with KIS of 12 nM and 114 microM in striatum. These sites were unevenly distributed, representing different proportions of specific glutamate binding in different brain regions. The distribution of glutamate-binding sites correlated very well with the projection areas of putative glutamatergic pathways. This technique provides an extremely sensitive assay which can be used to gather detailed pharmacological and anatomical information about L-[3H]glutamate binding in the central nervous system

  3. Characterization of fatty acid binding by the P2 myelin protein

    International Nuclear Information System (INIS)

    Gudaitis, P.G.; Weise, M.J.

    1987-01-01

    In recent years, significant sequence homology has been found between the P2 protein of peripheral myelin and intracellular retinoid- and fatty acid-binding proteins. They have found that salt extracts of bovine intradural nerve roots contain the P2 basic protein in association with free fatty acid. Preliminary results from quantitative analyses showed a ratio of 0.4-1.1 fatty acid (mainly oleate and palmitate) per P2 molecule. P2/ligand interactions were partially characterized using ( 3 H)-oleate in gel permeation assays and binding studies using lipidex to separated bound and free fatty acid. Methyloleate was found to displace ( 3 H)-oleate from P2, indicating that ligand binding interactions are predominantly hydrophobic in nature. On the other hand, myristic acid and retinol did not inhibit the binding of oleate to the protein, results consistent with a decided affinity for long chain fatty acids but not for the retinoids. The binding between P2 and oleic acid showed an apparent Kd in the micromolar range, a value comparable to those found for other fatty acid-binding proteins. From these results they conclude that P2 shares not only structural homology with certain fatty acid binding proteins but also an ability to bind long chain fatty acids. Although the significance of these similarities is not yet clear, they may, by analogy, expect P2 to have a role in PNS lipid metabolism

  4. Ascorbic acid enables reversible dopamine receptor 3H-agonist binding

    International Nuclear Information System (INIS)

    Leff, S.; Sibley, D.R.; Hamblin, M.; Creese, I.

    1981-01-01

    The effects of ascorbic acid on dopaminergic 3 H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using 1uM (+)butaclamol) of the 3 H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total 3 H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable 3 H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of ''specific binding'' was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (+/-)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable 3 H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of 3 H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific 3 H-agonist binding to dopamine receptors

  5. Leveraging cross-species transcription factor binding site patterns

    DEFF Research Database (Denmark)

    Claussnitzer, Melina; Dankel, Simon N; Klocke, Bernward

    2014-01-01

    Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to...... that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms....

  6. Two Arginine Residues of Streptococcus gordonii Sialic Acid-Binding Adhesin Hsa Are Essential for Interaction to Host Cell Receptors.

    Directory of Open Access Journals (Sweden)

    Yumiko Urano-Tashiro

    Full Text Available Hsa is a large, serine-rich protein of Streptococcus gordonii DL1 that mediates binding to α2-3-linked sialic acid termini of glycoproteins, including platelet glycoprotein Ibα, and erythrocyte membrane protein glycophorin A, and band 3. The binding of Hsa to platelet glycoprotein Ibα contributes to the pathogenesis of infective endocarditis. This interaction appears to be mediated by a second non-repetitive region (NR2 of Hsa. However, the molecular details of the interaction between the Hsa NR2 region and these glycoproteins are not well understood. In the present study, we identified the amino acid residues of the Hsa NR2 region that are involved in sialic acid recognition. To identify the sialic acid-binding site of Hsa NR2 region, we prepared various mutants of Hsa NR2 fused with glutathione transferase. Fusion proteins harboring Arg340 to Asn (R340N or Arg365 to Asn (R365N substitutions in the NR2 domain exhibited significantly reduced binding to human erythrocytes and platelets. A sugar-binding assay showed that these mutant proteins abolished binding to α2-3-linked sialic acid. Furthermore, we established S. gordonii DL1 derivatives that encoded the corresponding Hsa mutant protein. In whole-cell assays, these mutant strains showed significant reductions in hemagglutination, in platelet aggregation, and in adhesion to human leukocytes. These results indicate that the Arg340 and Arg365 residues of Hsa play an important role in the binding of Hsa to α2-3-linked sialic acid-containing glycoproteins.

  7. Photoaffinity studies of the tubulin-colchicine binding site

    International Nuclear Information System (INIS)

    Hahn, K.M.

    1987-01-01

    A variety of colchicine derivatives were synthesized and coupled with 3,3,3-trifluoro-2-diazapropionyl chloride (TFDP-Cl) to produce colchicine photoaffinity analogs for use in tubulin labelling studies. Photoaffinity analogs of allocolchicine and podophylotoxin were also made using the same photoreactive moiety. Several labels were found to be effective inhibitors of tubulin polymerization. The approximate tubulin binding constants of the labels, calculated from polymerization inhibition data, varied between 2.2 x 10 5 to 2.5 x 10 3 M -1 . The labels chosen for use in tubulin labelling experiments were (N-TFDP) deacetyl-thiocolchicine 1, (O-TFDP)thiocolchifoline 2, and (O-TFDP)-2-demethylthiocolchicine 3. Compound 1 was found to bind tubulin reversibly and to competitively inhibit colchicine binding. Methods for the incorporation of tritium and 14 C in these labels were developed. Conditions were found which caused labels to insert into solvent without photorearrangement of the colchicine skeleton. Catalytic base caused the α-diazo amide of 1 to rearrange to a triazole

  8. Europium ion as a probe for binding sites to carrageenans

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Ana P.; Goncalves, Rogeria R.; Serra, Osvaldo A. [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo 14040-901 (Brazil); Zaniquelli, Maria Elisabete D. [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo 14040-901 (Brazil)], E-mail: medzaniquelli@ffclrp.usp.br; Wong, Kenneth [Laboratorio de Fisico-Quimica, Centro de Pesquisas de Paulinia, Rhodia Brasil, Paulinia, Sao Paulo (Brazil)

    2007-12-15

    Carrageenans, sulfated polysaccharides extracted from red algae, present a coil-helix transition and helix aggregation dependence on the type and concentration of counterions. In this study, we focus attention on a mixed valence counterion system: Eu{sup 3+}/Na{sup +} or K{sup +} with different gel-forming carrageenans: kappa, iota, and kappa-2. Results of stationary and time-dependent luminescence showed to be a suitable tool to probe ion binding to both the negatively charged sulfate group and the hydroxyl groups present in the biopolymer. For lower europium ion concentrations, a single longer decay emission lifetime was detected, which was attributed to the binding of europium ion to the carrageenan sulfate groups. An additional decay ascribed to europium binding to hydroxyl groups was observed above a threshold concentration, and this decay was dependent on the carrageenan charge density. Symmetry of the europium ion microenvironment was estimated by the ratio between the intensities of its emission bands, which has been shown to depend on the concentration of europium ions and on the specificity of the monovalent counterion bound to the carrageenan.

  9. Europium ion as a probe for binding sites to carrageenans

    International Nuclear Information System (INIS)

    Ramos, Ana P.; Goncalves, Rogeria R.; Serra, Osvaldo A.; Zaniquelli, Maria Elisabete D.; Wong, Kenneth

    2007-01-01

    Carrageenans, sulfated polysaccharides extracted from red algae, present a coil-helix transition and helix aggregation dependence on the type and concentration of counterions. In this study, we focus attention on a mixed valence counterion system: Eu 3+ /Na + or K + with different gel-forming carrageenans: kappa, iota, and kappa-2. Results of stationary and time-dependent luminescence showed to be a suitable tool to probe ion binding to both the negatively charged sulfate group and the hydroxyl groups present in the biopolymer. For lower europium ion concentrations, a single longer decay emission lifetime was detected, which was attributed to the binding of europium ion to the carrageenan sulfate groups. An additional decay ascribed to europium binding to hydroxyl groups was observed above a threshold concentration, and this decay was dependent on the carrageenan charge density. Symmetry of the europium ion microenvironment was estimated by the ratio between the intensities of its emission bands, which has been shown to depend on the concentration of europium ions and on the specificity of the monovalent counterion bound to the carrageenan

  10. Structural analysis of binding functionality of folic acid-PEG dendrimers against folate receptor.

    Science.gov (United States)

    Sampogna-Mireles, Diana; Araya-Durán, Ingrid D; Márquez-Miranda, Valeria; Valencia-Gallegos, Jesús A; González-Nilo, Fernando D

    2017-03-01

    Dendrimers functionalized with folic acid (FA) are drug delivery systems that can selectively target cancer cells with folate receptors (FR-α) overexpression. Incorporation of polyethylene glycol (PEG) can enhance dendrimers solubility and pharmacokinetics, but ligand-receptor binding must not be affected. In this work we characterized, at atomic level, the binding functionality of conventional site-specific dendrimers conjugated with FA with PEG 750 or PEG 3350 as a linker. After Molecular Dynamics simulation, we observed that both PEG's did not interfere over ligand-receptor binding functionality. Although binding kinetics could be notably affected, the folate fragment from both dendrimers remained exposed to the solvent before approaching selectively to FR-α. PEG 3350 provided better solubility and protection from enzymatic degradation to the dendrimer than PEG 750. Also, FA-PEG3350 dendrimer showed a slightly better interaction with FR-α than FA-PEG750 dendrimer. Therefore, theoretical evidence supports that both dendrimers are suitable as drug delivery systems for cancer therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography

    International Nuclear Information System (INIS)

    Corp, E.S.; Woods, S.C.; Figlewicz, D.P.; Porte, D. Jr.; Baskin, D.G.; Dorsa, D.M.

    1986-01-01

    In vitro autoradiography and computer video densitometry were used to localize and quantify binding of 125 I-insulin in the hypothalamus of the rat brain. Highest specific binding was found in the arculate, dorsomedial, suprachiasmatic, paraventricular and periventricular regions. Significantly lower binding was present in the ventromedial nucleus and median eminence. The results are consistent with the hypothesis that insulin modulates the neural regulation of feeding by acting at sites in the hypothalamus. (author)

  12. Autoradiographic quantification of vasoactive intestinal peptide binding sites in sections from human blood mononuclear cell pellets

    Energy Technology Data Exchange (ETDEWEB)

    Gutkind, J.S.; Kurihara, M.; Castren, E.; Saavedra, J.M.

    1988-09-01

    Quantitative autoradiographic methods were utilized to characterize specific, high-affinity vasoactive intestinal peptide binding sites (Kd = 310 +/- 60 pmol/L; Bmax = 93 +/- 11 fmol/mg protein) in frozen sections obtained from a mononuclear cell pellet derived from 20 ml of human blood. The method is at least one order of magnitude more sensitive than conventional membrane binding techniques, and it has the potential for wide applications in studies of neuropeptide, biogenic amine, and drug binding in clinical samples.

  13. Autoradiographic quantification of vasoactive intestinal peptide binding sites in sections from human blood mononuclear cell pellets

    International Nuclear Information System (INIS)

    Gutkind, J.S.; Kurihara, M.; Castren, E.; Saavedra, J.M.

    1988-01-01

    Quantitative autoradiographic methods were utilized to characterize specific, high-affinity vasoactive intestinal peptide binding sites (Kd = 310 +/- 60 pmol/L; Bmax = 93 +/- 11 fmol/mg protein) in frozen sections obtained from a mononuclear cell pellet derived from 20 ml of human blood. The method is at least one order of magnitude more sensitive than conventional membrane binding techniques, and it has the potential for wide applications in studies of neuropeptide, biogenic amine, and drug binding in clinical samples

  14. Characterisation of the human NMDA receptor subunit NR3A glycine binding site

    DEFF Research Database (Denmark)

    Nilsson, A; Duan, J; Mo-Boquist, L-L

    2007-01-01

    In this study, we characterise the binding site of the human N-methyl-d-aspartate (NMDA) receptor subunit NR3A. Saturation radioligand binding of the NMDA receptor agonists [(3)H]-glycine and [(3)H]-glutamate showed that only glycine binds to human NR3A (hNR3A) with high affinity (K(d)=535nM (277...

  15. Polar bear hemoglobin and human Hb A0: same 2,3-diphosphoglycerate binding site but asymmetry of the binding?

    Science.gov (United States)

    Pomponi, Massimo; Bertonati, Claudia; Patamia, Maria; Marta, Maurizio; Derocher, Andrew E; Lydersen, Christian; Kovacs, Kit M; Wiig, Oystein; Bårdgard, Astrid J

    2002-11-01

    Polar bear (Ursus maritimus) hemoglobin (Hb) shows a low response to 2,3-diphosphoglycerate (2,3-DPG), compared to human Hb A0, even though these proteins have the same 2,3-DPG-binding site. In addition, polar bear Hb shows a high response to chloride and an alkaline Bohr effect (deltalog P50/deltapH) that is significantly greater than that of human Hb A0. The difference in sequence Pro (Hb A0)-->Gly (polar bear Hb) at position A2 in the A helix seems to be critical for reduced binding of 2,3-DPG. Our results also show that the A2 position may influence not only the flexibility of the A helix, but that differences in flexibility of the first turn of the A helix may affect the unloading of oxygen for the intrinsic ligand affinities of the alpha and beta chains. However, preferential binding to either chain can only take place if there is appreciable asymmetric binding of the phosphoric effector. Regarding this point, 31P NMR data suggest a loss of symmetry of the 2,3-DPG-binding site in the deoxyHb-2,3-DPG complex.

  16. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Eva-Maria; Bernard, Steffen M.; La, David; Bohn, Alan J.; Lee, Peter S.; Anderson, Caitlin E.; Nieusma, Travis; Holstein, Carly A.; Garcia, Natalie K.; Hooper, Kathryn A.; Ravichandran, Rashmi; Nelson, Jorgen W.; Sheffler, William; Bloom, Jesse D.; Lee, Kelly K.; Ward, Andrew B.; Yager, Paul; Fuller, Deborah H.; Wilson, Ian A.; Baker , David (UWASH); (Scripps); (FHCRC)

    2017-06-12

    Many viral surface glycoproteins and cell surface receptors are homo-oligomers1, 2, 3, 4, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites5, 6, 7, 8. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.

  17. Conversion of MyoD to a Neurogenic Factor: Binding Site Specificity Determines Lineage

    Directory of Open Access Journals (Sweden)

    Abraham P. Fong

    2015-03-01

    Full Text Available MyoD and NeuroD2, master regulators of myogenesis and neurogenesis, bind to a “shared” E-box sequence (CAGCTG and a “private” sequence (CAGGTG or CAGATG, respectively. To determine whether private-site recognition is sufficient to confer lineage specification, we generated a MyoD mutant with the DNA-binding specificity of NeuroD2. This chimeric mutant gained binding to NeuroD2 private sites but maintained binding to a subset of MyoD-specific sites, activating part of both the muscle and neuronal programs. Sequence analysis revealed an enrichment for PBX/MEIS motifs at the subset of MyoD-specific sites bound by the chimera, and point mutations that prevent MyoD interaction with PBX/MEIS converted the chimera to a pure neurogenic factor. Therefore, redirecting MyoD binding from MyoD private sites to NeuroD2 private sites, despite preserved binding to the MyoD/NeuroD2 shared sites, is sufficient to change MyoD from a master regulator of myogenesis to a master regulator of neurogenesis.

  18. Exploring the composition of protein-ligand binding sites on a large scale.

    Directory of Open Access Journals (Sweden)

    Nickolay A Khazanov

    Full Text Available The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand binding, and understanding general composition of these sites is of great importance if we are to gain insight into the functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for improving prediction or characterization of ligand-binding sites in proteins of unknown function. The Binding MOAD database if one of the largest curated sets of protein-ligand complexes, and provides a source of diverse, high-quality data for establishing general trends of residue composition from currently available protein structures. We present an analysis of 3,295 non-redundant proteins with 9,114 non-redundant binding sites to identify residues over-represented in binding regions versus the rest of the protein surface. The Binding MOAD database delineates biologically-relevant "valid" ligands from "invalid" small-molecule ligands bound to the protein. Invalids are present in the crystallization medium and serve no known biological function. Contacts are found to differ between these classes of ligands, indicating that residue composition of biologically relevant binding sites is distinct not only from the rest of the protein surface, but also from surface regions capable of opportunistic binding of non-functional small molecules. To confirm these trends, we perform a rigorous analysis of the variation of residue propensity with respect to the size of the dataset and the content bias inherent in structure sets obtained from a large protein structure database. The optimal size of the dataset for establishing general trends of residue propensities, as well as strategies for assessing the significance of such trends, are suggested for future studies of binding-site composition.

  19. Structural Basis for Linezolid Binding Site Rearrangement in the Staphylococcus aureus Ribosome.

    Science.gov (United States)

    Belousoff, Matthew J; Eyal, Zohar; Radjainia, Mazdak; Ahmed, Tofayel; Bamert, Rebecca S; Matzov, Donna; Bashan, Anat; Zimmerman, Ella; Mishra, Satabdi; Cameron, David; Elmlund, Hans; Peleg, Anton Y; Bhushan, Shashi; Lithgow, Trevor; Yonath, Ada

    2017-05-09

    An unorthodox, surprising mechanism of resistance to the antibiotic linezolid was revealed by cryo-electron microscopy (cryo-EM) in the 70S ribosomes from a clinical isolate of Staphylococcus aureus This high-resolution structural information demonstrated that a single amino acid deletion in ribosomal protein uL3 confers linezolid resistance despite being located 24 Å away from the linezolid binding pocket in the peptidyl-transferase center. The mutation induces a cascade of allosteric structural rearrangements of the rRNA that ultimately results in the alteration of the antibiotic binding site. IMPORTANCE The growing burden on human health caused by various antibiotic resistance mutations now includes prevalent Staphylococcus aureus resistance to last-line antimicrobial drugs such as linezolid and daptomycin. Structure-informed drug modification represents a frontier with respect to designing advanced clinical therapies, but success in this strategy requires rapid, facile means to shed light on the structural basis for drug resistance (D. Brown, Nat Rev Drug Discov 14:821-832, 2015, https://doi.org/10.1038/nrd4675). Here, detailed structural information demonstrates that a common mechanism is at play in linezolid resistance and provides a step toward the redesign of oxazolidinone antibiotics, a strategy that could thwart known mechanisms of linezolid resistance. Copyright © 2017 Belousoff et al.

  20. Substitution of arginine for histidine-47 in the coenzyme binding site of yeast alcohol dehydrogenase I

    International Nuclear Information System (INIS)

    Gould, R.M.; Plapp, B.V.

    1990-01-01

    Molecular modeling of alcohol dehydrogenases suggests that His-47 in the yeast enzyme (His-44 in the protein sequence, corresponding to Arg-47 in the horse liver enzyme) binds the pyrophosphate of the NAD coenzyme. His-47 in the Saccharomyces cerevisiae isoenzyme I was substituted with an arginine by a directed mutation. Steady-state kinetic results at pH 7.3 and 30 degree C of the mutant and wild-type enzymes were consistent with an ordered Bi-Bi mechanism. The substitution decreased dissociation constants by 4-fold for NAD + and 2-fold for NADH while turnover numbers were decreased by 4-fold for ethanol oxidation and 6-fold for acetaldehyde reduction. The magnitudes of these effects are smaller than those found for the same mutation in the human liver β enzyme, suggesting that other amino acid residues in the active site modulate the effects of the substitution. The pH dependencies of dissociation constants and other kinetic constants were similar in the two yeast enzymes. Thus, it appears that His-47 is not solely responsible for a pK value near 7 that controls activity and coenzyme binding rates in the wild-type enzyme. The small substrate deuterium isotope effect above pH 7 and the single exponential phase of NADH production during the transient oxidation of ethanol by the Arg-47 enzyme suggest that the mutation makes an isomerization of the enzyme-NAD + complex limiting for turnover with ethanol

  1. Mathematical description of drug-target interactions: application to biologics that bind to targets with two binding sites.

    Science.gov (United States)

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2018-02-01

    The emerging discipline of mathematical pharmacology occupies the space between advanced pharmacometrics and systems biology. A characteristic feature of the approach is application of advance mathematical methods to study the behavior of biological systems as described by mathematical (most often differential) equations. One of the early application of mathematical pharmacology (that was not called this name at the time) was formulation and investigation of the target-mediated drug disposition (TMDD) model and its approximations. The model was shown to be remarkably successful, not only in describing the observed data for drug-target interactions, but also in advancing the qualitative and quantitative understanding of those interactions and their role in pharmacokinetic and pharmacodynamic properties of biologics. The TMDD model in its original formulation describes the interaction of the drug that has one binding site with the target that also has only one binding site. Following the framework developed earlier for drugs with one-to-one binding, this work aims to describe a rigorous approach for working with similar systems and to apply it to drugs that bind to targets with two binding sites. The quasi-steady-state, quasi-equilibrium, irreversible binding, and Michaelis-Menten approximations of the model are also derived. These equations can be used, in particular, to predict concentrations of the partially bound target (RC). This could be clinically important if RC remains active and has slow internalization rate. In this case, introduction of the drug aimed to suppress target activity may lead to the opposite effect due to RC accumulation.

  2. Construction of a high affinity zinc binding site in the metabotropic glutamate receptor mGluR1

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Sheppard, P O; Jensen, L B

    2001-01-01

    a molecular model of the ATD of mGluR1 based on a weak amino acid sequence similarity with a bacterial periplasmic binding protein. The ATD consists of two globular lobes, which are speculated to contract from an "open" to a "closed" conformation following agonist binding. In the present study, we have...... created a Zn(2+) binding site in mGluR1b by mutating the residue Lys(260) to a histidine. Zinc acts as a noncompetitive antagonist of agonist-induced IP accumulation on the K260H mutant with an IC(50) value of 2 microm. Alanine mutations of three potential "zinc coligands" in proximity to the introduced...

  3. Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.

    Science.gov (United States)

    Park, Byungkyu; Im, Jinyong; Tuvshinjargal, Narankhuu; Lee, Wook; Han, Kyungsook

    2014-11-01

    As many structures of protein-DNA complexes have been known in the past years, several computational methods have been developed to predict DNA-binding sites in proteins. However, its inverse problem (i.e., predicting protein-binding sites in DNA) has received much less attention. One of the reasons is that the differences between the interaction propensities of nucleotides are much smaller than those between amino acids. Another reason is that DNA exhibits less diverse sequence patterns than protein. Therefore, predicting protein-binding DNA nucleotides is much harder than predicting DNA-binding amino acids. We computed the interaction propensity (IP) of nucleotide triplets with amino acids using an extensive dataset of protein-DNA complexes, and developed two support vector machine (SVM) models that predict protein-binding nucleotides from sequence data alone. One SVM model predicts protein-binding nucleotides using DNA sequence data alone, and the other SVM model predicts protein-binding nucleotides using both DNA and protein sequences. In a 10-fold cross-validation with 1519 DNA sequences, the SVM model that uses DNA sequence data only predicted protein-binding nucleotides with an accuracy of 67.0%, an F-measure of 67.1%, and a Matthews correlation coefficient (MCC) of 0.340. With an independent dataset of 181 DNAs that were not used in training, it achieved an accuracy of 66.2%, an F-measure 66.3% and a MCC of 0.324. Another SVM model that uses both DNA and protein sequences achieved an accuracy of 69.6%, an F-measure of 69.6%, and a MCC of 0.383 in a 10-fold cross-validation with 1519 DNA sequences and 859 protein sequences. With an independent dataset of 181 DNAs and 143 proteins, it showed an accuracy of 67.3%, an F-measure of 66.5% and a MCC of 0.329. Both in cross-validation and independent testing, the second SVM model that used both DNA and protein sequence data showed better performance than the first model that used DNA sequence data. To the best of

  4. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    Directory of Open Access Journals (Sweden)

    Stormo Gary D

    2005-07-01

    Full Text Available Abstract Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data.

  5. Pharmacologically relevant receptor binding characteristics and 5alpha-reductase inhibitory activity of free Fatty acids contained in saw palmetto extract.

    Science.gov (United States)

    Abe, Masayuki; Ito, Yoshihiko; Oyunzul, Luvsandorj; Oki-Fujino, Tomomi; Yamada, Shizuo

    2009-04-01

    Saw palmetto extract (SPE), used widely for the treatment of benign prostatic hyperplasia (BPH) has been shown to bind alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine (1,4-DHP) calcium channel antagonist receptors. Major constituents of SPE are lauric acid, oleic acid, myristic acid, palmitic acid and linoleic acid. The aim of this study was to investigate binding affinities of these fatty acids for pharmacologically relevant (alpha(1)-adrenergic, muscarinic and 1,4-DHP) receptors. The fatty acids inhibited specific [(3)H]prazosin binding in rat brain in a concentration-dependent manner with IC(50) values of 23.8 to 136 microg/ml, and specific (+)-[(3)H]PN 200-110 binding with IC(50) values of 24.5 to 79.5 microg/ml. Also, lauric acid, oleic acid, myristic acid and linoleic acid inhibited specific [(3)H]N-methylscopolamine ([(3)H]NMS) binding in rat brain with IC(50) values of 56.4 to 169 microg/ml. Palmitic acid had no effect on specific [(3)H]NMS binding. The affinity of oleic acid, myristic acid and linoleic acid for each receptor was greater than the affinity of SPE. Scatchard analysis revealed that oleic acid and lauric acid caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]prazosin, [(3)H]NMS and (+)-[(3)H]PN 200-110. The results suggest that lauric acid and oleic acid bind noncompetitively to alpha(1)-adrenergic, muscarinic and 1,4-DHP calcium channel antagonist receptors. We developed a novel and convenient method of determining 5alpha-reductase activity using LC/MS. With this method, SPE was shown to inhibit 5alpha-reductase activity in rat liver with an IC(50) of 101 microg/ml. Similarly, all the fatty acids except palmitic acid inhibited 5alpha-reductase activity, with IC(50) values of 42.1 to 67.6 microg/ml. In conclusion, lauric acid, oleic acid, myristic acid, and linoleic acid, major constituents of SPE, exerted binding activities of alpha(1)-adrenergic, muscarinic and 1,4-DHP receptors and inhibited 5

  6. DNA Binding Drugs Targeting the Regulatory DNA Binding Site of the ETS Domain Family Transcription Factor Associated With Human Breast Cancer

    National Research Council Canada - National Science Library

    Wang, Yong-Dong

    1999-01-01

    .... The key approach is to prevent the binding of two transcription factors, ESX and AP-2, to the consensus DNA binding sites contained within the Her2/neu promoter resulting in inhibition of transcription factor function...

  7. Single-Stranded Nucleic Acids Bind to the Tetramer Interface of SAMHD1 and Prevent Formation of the Catalytic Homotetramer.

    Science.gov (United States)

    Seamon, Kyle J; Bumpus, Namandjé N; Stivers, James T

    2016-11-08

    Sterile alpha motif and HD domain protein 1 (SAMHD1) is a unique enzyme that plays important roles in nucleic acid metabolism, viral restriction, and the pathogenesis of autoimmune diseases and cancer. Although much attention has been focused on its dNTP triphosphohydrolase activity in viral restriction and disease, SAMHD1 also binds to single-stranded RNA and DNA. Here we utilize a UV cross-linking method using 5-bromodeoxyuridine-substituted oligonucleotides coupled with high-resolution mass spectrometry to identify the binding site for single-stranded nucleic acids (ssNAs) on SAMHD1. Mapping cross-linked amino acids on the surface of existing crystal structures demonstrated that the ssNA binding site lies largely along the dimer-dimer interface, sterically blocking the formation of the homotetramer required for dNTPase activity. Surprisingly, the disordered C-terminus of SAMHD1 (residues 583-626) was also implicated in ssNA binding. An interaction between this region and ssNA was confirmed in binding studies using the purified SAMHD1 583-626 peptide. Despite a recent report that SAMHD1 possesses polyribonucleotide phosphorylase activity, we did not detect any such activity in the presence of inorganic phosphate, indicating that nucleic acid binding is unrelated to this proposed activity. These data suggest an antagonistic regulatory mechanism in which the mutually exclusive oligomeric state requirements for ssNA binding and dNTP hydrolase activity modulate these two functions of SAMHD1 within the cell.

  8. Peptide microarrays to probe for competition for binding sites in a protein interaction network

    NARCIS (Netherlands)

    Sinzinger, M.D.S.; Ruttekolk, I.R.R.; Gloerich, J.; Wessels, H.; Chung, Y.D.; Adjobo-Hermans, M.J.W.; Brock, R.E.

    2013-01-01

    Cellular protein interaction networks are a result of the binding preferences of a particular protein and the entirety of interactors that mutually compete for binding sites. Therefore, the reconstruction of interaction networks by the accumulation of interaction networks for individual proteins

  9. Identification of an allosteric binding site for RORγt inhibition

    NARCIS (Netherlands)

    Scheepstra, M.; Leysen, S.; van Almen, G.; Miller, J.R.; Piesvaux, J.; Kutilek, V.; van Eenennaam, H.; Zhang, H.; Barr, K.; Nagpal, S.; Soisson, S.M.; Kornienko, M.; Wiley, K.; Elsen, N.; Sharma, S.; Correll, C.C.; Trotter, B.W.; Stelt, van der M.; Oubrie, A.; Ottmann, C.; Parthasarathy, G.; Brunsveld, L.

    2015-01-01

    RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of

  10. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  11. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome.

    Science.gov (United States)

    Dresch, Jacqueline M; Zellers, Rowan G; Bork, Daniel K; Drewell, Robert A

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.

  12. Assessment of algorithms for inferring positional weight matrix motifs of transcription factor binding sites using protein binding microarray data.

    Directory of Open Access Journals (Sweden)

    Yaron Orenstein

    Full Text Available The new technology of protein binding microarrays (PBMs allows simultaneous measurement of the binding intensities of a transcription factor to tens of thousands of synthetic double-stranded DNA probes, covering all possible 10-mers. A key computational challenge is inferring the binding motif from these data. We present a systematic comparison of four methods developed specifically for reconstructing a binding site motif represented as a positional weight matrix from PBM data. The reconstructed motifs were evaluated in terms of three criteria: concordance with reference motifs from the literature and ability to predict in vivo and in vitro bindings. The evaluation encompassed over 200 transcription factors and some 300 assays. The results show a tradeoff between how the methods perform according to the different criteria, and a dichotomy of method types. Algorithms that construct motifs with low information content predict PBM probe ranking more faithfully, while methods that produce highly informative motifs match reference motifs better. Interestingly, in predicting high-affinity binding, all methods give far poorer results for in vivo assays compared to in vitro assays.

  13. CONREAL web server: identification and visualization of conserved transcription factor binding sites

    NARCIS (Netherlands)

    Berezikov, E.; Guryev, V.; Cuppen, E.

    2005-01-01

    The use of orthologous sequences and phylogenetic footprinting approaches have become popular for the recognition of conserved and potentially functional sequences. Several algorithms have been developed for the identification of conserved transcription factor binding sites (TFBSs), which are

  14. Three-dimensional binding sites volume assessment during cardiac pacing lead extraction

    Directory of Open Access Journals (Sweden)

    Bich Lien Nguyen

    2015-07-01

    Conclusions: Real-time 3D binding sites assessment is feasible and improves transvenous lead extraction outcomes. Its role as a complementary information requires extensive validation, and might be beneficial for a tailored strategy.

  15. Binding sites for 3H-LTC4 in membranes from guinea pig ileal longitudinal muscle

    International Nuclear Information System (INIS)

    Nicosia, S.; Crowley, H.J.; Oliva, D.; Welton, A.F.

    1984-01-01

    Leutriene (LTC4) is one of the components of Slow Reacting Substance of Anaphylaxis (SRS-A) and is a potent constrictor of guinea pig ilea. The contraction is likely to be a receptor-mediated process. Here the authors report the existence of specific binding sites for 3 H-LTC4 in a crude membrane preparation from guinea pig ileal longitudinal muscle. At 4 degrees C in the presence of 20 mM Serine-borate, binding increases linearly with protein concentration, reaches equilibrium in 10 minutes, and is reversible upon addition of 3 x 10(-5) M unlabelled LTC4. The dissociation curve is consistent with the existence of more than one class of binding site. Ca++ and Mg++ greatly enhance the binding of 3 H-LTC4 at equilibrium. In the presence of 5 mM CaCl 2 and MgCl 2 not only LTC4 (IC50 10(-7)M), but also LTD4 and the SRS-A antagonist FPL 55712 can compete with 3 H-LTC4 for its binding sites. FPL 55712 only displaces 60-70% of the total amount bound, while LTC4 displaces 90-95%. These studies indicate that multiple classes of binding sites exist for 3 H-LTC4 in guinea pig ileal longitudinal muscle, and that at least part of these binding sites might be related to the ability of LTC4 to contract guinea pig ilea

  16. Radiolabelling of phoneutria nigriventer spider toxin (Tx1): a tool to study its binding site

    International Nuclear Information System (INIS)

    Santos, Raquel Gouvea dos; Diniz, Carlos Roberto; Nascimento, Marta Cordeiro; Lima, Maria Elena de

    1996-01-01

    The neurotoxin Tx1, isolated from the venom of the South American spider Phoneutria nigriventer produces tail elevation and spastic paralysis of posterior limbs after intracerebral ventricular injection in mice. Tx1 also produces ileum contraction in bioassay. We have investigated the binding of radioiodinated-Tx1 ( 125 I-Tx1) on the preparation of myenteric plexus-longitudinal muscle membrane from guinea pig ileum (MPLM) as a tool to characterize the interaction of this neurotoxin with its site. The neurotoxin Tx1 was radioiodinated with Na 125 I by the lactoperoxidase method. 125 I-Tx1 specifically binds to a single class of noninteracting binding sites of high affinity (Kd= 3.5 x 10 -10 M) and low capacity (1.2 pmol/mg protein). The specific binding increased in parallel with the protein concentration. In competition experiments the ligands of ionic channels used (sodium, potassium and calcium) did not affect the binding of 125 I-Tx1 to MPLM neither did the cholinergic ligands (hemicholinium-3, hexamethonium, d-tubocurarine and atropine). Another neurotoxin (Tx2-6, one of the isoforms of Tx2 pool) decreased toxin with MPLM and showed that toxin has a specific and saturable binding site in guinea pig ileum and this binding site appears to be related to the Tx2 site. (author)

  17. Serotoninergic receptors in brain tissue: properties and identification of various 3H-ligand binding sites in vitro

    International Nuclear Information System (INIS)

    Leysen, J.E.

    1981-01-01

    In vitro binding studies to serotoninergic receptors were performed using 3 H-LSD, 3 H-5-HT and 3 H-spiperone. An overwiew is given on findings using these three ligands with respect to the following: localization of specific binding sites, in various animal species, the regional distribution in the brain and periphery, the subcellular and cellular distribution. Properties of the binding sites, influence of the composition of the assay medium, binding kinetic properties, receptor regulation in vivo. Identity of the binding sites, differences between site for various 3 H-ligands, pharmacological specificity of the membranous binding sites, chemical composition of the macromolecular complex constituting the binding site. Function of the receptor. Binding affinities of 44 compounds were measured in binding assays using 3 H-spiperone and 3 H-LSD with rat frontal cortex membrane preparations and using 3 H-5-HT and 3 H-LSD with rat hippocampal membrane preparations

  18. Self-Assembly of Coordinative Supramolecular Polygons with Open Binding Sites.

    Science.gov (United States)

    Zheng, Yao-Rong; Wang, Ming; Kobayashi, Shiho; Stang, Peter J

    2011-04-27

    The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear ((31)P and (1)H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study.

  19. gamma-Aminobutyric acid- and benzodiazepine-induced modulation of [35S]-t-butylbicyclophosphorothionate binding to cerebellar granule cells

    International Nuclear Information System (INIS)

    Gallo, V.; Wise, B.C.; Vaccarino, F.; Guidotti, A.

    1985-01-01

    t-Butylbicyclophosphorothionate (TBPS) is a bicyclophosphate derivative with potent picrotoxin-like convulsant activity that binds with high affinity and specificity to a Cl- channel-modulatory site of the gamma-aminobutyric acid (GABA)/benzodiazepine receptor complex. Using intact cerebellar granule cells maintained in primary culture, the authors have studied the modifications induced by GABA and diazepam on the ion channel-modulatory binding site labeled by [ 35 S]TBPS. At 25 degrees C, and in a modified Locke solution, the [ 35 S]TBPS specific binding, determined by displacing the radioligand with an excess (10(-4) M) of picrotoxin, was approximately 70% of the total radioactivity bound to the cells. [ 35 S]TBPS specific binding was saturable with a Kd of approximately 100 nM, a Bmax of approximately 440 fmol/mg of protein, and a Hill coefficient of 1.18. Neither cerebellar astrocytes maintained in culture for 2 weeks nor a neuroblastoma cell line (NB-2A) exhibited any specific [ 35 S]TBPS binding. Muscimol (0.3 to 5 microM) enhanced and bicuculline (0.1 to 5 microM) inhibited [ 35 S]TBPS specific binding to intact cerebellar granule cells. The effect of muscimol and bicuculline on [ 35 S]TBPS binding was noncompetitive. Muscimol (0.1 to 5 microM) reversed bicuculline inhibition in a dose-dependent fashion but failed to reverse picrotoxin-induced inhibition. [ 35 S]TBPS binding was also modulated by benzodiazepine receptor ligands. The binding was increased by diazepam and decreased by 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylic acid methylester. Muscimol (0.05 microM) failed to reverse bicuculline inhibition in the absence of diazepam, but it became effective in the presence of 0.1 to 1 microM diazepam

  20. Thermodynamic parameters for binding of fatty acids to human serum albumin

    DEFF Research Database (Denmark)

    Pedersen, A O; Honoré, B; Brodersen, R

    1990-01-01

    Binding of laurate and myristate anions to human serum albumin has been studied over a range of temperatures, 5-37 degrees C, at pH 7.4. The binding curves indicate that the strength of binding of the first few molecules of fatty acid to albumin (r less than 5) decreases with increasing temperatu...

  1. Lack of conventional oxygen-linked proton and anion binding sites does not impair allosteric regulation of oxygen binding in dwarf caiman hemoglobin

    Science.gov (United States)

    Fago, Angela; Malte, Hans; Storz, Jay F.; Gorr, Thomas A.

    2013-01-01

    In contrast to other vertebrate hemoglobins (Hbs) whose high intrinsic O2 affinities are reduced by red cell allosteric effectors (mainly protons, CO2, organic phosphates, and chloride ions), crocodilian Hbs exhibit low sensitivity to organic phosphates and high sensitivity to bicarbonate (HCO3−), which is believed to augment Hb-O2 unloading during diving and postprandial alkaline tides when blood HCO3− levels and metabolic rates increase. Examination of α- and β-globin amino acid sequences of dwarf caiman (Paleosuchus palpebrosus) revealed a unique combination of substitutions at key effector binding sites compared with other vertebrate and crocodilian Hbs: β82Lys→Gln, β143His→Val, and β146His→Tyr. These substitutions delete positive charges and, along with other distinctive changes in residue charge and polarity, may be expected to disrupt allosteric regulation of Hb-O2 affinity. Strikingly, however, P. palpebrosus Hb shows a strong Bohr effect, and marked deoxygenation-linked binding of organic phosphates (ATP and DPG) and CO2 as carbamate (contrasting with HCO3− binding in other crocodilians). Unlike other Hbs, it polymerizes to large complexes in the oxygenated state. The highly unusual properties of P. palpebrosus Hb align with a high content of His residues (potential sites for oxygenation-linked proton binding) and distinctive surface Cys residues that may form intermolecular disulfide bridges upon polymerization. On the basis of its singular properties, P. palpebrosus Hb provides a unique opportunity for studies on structure-function coupling and the evolution of compensatory mechanisms for maintaining tissue O2 delivery in Hbs that lack conventional effector-binding residues. PMID:23720132

  2. Flow-cytometric determination of high-density-lipoprotein binding sites on human leukocytes

    International Nuclear Information System (INIS)

    Schmitz, G.; Wulf, G.; Bruening, T.A.; Assmann, G.

    1987-01-01

    In this method, leukocytes were isolated from 6 mL of EDTA-blood by density-gradient centrifugation and subsequently incubated with rhodamine isothiocyanate (RITC)-conjugated high-density lipoproteins (HDL). The receptor-bound conjugate particles were determined by fluorescent flow cytometry and compared with 125 I-labeled HDL binding data for the same cells. Human granulocytes express the highest number of HDL binding sites (9.4 x 10(4)/cell), followed by monocytes (7.3 x 10(4)/cell) and lymphocytes (4.0 x 10(4)/cell). Compared with conventional analysis of binding of 125 I-labeled HDL in tissue-culture dishes, the present determination revealed significantly lower values for nonspecific binding. In competition studies, the conjugate competes for the same binding sites as 125 I-labeled HDL. With the use of tetranitromethane-treated HDL3, which fails to compete for the HDL receptor sites while nonspecific binding is not affected, we could clearly distinguish between 37 degrees C surface binding and specific 37 degrees C uptake of RITC-HDL3, confirming that the HDL receptor leads bound HDL particles into an intracellular pathway rather than acting as a docking type of receptor. Patients with familial dysbetalipoproteinemia showed a significantly higher number of HDL binding sites in the granulocyte population but normal in lymphocytes and monocytes, indicating increased uptake of cholesterol-containing lipoproteins. In patients with familial hypercholesterolemia, HDL binding was increased in all three cell types, indicating increased cholesterol uptake and increased cholesterol synthesis. The present method allows rapid determination of HDL binding sites in leukocytes from patients with various forms of hyper- and dyslipoproteinemias

  3. High affinity [3H]glibenclamide binding sites in rat neuronal and cardiac tissue: Localization and developmental characteristics

    International Nuclear Information System (INIS)

    Miller, J.A.; Velayo, N.L.; Dage, R.C.; Rampe, D.

    1991-01-01

    We examined the binding of the antidiabetic sulfonylurea [3H] glibenclamide to rat brain and heart membranes. High affinity binding was observed in adult rat forebrain (Kd = 137.3 pM, maximal binding site density = 91.8 fmol/mg of protein) and ventricle (Kd = 77.1 pM, maximal binding site density = 65.1 fmol/mg of protein). Binding site density increased approximately 250% in forebrain membranes during postnatal development but was constant in ventricular membranes. Quantitative autoradiography was used to examine the regional distribution of [3H] glibenclamide binding sites in sections from rat brain, spinal cord and heart. The greatest density of binding in adult brain was found in the substantia nigra and globus pallidus, whereas the other areas displayed heterogenous binding. In agreement with the membrane binding studies, 1-day-old rat brain had significantly fewer [3H]glibenclamide binding sites than adult brain. Additionally, the pattern of distribution of these sites was qualitatively different from that of the adult. In adult rat spinal cord, moderate binding densities were observed in spinal cord gray and displayed a rostral to caudal gradient. In adult rat heart, moderate binding densities were observed and the sites were distributed homogeneously. In conclusion, significant development of [3H]glibenclamide binding sites was seen in the brain but not the heart during postnatal maturation. Furthermore, a heterogeneous distribution of binding sites was observed in both the brain and spinal cord of adult rats

  4. Site-specific photoconjugation of antibodies using chemically synthesized IgG-binding domains.

    Science.gov (United States)

    Perols, Anna; Karlström, Amelie Eriksson

    2014-03-19

    Site-specific labeling of antibodies can be performed using the immunoglobulin-binding Z domain, derived from staphylococcal protein A (SpA), which has a well-characterized binding site in the Fc region of antibodies. By introducing a photoactivable probe in the Z domain, a covalent bond can be formed between the Z domain and the antibody by irradiation with UV light. The aim of this study was to improve the conjugation yield for labeling of different subclasses of IgG having different sequence composition, using a photoactivated Z domain variant. Four different variants of the Z domain (Z5BPA, Z5BBA, Z32BPA, and Z32BBA) were synthesized to investigate the influence of the position of the photoactivable probe and the presence of a flexible linker between the probe and the protein. For two of the variants, the photoreactive benzophenone group was introduced as part of an amino acid side chain by incorporation of the unnatural amino acid benzoylphenylalanine (BPA) during peptide synthesis. For the other two variants, the photoreactive benzophenone group was attached via a flexible linker by coupling of benzoylbenzoic acid (BBA) to the ε-amino group of a selectively deprotected lysine residue. Photoconjugation experiments using human IgG1, mouse IgG1, and mouse IgG2A demonstrated efficient conjugation for all antibodies. It was shown that differences in linker length had a large impact on the conjugation efficiency for labeling of mouse IgG1, whereas the positioning of the photoactivable probe in the sequence of the protein had a larger effect for mouse IgG2A. Conjugation to human IgG1 was only to a minor extent affected by position or linker length. For each subclass of antibody, the best variant tested using a standard conjugation protocol resulted in conjugation efficiencies of 41-66%, which corresponds to on average approximately one Z domain attached to each antibody. As a combination of the two best performing variants, Z5BBA and Z32BPA, a Z domain variant with

  5. Interaction between LSD and dopamine D2/3 binding sites in pig brain.

    Science.gov (United States)

    Minuzzi, Luciano; Nomikos, George G; Wade, Mark R; Jensen, Svend B; Olsen, Aage K; Cumming, Paul

    2005-06-15

    The psychoactive properties of the hallucinogen LSD have frequently been attributed to high affinity interactions with serotonin 5HT2 receptors in brain. Possible effects of LSD on dopamine D2/3 receptor availability have not previously been investigated in living brain. Therefore, we used PET to map the binding potential (pB) of [11C]raclopride in brain of three pigs, first in a baseline condition, and again at 1 and 4 h after administration of LSD (2.5 microg/kg, i.v.). There was a progressive treatment effect in striatum, where the pB was significantly reduced by 19% at 4 h after LSD administration. Concomitant maps of cerebral blood flow did not reveal significant changes in perfusion during this interval. Subsequent in vitro studies showed that LSD displaced [3H]raclopride (2 nM) from pig brain cryostat sections with an IC50 of 275 nM according to a one-site model. Fitting of a two-site model to the data suggested the presence of a component of the displacement curves with a subnanomolar IC50, comprising 20% of the total [3H]raclopride binding. In microdialysis experiments, LSD at similar and higher doses did not evoke changes in the interstitial concentration of dopamine or its acidic metabolites in rat striatum. Together, these results are consistent with a direct interaction between LSD and a portion of dopamine D2/3 receptors in pig brain, possibly contributing to the psychopharmacology of LSD. (c) 2005 Wiley-Liss, Inc.

  6. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog Leu......T. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed...... inhibition of dopamine transport by cocaine....

  7. Muscarinic cholinergic receptor binding sites differentiated by their affinity for pirenzepine do not interconvert

    International Nuclear Information System (INIS)

    Gil, D.W.; Wolfe, B.B.

    1986-01-01

    Although it has been suggested by many investigators that subtypes of muscarinic cholinergic receptors exist, physical studies of solubilized receptors have indicated that only a single molecular species may exist. To test the hypothesis that the putative muscarinic receptor subtypes in rat forebrain are interconvertible states of the same receptor, the selective antagonist pirenzepine (PZ) was used to protect muscarinic receptors from blockade by the irreversible muscarinic receptor antagonist propylbenzilylcholine mustard (PBCM). If interconversion of high (M1) and low (M2) affinity binding sites for PZ occurs, incubation of cerebral cortical membranes with PBCM in the presence of PZ should not alter the proportions of M1 and M2 binding sites that are unalkylated (i.e., protected). If, on the other hand, the binding sites are not interconvertible, PZ should be able to selectively protect M1 sites and alter the proportions of unalkylated M1 and M2 binding sites. In the absence of PZ, treatment of cerebral cortical membranes with 20 nM PBCM at 4 degrees C for 50 min resulted in a 69% reduction in the density of M1 binding sites and a 55% reduction in the density of M2 binding sites with no change in the equilibrium dissociation constants of the radioligands [ 3 H]quinuclidinyl benzilate or [ 3 H]PZ. The reasons for this somewhat selective effect of PBCM are not apparent. In radioligand binding experiments using cerebral cortical membranes, PZ inhibited the binding of [ 3 H]quinuclidinyl benzilate in a biphasic manner

  8. Peptide models of protein metastable binding sites: competitive kinetics of isomerization and hydrolysis.

    Science.gov (United States)

    Khan, S A; Sekulski, J M; Erickson, B W

    1986-09-09

    alpha 2-Macroglobulin and the complement components C3 and C4 each contain a metastable binding site that is essential for covalent attachment. Two cyclic peptides are useful models of these unusual protein sites. Five-membered lactam 1 (CH3CO-Gly-Cys-Gly-Glu-Glp-Asn-NH2) contains an internal residue of pyroglutamic acid (Glp). Fifteen-membered thiolactone 2 (CH3CO-Gly-Cys-Gly-Glu-Glu-Asn-NH2 15-thiolactone) contains a thiol ester bond between Cys-2 and Glu-5. These isomeric hexapeptides are spontaneously interconverted in water. Competing with the two isomerization reactions are three reactions involving hydrolysis of 1 and 2. These five processes were found to occur simultaneously under physiologic conditions (phosphate-buffered saline, pH 7.3, 37 degrees C). Best estimates of the five rate constants for these apparent first-order reactions were obtained by comparing the observed molar percentages of peptides 1-4 with those calculated from a set of exponential equations. Both isomerization reactions (ring expansion of 1 to 2, k1 = 6.4 X 10(-5) s-1; ring contraction of 2 to 1, k-1 = 69 X 10(-5) s-1) proceeded faster than any of the hydrolysis reactions: alpha-cleavage of 1 with fragmentation to form dipeptide 3 (k2 = 3.3 X 10(-5) s-1), gamma-cleavage of 1 with ring opening to yield mercapto acid 4 (k3 = 0.35 X 10(-5) s-1), and hydrolysis of 2 with ring opening to give 4 (k4 = 1.9 X 10(-5) s-1). The isomerization rate ratio (k1/k-1 = 10.9) agreed with the isomer ratio at equilibrium (1:2 = 11 starting from 1 and 10 starting from 2). The alpha/gamma regioselectivity ratio (k2/k3 = 9.7) for hydrolysis of the internal Glp residue of 1 was consistent with results for model tripeptides. Part of the chemistry of the protein metastable binding sites can be explained by similar isomerization and hydrolysis reactions.

  9. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites

    Science.gov (United States)

    Brautigam, Chad A; Xing, Wenmin; Yang, Sheng; Henry, Lisa; Doolittle, Lynda K; Walz, Thomas

    2017-01-01

    The Rho GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization, which underpins diverse cellular processes. Here we report the structure of a WRC-Rac1 complex determined by cryo-electron microscopy. Surprisingly, Rac1 is not located at the binding site on the Sra1 subunit of the WRC previously identified by mutagenesis and biochemical data. Rather, it binds to a distinct, conserved site on the opposite end of Sra1. Biophysical and biochemical data on WRC mutants confirm that Rac1 binds to both sites, with the newly identified site having higher affinity and both sites required for WRC activation. Our data reveal that the WRC is activated by simultaneous engagement of two Rac1 molecules, suggesting a mechanism by which cells may sense the density of active Rac1 at membranes to precisely control actin assembly. PMID:28949297

  10. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    Science.gov (United States)

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  11. Caveolin-1-mediated apolipoprotein A-I membrane binding sites are not required for cholesterol efflux.

    Directory of Open Access Journals (Sweden)

    Soazig Le Lay

    Full Text Available Caveolin-1 (Cav1, a structural protein required for the formation of invaginated membrane domains known as caveolae, has been implicated in cholesterol trafficking and homeostasis. Here we investigated the contribution of Cav1 to apolipoprotein A-I (apoA-I cell surface binding and intracellular processing using mouse embryonic fibroblasts (MEFs derived from wild type (WT or Cav1-deficient (Cav1(-/- animals. We found that cells expressing Cav1 have 2.6-fold more apoA-I binding sites than Cav1(-/- cells although these additional binding sites are not associated with detergent-free lipid rafts. Further, Cav1-mediated binding targets apoA-I for internalization and degradation and these processes are not correlated to cholesterol efflux. Despite lower apoA-I binding, cholesterol efflux from Cav1(-/- MEFs is 1.7-fold higher than from WT MEFs. Stimulation of ABCA1 expression with an LXR agonist enhances cholesterol efflux from both WT and Cav1(-/- cells without increasing apoA-I surface binding or affecting apoA-I processing. Our results indicate that there are at least two independent lipid binding sites for apoA-I; Cav1-mediated apoA-I surface binding and uptake is not linked to cholesterol efflux, indicating that membrane domains other than caveolae regulate ABCA1-mediated cholesterol efflux.

  12. Diversity and evolutionary relationship of nucleotide binding site ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    site-encoding disease-resistance gene analogues in sweet potato. (Ipomoea batatas Lam.) ... terminal domain of the protein, this class of R-genes can be subdivided into TIR ... from young leaflets using the modified 2.0% (w/v) cetyl trimethyl ...

  13. Differential Modulation of Annexin I Binding Sites on Monocytes and Neutrophils

    Directory of Open Access Journals (Sweden)

    H. S. Euzger

    1999-01-01

    Full Text Available Specific binding sites for the anti-inflammatory protein annexin I have been detected on the surface of human monocytes and polymorphonuclear leukocytes (PMN. These binding sites are proteinaceous in nature and are sensitive to cleavage by the proteolytic enzymes trypsin, collagenase, elastase and cathepsin G. When monocytes and PMN were isolated independently from peripheral blood, only the monocytes exhibited constitutive annexin I binding. However PMN acquired the capacity to bind annexin I following co-culture with monocytes. PMN incubation with sodium azide, but not protease inhibitors, partially blocked this process. A similar increase in annexin I binding capacity was also detected in PMN following adhesion to endothelial monolayers. We propose that a juxtacrine activation rather than a cleavage-mediated transfer is involved in this process. Removal of annexin I binding sites from monocytes with elastase rendered monocytes functionally insensitive to full length annexin I or to the annexin I-derived pharmacophore, peptide Ac2-26, assessed as suppression of the respiratory burst. These data indicate that the annexin I binding site on phagocytic cells may have an important function in the feedback control of the inflammatory response and their loss through cleavage could potentiate such responses.

  14. Copper(II) Binding Sites in N-Terminally Acetylated α-Synuclein: A Theoretical Rationalization.

    Science.gov (United States)

    Ramis, Rafael; Ortega-Castro, Joaquín; Vilanova, Bartolomé; Adrover, Miquel; Frau, Juan

    2017-08-03

    The interactions between N-terminally acetylated α-synuclein and Cu(II) at several binding sites have been studied with DFT calculations, specifically with the M06 hybrid functional and the ωB97X-D DFT-D functional. In previous experimental studies, Cu(II) was shown to bind several α-synuclein residues, including Met1-Asp2 and His50, forming square planar coordination complexes. Also, it was determined that a low-affinity binding site exists in the C-terminal domain, centered on Asp121. However, in the N-terminally acetylated protein, present in vivo, the Met1 site is blocked. In this work, we simplify the representation of the protein by modeling each experimentally found binding site as a complex between an N-terminally acetylated α-synuclein dipeptide (or several independent residues) and a Cu(II) cation, and compare the results with a number of additional, structurally analogous sites not experimentally found. This way of representing the binding sites, although extremely simple, allows us to reproduce experimental results and to provide a theoretical rationale to explain the preference of Cu(II) for certain sites, as well as explicit geometrical structures for the complexes formed. These results are important to understand the interactions between α-synuclein and Cu(II), one of the factors inducing structural changes in the protein and leading to aggregated forms of it which may play a role in neurodegeneration.

  15. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites

    DEFF Research Database (Denmark)

    Dupont, Daniel Miotto; Thuesen, Cathrine K; Bøtkjær, Kenneth A

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless...

  16. Resonance energy transfer study on the proximity relationship between the GTP binding site and the rifampicin binding site of Escherichia coli RNA polymerase

    International Nuclear Information System (INIS)

    Kumar, K.P.; Chatterji, D.

    1990-01-01

    Terbium(III) upon complexation with guanosine 5'-triphosphate showed remarkable enhancement of fluorescence emission at 488 and 545 nm when excited at 295 nm. Analysis of the binding data yielded a value for the mean K d between Tb(III) and GTP of 0.2 μM, with three binding sites for TB(III) on GTP. 31 P and 1 H NMR measurements revealed that Tb(III) mainly binds the phosphate moiety of GTP. Fluorescence titration of the emission signals of the TbGTP complex with varying concentrations of Escherichia coli RNA polymerase resulted in a K d values of 4 μM between the TbGTP and the enzyme. It was observed that TbGTP can be incorporated in the place of GTP during E. coli RNA polymerase catalyzed abortive synthesis of dinucleotide tetraphosphate at T7A2 promoter. Both the substrate TbGTP and the inhibitor of the initiation of transcription rifampicin bind to the β-subunit of E. coli RNA polymerase. This allows the measurement of the fluorescence excited-state energy transfer from the donor TbGTP-RNA polymerase to the acceptor rifampicin. Both emission bands of Tb(III) overlap with the rifampicin absorption, and the distances at 50% efficiency of energy transfer were calculated to be 28 and 24 angstrom for the 488- and 545-nm emission bands, respectively. The distance between the substrate binding site and the rifampicin binding site on the β-subunit of E. coli RNA polymerase was measured to be around 30 angstrom. This suggest that the nature of inhibition of transcription by rifampicin is essentially noncompetitive with the substrate

  17. Analysis of functional importance of binding sites in the Drosophila gap gene network model.

    Science.gov (United States)

    Kozlov, Konstantin; Gursky, Vitaly V; Kulakovskiy, Ivan V; Dymova, Arina; Samsonova, Maria

    2015-01-01

    The statistical thermodynamics based approach provides a promising framework for construction of the genotype-phenotype map in many biological systems. Among important aspects of a good model connecting the DNA sequence information with that of a molecular phenotype (gene expression) is the selection of regulatory interactions and relevant transcription factor bindings sites. As the model may predict different levels of the functional importance of specific binding sites in different genomic and regulatory contexts, it is essential to formulate and study such models under different modeling assumptions. We elaborate a two-layer model for the Drosophila gap gene network and include in the model a combined set of transcription factor binding sites and concentration dependent regulatory interaction between gap genes hunchback and Kruppel. We show that the new variants of the model are more consistent in terms of gene expression predictions for various genetic constructs in comparison to previous work. We quantify the functional importance of binding sites by calculating their impact on gene expression in the model and calculate how these impacts correlate across all sites under different modeling assumptions. The assumption about the dual interaction between hb and Kr leads to the most consistent modeling results, but, on the other hand, may obscure existence of indirect interactions between binding sites in regulatory regions of distinct genes. The analysis confirms the previously formulated regulation concept of many weak binding sites working in concert. The model predicts a more or less uniform distribution of functionally important binding sites over the sets of experimentally characterized regulatory modules and other open chromatin domains.

  18. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A.

    Science.gov (United States)

    Maurer, Manuela; de Beer, Stephanie B A; Oostenbrink, Chris

    2016-04-15

    The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.

  19. Plasminogen fragments K 1-3 and K 5 bind to different sites in fibrin fragment DD.

    Science.gov (United States)

    Grinenko, T V; Kapustianenko, L G; Yatsenko, T A; Yusova, O I; Rybachuk, V N

    2016-01-01

    Specific plasminogen-binding sites of fibrin molecule are located in Аα148-160 regions of C-terminal domains. Plasminogen interaction with these sites initiates the activation process of proenzyme and subsequent fibrin lysis. In this study we investigated the binding of plasminogen fragments K 1-3 and K 5 with fibrin fragment DD and their effect on Glu-plasminogen interaction with DD. It was shown that the level of Glu-plasminogen binding to fibrin fragment DD is decreased by 50-60% in the presence of K 1-3 and K 5. Fragments K 1-3 and K 5 have high affinity to fibrin fragment DD (Kd is 0.02 for K 1-3 and 0.054 μМ for K 5). K 5 interaction is independent and K 1-3 is partly dependent on C-terminal lysine residues. K 1-3 interacts with complex of fragment DD-immobilized K 5 as well as K 5 with complex of fragment DD-immobilized K 1-3. The plasminogen fragments do not displace each other from binding sites located in fibrin fragment DD, but can compete for the interaction. The results indicate that fibrin fragment DD contains different binding sites for plasminogen kringle fragments K 1-3 and K 5, which can be located close to each other. The role of amino acid residues of fibrin molecule Аα148-160 region in interaction with fragments K 1-3 and K 5 is discussed.

  20. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1.

    Science.gov (United States)

    Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul

    2008-11-21

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.

  1. (/sup 3/H)Spiperone binding sites in brain: autoradiographic localization of multiple receptors

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, J M; Niehoff, D L; Kuhar, M J [Johns Hopkins Univ., Baltimore, MD (USA). School of Medicine

    1981-01-01

    (/sup 3/H)Spiperone ((/sup 3/H)SP) binding sites were localized by light microscopic autoradiography, after in vitro labelling. The kinetic and pharmacological characteristics of these binding sites were studied in slide-mounted sections of rat forebrain, and optimal labeling conditions were defined. Autoradiograms were obtained by apposing emulsion-coated coverslips to labeled sections. Differential drug sensitivity allowed the selective displacement of (/sup 3/H)SP from dopamine receptors by ADTN, from serotonin receptors by cinanserin, from both by haloperidol and from unique spiperone sites by unlabeled spiperone. The various sites presented a differential anatomical localization. For example, only dopaminergic sites were found in the glomerular layer of the olfactory bulb; only serotonergic sites were found in lamina IV of the neocortex, and a high concentration of unique spiperone sites were found in parts of the hippocampus.

  2. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries

    Directory of Open Access Journals (Sweden)

    Marx Kenneth A

    2006-03-01

    Full Text Available Abstract Background The centromeres in yeast (S. cerevisiae are organized by short DNA sequences (125 bp on each chromosome consisting of 2 conserved elements: CDEI and CDEIII spaced by a CDEII region. CDEI and CDEIII are critical sequence specific protein binding sites necessary for correct centromere formation and following assembly with proteins, are positioned near each other on a specialized nucleosome. Hegemann et al. BioEssays 1993, 15: 451–460 reported single base DNA mutants within the critical CDEI and CDEIII binding sites on the centromere of chromosome 6 and quantitated centromere loss of function, which they measured as loss rates for the different chromosome 6 mutants during cell division. Olson et al. Proc Natl Acad Sci USA 1998, 95: 11163–11168 reported the use of protein-DNA crystallography data to produce a DNA dinucleotide protein deformability energetic scale (PD-scale that describes local DNA deformability by sequence specific binding proteins. We have used the PD-scale to investigate the DNA sequence dependence of the yeast chromosome 6 mutants' loss rate data. Each single base mutant changes 2 PD-scale values at that changed base position relative to the wild type. In this study, we have utilized these mutants to demonstrate a correlation between the change in DNA deformability of the CDEI and CDEIII core sites and the overall experimentally measured chromosome loss rates of the chromosome 6 mutants. Results In the CDE I and CDEIII core binding regions an increase in the magnitude of change in deformability of chromosome 6 single base mutants with respect to the wild type correlates to an increase in the measured chromosome loss rate. These correlations were found to be significant relative to 105 Monte Carlo randomizations of the dinucleotide PD-scale applied to the same calculation. A net loss of deformability also tends to increase the loss rate. Binding site position specific, 4 data-point correlations were also

  3. The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes.

    Science.gov (United States)

    Atambayeva, Shara; Niyazova, Raigul; Ivashchenko, Anatoliy; Pyrkova, Anna; Pinsky, Ilya; Akimniyazova, Aigul; Labeit, Siegfried

    2017-06-01

    Normally, one miRNA interacts with the mRNA of one gene. However, there are miRNAs that can bind to many mRNAs, and one mRNA can be the target of many miRNAs. This significantly complicates the study of the properties of miRNAs and their diagnostic and medical applications. The search of 2,750 human microRNAs (miRNAs) binding sites in 12,175 mRNAs of human genes using the MirTarget program has been completed. For the binding sites of the miR-619-5p the hybridization free energy of the bonds was equal to 100% of the maximum potential free energy. The mRNAs of 201 human genes have complete complementary binding sites of miR-619-5p in the 3'UTR (214 sites), CDS (3 sites), and 5'UTR (4 sites). The mRNAs of CATAD1, ICA1L, GK5, POLH, and PRR11 genes have six miR-619-5p binding sites, and the mRNAs of OPA3 and CYP20A1 genes have eight and ten binding sites, respectively. All of these miR-619-5p binding sites are located in the 3'UTRs. The miR-619-5p binding site in the 5'UTR of mRNA of human USP29 gene is found in the mRNAs of orthologous genes of primates. Binding sites of miR-619-5p in the coding regions of mRNAs of C8H8orf44, C8orf44, and ISY1 genes encode the WLMPVIP oligopeptide, which is present in the orthologous proteins. Binding sites of miR-619-5p in the mRNAs of transcription factor genes ZNF429 and ZNF429 encode the AHACNP oligopeptide in another reading frame. Binding sites of miR-619-5p in the 3'UTRs of all human target genes are also present in the 3'UTRs of orthologous genes of mammals. The completely complementary binding sites for miR-619-5p are conservative in the orthologous mammalian genes. The majority of miR-619-5p binding sites are located in the 3'UTRs but some genes have miRNA binding sites in the 5'UTRs of mRNAs. Several genes have binding sites for miRNAs in the CDSs that are read in different open reading frames. Identical nucleotide sequences of binding sites encode different amino acids in different proteins. The binding sites of miR-619-5p

  4. In Silico Investigation of the Neurotensin Receptor 1 Binding Site

    DEFF Research Database (Denmark)

    Lückmann, Michael; Holst, Birgitte; Schwartz, Thue W.

    2016-01-01

    structure of NTSR1 in complex with NTS8-13 has been detd., providing novel insights into peptide ligand recognition by 7TM receptors. SR48692, a potent and selective small mol. antagonist has previously been used extensively as a tool compd. to study NTSR1 receptor signaling properties. To investigate......The neurotensin receptor 1 (NTSR1) belongs to the family of 7TM, G protein-coupled receptors, and is activated by the 13-amino-acid peptide neurotensin (NTS) that has been shown to play important roles in neurol. disorders and the promotion of cancer cells. Recently, a high-resoln. x-ray crystal...

  5. Crystal structure of axolotl (Ambystoma mexicanum) liver bile acid-binding protein bound to cholic and oleic acid.

    Science.gov (United States)

    Capaldi, Stefano; Guariento, Mara; Perduca, Massimiliano; Di Pietro, Santiago M; Santomé, José A; Monaco, Hugo L

    2006-07-01

    The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent. (c) 2006 Wiley-Liss, Inc.

  6. In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites

    DEFF Research Database (Denmark)

    Grey, Corinne; Clément, Julie A.J.; Buard, Jérôme

    2017-01-01

    In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed...

  7. Carotenoid-binding sites of the major light-harvesting complex II of higher plants

    NARCIS (Netherlands)

    Croce, Roberta; Weiss, Saskia; Bassi, Roberto

    1999-01-01

    Recombinant light-harvesting complex II (LHCII) proteins with modified carotenoid composition have been obtained by in vitro reconstitution of the Lhcb1 protein overexpressed in bacteria. The monomeric protein possesses three xanthophyll-binding sites. The L1 and L2 sites, localized by electron

  8. Mutational analysis of the antagonist-binding site of the histamine H(1) receptor.

    Science.gov (United States)

    Wieland, K; Laak, A M; Smit, M J; Kühne, R; Timmerman, H; Leurs, R

    1999-10-15

    We combined in a previously derived three-dimensional model of the histamine H(1) receptor (Ter Laak, A. M., Timmerman, H., Leurs, H., Nederkoorn, P. H. J., Smit, M. J., and Donne-Op den Kelder, G. M. (1995) J. Comp. Aid. Mol. Design. 9, 319-330) a pharmacophore for the H(1) antagonist binding site (Ter Laak, A. M., Venhorst, J., Timmerman, H., and Donné-Op de Kelder, G. M. (1994) J. Med. Chem. 38, 3351-3360) with the known interacting amino acid residue Asp(116) (in transmembrane domain III) of the H(1) receptor and verified the predicted receptor-ligand interactions by site-directed mutagenesis. This resulted in the identification of the aromatic amino acids Trp(167), Phe(433), and Phe(436) in transmembrane domains IV and VI of the H(1) receptor as probable interaction points for the trans-aromatic ring of the H(1) antagonists. Subsequently, a specific interaction of carboxylate moieties of two therapeutically important, zwitterionic H(1) antagonists with Lys(200) in transmembrane domain V was predicted. A Lys(200) --> Ala mutation results in a 50- (acrivastine) to 8-fold (d-cetirizine) loss of affinity of these zwitterionic antagonists. In contrast, the affinities of structural analogs of acrivastine and cetirizine lacking the carboxylate group, triprolidine and meclozine, respectively, are unaffected by the Lys(200) --> Ala mutation. These data strongly suggest that Lys(200), unique for the H(1) receptor, acts as a specific anchor point for these "second generation" H(1) antagonists.

  9. Phyloscan: locating transcription-regulating binding sites in mixed aligned and unaligned sequence data.

    Science.gov (United States)

    Palumbo, Michael J; Newberg, Lee A

    2010-07-01

    The transcription of a gene from its DNA template into an mRNA molecule is the first, and most heavily regulated, step in gene expression. Especially in bacteria, regulation is typically achieved via the binding of a transcription factor (protein) or small RNA molecule to the chromosomal region upstream of a regulated gene. The protein or RNA molecule recognizes a short, approximately conserved sequence within a gene's promoter region and, by binding to it, either enhances or represses expression of the nearby gene. Since the sought-for motif (pattern) is short and accommodating to variation, computational approaches that scan for binding sites have trouble distinguishing functional sites from look-alikes. Many computational approaches are unable to find the majority of experimentally verified binding sites without also finding many false positives. Phyloscan overcomes this difficulty by exploiting two key features of functional binding sites: (i) these sites are typically more conserved evolutionarily than are non-functional DNA sequences; and (ii) these sites often occur two or more times in the promoter region of a regulated gene. The website is free and open to all users, and there is no login requirement. Address: (http://bayesweb.wadsworth.org/phyloscan/).

  10. Two distinct affinity binding sites for IL-1 on human cell lines

    International Nuclear Information System (INIS)

    Bensimon, C.; Wakasugi, N.; Tagaya, Y.; Takakura, K.; Yodoi, J.; Tursz, T.; Wakasugi, H.

    1989-01-01

    We used two human cell lines, NK-like YT-C3 and an EBV-containing B cell line, 3B6, as models to study the receptor(s) for IL-1. Two distinct types of saturable binding sites were found on both cell lines at 37 degrees C. Between 1 pM and 100 pM of 125I-IL-1-alpha concentration, saturable binding sites were detected on the YT-C3 cells with a K of 4 x 10(-11) M. The K found for the IL-1-alpha binding sites on 3B6 cells was 7.5 x 10(-11) M. An additional binding curve was detected above 100 pM on YT-C3 cells with a K of 7 x 10(-9) M and on 3B6 cells with a K of 5 x 10(-9) M. Scatchard plot analysis revealed 600 sites/cell with high affinity binding and 7000 sites/cell with low affinity for YT-C3 cells and 300 sites/cell with high affinity binding and 6000 sites/cell with low affinity for 3B6 cells. At 37 degrees C, the internalization of 125I-labeled IL-1 occurred via both high and low affinity IL-1R on both YT-C3 and 3B6 cells, whereas the rates of internalization for high affinity binding sites on YT-C3 cells were predominant in comparison to that of low affinity binding sites. In chemical cross-linking studies of 125 I-IL-1-alpha to 3B6 and YT-C3 cells, two protein bands were immunoprecipitated with Mr around 85 to 90 kDa leading to an estimation of the Mr of the IL-1R around 68 to 72 kDa. In similar experiments, the Mr found for the IL-1R expressed on the murine T cell line EL4 was slightly higher (around 80 kDa). Whether these distinct affinity binding sites are shared by a single molecule or by various chains remains to be elucidated

  11. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun; Peng, Chengbin; Li, Yue

    2016-01-01

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  12. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  13. Competition effects in cation binding to humic acid: Conditional affinity spectra for fixed total metal concentration conditions

    Science.gov (United States)

    David, Calin; Mongin, Sandrine; Rey-Castro, Carlos; Galceran, Josep; Companys, Encarnació; Garcés, José Luis; Salvador, José; Puy, Jaume; Cecilia, Joan; Lodeiro, Pablo; Mas, Francesc

    2010-09-01

    Information on the Pb and Cd binding to a purified Aldrich humic acid (HA) is obtained from the influence of different fixed total metal concentrations on the acid-base titrations of this ligand. NICA (Non-Ideal Competitive Adsorption) isotherm has been used for a global quantitative description of the binding, which has then been interpreted by plotting the Conditional Affinity Spectra of the H + binding at fixed total metal concentrations (CAScTM). This new physicochemical tool, here introduced, allows the interpretation of binding results in terms of distributions of proton binding energies. A large increase in the acidity of the phenolic sites as the total metal concentration increases, especially in presence of Pb, is revealed from the shift of the CAScTM towards lower affinities. The variance of the CAScTM distribution, which can be used as a direct measure of the heterogeneity, also shows a significant dependence on the total metal concentration. A discussion of the factors that influence the heterogeneity of the HA under the conditions of each experiment is provided, so that the smoothed pattern exhibited by the titration curves can be justified.

  14. Detecting coevolving amino acid sites using Bayesian mutational mapping

    DEFF Research Database (Denmark)

    Dimmic, Matthew W.; Hubisz, Melissa J.; Bustamente, Carlos D.

    2005-01-01

    Motivation: The evolution of protein sequences is constrained by complex interactions between amino acid residues. Because harmful substitutions may be compensated for by other substitutions at neighboring sites, residues can coevolve. We describe a Bayesian phylogenetic approach to the detection...

  15. Mercury Binding Sites in Thiol-Functionalized Mesostructured Silica

    International Nuclear Information System (INIS)

    Billinge, Simon J.L.; McKimmey, Emily J.; Shatnawi, Mouath; Kim, HyunJeong; Petkov, Valeri; Wermeille, Didier; Pinnavaia, Thomas J.

    2005-01-01

    Thiol-functionalized mesostructured silica with anhydrous compositions of (SiO 2 ) 1-x (LSiO 1.5 ) x , where L is a mercaptopropyl group and x is the fraction of functionalized framework silicon centers, are effective trapping agents for the removal of mercuric(II) ions from water. In the present work, we investigate the mercury-binding mechanism for representative thiol-functionalized mesostructures by atomic pair distribution function (PDF) analysis of synchrotron X-ray powder diffraction data and by Raman spectroscopy. The mesostructures with wormhole framework structures and compositions corresponding to x = 0.30 and 0.50 were prepared by direct assembly methods in the presence of a structure-directing amine porogen. PDF analyses of five mercury-loaded compositions with Hg/S ratios of 0.50-1.30 provided evidence for the bridging of thiolate sulfur atoms to two metal ion centers and the formation of chain structures on the pore surfaces. We find no evidence for Hg-O bonds and can rule out oxygen coordination of the mercury at greater than the 10% level. The relative intensities of the PDF peaks corresponding to Hg-S and Hg-Hg atomic pairs indicate that the mercury centers cluster on the functionalized surfaces by virtue of thiolate bridging, regardless of the overall mercury loading. However, the Raman results indicate that the complexation of mercury centers by thiolate depends on the mercury loading. At low mercury loadings (Hg/S (le) 0.5), the dominant species is an electrically neutral complex in which mercury most likely is tetrahedrally coordinated to bridging thiolate ligands, as in Hg(SBu t ) 2 . At higher loadings (Hg/S 1.0-1.3), mercury complex cations predominate, as evidenced by the presence of charge-balancing anions (nitrate) on the surface. This cationic form of bound mercury is assigned a linear coordination to two bridging thiolate ligands.

  16. Characterization of a second ligand binding site of the insulin receptor

    International Nuclear Information System (INIS)

    Hao Caili; Whittaker, Linda; Whittaker, Jonathan

    2006-01-01

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the α subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K d of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site

  17. Down-regulation of endothelin binding sites in rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Roubert, P.; Gillard, V.; Plas, P.; Chabrier, P.E.; Braquet, P.

    1990-01-01

    In cultured rat aortic smooth muscle cells, [ 125 I]endothelin (ET-1) bound to an apparent single class of high affinity recognition sites with a dissociation constant of 1.84 +/- 0.29 nmol/L and a maximum binding of 62 +/- 10.5 fmol/10(6) cells. The binding was not affected by calcium antagonists or vasoactive substances, including angiotensin II, arginine vasopressin, atrial natriuretic factor and bradykinin. Exposure of the cells to ET-1 (0.01 nmol/L to 10 nmol/L) resulted in an apparent dose-dependent reduction of the number of endothelin binding sites with no significant modification of its binding affinity. The time course of the down-regulation of ET-1 binding sites showed that this effect was present after 30 min incubation and persisted after 18 h. This indicates that down-regulation of ET-1 binding sites can modulate the activity of ET-1 and suggests a rapid internalization of ET-1 in vascular cells

  18. Autoradiographic demonstration of oxytocin-binding sites in the macula densa

    International Nuclear Information System (INIS)

    Stoeckel, M.E.; Freund-Mercier, M.J.

    1989-01-01

    Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective 125 I-labeled OT antagonist ( 125 I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of 125 I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experiments showed first that 125 I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration

  19. Autoradiographic demonstration of oxytocin-binding sites in the macula densa

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckel, M.E.; Freund-Mercier, M.J. (Centre National de la Recherche Scientifique, Strasbourg (France))

    1989-08-01

    Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective {sup 125}I-labeled OT antagonist ({sup 125}I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of {sup 125}I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experiments showed first that {sup 125}I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration.

  20. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    International Nuclear Information System (INIS)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta 9 tetrahydrocannabinol (delta 9 THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5'-Trimethylammonium-delta 8 THC (TMA) is a positively charged analog of delta- 8 THC modified on the 5' carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of [ 3 H]-5'-trimethylammonium-delta- 8 THC ([ 3 H]TMA) to rat neuronal membranes. [ 3 H]TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of [ 3 H]TMA binding activity of approximately 60,000 daltons apparent molecular weight

  1. The non-gastric H,K-ATPase as a tool to study the ouabain-binding site in Na,K-ATPase.

    NARCIS (Netherlands)

    Pont, J.J.H.H.M. de; Swarts, H.G.P.; Karawajczyk, A.; Schaftenaar, G.; Willems, P.H.G.M.; Koenderink, J.B.

    2009-01-01

    Based on studies with chimeras between (non-)gastric H,K-ATPase and Na,K-ATPase, a model for the ouabain binding site has recently been presented (Qiu et al. J.Biol.Chem. 280 (2005) 32349). In this model, hydrogen bonds between specific amino acid residues of Na,K-ATPase and hydroxyl groups of

  2. Detection of site-specific binding and co-binding of ligands to macromolecules using 19F NMR

    International Nuclear Information System (INIS)

    Jenkins, B.G.

    1991-01-01

    Study of ligand-macromolecular interactions by 19 F nuclear magnetic resonance (NMR) spectroscopy affords many opportunities for obtaining molecular biochemical and pharmaceutical information. This is due to the absence of a background fluorine signal, as well as the relatively high sensitivity of 19 F NMR. Use of fluorine-labeled ligands enables one to probe not only binding and co-binding phenomena to macromolecules, but also can provide data on binding constants, stoichiometries, kinetics, and conformational properties of these complexes. Under conditions of slow exchange and macromolecule-induced chemical shifts, multiple 19 F NMR resonances can be observed for free and bound ligands. These shifted resonances are a direct correlate of the concentration of ligand bound in a specific state rather than the global concentrations of bound or free ligand which are usually determined using other techniques such as absorption spectroscopy or equilibrium dialysis. Examples of these interactions are demonstrated both from the literature and from interactions of 5-fluorotryptophan, 5-fluorosalicylic acid, flurbiprofen, and sulindac sulfide with human serum albumin. Other applications of 19 F NMR to study of these interactions in vivo, as well for receptor binding and metabolic tracing of fluorinated drugs and proteins are discussed

  3. A web server for analysis, comparison and prediction of protein ligand binding sites.

    Science.gov (United States)

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  4. Affinity labeling of the carbohydrate binding site of the lectin discoidin I using a photoactivatable radioiodinated monosaccharide

    International Nuclear Information System (INIS)

    Kohnken, R.E.; Berger, E.A.

    1987-01-01

    N-(4-Azidosalicyl) galactosamine (GalNASA), a photoactivatable, radioiodinatable analog of N-acetylgalactosamine (GalNAc), has been prepared and characterized. The authors have used this reagent for labeling of the carbohydrate binding site of discoidin I, an endogenous lectin produced by Dictyostelium discoideum. GalNASA behaved as a ligand for discoidin I, as judged by its ability to compete in an assay measuring the carbohydrate binding activity of discoidin I. In this assay, it exhibited a K/sub i,app/ of 800 μM, comparable to that of GalNAc. The K/sub i,app/ of GalNASA decreased to 40 μm upon prior photolysis with ultraviolet light. In contrast, N-(4-azidosalicyl) ethanolamine produced no inhibition of carbohydrate binding regardless of photolysis. Covalent labeling of discoidin I with 125 I-GalNASA was entirely dependent upon ultraviolet light. A portion of labeling, representing 40-60% of the total, was sensitive to reagents which were known to inhibit carbohydrate binding by discoidin I, including GalNAc, asialofetuin, and ethyl-enediaminetetraacetic acid. The carbohydrate-sensitive fraction of discoidin I photolabeling with 125 I-GalNASA exhibited a K/sub d/ of 15-40 μM, in agreement with the K/sub i,app/ of prephotolyzed GalNASA observed in the carbohydrate binding assay. Partial proteolytic digestion of photolabeled discoidin I revealed specific fragments whose labeling was completely blocked by GalNAc. This indicated that the location of carbohydrate-sensitive labeling within the structure of discoidin I was restricted. One particular tryptic fragment, Tr1, was examined in detail. These data suggest that Tr1 is derived from the carbohydrate binding site of discoidin I

  5. Characterization of guinea pig myocardial leukotriene C4 binding sites. Regulation by cations and sulfhydryl-directed reagents

    International Nuclear Information System (INIS)

    Hogaboom, G.K.; Mong, S.; Stadel, J.M.; Crooke, S.T.

    1985-01-01

    Using [ 3 H]leukotriene C4 (LTC4) and radioligand-binding techniques, specific leukotriene C4 binding sites have been identified in membranes derived from guinea pig ventricular myocardium. High performance liquid chromatography analyses indicated that, in the presence of the gamma-glutamyl transpeptidase inhibitor L-serine-borate (80 mM), less than 2% of membrane-bound [ 3 H]LTC4 was converted at 20 degrees to [ 3 H]leukotriene D4 or [ 3 H]leukotriene E4. The specific binding of 4 nM [ 3 H]LTC4, in the presence of 80 mM L-serine-borate, reached a stable steady state within 15 min at 20 degrees (pH 7.5). A monophasic Scatchard plot of saturation binding data yielded a dissociation constant (Kd) of 27.5 +/- 6.0 nM and a maximum number of binding sites (Bmax) of 19.9 +/- 5.2 pmol/mg of membrane protein. Competition binding studies of [ 3 H]LTC4 with synthetic leukotriene C4, leukotriene D4, and leukotriene E4 and the putative peptidoleukotriene antagonists FPL 55712, SKF 88046, and 4R-hydroxy-5S-1-cysteinylglycine-6Z-nonadecanoic acid revealed an order of potency of leukotriene C4 much greater than 4R-hydroxy-5S-1-cysteinylglycine-6Z-nonadecanoic acid greater than SKF 88046 greater than LTE4 greater than LTD4 greater than FPL 55712. The specific [ 3 H]LTC4 binding was stimulated by the divalent cations Ca2+, Mg2+, and Mn2+ and to a lesser degree by the monovalent cations Na+, K+, Li+, and NH4+. CaCl2 (3 mM) and NaCl (150 mM) stimulated the LTC4 binding by increasing the Bmax to 42.6 +/- 5.9 and 35.0 +/- 2.0 pmol/mg, respectively, but had minimal effects on Kd

  6. The Adenovirus Type 3 Dodecahedron's RGD Loop Comprises an HSPG Binding Site That Influences Integrin Binding

    Directory of Open Access Journals (Sweden)

    E. Gout

    2010-01-01

    Full Text Available Human type 3 adenovirus dodecahedron (a virus like particle made of twelve penton bases features the ability to enter cells through Heparan Sulphate Proteoglycans (HSPGs and integrins interaction and is used as a versatile vector to deliver DNA or proteins. Cryo-EM reconstruction of the pseudoviral particle with Heparan Sulphate (HS oligosaccharide shows an extradensity on the RGD loop. A set of mutants was designed to study the respective roles of the RGD sequence (RGE mutant and of a basic sequence located just downstream. Results showed that the RGE mutant binding to the HS deficient CHO-2241 cells was abolished and unexpectedly, mutation of the basic sequence (KQKR to AQAS dramatically decreased integrin recognition by the viral pseudoparticle. This basic sequence is thus involved in integrin docking, showing a close interplay between HSPGs and integrin receptors.

  7. Pharmacophore screening of the protein data bank for specific binding site chemistry.

    Science.gov (United States)

    Campagna-Slater, Valérie; Arrowsmith, Andrew G; Zhao, Yong; Schapira, Matthieu

    2010-03-22

    A simple computational approach was developed to screen the Protein Data Bank (PDB) for putative pockets possessing a specific binding site chemistry and geometry. The method employs two commonly used 3D screening technologies, namely identification of cavities in protein structures and pharmacophore screening of chemical libraries. For each protein structure, a pocket finding algorithm is used to extract potential binding sites containing the correct types of residues, which are then stored in a large SDF-formatted virtual library; pharmacophore filters describing the desired binding site chemistry and geometry are then applied to screen this virtual library and identify pockets matching the specified structural chemistry. As an example, this approach was used to screen all human protein structures in the PDB and identify sites having chemistry similar to that of known methyl-lysine binding domains that recognize chromatin methylation marks. The selected genes include known readers of the histone code as well as novel binding pockets that may be involved in epigenetic signaling. Putative allosteric sites were identified on the structures of TP53BP1, L3MBTL3, CHEK1, KDM4A, and CREBBP.

  8. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance.

    OpenAIRE

    Baier, L J; Sacchettini, J C; Knowler, W C; Eads, J; Paolisso, G; Tataranni, P A; Mochizuki, H; Bennett, P H; Bogardus, C; Prochazka, M

    1995-01-01

    The intestinal fatty acid binding protein locus (FABP2) was investigated as a possible genetic factor in determining insulin action in the Pima Indian population. A polymorphism at codon 54 of FABP2 was identified that results in an alanine-encoding allele (frequency 0.71) and a threonine-encoding allele (frequency 0.29). Pimas who were homozygous or heterozygous for the threonine-encoding allele were found to have a higher mean fasting plasma insulin concentration, a lower mean insulin-stimu...

  9. X-ray Absorption Spectroscopy of the Zinc-Binding Sites in the Class B2 Metallo-B-lactamsase ImiS from Aeromonas veronii bv. sobria

    Energy Technology Data Exchange (ETDEWEB)

    Costello,A.; Sharma, N.; Yang, K.; Crowder, M.; Tierney, D.

    2006-01-01

    X-ray absorption spectroscopy was used to investigate the metal-binding sites of ImiS from Aeromonas veronii bv. sobria in catalytically active (1-Zn), product-inhibited (1-Zn plus imipenem), and inactive (2-Zn) forms. The first equivalent of zinc(II) was found to bind to the consensus Zn{sub 2} site. The reaction of 1-Zn ImiS with imipenem leads to a product-bound species, coordinated to Zn via a carboxylate group. The inhibitory binding site of ImiS was examined by a comparison of wild-type ImiS with 1 and 2 equiv of bound zinc. 2-Zn ImiS extended X-ray absorption fine structure data support a binding site that is distant from the active site and contains both one sulfur donor and one histidine ligand. On the basis of the amino acid sequence of ImiS and the crystal structure of CphA [Garau et al. (2005) J. Mol. Biol. 345, 785-795], we propose that the inhibitory binding site is formed by M146, found on the B2-distinct {alpha}3 helix, and H118, a canonical Zn{sub 1} ligand, proposed to help activate the nucleophilic water. The mutation of M146 to isoleucine abolishes metal inhibition. This is the first characterization of ImiS with the native metal Zn and establishes, for the first time, the location of the inhibitory metal site.

  10. Effects of sodium on cell surface and intracellular 3H-naloxone binding sites

    International Nuclear Information System (INIS)

    Pollack, A.E.; Wooten, G.F.

    1987-01-01

    The binding of the opiate antagonist 3 H-naloxone was examined in rat whole brain homogenates and in crude subcellular fractions of these homogenates (nuclear, synaptosomal, and mitochondrial fractions) using buffers that approximated intra- (low sodium concentration) and extracellular (high sodium concentration) fluids. Saturation studies showed a two-fold decrease in the dissociation constant (Kd) in all subcellular fractions examined in extracellular buffer compared to intracellular buffer. In contrast, there was no significant effect of the buffers on the Bmax. Thus, 3 H-naloxone did not distinguish between binding sites present on cell surface and intracellular tissues in these two buffers. These results show that the sodium effect of opiate antagonist binding is probably not a function of altered selection of intra- and extracellular binding sites. 17 references, 2 tables

  11. Binding of von Willebrand factor to collagen type III: role of specific amino acids in the collagen binding domain of vWF and effects of neighboring domains

    NARCIS (Netherlands)

    van der Plas, R. M.; Gomes, L.; Marquart, J. A.; Vink, T.; Meijers, J. C.; de Groot, P. G.; Sixma, J. J.; Huizinga, E. G.

    2000-01-01

    Binding of von Willebrand Factor (vWF) to sites of vascular injury is the first step of hemostasis. Collagen types I and III are important binding sites for vWF. We have previously determined the three-dimensional structure of the collagen binding A3 domain of vWF (Huizinga et al., Structure 1997;

  12. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.

    Science.gov (United States)

    Liu, Sheng; Zibetti, Cristina; Wan, Jun; Wang, Guohua; Blackshaw, Seth; Qian, Jiang

    2017-07-27

    Computational prediction of transcription factor (TF) binding sites in different cell types is challenging. Recent technology development allows us to determine the genome-wide chromatin accessibility in various cellular and developmental contexts. The chromatin accessibility profiles provide useful information in prediction of TF binding events in various physiological conditions. Furthermore, ChIP-Seq analysis was used to determine genome-wide binding sites for a range of different TFs in multiple cell types. Integration of these two types of genomic information can improve the prediction of TF binding events. We assessed to what extent a model built upon on other TFs and/or other cell types could be used to predict the binding sites of TFs of interest. A random forest model was built using a set of cell type-independent features such as specific sequences recognized by the TFs and evolutionary conservation, as well as cell type-specific features derived from chromatin accessibility data. Our analysis suggested that the models learned from other TFs and/or cell lines performed almost as well as the model learned from the target TF in the cell type of interest. Interestingly, models based on multiple TFs performed better than single-TF models. Finally, we proposed a universal model, BPAC, which was generated using ChIP-Seq data from multiple TFs in various cell types. Integrating chromatin accessibility information with sequence information improves prediction of TF binding.The prediction of TF binding is transferable across TFs and/or cell lines suggesting there are a set of universal "rules". A computational tool was developed to predict TF binding sites based on the universal "rules".

  13. Mapping the heparin-binding site of the BMP antagonist gremlin by site-directed mutagenesis based on predictive modelling.

    Science.gov (United States)

    Tatsinkam, Arnold Junior; Mulloy, Barbara; Rider, Christopher C

    2015-08-15

    Gremlin is a member of the CAN (cerberus and DAN) family of secreted BMP (bone morphogenetic protein) antagonists and also an agonist of VEGF (vascular endothelial growth factor) receptor-2. It is critical in limb skeleton and kidney development and is re-expressed during tissue fibrosis. Gremlin binds strongly to heparin and heparan sulfate and, in the present study, we sought to investigate its heparin-binding site. In order to explore a putative non-contiguous binding site predicted by computational molecular modelling, we substituted a total of 11 key arginines and lysines located in three basic residue sequence clusters with homologous sequences from cerberus and DAN (differential screening selected gene abberative in neuroblastoma), CAN proteins which lack basic residues in these positions. A panel of six Myc-tagged gremlin mutants, MGR-1-MGR-6 (MGR, mutant gremlin), each containing different combinations of targeted substitutions, all showed markedly reduced affinity for heparin as demonstrated by their NaCl elution on heparin affinity chromatography, thus verifying our predictions. Both MGR-5 and MGR-6 retained BMP-4-binding activity comparable to that of wild-type gremlin. Low-molecular-mass heparin neither promoted nor inhibited BMP-4 binding. Finally, glutaraldehyde cross-linking demonstrated that gremlin forms non-covalent dimers, similar behaviour to that of DAN and also PRDC (protein related to cerberus and DAN), another CAN protein. The resulting dimer would possess two heparin-binding sites, each running along an exposed surface on the second β-strand finger loop of one of the monomers. © 2015 Authors; published by Portland Press Limited.

  14. New insights into structure and function of the different types of fatty acid-binding protein

    NARCIS (Netherlands)

    Zimmerman, Augusta Wilhelmina

    2002-01-01

    Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. They may also modulate the effect of fatty acids on various metabolic enzymes and receptors and on cellular

  15. Species of /sup 67/Ga-binding acid mucopolysaccharide in liver

    Energy Technology Data Exchange (ETDEWEB)

    Ando, A.; Ando, I.

    1985-01-01

    It was determined from measuring neutral saccharide in the structure that the principal /sup 67/Ga-binding acid mucopolysaccharide in liver was keratan sulfate and/or keratan polysulfate. On the other hand, it was clarified from the results of mucopolysaccharase treatment that the main /sup 67/Ga-binding acid mucopolysaccharide in liver was neither keratan sulfate, heparan sulfate, heparin, nor chondroitin sulfate A, B and C. Based on the present results, it was deduced that the main /sup 67/Ga-binding acid mucopolysaccharide in liver was keratan polysulfate.

  16. Distribution of [{sup 3}H]diadenosine tetraphosphate binding sites in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Miras-Portugal, M.T. [Departamento de Bioquimica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid (Spain); Palacios, J.M. [Laboratorios Almirall, Research Center, Cardener 68, 08024 Barcelona (Spain); Torres, M. [Departamento de Bioquimica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid (Spain); Cortes, R. [Departamento de Neuroquimica, Centro de Investigacion y Desarrollo, CSIC Jordi Girona 18-26, 08034 Barcelona (Spain); Rodriguez-Pascual, F. [Departamento de Bioquimica, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid (Spain)

    1997-01-06

    The distribution of the diadenosine tetraphosphate high-affinity binding sites has been studied in rat brain by an autoradiographic method using [{sup 3}H]diadenosine tetraphosphate as the ligand. The binding characteristics are comparable to those described in studies performed on rat brain synaptosomes. White matter is devoid of specific binding. The range of binding site densities in gray matter varies from 3 to 15 fmol/mg of tissue, exhibiting a widespread but heterogeneous distribution. The highest densities correspond to the seventh cranial nerve, medial superior olive, pontine nuclei, glomerular and external plexiform layers of the olfactory bulb, and the granule cell layer of the cerebellar cortex. Intermediate density levels of binding correspond to different cortical areas, several nuclei of the amygdala, and the oriens and pyramidal layers of the hippocampal formation.The localization of diadenosine tetraphosphate binding sites in the brain may provide information on the places where diadenosine polyphosphate compounds can be expected to function in the central nervous system. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Distribution of [3H]diadenosine tetraphosphate binding sites in rat brain

    International Nuclear Information System (INIS)

    Miras-Portugal, M.T.; Palacios, J.M.; Torres, M.; Cortes, R.; Rodriguez-Pascual, F.

    1997-01-01

    The distribution of the diadenosine tetraphosphate high-affinity binding sites has been studied in rat brain by an autoradiographic method using [ 3 H]diadenosine tetraphosphate as the ligand. The binding characteristics are comparable to those described in studies performed on rat brain synaptosomes. White matter is devoid of specific binding. The range of binding site densities in gray matter varies from 3 to 15 fmol/mg of tissue, exhibiting a widespread but heterogeneous distribution. The highest densities correspond to the seventh cranial nerve, medial superior olive, pontine nuclei, glomerular and external plexiform layers of the olfactory bulb, and the granule cell layer of the cerebellar cortex. Intermediate density levels of binding correspond to different cortical areas, several nuclei of the amygdala, and the oriens and pyramidal layers of the hippocampal formation.The localization of diadenosine tetraphosphate binding sites in the brain may provide information on the places where diadenosine polyphosphate compounds can be expected to function in the central nervous system. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Marked reduction in the number of platelet-tritiated imipramine binding sites in geriatric depression

    International Nuclear Information System (INIS)

    Nemeroff, C.B.; Knight, D.L.; Krishnan, R.R.; Slotkin, T.A.; Bissette, G.; Melville, M.L.; Blazer, D.G.

    1988-01-01

    The number (Bmax) and affinity (Kd) of platelet-tritiated imipramine binding sites was determined in young and middle-aged controls 50 years of age and younger (n = 25), elderly normal controls over 60 years of age (n = 18), patients who fulfilled DSM-III criteria for major depression who were under 50 years of age (n = 29), patients who fulfilled DSM-III criteria for major depression who were 60 years of age and older (n = 19), and patients who fulfilled both DSM-III criteria for primary degenerative dementia and National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association criteria for probable Alzheimer's disease (n = 13). Both groups of depressed patients (under 50 and over 60 years of age) exhibited significant reductions (decreases 42%) in the number of platelet-tritiated imipramine binding sites with no change in affinity, when compared with their age-matched controls. There was little overlap in Bmax values between the elderly depressed patients and their controls. The patients with probable Alzheimer's disease showed no alteration in platelet-tritiated imipramine binding. There was no statistically significant relationship between postdexamethasone plasma cortisol concentrations and tritiated imipramine binding. These results indicate that platelet-tritiated imipramine binding may have potential utility as a diagnostic adjunct in geriatric depression, and moreover that the reduction in the number of platelet-tritiated imipramine binding sites is not due to hypercortisolemia

  19. Gonadotropin binding sites in human ovarian follicles and corpora lutea during the menstrual cycle

    Energy Technology Data Exchange (ETDEWEB)

    Shima, K.; Kitayama, S.; Nakano, R.

    1987-05-01

    Gonadotropin binding sites were localized by autoradiography after incubation of human ovarian sections with /sup 125/I-labeled gonadotropins. The binding sites for /sup 125/I-labeled human follicle-stimulating hormone (/sup 125/I-hFSH) were identified in the granulosa cells and in the newly formed corpora lutea. The /sup 125/I-labeled human luteinizing hormone (/sup 125/I-hLH) binding to the thecal cells increased during follicular maturation, and a dramatic increase was preferentially observed in the granulosa cells of the large preovulatory follicle. In the corpora lutea, the binding of /sup 125/I-hLH increased from the early luteal phase and decreased toward the late luteal phase. The changes in 3 beta-hydroxysteroid dehydrogenase activity in the corpora lutea corresponded to the /sup 125/I-hLH binding. Thus, the changes in gonadotropin binding sites in the follicles and corpora lutea during the menstrual cycle may help in some important way to regulate human ovarian function.

  20. Characterization of [125I]endothelin-1 binding sites in rat cardiac membrane fragments

    International Nuclear Information System (INIS)

    Gu, X.H.; Casley, D.J.; Nayler, W.G.

    1989-01-01

    Standard binding and displacement techniques were used to identify high-affinity binding sites for [ 125 I]-labeled endothelin-1 (ET-1) in membranes harvested from the hearts of adult female Sprague-Dawley rats. A single population of binding sites was identified, with a KD of 0.20 +/- 0.03 nM at 37 degrees C, and a Bmax of 93.5 +/- 6.4 fmol/mg protein. Bound [ 125 I]ET-1 was displaced by ET-1 (10(-13)-10(-8) M), with a Ki of 0.08 nM. Neither (-)Bay K 8644 (10(-11)-10(-5) M), prenylamine (10(-11)-10(-5) M), (+)-cis-diltiazem (10(-10)-10(-5) M), (-)D888 (10(-10)-10(-5) M), nicardipine (10(-10)-10(-5) M), lidoflazine (10(-11)-10(-5) M), flunarizine (10(-11)-10(-5) M), omega-conotoxin (10(-13)-10(-7) M), nor prazosin (10(-10)-10(-5) M) displaced the bound ligand. Binding occurred in the absence of Ca2+ and was absent in heat-denatured membranes. These results are interpreted to mean that [ 125 I]ET-1 binds to a single class of high-affinity binding sites that differ from those occupied by known regulators of voltage activated L- and N-type Ca2+ channels

  1. New human erythrocyte protein with binding sites for both spectrin and calmodulin

    International Nuclear Information System (INIS)

    Gardner, K.; Bennett, V.

    1986-01-01

    A new cytoskeletal protein that binds calmodulin has been purified to greater than 95% homogeneity from human erythrocyte cytoskeletons. The protein is a heterodimer with subunits of 103,000 and 97,000 and M/sub r/ = 197,000 calculated from its Stokes radius of 6.9 nm and sedimentation coefficient of 6.8. A binding affinity of this protein for calmodulin has been estimated to be 230 nM by displacement of two different concentrations of 125 I-azidocalmodulin with increasing concentrations of unmodified calmodulin followed by Dixon plot analysis. This protein is present in red cells at approximately 30,000 copies per cell and contains a very tight binding site(s) on cytoskeletons. The protein can be only partially solubilized from isolated cytoskeletons in buffers containing high salt, but can be totally solubilized from red cell ghost membranes by extraction in low ionic strength buffers. Affinity purified IgG against this calmodulin-binding protein identifies crossreacting polypeptide(s) in brain, kidney, testes and retina. Visualization of the calmodulin-binding protein by negative staining, rotary shadowing and unidirectional shadowing indicate that it is a flattened circular molecule with molecular height of 5.4 nm and a diameter of 12.4 nm. Preliminary cosedimentation studies with purified spectrin and F-actin indicate that the site of interaction of this calmodulin-binding protein with the cytoskeleton resides on spectrin

  2. Asap: a framework for over-representation statistics for transcription factor binding sites

    DEFF Research Database (Denmark)

    Marstrand, Troels T; Frellsen, Jes; Moltke, Ida

    2008-01-01

    -founded choice. METHODOLOGY: We introduce a software package, Asap, for fast searching with position weight matrices that include several standard methods for assessing over-representation. We have compared the ability of these methods to detect over-represented transcription factor binding sites in artificial......BACKGROUND: In studies of gene regulation the efficient computational detection of over-represented transcription factor binding sites is an increasingly important aspect. Several published methods can be used for testing whether a set of hypothesised co-regulated genes share a common regulatory...... regime based on the occurrence of the modelled transcription factor binding sites. However there is little or no information available for guiding the end users choice of method. Furthermore it would be necessary to obtain several different software programs from various sources to make a well...

  3. Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites -current status

    International Nuclear Information System (INIS)

    Pike, V.W.; Osman, S.; Shah, F.; Turton, D.R.; Waters, S.L.; Crouzel, C.; Nutt, D.J.

    1993-01-01

    The status of the radiochemical development and biological evaluation of radioligands for PET studies of central benzodiazepine (BZ) receptors and the so-called peripheral benzodiazepine binding sites, here discriminated and referred to as PK binding sites, is reviewed against current pharmacological knowledge, indicating those agents with present value and those with future potential. Practical recommendations are given for the preparation of two useful radioligands for PET studies, [N-methyl- 11 C]flumazenil for central BZ receptors, and [N-methyl- 11 C]PK 11195 for PK binding sites. Quality assurance and plasma metabolite analysis are also reviewed for these radioligands and practical recommendations are given on methodology for their performance. (Author)

  4. Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site.

    Science.gov (United States)

    Abe, Yukiko; Nakagawa, Osamu; Yamaguchi, Rie; Sasaki, Shigeki

    2012-06-01

    DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Cortisol decreases 2[125I] iodomelatonin binding sites in the duck thymus

    International Nuclear Information System (INIS)

    Poon, A.M.S.; Liu, Z.M.; Tang, F.; Pang, S.F.

    1994-01-01

    The immunosuppressive effect of chronic glucocorticoid treatment on 2[ 125 I] iodomelatonin binding in the duck thymus was studied. Two-week-old ducks were injected intraperitoneally with either 1 mg of cortisol per day (experimental group) or an equivalent volume of vehicle (control group) in the middle of the light period for seven days. 2[ 125 I] iodomelatonin binding assays were performed on thymic membranes. Cortisol injection reduced the body weight gain, size of the bursa of Fabricius and absolute weights of the primary lymphoid organs but had no effect on the spleen weights. The relative weights of the spleen were increased while those of the primary lymphoid organs were unchanged. The density of the thymus 2[ 125 I] iodomelatonin binding sites was decreased while the affinity was not affected. The modulation of the thymic 2[ 125 I] iodomelatonin binding sites by changes in the immune status of the duck suggests that these binding sites represent physiologically relevant melatonin receptors and that melatonin exerts its action on the lymphoid tissues directly. The authors findings support the hypothesis that the thymus is the target site for the immunomodulatory interactions between the pineal melatonin and the adrenal steroids. A possible inhibitory influence of adrenal steroids on the immuno-enhancing effect of melatonin is also suggested. 34 refs., 3 tabs

  6. Computational prediction of cAMP receptor protein (CRP binding sites in cyanobacterial genomes

    Directory of Open Access Journals (Sweden)

    Su Zhengchang

    2009-01-01

    Full Text Available Abstract Background Cyclic AMP receptor protein (CRP, also known as catabolite gene activator protein (CAP, is an important transcriptional regulator widely distributed in many bacteria. The biological processes under the regulation of CRP are highly diverse among different groups of bacterial species. Elucidation of CRP regulons in cyanobacteria will further our understanding of the physiology and ecology of this important group of microorganisms. Previously, CRP has been experimentally studied in only two cyanobacterial strains: Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120; therefore, a systematic genome-scale study of the potential CRP target genes and binding sites in cyanobacterial genomes is urgently needed. Results We have predicted and analyzed the CRP binding sites and regulons in 12 sequenced cyanobacterial genomes using a highly effective cis-regulatory binding site scanning algorithm. Our results show that cyanobacterial CRP binding sites are very similar to those in E. coli; however, the regulons are very different from that of E. coli. Furthermore, CRP regulons in different cyanobacterial species/ecotypes are also highly diversified, ranging from photosynthesis, carbon fixation and nitrogen assimilation, to chemotaxis and signal transduction. In addition, our prediction indicates that crp genes in modern cyanobacteria are likely inherited from a common ancestral gene in their last common ancestor, and have adapted various cellular functions in different environments, while some cyanobacteria lost their crp genes as well as CRP binding sites during the course of evolution. Conclusion The CRP regulons in cyanobacteria are highly diversified, probably as a result of divergent evolution to adapt to various ecological niches. Cyanobacterial CRPs may function as lineage-specific regulators participating in various cellular processes, and are important in some lineages. However, they are dispensable in some other lineages. The

  7. Nonequivalence of alpha-bungarotoxin binding sites in the native nicotinic receptor molecule

    International Nuclear Information System (INIS)

    Conti-Tronconi, B.M.; Tang, F.; Walgrave, S.; Gallagher, W.

    1990-01-01

    In the native, membrane-bound form of the nicotinic acetylcholine receptor (M-AcChR) the two sites for the cholinergic antagonist alpha-bungarotoxin (alpha-BGT) have different binding properties. One site has high affinity, and the M-AcChR/alpha-BGT complexes thus formed dissociate very slowly, similar to the complexes formed with detergent-solubilized AcChR (S-AcChR). The second site has much lower affinity (KD approximately 59 +/- 35 nM) and forms quickly reversible complexes. The nondenaturing detergent Triton X-100 is known to solubilize the AcChR in a form unable, upon binding of cholinergic ligands, to open the ion channel and to become desensitized. Solubilization of the AcChR in Triton X-100 affects the binding properties of this second site and converts it to a high-affinity, slowly reversible site. Prolonged incubation of M-AcChR at 4 degrees C converts the low-affinity site to a high-affinity site similar to those observed in the presence of Triton X-100. Although the two sites have similar properties when the AcChR is solubilized in Triton X-100, their nonequivalence can be demonstrated by the effect on alpha-BGT binding of concanavalin A, which strongly reduces the association rate of one site only. The Bmax of alpha-BGT to either Triton-solubilized AcChR or M-AcChR is not affected by the presence of concanavalin A. Occupancy of the high-affinity, slowly reversible site in M-AcChR inhibits the Triton X-100 induced conversion to irreversibility of the second site. At difference with alpha-BGT, the long alpha-neurotoxin from Naja naja siamensis venom (alpha-NTX) binds with high affinity and in a very slowly reversible fashion to two sites in the M-AcChR. We confirm here that Triton-solubilized AcChR or M-AcChR binds in a very slowly reversible fashion the same amount of alpha-NTX

  8. The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro.

    OpenAIRE

    Horton, R. W.; Lowther, S.; Chivers, J.; Jenner, P.; Marsden, C. D.; Testa, B.

    1988-01-01

    1. The interaction of substituted benzamides with brain benzodiazepine (BDZ) binding sites was examined by their ability to displace [3H]-flunitrazepam ([3H]-FNM) from specific binding sites in bovine cortical membranes in vitro. 2. Clebopride, Delagrange 2674, Delagrange 2335 and BRL 20627 displayed concentration-dependent displacement of [3H]-FNM with IC50 values of 73 nM, 132 nM, 7.7 microM and 5.9 microM, respectively. Other substituted benzamides including metoclopramide, sulpiride, tiap...

  9. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations

    Science.gov (United States)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J.

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  10. Adenovirus-Mediated Delivery of Decoy Hyper Binding Sites Targeting Oncogenic HMGA1 Reduces Pancreatic and Liver Cancer Cell Viability.

    Science.gov (United States)

    Hassan, Faizule; Ni, Shuisong; Arnett, Tyler C; McKell, Melanie C; Kennedy, Michael A

    2018-03-30

    High mobility group AT-hook 1 (HMGA1) protein is an oncogenic architectural transcription factor that plays an essential role in early development, but it is also implicated in many human cancers. Elevated levels of HMGA1 in cancer cells cause misregulation of gene expression and are associated with increased cancer cell proliferation and increased chemotherapy resistance. We have devised a strategy of using engineered viruses to deliver decoy hyper binding sites for HMGA1 to the nucleus of cancer cells with the goal of sequestering excess HMGA1 at the decoy hyper binding sites due to binding competition. Sequestration of excess HMGA1 at the decoy binding sites is intended to reduce HMGA1 binding at the naturally occurring genomic HMGA1 binding sites, which should result in normalized gene expression and restored sensitivity to chemotherapy. As proof of principle, we engineered the replication defective adenovirus serotype 5 genome to contain hyper binding sites for HMGA1 composed of six copies of an individual HMGA1 binding site, referred to as HMGA-6. A 70%-80% reduction in cell viability and increased sensitivity to gemcitabine was observed in five different pancreatic and liver cancer cell lines 72 hr after infection with replication defective engineered adenovirus serotype 5 virus containing the HMGA-6 decoy hyper binding sites. The decoy hyper binding site strategy should be general for targeting overexpression of any double-stranded DNA-binding oncogenic transcription factor responsible for cancer cell proliferation.

  11. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations.

    Science.gov (United States)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  12. Comparison of S. cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site

    Science.gov (United States)

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; Kenniston, Jon A.; Mendrola, Jeannine M.; Ferguson, Kathryn M.; Lemmon, Mark A.

    2015-01-01

    SUMMARY F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the S. cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences, and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip, and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity, and provide a basis for its prediction from sequence. PMID:25620000

  13. Fatty acid-binding protein in liver and small intestine of the preruminant calf

    International Nuclear Information System (INIS)

    Jenkins, K.J.

    1986-01-01

    Cytosol obtained from differential centrifugation of homogenates from liver and small intestine mucosa was incubated with 1-[ 14 C] oleic acid or 1-[ 14 C] palmitic acid and filtered through Sephadex G-75. Elution profiles for both tissues showed radioactivity in two main peaks, the first corresponding to binding of fatty acid to high molecular weight proteins and the second to a protein fraction with a molecular weight of approximately 12,000 daltons. The low molecular weight fraction had high fatty acid-binding activity, which was greater for oleic than palmitic acid. The findings demonstrate the presence of fatty acid-binding protein in liver and intestinal mucosa of the preruminant calf

  14. A Parzen window-based approach for the detection of locally enriched transcription factor binding sites.

    Science.gov (United States)

    Vandenbon, Alexis; Kumagai, Yutaro; Teraguchi, Shunsuke; Amada, Karlou Mar; Akira, Shizuo; Standley, Daron M

    2013-01-21

    Identification of cis- and trans-acting factors regulating gene expression remains an important problem in biology. Bioinformatics analyses of regulatory regions are hampered by several difficulties. One is that binding sites for regulatory proteins are often not significantly over-represented in the set of DNA sequences of interest, because of high levels of false positive predictions, and because of positional restrictions on functional binding sites with regard to the transcription start site. We have developed a novel method for the detection of regulatory motifs based on their local over-representation in sets of regulatory regions. The method makes use of a Parzen window-based approach for scoring local enrichment, and during evaluation of significance it takes into account GC content of sequences. We show that the accuracy of our method compares favourably to that of other methods, and that our method is capable of detecting not only generally over-represented regulatory motifs, but also locally over-represented motifs that are often missed by standard motif detection approaches. Using a number of examples we illustrate the validity of our approach and suggest applications, such as the analysis of weaker binding sites. Our approach can be used to suggest testable hypotheses for wet-lab experiments. It has potential for future analyses, such as the prediction of weaker binding sites. An online application of our approach, called LocaMo Finder (Local Motif Finder), is available at http://sysimm.ifrec.osaka-u.ac.jp/tfbs/locamo/.

  15. Cell-type specificity of ChIP-predicted transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Håndstad Tony

    2012-08-01

    Full Text Available Abstract Background Context-dependent transcription factor (TF binding is one reason for differences in gene expression patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But can such ChIP-seq data predict TF binding in other cellular contexts and is it possible to distinguish context-dependent from ubiquitous TF binding? Results We compared ChIP-seq data on TF binding for multiple TFs in two different cell types and found that on average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors, weak and isolated peaks are less common between the cell types and are less associated with data that indicate regulatory activity. Conclusions Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong and clustered peaks represent high-confidence binding events that often occur in other cellular contexts. Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that by combining signal intensity with additional data—ranging from context independent information such as binding site conservation and position weight matrix scores to context dependent chromatin structure—we can predict whether a ChIP-seq peak is likely to be present in other cellular contexts.

  16. Distribution of cyclophilin B-binding sites in the subsets of human peripheral blood lymphocytes.

    Science.gov (United States)

    Denys, A; Allain, F; Foxwell, B; Spik, G

    1997-08-01

    Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein, mainly associated with the secretory pathway and released in biological fluids. We have recently demonstrated that both free CyPB and CyPB-CsA complex specifically bind to peripheral blood T lymphocytes and are internalized. These results suggest that CyPB might promote the targeting of the drug into sensitive cells. Peripheral blood lymphocytes are subdivided in several populations according to their biological functions and sensitivity to CsA. We have investigated the binding of CyPB to these different subsets using a CyPB derivatized by fluorescein through its single cysteine which retains its binding properties. We have confirmed that only T cells were involved in the interaction with CyPB. The ligand binding was found to be heterogeneously distributed on the different T-cell subsets and surface-bound CyPB was mainly associated with the CD4-positive cells. No significant difference was noted between the CD45RA and CD45RO subsets, demonstrating that CyPB-binding sites were equally distributed between native and memory T cells. CD3 stimulation of T lymphocytes led to a decrease in the CyPB-binding capacity, that may be explained by a down-regulation of the CyPB-receptor expression upon T-cell activation. Finally, we demonstrated that CyPB-receptor-positive cells, isolated on CyPB sulphydryl-coupled affinity matrices, are more sensitive to CyPB-complexed CsA than mixed peripheral blood lymphocytes, suggesting that CyPB potentiates CsA activity through the binding of the complex. Taken together, our results demonstrate that CyPB-binding sites are mainly associated with resting cells of the helper T lymphocyte, and that CyPB might modulate the distribution of CsA through the drug targeting to sensitive cells.

  17. The human intestinal fatty acid binding protein (hFABP2) gene is regulated by HNF-4α

    International Nuclear Information System (INIS)

    Klapper, Maja; Boehme, Mike; Nitz, Inke; Doering, Frank

    2007-01-01

    The cytosolic human intestinal fatty acid binding protein (hFABP2) is proposed to be involved in intestinal absorption of long-chain fatty acids. The aim of this study was to investigate the regulation of hFABP2 by the endodermal hepatocyte nuclear factor 4α (HNF-4α), involved in regulation of genes of fatty acid metabolism and differentiation. Electromobility shift assays demonstrated that HNF-4α binds at position -324 to -336 within the hFABP2 promoter. Mutation of this HNF-4 binding site abolished the luciferase reporter activity of hFABP2 in postconfluent Caco-2 cells. In HeLa cells, this mutation reduced the activation of the hFABP2 promoter by HNF-4α by about 50%. Thus, binding element at position -336/-324 essentially determines the transcriptional activity of promoter and may be important in control of hFABP2 expression by dietary lipids and differentiation. Studying genotype interactions of hFABP2 and HNF-4α, that are both candidate genes for diabetes type 2, may be a powerful approach

  18. The human intestinal fatty acid binding protein (hFABP2) gene is regulated by HNF-4{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Klapper, Maja [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany); Boehme, Mike [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany); Nitz, Inke [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany); Doering, Frank [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany)

    2007-04-27

    The cytosolic human intestinal fatty acid binding protein (hFABP2) is proposed to be involved in intestinal absorption of long-chain fatty acids. The aim of this study was to investigate the regulation of hFABP2 by the endodermal hepatocyte nuclear factor 4{alpha} (HNF-4{alpha}), involved in regulation of genes of fatty acid metabolism and differentiation. Electromobility shift assays demonstrated that HNF-4{alpha} binds at position -324 to -336 within the hFABP2 promoter. Mutation of this HNF-4 binding site abolished the luciferase reporter activity of hFABP2 in postconfluent Caco-2 cells. In HeLa cells, this mutation reduced the activation of the hFABP2 promoter by HNF-4{alpha} by about 50%. Thus, binding element at position -336/-324 essentially determines the transcriptional activity of promoter and may be important in control of hFABP2 expression by dietary lipids and differentiation. Studying genotype interactions of hFABP2 and HNF-4{alpha}, that are both candidate genes for diabetes type 2, may be a powerful approach.

  19. Number of active transcription factor binding sites is essential for the Hes7 oscillator

    Directory of Open Access Journals (Sweden)

    de Angelis Martin

    2006-02-01

    Full Text Available Abstract Background It is commonly accepted that embryonic segmentation of vertebrates is regulated by a segmentation clock, which is induced by the cycling genes Hes1 and Hes7. Their products form dimers that bind to the regulatory regions and thereby repress the transcription of their own encoding genes. An increase of the half-life of Hes7 protein causes irregular somite formation. This was shown in recent experiments by Hirata et al. In the same work, numerical simulations from a delay differential equations model, originally invented by Lewis, gave additional support. For a longer half-life of the Hes7 protein, these simulations exhibited strongly damped oscillations with, after few periods, severely attenuated the amplitudes. In these simulations, the Hill coefficient, a crucial model parameter, was set to 2 indicating that Hes7 has only one binding site in its promoter. On the other hand, Bessho et al. established three regulatory elements in the promoter region. Results We show that – with the same half life – the delay system is highly sensitive to changes in the Hill coefficient. A small increase changes the qualitative behaviour of the solutions drastically. There is sustained oscillation and hence the model can no longer explain the disruption of the segmentation clock. On the other hand, the Hill coefficient is correlated with the number of active binding sites, and with the way in which dimers bind to them. In this paper, we adopt response functions in order to estimate Hill coefficients for a variable number of active binding sites. It turns out that three active transcription factor binding sites increase the Hill coefficient by at least 20% as compared to one single active site. Conclusion Our findings lead to the following crucial dichotomy: either Hirata's model is correct for the Hes7 oscillator, in which case at most two binding sites are active in its promoter region; or at least three binding sites are active, in which

  20. Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA "breathing" dynamics

    DEFF Research Database (Denmark)

    Bentin, T; Nielsen, Peter E.

    1996-01-01

    The influence of DNA topology on peptide nucleic acid (PNA) binding was studied. Formation of sequence-specific PNA2/dsDNA (double-stranded DNA) complexes was monitored by a potassium permanganate probing/primer extension assay. At low ionic strengths, the binding of PNA was 2-3 times more...

  1. Human acid β-glucosidase: isolation and amino acid sequence of a peptide containing the catalytic site

    International Nuclear Information System (INIS)

    Dinur, T.; Osiecki, K.M.; Legler, G.; Gatt, S.; Desnick, R.J.; Grabowski, G.A.

    1986-01-01

    Human acid β-glucosidase (D-glucosyl-N-acylsphingosine glucohydrolase, EC 3.2.1.45) cleaves the glucosidic bonds of glucosylceramide and synthetic β-glucosides. The deficient activity of this hydrolase is the enzymatic defect in the subtypes and variants of Gaucher disease, the most prevalent lysosomal storage disease. To isolate and characterize the catalytic site of the normal enzyme, brominated 3 H-labeled conduritol B epoxide ( 3 H-Br-CBE), which inhibits the enzyme by binding covalently to this site, was used as an affinity label. Under optimal conditions 1 mol of 3 H-Br-CBE bound to 1 mol of pure enzyme protein, indicating the presence of a single catalytic site per enzyme subunit. After V 8 protease digestion of the 3 H-Br-CBE-labeled homogeneous enzyme, three radiolabeled peptides, designated peptide A, B, or C, were resolved by reverse-phase HPLC. The partial amino acid sequence (37 residues) of peptide A (M/sub r/, 5000) was determined. The sequence of this peptide, which contained the catalytic site, had exact homology to the sequence near the carboxyl terminus of the protein, as predicted from the nucleotide sequence of the full-length cDNA encoding acid β-glucosidase

  2. Multiple ETS family proteins regulate PF4 gene expression by binding to the same ETS binding site.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Okada

    Full Text Available In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4 is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the -51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a -51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the -51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the -51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.

  3. Ontogeny of basic fibroblast growth factor binding sites in mouse ocular tissues

    International Nuclear Information System (INIS)

    Fayein, N.A.; Courtois, Y.; Jeanny, J.C.

    1990-01-01

    Basic fibroblast growth factor (bFGF) binding to ocular tissues has been studied by autoradiographical and biochemical approaches directly performed on sections during mouse embryonic and postnatal development. Frozen sections of embryos (9 to 18 days), newborns, and adults (1 day to 6 months) were incubated with iodinated bFGF. One specific FGF binding site (KD = 2.5 nM) is colocalized with heparan sulfate proteoglycans of the basement membranes and is heparitinase sensitive. It first appears at Day 9 around the neural tube, the optic vesicles, and below the head ectoderm and by Day 14 of embryonic development is found in all basement membranes of the eye. At Day 16, very intensely labeled patches appear, corresponding to mast cells which have been characterized by metachromatic staining of their heparin-rich granulations with toluidine blue. In addition to the latter binding, we have also observed a general diffuse distribution of silver grains on all tissues and preferentially in the ecto- and neuroectodermic tissues. From Days 17-18, there is heterogeneous labeling inside the retina, localized in the pigmented epithelium and in three different layers colocalized with the inner and outer plexiform layers and with the inner segments of the photoreceptors. This binding is heparitinase resistant but N-glycanase sensitive and may represent a second specific binding site corresponding to cellular FGF receptors (KD = 280 pM). Both types of binding patterns observed suggest a significant role for bFGF in eye development and physiology

  4. Pathogenesis of Shigella diarrhea: rabbit intestinal cell microvillus membrane binding site for Shigella toxin

    International Nuclear Information System (INIS)

    Fuchs, G.; Mobassaleh, M.; Donohue-Rolfe, A.; Montgomery, R.K.; Grand, R.J.; Keusch, G.T.

    1986-01-01

    This study examined the binding of purified 125 I-labeled shigella toxin to rabbit jejunal microvillus membranes (MVMs). Toxin binding was concentration dependent, saturable, reversible, and specifically inhibited by unlabeled toxin. The calculated number of toxin molecules bound at 4 0 C was 7.9 X 10(10) (3 X 10(10) to 2 X 10(11))/micrograms of MVM protein or 1.2 X 10(6) per enterocyte. Scatchard analysis showed the binding site to be of a single class with an equilibrium association constant, K, of 4.7 X 10(9) M-1 at 4 0 C. Binding was inversely related to the temperature of incubation. A total of 80% of the labeled toxin binding at 4 0 C dissociated from MVM when the temperature was raised to 37 0 C, but reassociated when the temperature was again brought to 4 0 C. There was no structural or functional change of MVM due to toxin as monitored by electron microscopy or assay of MVM sucrase activity. These studies demonstrate a specific binding site for shigella toxin on rabbit MVMs. The physiological relevance of this receptor remains to be determined

  5. Recognition of anesthetic barbiturates by a protein binding site: a high resolution structural analysis.

    Directory of Open Access Journals (Sweden)

    Simon Oakley

    Full Text Available Barbiturates potentiate GABA actions at the GABA(A receptor and act as central nervous system depressants that can induce effects ranging from sedation to general anesthesia. No structural information has been available about how barbiturates are recognized by their protein targets. For this reason, we tested whether these drugs were able to bind specifically to horse spleen apoferritin, a model protein that has previously been shown to bind many anesthetic agents with affinities that are closely correlated with anesthetic potency. Thiopental, pentobarbital, and phenobarbital were all found to bind to apoferritin with affinities ranging from 10-500 µM, approximately matching the concentrations required to produce anesthetic and GABAergic responses. X-ray crystal structures were determined for the complexes of apoferritin with thiopental and pentobarbital at resolutions of 1.9 and 2.0 Å, respectively. These structures reveal that the barbiturates bind to a cavity in the apoferritin shell that also binds haloalkanes, halogenated ethers, and propofol. Unlike these other general anesthetics, however, which rely entirely upon van der Waals interactions and the hydrophobic effect for recognition, the barbiturates are recognized in the apoferritin site using a mixture of both polar and nonpolar interactions. These results suggest that any protein binding site that is able to recognize and respond to the chemically and structurally diverse set of compounds used as general anesthetics is likely to include a versatile mixture of both polar and hydrophobic elements.

  6. Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.

    Directory of Open Access Journals (Sweden)

    Jose L S Lopes

    Full Text Available Diacylglycerol acyltransferase 1 (DGAT1 is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.

  7. Characterization of reference and site specific humic acids

    International Nuclear Information System (INIS)

    Kim, J.I.; Buckau, G.

    1988-11-01

    As a contribution to the interlaboratory exercise for the complexation of humic acid and colloid generation (COCO-Club activities) in the CEC project MIRAGE-II, the characterization of selected humic acids have been carried out at TU Muenchen, regarding their elemental compositions, inorganic impurities, spectroscopic properties, size distributions and proton exchange capacities. The commercial humic acid (Na salt) from Aldrich Co. is purified to a protonated form and used as reference material. Furthermore two humic acids extracted from groundwaters from Gorleben (FRG) and Boom Clay (B) are purified to protonated forms and taken as site specific materials. These three humic acids, together with the original Na salt from Aldrich Co., are included in the present characterization exercise. The results of characterization provide basic knowledge supporting the forthcoming study of complexation of actinides and fission products with humic acid and their migration processes in the geosphere. (orig.)

  8. Characterization of reference and site specific human acids

    International Nuclear Information System (INIS)

    Kim, J.I.; Buckau, G.

    1988-01-01

    As a part of the interlaboratory exercise for the complexation of humic acid and colloid generation (COCO-Club activities) in the CEC project MIRAGE-II, the characterization of humic acids have been carried out, as for their elemental compositions, inorganic impurities, spectroscopic properties, size distributions and proton exchange capacities. The commercial humic acid (Na salt) from Aldrich Co. is purified to a protonated form and used as a reference material, and the humic acid extracted from one of Gorleben groundwaters is also purified to a protonated form and taken as a site specific material. These two humic acids, together with the original Na salt from Aldrich Co., are included for the characterization exercise. The results of characterization provide a basic knowledge that supports the forthcoming study of complexation of humic acids with actinides and fission products in their migration processes in the geosphere. (orig.)

  9. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel; (Harvard-Med); (EMBL)

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.

  10. De-novo discovery of differentially abundant transcription factor binding sites including their positional preference.

    Science.gov (United States)

    Keilwagen, Jens; Grau, Jan; Paponov, Ivan A; Posch, Stefan; Strickert, Marc; Grosse, Ivo

    2011-02-10

    Transcription factors are a main component of gene regulation as they activate or repress gene expression by binding to specific binding sites in promoters. The de-novo discovery of transcription factor binding sites in target regions obtained by wet-lab experiments is a challenging problem in computational biology, which has not been fully solved yet. Here, we present a de-novo motif discovery tool called Dispom for finding differentially abundant transcription factor binding sites that models existing positional preferences of binding sites and adjusts the length of the motif in the learning process. Evaluating Dispom, we find that its prediction performance is superior to existing tools for de-novo motif discovery for 18 benchmark data sets with planted binding sites, and for a metazoan compendium based on experimental data from micro-array, ChIP-chip, ChIP-DSL, and DamID as well as Gene Ontology data. Finally, we apply Dispom to find binding sites differentially abundant in promoters of auxin-responsive genes extracted from Arabidopsis thaliana microarray data, and we find a motif that can be interpreted as a refined auxin responsive element predominately positioned in the 250-bp region upstream of the transcription start site. Using an independent data set of auxin-responsive genes, we find in genome-wide predictions that the refined motif is more specific for auxin-responsive genes than the canonical auxin-responsive element. In general, Dispom can be used to find differentially abundant motifs in sequences of any origin. However, the positional distribution learned by Dispom is especially beneficial if all sequences are aligned to some anchor point like the transcription start site in case of promoter sequences. We demonstrate that the combination of searching for differentially abundant motifs and inferring a position distribution from the data is beneficial for de-novo motif discovery. Hence, we make the tool freely available as a component of the open

  11. Two distinct calmodulin binding sites in the third intracellular loop and carboxyl tail of angiotensin II (AT(1A receptor.

    Directory of Open Access Journals (Sweden)

    Renwen Zhang

    Full Text Available In this study, we present data that support the presence of two distinct calmodulin binding sites within the angiotensin II receptor (AT(1A, at juxtamembrane regions of the N-terminus of the third intracellular loop (i3, amino acids 214-231 and carboxyl tail of the receptor (ct, 302-317. We used bioluminescence resonance energy transfer assays to document interactions of calmodulin with the AT(1A holo-receptor and GST-fusion protein pull-downs to demonstrate that i3 and ct interact with calmodulin in a Ca²⁺-dependent fashion. The former is a 1-12 motif and the latter belongs to 1-5-10 calmodulin binding motif. The apparent Kd of calmodulin for i3 is 177.0±9.1 nM, and for ct is 79.4±7.9 nM as assessed by dansyl-calmodulin fluorescence. Replacement of the tryptophan (W219 for alanine in i3, and phenylalanine (F309 or F313 for alanine in ct reduced their binding affinities for calmodulin, as predicted by computer docking simulations. Exogenously applied calmodulin attenuated interactions between G protein βγ subunits and i3 and ct, somewhat more so for ct than i3. Mutations W219A, F309A, and F313A did not alter Gβγ binding, but reduced the ability of calmodulin to compete with Gβγ, suggesting that calmodulin and Gβγ have overlapping, but not identical, binding requirements for i3 and ct. Calmodulin interference with the Gβγ binding to i3 and ct regions of the AT(1A receptor strongly suggests that calmodulin plays critical roles in regulating Gβγ-dependent signaling of the receptor.

  12. Two Distinct Calmodulin Binding Sites in the Third Intracellular Loop and Carboxyl Tail of Angiotensin II (AT1A) Receptor

    Science.gov (United States)

    Zhang, Renwen; Liu, Zhijie; Qu, Youxing; Xu, Ying; Yang, Qing

    2013-01-01

    In this study, we present data that support the presence of two distinct calmodulin binding sites within the angiotensin II receptor (AT1A), at juxtamembrane regions of the N-terminus of the third intracellular loop (i3, amino acids 214–231) and carboxyl tail of the receptor (ct, 302–317). We used bioluminescence resonance energy transfer assays to document interactions of calmodulin with the AT1A holo-receptor and GST-fusion protein pull-downs to demonstrate that i3 and ct interact with calmodulin in a Ca2+-dependent fashion. The former is a 1–12 motif and the latter belongs to 1-5-10 calmodulin binding motif. The apparent Kd of calmodulin for i3 is 177.0±9.1 nM, and for ct is 79.4±7.9 nM as assessed by dansyl-calmodulin fluorescence. Replacement of the tryptophan (W219) for alanine in i3, and phenylalanine (F309 or F313) for alanine in ct reduced their binding affinities for calmodulin, as predicted by computer docking simulations. Exogenously applied calmodulin attenuated interactions between G protein βγ subunits and i3 and ct, somewhat more so for ct than i3. Mutations W219A, F309A, and F313A did not alter Gβγ binding, but reduced the ability of calmodulin to compete with Gβγ, suggesting that calmodulin and Gβγ have overlapping, but not identical, binding requirements for i3 and ct. Calmodulin interference with the Gβγ binding to i3 and ct regions of the AT1A receptor strongly suggests that calmodulin plays critical roles in regulating Gβγ-dependent signaling of the receptor. PMID:23755207

  13. Investigation of the Copper Binding Site And the Role of Histidine As a Ligand in Riboflavin Binding Protein

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.R.; Bencze, K.Z.; Russ, K.A.; Wasiukanis, K.; Benore-Parsons, M.; Stemmler, T.L.

    2009-05-26

    Riboflavin Binding Protein (RBP) binds copper in a 1:1 molar ratio, forming a distinct well-ordered type II site. The nature of this site has been examined using X-ray absorption and pulsed electron paramagnetic resonance (EPR) spectroscopies, revealing a four coordinate oxygen/nitrogen rich environment. On the basis of analysis of the Cambridge Structural Database, the average protein bound copper-ligand bond length of 1.96 {angstrom}, obtained by extended x-ray absorption fine structure (EXAFS), is consistent with four coordinate Cu(I) and Cu(II) models that utilize mixed oxygen and nitrogen ligand distributions. These data suggest a Cu-O{sub 3}N coordination state for copper bound to RBP. While pulsed EPR studies including hyperfine sublevel correlation spectroscopy and electron nuclear double resonance show clear spectroscopic evidence for a histidine bound to the copper, inclusion of a histidine in the EXAFS simulation did not lead to any significant improvement in the fit.

  14. Na-K pump site density and ouabain binding affinity in cultured chick heart cells

    International Nuclear Information System (INIS)

    Lobaugh, L.A.; Lieberman, M.

    1987-01-01

    The possible existence of multiple [ 3 H]ouabain binding sites and the relationship between ouabain binding and Na-K pump inhibition in cardiac muscle were studied using cultured embryonic chick heart cells. [ 3 H]ouabain bound to a single class of sites in 0.5 mM K (0.5 Ko) with an association rate constant (k+1) of 3.4 X 10(4) M-1.s-1 and a dissociation rate constant (k-1) of 0.0095 s. Maximal specific [ 3 H]ouabain binding RT to myocyte-enriched cultures is 11.7 pmol/mg protein and Kd is 0.43 microM in 0.5 Ko, whereas Kd,apparent is 6.6 microM in 5.4 Ko. The number of binding sites per myocyte was calculated by correcting for the contribution of fibroblasts in myocyte-enriched cultures using data from homogeneous fibroblast cultures (RT = 3.3 pmol/mg protein; Kd = 0.19 microM in 0.5 Ko). Equivalence of [ 3 H]ouabain binding sites and Na-K pumps was implied by agreement between maximal specific binding of [ 3 H]ouabain and 125 I-labeled monoclonal antibody directed against Na+-K+-ATPase (approximately 2 X 10(6) sites/cell). However, [ 3 H]ouabain binding occurred at lower concentrations than inhibition of ouabain-sensitive 42 K uptake in 0.5 Ko. Further studies in both 0.5 K and 5.4 Ko showed that ouabain caused cell Na content Nai to increase over the same range of concentrations that binding occurred, implying that increased Nai may stimulate unbound Na-K pumps and prevent a proportional decrease in 42 K uptake rate. The results show that Na-K pump inhibition occurs as a functional consequence of specific ouabain binding and indicate that the Na-K pump is the cardiac glycoside receptor in cultured heart cells

  15. Comparative study of the fatty acid binding process of a new FABP from Cherax quadricarinatus by fluorescence intensity, lifetime and anisotropy.

    Directory of Open Access Journals (Sweden)

    Jiayao Li

    Full Text Available Fatty acid-binding proteins (FABPs are small cytosolic proteins, largely distributed in invertebrates and vertebrates, which accomplish uptake and intracellular transport of hydrophobic ligands such as fatty acids. Although long chain fatty acids play multiple crucial roles in cellular functions (structural, energy metabolism, regulation of gene expression, the precise functions of FABPs, especially those of invertebrate species, remain elusive. Here, we have identified and characterized a novel FABP family member, Cq-FABP, from the hepatopancreas of red claw crayfish Cherax quadricarinatus. We report the characterization of fatty acid-binding affinity of Cq-FABP by four different competitive fluorescence-based assays. In the two first approaches, the fluorescent probe 8-Anilino-1-naphthalenesulfonate (ANS, a binder of internal cavities of protein, was used either by directly monitoring its fluorescence emission or by monitoring the fluorescence resonance energy transfer occurring between the single tryptophan residue of Cq-FABP and ANS. The third and the fourth approaches were based on the measurement of the fluorescence emission intensity of the naturally fluorescent cis-parinaric acid probe or the steady-state fluorescence anisotropy measurements of a fluorescently labeled fatty acid (BODIPY-C16, respectively. The four methodologies displayed consistent equilibrium constants for a given fatty acid but were not equivalent in terms of analysis. Indeed, the two first methods were complicated by the existence of non specific binding modes of ANS while BODIPY-C16 and cis-parinaric acid specifically targeted the fatty acid binding site. We found a relationship between the affinity and the length of the carbon chain, with the highest affinity obtained for the shortest fatty acid, suggesting that steric effects primarily influence the interaction of fatty acids in the binding cavity of Cq-FABP. Moreover, our results show that the binding affinities

  16. Resistance to Linezolid Caused by Modifications at Its Binding Site on the Ribosome

    DEFF Research Database (Denmark)

    Long, Katherine S.; Vester, Birte

    2012-01-01

    Linezolid is an oxazolidinone antibiotic in clinical use for the treatment of serious infections of resistant Gram-positive bacteria. It inhibits protein synthesis by binding to the peptidyl transferase center on the ribosome. Almost all known resistance mechanisms involve small alterations...... to the linezolid binding site, so this review will therefore focus on the various changes that can adversely affect drug binding and confer resistance. High-resolution structures of linezolid bound to the 50S ribosomal subunit show that it binds in a deep cleft that is surrounded by 23S rRNA nucleotides. Mutation...... of 23S rRNA has for some time been established as a linezolid resistance mechanism. Although ribosomal proteins L3 and L4 are located further away from the bound drug, mutations in specific regions of these proteins are increasingly being associated with linezolid resistance. However, very little...

  17. Binding sites for luminescent amyloid biomarkers from non-biased molecular dynamics simulations.

    Science.gov (United States)

    König, Carolin; Skånberg, Robin; Hotz, Ingrid; Ynnerman, Anders; Norman, Patrick; Linares, Mathieu

    2018-03-25

    A very stable binding site for the interaction between a pentameric oligothiophene and an amyloid-β(1-42) fibril has been identified by means of non-biased molecular dynamics simulations. In this site, the probe is locked in an all-trans conformation with a Coulombic binding energy of 1200 kJ mol -1 due to the interactions between the anionic carboxyl groups of the probe and the cationic ε-amino groups in the lysine side chain. Upon binding, the conformationally restricted probes show a pronounced increase in molecular planarity. This is in line with the observed changes in luminescence properties that serve as the foundation for their use as biomarkers.

  18. Determination of the binding sites for oxaliplatin on insulin using mass spectrometry-based approaches

    DEFF Research Database (Denmark)

    Møller, Charlotte; Sprenger, Richard R.; Stürup, Stefan

    2011-01-01

    Using insulin as a model protein for binding of oxaliplatin to proteins, various mass spectrometric approaches and techniques were compared. Several different platinum adducts were observed, e.g. addition of one or two diaminocyclohexane platinum(II) (Pt(dach)) molecules. By top-down analysis...... and fragmentation of the intact insulin-oxaliplatin adduct using nano-electrospray ionisation quadrupole time-of-flight mass spectrometry (nESI-Q-ToF-MS), the major binding site was assigned to histidine5 on the insulin B chain. In order to simplify the interpretation of the mass spectrum, the disulphide bridges...... were reduced. This led to the additional identification of cysteine6 on the A chain as a binding site along with histidine5 on the B chain. Digestion of insulin-oxaliplatin with endoproteinase Glu-C (GluC) followed by reduction led to the formation of five peptides with Pt(dach) attached...

  19. RBscore&NBench: a high-level web server for nucleic acid binding residues prediction with a large-scale benchmarking database.

    Science.gov (United States)

    Miao, Zhichao; Westhof, Eric

    2016-07-08

    RBscore&NBench combines a web server, RBscore and a database, NBench. RBscore predicts RNA-/DNA-binding residues in proteins and visualizes the prediction scores and features on protein structures. The scoring scheme of RBscore directly links feature values to nucleic acid binding probabilities and illustrates the nucleic acid binding energy funnel on the protein surface. To avoid dataset, binding site definition and assessment metric biases, we compared RBscore with 18 web servers and 3 stand-alone programs on 41 datasets, which demonstrated the high and stable accuracy of RBscore. A comprehensive comparison led us to develop a benchmark database named NBench. The web server is available on: http://ahsoka.u-strasbg.fr/rbscorenbench/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Longer peptide can be accommodated in the MHC class I binding site by a protrusion mechanism

    DEFF Research Database (Denmark)

    Stryhn, A; Pedersen, L O; Holm, A

    2000-01-01

    and C termini of a bound peptide interact through hydrogen bonding networks to conserved residues at either end of the class I binding site. Accordingly, it is thought that the termini are fixed and that only minor variations in peptide size are possible through a central bulging mechanism. We find...

  1. Selectivity of the surface binding site (SBS) on barley starch synthase I

    DEFF Research Database (Denmark)

    Wilkens, Casper; Cuesta-Seijo, Jose A.; Palcic, Monica

    2014-01-01

    Starch synthase I (SSI) from various sources has been shown to preferentially elongate branch chains of degree of polymerisation (DP) from 6–7 to produce chains of DP 8–12. In the recently determined crystal structure of barley starch synthase I (HvSSI) a so-called surface binding site (SBS) was ...

  2. Characterisation of the zebrafish serotonin transporter functionally links TM10 to the ligand binding site

    DEFF Research Database (Denmark)

    Severinsen, Kasper; Müller, Heidi Kaastrup; Wiborg, Ove

    2008-01-01

    and [(3)H]-escitalopram binding in transiently transfected human embryonic kidney cells; HEK-293-MSR. Residues responsible for altered affinities inhibitors were pinpointed by generating cross-species chimeras and subsequent point mutations by site directed mutagenesis. drSERT has a higher affinity...

  3. Substrate binding in the active site of cytochrome P450cam

    NARCIS (Netherlands)

    Swart, M.; Groenhof, A.R.; Ehlers, A.W.; Lammertsma, K.

    2005-01-01

    We have studied the binding of camphor in the active site of cytochrome P450cam with density functional theory (DFT) calculations. A strong hydrogen bond (>6 kcal/mol) to a tyrosine residue (Tyr96) is observed, that may account for the high specificity of the reaction taking place. The DFT

  4. Cholesterol-Binding Sites in GIRK Channels: The Devil is in the Details.

    Science.gov (United States)

    Rosenhouse-Dantsker, Avia

    2018-01-01

    In recent years, it has become evident that cholesterol plays a direct role in the modulation of a variety of ion channels. In most cases, cholesterol downregulates channel activity. In contrast, our earlier studies have demonstrated that atrial G protein inwardly rectifying potassium (GIRK) channels are upregulated by cholesterol. Recently, we have shown that hippocampal GIRK currents are also upregulated by cholesterol. A combined computational-experimental approach pointed to putative cholesterol-binding sites in the transmembrane domain of the GIRK2 channel, the primary subunit in hippocampal GIRK channels. In particular, the principal cholesterol-binding site was located in the center of the transmembrane domain in between the inner and outer α-helices of 2 adjacent subunits. Further studies pointed to a similar cholesterol-binding site in GIRK4, a major subunit in atrial GIRK channels. However, a close look at a sequence alignment of the transmembrane helices of the 2 channels reveals surprising differences among the residues that interact with the cholesterol molecule in these 2 channels. Here, we compare the residues that form putative cholesterol-binding sites in GIRK2 and GIRK4 and discuss the similarities and differences among them.

  5. A deeper look into transcription regulatory code by preferred pair distance templates for transcription factor binding sites

    KAUST Repository

    Kulakovskiy, Ivan V.; Belostotsky, A. A.; Kasianov, Artem S.; Esipova, Natalia G.; Medvedeva, Yulia; Eliseeva, Irina A.; Makeev, Vsevolod J.

    2011-01-01

    Motivation: Modern experimental methods provide substantial information on protein-DNA recognition. Studying arrangements of transcription factor binding sites (TFBSs) of interacting transcription factors (TFs) advances understanding

  6. Identification of a 3rd Na+ Binding Site of the Glycine Transporter, GlyT2.

    Directory of Open Access Journals (Sweden)

    Nandhitha Subramanian

    Full Text Available The Na+/Cl- dependent glycine transporters GlyT1 and GlyT2 regulate synaptic glycine concentrations. Glycine transport by GlyT2 is coupled to the co-transport of three Na+ ions, whereas transport by GlyT1 is coupled to the co-transport of only two Na+ ions. These differences in ion-flux coupling determine their respective concentrating capacities and have a direct bearing on their functional roles in synaptic transmission. The crystal structures of the closely related bacterial Na+-dependent leucine transporter, LeuTAa, and the Drosophila dopamine transporter, dDAT, have allowed prediction of two Na+ binding sites in GlyT2, but the physical location of the third Na+ site in GlyT2 is unknown. A bacterial betaine transporter, BetP, has also been crystallized and shows structural similarity to LeuTAa. Although betaine transport by BetP is coupled to the co-transport of two Na+ ions, the first Na+ site is not conserved between BetP and LeuTAa, the so called Na1' site. We hypothesized that the third Na+ binding site (Na3 site of GlyT2 corresponds to the BetP Na1' binding site. To identify the Na3 binding site of GlyT2, we performed molecular dynamics (MD simulations. Surprisingly, a Na+ placed at the location consistent with the Na1' site of BetP spontaneously dissociated from its initial location and bound instead to a novel Na3 site. Using a combination of MD simulations of a comparative model of GlyT2 together with an analysis of the functional properties of wild type and mutant GlyTs we have identified an electrostatically favorable novel third Na+ binding site in GlyT2 formed by Trp263 and Met276 in TM3, Ala481 in TM6 and Glu648 in TM10.

  7. Calcium ion binding to a soil fulvic acid using a Donnan Potential model

    International Nuclear Information System (INIS)

    Marinsky, J.A.

    1999-01-01

    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 x 10 -4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log β app ) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log β app =2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential correction term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log β=1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. (orig.)

  8. Influence of ligand binding on structure and thermostability of human alpha(1)-acid glycoprotein

    Czech Academy of Sciences Publication Activity Database

    Kopecký, V. Jr.; Ettrich, Rüdiger; Pazderka, T.; Hofbauerová, Kateřina; Řeha, David; Baumruk, V.

    2016-01-01

    Roč. 29, č. 2 (2016), s. 70-79 ISSN 0952-3499 Institutional support: RVO:61388971 Keywords : orosomucoid * binding site * Raman spectroscopy Subject RIV: CE - Biochemistry Impact factor: 2.175, year: 2016

  9. Screening lactic acid bacteria strains with ability to bind di-n-butyl phthalate via Turbiscan technique.

    Science.gov (United States)

    Lili, Zhao; Hongfei, Zhao; Shoukat, Sana; Xiaochen, Zhang; Bolin, Zhang

    2017-06-01

    Di-n-butyl phthalate (DBP) is a ubiquitous environmental contaminant that poses a risk to humans. Previous work indicates that the ability of lactic acid bacteria (LAB) to bind phthalic acid esters is strain-specific. As cell suspensions of LAB strains in aqueous solution are likely to be colloidal dispersions, this study provided a technique to efficiently screen LAB strains that bind DBP via Turbiscan, which has been widely used to measure the stability of emulsions or colloidal dispersions. Eleven LAB strains belonging to Lactobacillus plantarum, Lb. pentosus, Lb. paralimentarius, Lb. helveticus, Leuconostoc mesenteroides, Lb. acidophilus, Bifidobacterium lactis, and Bifidobacterium bifidum species were used in this study, and seven of them were selected to test in an earlier stage of exploring the process for finding a screening method; others were used for a validation test. It was observed that the various values of the 10 h Turbiscan Stability Index (TSI) of the cell suspension from each strain, at the equilibrium time of dispersed particles according to the peak thickness of cell-suspensions as measured by Turbiscan, had significant negative correlations with the DBP-binding percentage of LAB strains. Higher TSI values are correlated with lower binding of bacteria strains to DBP with a correlation coefficient of 0.8292. Cell surface hydrocarbons of LAB strains and their adherence were observed to correlate with DBP-binding percentages and may lead to the different states of aggregation or equilibrium of bacterial cell-suspensions, and the aggregation of bacterial cells resulted in fewer binding sites in the cell wall for DBP. Finally, four LAB strains were randomly selected to verify the feasibility of the method. In all, the findings demonstrate that TSI might be used as a tool to quickly screen strains that bind DBP. The present work could be extended to the removal of other toxic compounds, when screening of high-efficiency strains is required.

  10. BSSF: a fingerprint based ultrafast binding site similarity search and function analysis server

    Directory of Open Access Journals (Sweden)

    Jiang Hualiang

    2010-01-01

    Full Text Available Abstract Background Genome sequencing and post-genomics projects such as structural genomics are extending the frontier of the study of sequence-structure-function relationship of genes and their products. Although many sequence/structure-based methods have been devised with the aim of deciphering this delicate relationship, there still remain large gaps in this fundamental problem, which continuously drives researchers to develop novel methods to extract relevant information from sequences and structures and to infer the functions of newly identified genes by genomics technology. Results Here we present an ultrafast method, named BSSF(Binding Site Similarity & Function, which enables researchers to conduct similarity searches in a comprehensive three-dimensional binding site database extracted from PDB structures. This method utilizes a fingerprint representation of the binding site and a validated statistical Z-score function scheme to judge the similarity between the query and database items, even if their similarities are only constrained in a sub-pocket. This fingerprint based similarity measurement was also validated on a known binding site dataset by comparing with geometric hashing, which is a standard 3D similarity method. The comparison clearly demonstrated the utility of this ultrafast method. After conducting the database searching, the hit list is further analyzed to provide basic statistical information about the occurrences of Gene Ontology terms and Enzyme Commission numbers, which may benefit researchers by helping them to design further experiments to study the query proteins. Conclusions This ultrafast web-based system will not only help researchers interested in drug design and structural genomics to identify similar binding sites, but also assist them by providing further analysis of hit list from database searching.

  11. [3H]muscimol binding sites increased in autopsied brains of chronic schizophrenics

    International Nuclear Information System (INIS)

    Hanada, S.; Mita, T.; Nishino, N.; Tanaka, C.

    1987-01-01

    [ 3 H]muscimol binding and glutamic acid decarboxylase (GAD) activity in the prefrontal cortex and caudate nucleus of autopsied brains from 19 chronic schizophrenics and 17 control subjects were investigated. In the schizophrenics, saturation analysis with varying concentrations of [ 3 H]muscimol revealed an increase in the number GABA/sub A/ receptors, but there was no significant difference in the affinity. In addition, the enhancement of [ 3 H]muscimol binding by diazepam was significantly greater in schizophrenics than in controls. GAD activity did not differ between controls and schizophrenics. The possibility that GABAergic mechanisms might play a role in case of chronic schizophrenia should be given further attention

  12. Identification of cation-binding sites on actin that drive polymerization and modulate bending stiffness

    Science.gov (United States)

    Kang, Hyeran; Bradley, Michael J.; McCullough, Brannon R.; Pierre, Anaëlle; Grintsevich, Elena E.; Reisler, Emil; De La Cruz, Enrique M.

    2012-01-01

    The assembly of actin monomers into filaments and networks plays vital roles throughout eukaryotic biology, including intracellular transport, cell motility, cell division, determining cellular shape, and providing cells with mechanical strength. The regulation of actin assembly and modulation of filament mechanical properties are critical for proper actin function. It is well established that physiological salt concentrations promote actin assembly and alter the overall bending mechanics of assembled filaments and networks. However, the molecular origins of these salt-dependent effects, particularly if they involve nonspecific ionic strength effects or specific ion-binding interactions, are unknown. Here, we demonstrate that specific cation binding at two discrete sites situated between adjacent subunits along the long-pitch helix drive actin polymerization and determine the filament bending rigidity. We classify the two sites as “polymerization” and “stiffness” sites based on the effects that mutations at the sites have on salt-dependent filament assembly and bending mechanics, respectively. These results establish the existence and location of the cation-binding sites that confer salt dependence to the assembly and mechanics of actin filaments. PMID:23027950

  13. The conserved WW-domain binding sites in Dystroglycan C-terminus are essential but partially redundant for Dystroglycan function

    Directory of Open Access Journals (Sweden)

    Deng W-M

    2009-02-01

    Full Text Available Abstract Background Dystroglycan (Dg is a transmembrane protein that is a part of the Dystrophin Glycoprotein Complex (DGC which connects the extracellular matrix to the actin cytoskeleton. The C-terminal end of Dg contains a number of putative SH3, SH2 and WW domain binding sites. The most C-terminal PPXY motif has been established as a binding site for Dystrophin (Dys WW-domain. However, our previous studies indicate that both Dystroglycan PPXY motives, WWbsI and WWbsII can bind Dystrophin protein in vitro. Results We now find that both WW binding sites are important for maintaining full Dg function in the establishment of oocyte polarity in Drosophila. If either WW binding site is mutated, the Dg protein can still be active. However, simultaneous mutations in both WW binding sites abolish the Dg activities in both overexpression and loss-of-function oocyte polarity assays in vivo. Additionally, sequence comparisons of WW binding sites in 12 species of Drosophila, as well as in humans, reveal a high level of conservation. This preservation throughout evolution supports the idea that both WW binding sites are functionally required. Conclusion Based on the obtained results we propose that the presence of the two WW binding sites in Dystroglycan secures the essential interaction between Dg and Dys and might further provide additional regulation for the cytoskeletal interactions of this complex.

  14. Investigation of the metal binding site in methionine aminopeptidase by density functional theory

    DEFF Research Database (Denmark)

    Jørgensen, Anne Techau; Norrby, Per-Ola; Liljefors, Tommy

    2002-01-01

    All methionine aminopeptidases exhibit the same conserved metal binding site. The structure of this site with either Co2+ ions or Zn2+ ions was investigated using density functional theory. The calculations showed that the structure of the site was not influenced by the identity of the metal ions....... This was the case for both of the systems studied; one based on the X-ray structure of the human methionine aminopeptidase type 2 (hMetAP-2) and the other based on the X-ray structure of the E. coli methionine aminopeptidase type 1 (eMetAP-1). Another important structural issue is the identity of the bridging...

  15. pMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins.

    Directory of Open Access Journals (Sweden)

    Priyanka Prakash

    2015-10-01

    Full Text Available Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation.

  16. Probing the interaction of brain fatty acid binding protein (B-FABP with model membranes.

    Directory of Open Access Journals (Sweden)

    Fábio Dyszy

    Full Text Available Brain fatty acid-binding protein (B-FABP interacts with biological membranes and delivers polyunsaturated fatty acids (FAs via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called "portal region", formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that B-FABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs.

  17. Autoradiographic localization of (125I-Tyr4)bombesin-binding sites in rat brain

    International Nuclear Information System (INIS)

    Zarbin, M.A.; Kuhar, M.J.; O'Donohue, T.L.; Wolf, S.S.; Moody, T.W.

    1985-01-01

    The binding of ( 125 I-Tyr 4 )bombesin to rat brain slices was investigated. Radiolabeled (Tyr 4 )bombesin bound with high affinity (K/sub d/ . 4 nM) to a single class of sites (B/sub max/ . 130 fmol/mg of protein); the ratio of specific to nonspecific binding was 6/1. Also, pharmacology studies indicated that the C-terminal of bombesin was important for the high affinity binding activity. Autoradiographic studies indicated that the ( 125 I-Tyr4)bombesin-binding sites were discretely distributed in certain gray but not white matter regions of rat brain. Highest grain densities were present in the olfactory bulb and tubercle, nucleus accumbens, suprachiasmatic and periventricular nuclei of the hypothalamus, central medial thalamic nucleus, medial amygdaloid nucleus, hippocampus, dentate gyrus, subiculum, nucleus of the solitary tract, and substantia gelatinosa. Moderate grain densities were present in the parietal cortex, deep layers of the neocortex, rhinal cortex, caudate putamen, stria terminalis, locus ceruleus, parabrachial nucleus, and facial nucleus. Low grain densities were present in the globus pallidus, lateral thalamus, and midbrain. Negligible grain densities were present in the cerebellum, corpus callosum, and all regions treated with 1 microM unlabeled bombesin. The discrete regional distribution of binding suggests that endogenous bombesin-like peptides may function as important regulatory agents in certain brain loci

  18. Resistance to Linezolid Caused by Modifications at Its Binding Site on the Ribosome

    Science.gov (United States)

    Long, Katherine S.

    2012-01-01

    Linezolid is an oxazolidinone antibiotic in clinical use for the treatment of serious infections of resistant Gram-positive bacteria. It inhibits protein synthesis by binding to the peptidyl transferase center on the ribosome. Almost all known resistance mechanisms involve small alterations to the linezolid binding site, so this review will therefore focus on the various changes that can adversely affect drug binding and confer resistance. High-resolution structures of linezolid bound to the 50S ribosomal subunit show that it binds in a deep cleft that is surrounded by 23S rRNA nucleotides. Mutation of 23S rRNA has for some time been established as a linezolid resistance mechanism. Although ribosomal proteins L3 and L4 are located further away from the bound drug, mutations in specific regions of these proteins are increasingly being associated with linezolid resistance. However, very little evidence has been presented to confirm this. Furthermore, recent findings on the Cfr methyltransferase underscore the modification of 23S rRNA as a highly effective and transferable form of linezolid resistance. On a positive note, detailed knowledge of the linezolid binding site has facilitated the design of a new generation of oxazolidinones that show improved properties against the known resistance mechanisms. PMID:22143525