WorldWideScience

Sample records for acid bacterium lactococcus

  1. Complete Genome Sequence of Lactococcus lactis IO-1, a Lactic Acid Bacterium That Utilizes Xylose and Produces High Levels of l-Lactic Acid

    OpenAIRE

    Kato, Hiroaki; Shiwa, Yuh; Oshima, Kenshiro; Machii, Miki; Araya-Kojima, Tomoko; Zendo, Takeshi; Shimizu-Kadota, Mariko; Hattori, Masahira; Sonomoto, Kenji; Yoshikawa, Hirofumi

    2012-01-01

    We report the complete genome sequence of Lactococcus lactis IO-1 (= JCM7638). It is a nondairy lactic acid bacterium, produces nisin Z, ferments xylose, and produces predominantly l-lactic acid at high xylose concentrations. From ortholog analysis with other five L. lactis strains, IO-1 was identified as L. lactis subsp. lactis.

  2. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    In contrast to higher eukaryotes, bacteria are haploid, i.e. they store their genetic information in a single chromosome, which is then duplicated during the cell cycle. If the growth rate is sufficiently low, the bacterium is born with only a single copy of the chromosome, which gets duplicated...... before the bacterium divides. Fast-growing bacteria have overlapping rounds of replication, and can contain DNA corresponding to more than four genome equivalents. However, the terminus region of the chromosome is still present in just one copy after division, and is not duplicated until right before...... the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...

  3. Lactococcus piscium: a psychrotrophic lactic acid bacterium with bioprotective or spoilage activity in food-a review.

    Science.gov (United States)

    Saraoui, T; Leroi, F; Björkroth, J; Pilet, M F

    2016-10-01

    The genus Lactococcus comprises 12 species, some known for decades and others more recently described. Lactococcus piscium, isolated in 1990 from rainbow trout, is a psychrotrophic lactic acid bacterium, probably disregarded because most of the strains are unable to grow at 30°C. During the last 10 years, this species has been isolated from a large variety of food: meat, seafood and vegetables, mostly packed under vacuum (VP) or modified atmosphere (MAP) and stored at chilled temperature. Recently, culture-independent techniques used for characterization of microbial ecosystems have highlighted the importance of Lc. piscium in food. Its role in food spoilage varies according to the strain and the food matrix. However, most studies have indicated that Lc. piscium spoils meat, whereas it does not degrade the sensory properties of seafood. Lactococcus piscium strains have a large antimicrobial spectrum, including Gram-positive and negative bacteria. In various seafoods, some strains have a protective effect against spoilage and can extend the sensory shelf-life of the products. They can also inhibit the growth of Listeria monocytogenes, by a cell-to-cell contact-dependent. This article reviews the physiological and genomic characteristics of Lc. piscium and discusses its spoilage or protective activities in food.

  4. Physiological Adaptation of the Bacterium Lactococcus lactis in Response to the Production of Human CFTR*

    OpenAIRE

    A. Steen; Wiederhold, E.; T Gandhi; Breitling, R.; D. J. Slotboom

    2010-01-01

    Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lactis. The full-length protein was detected in the membrane of the bacterium, but the yields were too low (< 0.1% of membrane proteins) for in vitro functional and structural characterization, and indu...

  5. Transcriptional regulation of central amino acid metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Larsen, Rasmus

    2005-01-01

    This thesis describes the functional characterisation of the transcriptional regulators GlnR, ArgR and AhrC of Lactococcus lactis, which are responsible for the control of genes involved in the metabolism of the amino acids glutamine, glutamate and arginine. A chromosomal glnR deletion mutant was ma

  6. Physiological adaptation of the bacterium Lactococcus lactis in response to the production of human CFTR.

    Science.gov (United States)

    Steen, Anton; Wiederhold, Elena; Gandhi, Tejas; Breitling, Rainer; Slotboom, Dirk Jan

    2011-07-01

    Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lactis. The full-length protein was detected in the membrane of the bacterium, but the yields were too low (proteins) for in vitro functional and structural characterization, and induction of the expression of CFTR resulted in growth arrest. We used isobaric tagging for relative and absolute quantitation based quantitative proteomics to find out why production of CFTR in L. lactis was problematic. Protein abundances in membrane and soluble fractions were monitored as a function of induction time, both in CFTR expression cells and in control cells that did not express CFTR. Eight hundred and forty six proteins were identified and quantified (35% of the predicted proteome), including 163 integral membrane proteins. Expression of CFTR resulted in an increase in abundance of stress-related proteins (e.g. heat-shock and cell envelope stress), indicating the presence of misfolded proteins in the membrane. In contrast to the reported consequences of membrane protein overexpression in Escherichia coli, there were no indications that the membrane protein insertion machinery (Sec) became overloaded upon CFTR production in L. lactis. Nutrients and ATP became limiting in the control cells as the culture entered the late exponential and stationary growth phases but this did not happen in the CFTR expressing cells, which had stopped growing upon induction. The different stress responses elicited in E. coli and L. lactis upon membrane protein production indicate that different strategies are needed to overcome low expression yields and toxicity.

  7. Physiological Adaptation of the Bacterium Lactococcus lactis in Response to the Production of Human CFTR

    NARCIS (Netherlands)

    Steen, Anton; Wiederhold, Elena; Gandhi, Tejas; Breitling, Rainer; Slotboom, Dirk Jan

    2011-01-01

    Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lacti

  8. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis

    OpenAIRE

    Dong, Xiangrong; Tian, Bing; Dai, Shang; Li, Tao; Guo, Linna; Tan, Zhongfang; JIAO, Zhen; Jin, Qingsheng; Wang, Yanping; Hua, Yuejin

    2015-01-01

    PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expre...

  9. Characterization of Two New Glycosyl Hydrolases from the Lactic Acid Bacterium Carnobacterium piscicola Strain BA

    OpenAIRE

    Coombs, Jonna; Brenchley, Jean E.

    2001-01-01

    Three genes with homology to glycosyl hydrolases were detected on a DNA fragment cloned from a psychrophilic lactic acid bacterium isolate, Carnobacterium piscicola strain BA. A 2.2-kb region corresponding to an α-galactosidase gene, agaA, was followed by two genes in the same orientation, bgaB, encoding a 2-kb β-galactosidase, and bgaC, encoding a structurally distinct 1.76-kb β-galactosidase. This gene arrangement had not been observed in other lactic acid bacteria, including Lactococcus la...

  10. Dynamics of pyruvate metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Melchiorsen, Claus Rix; Jensen, Niels B.S.; Christensen, Bjarke;

    2001-01-01

    The pyruvate metabolism in the lactic acid bacterium Lactococcus lactis was studied in anaerobic cultures under transient conditions. During growth of L. lactis in continuous culture at high dilution rate, homolactic product formation was observed, i.e., lactate was produced as the major end prod...

  11. Resistance to antibiotics in Lacid acid bacteria - strain Lactococcus

    Directory of Open Access Journals (Sweden)

    Filipić Brankica

    2015-01-01

    Full Text Available Lactic acid bacteria (LAB are widely used in the food industry, especially in the production of fermented dairy products and meat. The most studied species among Lis Lactococcus lactis. L. lactis strains are of great importance in the production of fermented dairy products such as yogurt, butter, fresh cheese and some kind of semi-hard cheese. Although L. lactis acquired the „Generally Regarded As Safe“ (GRAS status, many investigations indicated that lactococci may act as reservoirs of antibiotic resistance genes, which could be transferred to other bacterial species in human gastrointestinal tract includ­ing pathogens. The genome analysis of L. lactis indicated the presence of at least 40 putative drug transporter genes, and only four multidrug resistance (MDR transporters are functionally characterized: LmrA, LmrP, LmrCD i CmbT. LmrA is the first described MDR transporter in prokaryotes. LmrCD is responsible for resistance to cholate, which is an integral part of human bile and LmrCD is important for intestinal survival of lactococci that are used as probiotics. Secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. CmbT protein has an effect on the host cell resistance to lincomycin, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametox­azole. Since the food chain is an important way of transmitting resistance genes in human and animal population, it is of great importance to study the mechanisms of resistance in lactococci and other LAB, intended for the food industry. [Projekat Ministarstva nauke Republike Srbije, br. 173019: Izučavanje gena i molekularnih mehanizama u osnovi probiotičke aktivnosti bakterija mlečne kiseline izolovanih sa područja Zapadnog Balkana

  12. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Xiangrong Dong

    Full Text Available PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production.

  13. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis.

    Science.gov (United States)

    Dong, Xiangrong; Tian, Bing; Dai, Shang; Li, Tao; Guo, Linna; Tan, Zhongfang; Jiao, Zhen; Jin, Qingsheng; Wang, Yanping; Hua, Yuejin

    2015-01-01

    PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah) by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production.

  14. Engineering of EPA/DHA omega-3 fatty acid production by Lactococcus lactis subsp. cremoris MG1363.

    Science.gov (United States)

    Amiri-Jami, Mitra; Lapointe, Gisele; Griffiths, Mansel W

    2014-04-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to be of major importance in human health. Therefore, these essential polyunsaturated fatty acids have received considerable attention in both human and farm animal nutrition. Currently, fish and fish oils are the main dietary sources of EPA/DHA. To generate sustainable novel sources for EPA and DHA, the 35-kb EPA/DHA synthesis gene cluster was isolated from a marine bacterium, Shewanella baltica MAC1. To streamline the introduction of the genes into food-grade microorganisms such as lactic acid bacteria, unnecessary genes located upstream and downstream of the EPA/DHA gene cluster were deleted. Recombinant Escherichia coli harboring the 20-kb gene cluster produced 3.5- to 6.1-fold more EPA than those carrying the 35-kb DNA fragment coding for EPA/DHA synthesis. The 20-kb EPA/DHA gene cluster was cloned into a modified broad-host-range low copy number vector, pIL252m (4.7 kb, Ery) and expressed in Lactococcus lactis subsp. cremoris MG1363. Recombinant L. lactis produced DHA (1.35 ± 0.5 mg g(-1) cell dry weight) and EPA (0.12 ± 0.04 mg g(-1) cell dry weight). This is believed to be the first successful cloning and expression of EPA/DHA synthesis gene cluster in lactic acid bacteria. Our findings advance the future use of EPA/DHA-producing lactic acid bacteria in such applications as dairy starters, silage adjuncts, and animal feed supplements. PMID:24389665

  15. Lactic acid production from a mixture of cultures of Lactococcus lactis and Streptococcus salivarius using batch fermentation

    Directory of Open Access Journals (Sweden)

    Liliana Serna Cock

    2006-12-01

    Full Text Available Production of lactic acid (LA, yield (Yp/s and substrate conversion (SC from Lactococcus lactis, Streptococcus salivarius and their mixtures were tested. Lactococcus lactis was selected from 20 homofermentative strains isolated from a sugar cane crop (variety CC85-92 and Streptococcus salivarius was isolated from a commercial lactic ferment. Batch fermentation experiments at 32 C with a glucose concentration of 60 gL-1 and a pH of 6,0 were carried out. A maximum of 47,63 gL-1 of lactic acid concentration, 95,4% of substrate conversion and 83 gg-1 were obtained from the mixture of strains after a fermentation of 48 h. Key words: sugar cane, Lactococcus lactis, Streptococcus salivarius, mixture of strains.

  16. Development, molecular characterization and exploitation of the nisin controlled expression system in Lactococcus lactis.

    NARCIS (Netherlands)

    Ruyter, de P.G.G.A.

    1998-01-01

    Lactic acid bacteria are gram-positive bacteria that are widely used in a variety of dairy fermentation processes. Notably, strains of the lactic acid starter bacterium Lactococcus lactis are of great economic importance because of their world-wide use in cheese making. The characteristic aroma, fla

  17. Genome Sequence of Lactococcus lactis subsp. lactis NCDO 2118, a GABA-Producing Strain

    DEFF Research Database (Denmark)

    Oliveira, Letícia C; Saraiva, Tessália D L; Soares, Siomar C;

    2014-01-01

    Lactococcus lactis subsp. lactis NCDO 2118 is a nondairy lactic acid bacterium, a xylose fermenter, and a gamma-aminobutyric acid (GABA) producer isolated from frozen peas. Here, we report the complete genome sequence of L. lactis NCDO 2118, a strain with probiotic potential activity....

  18. Physiological and molecular adaptations of Lactococcus lactis to near-zero growth conditions

    NARCIS (Netherlands)

    Ercan, O.

    2014-01-01

    Lactococcus lactis is an important lactic acid bacteria (LAB) species that is used for the manufacture of dairy products, such as cheese, buttermilk, and other fermented products. The predominant function of this bacterium in dairy fermentation is the production of lactic acid, as its major fermenta

  19. Characterization of the Lactococcus lactis lactose genes and regulation of their expression.

    NARCIS (Netherlands)

    Rooijen, van R.J.

    1993-01-01

    An important trait of the lactic acid bacterium Lactococcus lactis , that is used in industrial dairy fermentations, is the conversion of lactose into lactic acid. The enzymatic steps involved in the breakdown of lactose, that is transported into the cell via a phosphoenolpyruvate-dependent lactose

  20. Expression of a Heterologous Glutamate Dehydrogenase Gene in Lactococcus lactis Highly Improves the Conversion of Amino Acids to Aroma Compounds

    OpenAIRE

    Rijnen, Liesbeth; Courtin, Pascal; Gripon, Jean-Claude; Yvon, Mireille

    2000-01-01

    The first step of amino acid degradation in lactococci is a transamination, which requires an α-keto acid as the amino group acceptor. We have previously shown that the level of available α-keto acid in semihard cheese is the first limiting factor for conversion of amino acids to aroma compounds, since aroma formation is greatly enhanced by adding α-ketoglutarate to cheese curd. In this study we introduced a heterologous catabolic glutamate dehydrogenase (GDH) gene into Lactococcus lactis so ...

  1. Controlled Gene Expression Systems for Lactic Acid Bacteria : Transferable Nisin-Inducible Expression Cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp.

    NARCIS (Netherlands)

    Kleerebezem, Michiel; Beerthuyzen, Marke M.; Vaughan, Elaine E.; Vos, Willem M. de; Kuipers, Oscar P.

    1997-01-01

    A transferable dual-plasmid inducible gene expression system for use in lactic acid bacteria that is based on the autoregulatory properties of the antimicrobial peptide nisin produced by Lactococcus lactis was developed. Introduction of the two plasmids allowed nisin-inducible gene expression in Lac

  2. Antimicrobial activity against Xanthomonas albilineans and fermentation kinetics of a lactic acid bacterium isolated from the sugar cane crop

    Directory of Open Access Journals (Sweden)

    Liliana Serna-Cock

    2013-09-01

    Full Text Available Xanthomonas albilineans is a pathogen that causes leaf scald disease in sugarcane (Saccharum officinarum L. This disease causes the death of seedlings and consequently results in economic losses for sugarcane growers. The objective of this work was to isolate a lactic acid bacterium with antimicrobial activity against X. albilineans from sugarcane crops and to evaluate its antimicrobial activity and its lactic acid production kinetics, biomass yield, and substrate consumption in three different fermentation substrates. To isolate the lactic acid bacterium, samples were collected from different parts of infected and non-infected sugarcane plants of var. CC85-92. Lactococcus lactis ssp. lactis was isolated from the leaves of healthy crops, and showed in vitro antimicrobial activity against the pathogen. Batch fermentations of this isolate (at 32 °C, agitation of 100 rpm, and pH 6 were performed using a commercial substrate (MRS, a commercial substrate supplemented with glucose (MRSG, and a substrate produced from agricultural crop residues (ACR. The highest antimicrobial activity was 5.83 mm in the ACR substrate after 6 h of fermentation. The maximum biomass production of 3.37 g L-1 and the maximum lactic acid production of 12.1 g L-1 were obtained in the MRSG substrate. The lactic acid production did not show any significant differences between the substrates. This lactic acid bacterium showed antimicrobial activity against X. albilineans and is thus a biological alternative for the control of leaf scald disease in sugarcane.

  3. Microbial domestication signatures of Lactococcus lactis can be reproduced by experimental evolution

    NARCIS (Netherlands)

    Bachmann, H.; Starrenburg, M.J.C.; Molenaar, D.; Kleerebezem, M.; Hylckama Vlieg, van J.E.T.

    2012-01-01

    Experimental evolution is a powerful approach to unravel how selective forces shape microbial genotypes and phenotypes. To this date, the available examples focus on the adaptation to conditions specific to the laboratory. The lactic acid bacterium Lactococcus lactis naturally occurs on plants and i

  4. Sec-mediated secretion of bacteriocin enterocin P by Lactococcus lactis

    NARCIS (Netherlands)

    Herranz, C; Driessen, AJM

    2005-01-01

    Most lactic acid bacterium bacteriocins utilize specific leader peptides and dedicated machineries for secretion. In contrast, the enterococcal bacteriocin enterocin P (EntP) contains a typical signal peptide that directs its secretion when heterologously expressed in Lactococcus lactis. Signal pept

  5. Relationships between MDR proteins, bacteriocin production and proteolysis in Lactococcus lactis

    NARCIS (Netherlands)

    Gajic, Olivera

    2003-01-01

    The Gram-positive lactic acid bacterium Lactococcus lactis can harbour a wide variety of circular extrachromosomal DNA molecules, so-called plasmids. Many of the traits that make them useful for manufacturing of fermented food products (e.g. bacteriophage resistance, bacteriocin and proteinase produ

  6. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44

    Science.gov (United States)

    Zhang, Jian; Caiyin, Qinggele; Feng, Wenjing; Zhao, Xiuli; Qiao, Bin; Zhao, Guangrong; Qiao, Jianjun

    2016-01-01

    Traditionally, nisin was produced industrially by using Lactococcus lactis in the neutral fermentation process. However, nisin showed higher activity in the acidic environment. How to balance the pH value for bacterial normal growth and nisin activity might be the key problem. In this study, 17 acid-tolerant genes and 6 lactic acid synthetic genes were introduced in L. lactis F44, respectively. Comparing to the 2810 IU/mL nisin yield of the original strain F44, the nisin titer of the engineered strains over-expressing hdeAB, ldh and murG, increased to 3850, 3979 and 4377 IU/mL, respectively. These engineered strains showed more stable intracellular pH value during the fermentation process. Improvement of lactate production could partly provide the extra energy for the expression of acid tolerance genes during growth. Co-overexpression of hdeAB, murG, and ldh(Z) in strain F44 resulted in the nisin titer of 4913 IU/mL. The engineered strain (ABGL) could grow on plates with pH 4.2, comparing to the surviving pH 4.6 of strain F44. The fed-batch fermentation showed nisin titer of the co-expression L. lactis strain could reach 5563 IU/mL with lower pH condition and longer cultivation time. This work provides a novel strategy of constructing robust strains for use in industry process. PMID:27306587

  7. Use of Lactococcus lactis to enrich sourdough bread with γ-aminobutyric acid.

    Science.gov (United States)

    Bhanwar, Seema; Bamnia, Meenakshi; Ghosh, Moushumi; Ganguli, Abhijit

    2013-02-01

    Fried sourdough bread (bhatura) with an elevated amount of γ-aminobutyric acid (GABA) was produced using lactic acid bacteria (LAB). The LAB starter was screened and isolated from pickled yam showing highest GABA content and was identified as Lactococcus lactis subsp. lactis. The maximum GABA production in de Man Rogosa Sharpe (MRS) media supplemented with monosodium glutamate (MSG) was 110 mg/100 ml at pH 5, and 1-3% NaCl did not change the production of GABA significantly (p>0.05). When MSG was replaced with Vigna mungo in sourdough, the amount of GABA for bhatura was 226.22 mg/100 g representing about 10-fold increase. A sensory evaluation resulted as the overall general acceptability of bhatura to be 4.91 ± 0.03 on a five-point hedonic scale. Thus, the results indicated the potential of L. lactis as a LAB starter for the production of GABA-enriched bhatura. Although other physiological effects can be expected in the product, animal and clinical studies are mandatory prior to application of this food.

  8. The riboflavin transporter RibU in Lactococcus lactis : Molecular characterization of gene expression and the transport mechanism

    NARCIS (Netherlands)

    Burgess, CM; Slotboom, DJ; Geertsma, ER; Duurkens, Hinderika; Poolman, B; van Sinderen, D

    2006-01-01

    This study describes the characterization of the riboflavin transport protein RibU in the lactic acid bacterium Lactococcus lactis subsp. cremoris NZ9000. RibU is predicted to contain five membrane-spanning segments and is a member of a novel transport protein family, not described in the Transport

  9. Cold shock of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins

    NARCIS (Netherlands)

    Wouters, J.A.; Frenkiel, H.; Vos, de W.M.; Kuipers, O.P.; Abee, T.

    2001-01-01

    Members of the group of 7-kDa cold-shock proteins (CSPs) are the proteins with the highest level of induction upon cold shock in the lactic acid bacterium Lactococcus lactis MG1363. By using double-crossover recombination, two L. lactis strains were generated in which genes encoding CSPs are disrupt

  10. Characterization of the Lactococcus lactis lactose genes and regulation of their expression.

    OpenAIRE

    Rooijen, van, J.

    1993-01-01

    An important trait of the lactic acid bacterium Lactococcus lactis , that is used in industrial dairy fermentations, is the conversion of lactose into lactic acid. The enzymatic steps involved in the breakdown of lactose, that is transported into the cell via a phosphoenolpyruvate-dependent lactose phosphotransferase system (PEP-PTS lac), have been well established (Fig. 1). However, except for the molecular cloning and characterization of the plasmid-located phospho-B-galactosidase gene (Boi...

  11. Development, molecular characterization and exploitation of the nisin controlled expression system in Lactococcus lactis.

    OpenAIRE

    Ruyter, de, D.J.

    1998-01-01

    Lactic acid bacteria are gram-positive bacteria that are widely used in a variety of dairy fermentation processes. Notably, strains of the lactic acid starter bacterium Lactococcus lactis are of great economic importance because of their world-wide use in cheese making. The characteristic aroma, flavor and texture of cheese develops during ripening of the cheese curd through the action of numerous enzymes derived from the cheese milk, the coagulant, and the starter and non-starter bacteria. R...

  12. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a re

  13. Cold Shock Proteins of Lactococcus lactis MG1363 Are Involved in Cryoprotection and in the Production of Cold-Induced Proteins

    NARCIS (Netherlands)

    Wouters, Jeroen A.; Frenkiel, Hélène; Vos, Willem M. de; Kuipers, Oscar P.; Abee, Tjakko

    2001-01-01

    Members of the group of 7-kDa cold-shock proteins (CSPs) are the proteins with the highest level of induction upon cold shock in the lactic acid bacterium Lactococcus lactis MG1363. By using double-crossover recombination, two L. lactis strains were generated in which genes encoding CSPs are disrupt

  14. Use of non-growing Lactococcus lactis cell suspensions for production of volatile metabolites with direct relevance for flavour formation during dairy fermentations

    NARCIS (Netherlands)

    Bunt, van de B.; Bron, P.A.; Sijtsma, L.; Vos, de W.M.; Hugenholtz, J.

    2014-01-01

    Background Lactococcus lactis is a lactic acid bacterium that has been used for centuries in the production of a variety of cheeses, as these bacteria rapidly acidify milk and greatly contribute to the flavour of the fermentation end-products. After a short growth phase during cheese ripening L. lac

  15. Novel Antibacterial Activity of Lactococcus Lactis Subspecies Lactis Z11 Isolated from Zabady

    OpenAIRE

    Enan, Gamal; Abdel-Shafi, Seham; Ouda, Sahar; Negm, Sally

    2013-01-01

    The purpose of this study was to select and characterize a probiotic bacterium with distinctive antimicrobial activities. In this respect, Lactococcus lactis subspecies lactis Z11 (L. lactis Z11) isolated from Zabady (Arabian yoghurt) inhibited other strains of lactic acid bacteria and some food-born pathogens including Listeria monocytogenes, Bacillus cereus and staphylococcus aureus. The inhibitory activity of cell free supernatant (CFS) of L. lactis Z11 isolated from zabady was lost by pro...

  16. The simultaneous biosynthesis and uptake of amino acids by Lactococcus lactis studied by C-13-labeling experiments

    DEFF Research Database (Denmark)

    Jensen, N.B.S.; Christensen, B.; Nielsen, Jette;

    2002-01-01

    Uniformly C-13 labeled glucose was fed to a lactic acid bacterium growing on a defined medium supplemented with all proteinogenic amino acids except glutamate. Aspartate stemming from the protein pool and from the extracellular medium was enriched with C-13 disclosing a substantial de novo biosyn...... biosynthesis of this amino acid simultaneous to its uptake from the growth medium and a rapid exchange flux of aspartate over the cellular membrane. Phenylalanine, alanine, and threonine were also synthesized de novo in spite of their presence in the growth medium....

  17. Intranasal Immunization with Recombinant Lactococcus lactis Secreting Murine Interleukin-12 Enhances Antigen-Specific Th1 Cytokine Production

    OpenAIRE

    Bermudez Humaran, Luis; Langella, Philippe; Cortes-Perez, Naima; Gruss, Alexandra; Tamez-Guerra, Reyes S; Oliveira, Sergio C.; Saucedo-Cardenas, Odila; Montes de Oca-Luna, Roberto; Le Loir, Yves

    2003-01-01

    Interleukin-12 (IL-12), a heterodimeric cytokine, plays an important role in cellular immunity to several bacterial, viral, and parasitic infections and has adjuvant activity when it is codelivered with DNA vaccines. IL-12 has also been used with success in cancer immunotherapy treatments. However, systemic IL-12 therapy has been limited by high levels of toxicity. We describe here inducible expression and secretion of IL-12 in the food-grade lactic acid bacterium Lactococcus lactis. IL-12 wa...

  18. L+-lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84.

    Science.gov (United States)

    Petrov, Kaloyan; Urshev, Zoltan; Petrova, Penka

    2008-06-01

    A new Lactococcus lactis subsp. lactis B84, capable of utilizing starch as a sole carbon source and producing L(+)-lactate, was isolated from spontaneously fermented rye sourdough. Aiming at maximum lactic acid productivity, the components of the media and the cultivation conditions were varied. In MRS-starch medium (with absence of yeast and meat extracts), at 33 degrees C, agitation 200 rpm and pH 6.0 for 6 days complete starch hydrolysis occurred and 5.5 gl(-1) lactic acid were produced from 18 gl(-1) starch. The identification of strain B84 was based on genetic criteria. Amplified ribosomal DNA restriction analysis (ARDRA), PCR with species-specific primers and sequencing of the 16S rDNA proved its species affiliation. Four genes for enzymes, involved in starch degradation were detected in B84 genome: amyL, amyY, glgP and apu, coding cytoplasmic and extracellular alpha-amylases, glycogen phosphorylase and amylopullulanase, respectively. Reverse transcription PCR experiments showed that both genes, encoding alpha-amylases (amyL and amyY) were expressed into mRNAs, whereas apu and glgP were not. Amylase activity assay was performed at different pH and temperatures. The cell-bond amylase proved to be the key enzyme, involved in the starch hydrolysis with maximum activity at 45 degrees C and pH 5.4.

  19. Heterologous expression of Lactobacillus casei RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress.

    Science.gov (United States)

    Wu, Chongde; Zhang, Juan; Du, Guocheng; Chen, Jian

    2013-09-01

    The aim of this study was to investigate the effect of nisin-inducible RecO expression on the stress tolerance of Lactococcus lactis NZ9000. RecO protein from Lactobacillus casei Zhang was introduced into Lactococcus lactis NZ9000 by using a nisin-inducible expression system. The recombinant strain (NZ-RecO) exhibited higher growth performances and survival rate compared with the control strain (NZ-Vector) under stress conditions. In addition, the NZ-RecO strain exhibited 1.37-, 1.41-, and 1.42-fold higher biomass, lactate production, lactate productivity, compared with the corresponding values for NZ-Vector during NaCl-stressed condition. Analysis of lactate dehydrogenase (LDH) activity showed that the production of RecO maintained the stability of LDH during salt stress. These results suggest that overproduction of RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress. Results presented in this study may help to enhance the industrial utility of lactic acid bacteria. PMID:23796607

  20. Increased biomass yield of Lactococcus lactis by reduced overconsumption of amino acids and increased catalytic activities of enzymes.

    Directory of Open Access Journals (Sweden)

    Kaarel Adamberg

    Full Text Available Steady state cultivation and multidimensional data analysis (metabolic fluxes, absolute proteome, and transcriptome are used to identify parameters that control the increase in biomass yield of Lactococcus lactis from 0.10 to 0.12 C-mol C-mol(-1 with an increase in specific growth rate by 5 times from 0.1 to 0.5 h(-1. Reorganization of amino acid consumption was expressed by the inactivation of the arginine deiminase pathway at a specific growth rate of 0.35 h(-1 followed by reduced over-consumption of pyruvate directed amino acids (asparagine, serine, threonine, alanine and cysteine until almost all consumed amino acids were used only for protein synthesis at maximal specific growth rate. This balanced growth was characterized by a high glycolytic flux carrying up to 87% of the carbon flow and only amino acids that relate to nucleotide synthesis (glutamine, serine and asparagine were consumed in higher amounts than required for cellular protein synthesis. Changes in the proteome were minor (mainly increase in the translation apparatus. Instead, the apparent catalytic activities of enzymes and ribosomes increased by 3.5 times (0.1 vs 0.5 h(-1. The apparent catalytic activities of glycolytic enzymes and ribosomal proteins were seen to follow this regulation pattern while those of enzymes involved in nucleotide metabolism increased more than the specific growth rate (over 5.5 times. Nucleotide synthesis formed the most abundant biomonomer synthetic pathway in the cells with an expenditure of 6% from the total ATP required for biosynthesis. Due to the increase in apparent catalytic activity, ribosome translation was more efficient at higher growth rates as evidenced by a decrease of protein to mRNA ratios. All these effects resulted in a 30% decrease of calculated ATP spilling (0.1 vs 0.5 h(-1. Our results show that bioprocesses can be made more efficient (using a balanced metabolism by varying the growth conditions.

  1. Strains of Lactococcus lactis with a partial pyrimidine requirement show sensitivity toward aspartic acid

    DEFF Research Database (Denmark)

    Wadskov-Hansen, Steen Lyders Lerche; Martinussen, Jan

    2009-01-01

    that the partial pyrimidine requirement can be explained by a low specific activity of the pyrimidine biosynthetic enzymes. In conclusion, L. lactis LM0230 during the process of plasmid- and prophage-curing has acquired a partial pyrimidine requirement resulting in sensitivity toward aspartic acid....

  2. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Mun Su [University of Florida, Gainesville; Moritz, Brelan E. [University of Florida, Gainesville; Xie, Gary [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Patel, Milind [University of Florida, Gainesville; Ou, Mark [University of Florida, Gainesville; Harbrucker, Roberta [University of Florida, Gainesville; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  3. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  4. Effect of alginic acid decomposing bacterium on the growth of Laminaria japonica (Phaeophyceae)

    Institute of Scientific and Technical Information of China (English)

    WANG You; TANG Xue-xi; YANG Zhen; YU Zhi-ming

    2006-01-01

    We collected the diseased blades of Laminaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identified as Alteromonas espejiana. This bacterium was applied as the causative pathogen to infect the blades of L. japonica under laboratory conditions. The aim of the present study was to identify the effects of the bacterium on the growth of L. japonica, and to find the possibly effective mechanism. Results showed that: (1)The blades of L.japonica exhibited symptoms of lesion,bleaching and deterioration when infected by the bacterium,and their growth and photosynthesis were dramatically suppressed. At the same time, the reactive oxygen species (ROS) generation enhanced obviously, and the relative membrane permeability increased significantly. The contents of malonaldehyde (MDA) and free fatty acid in the microsomol membrane greatly elevated, but the phospholipid content decreased. Result suggested an obvious peroxidation and deesterrification in the blades of L. japonica when infected by the bacterium. (2) The simultaneous assay on the antioxidant enzyme activities demonstrated that superoxide dismutase (SOD) and catalase (CAT) increased greatly when infected by the bacterium, but glutathione peroxidase (Gpx) and ascorbate peroxidase (APX) did not exhibit active responses to the bacterium throughout the experiment. (3) The histomorphological observations gave a distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population on the blades after infection. The bacterium firstly invaded into the endodermis of L. japonica and gathered around there, and then resulted in the membrane damage, cells corruption and ultimately, the death of L.japonica.

  5. Removal of corper(II) Ions from aqueous solution by a lactic acid bacterium

    OpenAIRE

    M. Yilmaz(Department of Physics, Gazi University, Ankara); T. Tay; M. Kivanc; H. Turk

    2010-01-01

    Enterococcus faecium, a lactic acid bacterium (LAB), was evaluated for its ability to remove copper(II) ions from water. The effects of the pH, contact time, initial concentration of copper(II) ions, and temperature on the biosorption rate and capacity were studied. The initial concentrations of copper(II) ions used to determine the maximum amount of biosorbed copper(II) ions onto lyophilised lactic acid bacterium varied from 25 mg L-1 to 500 mg L-1. Maximum biosorption capacities were attain...

  6. Two New Cholic Acid Derivatives from the Marine Ascidian-Associated Bacterium Hasllibacter halocynthiae

    Directory of Open Access Journals (Sweden)

    Sung Hun Kim

    2012-10-01

    Full Text Available The investigation of secondary metabolites in liquid cultures of a recently discovered marine bacterium, Hasllibacter halocynthiae strain KME 002T, led to the isolation of two new cholic acid derivatives. The structures of these compounds were determined to be 3,3,12-trihydroxy-7-ketocholanic acid (1 and 3,3,12-trihydroxy-7-deoxycholanic acid (2 through HRFABMS and NMR data analyses.

  7. Elucidating Flux Regulation of the Fermentation Modes of Lactococcus lactis

    DEFF Research Database (Denmark)

    Chan, Siu Hung Joshua

    The long history of application to the dairy industry has established Lactococcus lactis (L. lactis), the lactic acid bacterium, as one of the most extensively characterized low GC organisms. The relatively simple metabolism of L. lactis has also made it an attractive target for metabolic...... engineering for the production of non-food related chemicals. Moreover, the status of being the first genetically modified organism to deliver immunoproteins alive to human has brought L. lactis considerable fame in biomedical research. Beside the exceptional industrial relevance of L. lactis, it is also...... an important subject for basic research in cellular metabolism because L. lactis exhibits an interesting metabolic shift. Under anaerobic conditions, on fast fermentable sugars, L. lactis produces lactate as the primary product, known as homolactic fermentation but on slowly fermentable sugars, significant...

  8. Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium

    OpenAIRE

    Baena, S.; Fardeau, Marie-Laure; Ollivier, Bernard; Labat, Marc; Thomas, P; Garcia, Jean-Louis; Patel, B.K.C.

    1999-01-01

    A novel, asaccharolytic, amino-acid-degrading bacterium, designated strain GLU-3T, was isolated from an anaerobic lagoon of a dairy wastewater treatment plant. Strain GLU-3T stained Gram-negative and was an obligately anaerobic, non-spore-forming, slightly curved, rod-shaped bacterium (0.3 x 4.0-6.0 micrometers) which existed singly or in pairs. The DNA G+C content was 43 mol%. Optimum growth occurred at 35°C and pH 7.5 on arginine, histidine, threonine and glycine. Acetate was the end-produc...

  9. Multidrug transporters and antibiotic resistance in Lactococcus lactis

    NARCIS (Netherlands)

    Poelarends, GJ; Mazurkiewicz, P; Konings, WN

    2002-01-01

    The Gram-positive bacterium Lactococcus lactis produces two distinct multidrug transporters, designated LmrA and LmrP, that both confer resistance to a wide variety of cationic lipophilic cytotoxic compounds as well as to many clinically relevant antibiotics. While LmrP is a proton/drug antiporter t

  10. Increased production of folate by metabolic engineering of Lactococcus lactis

    NARCIS (Netherlands)

    Sybesma, W.F.H.; Starrenburg, M.; Kleerebezem, M.; Mierau, I.; Vos, de W.M.; Hugenholtz, J.

    2003-01-01

    The dairy starter bacterium Lactococcus lactis is able to synthesize folate and accumulates large amounts of folate, predominantly in the polyglutamyl form. Only small amounts of the produced folate are released in the extracellular medium. Five genes involved in folate biosynthesis were identified

  11. Isolation from swine feces of a bacterium which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol).

    OpenAIRE

    L. A. Ward; Johnson, K A; Robinson, I.M.; Yokoyama, M T

    1987-01-01

    An obligate anaerobe has been isolated from swine feces which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol). The bacterium was an ovoid rod, gram positive, nonsporeforming, and nonmotile. Lactate and acetate were major end products of glucose fermentation. Based on its characteristics, the bacterium is tentatively assigned to the genus Lactobacillus.

  12. EXPRESSION OF A CHITINASE GENE FROM SERRATIA-MARCESCENS IN LACTOCOCCUS-LACTIS AND LACTOBACILLUS-PLANTARUM

    NARCIS (Netherlands)

    BRURBERG, MB; HAANDRIKMAN, AJ; LEENHOUTS, KJ; VENEMA, G; NES, IF

    1994-01-01

    A chitinase gene from the Gram-negative bacterium Serratia marcescens BJL200 was cloned in Lactococcus lactis subsp. lactis MG1363 and in the silage inoculum strain Lactobacillus plantarum E19b. The chitinase gene was expressed as an active enzyme at a low level in Lactococcus lactis, when cloned in

  13. A Highly Stable d-Amino Acid Oxidase of the Thermophilic Bacterium Rubrobacter xylanophilus

    OpenAIRE

    Takahashi, Shouji; Furukawara, Makoto; Omae, Keishi; Tadokoro, Namiho; Saito, Yayoi; Abe, Katsumasa; Kera, Yoshio

    2014-01-01

    d-Amino acid oxidase (DAO) is a biotechnologically attractive enzyme that can be used in a variety of applications, but its utility is limited by its relatively poor stability. A search of a bacterial genome database revealed a gene encoding a protein homologous to DAO in the thermophilic bacterium Rubrobacter xylanophilus (RxDAO). The recombinant protein expressed in Escherichia coli was a monomeric protein containing noncovalently bound flavin adenine dinucleotide as a cofactor. This protei...

  14. Programmed cell death in Laminaria japonica (Phaeophyta) tissues infected with alginic acid decomposing bacterium

    Institute of Scientific and Technical Information of China (English)

    WANG Gaoge; LIN Wei; ZHANG Lijing; YAN Xiaojun; DUAN Delin

    2004-01-01

    TdT-mediated dUTP-biotin nick end labeling (TUNEL) is a sensitive and valid method for detecting DNA cleavage in programmed cell death (PCD). Using this method, DNA cleavage was observed in Laminaria japonica sporophytic tissues, which were infected with alginic acid decomposing bacterium. It was found that DNA cleavage occurred 5 min after the infection, the fragments with 3′-OH groups of cleaved nuclear DNA increased with time of infection and spread from the infection site. Although no typical DNA ladder (200 bp/180 bp) was detected by routine agarose gel electrophoresis, the cleavage of nuclear DNA fragments of 97~48.5 kb could be detected by pulsed field gel electrophoresis (PFGE). By using CaspGLOWTM fluorescein active caspase-3 staining method, caspase-3 activity has been detected in response to the infection of alginic acid decomposing bacterium. Our results are similar to the observations in hypersensitive response (HR) of higher plant, suggesting that the rapid cell death of L. Japonica infected by alginic acid decomposing bacterium might be involved in PCD, and indicating that the occurrence of PCD is an active defense process against the pathogen's infection.

  15. CHARACTERIZATION OF LACTOCOCCUS STRAINS AND THEIR USING IN DAIRY TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Gabriel Greif

    2012-02-01

    Full Text Available Lactococcus lactis species is one of the most important groups of lactic acid bacteria that are used in the dairy industry. Lactococci are generally found on plants and the skins of animals. Special interest is placed on the study of Lactococcus lactis ssp. lactis and Lactococcus lactis ssp. cremoris, as they are the strains used as starter cultures in industrial dairy fermentation. The major functions of this species in dairy fermentation are the production of lactic acid, formation of flavour and aroma compounds, development of ripened cheese texture and antimicrobial activity against spoilage bacteria and moulds.doi:10.5219/162

  16. Heterologous production of human papillomavirus type-16 L1 protein by a lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    Bermúdez-Humarán Luis G

    2009-08-01

    Full Text Available Abstract Background The expression of vaccine antigens in lactic acid bacteria (LAB is a safe and cost-effective alternative to traditional expression systems. In this study, we investigated i the expression of Human papillomavirus type 16 (HPV-16 L1 major capsid protein in the model LAB Lactococcus lactis and ii the ability of the resulting recombinant strain to produce either capsomer-or virus-like particles (VLPs. Results and conclusion HPV-16 L1 gene was cloned into two vectors, pCYT and pSEC, designed for controlled intra- or extracellular heterologous expression in L. lactis, respectively. The capacity of L. lactis harboring either pCYT:L1 or pSEC:L1 plasmid to accumulate L1 in the cytoplasm and supernatant samples was confirmed by Western blot assays. Electron microscopy analysis suggests that, L1 protein produced by recombinant lactococci can self-assemble into structures morphologically similar to VLPs intracellularly. The presence of conformational epitopes on the L. lactis-derived VLPs was confirmed by ELISA using an anti-HPV16 L1 capsid antigen antibody. Our results support the feasibility of using recombinant food-grade LAB, such as L. lactis, for the production of L1-based VLPs and open the possibility for the development of a new safe mucosal vector for HPV-16 prophylactic vaccination.

  17. Evaluation of Biosynthetic Pathways of 2Н- and 13С-Labeled Amino Acids by an Obligate Methylotrophic Bacterium Methylobacillus Flagellatum and a Facultative Methylotrophic Bacterium Brevibacterium Methylicum

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2016-06-01

    Full Text Available By the method of electron impact mass-spectrometry was studied the pathways of biosynthesis of 2H, 13C-labeled amino acids of a facultative methylotrophic bacterium Brevibacterium methylicum and an obligate methylotrophic bacterium Methylobacillus flagellatum obtained on growth media containing as a source of stable isotopes [2H]methanol, [13C]methanol and 2H2O. For mass-spectrometric analysis the multicomponential mixtures of 2H- and 13C-labeled amino acids, derived from cultural media and protein hydrolysates after hydrolysis in 6 M 2HСl (3 % phenol and 2 M Ва(OH2 were modified into N-benzyloxycarbonyl-derivatives of amino acids as well as into methyl esters of N-5-(dimethylaminonaphthalene-1-sulfonyl chloride (dansyl derivatives of [2H, 13С]amino acids, which were preparative separated using a method of reverse-phase HCLP. Biosynthetically obtained 2H- and 13C-labeled amino acids represented the mixtures differing in quantities of isotopes incorporated into molecule. The levels of 2H and 13С enrichment of secreted amino acids and amino acid resigues of protein were found to vary from 20,0 atom % to L-leucine/isoleucine up to 97,5 atom % for L-alanine depending on concentration of 2H- and 13C-labelled substrates.

  18. Uncoupling effect of fatty acids in halo- and alkalotolerant bacterium Bacillus pseudofirmus FTU.

    Science.gov (United States)

    Popova, I V; Bodrova, M E; Mokhova, E N; Muntyan, M S

    2004-10-01

    Natural uncouplers of oxidative phosphorylation, long-chain non-esterified fatty acids, cause uncoupling in the alkalo- and halotolerant bacterium Bacillus pseudofirmus FTU. The uncoupling effect in the bacterial cells was manifested as decrease of membrane potential and increase of respiratory activity. The membrane potential decrease was detected only in bacterial cells exhausted by their endogenous substrates. In proteoliposomes containing reconstituted bacterial cytochrome c oxidase, fatty acids caused a "mild" uncoupling effect by reducing membrane potential only at low rate of membrane potential generation. "Free respiration" induced by the "mild" uncouplers, the fatty acids, can be considered as possible mechanism responsible for adaptation of the bacteria to a constantly changed environment. PMID:15527418

  19. Increased D-alanylation of lipoteichoic acid and a thickened septum are main determinants in the nisin resistance mechanism of Lactococcus lactis.

    Science.gov (United States)

    Kramer, Naomi E; Hasper, Hester E; van den Bogaard, Patrick T C; Morath, Siegfried; de Kruijff, Ben; Hartung, Thomas; Smid, Eddy J; Breukink, Eefjan; Kok, Jan; Kuipers, Oscar P

    2008-06-01

    Nisin is a post-translationally modified antimicrobial peptide produced by Lactococcus lactis which binds to lipid II in the membrane to form pores and inhibit cell-wall synthesis. A nisin-resistant (Nis(R)) strain of L. lactis, which is able to grow at a 75-fold higher nisin concentration than its parent strain, was investigated with respect to changes in the cell wall. Direct binding studies demonstrated that less nisin was able to bind to lipid II in the membranes of L. lactis Nis(R) than in the parent strain. In contrast to vancomycin binding, which showed ring-like binding, nisin was observed to bind in patches close to cell-division sites in both the wild-type and the Nis(R) strains. Comparison of modifications in lipoteichoic acid of the L. lactis strains revealed an increase in d-alanyl esters and galactose as substituents in L. lactis Nis(R), resulting in a less negatively charged cell wall. Moreover, the cell wall displays significantly increased thickness at the septum. These results indicate that shielding the membrane and thus the lipid II molecule, thereby decreasing abduction of lipid II and subsequent pore-formation, is a major defence mechanism of L. lactis against nisin. PMID:18524930

  20. Isolation and characterization of Halomonas sp strain IMPC, a p-coumaric acid-metabolizing bacterium that decarboxylates other cinnamic acids under hypersaline conditions

    OpenAIRE

    Abdelkafi, Slim; Labat, Marc; Casalot, Laurence; Chamkha, M.; Sayadi, S.

    2006-01-01

    A moderately halophilic, mesophilic, Gram-negative, motile, nonsporulating bacterium, designated strain IMPC, was isolated from a table-olive fermentation rich in aromatic compounds, after enrichment on p-coumaric acid under halophilic conditions. Strain IMPC was able to degrade p-coumaric acid. p-hydroxybenzaldehyde and p-hydroxybenzoic acid were detected as breakdown products from p-coumaric acid. Protocatechuic acid was identified as the final aromatic product of p-coumaric acid catabolism...

  1. Sugar Utilization and Acid Production by Free and Entrapped Cells of Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Lactococcus lactis subsp. lactis in a Whey Permeate Medium

    Science.gov (United States)

    Audet, Pascal; Paquin, Celine; Lacroix, Christophe

    1989-01-01

    Cells of Streptococcus salivarius subsp. thermophilus and Lactococcus lactis subsp. lactis entrapped in k-carrageenan-locust bean gum gel performed similarly to free cells in the conversion of lactose to lactic acid. Bead diameter influenced the fermentation rate. Cells entrapped in smaller beads (0.5 to 1.0 mm) showed higher release rates, higher lactose, glucose, and formic acid utilization, higher galactose accumulation, and higher lactic acid production than did cells entrapped in larger beads (1.0 to 2.0 mm). Values for smaller beads were comparable with those for free cells. Immobilization affected the fermentation rate of lactic acid bacteria, especially Lactobacillus delbrueckii subsp. bulgaricus. Entrapped cells of L. delbrueckii subsp. bulgaricus demonstrated a lower lactic acid production than did free cells in batch fermentation. The kinetics of the production of formic and pyruvic acids by L. lactis subsp. lactis and S. salivarius subsp. thermophilus are presented. PMID:16347822

  2. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Wang

    Full Text Available Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.

  3. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk

    Science.gov (United States)

    Meneghel, Julie; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes. PMID:26941141

  4. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk.

    Science.gov (United States)

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine; Fonseca, Fernanda

    2016-03-03

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes.

  5. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk.

    Science.gov (United States)

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine; Fonseca, Fernanda

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes. PMID:26941141

  6. A Highly Stable D-Amino Acid Oxidase of the Thermophilic Bacterium Rubrobacter xylanophilus.

    Science.gov (United States)

    Takahashi, Shouji; Furukawara, Makoto; Omae, Keishi; Tadokoro, Namiho; Saito, Yayoi; Abe, Katsumasa; Kera, Yoshio

    2014-12-01

    d-Amino acid oxidase (DAO) is a biotechnologically attractive enzyme that can be used in a variety of applications, but its utility is limited by its relatively poor stability. A search of a bacterial genome database revealed a gene encoding a protein homologous to DAO in the thermophilic bacterium Rubrobacter xylanophilus (RxDAO). The recombinant protein expressed in Escherichia coli was a monomeric protein containing noncovalently bound flavin adenine dinucleotide as a cofactor. This protein exhibited oxidase activity against neutral and basic d-amino acids and was significantly inhibited by a DAO inhibitor, benzoate, but not by any of the tested d-aspartate oxidase (DDO) inhibitors, thus indicating that the protein is DAO. RxDAO exhibited higher activities and affinities toward branched-chain d-amino acids, with the highest specific activity toward d-valine and catalytic efficiency (kcat/Km) toward d-leucine. Substrate inhibition was observed in the case of d-tyrosine. The enzyme had an optimum pH range and temperature of pH 7.5 to 10 and 65°C, respectively, and was stable between pH 5.0 and pH 8.0, with a T50 (the temperature at which 50% of the initial enzymatic activity is lost) of 64°C. No loss of enzyme activity was observed after a 1-week incubation period at 30°C. This enzyme was markedly inactivated by phenylmethylsulfonyl fluoride but not by thiol-modifying reagents and diethyl pyrocarbonate, which are known to inhibit certain DAOs. These results demonstrated that RxDAO is a highly stable DAO and suggested that this enzyme may be valuable for practical applications, such as the determination and quantification of branched-chain d-amino acids, and as a scaffold to generate a novel DAO via protein engineering. PMID:25217016

  7. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    Science.gov (United States)

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)).

  8. Controlles modulation of folate polyglutamyl tail length by metabolic engineering of Lactococcus lactis

    NARCIS (Netherlands)

    Sybesma, W.F.H.; Born, van den E.; Starrenburg, M.; Mierau, I.; Kleerebezem, M.; Vos, de W.M.; Hugenholtz, J.

    2003-01-01

    The dairy starter bacterium Lactococcus lactis is able to synthesize folate and accumulates >90% of the produced folate intracellularly, predominantly in the polyglutamyl form. Approximately 10% of the produced folate is released into the environment. Overexpression of folC in L. lactis led to an

  9. Detection of bacteriophage-infected cells of Lactococcus lactis using flow cytometry

    DEFF Research Database (Denmark)

    Michelsen, Ole; Cuesta-Dominguez, Álvaro; Albrektsen, Bjarne;

    2007-01-01

    Bacteriophage infection in dairy fermentation constitutes a serious problem worldwide. We have studied bacteriophage infection in Lactococcus lactis by using the flow cytometer. The first effect of the infection of the bacterium is a change from cells in chains toward single cells. We interpret...

  10. Immunogenicity of a malaria parasite antigen displayed by Lactococcus lactis in oral immunisations

    NARCIS (Netherlands)

    Ramasamy, R; Yasawardena, S; Zomer, A; Venema, G; Kok, J; Leenhouts, K

    2006-01-01

    A putative protective protein from Plasmodium falciparum merozoites, MSA2, was expressed in two different ways on the cell surface of the Gram-positive food-grade bacterium, Lactococcus lactis. The first display format exploits an LPXTG-type anchoring motif of the lactococcal proteinase PrtP to cova

  11. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    Science.gov (United States)

    Wahidullah, Solimabi; Naik, Deepak N; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3-8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802

  12. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    Science.gov (United States)

    Wahidullah, Solimabi; Naik, Deepak N; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3-8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment.

  13. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    Directory of Open Access Journals (Sweden)

    Solimabi Wahidullah

    Full Text Available As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl with salicylic acid (3-8 were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12, metabolites produced by the bacterium include antimicrobial indole (13 and β-carbolines, norharman (14, harman (15 and methyl derivative (16, which are beneficial to the host and the environment.

  14. Lactococcus nasutitermitis sp. nov. isolated from a termite gut.

    Science.gov (United States)

    Yan Yang, Shu; Zheng, Ying; Huang, Zhou; Min Wang, Xue; Yang, Hong

    2016-01-01

    Bacterial strain M19T was isolated from the gut of a wood-feeding termite, Nasutitermes hainanensis. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain M19T was related to members of the genus Lactococcus, with sequence similarities ranging from 84.8 to 95.5 %. Comparison of housekeeping gene ropB sequences revealed that strain M19T was well separated from Lactococcus fujiensis JCM 16395T and Lactococcus hircilactis 117T. The isolate was Gram-stain-positive, catalase-negative and non-motile. Cells were coccoid or ovoid-shaped, and occurred singly, in pairs or as short chains. Growth of strain M19T occurred at 10-40 °C and at pH 5.0-7.5. The DNA G+C content of strain M19T was 39.6 mol% and the major fatty acids were C16 : 0, cyclo-C19 : 0ω8c, C18 : 1ω9c, summed feature 7 and summed feature 8. Based on the phylogenetic, chemotaxonomic and phenotypic data presented, strain M19T represents a novel species of the genus Lactococcus, for which the name Lactococcus nasutitermitis sp. nov. is proposed. The type strain is M19T ( = CGMCC 1.15204T = NBRC 111537T). PMID:26546382

  15. 重组乳酸乳球菌表达外源产物在养猪生产中的潜在应用%Potential Application of Expression of Exogenous Products by Recombinant Lactococcus lactis in Pig Production

    Institute of Scientific and Technical Information of China (English)

    张攀; 许蒙蒙; 林燕; 方正锋; 车炼强; 吴德; 徐盛玉

    2015-01-01

    Lactococcus lactis is a typical representative bacterium of lactic acid bacteria. With the deepening re-search in molecular biology of Lactococcus lactis, recombinant Lactococcus lactis is extensively researched as a bacterial carrier in the field of animal husbandry and veterinary due to having prebiotic effects and using expres-sion of exogenous functional proteins. Meanwhile, Lactococcus lactis also showed good potential in pig indus-try, which could provide a new way for the healthy development of pig industry. This paper reviewed the ex-pression of exogenous products of recombinant Lactococcus lactis ( epidermal growth factor, lactoferrin, etc. ) for improving pig performance as well as a vaccine carrier for prevention and treatment of swine diseases.%乳酸乳球菌是乳酸菌中的典型代表,随着乳酸乳球菌分子生物学研究的不断深入,重组乳酸乳球菌因具有益生作用和表达外源功能蛋白的双重功能被用做载体菌在畜牧兽医学领域广泛研究,同时在养猪产业中也显示出良好的应用潜力,可为养猪业的健康发展提供新的思路. 本文主要对重组乳酸乳球菌表达表皮生长因子、乳铁蛋白等外源产物来提高猪生产性能以及作为疫苗呈递载体用于猪疾病防治的应用做一综述.

  16. 重组乳酸乳球菌表达外源产物在养猪生产中的潜在应用%Potential Application of Expression of Exogenous Products by Recombinant Lactococcus lactis in Pig Production

    Institute of Scientific and Technical Information of China (English)

    张攀; 许蒙蒙; 林燕; 方正锋; 车炼强; 吴德; 徐盛玉

    2015-01-01

    乳酸乳球菌是乳酸菌中的典型代表,随着乳酸乳球菌分子生物学研究的不断深入,重组乳酸乳球菌因具有益生作用和表达外源功能蛋白的双重功能被用做载体菌在畜牧兽医学领域广泛研究,同时在养猪产业中也显示出良好的应用潜力,可为养猪业的健康发展提供新的思路. 本文主要对重组乳酸乳球菌表达表皮生长因子、乳铁蛋白等外源产物来提高猪生产性能以及作为疫苗呈递载体用于猪疾病防治的应用做一综述.%Lactococcus lactis is a typical representative bacterium of lactic acid bacteria. With the deepening re-search in molecular biology of Lactococcus lactis, recombinant Lactococcus lactis is extensively researched as a bacterial carrier in the field of animal husbandry and veterinary due to having prebiotic effects and using expres-sion of exogenous functional proteins. Meanwhile, Lactococcus lactis also showed good potential in pig indus-try, which could provide a new way for the healthy development of pig industry. This paper reviewed the ex-pression of exogenous products of recombinant Lactococcus lactis ( epidermal growth factor, lactoferrin, etc. ) for improving pig performance as well as a vaccine carrier for prevention and treatment of swine diseases.

  17. Production and secretion of heterologous proteins by Lactococcus lactis.

    NARCIS (Netherlands)

    Asseldonk, van M.

    1994-01-01

    Lactococcus lactis strains have been used for centuries in food fermentation, now appreciated as traditional biotechnology. They have been applied in the cheesemaking process and for the manufacturing of other dairy products. Years of experience with these lactic acid bacteria have led to a profound

  18. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.

    Science.gov (United States)

    Linares, Daniel M; del Río, Beatriz; Ladero, Victor; Redruello, Begoña; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2013-07-01

    Lactococcus lactis is the lactic acid bacterium most widely used by the dairy industry as a starter for the manufacture of fermented products such as cheese and buttermilk. However, some strains produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The proteins involved in this pathway, including those necessary for agmatine uptake and conversion into putrescine, are encoded by the aguB, aguD, aguA and aguC genes, which together form an operon. This paper reports the mechanism of regulation of putrescine biosynthesis in L. lactis. It is shown that the aguBDAC operon, which contains a cre site at the promoter of aguB (the first gene of the operon), is transcriptionally regulated by carbon catabolic repression (CCR) mediated by the catabolite control protein CcpA. PMID:23688550

  19. Desulfurella amilsii sp. nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments.

    Science.gov (United States)

    Florentino, Anna P; Brienza, Claudio; Stams, Alfons J M; Sánchez-Andrea, Irene

    2016-03-01

    A novel acidotolerant and moderately thermophilic sulfur-reducing bacterium was isolated from sediments of the Tinto River (Spain), an extremely acidic environment. Strain TR1T stained Gram-negative, and was obligately anaerobic, non-spore-forming and motile. Cells were short rods (1.5-2 × 0.5-0.7 μm), appearing singly or in pairs. Strain TR1T was catalase-negative and slightly oxidase-positive. Urease activity and indole formation were absent, but gelatin hydrolysis was present. Growth was observed at 20-52 °C with an optimum close to 50 °C, and a pH range of 3-7 with optimum between pH 6 and 6.5. Yeast extract was essential for growth, but extra vitamins were not required. In the presence of sulfur, strain TR1T grew with acetate, formate, lactate, pyruvate, stearate, arginine and H2/CO2. All substrates were completely oxidized and H2S and CO2 were the only metabolic products detected. Besides elemental sulfur, thiosulfate was used as an electron acceptor. The isolate also grew by disproportionation of elemental sulfur. The predominant cellular fatty acids were saturated components: C16 : 0, anteiso-C17 : 0 and C18 : 0. The only quinone component detected was menaquinone MK-7(H2). The G+C content of the genomic DNA was 34 mol%. The isolate is affiliated to the genus Desulfurella of the class Deltaproteobacteria, sharing 97 % 16S rRNA gene sequence similarity with the four species described in the genus Desulfurella. Considering the distinct physiological and phylogenetic characteristics, strain TR1T represents a novel species within the genus Desulfurella, for which the name Desulfurella amilsii sp. nov. is proposed. The type strain is TR1T ( = DSM 29984T = JCM 30680T). PMID:26704766

  20. Amino Acid and Peptide Utilization Profiles of the Fluoroacetate-Degrading Bacterium Synergistetes Strain MFA1 Under Varying Conditions.

    Science.gov (United States)

    Leong, Lex E X; Denman, Stuart E; Hugenholtz, Philip; McSweeney, Christopher S

    2016-02-01

    Synergistetes strain MFA1 is an asaccharolytic ruminal bacterium isolated based on its ability to degrade fluoroacetate, a plant toxin. The amino acid and peptide requirements of the bacterium were investigated under different culturing conditions. The growth of strain MFA1 and its fluoroacetate degradation rate were enhanced by peptide-rich protein hydrolysates (tryptone and yeast extract) compared to casamino acid, an amino acid-rich protein hydrolysate. Complete utilization and preference for arginine, asparagine, glutamate, glycine, and histidine as free amino acids from yeast extract were observed, while the utilization of serine, threonine, and lysine in free form and peptide-bound glutamate was stimulated during growth on fluoroacetate. A predominant peptide in yeast extract preferentially utilized by strain MFA1 was partially characterized by high-liquid performance chromatography-mass spectrometry as a hepta-glutamate oligopeptide. Similar utilization profiles of amino acids were observed between the co-culture of strain MFA1 with Methanobrevibacter smithii without fluoroacetate and pure strain MFA1 culture with fluoroacetate. This suggests that growth of strain MFA1 could be enhanced by a reduction of hydrogen partial pressure as a result of hydrogen removal by a methanogen or reduction of fluoroacetate.

  1. Ability of Lactococcus lactis to export viral capsid antigens: a crucial step for development of live vaccines

    NARCIS (Netherlands)

    Dieye, Y.; Hoekman, A.J.W.; Clier, F.; Juillard, V.; Boot, H.J.; Piard, J.C.

    2003-01-01

    Thefood grade bacterium Lactococcus lactis is a potential vehicle for protein delivery in the gastrointestinal tract. As a model, we constructed lactococcal strains producing antigens of infectious bursal disease virus (IBDV). IBDV infects chickens and causes depletion of B-lymphoid cells in the bur

  2. Versatile vector suite for the extracytoplasmic production and purification of heterologous His-tagged proteins in Lactococcus lactis

    NARCIS (Netherlands)

    Neef, Jolanda; Milder, Fin J.; Koedijk, Danny G. A. M.; Klaassens, Marindy; Heezius, Erik C.; van Strijp, Jos A. G.; Otto, Andreas; Becher, Doerte; van Dijl, Jan Maarten; Buist, Girbe

    2015-01-01

    Recent studies have shown that the Gram-positive bacterium Lactococcus lactis can be exploited for the expression of heterologous proteins; however, a versatile set of vectors suitable for inducible extracellular protein production and subsequent purification of the expressed proteins by immobilized

  3. The Lactococcus lactis Thioredoxin System

    DEFF Research Database (Denmark)

    Efler, Petr

    -dependent thioredoxin reductase (NTR) in order to complete its catalytic cycle. Glutathione-dependent glutaredoxin complements Trx in many organisms. This thesis focuses on disulfide reduction pathways in Lactococcus lactis, an important industrial microorganism used traditionally for cheese and buttermilk production...

  4. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    María R. Alberto

    2012-03-01

    Full Text Available The influence of seven phenolic compounds, normally present in wine, on the growth and arginine deiminase system (ADI of Lactobacillus hilgardii X1B, a wine lactic acid bacterium, was established. This system provides energy for bacterial growth and produces citrulline that reacts with ethanol forming the carcinogen ethyl carbamate (EC, found in some wines. The influence of phenolic compounds on bacterial growth was compound dependent. Growth and final pH values increased in presence of arginine. Arginine consumption decreased in presence of protocatechuic and gallic acids (31 and 17%, respectively and increased in presence of quercetin, rutin, catechin and the caffeic and vanillic phenolic acids (between 10 and 13%, respectively. ADI enzyme activities varied in presence of phenolic compounds. Rutin, quercetin and caffeic and vanillic acids stimulated the enzyme arginine deiminase about 37-40%. Amounts of 200 mg/L gallic and protocatechuic acids inhibited the arginine deiminase enzyme between 53 and 100%, respectively. Ornithine transcarbamylase activity was not modified at all concentrations of phenolic compounds. As gallic and protocatechuic acids inhibited the arginine deiminase enzyme that produces citrulline, precursor of EC, these results are important considering the formation of toxic compounds.

  5. LANTIBIOTIC NISIN: NATURAL PRESERVATIVE FROM LACTOCOCCUS LACTIS

    Directory of Open Access Journals (Sweden)

    Suganthi.V

    2012-01-01

    Full Text Available The increasing demand for high quality safe foods that are not extensively processed has created a niche for natural food preservative. Studies confirm that food allergies due to chemical preservatives affect as much as 2.5% of the population. Recent research had suggested bacteriocins (Nisin are the ideal biological food preservative. Nisin was proteinaceous antibacterial substances produced by Lactococcus lactis, a homofermentative bacterium. Naturally nisin occurs in two different forms nisin A and nisin Z. Nisin has wide range of inhibitory mode of action on Gram negative bacteria and food borne pathogens. Food preservation is a continuous war against the microorganisms spoiling the food or making it unsafe. So, nisin is actually the only lantibiotic bacteriocins used as a food preservative. This review paper will discuss about the Lactococcal strain used for the production of nisin, different forms of nisin, the mode of action of nisin, the cost reductive methods for the production and purification of nisin. So that it can be used in large scale industry for the high yield of nisin and the wide application of nisin in food industries.

  6. Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice.

    Science.gov (United States)

    Robert, Sofie; Gysemans, Conny; Takiishi, Tatiana; Korf, Hannelie; Spagnuolo, Isabella; Sebastiani, Guido; Van Huynegem, Karolien; Steidler, Lothar; Caluwaerts, Silvia; Demetter, Pieter; Wasserfall, Clive H; Atkinson, Mark A; Dotta, Francesco; Rottiers, Pieter; Van Belle, Tom L; Mathieu, Chantal

    2014-08-01

    Growing insight into the pathogenesis of type 1 diabetes (T1D) and numerous studies in preclinical models highlight the potential of antigen-specific approaches to restore tolerance efficiently and safely. Oral administration of protein antigens is a preferred method for tolerance induction, but degradation during gastrointestinal passage can impede such protein-based therapies, reducing their efficacy and making them cost-ineffective. To overcome these limitations, we generated a tolerogenic bacterial delivery technology based on live Lactococcus lactis (LL) bacteria for controlled secretion of the T1D autoantigen GAD65370-575 and the anti-inflammatory cytokine interleukin-10 in the gut. In combination with short-course low-dose anti-CD3, this treatment stabilized insulitis, preserved functional β-cell mass, and restored normoglycemia in recent-onset NOD mice, even when hyperglycemia was severe at diagnosis. Combination therapy did not eliminate pathogenic effector T cells, but increased the presence of functional CD4(+)Foxp3(+)CD25(+) regulatory T cells. These preclinical data indicate a great therapeutic potential of orally administered autoantigen-secreting LL for tolerance induction in T1D. PMID:24677716

  7. Cell wall anchoring of the Campylobacter antigens to Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Patrycja Anna Kobierecka

    2016-02-01

    Full Text Available Campylobacter jejuni is the most frequent cause of human food-borne gastroenteritis and chicken meat is the main source of infection. Recent studies showed that broiler chicken immunization against Campylobacter should be the most efficient way to lower the number of human infections by this pathogen. Induction of the mucosal immune system after oral antigen administration should provide protective immunity to chickens. In this work we tested the usefulness of Lactococcus lactis, the most extensively studied lactic acid bacterium, as a delivery vector for Campylobacter antigens. First we constructed hybrid protein – CjaA antigen presenting CjaD peptide epitopes on its surface. We showed that specific rabbit anti-rCjaAD serum reacted strongly with both CjaA and CjaD produced by a wild type Campylobacter jejuni strain. Next, rCjaAD and CjaA were fused to the C-terminus of the L. lactis YndF containing the LPTXG motif. The genes expressing these proteins were transcribed under control of the L. lactis Usp45 promoter and their products contain the Usp45 signal sequences. This strategy ensures a cell surface location of both analysed proteins, which was confirmed by immunofluorescence assay. In order to evaluate the impact of antigen location on vaccine prototype efficacy, a L. lactis strain producing cytoplasm-located rCjaAD was also generated. Animal experiments showed a decrease of Campylobacter cecal load in vaccinated birds as compared with the control group and showed that the L. lactis harboring the surface-exposed rCjaAD antigen afforded greater protection than the L. lactis producing cytoplasm-located rCjaAD. To the best of our knowledge, this is the first attempt to employ LAB (Lactic Acid Bacteria strains as a mucosal delivery vehicle for chicken immunization. Although the observed reduction of chicken colonization by Campylobacter resulting from vaccination was rather moderate, the experiments showed that LAB strains can be considered

  8. Effect of cell immobilization on the treatment of olive mill wastewater by a total phenols, acetic acid and formic acid degrading bacterium strain

    Directory of Open Access Journals (Sweden)

    Errami, Mohamed

    2005-06-01

    Full Text Available Olive mill wastewater (OMW is a pure vegetative by-product, containing a high organic and polyphenol content and is resistant to biodegradation. Its disposal lead to major environmental pollution problems in the Mediterranean basin. An aerobic bacterium was isolated from OMW. During three consecutive diluted and supplemented OMW treatment cycles, significant abatement of its phytotoxic substances was observed. In fact, total phenols, acetic and formic acids were reduced between 33 and 64 % when cells of the isolated bacterium were grown free; and between 62 and 78 % when cells of the same isolated bacterium were grown immobilized in a polyurethane sponge. These results suggest that the bacterium culture of the new isolate would decrease the OMW phytotoxicity. Phylogenetic analysis of 16S ribosomal DNA showed that all the related sequences are members of the Enterobacteriaceae family and revealed that the isolated bacterium was characterized as a Klebsiella oxytoca strain.El alpechín (OMW es un residuo puro de la extracción del aceite de oliva, que contiene una elevada carga orgánica y de polifenoles por lo que es resistente a la degradación. Su descarga produce graves problemas de contaminación medioambiental en toda el área mediterránea. Se ha aislado una bacteria anaerobia del OMW, que , durante tres ciclos consecutivos de tratamiento del OMW diluido y suplementado, produjo una disminución significativa de las sustancias fitotóxicas del residuo. De hecho, la concentración en fenoles totales, ácido acético y ácido fórmico se redujeron entre 33 y 64 % cuando las células no estaban inmovilizadas y entre el 62 y 78 % cuando las células bacterianas se inmovilizaron en una esponja de poliuretano. Estos resultados indican que el cultivo de la nueva bacteria aislada puede disminuir la fototoxicidad del alpechín. Análisis filogenético del ribosoma 16S de DNA demostró que todas las secuencias eran miembros de la familia

  9. Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov. : a sporeforming, obligately syntrophic bacterium

    OpenAIRE

    Stieb, Marion; Schink, Bernhard

    1985-01-01

    From marine and freshwater mud samples strictly anaerobic, Gram-positive, sporeforming bacteria were isolated which oxidized fatty acids in obligately syntrophic association with H2-utilizing bacteria. Even-numbered fatty acids with up to 10 carbon atoms were degraded to acetate and Hz, odd-numbered fatty acids with up to 11 carbon atoms including 2-methylbutyrate were degraded to acetate, propionate and H2. Neither fumarate, sulfate, thiosulfate, sulfur, nor nitrate were reduced. A marine is...

  10. Novel antibacterial activity of lactococcus lactis subspecies lactis z11 isolated from zabady.

    Science.gov (United States)

    Enan, Gamal; Abdel-Shafi, Seham; Ouda, Sahar; Negm, Sally

    2013-09-01

    The purpose of this study was to select and characterize a probiotic bacterium with distinctive antimicrobial activities. In this respect, Lactococcus lactis subspecies lactis Z11 (L. lactis Z11) isolated from Zabady (Arabian yoghurt) inhibited other strains of lactic acid bacteria and some food-born pathogens including Listeria monocytogenes, Bacillus cereus and staphylococcus aureus. The inhibitory activity of cell free supernatant (CFS) of L. lactis Z11 isolated from zabady was lost by proteolytic enzymes, heat resistant. Consequently, the active substance(s) of CFS was characterized as a bacteriocin. This bacteriocin has been shown to consist of protein but has no lipidic or glucidic moieties in its active molecule. Its activity was stable in the pH range 2.0 to 7.0 and was not affected by organic solvents. The L. lactis Z11 bacteriocin was produced in CFS throughout the mide to the late exponential phase of growth of the producer organism and maximum bacteriocin production was obtained at initial pH 6.5 at incubation temperature of about 30°C. PMID:24151453

  11. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    International Nuclear Information System (INIS)

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from [1-14C]myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from [14C]C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from [14C]acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development

  12. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense.

    Science.gov (United States)

    Palacios, Oskar A; Gomez-Anduro, Gracia; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    During synthetic mutualistic interactions between the microalga Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense, mutual exchange of resources involved in producing and releasing the phytohormone indole-3-acetic acid (IAA) by the bacterium, using tryptophan and thiamine released by the microalga, were measured. Although increased activities of tryptophan synthase in C. sorokiniana and indole pyruvate decarboxylase (IPDC) in A. brasilense were observed, we could not detect tryptophan or IAA in the culture medium when both organisms were co-immobilized. This indicates that no extra tryptophan or IAA is produced, apart from the quantities required to sustain the interaction. Over-expression of the ipdC gene occurs at different incubation times: after 48 h, when A. brasilense was immobilized alone and grown in exudates of C. sorokiniana and at 96 h, when A. brasilense was co-immobilized with the microalga. When A. brasilense was cultured in exudates of C. sorokiniana, increased expression of the ipdC gene, corresponding increase in activity of IPDC encoded by the ipdC gene, and increase in IAA production were measured during the first 48 h of incubation. IAA production and release by A. brasilense was found only when tryptophan and thiamine were present in a synthetic growth medium (SGM). The absence of thiamine in SGM yielded no detectable IAA. In summary, this study demonstrates that C. sorokiniana can exude sufficient tryptophan and thiamine to allow IAA production by a PGPB during their interaction. Thiamine is essential for IAA production by A. brasilense and these three metabolites are part of a communication between the two microorganisms.

  13. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense.

    Science.gov (United States)

    Palacios, Oskar A; Gomez-Anduro, Gracia; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    During synthetic mutualistic interactions between the microalga Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense, mutual exchange of resources involved in producing and releasing the phytohormone indole-3-acetic acid (IAA) by the bacterium, using tryptophan and thiamine released by the microalga, were measured. Although increased activities of tryptophan synthase in C. sorokiniana and indole pyruvate decarboxylase (IPDC) in A. brasilense were observed, we could not detect tryptophan or IAA in the culture medium when both organisms were co-immobilized. This indicates that no extra tryptophan or IAA is produced, apart from the quantities required to sustain the interaction. Over-expression of the ipdC gene occurs at different incubation times: after 48 h, when A. brasilense was immobilized alone and grown in exudates of C. sorokiniana and at 96 h, when A. brasilense was co-immobilized with the microalga. When A. brasilense was cultured in exudates of C. sorokiniana, increased expression of the ipdC gene, corresponding increase in activity of IPDC encoded by the ipdC gene, and increase in IAA production were measured during the first 48 h of incubation. IAA production and release by A. brasilense was found only when tryptophan and thiamine were present in a synthetic growth medium (SGM). The absence of thiamine in SGM yielded no detectable IAA. In summary, this study demonstrates that C. sorokiniana can exude sufficient tryptophan and thiamine to allow IAA production by a PGPB during their interaction. Thiamine is essential for IAA production by A. brasilense and these three metabolites are part of a communication between the two microorganisms. PMID:27090758

  14. Heterologous expression of Brucella abortus GroEL heat-shock protein in Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Langella Philippe

    2006-03-01

    Full Text Available Abstract Background Brucella abortus is a facultative intracellular pathogen that mainly infects cattle and humans. Current vaccines rely on live attenuated strains of B. abortus, which can revert to their pathogenic status and thus are not totally safe for use in humans. Therefore, the development of mucosal live vaccines using the food-grade lactic acid bacterium, Lactococcus lactis, as an antigen delivery vector, is an attractive alternative and a safer vaccination strategy against B. abortus. Here, we report the construction of L. lactis strains genetically modified to produce B. abortus GroEL heat-shock protein, a candidate antigen, in two cellular locations, intracellular or secreted. Results Only the secreted form of GroEL was stably produced in L. lactis, suggesting a detrimental effect of GroEL protein when intracellularly produced in this bacterium. Only trace amounts of mature GroEL were detected in the supernatant fraction of induced lactococcal cultures, and the GroEL precursor remained stacked in the cell fraction. Attempts to raise the secretion yields were made, but even when GroEL was fused to a synthetic propeptide, secretion of this antigen was not improved. Conclusion We found that L. lactis is able to produce, and to secrete, a stable form of GroEL into the extracellular medium. Despite the low secretion efficiency of GroEL, which suggest that this antigen interacts with the cell envelope of L. lactis, secretion seems to be the best way to achieve both production and protein yields, regardless of cellular location. The L. lactis strain secreting GroEL has potential for in vivo immunization.

  15. Thalassospiramide G, a New γ-Amino-Acid-Bearing Peptide from the Marine Bacterium Thalassospira sp.

    Directory of Open Access Journals (Sweden)

    Sang Kook Lee

    2013-02-01

    Full Text Available In the chemical investigation of marine unicellular bacteria, a new peptide, thalassospiramide G (1, along with thalassospiramides A and D (2–3, was discovered from a large culture of Thalassospira sp. The structure of thalassospiramide G, bearing γ-amino acids, such as 4-amino-5-hydroxy-penta-2-enoic acid (AHPEA, 4-amino-3,5-dihydroxy-pentanoic acid (ADPA, and unique 2-amino-1-(1H-indol-3-yl ethanone (AIEN, was determined via extensive spectroscopic analysis. The absolute configuration of thalassospiramide D (3, including 4-amino-3-hydroxy-5-phenylpentanoic acid (AHPPA, was rigorously determined by 1H–1H coupling constant analysis and chemical derivatization. Thalassospiramides A and D (2–3 inhibited nitric oxide (NO production in lipopolysaccharide (LPS-stimulated mouse macrophage RAW 264.7 cells, with IC50 values of 16.4 and 4.8 μM, respectively.

  16. Producción de ácido láctico por una mezcla de Lactococcus lactis y Streptococcus salivarius en fermentaciones en discontinuo Lactic acid production from a mixture of cultures of Lactococcus lactis and Streptococcus salivarius using batch fermentation

    OpenAIRE

    Rodríguez de Stouvenel Aida; Serna Cock Liliana

    2005-01-01

    Se estudió la producción de ácido láctico (AL), la conversión de sustrato (CG), y el rendimiento(Yp/s) de Lactococcus lactis, Streptococcus salivarius y una mezcla 1:1 de ambas cepas en sustrato glucosado. Lactococcus lactis se seleccionó de 20 cepas homofermentativas aisladas de cultivos de caña de azúcar variedad CC85-92 y Streptococcus salivarius se aisló de un fermento láctico comercial. En fermentaciones llevadas a cabo con la mezcla microbiana, a 32 °C con 60 gL-1 de glucosa y pH 6,0 se...

  17. Complete genome sequence of Enterococcus mundtii QU 25, an efficient L-(+)-lactic acid-producing bacterium.

    Science.gov (United States)

    Shiwa, Yuh; Yanase, Hiroaki; Hirose, Yuu; Satomi, Shohei; Araya-Kojima, Tomoko; Watanabe, Satoru; Zendo, Takeshi; Chibazakura, Taku; Shimizu-Kadota, Mariko; Yoshikawa, Hirofumi; Sonomoto, Kenji

    2014-08-01

    Enterococcus mundtii QU 25, a non-dairy bacterial strain of ovine faecal origin, can ferment both cellobiose and xylose to produce l-lactic acid. The use of this strain is highly desirable for economical l-lactate production from renewable biomass substrates. Genome sequence determination is necessary for the genetic improvement of this strain. We report the complete genome sequence of strain QU 25, primarily determined using Pacific Biosciences sequencing technology. The E. mundtii QU 25 genome comprises a 3 022 186-bp single circular chromosome (GC content, 38.6%) and five circular plasmids: pQY182, pQY082, pQY039, pQY024, and pQY003. In all, 2900 protein-coding sequences, 63 tRNA genes, and 6 rRNA operons were predicted in the QU 25 chromosome. Plasmid pQY024 harbours genes for mundticin production. We found that strain QU 25 produces a bacteriocin, suggesting that mundticin-encoded genes on plasmid pQY024 were functional. For lactic acid fermentation, two gene clusters were identified-one involved in the initial metabolism of xylose and uptake of pentose and the second containing genes for the pentose phosphate pathway and uptake of related sugars. This is the first complete genome sequence of an E. mundtii strain. The data provide insights into lactate production in this bacterium and its evolution among enterococci.

  18. The lactic acid bacterium Pediococcus acidilactici suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Kazushiro Takata

    Full Text Available BACKGROUND: Certain intestinal microflora are thought to regulate the systemic immune response. Lactic acid bacteria are one of the most studied bacteria in terms of their beneficial effects on health and autoimmune diseases; one of which is Multiple sclerosis (MS which affects the central nervous system. We investigated whether the lactic acid bacterium Pediococcus acidilactici, which comprises human commensal bacteria, has beneficial effects on experimental autoimmune encephalomyelitis (EAE, an animal model of MS. METHODOLOGY/PRINCIPAL FINDINGS: P. acidilactici R037 was orally administered to EAE mice to investigate the effects of R037. R037 treatment suppressed clinical EAE severity as prophylaxis and therapy. The antigen-specific production of inflammatory cytokines was inhibited in R037-treated mice. A significant increase in the number of CD4(+ Interleukin (IL-10-producing cells was observed in the mesenteric lymph nodes (MLNs and spleens isolated from R037-treated naive mice, while no increase was observed in the number of these cells in the lamina propria. Because only a slight increase in the CD4(+Foxp3(+ cells was observed in MLNs, R037 may primarily induce Foxp3(- IL10-producing T regulatory type 1 (Tr1 cells in MLNs, which contribute to the beneficial effect of R037 on EAE. CONCLUSIONS/SIGNIFICANCE: An orally administered single strain of P. acidilactici R037 ameliorates EAE by inducing IL10-producing Tr1 cells. Our findings indicate the therapeutic potential of the oral administration of R037 for treating multiple sclerosis.

  19. Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2.

    Science.gov (United States)

    Zhao, Kai; Qiao, Qingan; Chu, Deqiang; Gu, Hanqi; Dao, Thai Ha; Zhang, Jian; Bao, Jie

    2013-05-01

    A lactic acid bacterium with high tolerance of temperature and lignocellulose derived inhibitor was isolated and characterized as Pediococcus acidilactici DQ2. The strain used in the simultaneous saccharification and fermentation (SSF) for high titer lactic acid production at the high solids loading of corn stover. Corn stover was pretreated using the dry sulphuric acid pretreatment, followed by a biological detoxification to remove the inhibitors produced in the pretreatment. The bioreactor with a novel helical impeller was used to the SSF operation of the pretreated and biodetoxified corn stover. The results show that a typical SSF operation at 48 °C, pH 5.5, and near 30% (w/w) solids loading in both 5 and 50 L bioreactors was demonstrated. The lactic acid titer, yield, and productivity reached 101.9 g/L, 77.2%, and 1.06 g/L/h, respectively. The result provided a practical process option for cellulosic lactic acid production using virgin agriculture lignocellulose residues.

  20. [Screening and identification of indoleacetic acid producing endophytic bacterium in Panax ginseng].

    Science.gov (United States)

    Jiang, Yun; Tian, Lei; Chen, Chang-qing; Zhang, Guan-jun; Li, Tong; Chen, Jing-xiu; Wang, Xue

    2015-01-01

    Endophytic bacteria which was producing indoleacetic acid was screened from Panax ginseng by using the Salkowski method. The active strain was also tested for its ability of nitrogen fixation by using the Ashby agar plates, the PKV plates and quantitative analysis of Mo-Sb-Ascrobiology acid colorimetry was used to measure its ability of phosphate solubilization, for its ability of potassium solubilization the silicate medium and flame spectrophotometry was used, for its ability of producing siderophores the method detecting CAS was used, for its ability of producing ACC deaminase the Alpha ketone butyric acid method was applied. And the effect on promoting growth of seed by active strain was tested. The results showed that the indoleacetic acid producing strain of JJ5-2 was obtained from 118 endophytes, which the content of indoleacetic acid was 10.2 mg x L(-1). The JJ5-2 strain also had characteristics of phosphate and potassium solubilization, nitrogen fixation, producing siderophores traits, and the promoting germination of ginseng seeds. The JJ5-2 strain was identified as Bacillus thuringiensis by analyzing morphology, physiological and biochemical properties and 16S rRNA gene sequences. PMID:26080547

  1. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.

    Science.gov (United States)

    Rodriguez, Hilda; Gonzalez, Tania; Goire, Isabel; Bashan, Yoav

    2004-11-01

    In vitro gluconic acid formation and phosphate solubilization from sparingly soluble phosphorus sources by two strains of the plant growth-promoting bacteria A. brasilense (Cd and 8-I) and one strain of A. lipoferum JA4 were studied. Strains of A. brasilense were capable of producing gluconic acid when grown in sparingly soluble calcium phosphate medium when their usual fructose carbon source is amended with glucose. At the same time, there is a reduction in pH of the medium and release of soluble phosphate. To a greater extent, gluconic acid production and pH reduction were observed for A. lipoferum JA4. For the three strains, clearing halos were detected on solid medium plates with calcium phosphate. This is the first report of in vitro gluconic acid production and direct phosphate solubilization by A. brasilense and the first report of P solubilization by A. lipoferum. This adds to the very broad spectrum of plant growth-promoting abilities of this genus.

  2. Clostridium acetireducens sp nov, a novel amino acid-oxidizing, acetate-reducing anaerobic bacterium

    NARCIS (Netherlands)

    Orlygsson, J; Krooneman, J; Collins, Matthew D.; Pascual, C; Gottschall, JC

    1996-01-01

    Strain 30A(T) (T = type strain), which was isolated from an anaerobic bioreactor fed on waste from a potato starch factory in De Krim, The Netherlands, is a nonmotile, gram-positive, anaerobic, rod-shaped organism that is able to degrade various amino acids, including alanine, leucine, isoleucine, v

  3. Diversity of Heteropolysaccharide-Producing Lactic Acid Bacterium Strains and Their Biopolymers

    Science.gov (United States)

    Mozzi, Fernanda; Vaningelgem, Frederik; Hébert, Elvira María; Van der Meulen, Roel; Foulquié Moreno, María Remedios; Font de Valdez, Graciela; De Vuyst, Luc

    2006-01-01

    Thirty-one lactic acid bacterial strains from different species were evaluated for exopolysaccharide (EPS) production in milk. Thermophilic strains produced more EPS than mesophilic ones, but EPS yields were generally low. Ropiness or capsular polysaccharide formation was strain dependent. Six strains produced high-molecular-mass EPS. Polymers were classified into nine groups on the basis of their monomer composition. EPS from Enterococcus strains were isolated and characterized. PMID:16751563

  4. Proteome analysis of the hyaluronic acid-producing bacterium, Streptococcus zooepidemicus

    Directory of Open Access Journals (Sweden)

    Archer Colin

    2009-03-01

    Full Text Available Abstract Background Streptococcus equi subsp. zooepidemicus (S. zooepidemicus is a commensal of horses and an opportunistic pathogen in many animals and humans. Some strains produce copious amounts of hyaluronic acid, making S. zooepidemicus an important industrial microorganism for the production of this valuable biopolymer used in the pharmaceutical and cosmetic industry. Encapsulation by hyaluronic acid is considered an important virulence factor in other streptococci, though the importance in S. zooepidemicus remains poorly understood. Proteomics may provide a better understanding of virulence factors in S. zooepidemicus, facilitate the design of better diagnostics and treatments, and guide engineering of superior production strains. Results Using hyaluronidase to remove the capsule and by optimising cellular lysis, a reference map for S. zooepidemicus was completed. This protocol significantly increased protein recovery, allowing for visualisation of 682 spots and the identification of 86 proteins using mass spectrometry (LC-ESI-MS/MS and MALDI-TOF/TOF; of which 16 were membrane proteins. Conclusion The data presented constitute the first reference map for S. zooepidemicus and provide new information on the identity and characteristics of the more abundantly expressed proteins.

  5. Complete Genome Sequence of the Probiotic Lactic Acid Bacterium Lactobacillus Rhamnosus

    Directory of Open Access Journals (Sweden)

    Samat Kozhakhmetov

    2014-01-01

    Full Text Available Introduction: Lactobacilli are a bacteria commonly found in the gastrointestinal tract. Some species of this genus have probiotic properties. The most common of these is Lactobacillus rhamnosus, a microoganism, generally regarded as safe (GRAS. It is also a homofermentative L-(+-lactic acid producer. The genus Lactobacillus is characterized by an extraordinary degree of the phenotypic and genotypic diversity. However, the studies of the genus were conducted mostly with the unequally distributed, non-random choice of species for sequencing; thus, there is only one representative genome from the Lactobacillus rhamnosus clade available to date. The aim of this study was to characterize the genome sequencing of selected strains of Lactobacilli. Methods: 109 samples were isolated from national domestic dairy products in the laboratory of Center for life sciences. After screaning isolates for probiotic properties, a highly active Lactobacillus spp strain was chosen. Genomic DNA was extracted according to the manufacturing protocol (Wizard® Genomic DNA Purification Kit. The Lactobacillus rhamnosus strain was identified as the highly active Lactobacillus strain accoridng to its morphological, cultural, physiological, and biochemical properties, and a genotypic analysis. Results: The genome of Lactobacillus rhamnosus was sequenced using the Roche 454 GS FLX (454 GS FLX platforms. The initial draft assembly was prepared from 14 large contigs (20 all contigs by the Newbler gsAssembler 2.3 (454 Life Sciences, Branford, CT. Conclusion: A full genome-sequencing of selected strains of lactic acid bacteria was made during the study.

  6. WaaA of the Hyperthermophilic Bacterium Aquifex aeolicus Is a Monofunctional 3-Deoxy-d-manno-oct-2-ulosonic Acid Transferase Involved in Lipopolysaccharide Biosynthesis*

    OpenAIRE

    Mamat, Uwe; Schmidt, Helgo; Munoz, Eva; Lindner, Buko; Fukase, Koichi; Hanuszkiewicz, Anna; WU, Jing; Meredith, Timothy C.; Ronald W Woodard; Hilgenfeld, Rolf; Mesters, Jeroen R.; Holst, Otto

    2009-01-01

    The hyperthermophile Aquifex aeolicus belongs to the deepest branch in the bacterial genealogy. Although it has long been recognized that this unique Gram-negative bacterium carries genes for different steps of lipopolysaccharide (LPS) formation, data on the LPS itself or detailed knowledge of the LPS pathway beyond the first committed steps of lipid A and 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) synthesis are still lacking. We now report the functional characterization of the thermostable K...

  7. Structural and Functional Conversion of Molecular Chaperone ClpB from the Gram-Positive Halophilic Lactic Acid Bacterium Tetragenococcus halophilus Mediated by ATP and Stress▿

    OpenAIRE

    Sugimoto, Shinya; Yoshida, Hiroyuki; Mizunoe, Yoshimitsu; Tsuruno, Keigo; Nakayama, Jiro; Sonomoto, Kenji

    2006-01-01

    In this study, we report the purification, initial structural characterization, and functional analysis of the molecular chaperone ClpB from the gram-positive, halophilic lactic acid bacterium Tetragenococcus halophilus. A recombinant T. halophilus ClpB (ClpBTha) was overexpressed in Escherichia coli and purified by affinity chromatography, hydroxyapatite chromatography, and gel filtration chromatography. As demonstrated by gel filtration chromatography, chemical cross-linking with glutaralde...

  8. Enterococcus bulliens sp. nov., a novel lactic acid bacterium isolated from camel milk.

    Science.gov (United States)

    Kadri, Zaina; Spitaels, Freek; Cnockaert, Margo; Praet, Jessy; El Farricha, Omar; Swings, Jean; Vandamme, Peter

    2015-11-01

    Four lactic acid bacteria isolates obtained from fresh dromedary camel milk produced in Dakhla, a city in southern Morocco, were characterised in order to determine their taxonomic position. The four isolates had highly similar MALDI-TOF MS and RAPD fingerprints and identical 16S rRNA gene sequences. Comparative sequence analysis revealed that the 16S rRNA gene sequence of the four isolates was most similar to that of Enterococcus sulfureus ATCC 49903(T) and Enterococcus italicus DSM 15952(T) (99.33 and 98.59% similarity, respectively). However, sequence analysis of the phenylalanyl-tRNA synthase (pheS), RNA polymerase (rpoA) and ATP synthase (atpA) genes revealed that the taxon represented by strain LMG 28766(T) was well separated from E. sulfureus LMG 13084(T) and E. italicus LMG 22039(T), which was further confirmed by DNA-DNA hybridization values that were clearly below the species demarcation threshold. The novel taxon was easily differentiated from its nearest neighbour species through sequence analysis of protein encoding genes, MALDI-TOF mass spectrometry and multiple biochemical tests, but had a similar percentage G+C content of about 39%. We therefore propose to formally classify these isolates as Enterococcus bulliens sp. nov., with LMG 28766(T) (=CCMM B1177(T)) as the type strain.

  9. Asaia krungthepensis sp. nov., an acetic acid bacterium in the alpha-Proteobacteria.

    Science.gov (United States)

    Yukphan, Pattaraporn; Potacharoen, Wanchern; Tanasupawat, Somboon; Tanticharoen, Morakot; Yamada, Yuzo

    2004-03-01

    Three bacterial strains were isolated from flowers collected in Bangkok, Thailand, by an enrichment-culture approach for acetic acid bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were located in the lineage of the genus Asaia but constituted a cluster separate from the type strains of Asaia bogorensis and Asaia siamensis. The DNA base composition of the isolates was 60.2-60.5 mol% G+C, with a range of 0.3 mol%. The isolates constituted a taxon separate from Asaia bogorensis and Asaia siamensis on the basis of DNA-DNA relatedness. The isolates had morphological, physiological, biochemical and chemotaxonomic characteristics similar to those of the type strains of Asaia bogorensis and Asaia siamensis, but the isolates grew on maltose. The major ubiquinone was Q(10). On the basis of the results obtained, the name Asaia krungthepensis sp. nov. is proposed for the isolates. The type strain is isolate AA08(T) (=BCC 12978(T)=TISTR 1524(T)=NBRC 100057(T)=NRIC 0535(T)), which had a DNA G+C content of 60.3 mol% and was isolated from a heliconia flower ('paksaasawan' in Thai; Heliconia sp.) collected in Bangkok, Thailand.

  10. Asaia krungthepensis sp. nov., an acetic acid bacterium in the alpha-Proteobacteria.

    Science.gov (United States)

    Yukphan, Pattaraporn; Potacharoen, Wanchern; Tanasupawat, Somboon; Tanticharoen, Morakot; Yamada, Yuzo

    2004-03-01

    Three bacterial strains were isolated from flowers collected in Bangkok, Thailand, by an enrichment-culture approach for acetic acid bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were located in the lineage of the genus Asaia but constituted a cluster separate from the type strains of Asaia bogorensis and Asaia siamensis. The DNA base composition of the isolates was 60.2-60.5 mol% G+C, with a range of 0.3 mol%. The isolates constituted a taxon separate from Asaia bogorensis and Asaia siamensis on the basis of DNA-DNA relatedness. The isolates had morphological, physiological, biochemical and chemotaxonomic characteristics similar to those of the type strains of Asaia bogorensis and Asaia siamensis, but the isolates grew on maltose. The major ubiquinone was Q(10). On the basis of the results obtained, the name Asaia krungthepensis sp. nov. is proposed for the isolates. The type strain is isolate AA08(T) (=BCC 12978(T)=TISTR 1524(T)=NBRC 100057(T)=NRIC 0535(T)), which had a DNA G+C content of 60.3 mol% and was isolated from a heliconia flower ('paksaasawan' in Thai; Heliconia sp.) collected in Bangkok, Thailand. PMID:15023938

  11. Polyunsaturated fatty acids in the psychrophilic bacterium Shewanella gelidimarina ACAM 456T: molecular species analysis of major phospholipids and biosynthesis of eicosapentaenoic acid.

    Science.gov (United States)

    Nichols, D S; Nichols, P D; Russell, N J; Davies, N W; McMeekin, T A

    1997-08-16

    The production of eicosapentaenoic acid [20:5omega3; EPA] from Shewanella gelidimarina (ACAM 456T) was investigated with respect to growth temperature and growth on sole carbon sources. The percentage and quantitative yield of EPA remained relatively constant at all growth temperatures within or below the optimal growth temperature region. At higher growth temperatures, these values decreased greatly. Growth on differing sole carbon sources also influenced the percentage and amount of EPA produced, with the fatty acid composition influenced by provision of potential acyl chain primers as sole carbon sources. The highest amounts of EPA occurred from growth on propionic acid and L-leucine respectively, while the highest percentage of EPA occurred from growth on L-proline. Monounsaturated fatty acid components and EPA were concentrated in phosphatidylglycerol (PG), while the proportion of branched-chain fatty acids was elevated in phosphatidylethanolamine (PE); the two major phospholipid classes. Specific associations of EPA with other acyl chains were identified within cellular phospholipid classes. The association of EPA with 17:1 and 18:0 acyl chains in phospholipid species was specific to PG, whereas the association of EPA with i13:0/13:0 and 14:0/i14:0 was specific to PE. Such acyl chain 'tailoring' is indicative of the important role of EPA in bacterial membrane adaptive responses. EPA was also a large component (22%) of a non-esterified fatty acid (NEFA) fraction within the total lipid extract of the bacterium. This may point toward a particular role of NEFA in polyunsaturated fatty acid (PUFA) metabolism. The formation of EPA was investigated by labelling with L-[U-14C]serine and sodium [1-14C]acetate. The accumulation of radiolabel within unsaturated intermediates (di-, tri- and tetraunsaturated fractions) was low, indicating a rapid formation and derivatisation of these components. Similar results were found for the unsaturated fatty acid fractions of both

  12. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis

    DEFF Research Database (Denmark)

    Melchiorsen, C.R.; Jokumsen, K.V.; Villadsen, John;

    2002-01-01

    promoters in L. lactis MG1363 and in the PFL-deficient strain CRM40. Strains with five different PFL levels were obtained. Variation in the PFL level markedly affected the resulting end-product formation in these strains. During growth on galactose, the flux towards mixed-acid products was to a great extent...

  13. Investigation of glycerol assimilation and cofactor metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Holm, Anders Koefoed

    was to investigate the suitability of lactic acid bacteria as production organisms for the production of biofuels and biochemicals. Specifically, the goal was to adapt the model organism Lactococcus lactis to convert crude glycerol, to value-added fuels or chemicals. Work was divided between four main areas: life...... glycerol assimilation operon was designed based on components from known glycerol metabolizers. Three genetic elements were placed in the operon: the glycerol facilitator glpF from E. coli, the glycerol dehydrogenase dhaD from Citrobacter freundii and the dihydroxyacetone kinase dhaK also from Citrobacter...

  14. The structure of the lantibiotic lacticin 481 produced by Lactococcus lactis : location of the thioether bridges

    NARCIS (Netherlands)

    Hooven, Henno W. van den; Lagerwerf, Fija M.; Heerma, Wigger; Haverkamp, Johan; Piard, Jean-Christophe; Hilbers, Cornelis W.; Siezen, Roland J.; Kuipers, Oscar P.; Rollema, Harry S.

    1996-01-01

    The lantibiotic lacticin 481 is a bacteriocin produced by Lactococcus lactis ssp. lactis. This polypeptide contains 27 amino acids, including the unusual residues dehydrobutyrine and the thioether-bridging lanthionine and 3-methyllanthionine. Lacticin 481 belongs to a structurally distinct group of

  15. CONTINUOUS MEASUREMENT OF THE CYTOPLASMIC PH IN LACTOCOCCUS-LACTIS WITH A FLUORESCENT PH INDICATOR

    NARCIS (Netherlands)

    MOLENAAR, D; ABEE, T; KONINGS, WN

    1991-01-01

    The cytoplasmic pH of Lactococcus lactis was studied with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5 (and-6)-carboxyfluorescein (BCECF). A novel method was applied for loading bacterial cells with BCECF, which consists of briefly treating a dense cell suspension with acid in the prese

  16. Modeling peptide formation during the hydrolysis of beta-casein by Lactococcus lactis

    NARCIS (Netherlands)

    Munoz-Tamayo, R.; Groot, de J.; Wierenga, P.A.; Gruppen, H.; Zwietering, M.H.; Sijtsma, L.

    2012-01-01

    Hydrolysis of milk proteins by lactic acid bacteria leads to the formation of a large number of peptides. In this work, the hydrolysis of ß-casein by the protease PrtPI of Lactococcus lactis was studied. Experiments were carried out at different initial enzyme/substrate ratios. Identification and qu

  17. Properties of Nisin Z and Distribution of Its Gene, nisZ, in Lactococcus lactis

    NARCIS (Netherlands)

    Vos, Willem M. de; Mulders, John W.M.; Siezen, Roland J.; Hugenholtz, Jeroen; Kuipers, Oscar P.

    1993-01-01

    Two natural variants of the lantibiotic nisin that are produced by Lactococcus lactis are known. They have a similar structure but differ in a single amino acid residue at position 27: histidine in nisin A and asparagine in nisin Z. The nisin variants were purified to apparent homogeneity, and their

  18. An ABC-type multidrug transporter of Lactococcus lactis possesses an exceptionally broad substrate specificity

    NARCIS (Netherlands)

    Poelarends, GJ; Mazurkiewicz, P; Putman, M; Cool, RH; van Veen, HW; Konings, WN

    2000-01-01

    LmrA is a 590-amino acid membrane protein which confers multidrug resistance on Lactococcus lactis cells by extruding amphiphilic compounds from the inner leaflet of the cytoplasmic membrane at the expense of ATP hydrolysis. Its structural and functional characteristics place it in the P-glycoprotei

  19. Growth Phase-Dependent Proteomes of the Malaysian Isolated Lactococcus lactis Dairy Strain M4 Using Label-Free Qualitative Shotgun Proteomics Analysis

    Directory of Open Access Journals (Sweden)

    Theresa Wan Chen Yap

    2014-01-01

    Full Text Available Lactococcus lactis is the most studied mesophilic fermentative lactic acid bacterium. It is used extensively in the food industry and plays a pivotal role as a cell factory and also as vaccine delivery platforms. The proteome of the Malaysian isolated L. lactis M4 dairy strain, obtained from the milk of locally bred cows, was studied to elucidate the physiological changes occurring between the growth phases of this bacterium. In this study, ultraperformance liquid chromatography nanoflow electrospray ionization tandem mass spectrometry (UPLC- nano-ESI-MSE approach was used for qualitative proteomic analysis. A total of 100 and 121 proteins were identified from the midexponential and early stationary growth phases, respectively, of the L. lactis strain M4. During the exponential phase, the most important reaction was the generation of sufficient energy, whereas, in the early stationary phase, the metabolic energy pathways decreased and the biosynthesis of proteins became more important. Thus, the metabolism of the cells shifted from energy production in the exponential phase to the synthesis of macromolecules in the stationary phase. The resultant proteomes are essential in providing an improved view of the cellular machinery of L. lactis during the transition of growth phases and hence provide insight into various biotechnological applications.

  20. Cloning and Expression of the Lactococcus lactis purDEK Genes, Required for Growth in Milk

    DEFF Research Database (Denmark)

    Nilsson, Dan; Kilstrup, Mogens

    1998-01-01

    An operon containing the genes purD and purE and part of the purK gene was cloned from the facultative anaerobic gram positive bacterium Lactococcus lactis by complementation of the purD mutation in Escherichia coli SO609. The genes encode enzymes in the de novo pathway of purine nucleotides....... The expression of the genes was regulated approximately 35-fold at the transcription level by the availability of purines in the growth medium. Deletion analysis of the nucleotide region upstream of purD indicated that a region of 145 bp is enough to give regulated expression of the reporter lacLM genes, which...

  1. Construction of a new shuttle vector for DNA delivery into mammalian cells using non-invasive Lactococcus lactis.

    Science.gov (United States)

    Yagnik, Bhrugu; Padh, Harish; Desai, Priti

    2016-04-01

    Use of food grade Lactococcus lactis (L. lactis) is fast emerging as a safe alternative for delivery of DNA vaccine. To attain efficient DNA delivery, L. lactis, a non-invasive bacterium is converted to invasive strain either by expressing proteins like Internalin A (InlA) or Fibronectin binding protein A (FnBPA) or through chemical treatments. However the safety status of invasive L. lactis is questionable. In the present report, we have shown that non-invasive L. lactis efficiently delivered the newly constructed reporter plasmid pPERDBY to mammalian cells without any chemical enhancers. The salient features of the vector are; I) Ability to replicate in two different hosts; Escherichia coli (E. coli) and Lactic Acid Bacteria (LAB), II) One of the smallest reporter plasmid for DNA vaccine, III) Enhanced Green Fluorescence Protein (EGFP) linked to Multiple Cloning Site (MCS), IV) Immunostimulatory CpG motifs functioning as an adjuvant. Expression of EGFP in pPERDBY transfected CHO-K1 and Caco-2 cells demonstrates its functionality. Non-invasive r-L. lactis was found efficient in delivering pPERDBY to Caco-2 cells. The in vitro data presented in this article supports the hypothesis that in the absence of invasive proteins or relevant chemical treatment, L. lactis was found efficient in delivering DNA to mammalian cells. PMID:26655884

  2. PpiA, a surface PPIase of the cyclophilin family in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Nicolas Trémillon

    Full Text Available BACKGROUND: Protein folding in the envelope is a crucial limiting step of protein export and secretion. In order to better understand this process in Lactococcus lactis, a lactic acid bacterium, genes encoding putative exported folding factors like Peptidyl Prolyl Isomerases (PPIases were searched for in lactococcal genomes. RESULTS: In L. lactis, a new putative membrane PPIase of the cyclophilin subfamily, PpiA, was identified and characterized. ppiA gene was found to be constitutively expressed under normal and stress (heat shock, H(2O(2 conditions. Under normal conditions, PpiA protein was synthesized and released from intact cells by an exogenously added protease, showing that it was exposed at the cell surface. No obvious phenotype could be associated to a ppiA mutant strain under several laboratory conditions including stress conditions, except a very low sensitivity to H(2O(2. Induction of a ppiA copy provided in trans had no effect i on the thermosensitivity of an mutant strain deficient for the lactococcal surface protease HtrA and ii on the secretion and stability on four exported proteins (a highly degraded hybrid protein and three heterologous secreted proteins in an otherwise wild-type strain background. However, a recombinant soluble form of PpiA that had been produced and secreted in L. lactis and purified from a culture supernatant displayed both PPIase and chaperone activities. CONCLUSIONS: Although L. lactis PpiA, a protein produced and exposed at the cell surface under normal conditions, displayed a very moderate role in vivo, it was found, as a recombinant soluble form, to be endowed with folding activities in vitro.

  3. Over-expressed CmbT multidrug resistance transporter improves the fitness of Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Filipić Brankica

    2013-01-01

    Full Text Available The influence of the over-expression of CmbT multidrug resistance transporter on the growth rate of Lactococcus lactis NZ9000 was studied. L. lactis is a lactic acid bacteria (LAB widely used as a starter culture in dairy industry. Recently characterized CmbT MDR transporter in L. lactis confers resistance to a wide variety of toxic compounds as well as to some clinically relevant antibiotics. In this study, the cmbT gene was over-expressed in the strain L. lactis NZ9000 in the presence of nisin inducer. Over-expression of the cmbT gene in L. lactis NZ9000 was followed by RT-PCR. The obtained results showed that the cmbT gene was successfully over-expressed by addition of sub-inhibitory amounts of nisin. Growth curves of L. lactis NZ9000/pCT50 over-expressing the cmbT gene and L. lactis NZ9000 control strain were followed in the rich medium as well as in the chemically defined medium in the presence solely of methionine (0.084 mM or mix of methionine and cysteine (8.4 mM and 8.2 mM, respectively. Resulting doubling times revealed that L. lactis NZ9000/pCT50 had higher growth rate comparing to the control strain. This could be a consequence of the CmbT efflux activity, which improves the fitness of the host bacterium through the elimination of toxic compounds from the cell.

  4. Engineering Trehalose Synthesis in Lactococcus lactis for Improved Stress Tolerance ▿ †

    OpenAIRE

    Carvalho, Ana Lúcia; Cardoso, Filipa S.; Bohn, Andreas; Neves, Ana Rute; Santos, Helena

    2011-01-01

    Trehalose accumulation is a common cell defense strategy against a variety of stressful conditions. In particular, our team detected high levels of trehalose in Propionibacterium freudenreichii in response to acid stress, a result that led to the idea that endowing Lactococcus lactis with the capacity to synthesize trehalose could improve the acid tolerance of this organism. To this end, we took advantage of the endogenous genes involved in the trehalose catabolic pathway of L. lactis, i.e., ...

  5. Protein export elements from Lactococcus lactis

    NARCIS (Netherlands)

    Perez-Martinez, Gaspar; Kok, Jan; Venema, Gerhardus; Dijl, Jan Maarten van; Smith, Hilda; Bron, Sierd

    1992-01-01

    Broad-host-range plasmids carrying α-amylase or β-lactamase reporter genes lacking a signal sequence were used to select export elements from Lactococcus lactis chromosomal DNA that could function as signal sequences. Fragments containing such elements were identified by their ability to direct the

  6. Glutathione protects Lactococcus lactis against oxidative stress

    NARCIS (Netherlands)

    Li, Y.; Hugenholtz, J.; Abee, T.; Molenaar, D.

    2003-01-01

    Glutathione was found in several dairy Lactococcus lactis strains grown in M17 medium. None of these strains was able to synthesize glutathione. In chemically defined medium, L. lactis subsp. cremoris strain SK11 was able to accumulate up to similar to60 mM glutathione when this compound was added t

  7. Functionality of Sortase A in Lactococcus lactis

    NARCIS (Netherlands)

    Dieye, Yakhya; Oxaran, Virginie; Ledue-Clier, Florence; Alkhalaf, Walid; Buist, Girbe; Juillard, Vincent; Lee, Chang Won; Piard, Jean-Christophe

    2010-01-01

    Lactococcus lactis IL1403 harbors a putative sortase A (SrtA) and 11 putative sortase substrates that carry the canonical LPXTG signature of such substrates. We report here on the functionality of SrtA to anchor five LPXTG substrates to the cell wall, thus suggesting that SrtA is the housekeeping so

  8. Regulation of carbon catabolism in Lactococcus lactis.

    NARCIS (Netherlands)

    Aleksandrzak, T; Kowalczyk, M; Kok, J; Bardowski, J; Bielecki, S; Tramper, J; Polak, J

    2000-01-01

    The Lactococcus lactis IL1403 is a lactose negative, plasmid free strain. Nevertheless, it is able to hydrolyze lactose in the presence of cellobiose. In this work we describe identification of a gene involved in this process. The gene was found to be homologous to the sugar catabolism regulator, cc

  9. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; Naik, D.N.; PrabhaDevi

    dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring...

  10. Functional Expression of an Orchid Fragrance Gene in Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Adelene Ai Lian Song

    2012-02-01

    Full Text Available Vanda Mimi Palmer (VMP, an orchid hybrid of Vanda tesselata and Vanda Tan Chay Yan is a highly scented tropical orchid which blooms all year round. Previous studies revealed that VMP produces a variety of isoprenoid volatiles during daylight. Isoprenoids are well known to contribute significantly to the scent of most fragrant plants. They are a large group of secondary metabolites which may possess valuable characteristics such as flavor, fragrance and toxicity and are produced via two pathways, the mevalonate (MVA pathway or/and the 2-C-methyl-D-erythritol-4-phosphate (MEP pathway. In this study, a sesquiterpene synthase gene denoted VMPSTS, previously isolated from a floral cDNA library of VMP was cloned and expressed in Lactococcus lactis to characterize the functionality of the protein. L. lactis, a food grade bacterium which utilizes the mevalonate pathway for isoprenoid production was found to be a suitable host for the characterization of plant terpene synthases. Through recombinant expression of VMPSTS, it was revealed that VMPSTS produced multiple sesquiterpenes and germacrene D dominates its profile.

  11. The Plasmid Complement of the Cheese Isolate Lactococcus garvieae IPLA 31405 Revealed Adaptation to the Dairy Environment

    Science.gov (United States)

    Flórez, Ana Belén; Mayo, Baltasar

    2015-01-01

    Lactococcus garvieae is a lactic acid bacterium found in raw-milk dairy products as well as a range of aquatic and terrestrial environments. The plasmids in L. garvieae have received little attention compared to those of dairy Lactococcus lactis, in which the genes carried by these extrachromosomal elements are considered of adaptive value. The present work reports the sequencing and analysis of the plasmid complement of L. garvieae IPLA 31405, a strain isolated from a traditional, Spanish, starter-free cheese made from raw-milk. It consists of pLG9 and pLG42, of 9,124 and 42,240 nucleotides, respectively. Based on sequence and structural homology in the putative origin of replication (ori) region, pLG9 and pLG42 are predicted to replicate via a theta mechanism. Real-time, quantitative PCR showed the number of copies per chromosome equivalent of pLG9 and pLG42 to be around two and five, respectively. Sequence analysis identified eight complete open reading frames (orfs) in pLG9 and 36 in pLG42; these were organized into functional modules or cassettes containing different numbers of genes. These modules were flanked by complete or interrupted insertion sequence (IS)-like elements. Among the modules of pLG42 was a gene cluster encoding specific components of a phosphoenolpyruvate-phosphotransferase (PEP-PTS) system, including a phospho-β-galacosidase. The cluster showed a complete nucleotide identity respect to that in plasmids of L. lactis. Loss of pLG42 showed this to be involved in lactose assimilation. In the same plasmid, an operon encoding a type I restriction/modification (R/M) system was also identified. The specificity of this R/M system might be broadened by different R/M specificity subunits detected in pLG9 and in the bacterial chromosome. However, challenges of L. garvieae IPLA 31405 against L. lactis phages proved that the R/M system was not involved in phage resistance. Together, these results support the hypothesis that, as in L. lactis, pLG42

  12. Construction and Expression of β-galactosidase Genetically Engineered Lactococcus lactis

    Institute of Scientific and Technical Information of China (English)

    吕晓英; 张朝武; 裴晓方; 刘祥; 余倩; 刘衡川

    2004-01-01

    Our objective is to solve the lactose malabsorption and intolerance of human beings by combining mlcro-ecology path with genetic engineering technique. Plasmid pMG36e was used to clone and express a β-galactosidase gene from L.delbrueckii bulgaricus strain 1. 1480 in the Lactococcus lactis subsp, cremoris MG1363 and Lactococcus lactis subsp. lactis IL1403. The recombinant plasmid was preserved and proliferated in Escherichia coli ( E. coli) JM109, and transformed into MG1363 and 1L1403 by electroporation. The protein expression was studied. (1) The bifidobacterium culture medium (BBL) was suitable for the growth of the strain 1. 1480. (2) With 13 amino acids at the N-terminus from the vector, β-galactosidase fusion protein (which retained the enzyme activity) could be successfully expressed in E. coli JM109, MG1363 and IL1403, but the expression quantity was larger in the former than in the latter two. (3) The SD sequence designed could be successfully recognized by both the E. coli and the Lactococcus lactis, but the expression level of the non-fusion β-galac-tosidase protein was lower than that of the fusion protein in the same host. The β-galactosidase genetically engineered E.coli JM109 is a useful tool to produce this enzyme in vitro. The signal peptide of the usp45 protein from the Lactococcus lactis can be added before the promoter sequence to promote β-galactosidase secretion from Lactococcus lactis. The potential application of the β-galactosidase genetically engineered MG1363 and IL1403 to cure the lactose malabsorption and lactose intolerance in both health food and medicine is promising。

  13. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti.

    Science.gov (United States)

    Draghi, W O; Del Papa, M F; Hellweg, C; Watt, S A; Watt, T F; Barsch, A; Lozano, M J; Lagares, A; Salas, M E; López, J L; Albicoro, F J; Nilsson, J F; Torres Tejerizo, G A; Luna, M F; Pistorio, M; Boiardi, J L; Pühler, A; Weidner, S; Niehaus, K; Lagares, A

    2016-01-01

    Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0-6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia. PMID:27404346

  14. Mucosal Delivery of Murine Interleukin-2 (IL-2) and IL-6 by Recombinant Strains of Lactococcus lactis Coexpressing Antigen and Cytokine

    OpenAIRE

    Steidler, Lothar; Robinson, K.; Chamberlain, L.; SCHOFIELD, KM; Remaut, Erik; LE PAGE, RWF; Wells, JM

    1998-01-01

    Lactococcus lactis is a nonpathogenic and noncolonizing bacterium which is being developed as a vaccine delivery vehicle for immunization by mucosal routes. To determine whether lactococci can also deliver cytokines to the immune system, we have constructed novel constitutive expression strains of L. lactis which accumulate a test antigen, tetanus toxin fragment C (TTFC), within the cytoplasmic compartment and also secrete either murine interleukin-2 (IL-2) or IL-6. When mice were immunized i...

  15. Control of Brochothrix thermosphacta in pork meat using Lactococcus lactis subsp. lactis I23 isolated from beef

    Directory of Open Access Journals (Sweden)

    Olusegun A Olaoye

    2015-06-01

    Full Text Available This study evaluated the antimicrobial activities of two lactic acid bacteria (LAB Lactococcus lactis subsp. lactis I23 and L. lactis subsp. hordinae E91 against Brochothrix thermosphacta in pork during storage at ambient temperature (30oC over 7 days. Both the LAB strains and spoilage organism were inoculated on fresh pork samples at 1x106cfu/g. About 3 log reduction in the spoilage organism was obtained in LAB treated samples after 48 h of storage. The spoilage organism was confirmed to be sensitive to the bacteriocin nisin produced by Lactococcus lactis subsp. lactis I23. There were reductions in the counts of Salmonella typhimurium, Listeria monocytogenes, Enterobacteriaceae and Staphylococcus in the treated samples. Conclusively, growth of B. thermosphacta could be effectively controlled by nisin producing Lactococcus lactis subsp. lactis I23 in fresh pork during storage, thereby enhancing shelf life of the product.

  16. Complete Genome Sequence of Lactococcus lactis subsp. lactis CV56, a Probiotic Strain Isolated from the Vaginas of Healthy Women▿

    OpenAIRE

    Gao, Yong; Lu, Ying; Teng, Kun-Ling; Chen, Mei-Ling; Zheng, Hua-Jun; Zhu, Yong-Qiang; Zhong, Jin

    2011-01-01

    Lactic acid bacteria that exist in the urinogenital system play an important role in maintaining the health of the host. Here, we report the finished and annotated genome of a Lactococcus strain that was isolated from the vaginas of healthy women and shows probiotic properties, including nisin A production and adhesion to vaginal epithelial cells.

  17. Molecular Cloning and Sequence Analysis of the X-Prolyl Dipeptidyl Aminopeptidase Gene From Lactococcus lactis subsp. cremoris

    NARCIS (Netherlands)

    Mayo, Baltasar; Kok, Jan; Venema, Konraad; Bockelmann, Wilhelm; Teuber, Michael; Reinke, Heinz; Venema, Gerhardus

    1991-01-01

    Lactococcus lactis subsp. cremoris P8-2-47 contains an X-prolyl dipeptidyl aminopeptidase (X-PDAP; EC 3.4.14.5). A mixed-oligonucleotide probe prepared on the basis of the N-terminal amino acid sequence of the purified protein was made and used to screen a partial chromosomal DNA bank in Escherichia

  18. Carboxydothermus pertinax sp. nov., a thermophilic, hydrogenogenic, Fe(III)-reducing, sulfur-reducing carboxydotrophic bacterium from an acidic hot spring

    DEFF Research Database (Denmark)

    Yoneda, Yasuko; Yoshida, Takashi; Kawaichi, Satoshi;

    2012-01-01

    growth on CO, H(2) and CO(2) were produced. Growth occurred on molecular hydrogen as an energy source and carbon dioxide as a sole carbon source. Growth was observed on various organic compounds under an N(2) atmosphere with the reduction of ferric iron. The temperature range for carboxydotrophic growth......A novel anaerobic, Fe(III)-reducing, hydrogenogenic, carboxydotrophic bacterium, designated strain Ug1(T), was isolated from a volcanic acidic hot spring in southern Kyushu Island, Japan. Cells of the isolate were rod-shaped (1.0-3.0 µm long) and motile due to peritrichous flagella. Strain Ug1(T...... oxidation. On the basis of phylogenetic analysis and unique physiological features, the isolate represents a novel species of the genus Carboxydothermus for which the name Carboxydothermus pertinax sp. nov. is proposed; the type strain of the novel species is Ug1(T) (=DSM 23698(T)=NBRC 107576(T))....

  19. Growth and gas formation by Lactobacillus wasatchensis, a novel obligatory heterofermentative nonstarter lactic acid bacterium, in Cheddar-style cheese made using a Streptococcus thermophilus starter.

    Science.gov (United States)

    Ortakci, Fatih; Broadbent, Jeffery R; Oberg, Craig J; McMahon, Donald J

    2015-11-01

    A novel slow-growing, obligatory heterofermentative, nonstarter lactic acid bacterium (NSLAB), Lactobacillus wasatchensis WDC04, was studied for growth and gas production in Cheddar-style cheese made using Streptococcus thermophilus as the starter culture. Cheesemaking trials were conducted using S. thermophilus alone or in combination with Lb. wasatchensis deliberately added to cheese milk at a level of ~10(4) cfu/mL. Resulting cheeses were ripened at 6 or 12°C. At d 1, starter streptococcal numbers were similar in both cheeses (~10(9) cfu/g) and fast-growing NSLAB lactobacilli counts were below detectable levels (blowing in Cheddar-style cheeses, especially when the cheese is ripened at elevated temperature. PMID:26364109

  20. Immunomodulatory effect of halophilic lactic acid bacterium Tetragenococcus halophilus Th221 from soy sauce moromi grown in high-salt medium.

    Science.gov (United States)

    Masuda, Susumu; Yamaguchi, Hitomi; Kurokawa, Toshiko; Shirakami, Tomoyuki; Tsuji, Ryohei F; Nishimura, Ikuko

    2008-02-10

    A halophilic lactic acid bacterium, Tetragenococcus halophilus, was found to possess an immunomodulatory activity that promotes T helper type 1 (Th1) immunity in addition to its important roles in soy sauce brewing. Strain Th221 was selected from 151 strains isolated from soy sauce (shoyu) moromi, since it induced strong interleukin (IL)-12 production by mouse peritoneal macrophages in vitro. The relationship between the salt concentration in the medium and the IL-12 production-inducing activity of this strain was investigated, and the activity was found to be strong when the bacteria were grown in medium containing > or =10% (w/v) salt. The Th1-promoting activity was also manifested in an in vivo mouse study, since Th1-dependant contact sensitivity was augmented and Th2 immunity, as evaluated by specific immunoglobulin E production, was suppressed following oral ingestion of Th221. Based on these findings, Th221 administration may be useful for improving allergic symptoms. PMID:18061297

  1. Gene inactivation in Lactococcus lactis: histidine biosynthesis.

    OpenAIRE

    Delorme, C; Godon, J J; Ehrlich, S D; Renault, P

    1993-01-01

    Lactococcus lactis strains from dairy and nondairy sources were tested for the ability to grow in the absence of histidine. Among 60 dairy strains tested, 56 required histidine, whereas only 1 of 11 nondairy strains had this requirement. Moreover, 10 of the 56 auxotrophic strains were able to grow in the presence of histidinol (Hol+), the immediate histidine precursor. This indicates that adaptation to milk often results in histidine auxotrophy. The histidine operon was detected by Southern h...

  2. High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol

    Directory of Open Access Journals (Sweden)

    Filioussis George

    2007-03-01

    Full Text Available Abstract Background A goal for the food industry has always been to improve strains of Lactococcus lactis and stabilize beneficial traits. Genetic engineering is used extensively for manipulating this lactic acid bacterium, while electropolation is the most widely used technique for introducing foreign DNA into cells. The efficiency of electrotransformation depends on the level of electropermealization and pretreatment with chemicals which alter cell wall permeability, resulting in improved transformation efficiencies is rather common practice in bacteria as in yeasts and fungi. In the present study, treatment with lithium acetate (LiAc and dithiothreitol (DTT in various combinations was applied to L. lactis spp. lactis cells of the early-log phase prior to electroporation with plasmid pTRKH3 (a 7.8 kb shuttle vector, suitable for cloning into L. lactis. Two strains of L. lactis spp. lactis were used, L. lactis spp. lactis LM0230 and ATCC 11454. To the best of our knowledge these agents have never been used before with L. lactis or other bacteria. Results Electrotransformation efficiencies of up to 105 transformants per μg DNA have been reported in the literature for L. lactis spp.lactis LM0230. We report here that treatment with LiAc and DDT before electroporation increased transformation efficiency to 225 ± 52.5 × 107 transformants per μg DNA, while with untreated cells or treated with LiAc alone transformation efficiency approximated 1.2 ± 0.5 × 105 transformants per μg DNA. Results of the same trend were obtained with L. lactis ATCC 11454, although transformation efficiency of this strain was significantly lower. No difference was found in the survival rate of pretreated cells after electroporation. Transformation efficiency was found to vary directly with cell density and that of 1010 cells/ml resulted in the highest efficiencies. Following electrotransformation of pretreated cells with LiAc and DDT, pTRKH3 stability was examined

  3. Genes but not genomes reveal bacterial domestication of Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Delphine Passerini

    Full Text Available BACKGROUND: The population structure and diversity of Lactococcus lactis subsp. lactis, a major industrial bacterium involved in milk fermentation, was determined at both gene and genome level. Seventy-six lactococcal isolates of various origins were studied by different genotyping methods and thirty-six strains displaying unique macrorestriction fingerprints were analyzed by a new multilocus sequence typing (MLST scheme. This gene-based analysis was compared to genomic characteristics determined by pulsed-field gel electrophoresis (PFGE. METHODOLOGY/PRINCIPAL FINDINGS: The MLST analysis revealed that L. lactis subsp. lactis is essentially clonal with infrequent intra- and intergenic recombination; also, despite its taxonomical classification as a subspecies, it displays a genetic diversity as substantial as that within several other bacterial species. Genome-based analysis revealed a genome size variability of 20%, a value typical of bacteria inhabiting different ecological niches, and that suggests a large pan-genome for this subspecies. However, the genomic characteristics (macrorestriction pattern, genome or chromosome size, plasmid content did not correlate to the MLST-based phylogeny, with strains from the same sequence type (ST differing by up to 230 kb in genome size. CONCLUSION/SIGNIFICANCE: The gene-based phylogeny was not fully consistent with the traditional classification into dairy and non-dairy strains but supported a new classification based on ecological separation between "environmental" strains, the main contributors to the genetic diversity within the subspecies, and "domesticated" strains, subject to recent genetic bottlenecks. Comparison between gene- and genome-based analyses revealed little relationship between core and dispensable genome phylogenies, indicating that clonal diversification and phenotypic variability of the "domesticated" strains essentially arose through substantial genomic flux within the dispensable

  4. Fatty acids in bacterium Dietzia sp. grown on simple and complex hydrocarbons determined as FAME by GC-MS.

    Science.gov (United States)

    Hvidsten, Ina; Mjøs, Svein Are; Bødtker, Gunhild; Barth, Tanja

    2015-09-01

    The influence of growth substrates on the fatty acids produced by Dietzia sp. A14101 has been studied to investigate how qualitative and semi-quantitative information on fatty acids correlates with the ability of this strain to access and utilize a wide range of water-immiscible HC-substrates by modifying the FA content and thus also the properties of the cellular membrane. After incubation on different substrates and media, the profiles of fatty acids (FA) were analyzed by gas chromatography and mass spectrometry (GC-MS). The equivalent chain length (ECL) index calibration system was employed to identify FA. The effect of each substrate on the cell surface charge and on the hydrophobicity of the cellular membrane was also investigated. The results indicate that the variation of the content of saturated fatty acids (SAT-FA) versus mono-unsaturated fatty acids (MUFA) was found to be the most pronounced while branched FA exhibited much less variation in spite of different substrate regimes. The regulation of the ratio of SAT-FA and MUFA seems to be coupled with the regulation of the charge and hydrophobicity of the outer cellular surface. The exposure to a water immiscible substrate led to the development of the negative cellular surface charge, production of carotenoid-type pigments and increased hydrophobicity of the cellular surface. The specific aspects of the adaptation mechanism could have implications for bioremediation and/or (M)EOR applications. PMID:26120076

  5. Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and biosuccinic acid production.

    Science.gov (United States)

    Gunnarsson, Ingólfur B; Alvarado-Morales, Merlin; Angelidaki, Irini

    2014-10-21

    Biogas is an attractive renewable energy carrier. However, it contains CO2 which limits its use for certain applications. Here we report a novel approach for removing CO2 from biogas and capturing it as a biochemical through a biological process. This approach entails converting CO2 into biosuccinic acid using the bacterial strain Actinobacillus succinogenes 130 Z, and simultaneously producing high-purity CH4 (> 95%). Results showed that when pressure during fermentation was increased from 101.325 to 140 kPa, higher CO2 solubility was achieved, thereby positively affecting final succinic acid yield and titer, CO2 consumption rate, and CH4 purity. When using biogas as the only CO2 source at 140 kPa, the CO2 consumption rate corresponded to 2.59 L CO2 L(-1) d(-1) with a final succinic acid titer of 14.4 g L(-1). Under this pressure condition, the highest succinic acid yield and biogas quality reached corresponded to 0.635 g g(-1) and 95.4% (v v(-1)) CH4 content, respectively, after 24 h fermentation. This work represents the first successful attempt to develop a system capable of upgrading biogas to vehicle fuel/gas grid quality and simultaneously produce biosuccinic acid, a valuable building block with large market potential in the near term.

  6. Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and bio-succinic acid production

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Alvarado-Morales, Merlin; Angelidaki, Irini

    2014-01-01

    Biogas is an attractive renewable energy carrier. However, it contains CO2 which limits certain applications of biogas. Here we report a novel approach for removing CO2 from biogas and capturing it as a biochemical through a biological process. This approach entails converting CO2 into bio......-succinic acid using the bacterial strain Actinobacillus succinogenes 130Z, and simultaneously producing high purity CH4 (>95%). Results showed that when pressure during fermentation was increased from 101.325 to 140 kPa, higher CO2 solubility was achieved, thereby positively affecting final succinic acid yield...... and titre, CO2 consumption rate and CH4 purity. When using biogas as the only CO2 source at 140 kPa, the CO2 consumption rate corresponded to 2.59 L CO2 L-1 d-1 with a final succinic acid titre of 14.4 g L-1. Under this pressure condition the highest succinic acid yield and biogas quality reached...

  7. In vivo and in vitro complementation study comparing the function of DnaK chaperone systems from halophilic lactic acid bacterium Tetragenococcus halophilus and Escherichia coli.

    Science.gov (United States)

    Sugimoto, Shinya; Saruwatari, Kozue; Higashi, Chihana; Tsuruno, Keigo; Matsumoto, Shunsuke; Nakayama, Jiro; Sonomoto, Kenji

    2008-03-01

    In this study, we characterized the DnaK chaperone system from Tetragenococcus halophilus, a halophilic lactic acid bacterium. An in vivo complementation test showed that under heat stress conditions, T. halophilus DnaK did not rescue the growth of the Escherichia coli dnaK deletion mutant, whereas T. halophilus DnaJ and GrpE complemented the corresponding mutations of E. coli. Purified T. halophilus DnaK showed intrinsic weak ATPase activity and holding chaperone activity in vitro, but T. halophilus DnaK did not cooperate with the purified DnaJ and GrpE from either T. halophilus or E. coli in ATP hydrolysis or luciferase-refolding reactions under the conditions tested. E. coli DnaK, however, cross-reacted with those from both bacteria. This difference in the cooperation with DnaJ and GrpE appears to result in an inability of T. halophilus DnaK to replace the in vivo function of the DnaK chaperone of E. coli. PMID:18323638

  8. Structural and functional conversion of molecular chaperone ClpB from the gram-positive halophilic lactic acid bacterium Tetragenococcus halophilus mediated by ATP and stress.

    Science.gov (United States)

    Sugimoto, Shinya; Yoshida, Hiroyuki; Mizunoe, Yoshimitsu; Tsuruno, Keigo; Nakayama, Jiro; Sonomoto, Kenji

    2006-12-01

    In this study, we report the purification, initial structural characterization, and functional analysis of the molecular chaperone ClpB from the gram-positive, halophilic lactic acid bacterium Tetragenococcus halophilus. A recombinant T. halophilus ClpB (ClpB(Tha)) was overexpressed in Escherichia coli and purified by affinity chromatography, hydroxyapatite chromatography, and gel filtration chromatography. As demonstrated by gel filtration chromatography, chemical cross-linking with glutaraldehyde, and electron microscopy, ClpB(Tha) forms a homohexameric single-ring structure in the presence of ATP under nonstress conditions. However, under stress conditions, such as high-temperature (>45 degrees C) and high-salt concentrations (>1 M KCl), it dissociated into dimers and monomers, regardless of the presence of ATP. The hexameric ClpB(Tha) reactivated heat-aggregated proteins dependent upon the DnaK system from T. halophilus (KJE(Tha)) and ATP. Interestingly, the mixture of dimer and monomer ClpB(Tha), which was formed under stress conditions, protected substrate proteins from thermal inactivation and aggregation in a manner similar to those of general molecular chaperones. From these results, we hypothesize that ClpB(Tha) forms dimers and monomers to function as a holding chaperone under stress conditions, whereas it forms a hexamer ring to function as a disaggregating chaperone in cooperation with KJE(Tha) and ATP under poststress conditions. PMID:16997952

  9. Structural and Functional Conversion of Molecular Chaperone ClpB from the Gram-Positive Halophilic Lactic Acid Bacterium Tetragenococcus halophilus Mediated by ATP and Stress▿

    Science.gov (United States)

    Sugimoto, Shinya; Yoshida, Hiroyuki; Mizunoe, Yoshimitsu; Tsuruno, Keigo; Nakayama, Jiro; Sonomoto, Kenji

    2006-01-01

    In this study, we report the purification, initial structural characterization, and functional analysis of the molecular chaperone ClpB from the gram-positive, halophilic lactic acid bacterium Tetragenococcus halophilus. A recombinant T. halophilus ClpB (ClpBTha) was overexpressed in Escherichia coli and purified by affinity chromatography, hydroxyapatite chromatography, and gel filtration chromatography. As demonstrated by gel filtration chromatography, chemical cross-linking with glutaraldehyde, and electron microscopy, ClpBTha forms a homohexameric single-ring structure in the presence of ATP under nonstress conditions. However, under stress conditions, such as high-temperature (>45°C) and high-salt concentrations (>1 M KCl), it dissociated into dimers and monomers, regardless of the presence of ATP. The hexameric ClpBTha reactivated heat-aggregated proteins dependent upon the DnaK system from T. halophilus (KJETha) and ATP. Interestingly, the mixture of dimer and monomer ClpBTha, which was formed under stress conditions, protected substrate proteins from thermal inactivation and aggregation in a manner similar to those of general molecular chaperones. From these results, we hypothesize that ClpBTha forms dimers and monomers to function as a holding chaperone under stress conditions, whereas it forms a hexamer ring to function as a disaggregating chaperone in cooperation with KJETha and ATP under poststress conditions. PMID:16997952

  10. Construction and application of chromosomally integrated lac-lux gene markers to monitor the fate of a 2,4-dichlorophenoxyacetic acid-degrading bacterium in contaminated soils.

    Science.gov (United States)

    Masson, L; Comeau, Y; Brousseau, R; Samson, R; Greer, C

    1993-03-01

    A reporter gene system, containing luxAB and lacZY, was constructed and integrated, using Tn7 transposition, into the chromosome of a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading soil bacterium, Pseudomonas cepacia (BRI6001), to monitor its fate when introduced into soil microcosms. The genes were stably maintained in the modified strain of BRI6001, BRI6001L, for more than 300 generations in the absence of selection pressure, and had no apparent effects on biochemical or physiological properties. BRI6001L was easily and rapidly identified as light-emitting blue colonies on 2,4-D medium containing XGal (5-bromo-4-chloro-indolyl-beta-D-galacto-pyranoside) in the presence of n-decanal. Survival rates of BRI6001L introduced into non-sterile soil microcosms were substrate- and contaminant-dependent. The decrease in population density was lowest in a 2,4-D-amended agricultural soil, and highest in a wood-treatment facility soil contaminated with pentachlorophenol, creosote and heavy metals. A viable cell density as low as 10 cfu g-1 was detected in soil microcosms. The biochemical and growth properties of BRI6001 and BRI6001L, and their behaviour when introduced into soil microcosms indicates that BRI6001L can be used as a reliable model to predict the fate of BRI6001 when used to bioaugment contaminated soil. PMID:7506623

  11. Identification of a 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid Reductase, FlRed, in an Alginolytic Bacterium Flavobacterium sp. Strain UMI-01

    Directory of Open Access Journals (Sweden)

    Akira Inoue

    2015-01-01

    Full Text Available In alginate-assimilating bacteria, alginate is depolymerized to unsaturated monosaccharide by the actions of endolytic and exolytic alginate lyases (EC 4.2.2.3 and EC 4.2.2.11. The monosaccharide is non-enzymatically converted to 4-deoxy-l-ery thro-5-hexoseulose uronic acid (DEH, then reduced to 2-keto-3-deoxy-d-gluconate (KDG by a specific reductase, and metabolized through the Entner–Doudoroff pathway. Recently, the NADPH-dependent reductase A1-R that belongs to short-chain dehydrogenases/reductases (SDR superfamily was identified as the DEH-reductase in Sphingomonas sp. A1. We have subsequently noticed that an SDR-like enzyme gene, flred, occurred in the genome of an alginolytic bacterium Flavobacterium sp. strain UMI-01. In the present study, we report on the deduced amino-acid sequence of flred and DEH-reducing activity of recombinant FlRed. The deduced amino-acid sequence of flred comprised 254 residues and showed 34% amino-acid identities to that of A1-R from Sphingomonas sp. A1 and 80%–88% to those of SDR-like enzymes from several alginolytic bacteria. Common sequence motifs of SDR-superfamily enzymes, e.g., the catalytic tetrad Asn-Lys-Tyr-Ser and the cofactor-binding sequence Thr-Gly-x-x-x-Gly-x-Gly in Rossmann fold, were completely conserved in FlRed. On the other hand, an Arg residue that determined the NADPH-specificity of Sphingomonas A1-R was replaced by Glu in FlRed. Thus, we investigated cofactor-preference of FlRed using a recombinant enzyme. As a result, the recombinant FlRed (recFlRed was found to show high specificity to NADH. recFlRed exhibited practically no activity toward variety of aldehyde, ketone, keto ester, keto acid and aldose substrates except for DEH. On the basis of these results, we conclude that FlRed is the NADH-dependent DEH-specific SDR of Flavobacterium sp. strain UMI-01.

  12. Aureispira marina gen. nov., sp. nov., a gliding, arachidonic acid-containing bacterium isolated from the southern coastline of Thailand.

    Science.gov (United States)

    Hosoya, Shoichi; Arunpairojana, Vullapa; Suwannachart, Chatrudee; Kanjana-Opas, Akkharawit; Yokota, Akira

    2006-12-01

    Three strains of gliding bacteria, 24(T), 62 and 71, isolated from a marine sponge and algae from the southern coastline of Thailand, were studied using a polyphasic approach to clarify their taxonomic positions. A phylogenetic analysis based on 16S rRNA gene sequences showed that the three isolates formed a distinct lineage within the family 'Saprospiraceae' of the phylum Bacteroidetes and were related to members of the genus Saprospira. The G+C contents of the isolates were in the range 38-39 mol%. The major respiratory quinone was MK-7. The predominant cellular fatty acids were 20 : 4omega6c (arachidonic acid), 16 : 0 and iso-17 : 0. On the basis of morphological, physiological and chemotaxonomic characteristics, together with DNA-DNA hybridization data and 16S rRNA gene sequences, the isolates represent a novel species of a novel genus, for which the name Aureispira marina gen. nov., sp. nov. is proposed. The type strain of Aureispira marina is 24(T) (=IAM 15389(T)=TISTR 1719(T)).

  13. Influence of nitrogen substrates and substrate C:N ratios on the nitrogen isotopic composition of amino acids from the marine bacterium Vibrio harveyi

    Science.gov (United States)

    Maki, K.; Ohkouchi, N.; Chikaraishi, Y.; Fukuda, H.; Miyajima, T.; Nagata, T.

    2014-09-01

    Nitrogen (N) isotopic compositions of individual hydrolysable amino acids (δ15NAAs) in N pools have been increasingly used for trophic position assessment and evaluation of sources and transformation processes of organic matter in marine environments. However, there are limited data about variability in δ15NAAs patterns and how this variability influences marine bacteria, an important mediator of trophic transfer and organic matter transformation. We explored whether marine bacterial δ15NAAs profiles change depending on the type and C:N ratio of the substrate. The δ15NAAs profile of a marine bacterium, Vibrio harveyi, was examined using medium containing either glutamate, alanine or ammonium as the N source [substrate C:N ratios (range, 3 to 20) were adjusted with glucose]. The data were interpreted as a reflection of isotope fractionations associated with de novo synthesis of amino acids by bacteria. Principal component analysis (PCA) using the δ15N offset values normalized to glutamate + glutamine δ15N revealed that δ15NAAs profiles differed depending on the N source and C:N ratio of the substrate. High variability in the δ15N offset of alanine and valine largely explained this bacterial δ15NAAs profile variability. PCA was also conducted using bacterial and phytoplankton (cyanobacteria and eukaryotic algae) δ15NAAs profile data reported previously. The results revealed that bacterial δ15NAAs patterns were distinct from those of phytoplankton. Therefore, the δ15NAAs profile is a useful indicator of biochemical responses of bacteria to changes in substrate conditions, serving as a potentially useful method for identifying organic matter sources in marine environments.

  14. The Biosynthesis of Deuterium Labeled Amino Acids Using a Strain of Facultative Methylotrophic Bacterium Вrevibacterium Methylicum 5662 With RuMP Cycle of Carbon Assimilation

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2015-03-01

    Full Text Available We used Gram-positive aerobic facultative methylotrophic bacterium, Brevibacterium methylicum, L-phenylalanine producer with ribulose-5-monophosphate (RuMP cycle for carbon assimilation for microbiological preparation of [2H]phenylalanine via conversion of low molecular weight substrates ([U-2H]MeOH and 2H2O. For this purpose, the cells of the methylotroph with improved growth characteristics were used on minimal salt media M9 supplemented with 2 % (v/v [U-2H]MeOH and increasing gradient of 2Н2O concentration from 0; 24,5; 49,0; 73,5 up to 98 % (v/v 2Н2O. L-phenylalanine was isolated from the growth medium after adding 5 M 2HCl (in 2Н2О, pH = 2,0 by extraction with isopropanol and subsequent crystallization in ethanol (output 0,65 g/l. Alanine, valine, and leucine/isoleucine were produced and accumulated exogenously in amounts of 5–6 mol in addition to the main product of biosynthesis. The method allows to obtain [2Н]amino acids with different levels of deuterium enrichment, depending on 2Н2O concentration in growth media, from 17 atom% 2Н (2 deuterium atoms (on the growth medium with 24,5 % (v/v 2Н2О up to 75 atom% 2Н (6 deuterium atoms (on the growth medium with 98 % (v/v 2Н2О with introduction of deuterium to benzyl С6Н5СН2-fragment of molecule that is confirmed with the data of electron impact (EI mass spectrometry analysis of methyl ethers of N-5-dimethylamino(naphthalene-1-sulfochloride [2H]amino acids after the separation by reverse-phase HPLC.

  15. Two Lactococcus lactis thioredoxin paralogues play different roles in responses to arsenate and oxidative stress

    DEFF Research Database (Denmark)

    Efler, Petr; Kilstrup, Mogens; Johnsen, Stig;

    2015-01-01

    Thioredoxin (Trx) maintains intracellular thiol groups in a reduced state and is involved in a wide range of cellular processes, including ribonucleotide reduction, sulphur assimilation, oxidative stress responses and arsenate detoxification. The industrially important lactic acid bacterium Lacto...

  16. Lactivibrio alcoholicus gen. nov., sp. nov., an anaerobic, mesophilic, lactate-, alcohol-, carbohydrate- and amino-acid-degrading bacterium in the phylum Synergistetes.

    Science.gov (United States)

    Qiu, Yan-Ling; Hanada, Satoshi; Kamagata, Yoichi; Guo, Rong-Bo; Sekiguchi, Yuji

    2014-06-01

    A mesophilic, obligately anaerobic, lactate-, alcohol-, carbohydrate- and amino-acid- degrading bacterium, designated strain 7WAY-8-7(T), was isolated from an upflow anaerobic sludge blanket reactor treating high-strength organic wastewater from isomerized sugar production processes. Cells of strain 7WAY-8-7(T) were motile, curved rods (0.7-1.0×5.0-8.0 µm). Spore formation was not observed. The strain grew optimally at 37 °C (range for growth was 25-40 °C) and pH 7.0 (pH 6.0-7.5), and could grow fermentatively on yeast extract, glucose, ribose, xylose, malate, tryptone, pyruvate, fumarate, Casamino acids, serine and cysteine. The main end-products of glucose fermentation were acetate and hydrogen. In co-culture with the hydrogenotrophic methanogen Methanospirillum hungatei DSM 864(T), strain 7WAY-8-7(T) could utilize lactate, glycerol, ethanol, 1-propanol, 1-butanol, L-glutamate, alanine, leucine, isoleucine, valine, histidine, asparagine, glutamine, arginine, lysine, threonine, 2-oxoglutarate, aspartate and methionine. A Stickland reaction was not observed with some pairs of amino acids. Yeast extract was required for growth. Nitrate, sulfate, thiosulfate, elemental sulfur, sulfite and Fe (III) were not used as terminal electron acceptors. The G+C content of the genomic DNA was 61.4 mol%. 16S rRNA gene sequence analysis revealed that the isolate belongs to the uncultured environmental clone clade (called 'PD-UASB-13' in the Greengenes database) in the bacterial phylum Synergistetes, showing less than 90% sequence similarity with closely related described species such as Aminivibrio pyruvatiphilus and Aminobacterium colombiense (89.7% and 88.7%, respectively). The major cellular fatty acids were iso-C(13 : 0), iso-C(15 : 0), anteiso-C(15 : 0), C(18 : 1), C(19 : 1), C(20 : 1) and C(21 : 1). A novel genus and species, Lactivibrio alcoholicus gen. nov., sp. nov. is proposed to accommodate strain 7WAY-8-7(T) ( = JCM 17151(T

  17. Genes involved in protein metabolism of the probiotic lactic acid bacterium Lactobacillus delbrueckii UFV H2b20.

    Science.gov (United States)

    Do Carmo, A P; da Silva, D F; De Oliveira, M N V; Borges, A C; De Carvalho, A F; De Moraes, C A

    2011-09-01

    A basic requirement for the prediction of the potential use of lactic acid bacteria (LAB) in the dairy industry is the identification of specific genes involved in flavour-forming pathways. The probiotic Lactobacillus delbrueckii UFV H2b20 was submitted to a genetic characterisation and phylogenetic analysis of genes involved in protein catabolism. Eight genes belonging to this system were identified, which possess a closely phylogenetic relationship to NCFM strains representative, as it was demonstrated for oppC and oppBII, encoding oligopeptide transport system components. PepC, PepN, and PepX might be essential for growth of LAB, probiotic or not, since the correspondent genes are always present, including in L. delbrueckii UFV H2b20 genome. For pepX gene, a probable link between carbohydrate catabolism and PepX expression may exists, where it is regulated by PepR1/CcpA-like, a common feature between Lactobacillus strains and also in L. delbrueckii UFV H2b20. The well conserved evolutionary history of the ilvE gene is evidence that the pathways leading to branched-chain amino acid degradation, such as isoleucine and valine, are similar among L. delbrueckii subsp. bulgaricus strains and L. delbrueckii UFV H2b20. Thus, the involvement of succinate in flavour formation can be attributed to IlvE activity. The presence of aminopeptidase G in L. delbrueckii UFV H2b20 genome, which is absent in several strains, might improve the proteolytic activity and effectiveness. The nucleotide sequence encoding PepG revealed that it is a cysteine endopeptidase, belonging to Peptidase C1 superfamily; sequence analysis showed 99% identity with L. delbrueckii subsp. bulgaricus ATCC 11842 pepG, whereas protein sequence analysis revealed 100% similarity with PepG from the same organism. The present study proposes a schematic model to explain how the proteolytic system of the probiotic L. delbrueckii UFV H2b20 works, based on the components identified so far.

  18. Rewiring Lactococcus lactis for Ethanol Production

    DEFF Research Database (Denmark)

    Solem, Christian; Dehli, Tore Ibsen; Jensen, Peter Ruhdal

    2013-01-01

    to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only...... small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase...... genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed...

  19. Características da bacteriocina produzida por Lactococcus lactis ssp. hordniae CTC 484 e seu efeito sobre Listeria monocytogenes em carne bovina Characterisation of the bacteriocin produced by Lactococcus lactis ssp. hordniae CTC 484 and the effect of this compound on Listeria monocytogenes in beef

    Directory of Open Access Journals (Sweden)

    Renata Bromberg

    2006-03-01

    Full Text Available O isolamento de linhagens de bactérias lácticas produtoras de bacteriocinas em carnes e seus produtos derivados resultou na detecção de Lactococcus lactis ssp. hordniae CTC 484, proveniente de frango. A bacteriocina inibiu não apenas uma outra bactéria láctica (Lactobacillus helveticus, mas também microorganismos patogênicos (Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Clostridium perfringens e Enterococcus faecalis. Ela foi inativada por causa de enzimas como: alfa-quimotripsina, tripsina, pronase E, ficina, pepsina, papaína e lipase. Além disso, a bacteriocina mostrou-se termoestável, mesmo a temperaturas de autoclavagem (121°C/10 min e foi produzida em condições de armazenamento sob refrigeração. A bacteriocina mostrou-se ativa dentro de uma ampla faixa de valores de pH (2-10, porém a maior atividade ocorreu em valores menores de pH. A eficiência da linhagem CTC 484, assim como a de sua bacteriocina na redução e inibição do crescimento de Listeria monocytogenes em carne bovina estéril, foram avaliadas. Os resultados indicaram que o tratamento da carne por meio da inoculação desta bactéria contribuiu para o aumento da segurança e extensão da vida útil deste alimento.Screening for the bacteriocin production of strains of lactic acid bacteria from various meat and meat products resulted in the detection of a bacteriocin-producing Lactococcus lactis ssp. hordniae CTC 484, isolated from chicken. The bacteriocin inhibited not only closely related lactic acid bacterium (Lactobacillus helveticus, but also pathogenic microorganisms (Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Clostridium perfringens, and Enterococcus faecalis. This compound was inactivated by alpha-chymotrypsin, trypsin, pronase E, ficin, pepsin, papain, and also by lipase. It was heat stable even at autoclaving temperature (121°C/10 min and was produced under refrigerated storage. It was also active over a wide

  20. Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9

    Science.gov (United States)

    2011-01-01

    overexpressed genes involved in amino acid transport and metabolism as well as DNA replication. Conclusions The genome of S. thermophilus LMD-9 is shaped by its domestication in the dairy environment, with gene features that conferred rapid growth in milk, stress response mechanisms and host defense systems that are relevant to its industrial applications. The presence of a unique exopolysaccharide gene cluster and cell surface protein orthologs commonly associated with probiotic functionality revealed potential probiotic applications of LMD-9. PMID:21995282

  1. Modeling Lactococcus lactis using a genome-scale flux model

    Directory of Open Access Journals (Sweden)

    Nielsen Jens

    2005-06-01

    Full Text Available Abstract Background Genome-scale flux models are useful tools to represent and analyze microbial metabolism. In this work we reconstructed the metabolic network of the lactic acid bacteria Lactococcus lactis and developed a genome-scale flux model able to simulate and analyze network capabilities and whole-cell function under aerobic and anaerobic continuous cultures. Flux balance analysis (FBA and minimization of metabolic adjustment (MOMA were used as modeling frameworks. Results The metabolic network was reconstructed using the annotated genome sequence from L. lactis ssp. lactis IL1403 together with physiological and biochemical information. The established network comprised a total of 621 reactions and 509 metabolites, representing the overall metabolism of L. lactis. Experimental data reported in the literature was used to fit the model to phenotypic observations. Regulatory constraints had to be included to simulate certain metabolic features, such as the shift from homo to heterolactic fermentation. A minimal medium for in silico growth was identified, indicating the requirement of four amino acids in addition to a sugar. Remarkably, de novo biosynthesis of four other amino acids was observed even when all amino acids were supplied, which is in good agreement with experimental observations. Additionally, enhanced metabolic engineering strategies for improved diacetyl producing strains were designed. Conclusion The L. lactis metabolic network can now be used for a better understanding of lactococcal metabolic capabilities and potential, for the design of enhanced metabolic engineering strategies and for integration with other types of 'omic' data, to assist in finding new information on cellular organization and function.

  2. Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products.

    Science.gov (United States)

    Konkit, Maytiya; Kim, Wonyong

    2016-07-01

    Several enzymes are involved in the process of converting milk to lactic acid and coagulated milk to curd and, therefore, are important in dairy fermented products. Amylase, proteinase, and lipase are enzymes that play an important role in degrading milk into monomeric molecules such as oligosaccharides, amino acids, and fatty acids, which are the main molecules responsible for flavors in cheese. In the current study, we determined the amylase, proteinase, and lipase activities of Lactococcus chungangensis CAU 28(T), a bacterial strain of nondairy origin, and compared them with those of the reference strain, Lactococcus lactis ssp. lactis KCTC 3769(T), which is commonly used in the dairy industry. Lactococcus chungangensis CAU 28(T) and L. lactis ssp. lactis KCTC 3769(T) were both found to have amylase, proteinase, and lipase activities in broth culture, cream cheese, and yogurt. Notably, the proteinase and lipase activities of L. chungangensis CAU 28(T) were higher than those of L. lactis ssp. lactis KCTC 3769(T), with proteinase activity of 10.50 U/mL in tryptic soy broth and 8.64 U/mL in cream cheese, and lipase activity of 100 U/mL of tryptic soy broth, and 100 U/mL of cream cheese. In contrast, the amylase activity was low, with 5.28 U/mL in tryptic soy broth and 8.86 U/mL in cream cheese. These enzyme activities in L. chungangensis CAU 28(T) suggest that this strain has potential to be used for manufacturing dairy fermented products, even though the strain is of nondairy origin. PMID:27108177

  3. Screening and Identification of a Lactic Acid Bacterium from Sichuan Bran Vinegar Brewing Mass%四川麸醋醋醅中一株乳酸菌的筛选及鉴定

    Institute of Scientific and Technical Information of China (English)

    郭明烨; 刘军; 王洋; 郇阿梅; 韩志双

    2016-01-01

    从四川传统固态酿造工艺麸醋的醋醅中筛选出15株疑似乳酸菌菌株。通过对其抑菌性、产双乙酰能力、产酸速率和对不同酸度、培养温度、初始酒精度的耐受性能等指标的考察,最终得到了一株产乳酸多,并且具有抑菌性的乳酸菌E9。经微生物细胞和菌落形态、生理生化特征和分子生物学鉴定,确定此株乳酸菌E9为发酵乳杆菌(Lactobacillus fermentum)。%Select 1 5 strains of suspected lactic acid bacteria from Sichuan bran vinegar brewing mass by traditional solid-state brewing process. By investigation of their antimicrobial activity, diacetyl production ability,acid production rates and the tolerance to different acidity,culture temperature, initial alcoho,finally,a strain of lactic acid bacterium E9 producing more lactic acid and with antimicrobial acitivity is gotten. By microbial cells and colony morphology, physiological and biochemical characteristics and molecular biology identification,this strain of lactic acid bacterium E9 is determined as Lactobacillus fermentum.

  4. Recombinant expression of Laceyella sacchari thermitase in Lactococcus lactis.

    Science.gov (United States)

    Jørgensen, Casper M; Madsen, Søren M; Vrang, Astrid; Hansen, Ole C; Johnsen, Mads G

    2013-12-01

    Thermitase (EC 3.4.21.66) is a thermostable endo-protease with the ability to convert various food relevant substrates into low-molecular weight peptides. A thermitase produced by Laceyella sacchari strain DSM43353 was found to have a mature amino acid sequence nearly identical to that of the original thermitase isolated from Thermoactinomyces vulgaris. The DSM43353 thermitase gene sequence contains a pro-peptide including parts of an I9 inhibitor motif. Expression of the thermitase gene in the Lactococcus lactis P170 expression system allowed secretion of stable thermitase in an auto-induced fermentation setup at 30°C. Thermitase accumulated in the culture supernatant during batch fermentations and was easily activated at 50°C or by prolonged dialysis. The activation step resulted in an almost complete degradation of endogenous L. lactis host proteins present in the supernatant. Mature activated product was stable at 50°C and functional at pH values between pH 6 and pH 11, suggesting that substrate hydrolysis can be performed over a broad range of pH values. The L. lactis based P170 expression system is a simple and safe system for obtaining food compatible thermitase in the range of 100 mg/L.

  5. An exoproteome approach to monitor safety of a cheese-isolated Lactococcus lactis

    DEFF Research Database (Denmark)

    Genovese, Federica; Coïsson, Jean Daniel; Majumder, Avishek;

    2013-01-01

    The safety of the cheese-isolated and potential starter Lactococcus lactis 11D was explored by means of an extracellular proteomic study. A preliminary analysis showed good caseification/proteolytic behavior of the strain, absence of production of biogenic amines and good survival at acidic p...... isomerase were abundant in the L. lactis 11D exoproteome. These proteins play a role in bacterial aggregation and in bacteria–fungi interactions, therefore their presence may indicate a good competition potential of the strain against other microorganisms in both food and the gastrointestinal habitat...

  6. Secretion of biologically active murine interleukin-2 by Lactococcus lactis subsp. lactis.

    OpenAIRE

    Steidler, L; Wells, J M; Raeymaekers, A; Vandekerckhove, J; Fiers, W; Remaut, E

    1995-01-01

    Secretion of functional recombinant murine interleukin-2 (mIL2) by Lactococcus lactis was achieved by fusion of the sequence encoding mature mIL2 to the secretion signal leader of the lactococcal usp45 gene placed under transcriptional control of the phage T7 promoter-T7 RNA polymerase expression system. The recombinant mature mIL2 was one of only a few proteins which accumulated in the growth medium. Sequence analysis revealed correct processing at the first amino acid of the mature protein....

  7. Secretion of TEM beta-lactamase with signal sequences isolated from the chromosome of Lactococcus lactis subsp. lactis.

    OpenAIRE

    Sibakov, M; Koivula, T; von Wright, A.; Palva, I

    1991-01-01

    With TEM beta-lactamase as a reporter gene, a set of expression-secretion-promoting fragments were isolated from the chromosome of Lactococcus lactis subsp. lactis. The fact that only translocated beta-lactamase renders cells resistant to ampicillin allowed direct ampicillin selection with an Escherichia coli vector (pKTH33). The clones showing the greatest ampicillin resistance were subcloned onto a replicon capable of replication in lactic acid bacteria (pVS2), and the nucleotide sequences ...

  8. Molecular and Functional Analyses of the metC Gene of Lactococcus lactis, Encoding Cystathionine β-Lyase

    OpenAIRE

    Fernández, María; Doesburg, Wim van; Rutten, Ger A.M.; Marugg, Joey D.; Alting, Arno C.; van Kranenburg, Richard; Oscar P. Kuipers

    2000-01-01

    The enzymatic degradation of amino acids in cheese is believed to generate aroma compounds and therefore to be essential for flavor development. Cystathionine β-lyase (CBL) can convert cystathionine to homocysteine but is also able to catalyze an α,γ elimination. With methionine as a substrate, it produces volatile sulfur compounds which are important for flavor formation in Gouda cheese. The metC gene, which encodes CBL, was cloned from the Lactococcus lactis model strain MG1363 and from str...

  9. Transport of β-Casein-derived Peptides by the Oligopeptide Transport System Is a Crucial Step in the Proteolytic Pathway of Lactococcus lactis

    NARCIS (Netherlands)

    Kunji, E.R S; Hagting, A; de Vries, C.J.; Juillard, V.; Haandrikman, A.J; Poolman, B.; Konings, W.N

    1995-01-01

    In the proteolytic pathway of Lactococcus lactis, milk proteins (caseins) are hydrolyzed extracellularly to oligopeptides by the proteinase (PrtP). The fate of these peptides, i.e. extracellular hydrolysis followed by amino acid uptake or transport followed by intracellular hydrolysis, has been addr

  10. Effects of acid pH and urea on the spectral properties of the LHII antenna complex from the photosynthetic bacterium Ectothiorhodospira sp.

    Science.gov (United States)

    Buche, A; Ramirez, J M; Picorel, R

    2000-06-01

    The aim of this study was to investigate the spectral modifications of the LHII antenna complex from the purple bacterium Ectothiorhodospira sp. upon acid pH titration both in the presence and absence of urea. A blue shift specifically and reversibly affected the B850 band around pH 5.5-6.0 suggesting that a histidine residue most probably participated in the in vivo absorption red shifting mechanism. This transition was observed in the presence and absence of urea. Under strong chaotropic conditions, a second transition occurred around pH 2.0, affecting the B800 band irreversibly and the B850 reversibly. Under these conditions a blue shift from 856 to 842 nm occurred and a new and strong circular dichroism signal from the new 842 nm band was observed. Reverting to the original experimental conditions induced a red shift of the B850 band up to 856 nm but the circular dichroism signal remained mostly unaffected. Under the same experimental conditions, i.e. pH 2.1 in the presence of urea, part of the B800 band was irreversibly destroyed with concomitant appearance of a band around 770 nm due to monomeric bacteriochlorophyll from the disrupted B800. Furthermore, Gaussian deconvolution and second derivative of the reverted spectra at pH 8.0 after strong-acid treatment indicated that the new B850 band was actually composed of two bands centered at 843 and 858 nm. We ascribed the 858 nm band to bacteriochlorophylls that underwent reversible spectral shift and the 843 nm band to oligomeric bacteriopheophytin formed from a part of the B850 bacteriochlorophyll. This new oligomer would be responsible for the observed strong and mostly conservative circular dichroism signal. The presence of bacteriopheophytin in the reverted samples was definitively demonstrated by HPLC pigment analysis. The pheophytinization process progressed as the pH decreased below 2.1, and at a certain point (i.e. pH 1.5) all bacteriochlorophylls, including those from the B800 band, became converted to

  11. Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency.

    Science.gov (United States)

    Maggi, Matías; Negri, Pedro; Plischuk, Santiago; Szawarski, Nicolás; De Piano, Fiorella; De Feudis, Leonardo; Eguaras, Martín; Audisio, Carina

    2013-12-27

    The European honey bee Apis mellifera is known to be affected by many parasites and pathogens that have great impact over the insect development. Among parasites affecting bee health, Nosema ceranae is one of the main biotic factors affecting colony populations. As honey bee populations decline, interest in pathogenic and mutualistic relationships between bees and microorganisms has increased. The main goal of the current study was to assess the effect of the oral administration of the metabolites produced by Lactobacillus johnsonii CRL1647 (mainly organic acids) supplemented in syrup, on: (I) N. ceranae sporulation dynamics before and after fumagillin application, and (II) performance of A. mellifera colonies. Different experiments were conducted to evaluate the effects of these bacterial metabolites on bees: in vitro administration revealed no toxic effects against bees. Colonies fed with the lactic acids incremented their beehive population and also the amount of fat bodies per bee. Finally, the organic acids reduced the intensity of the pathogen after the second application of treatment as well as enhanced the fumagillin efficiency. This study provides important information for the development of new control substances against nosemosis. PMID:23978352

  12. Bacterium-like Particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications

    Directory of Open Access Journals (Sweden)

    Natalija eVan Braeckel-Budimir

    2013-09-01

    Full Text Available The successful development of a mucosal vaccine critically depends on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle derived from bacteria in mucosal subunit vaccines. The non-living particles, designated Bacterium-like Particles (BLPs are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine.

  13. Bacterium-Like Particles for Efficient Immune Stimulation of Existing Vaccines and New Subunit Vaccines in Mucosal Applications

    Science.gov (United States)

    Van Braeckel-Budimir, Natalija; Haijema, Bert Jan; Leenhouts, Kees

    2013-01-01

    The successful development of a mucosal vaccine depends critically on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle, derived from bacteria, used in mucosal subunit vaccines. The non-living particles, designated bacterium-like particles are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine. PMID:24062748

  14. Nisin inducible production of listeriolysin O in Lactococcus lactis NZ9000

    Directory of Open Access Journals (Sweden)

    Griffin Brendan T

    2008-07-01

    Full Text Available Abstract Background Listeria monocytogenes is a well-characterized food-borne pathogen that infects pregnant women and immunocompromised individuals. Listeriolysin O (LLO is the major virulence factor of the pathogen and is often used as a diagnostic marker for detection of L. monocytogenes. In addition, LLO represents a potent antigen driving T cell-mediated immunity during infection. In the present work, Lactococcus lactis NZ9000 was used as an expression host to hyper-produce LLO under inducible conditions using the NICE (NIsin Controlled Expression system. We created a modified pNZ8048 vector encoding a six-His-tagged LLO downstream of the strong inducible PnisA promoter. Results The constructed vector (pNZPnisA:CYTO-LLO was expressed in L. lactis NZ9000 and was best induced at mid-log phase with 0.2% v/v nisin for 4 h statically at 30°C. Purification of the His-tagged LLO was accomplished by Ni-NTA affinity chromatography and functionality was confirmed through haemolytic assays. Total LLO yield (measured as total protein content was 4.43–5.9 mg per litre culture and the haemolytic activity was still detectable after 8 months of storage at 4°C. Conclusion The LLO production method described in this work provides an approach to efficient LLO production in the Gram-positive Lactococcus bacterium to yield a significant source of the protein for research and diagnostic applications. Expression of LLO in L. lactis has a number of benefits over E. coli which may facilitate both in vivo and in vitro applications of this system.

  15. Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins.

    Science.gov (United States)

    Wouters, J A; Frenkiel, H; de Vos, W M; Kuipers, O P; Abee, T

    2001-11-01

    Members of the group of 7-kDa cold-shock proteins (CSPs) are the proteins with the highest level of induction upon cold shock in the lactic acid bacterium Lactococcus lactis MG1363. By using double-crossover recombination, two L. lactis strains were generated in which genes encoding CSPs are disrupted: L. lactis NZ9000 Delta AB lacks the tandemly orientated cspA and cspB genes, and NZ9000 Delta ABE lacks cspA, cspB, and cspE. Both strains showed no differences in growth at normal and at low temperatures compared to that of the wild-type strain, L. lactis NZ9000. Two-dimensional gel electrophoresis showed that upon disruption of the cspAB genes, the production of remaining CspE at low temperature increased, and upon disruption of cspA, cspB, and cspE, the production of CspD at normal growth temperatures increased. Northern blot analysis showed that control is most likely at the transcriptional level. Furthermore, it was established by a proteomics approach that some (non-7-kDa) cold-induced proteins (CIPs) are not cold induced in the csp-lacking strains, among others the histon-like protein HslA and the signal transduction protein LlrC. This supports earlier observations (J. A. Wouters, M. Mailhes, F. M. Rombouts, W. M. De Vos, O. P. Kuipers, and T. Abee, Appl. Environ. Microbiol. 66:3756-3763, 2000). that the CSPs of L. lactis might be directly involved in the production of some CIPs upon low-temperature exposure. Remarkably, the adaptive response to freezing by prior exposure to 10 degrees C was significantly reduced in strain NZ9000 Delta ABE but not in strain NZ9000 Delta AB compared to results with wild-type strain NZ9000, indicating a notable involvement of CspE in cryoprotection. PMID:11679342

  16. POTENTIAL OF Lactococcus lactis subsp. lactis MTCC 3041 AS A BIOPRESERVATIVE

    Directory of Open Access Journals (Sweden)

    Neha Sharma

    2013-10-01

    Full Text Available Lactic acid bacteria especially in developing countries can be exploited against frequently occurring spoilage organisms of fresh fruits and vegetables in addition to pathogens. Keeping in views this antagonism imparted by bacteria Lactococci, the present study was taken and effectiveness of bacteriocin of Lactococci was also studied in preservatives and enzymes. Lactic acid bacteria Lactococcus lactis subs. Lactis MTCC 3041 was used as bacteriocin producer strain. Isolation of most frequently occurring spoilage organisms from spoiled Mango and Kinnow was done by microbiological procedures and were identified by microscopic studies as Isolate 1 and Isolate 2. It has limited use in processed salted food as no zone of inhibition was observed at and above 5% NaCl (w/v.0.3% (w/v is the minimum concentration of KMS that provides stress to the microorganism for the production of bacteriocin. It is not suitable for food having sodium benzoate as preservative as with increase in concentration growth of Lactococcus lactis decreases. Presence of bacteriocin hinders the growth of the isolate 1 as fresh weight of the mycelium in test sample is 7.09% less than the control. Being non-pathogenic this organism can be safely used against spoilage organisms in addition to food borne pathogens.

  17. Isolation and identification of Lactococcus lactis and Weissella%乳酸乳球菌和魏斯氏菌的分离及鉴定

    Institute of Scientific and Technical Information of China (English)

    商婷婷; 张日俊

    2013-01-01

    This experiment was conducted to isolate and identify Lactococcus lactis and Weissel-la. According to the morphological character and microscopic examination, six lactic acid coc-cus strains were isolated and identified from samples of raw milk, pickle, silage and commercial cheese. By physiological and biochemical reaction, salt tolerance and heat resistance reaction and 16S rDNA sequence analysis, four strains belong to Lactococcus lactis, ST2 is lactococcus lactis subsp. Cremoris and ST7 is Lactococcus lactis subsp. Lactis; two strains were identified as Weissella, one of them is Weissella cibaria. These results indicated that raw milk and pickle are the excellent habitats of Lactococcus lactis and Weissella correspondingly, with the incorpo-ration of traditional methods and molecular biology techniques, strains could be isolated and identified more accurately and rapidly.%试验以生牛奶、自制泡菜水、青贮料、市售奶酪为样品,进行乳酸乳球菌和魏斯氏菌的筛选与鉴定。通过培养基中菌落形态观察和镜检细胞形态观察,共筛得6株疑似乳酸球菌(分别命名为ST1、ST2、ST6、ST7、ST8、ST9)。经生理生化、耐盐性、耐热性试验以及16S rD-NA序列分析鉴定,这6株菌分属两个属:ST1、ST2、ST7、ST9为乳酸乳球菌(Lactococcus lac-tis),其中ST2为乳酸乳球菌乳脂亚种(Lactococcus lactis subsp. Cremoris),ST7为乳酸乳球菌乳酸亚种(Lactococcus lactis subsp. Lactis );ST6、ST8属于魏斯氏菌属(Weissella),其中ST6为食窦魏斯氏菌(Weissella cibaria)。研究表明,生牛奶和泡菜水分别是乳酸乳球菌和魏斯氏菌的优良生活环境,传统方法与分子生物技术相结合可更准确快速地分离及鉴定菌株。

  18. Use of rRNA Gene Restriction Patterns To Evaluate Lactic Acid Bacterium Contamination of Vacuum-Packaged Sliced Cooked Whole-Meat Product in a Meat Processing Plant

    OpenAIRE

    Björkroth, Johanna; Korkeala, Hannu

    1997-01-01

    http://aem.asm.org/ Molecular typing was applied to an in-plant lactic acid bacterium (LAB) contamination analysis of a vacuum-packaged sliced cooked whole-meat product. A total of 982 LAB isolates from the raw mass, product, and the environment at different production stages were screened by restriction endonuclease (EcoRI and HindIII) analysis. rRNA gene restriction patterns were further determined for different strains obtained from each source. These patterns were used for recognizi...

  19. Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Anne M Millen

    Full Text Available Lactococcus lactis is a biotechnological workhorse for food fermentations and potentially therapeutic products and is therefore widely consumed by humans. It is predominantly used as a starter microbe for fermented dairy products, and specialized strains have adapted from a plant environment through reductive evolution and horizontal gene transfer as evidenced by the association of adventitious traits with mobile elements. Specifically, L. lactis has armed itself with a myriad of plasmid-encoded bacteriophage defensive systems to protect against viral predation. This known arsenal had not included CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins, which forms a remarkable microbial immunity system against invading DNA. Although CRISPR/Cas systems are common in the genomes of closely related lactic acid bacteria (LAB, none was identified within the eight published lactococcal genomes. Furthermore, a PCR-based search of the common LAB CRISPR/Cas systems (Types I and II in 383 industrial L. lactis strains proved unsuccessful. Here we describe a novel, Type III, self-transmissible, plasmid-encoded, phage-interfering CRISPR/Cas discovered in L. lactis. The native CRISPR spacers confer resistance based on sequence identity to corresponding lactococcal phage. The interference is directed at phages problematic to the dairy industry, indicative of a responsive system. Moreover, targeting could be modified by engineering the spacer content. The 62.8-kb plasmid was shown to be conjugally transferrable to various strains. Its mobility should facilitate dissemination within microbial communities and provide a readily applicable system to naturally introduce CRISPR/Cas to industrially relevant strains for enhanced phage resistance and prevention against acquisition of undesirable genes.

  20. La réponse au stress osmotique des bactéries lactiques Lactococcus lactis et Lactobacillus plantarum (mini-revue)

    OpenAIRE

    Romeo, Yves; Bouvier, Jean; Gutierrez, Claude

    2001-01-01

    International audience; Osmotic stress response of lactic acid bacteria Lactococcus lactis and Lactobacillus plantarum. In order to survive in a wide variety of environments, bacteria have evolved systems that protect themselves against environmental stress. Lactic acid bacteria grow in media where osmolarity is high and varies frequently and they must adjust their intracellular osmolarity in order to maintain the turgor pressure necessary for cell elongation. An osmotic upshock stops their g...

  1. Properties and genomic analysis of Lactococcus garvieae lysogenic bacteriophage PLgT-1, a new member of Siphoviridae, with homology to Lactococcus lactis phages.

    Science.gov (United States)

    Hoai, Truong Dinh; Nishiki, Issei; Yoshida, Terutoyo

    2016-08-15

    The lysogenic phage PLgT-1 is highly prevalent in Lactococcus garvieae, which is a serious bacterial pathogen in marine fish. Therefore, information regarding this phage is one of the key factors to predict the evolution of this bacterium. However, many properties of this phage, its complete genome sequence, and its relationship with other viral communities has not been investigated to date. Here, we demonstrated that the phage PLgT-1 was not only induced by an induction agent (Mitomycin C), but could be released frequently during cell division in a nutrient-rich environment or in natural seawater. Integration of PLgT-1 into non-lysogenic bacteria via transduction changed the genotype, resulting in the diversification of L. garvieae. The complete DNA sequence of PLgT-1 was also determined. This phage has a dsDNA genome of 40,273bp with 66 open reading frames (ORFs). Of these, the biological functions of 24 ORFs could be predicted but those of 42 ORFs are unknown. Thus, PLgT-1 is a novel phage with several novel proteins encoded in its genome. The strict MegaBLAST search program for the PLgT-1 genome revealed that this phage had no similarities with other previously investigated phages specific to L. garvieae (WP-2 and GE1). Notably, PLgT-1 was relatively homologous with several phages of Lactococcus lactis and 17 of the 24 predicted proteins encoded in PLgT-1 were homologous with the deduced proteins of various phages from these dairy bacteria. Comparative genome analysis revealed that the L. garvieae phage PLgT-1 was most closely related to the L. lactis phage TP712. However, they differed from each other in genome size and gene arrangement. The results obtained in this study suggest that the lysogenic phage PLgT-1 is a new member of the family Siphoviridae and has been involved in horizontal gene exchange with microbial communities, especially with L. lactis and its phages. PMID:27234995

  2. Suitability of Lactococcus lactis subsp lactis ATCC 11454 as a protective culture for lightly preserved fish products

    DEFF Research Database (Denmark)

    Wessels, Stephen Wallace; Huss, Hans Henrik

    1996-01-01

    This study is part of strategy to control the human pathogen Listeria monocytogenes in lightly preserved fish products by using food-grade lactic acid bacteria. When the nisin-producing Lactococcus lactis subsp lactis ATCC 11454 was cultured in the same vessel as L-monocytogenes Scott A in brain......-heart infusion broth (BHI) at 30-degrees C, the pathogen declined from 5x10(5) to fewer than 5 cfu ml(-1) within 31 h. The effect was not due to lactic acid inhibition. Growth and nisin production by L- lactis ATCC 11454 were investigated under the conditions of temperature and salt used for light preservation...

  3. Bacteriocinogenic Lactococcus lactis subsp: lactis DF04Mi isolated from goat milk: Evaluation of the probiotic potential

    Directory of Open Access Journals (Sweden)

    Danielle N. Furtado

    2014-09-01

    Full Text Available Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi was isolated from goat milk, and studied for its probiotic potential. Lc. lactis DF4Mi was resistant to acidic pH and oxbile, presented co-aggregation with Listeria monocytogenes, and was not affected by several drugs from different generic groups, being sensitive to most tested antibiotics. These properties indicate that this Lc. lactis strain can be used for enhancement of dairy foods safety and quality, in combination with potential probiotic properties.

  4. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: evaluation of the probiotic potential.

    Science.gov (United States)

    Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its probiotic potential. Lc. lactis DF4Mi was resistant to acidic pH and oxbile, presented co-aggregation with Listeria monocytogenes, and was not affected by several drugs from different generic groups, being sensitive to most tested antibiotics. These properties indicate that this Lc. lactis strain can be used for enhancement of dairy foods safety and quality, in combination with potential probiotic properties.

  5. Structure-function analysis of multidrug transporters in Lactococcus lactis

    NARCIS (Netherlands)

    van Veen, HW; Putman, M; Margolles, A; Sakamoto, K; Konings, WN

    1999-01-01

    The active extrusion of cytotoxic compounds from the cell by multidrug transporters is one of the major causes of failure of chemotherapeutic treatment of tumor cells and of infections by pathogenic microorganisms. A multidrug transporter in Lactococcus lactis, LmrA, is a member of the ATP-binding c

  6. pSEUDO, a Genetic Integration Standard for Lactococcus lactis

    NARCIS (Netherlands)

    Pinto, Joao P. C.; Zeyniyev, Araz; Karsens, Harma; Trip, Hein; Lolkema, Juke S.; Kuipers, Oscar P.; Kok, Jan

    2011-01-01

    Plasmid pSEUDO and derivatives were used to show that llmg_pseudo_10 in Lactococcus lactis MG1363 and its homologous locus in L. lactis IL1403 are suitable for chromosomal integrations. L. lactis MG1363 and IL1403 nisin-induced controlled expression (NICE) system derivatives (JP9000 and IL9000) and

  7. Luciferase detection during stationary phase in Lactococcus lactis

    NARCIS (Netherlands)

    Bachmann, H.; Santos, dos F.; Kleerebezem, M.; Hylckama Vlieg, van J.E.T.

    2007-01-01

    The luminescence signal of luxAB-encoded bacterial luciferase strongly depends on the metabolic state of the host cell, which restricts the use of this reporter system to metabolically active bacteria. Here we show that in stationary-phase cells of Lactococcus lactis, detection of luciferase is sign

  8. Autolysis of Lactococcus lactis is influenced by proteolysis

    NARCIS (Netherlands)

    Buist, G; Venema, G; Kok, J.

    1998-01-01

    The autolysin AcmA of Lactococcus lactis was shown to be degraded by the extracellular Lactococcal proteinase PrtP. Autolysis, as evidenced by reduction in optical density of a stationary-phase culture and concomitant release of intracellular proteins, was greatly reduced when L. lactis MG1363 cells

  9. Stability of Integrated Plasmids in the Chromosome of Lactococcus lactis

    NARCIS (Netherlands)

    Leenhouts, Kees J.; Kok, Jan; Venema, Gerhardus

    1990-01-01

    Derivatives of plasmids pBR322, pUB110, pSC101, and pTB19, all containing an identical fragment of lactococcal chromosomal DNA, were integrated via a Campbell-like mechanism into the same chromosomal site of Lactococcus lactis MG1363, and the transformants were analyzed for the stability of the inte

  10. Nucleotide metabolism in Lactococcus lactis: Salvage pathways of exogenous pyrimidines

    DEFF Research Database (Denmark)

    Martinussen, Jan; Andersen, Paal Skytt; Hammer, Karin

    1994-01-01

    By measuring enzyme activities in crude extracts and studying the effect of toxic analogs (5-fluoropyrimidines) on cell growth, the metabolism of pyrimidines in Lactococcus lactis was analyzed. Pathways by which uracil, uridine, deoxyuridine, cytidine, and deoxycytidine are metabolized in L. lact...

  11. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate.

    Science.gov (United States)

    Chen, Jun; Shen, Jing; Ingvar Hellgren, Lars; Ruhdal Jensen, Peter; Solem, Christian

    2015-01-01

    Lactococcus lactis is essential for most cheese making, and this mesophilic bacterium has its growth optimum around 30 °C. We have, through adaptive evolution, isolated a mutant TM29 that grows well up to 39 °C, and continuous growth at 40 °C is possible if pre-incubated at a slightly lower temperature. At the maximal permissive temperature for the wild-type, 38 °C, TM29 grows 33% faster and has a 12% higher specific lactate production rate than its parent MG1363, which results in fast lactate accumulation. Genome sequencing was used to reveal the mutations accumulated, most of which were shown to affect thermal tolerance. Of the mutations with more pronounced effects, two affected expression of single proteins (chaperone; riboflavin transporter), two had pleiotropic effects (RNA polymerase) which changed the gene expression profile, and one resulted in a change in the coding sequence of CDP-diglyceride synthase. A large deletion containing 10 genes was also found to affect thermal tolerance significantly. With this study we demonstrate a simple approach to obtain non-GMO derivatives of the important L. lactis that possess properties desirable by the industry, e.g. thermal robustness and increased rate of acidification. The mutations we have identified provide a genetic basis for further investigation of thermal tolerance. PMID:26388459

  12. Rock Phosphate Solubilization Mechanisms of One Fungus and One Bacterium

    Institute of Scientific and Technical Information of China (English)

    LIN Qi-mei; ZHAO Xiao-rong; ZHAO Zi-juan; LI Bao-guo

    2002-01-01

    Many microorganisms can dissolve the insoluble phosphates like apatite. However, the mechanisms are still not clear. This study was an attempt to investigate the mechanisms of rock phosphate solubilization by an Aspergillus 2TCiF2 and an Arthrobacter1TCRi7. The results indicated that the fungus produced a large amount of organic acids, mainly oxalic acid. The total quantity of the organic acids produced by the fungus was 550 times higher than that by the bacterium. Different organic acids had completely different capacities to solubilize the rock. Oxalic acid and citric acid had stronger capacity to dissolve the rock than malic acid, tartaric acid, lactic acid, acetic acid, malonic acid and succinic acid. The fungus solubilized the rock through excreting both proton and organic acids. The rock solubilization of the bacterium depended on only proton.

  13. Branched-chain 2-keto acid decarboxylases derived from Psychrobacter.

    Science.gov (United States)

    Wei, Jiashi; Timler, Jacobe G; Knutson, Carolann M; Barney, Brett M

    2013-09-01

    The conversion of branched-chain amino acids to branched-chain acids or alcohols is an important aspect of flavor in the food industry and is dependent on the Ehrlich pathway found in certain lactic acid bacteria. A key enzyme in the pathway, the 2-keto acid decarboxylase (KDC), is also of interest in biotechnology applications to produce small branched-chain alcohols that might serve as improved biofuels or other commodity feedstocks. This enzyme has been extensively studied in the model bacterium Lactococcus lactis, but is also found in other bacteria and higher organisms. In this report, distinct homologs of the L. lactis KDC originally annotated as pyruvate decarboxylases from Psychrobacter cryohalolentis K5 and P. arcticus 273-4 were cloned and characterized, confirming a related activity toward specific branched-chain 2-keto acids derived from branched-chain amino acids. Further, KDC activity was confirmed in intact cells and cell-free extracts of P. cryohalolentis K5 grown on both rich and defined media, indicating that the Ehrlich pathway may also be utilized in some psychrotrophs and psychrophiles. A comparison of the similarities and differences in the P. cryohalolentis K5 and P. arcticus 273-4 KDC activities to other bacterial KDCs is presented. PMID:23826991

  14. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: characterization of the bacteriocin.

    Science.gov (United States)

    Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its antimicrobial activity. The bacteriocin presented a broad spectrum of activity, was sensitive to proteolytic enzymes, resistant to heat and pH extremes, and not affected by the presence of SDS, Tween 20, Tween 80, EDTA or NaCl. Bacteriocin production was dependent on the components of the culture media, especially nitrogen source and salts. When tested by PCR, the bacteriocin gene presented 100% homology to nisin Z gene. These properties indicate that this L. lactis subsp. lactis DF4Mi can be used for enhancement of dairy foods safety and quality.

  15. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: characterization of the bacteriocin

    Directory of Open Access Journals (Sweden)

    Danielle N. Furtado

    2014-12-01

    Full Text Available Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi was isolated from goat milk, and studied for its antimicrobial activity. The bacteriocin presented a broad spectrum of activity, was sensitive to proteolytic enzymes, resistant to heat and pH extremes, and not affected by the presence of SDS, Tween 20, Tween 80, EDTA or NaCl. Bacteriocin production was dependent on the components of the culture media, especially nitrogen source and salts. When tested by PCR, the bacteriocin gene presented 100% homology to nisin Z gene. These properties indicate that this L. lactis subsp. lactis DF4Mi can be used for enhancement of dairy foods safety and quality.

  16. Draft Genome Sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a Citrate-Fermenting Strain

    Science.gov (United States)

    Zuljan, Federico; Espariz, Martín; Blancato, Victor S.; Esteban, Luis; Alarcón, Sergio

    2016-01-01

    We report the draft genome sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a natural strain isolated from artisanal cheese from northwest Argentina. L. lactis subsp. lactis bv. diacetylactis is one of the most important microorganisms used as starter culture around the world. The CRL264 strain constitutes a model microorganism in the studies on the generation of aroma compounds (diacetyl, acetoin, and 2,3-butanediol) by lactic acid bacteria. Our genome analysis shows similar genetic organization to other available genomes of L. lactis bv. diacetylactis strains. PMID:26847906

  17. In Situ Determination of the Intracellular pH of Lactococcus lactis and Lactobacillus plantarum during Pressure Treatment

    OpenAIRE

    Molina-Gutierrez, Adriana; Stippl, Volker; Delgado, Antonio; Gänzle, Michael G.; Rudi F. Vogel

    2002-01-01

    Hydrostatic pressure may affect the intracellular pH of microorganisms by (i) enhancing the dissociation of weak organic acids and (ii) increasing the permeability of the cytoplasmic membrane and inactivation of enzymes required for pH homeostasis. The internal pHs of Lactococcus lactis and Lactobacillus plantarum during and after pressure treatment at 200 and 300 MPa and at pH values ranging from 4.0 to 6.5 were determined. Pressure treatment at 200 MPa for up to 20 min did not reduce the vi...

  18. Draft Genome Sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a Citrate-Fermenting Strain.

    Science.gov (United States)

    Zuljan, Federico; Espariz, Martín; Blancato, Victor S; Esteban, Luis; Alarcón, Sergio; Magni, Christian

    2016-01-01

    We report the draft genome sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a natural strain isolated from artisanal cheese from northwest Argentina. L. lactis subsp. lactis bv. diacetylactis is one of the most important microorganisms used as starter culture around the world. The CRL264 strain constitutes a model microorganism in the studies on the generation of aroma compounds (diacetyl, acetoin, and 2,3-butanediol) by lactic acid bacteria. Our genome analysis shows similar genetic organization to other available genomes of L. lactis bv. diacetylactis strains. PMID:26847906

  19. Characterization and overexpression of the Lactococcus lactis pepN gene and localization of its product, aminopeptidase N.

    OpenAIRE

    van Alen-Boerrigter, I J; Baankreis, R; de Vos, W M

    1991-01-01

    The chromosomal pepN gene encoding lysyl-aminopeptidase activity in Lactococcus lactis has been identified in a lambda EMBL3 library in Escherichia coli by using an immunological screening with antiserum against a purified aminopeptidase fraction. The pepN gene was localized and subcloned in E. coli on the basis of its expression and hybridization to a mixed-oligonucleotide probe for the previously determine N-terminal amino acid sequence of lysyl-aminopeptidase (P. S. T. Tan and W. N. Koning...

  20. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese

    OpenAIRE

    Danielle N. Furtado; Todorov, Svetoslav D.; Mariza Landgraf; Destro, Maria T.; Bernadette D.G.M. Franco

    2015-01-01

    Listeria monocytogenes is a pathogen frequently found in dairy products. Its control in fresh cheeses is difficult, due to the psychrotrophic properties and salt tolerance. Bacteriocinogenic lactic acid bacteria (LAB) with proven in vitro antilisterial activity can be an innovative technological approach but their application needs to be evaluated by means of in situ tests. In this study, a novel bacteriocinogenic Lactococcus lactis strain ( Lc . lactis DF4Mi), isolated from raw goat milk, wa...

  1. Plasma mutation breeding of Lactococcus lactis in producing Nisin

    Directory of Open Access Journals (Sweden)

    Shuanli ZHANG

    2015-12-01

    Full Text Available With Nisin-producing Lactococcus lactis as the starting strain, the strain with tolerance to 10 000 IU/mL Nisin is selected on high-concentration Nisin medium. The Nisin titer of the strain is up to 1 680 IU/mL. As the starting strain, the strain is further treated by atmospheric and room temperature plasmas(ARTP and mutant strain for high yield of Nisin is quickly selected with 24 well culture plate. At a survival rate of 3%, the positive mutation rate of the Lactococcus lactis is 273% compared with the starting strain. The results of shake flask culture further confirmed that one positive mutant strains could produce 6 120 IU/mL Nisin.

  2. Lactococcus garvieae Endocarditis on a Prosthetic Biological Aortic Valve.

    Science.gov (United States)

    Tsur, A; Slutzki, T; Flusser, D

    2015-09-01

    Lactococcus garvieae (LG) endocarditis is a rare disease in humans. There are only about 16 reported cases in the world. We report a 76-year-old male patient with LG endocarditis. In depth interview with the patient revealed that 2 weeks prior to admission, he had eaten sushi containing raw fish. Unlike many of the other infections reported, which were on a native mitral valve, our patient's vegetation was on a prosthetic aortic valve.

  3. Lactococcus garvieae Endocarditis on a Prosthetic Biological Aortic Valve.

    Science.gov (United States)

    Tsur, A; Slutzki, T; Flusser, D

    2015-09-01

    Lactococcus garvieae (LG) endocarditis is a rare disease in humans. There are only about 16 reported cases in the world. We report a 76-year-old male patient with LG endocarditis. In depth interview with the patient revealed that 2 weeks prior to admission, he had eaten sushi containing raw fish. Unlike many of the other infections reported, which were on a native mitral valve, our patient's vegetation was on a prosthetic aortic valve. PMID:25295408

  4. Expression of the Staphylococcus hyicus Lipase in Lactococcus lactis

    OpenAIRE

    Drouault, Sophie; Corthier, Gerard; Ehrlich, S. Dusko; Renault, Pierre

    2000-01-01

    The extracellular Staphylococcus hyicus lipase was expressed under the control of different promoters in Lactococcus lactis and Bacillus subtilis. Its expression at high and moderate levels is toxic for the former and the latter hosts, respectively. In L. lactis, the lipase was expressed at a high level, up to 30% of the total cellular proteins, under the control of the inducible promoter PnisA. About 80% of the lipase remained associated with the cells. Close to half of this amount remained ...

  5. Fluorescence assessment of Lactococcus lactis viability

    NARCIS (Netherlands)

    Bunthof, C.J.; Braak, van den S.; Breeuwer, P.; Rombouts, F.M.; Abee, T.

    2000-01-01

    The reproduction and activity of lactic acid bacteria (LAB) are essential in their applications in the dairy industry and other fermentations. Traditionally used methods like plate counting and acidification tests require long incubation times and provide limited information. Fluorescence techniques

  6. Genome Sequence of a Lactococcus lactis Strain Isolated from Salmonid Intestinal Microbiota.

    Science.gov (United States)

    Opazo, Rafael; Gajardo, Felipe; Ruiz, Mauricio; Romero, Jaime

    2016-01-01

    Lactococcus lactis is a common inhabitant of the intestinal microbiota of salmonids, especially those in aquaculture systems. Here, we present a genome sequence of a Lactococcus lactis strain isolated from the intestinal contents of rainbow trout reared in Chile. PMID:27563049

  7. Genome Sequence of Lactococcus garvieae 8831, Isolated from Rainbow Trout Lactococcosis Outbreaks in Spain▿

    OpenAIRE

    Aguado-Urda, Mónica; López-Campos, Guillermo H.; Gibello, Alicia; Cutuli, M. Teresa; López-Alonso, Victoria; Fernández-Garayzábal, José F.; Blanco, M. Mar

    2011-01-01

    Lactococcus garvieae is the etiological agent of lactococcosis, one of the most important disease threats to the sustainability of the rainbow trout farming industry. Here, we present the draft genome sequence of Lactococcus garvieae strain 8831, isolated from diseased rainbow trout, which is composed of 2,087,276 bp with a G+C content of 38%.

  8. Complete Genome Sequence of the d-Amino Acid Catabolism Bacterium Phaeobacter sp. Strain JL2886, Isolated from Deep Seawater of the South China Sea.

    Science.gov (United States)

    Fu, Yingnan; Wang, Rui; Zhang, Zilian; Jiao, Nianzhi

    2016-01-01

    Phaeobacter sp. strain JL2886, isolated from deep seawater of the South China Sea, can catabolize d-amino acids. Here, we report the complete genome sequence of Phaeobacter sp. JL2886. It comprises ~4.06 Mbp, with a G+C content of 61.52%. A total of 3,913 protein-coding genes and 10 genes related to d-amino acid catabolism were obtained. PMID:27587825

  9. Physiology of exopolysaccharide biosynthesis by Lactococcus lactis

    NARCIS (Netherlands)

    Looijesteijn, P.J.

    2000-01-01

    Several lactic acid bacteria (LAB) produce exopolysaccharides (EPS). EPSs produced by LAB are a potential source of natural additives and because LAB are food grade organisms, these EPSs can also be produced in situ . The amount of EPS in milk fermented with strain NIZO B40, which produces an anioni

  10. Proteomic Signature of Lactococcus lactis NCDO763 Cultivated in Milk†

    Science.gov (United States)

    Gitton, Christophe; Meyrand, Mickael; Wang, Juhui; Caron, Christophe; Trubuil, Alain; Guillot, Alain; Mistou, Michel-Yves

    2005-01-01

    We have compared the proteomic profiles of L. lactis subsp. cremoris NCDO763 growing in the synthetic medium M17Lac, skim milk microfiltrate (SMM), and skim milk. SMM was used as a simple model medium to reproduce the initial phase of growth of L. lactis in milk. To widen the analysis of the cytoplasmic proteome, we used two different gel systems (pH ranges of 4 to 7 and 4.5 to 5.5), and the proteins associated with the cell envelopes were also studied by two-dimensional electrophoresis. In the course of the study, we analyzed about 800 spots and identified 330 proteins by mass spectrometry. We observed that the levels of more than 50 and 30 proteins were significantly increased upon growth in SMM and milk, respectively. The large redeployment of protein synthesis was essentially associated with an activation of pathways involved in the metabolism of nitrogenous compounds: peptidolytic and peptide transport systems, amino acid biosynthesis and interconversion, and de novo biosynthesis of purines. We also showed that enzymes involved in reactions feeding the purine biosynthetic pathway in one-carbon units and amino acids have an increased level in SMM and milk. The analysis of the proteomic data suggested that the glutamine synthetase (GS) would play a pivotal role in the adaptation to SMM and milk. The analysis of glnA expression during growth in milk and the construction of a glnA-defective mutant confirmed that GS is an essential enzyme for the development of L. lactis in dairy media. This analysis thus provides a proteomic signature of L. lactis, a model lactic acid bacterium, growing in its technological environment. PMID:16269754

  11. Expanding the molecular toolbox for Lactococcus lactis: construction of an inducible thioredoxin gene fusion expression system

    LENUS (Irish Health Repository)

    Douillard, Francois P

    2011-08-09

    Abstract Background The development of the Nisin Inducible Controlled Expression (NICE) system in the food-grade bacterium Lactococcus lactis subsp. cremoris represents a cornerstone in the use of Gram-positive bacterial expression systems for biotechnological purposes. However, proteins that are subjected to such over-expression in L. lactis may suffer from improper folding, inclusion body formation and\\/or protein degradation, thereby significantly reducing the yield of soluble target protein. Although such drawbacks are not specific to L. lactis, no molecular tools have been developed to prevent or circumvent these recurrent problems of protein expression in L. lactis. Results Mimicking thioredoxin gene fusion systems available for E. coli, two nisin-inducible expression vectors were constructed to over-produce various proteins in L. lactis as thioredoxin fusion proteins. In this study, we demonstrate that our novel L. lactis fusion partner expression vectors allow high-level expression of soluble heterologous proteins Tuc2009 ORF40, Bbr_0140 and Tuc2009 BppU\\/BppL that were previously insoluble or not expressed using existing L. lactis expression vectors. Over-expressed proteins were subsequently purified by Ni-TED affinity chromatography. Intact heterologous proteins were detected by immunoblotting analyses. We also show that the thioredoxin moiety of the purified fusion protein was specifically and efficiently cleaved off by enterokinase treatment. Conclusions This study is the first description of a thioredoxin gene fusion expression system, purposely developed to circumvent problems associated with protein over-expression in L. lactis. It was shown to prevent protein insolubility and degradation, allowing sufficient production of soluble proteins for further structural and functional characterization.

  12. Regulation of Proteolytic Enzyme Activity in Lactococcus lactis

    OpenAIRE

    Meijer, W.; Marugg, J D; Hugenholtz, J

    1996-01-01

    Two different Lactococcus lactis host strains, L. lactis subsp. lactis MG1363 and L. lactis subsp. cremoris SK1128, both containing plasmid pNZ521, which encodes the extracellular serine proteinase (PrtP) from strain SK110, were used to study the medium and growth-rate-dependent activity of three different enzymes involved in the proteolytic system of lactococci. The activity levels of PrtP and both the intracellular aminopeptidase PepN and the X-prolyl-dipeptidyl aminopeptidase PepXP were st...

  13. Genome Sequence of Lactobacillus saerimneri 30a (Formerly Lactobacillus sp. Strain 30a), a Reference Lactic Acid Bacterium Strain Producing Biogenic Amines

    NARCIS (Netherlands)

    Romano, Andrea; Trip, Hein; Campbell-Sills, Hugo; Bouchez, Olivier; Sherman, David; Lolkema, Juke S.; Lucas, Patrick M.

    2013-01-01

    Lactobacillus sp. strain 30a (Lactobacillus saerimneri) produces the biogenic amines histamine, putrescine, and cadaverine by decarboxylating their amino acid precursors. We report its draft genome sequence (1,634,278 bases, 42.6% G+C content) and the principal findings from its annotation, which mi

  14. Genome Sequence of Lactobacillus saerimneri 30a (Formerly Lactobacillus sp. Strain 30a), a Reference Lactic Acid Bacterium Strain Producing Biogenic Amines

    OpenAIRE

    Romano, Andrea; Trip, Hein; Campbell-Sills, Hugo; Bouchez, Olivier; Sherman, David; Lolkema, Juke S.; Lucas, Patrick M

    2013-01-01

    Lactobacillus sp. strain 30a (Lactobacillus saerimneri) produces the biogenic amines histamine, putrescine, and cadaverine by decarboxylating their amino acid precursors. We report its draft genome sequence (1,634,278 bases, 42.6% G+C content) and the principal findings from its annotation, which might shed light onto the enzymatic machineries that are involved in its production of biogenic amines.

  15. Short communication: Presence of Lactococcus and lactococcal exopolysaccharide operons on the leaves of Pinguicula vulgaris supports the traditional source of bacteria present in Scandinavian ropy fermented milk.

    Science.gov (United States)

    Porcellato, Davide; Tranvåg, Malena; Narvhus, Judith

    2016-09-01

    Some traditional Scandinavian fermented milk products have a pronounced ropy consistency due to the presence of exopolysaccharide-producing strains of Lactococcus lactis ssp. cremoris. Norwegian food folklore describes how leaves from the carnivorous plant Pinguicula vulgaris (common butterwort) may be added to milk to initiate the fermentation of the traditional fermented milk product tettemelk. However, scientific confirmation of the link between the plant and the milk product has not been previously published. In the present study, the microbiome on 20 samples of P. vulgaris leaves collected from 5 different rural geographical locations in Norway and from 4 samples of commercial tettemelk was analyzed using high-throughput sequencing methods. The leaf microbiota of P. vulgaris was dominated by Proteobacteria and Firmicutes and the genus Lactococcus was demonstrated in all leaf samples. In addition, DNA extracted from the leaf microbiome contained genes identical to those responsible for exopolysaccharide production in Lactococcus. These results confirm the traditional use of P. vulgaris as a source of bacteria for the Norwegian ropy fermented milk product tettemelk and indicate that P. vulgaris microbiomes can be a potential source of lactic acid bacteria with interesting dairy technological features. PMID:27423953

  16. Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Ahring, Birgitte Kiær

    2007-01-01

    Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work, the therm......Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work...... fermented yielding ethanol of 0.39–0.42 g/g-sugars consumed. Xylose was nearly completely utilized (89–98%) for PCS up to 10% TS, whereas at 15% TS, xylose conversion was lowered to 67%. The reactor was operated continuously for 135 days, and no contamination was seen without the use of any agent...

  17. Genome Sequence of Lactobacillus saerimneri 30a (Formerly Lactobacillus sp. Strain 30a), a Reference Lactic Acid Bacterium Strain Producing Biogenic Amines

    OpenAIRE

    Romano, Andrea; Trip, Hein; Campbell-Sills, Hugo; Bouchez, Olivier; Sherman, David; Lolkema, Juke S.; Lucas, Patrick M

    2013-01-01

    Lactobacillus sp. strain 30a (Lactobacillus saerimneri) produces the biogenic amines histamine, putrescine, and cadaverine by decarboxylating their amino acid precursors. We report its draft genome sequence (1,634,278 bases, 42.6% G+C content) and the principal findings from its annotation, which might shed light onto the enzymatic machineries that are involved in its production of biogenic amines.

  18. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  19. Dethiosulfatibacter aminovorans gen. nov., sp. nov., a novel thiosulfate-reducing bacterium isolated from coastal marine sediment via sulfate-reducing enrichment with Casamino acids.

    Science.gov (United States)

    Takii, Susumu; Hanada, Satoshi; Tamaki, Hideyuki; Ueno, Yutaka; Sekiguchi, Yuji; Ibe, Akihiro; Matsuura, Katsumi

    2007-10-01

    A sulfate-reducing enrichment culture originating from coastal marine sediment of the eutrophic Tokyo Bay, Japan, was successfully established with Casamino acids as a substrate. A thiosulfate reducer, strain C/G2(T), was isolated from the enrichment culture after further enrichment with glutamate. Cells of strain C/G2(T) were non-motile rods (0.6-0.8 microm x 2.2-4.8 microm) and were found singly or in pairs and sometimes in short chains. Spores were not formed. Cells of strain C/G2(T) stained Gram-negatively, despite possessing Gram-positive cell walls. The optimum temperature for growth was 28-30 degrees C, the optimum pH was around 7.8 and the optimum salt concentration was 20-30 g l(-1). Lactate, pyruvate, serine, cysteine, threonine, glutamate, histidine, lysine, arginine, Casamino acids, peptone and yeast extract were fermented as single substrates and no sugar was used as a fermentative substrate. A Stickland reaction was observed with some pairs of amino acids. Fumarate, alanine, proline, phenylalanine, tryptophan, glutamine and aspartate were utilized only in the presence of thiosulfate. Strain C/G2(T) fermented glutamate to H2, CO2, acetate and propionate. Thiosulfate and elemental sulfur were reduced to sulfide. Sulfate, sulfite and nitrate were not utilized as electron acceptors. The growth of strain C/G2(T) on Casamino acids or glutamate was enhanced by co-culturing with Desulfovibrio sp. isolated from the original mixed culture enriched with Casamino acids. The DNA G+C content of strain C/G2(T) was 41.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain C/G2(T) formed a distinct cluster with species of the genus Sedimentibacter. The closest relative was Sedimentibacter hydroxybenzoicus (with a gene sequence similarity of 91 %). On the basis of its phylogenetic and phenotypic properties, strain C/G2(T) (=JCM 13356(T)=NBRC 101112(T)=DSM 17477(T)) is proposed as representing a new genus and novel species, Dethiosulfatibacter

  20. Transcriptome and membrane fatty acid analyses reveal different strategies for responding to permeating and non-permeating solutes in the bacterium Sphingomonas wittichii

    Directory of Open Access Journals (Sweden)

    Johnson David R

    2011-11-01

    Full Text Available Abstract Background Sphingomonas wittichii strain RW1 can completely oxidize dibenzo-p-dioxins and dibenzofurans, which are persistent contaminants of soils and sediments. For successful application in soil bioremediation systems, strain RW1 must cope with fluctuations in water availability, or water potential. Thus far, however, little is known about the adaptive strategies used by Sphingomonas bacteria to respond to changes in water potential. To improve our understanding, strain RW1 was perturbed with either the cell-permeating solute sodium chloride or the non-permeating solute polyethylene glycol with a molecular weight of 8000 (PEG8000. These solutes are assumed to simulate the solute and matric components of the total water potential, respectively. The responses to these perturbations were then assessed and compared using a combination of growth assays, transcriptome profiling, and membrane fatty acid analyses. Results Under conditions producing a similar decrease in water potential but without effect on growth rate, there was only a limited shared response to perturbation with sodium chloride or PEG8000. This shared response included the increased expression of genes involved with trehalose and exopolysaccharide biosynthesis and the reduced expression of genes involved with flagella biosynthesis. Mostly, the responses to perturbation with sodium chloride or PEG8000 were very different. Only sodium chloride triggered the increased expression of two ECF-type RNA polymerase sigma factors and the differential expression of many genes involved with outer membrane and amino acid metabolism. In contrast, only PEG8000 triggered the increased expression of a heat shock-type RNA polymerase sigma factor along with many genes involved with protein turnover and repair. Membrane fatty acid analyses further corroborated these differences. The degree of saturation of membrane fatty acids increased after perturbation with sodium chloride but had the

  1. Caproiciproducens galactitolivorans gen. nov., sp. nov., a bacterium capable of producing caproic acid from galactitol, isolated from a wastewater treatment plant.

    Science.gov (United States)

    Kim, Byung-Chun; Seung Jeon, Byoung; Kim, Seil; Kim, Hyunook; Um, Youngsoon; Sang, Byoung-In

    2015-12-01

    A strictly anaerobic, Gram-stain-positive, non-spore-forming, rod-shaped bacterial strain, designated BS-1T, was isolated from an anaerobic digestion reactor during a study of bacteria utilizing galactitol as the carbon source. Its cells were 0.3-0.5 μm × 2-4 μm, and they grew at 35-45 °C and at pH 6.0-8.0. Strain BS-1T produced H2, CO2, ethanol, acetic acid, butyric acid and caproic acid as metabolic end products of anaerobic fermentation. Phylogenetic analysis, based on the 16S rRNA gene sequence, showed that strain BS-1T represented a novel bacterial genus within the family Ruminococcaceae, Clostridium Cluster IV. The type strains that were most closely related to strain BS-1T were Clostridium sporosphaeroides KCTC 5598T (94.5 %), Clostridium leptum KCTC 5155T (94.3 %), Ruminococcus bromii ATCC 27255T (92.1 %) and Ethanoligenens harbinense YUAN-3T (91.9 %). Strain BS-1T had 17.6 % and 20.9 % DNA-DNA relatedness values with C. sporosphaeroides DSM 1294T and C. leptum DSM 753T, respectively. The major components of the cellular fatty acids were C16 : 0 dimethyl aldehyde (DMA) (22.1 %), C16 : 0 aldehyde (14.1 %) and summed feature 11 (iso-C17 : 0 3-OH and/or C18 : 2 DMA; 10.0 %). The genomic DNA G+C content was 50.0 mol%. Phenotypic and phylogenetic characteristics allowed strain BS-1T to be clearly distinguished from other taxa of the genus Clostridium Cluster IV. On the basis of these data, the isolate is considered to represent a novel genus and novel species within Clostridium Cluster IV, for which the name Caproiciproducens galactitolivorans gen. nov., sp. nov. is proposed. The type species is BS-1T ( = JCM 30532T and KCCM 43048T). PMID:26474980

  2. Transfer of nisin gene cluster from Lactococcus lactis ATCC 11454 into the chromosome of Bacillus subtilis 168.

    Science.gov (United States)

    Yuksel, Sahru; Hansen, J Norman

    2007-03-01

    Nisin is an antimicrobial peptide produced by certain strains of Lactococcus lactis. It is a gene-encoded peptide that contains unusual amino acid residues. These novel residues are introduced by posttranslational modification machinery and confer unique chemical and physical properties that are not attainable by regular amino acid residues. To study the modification mechanisms and to create structural analogs with superior properties, it would be advantageous to insert the nisin genes into a bacterial strain that is amenable to genetic manipulation. In this study, we report the cloning and integration of the complete and intact nisin gene cluster into the Bacillus subtilis 168 chromosome. Furthermore, we demonstrate that the nisin genes are transcriptionally active. These results should greatly facilitate the studies of the genes and proteins involved in nisin expression, as well as provide a standard system for the manipulation and expression of genes involved in other members of the lantibiotic family of antimicrobial peptides. PMID:17143619

  3. Multi-stress resistance in Lactococcus lactis is actually escape from purine-induced stress sensitivity

    DEFF Research Database (Denmark)

    Ryssel, Mia; Hviid, Anne-Mette Meisner; Dawish, Mohamed S.;

    2014-01-01

    to the acid-stress medium increased the stress sensitivity of L. lactis MG1363. It is also shown that high intracellular guanine nucleotide pools confer increased sensitivity to high temperatures, thus showing that it is indeed a multi-stress phenotype. Our analysis suggests that an increased level......Multi-stress resistance is a widely documented and fascinating phenotype of lactococci where single mutations, preferentially in genes involved in nucleotide metabolism and phosphate uptake, result in elevated tolerance to multiple stresses simultaneously. In this report, we have analysed the...... metabolic basis behind this multi-stress-resistance phenotype in Lactococcus lactis subsp. cremoris MG1363 using acid stress as a model of multi-stress resistance. Surprisingly, we found that L. lactis MG1363 is fully resistant to pH 3.0 in the chemically defined SA medium, contrary to its sensitivity in...

  4. GABA Production in Lactococcus lactis Is Enhanced by Arginine and Co-addition of Malate.

    Science.gov (United States)

    Laroute, Valérie; Yasaro, Chonthicha; Narin, Waranya; Mazzoli, Roberto; Pessione, Enrica; Cocaign-Bousquet, Muriel; Loubière, Pascal

    2016-01-01

    Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These strategies also include arginine deiminase pathway and malolactic fermentation but little is known about their possible interactions of with GABA production. In the present study, the effects of glutamate, arginine, and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some conditions were able to improve GABA production or activate glutamate decarboxylation system even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate, and glutamate enabled earlier GABA production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no previous study has reported GABA production in such conditions. Although further studies are needed to understand the molecular basis of these phenomena, these results represent important keys suitable of application in GABA production processes. PMID:27458444

  5. A Plant Growth-Promoting Bacterium That Decreases Nickel Toxicity in Seedlings

    OpenAIRE

    Burd, Genrich I.; Dixon, D. George; Glick, Bernard R.

    1998-01-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni2+, Pb2+, Zn2+, and CrO4−, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride w...

  6. Potential aquaculture probiont Lactococcus lactis TW34 produces nisin Z and inhibits the fish pathogen Lactococcus garvieae.

    Science.gov (United States)

    Sequeiros, Cynthia; Garcés, Marisa E; Vallejo, Marisol; Marguet, Emilio R; Olivera, Nelda L

    2015-04-01

    Bacteriocin-producing Lactococcus lactis TW34 was isolated from marine fish. TW34 bacteriocin inhibited the growth of the fish pathogen Lactococcus garvieae at 5 AU/ml (minimum inhibitory concentration), whereas the minimum bactericidal concentration was 10 AU/ml. Addition of TW34 bacteriocin to L. garvieae cultures resulted in a decrease of six orders of magnitude of viable cells counts demonstrating a bactericidal mode of action. The direct detection of the bacteriocin activity by Tricine-SDS-PAGE showed an active peptide with a molecular mass ca. 4.5 kDa. The analysis by MALDI-TOF-MS detected a strong signal at m/z 2,351.2 that corresponded to the nisin leader peptide mass without the initiating methionine, whose sequence STKDFNLDLVSVSKKDSGASPR was confirmed by MS/MS. Sequence analysis of nisin structural gene confirmed that L. lactis TW34 was a nisin Z producer. This nisin Z-producing strain with probiotic properties might be considered as an alternative in the prevention of lactococcosis, a global disease in aquaculture systems.

  7. Mode of action of lactococcin R produced by Lactococcus lactis R.

    Science.gov (United States)

    Yildirim, Zeliha; Yildirim, Metin; Johnson, Michael G

    2004-04-01

    We investigated the mode of action and factors affecting adsorption of lactoccocin R produced by Lactococcus lactis R. It was found that lactococcin R adsorbed to all Gram-positive but not to the Gram-negative bacteria tested and its adsorption was dependent on pH. It was observed that the binding of lactococcin R was prevented by anions of several salts (Cl-, PO4(-3)) and lipoteichoic acid. Pretreatments of sensitive cells and cell walls with detergents, organic solvents or enzymes did not reduce subsequent binding of lactococcin R. However, treatment of cell wall preparations with methanol:chloroform and hot 20% trichloroacetic acid (TCA) caused such walls to lose their ability to adsorb lactococcin R. Sensitive cells treated with lactococcin R lost high amounts of intracellular K+ ions, UV-absorbing materials and became more permeable to o-nitrophenol-beta-D-glactopyranoside (ONPG). In addition, different lactococcin R concentrations (0-2560 AU/mL) decreased the colony counts of Listeria monocytogenes by 99% and also a reduction in the absorbance values. These results show that the mode of action of lactococcin R is bactericidal rather than bacteriostatic.

  8. Localization and accessibility of antigenic sites of the extracellular serine proteinase of Lactococcus lactis

    NARCIS (Netherlands)

    Laan, Harm; Kok, Jan; Haandrikman, Alfred J.; Venema, Gerhardus; Konings, Wilhelmus

    1992-01-01

    Lactococcus lactis strains produce an extracellular subtilisin-related serine proteinase in which immunologically different components can be distinguished. Monoclonal antibodies specific for the different proteinase components have been raised and their epitopes were identified. By Western-blot ana

  9. Engineering of carbon distribution between glycolysis and sugar nucleobiosynthesis in Lactococcus lactis

    NARCIS (Netherlands)

    Boels, I.C.; Kleerebezem, M.; Vos, de W.M.

    2003-01-01

    We describe the effects of modulating the activities of glucokinase, phosphofructokinase, and phosphoglucomutase on the branching point between sugar degradation and the biosynthesis of sugar nucleotides involved in the production of exopolysaccharide biosynthesis by Lactococcus lactis. This was rea

  10. Identification and sequence analysis of pWcMBF8-1, a bacteriocin-encoding plasmid from the lactic acid bacterium Weissella confusa.

    Science.gov (United States)

    Malik, Amarila; Sumayyah, Sumayyah; Yeh, Chia-Wen; Heng, Nicholas C K

    2016-04-01

    Members of the Gram-positive lactic acid bacteria (LAB) are well-known for their beneficial properties as starter cultures and probiotics. Many LAB species produce ribosomally synthesized proteinaceous antibiotics (bacteriocins). Weissella confusa MBF8-1 is a strain isolated from a fermented soybean product that not only produces useful exopolysaccharides but also exhibits bacteriocin activity, which we call weissellicin MBF. Here, we show that bacteriocin production by W. confusa MBF8-1 is specified by a large plasmid, pWcMBF8-1. Plasmid pWcMBF8-1 (GenBank accession number KR350502), which was identified from the W. confusa MBF8-1 draft genome sequence, is 17 643 bp in length with a G + C content of 34.8% and contains 25 open reading frames (ORFs). Six ORFs constitute the weissellicin MBF locus, encoding three putative double-glycine-motif peptides (Bac1, Bac2, Bac3), an ABC transporter complex (BacTE) and a putative immunity protein (BacI). Two ORFs encode plasmid partitioning and mobilization proteins, suggesting that pWcMBF8-1 is transferable to other hosts. To the best of our knowledge, plasmid pWcMBF8-1 not only represents the first large Weissella plasmid to be sequenced but also the first to be associated with bacteriocin production in W. confusa. PMID:26976853

  11. Infective endocarditis with Lactococcus garvieae in Japan: a case report

    Directory of Open Access Journals (Sweden)

    Isonuma Hiroshi

    2011-08-01

    Full Text Available Abstract Introduction Lactococcus garvieae is a well-recognized fish pathogen, and it is considered a rare pathogen with low virulence in human infection. We describe the 11th case of L. garvieae infective endocarditis reported in the literature, and the first reported case in Japan. Case presentation We report a case of a 55-year-old Japanese woman who had native valve endocarditis with L. garvieae. The case was complicated by renal infarction, cerebral infarction, and mycotic aneurysms. After anti-microbial treatment, she was discharged from the hospital and is now well while being monitored in the out-patient clinic. Conclusion We encountered a case of L. garvieae endocarditis that occurred in a native valve of a healthy woman. The 16S ribosomal RNA gene sequencing was useful for the identification of this pathogen. Although infective endocarditis with L. garvieae is uncommon, it is possible to treat high virulence clinically.

  12. Transforming Lactococcus lactis into a microbial cell factory

    DEFF Research Database (Denmark)

    Petersen, Kia Vest

    . To simplify further analysis arcA encoding the arginine deiminase was deleted, thus eliminating the arginine catabolism. We found that in L. lactis KF147 xylose is metabolized through two pathways namely the phosphoketolase pathway and the non-oxidative part of the pentose phosphate pathway. The only products...... the potential of Lactococcus lactis as a platform organism for production of biofuels and-chemicals with a focus on characterization and optimization of the xylose metabolism. The plant isolate L. lactis KF147 was selected as the potential platform organism due to its natural ability to utilize both the pentose...... for the next round of integration. The xylose metabolism in L. lactis KF147 was characterized in a defined medium supplemented with 0.2%, 1% or 3% (w/v) xylose. The defined medium contains free arginine, and it was found that L. lactis KF147 co-metabolizes the arginine through the arginine deiminase pathway...

  13. Lactococcus lactis productor de bacteriocina utilizable como cultivo iniciador para acelerar la maduración de queso

    OpenAIRE

    Martínez-Cuesta, M. Carmen; Requena, Teresa; Peláez, Carmen

    2003-01-01

    Lactococcus lactis productor de bacteriocina utilizable como cultivo iniciador para acelerar la maduración de queso. La presente invención describe un procedimiento de producción de transconjugantes de Lactococcus lactis (se describe en detalle el Lactococcus lactis CECT5367) productores de bacteriocina y por tanto inmune a ella. Este microorganismo y otros similares pueden utilizarse como cultivos iniciadores para la elaboración de queso semiduro produciendo quesos de buena calidad organolép...

  14. Aii20J, a wide-spectrum thermostable N-acylhomoserine lactonase from the marine bacterium Tenacibaculum sp. 20J, can quench AHL-mediated acid resistance in Escherichia coli.

    Science.gov (United States)

    Mayer, C; Romero, M; Muras, A; Otero, A

    2015-11-01

    Acyl homoserine lactones (AHLs) are produced by many Gram-negative bacteria to coordinate gene expression in cellular density dependent mechanisms known as quorum sensing (QS). Since the disruption of the communication systems significantly reduces virulence, the inhibition of quorumsensing processes or quorum quenching (QQ) represents an interesting anti-pathogenic strategy to control bacterial infections. Escherichia coli does not produce AHLs but possesses an orphan AHL receptor, SdiA, which is thought to be able to sense the QS signals produced by other bacteria and controls important traits as the expression of glutamate-dependent acid resistance mechanism, therefore constituting a putative target for QQ. A novel AHL-lactonase, named Aii20J, has been identified, cloned and over expressed from the marine bacterium Tenacibaculum sp. strain 20 J presenting a wide-spectrum QQ activity. The enzyme, belonging to the metallo-β-lactamase family, shares less than 31 % identity with the lactonase AiiA from Bacillus spp. Aii20J presents a much higher specific activity than the Bacillus enzyme, maintains its activity after incubation at 100 ºC for 10 minutes, is resistant to protease K and α-chymotrypsin, and is unaffected by wide ranges of pH. The addition of Aii20J (20 μg/mL) to cultures of E. coli K-12 to which OC6-HSL was added resulted in a significant reduction in cell viability in comparison with the acidresistant cultures derived from the presence of the signal. Results confirm the interaction between AHLs and SdiA in E. coli for the expression of virulence-related genes and reveal the potential use of Aii20J as anti-virulence strategy against important bacterial pathogens and in other biotechnological applications.

  15. 基于图像处理的分支链氨基酸菌体形状识别%Bacterium Body Shape Recognition of Branched Chain Amino Acid Based on Image Processing

    Institute of Scientific and Technical Information of China (English)

    李达; 丁莉莎; 马雷; 王以忠; 陈宁

    2012-01-01

      提出了一种用于分支链氨基酸发酵过程中菌体形状识别的方法。该方法基于菌体的图像,充分利用菌体的形状特征,将菌体图像的面积作为第一步识别特征,然后将菌体中心的位置作为第二步识别特征,最后对菌体图像进行编码作为第三步识别特征。实验表明,该方法可以对分支链氨基酸发酵过程中的菌体形状进行准确快速的识别。%  A method of recognizing body shapes of bacteria during fermentation process of branched chain amino acid (BCAA) was proposed, which is based on the images of bacteria. In order to ful y make use of shape properties of bacteria, the areas of bacteria were used for the first-step recognition. Then, the positions of the centers of bacterium images were used for the second-step recognition. Final y, the images of bacteria were coded for the third-step recognition. Recognition experiments were conducted with satisfied results to show the proposed method recognizes the shapes of bacteria during fermentation process of BCAA correctly and fast.

  16. Use of rRNA gene restriction patterns to evaluate lactic acid bacterium contamination of vacuum-packaged sliced cooked whole-meat product in a meat processing plant.

    Science.gov (United States)

    Björkroth, K J; Korkeala, H J

    1997-02-01

    Molecular typing was applied to an in-plant lactic acid bacterium (LAB) contamination analysis of a vacuum-packaged sliced cooked whole-meat product. A total of 982 LAB isolates from the raw mass, product, and the environment at different production stages were screened by restriction endonuclease (EcoRI and HindIII) analysis. rRNA gene restriction patterns were further determined for different strains obtained from each source. These patterns were used for recognizing the spoilage-causing LAB strains from the product on the sell-by day and tracing the sources and sites of spoilage LAB contamination during the manufacture. LAB typing resulted in 71 different ribotypes, of which 27 were associated with contamination routes. Raw material was distinguished as the source of the major spoilage strains. Contamination of the product surfaces after cooking was shown to be airborne. The removal of the product from the cooking forms was localized as a major site of airborne LAB contamination. Food handlers and some surfaces in contact with the product during the manufacture were also contaminated with the spoilage strains. Some LAB strains were also able to resist cooking in the core of the product bar. These strains may have an effect on the product shelf life by contaminating the slicing machine. The air in the slicing department and adjacent cold room contained very few LAB. Surface-mediated contamination was detected during the slicing and packaging stages. Food handlers also carried strains later found in the packaged product. Molecular typing provided useful information revealing the LAB contamination sources and sites of this product. The production line will be reorganized in accordance with these results to reduce spoilage LAB contamination.

  17. Plasmid elimination of Lactococcus lactis%乳酸乳球菌的质粒消除

    Institute of Scientific and Technical Information of China (English)

    柳国霞; 范丽平; 霍贵成

    2009-01-01

    质粒消除是签定质粒和获得无质粒菌株的重要方法,是乳酸菌进行遗传学改造所需的一项重要技术.试验采用高温和消除剂结合的方法,对乳酸乳球菌镉抗性菌株进行质粒消除,探讨温度、消除剂吖啶橙的用量和作用时间对乳酸乳球菌镉抗性质粒消除的影响.结果表明,39℃高温可以质粒消除,而37和41℃均无此效果;独自吖叮橙作用未获得质粒消除菌株;39℃高温-吖啶橙同时作用比高温-吖啶橙交替作用消除率高,而39℃高温-20 μg·mL-1吖啶橙共同作用12 d,消除率可达98%.根据消除结果,以疑似功能性质粒为模板,进行PCR扩增,获得预期片段,进一步证实了其功能.%Plasmid elimination is a key method of plasmid identificaton and obtaining non-plasmid strain, and it is an important technology which was needed by genetics transformation in lactic acid bacteria. High temperature and the elimination agent were combined by plasmid elimination for a cadmium-resistant Lactococcus lactis strains, the amount and the time by using temperature and eUminaton agent acridine orange (AO) were approached on the effect of cadmium-resistant Lactococcus lactis plasmid. The results showed that 39℃ high temperature could eliminate the plasmid, but 37 and 41℃ had no effects. Plasmid elimination strain was not obtained by using AO alone, the elimination rate by the method of both high temperature and AO at the same time was higher than that of by interchanging between high temperature and AO. The combined effect of 39℃ temperature and 20 μg·mL-1 AO for 12 days was significant, the elimination rate was as high as 98%. According to the results, PCR amplification was based on the suspected functional plasmid as a template, achieved the desired fragment, and further confirmed its functions.

  18. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri.

    Science.gov (United States)

    Van Pijkeren, Jan-Peter; Neoh, Kar Mun; Sirias, Denise; Findley, Anthony S; Britton, Robert A

    2012-01-01

    Single-stranded DNA (ssDNA) recombineering is a technology which is used to make subtle changes in the chromosome of several bacterial genera. Cells which express a single-stranded DNA binding protein (RecT or Bet) are transformed with an oligonucleotide which is incorporated via an annealing and replication-dependent mechanism. By in silico analysis we identified ssDNA binding protein homologs in the genus Lactobacillus and Lactococcus lactis. To assess whether we could further improve the recombineering efficiency in Lactobacillus reuteri ATCC PTA 6475 we expressed several RecT homologs in this strain. RecT derived from Enterococcus faecalis CRMEN 19 yielded comparable efficiencies compared with a native RecT protein, but none of the other proteins further increased the recombineering efficiency. We successfully improved recombineering efficiency 10-fold in L. lactis by increasing oligonucleotide concentration combined with the use of oligonucleotides containing phosphorothioate-linkages (PTOs). Surprisingly, neither increased oligonucleotide concentration nor PTO linkages enhanced recombineering in L. reuteri 6475. To emphasize the utility of this technology in improving probiotic features we modified six bases in a transcriptional regulatory element region of the pdu-operon of L. reuteri 6475, yielding a 3-fold increase in the production of the antimicrobial compound reuterin. Directed genetic modification of lactic acid bacteria through ssDNA recombineering will simplify strain improvement in a way that, when mutating a single base, is genetically indistinguishable from strains obtained through directed evolution. PMID:22750793

  19. Phosphoglycerate Mutase Is a Highly Efficient Enzyme without Flux Control in Lactococcus lactis

    DEFF Research Database (Denmark)

    Solem, Christian; Petranovic, D.; Købmann, Brian;

    2010-01-01

    The glycolytic enzyme phosphoglycerate mutase (PGM), which catalyzes the conversion of 3-phosphoglycerate to 2-phosphoglycerate, was examined in Lactococcus lactis with respect to its function, kinetics and glycolytic flux control. A library of strains with PGM activities ranging between 15-465% of....... lactis PGM was dependent on 2,3-bisphosphoglyceric acid for activity, which showed that the enzyme is of the dPGM type in accordance with its predicted homology to dPGM enzymes from other organisms. In conclusion, PGM from L. lactis is a highly efficient catalyst, which partially explains why this enzyme...... at highly reduced PGM activities. At the wild-type level PGM operated very far from V-max. Consequently, in a strain with only 15% PGM activity, the catalytic rate of PGM was almost six times higher than in the wildtype. K-m of PGM for 3-phosphoglycerate was 1.0 m M and k(cat) was 3,200 s(-1). The L...

  20. Antigenicity and Immunogenicity of Rotavirus VP6 Protein Expressed on the Surface of Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    L. E. Esteban

    2013-01-01

    Full Text Available Group A rotaviruses are the major etiologic agents of acute gastroenteritis worldwide in children and young animals. Among its structural proteins, VP6 is the most immunogenic and is highly conserved within this group. Lactococcus lactis is a food-grade, Gram-positive, and nonpathogenic lactic acid bacteria that has already been explored as a mucosal delivery system of heterologous antigens. In this work, the nisin-controlled expression system was used to display the VP6 protein at the cell surface of L. lactis. Conditions for optimal gene expression were established by testing different nisin concentrations, cell density at induction, and incubation times after induction. Cytoplasmic and cell wall protein extracts were analyzed by Western blot and surface expression was confirmed by flow cytometry. Both analysis provided evidence that VP6 was efficiently expressed and displayed on the cell surface of L. lactis. Furthermore, the humoral response of mice immunized with recombinant L. lactis was evaluated and the displayed recombinant VP6 protein proved to be immunogenic. In conclusion, this is the first report of displaying VP6 protein on the surface of L. lactis to induce a specific immune response against rotavirus. These results provide the basis for further evaluation of this VP6-displaying L. lactis as a mucosal delivery vector in a mouse model of rotavirus infection.

  1. Heterologous protein secretion in Lactococcus lactis: a novel antigen delivery system

    Directory of Open Access Journals (Sweden)

    Langella P.

    1999-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram-positive bacteria and are generally regarded as safe (GRAS organisms. Therefore, LAB could be used for heterologous protein secretion and they are good potential candidates as antigen delivery vehicles. To develop such live vaccines, a better control of protein secretion is required. We developed an efficient secretion system in the model LAB, Lactococcus lactis. Staphylococcal nuclease (Nuc was used as the reporter protein. We first observed that the quantity of secreted Nuc correlated with the copy number of the cloning vector. The nuc gene was cloned on a high-copy number cloning vector and no perturbation of the metabolism of the secreting strain was observed. Replacement of nuc native promoter by a strong lactococcal one led to a significant increase of nuc expression. Secretion efficiency (SE of Nuc in L. lactis was low, i.e., only 60% of the synthesized Nuc was secreted. Insertion of a synthetic propeptide between the signal peptide and the mature moiety of Nuc increased the SE of Nuc. On the basis of these results, we developed a secretion system and we applied it to the construction of an L. lactis strain which secretes a bovine coronavirus (BCV epitope-protein fusion (BCV-Nuc. BCV-Nuc was recognized by both anti-BCV and anti-Nuc antibodies. Secretion of this antigenic fusion is the first step towards the development of a novel antigen delivery system based on LAB-secreting strains.

  2. Insights into new bacteriophages of Lactococcus garvieae belonging to the family Podoviridae.

    Science.gov (United States)

    Ghasemi, Seyed Mahdi; Bouzari, Majid; Shaykh Baygloo, Nima; Chang, Hyo-Ihl

    2014-11-01

    Lactococcus garvieae is an emerging pathogen responsible for lactococcosis, a serious disease in trout aquaculture. The identification of new bacteriophages against L. garvieae strains may be an effective way to fight this disease and to study the pathogen's biology. Three L. garvieae phages, termed WP-1, WWP-2 and SP-2, were isolated from different environments, and their morphological features, genome restriction profiles and structural protein patterns were studied. Random cloning of HindIII-cut fragments was performed, and the fragments were partially sequenced for each phage. Although slight differences were observed by transmission electron microscopy, all of the phages had hexagonal heads and short non-contractile tails and were classified as members of the family Podoviridae. Restriction digestion analysis of the nucleic acids of the different phages revealed that the HindIII and AseI digests produced similar DNA fragment patterns. Additionally, SDS-PAGE analysis indicated that the isolated phages have similar structural proteins. The sequence BLAST results did not show any significant similarity with other previously identified phages. To the best of our knowledge, this study provides the first molecular characterization of L. garvieae phages.

  3. Identification of a Conserved Sequence in Flavoproteins Essential for the Correct Conformation and Activity of the NADH Oxidase NoxE of Lactococcus lactis ▿ †

    OpenAIRE

    Tachon, Sybille; Chambellon, Emilie; Yvon, Mireille

    2011-01-01

    Water-forming NADH oxidases (encoded by noxE, nox2, or nox) are flavoproteins generally implicated in the aerobic survival of microaerophilic bacteria, such as lactic acid bacteria. However, some natural Lactococcus lactis strains produce an inactive NoxE. We examined the role of NoxE in the oxygen tolerance of L. lactis in the rich synthetic medium GM17. Inactivation of noxE suppressed 95% of NADH oxidase activity but only slightly affected aerobic growth, oxidative stress resistance, and NA...

  4. Enhancement of nisin production by Lactococcus lactis in periodically re-alkalized cultures.

    Science.gov (United States)

    Guerra, Nelson Pérez; Castro, Lorenzo Pastrana

    2003-10-01

    Synthesis of nisin as well as biomass production by Lactococcus lactis subsp. lactis CECT (Colección Española de Cultivos Tipo) 539 on both hydrolysed mussel-processing waste and whey medium were followed in three fixed volume fed-batch fermentations, with re-alkalization cycles. The two cultures on mussel-processing waste (MPW) were fed with a 240 g/l concentrated glucose and with a concentrated MPW (about 100 g of glucose/l). The culture on whey was fed with a mixture of concentrated whey (48 g of total sugars/l) and a 400 g/l concentrated lactose. The three cultures were mainly characterized with higher nisin titres [49.7, 109.6 and 124.7 bacteriocin activity units (AU)/ml respectively] compared with the batch process on de Man, Rogosa and Sharpe [(1960) J. Appl. Bacteriol. 23, 130-135] medium (49.6 AU/ml), MPW (9.5 AU/ml) and whey (22.5 AU/ml) [1 AU/ml is the amount of antibacterial compound needed to obtain 50% growth inhibition (LD50) compared with control tubes]. In the three fed-batch cultures a shift from homolactic to mixed-acid fermentation was observed, and other products (acetic acid, butane-2,3-diol or ethanol) in addition to lactic acid were detectable in the medium. However, their contributions to the total antibacterial activity of the post-incubates (the cell-free culture supernatant obtained at the end of the fermentation process) of L. lactis CECT 539 against Carnobacterium piscicola CECT 4020 were very low.

  5. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Tingting Guo

    Full Text Available Lactococcus lactis is a well-studied bacterium widely used in dairy fermentation and capable of producing metabolites with organoleptic and nutritional characteristics. For fine tuning of the distribution of glycolytic flux at the pyruvate branch from lactate to diacetyl and balancing the production of the two metabolites under aerobic conditions, a constitutive promoter library was constructed by randomizing the promoter sequence of the H(2O-forming NADH oxidase gene in L. lactis. The library consisted of 30 promoters covering a wide range of activities from 7,000 to 380,000 relative fluorescence units using a green fluorescent protein as reporter. Eleven typical promoters of the library were selected for the constitutive expression of the H(2O-forming NADH oxidase gene in L. lactis, and the NADH oxidase activity increased from 9.43 to 58.17-fold of the wild-type strain in small steps of activity change under aerobic conditions. Meanwhile, the lactate yield decreased from 21.15 ± 0.08 mM to 9.94 ± 0.07 mM, and the corresponding diacetyl production increased from 1.07 ± 0.03 mM to 4.16 ± 0.06 mM with the intracellular NADH/NAD(+ ratios varying from 0.711 ± 0.005 to 0.383 ± 0.003. The results indicated that the reduced pyruvate to lactate flux was rerouted to the diacetyl with an almost linear flux variation via altered NADH/NAD(+ ratios. Therefore, we provided a novel strategy to precisely control the pyruvate distribution for fine tuning of the lactate and diacetyl production through promoter engineering in L. lactis. Interestingly, the increased H(2O-forming NADH oxidase activity led to 76.95% lower H(2O(2 concentration in the recombinant strain than that of the wild-type strain after 24 h of aerated cultivation. The viable cells were significantly elevated by four orders of magnitude within 28 days of storage at 4°C, suggesting that the increased enzyme activity could eliminate H(2O(2 accumulation and prolong cell survival.

  6. Biodegradation of heavy oils by halophilic bacterium

    Institute of Scientific and Technical Information of China (English)

    Ruixia Hao; Anhuai Lu

    2009-01-01

    A halophilic bacterial strain TM-1 was isolated from the reservoir of the Shengli oil field in East China. Strain TM-1, which was found to be able to degrade crude oils, is a gram-positive non-motile bacterium with a coccus shape that can grow at temperatures of up to 58 ℃ and in 18% NaCl solution. Depending on the culture conditions, the organism may occur in tetrads. In addition, strain TM-1 pro-duced acid from glucose without gas formation and was catalase-negative. Furthermore, strain TM-I was found to be a facultative aer-obe capable of growth under anaerobic conditions. Moreover, it produced butylated hydroxytoluene, 1,2-benzenedicarboxylic acid-bis ester and dibutyl phthalate and could use different organic substrates. Laboratory studies indicated that strain TM-1 affected different heavy oils by degrading various components and by changing the chemical properties of the oils. In addition, growth of the bacterium in heavy oils resulted in the loss of aromatic hydrocarbons, resins and asphaltenes, and enrichment with light hydrocarbons and an overall redistribution of these hydrocarbons.

  7. Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Wieczorek Andrew S

    2010-09-01

    Full Text Available Abstract Background The assembly and spatial organization of enzymes in naturally occurring multi-protein complexes is of paramount importance for the efficient degradation of complex polymers and biosynthesis of valuable products. The degradation of cellulose into fermentable sugars by Clostridium thermocellum is achieved by means of a multi-protein "cellulosome" complex. Assembled via dockerin-cohesin interactions, the cellulosome is associated with the cell surface during cellulose hydrolysis, forming ternary cellulose-enzyme-microbe complexes for enhanced activity and synergy. The assembly of recombinant cell surface displayed cellulosome-inspired complexes in surrogate microbes is highly desirable. The model organism Lactococcus lactis is of particular interest as it has been metabolically engineered to produce a variety of commodity chemicals including lactic acid and bioactive compounds, and can efficiently secrete an array of recombinant proteins and enzymes of varying sizes. Results Fragments of the scaffoldin protein CipA were functionally displayed on the cell surface of Lactococcus lactis. Scaffolds were engineered to contain a single cohesin module, two cohesin modules, one cohesin and a cellulose-binding module, or only a cellulose-binding module. Cell toxicity from over-expression of the proteins was circumvented by use of the nisA inducible promoter, and incorporation of the C-terminal anchor motif of the streptococcal M6 protein resulted in the successful surface-display of the scaffolds. The facilitated detection of successfully secreted scaffolds was achieved by fusion with the export-specific reporter staphylococcal nuclease (NucA. Scaffolds retained their ability to associate in vivo with an engineered hybrid reporter enzyme, E. coli β-glucuronidase fused to the type 1 dockerin motif of the cellulosomal enzyme CelS. Surface-anchored complexes exhibited dual enzyme activities (nuclease and β-glucuronidase, and were

  8. Single Bacterium Detection Using Sers

    Science.gov (United States)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  9. Lactic acid bacteria from Jijel's traditional butter: Isolation, identification and major technological traits

    OpenAIRE

    Idoui, Tayeb; Karam, Nour-Eddine

    2008-01-01

    Twenty seven (27) lactic acid bacteria were isolated from Jijel’s traditional butter. These strains belong to three genera: Lactococcus, Lactobacillus and Leuconostoc. The results showed that Lactobacillus plantarum was the predominant species in this traditional butter. It appears that these strains have some interesting technological properties.Se aíslan veintisiete (27) bacterias acidolácticas de la mantequilla tradicional de Jijel. Éstas pertenecen a los géneros Lactococcus, Lactobacill...

  10. Food Safety: Secretome of Lactococcus lactis and Listeria monocytogenes in competition.

    Directory of Open Access Journals (Sweden)

    Isabella Alloggio

    2015-07-01

    Full Text Available Listeria monocytogenes (LM is a foodborne pathogen responsible of listeriosis. In the spreading of this pathology, milk and dairy products are key reservoir for this pathogen1. Food processing represents one of the major steps that could be linked to LM growth. Inhibition of LM growth through competition of Lactococcus lactis (LAC could represent a solution to this problem. Exoproteome of LM and two different strains of Lactic Acid Bacteria in co-culture have been studied in order to highlight mechanisms of bacterial competition useful to improve food safety. Two different strains of LAC and one strain of LM were cultivated in appropriate medium cultures (BHI, also in competition. Filtrated cultures (SECRETOME were lyophilized and resuspended for proteomics analysis. Shotgun analysis on each secretome was performed on nano UPLC-MS system. Obtained data reveal, during competition, the higher production by LM of moonlighting protein Enolase and Glucose 6 Phosphate isomerase, of Septation ring formation regulator EzrA, involved into cell replication and the lower secretion of Endopeptidase P60. In parallel, L. lactis produced higher amounts of Secreted 45 kDa protein and switched from lantibiotic Nisin A production to Nisin Z production. In competition with LM, LAC strain investigated produce higher amounts of Secreted 45 kDa protein with peptidoglycan lytic activity and the selective secretion of Nisin Z probably to improve lantibiotic solubility in less acidic environment. Next step will be validation of obtained results in dairy products. These results are of interesting to design new strategies of fighting LM as contaminant in food from animal origin.Work supported by Ministry of Health-CCM “Milano EXPO 2015 Project: Garantire la sicurezza alimentare- Valorizzare le produzioni”

  11. Enhancement of Nisin Production by Lactococcus lactis subsp. lactis.

    Science.gov (United States)

    Dussault, Dominic; Vu, Khanh Dang; Lacroix, Monique

    2016-09-01

    Lactococcus lactis subsp lactis BSA (L. lactis BSA) was isolated from a commercial fermented product (BSA Food Ingredients, Montreal, Canada) containing mixed bacteria that are used as starter for food fermentation. In order to increase the bacteriocin production by L. lactis BSA, different fermentation conditions were conducted. They included different volumetric combinations of two culture media (the Man, Rogosa and Sharpe (MRS) broth and skim milk), agitation level (0 and 100 rpm) and concentration of commercial nisin (0, 0.15, and 0.30 µg/ml) added into culture media as stimulant agent for nisin production. During fermentation, samples were collected and used for antibacterial evaluation against Lactobacillus sakei using agar diffusion assay. Results showed that medium containing 50 % MRS broth and 50 % skim milk gave better antibacterial activity as compared to other medium formulations. Agitation (100 rpm) did not improve nisin production by L. lactis BSA. Adding 0.15 µg/ml of nisin into the medium-containing 50 % MRS broth and 50 % skim milk caused the highest nisin activity of 18,820 AU/ml as compared to other medium formulations. This activity was 4 and ~3 times higher than medium containing 100 % MRS broth without added nisin (~4700 AU/ml) and 100 % MRS broth with 0.15 µg/ml of added nisin (~6650 AU/ml), respectively.

  12. Genetic investigation within Lactococcus garvieae revealed two genomic lineages.

    Science.gov (United States)

    Ferrario, Chiara; Ricci, Giovanni; Borgo, Francesca; Rollando, Alessandro; Fortina, Maria Grazia

    2012-07-01

    The diversity of a collection of 49 Lactococcus garvieae strains, including isolates of dairy, fish, meat, vegetable and cereal origin, was explored using a molecular polyphasic approach comprising PCR-ribotyping, REP and RAPD-PCR analyses and a multilocus restriction typing (MLRT) carried out on six partial genes (atpA, tuf, dltA, als, gapC, and galP). This approach allowed high-resolution cluster analysis in which two major groups were distinguishable: one group included dairy isolates, the other group meat isolates. Unexpectedly, of the 12 strains coming from fish, four grouped with dairy isolates, whereas the others with meat isolates. Likewise, strains isolated from vegetables allocated between the two main groups. These findings revealed high variability within the species at both gene and genome levels. The observed genetic heterogeneity among L. garvieae strains was not entirely coherent with the ecological niche of origin of the strains, but rather supports the idea of an early separation of L. garvieae population into two independent genomic lineages. PMID:22568590

  13. New Antifungal Bacteriocin-Synthesizing Strains of Lactococcus lactis ssp. lactis as the Perspective Biopreservatives for Protection of Raw Smoked Sausages

    Directory of Open Access Journals (Sweden)

    L. G. Stoyanova

    2010-01-01

    Full Text Available Problem statement: Screening for the effective bacteriocin-synthesizing strains of Lactococcus lactis as the perspective biopreservatives was performed. We used a raw milk and dairy products from different climatic regions as well as from powerful drinks of mixed lactic acid and alcoholic fermentation: kurunga, kumiss and Iranian Dough, that were widely used by local population to prevent diseases. Approach: The special interest was paid to isolates of lactococci with antagonistic activity. According to their morphological, cultural, physiological, biochemical properties and sequence of 16S rRNA gene they were identified as Lactococcus lactis ssp. lactis. Only nine from the selected 94 strains expressed a broad spectrum of activity against Gram-positive and Gramnegative bacteria including pathogens (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella gallinarum, moulds (Aspergillus, Fusarium, Penicillium genera, as well as yeasts (Rhodotorula, Candida. Results: It reveals the unique biological properties for isolated natural strains of Lactococcus lactis species. Most effective new bacteriocin-synthesizing strains 194 and K-205 were isolated from raw cow milk and kurunga from Buryatia. These strains had high antibiotic activity up to 3600 and 2700 IU mL-1 as compared to nisin and up to 2500-1700 IU mL-1 as compared to fungicidal antibiotic nistatin. In our experiments we used raw smoked sausages that were infected with fungi. The identification of this infection showed the presence of Eurotium repens de Bary on the sausages. Treatment of the raw smoked sausages with cultural broth of L.lactis ssp. lactis 194 and K-205 inhibited growth of these microorganisms. After treatment the sausages had longer shelf-life and was in accordance with basal production data (Russian State Standard Specification 16131-86. Conclusion: The results of this study indicated that the treatment with

  14. Endocardite por lactococcus garvieae: primeiro relato de caso da América Latina

    Directory of Open Access Journals (Sweden)

    Tatiana Franco Hirakawa

    2011-11-01

    Full Text Available Lactococcus garvieae, patógeno zoonótico emergente, é responsável por mastite em ruminantes e septicemia em peixes. Embora seja considerado oportunista e raramente causar infecções em humanos, sua incidência deve estar subestimada devido à dificuldade do diagnóstico. Há pouquíssimos relatos de osteomielite, abscesso hepático e peritonite, e apenas nove casos descritos na literatura mundial de endocardite. Relatamos o primeiro caso de endocardite por Lactococcus garvieae da América Latina em paciente portadora de prótese valvar metálica, com quadro de febre diária, calafrios, nodos de Osler e seis hemoculturas positivas para Lactococcus garvieae, que preenchiam os critérios de Duke para o diagnóstico de "endocardite infecciosa definitiva"

  15. Pellet feed adsorbed with the recombinant Lactococcus lactis BFE920 expressing SiMA antigen induced strong recall vaccine effects against Streptococcus iniae infection in olive flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Kim, Daniel; Beck, Bo Ram; Lee, Sun Min; Jeon, Jongsu; Lee, Dong Wook; Lee, Jae Il; Song, Seong Kyu

    2016-08-01

    The aim of this study was to develop a fish feed vaccine that provides effective disease prevention and convenient application. A lactic acid bacterium (LAB), Lactococcus lactis BFE920, was modified to express the SiMA antigen, a membrane protein of Streptococcus iniae. The antigen was engineered to be expressed under the nisin promoter, which is induced by nisin produced naturally by the host LAB. Various sizes (40 ± 3.5 g, 80 ± 2.1 g, and 221 ± 2.4 g) of olive flounder (Paralichthys olivaceus) were vaccinated by feeding the extruded pellet feed, onto which the SiMA-expressing L. lactis BFE920 (1.0 × 10(7) CFU/g) was adsorbed. Vaccine-treated feed was administered twice a day for 1 week, and priming and boosting were performed with a 1-week interval in between. The vaccinated fish had significantly elevated levels of antigen-specific serum antibodies and T cell marker mRNAs: CD4-1, CD4-2, and CD8a. In addition, the feed vaccine significantly induced T cell effector functions, such as the production of IFN-γ and activation of the transcription factor that induces its expression, T-bet. When the flounder were challenged by intraperitoneal infection and bath immersion with S. iniae, the vaccinated fish showed 84% and 82% relative percent survival (RPS), respectively. Furthermore, similar protective effects were confirmed even 3 months after vaccination in a field study (n = 4800), indicating that this feed vaccine elicited prolonged duration of immunopotency. In addition, the vaccinated flounder gained 21% more weight and required 16% less feed to gain a unit of body weight compared to the control group. The data clearly demonstrate that the L. lactis BFE920-SiMA feed vaccine has strong protective effects, induces prolonged vaccine efficacy, and has probiotic effects. In addition, this LAB-based fish feed vaccine can be easily used to target many different pathogens of diverse fish species. PMID:27302864

  16. Lactococcus bacteriophages isolated from whey and their effects on commercial lactic starters

    Directory of Open Access Journals (Sweden)

    Maria Raquel de Godoy Oriani

    2004-08-01

    Full Text Available The incidence of phages of lactic acid bacteria in milk industry and their effects on acidification ability of commercial lactic acid starters were studied. Cheese whey samples (33 samples were collected from 17 factories. A total of 16 bacteriophages were isolated (12 specific for Lactococcus lactis, 3 for L. diacetylactis and one capable of lysing both species. The results showed that 10% reduction in acidification tests was not good indication of phage in the sample. The majority of samples showed reduction higher than 10%, although only 65% were phage positive. The isolated phages were quite stable and showed no reduction in infectivity even after 20 daily replications. A pool of bacteriophages was prepared from isolates and inoculated in 12 commercial lactic starters. After 8 hours of incubation, only 2 showed reduced acidification. Bacterial strains isolated from commercial starters were tested regarding the phage resistance. Considerable difference in phage sensitivity was observed among different starters (BD, D, O and L. diacetylactis. Five bacteriophages showed no infectivity on any isolates but one was infective for most of isolates.Para ampliar conhecimentos sobre a incidência de bacteriófagos de bactérias lácticas na indústria de leite do Estado de São Paulo e a sua influência sobre a capacidade acidificante de fermentos lácticos disponíveis em nosso mercado, o presente trabalho foi conduzido com o intuito de esclarecer a real situação dos laticínios no Estado. Foram coletadas 33 amostras de soro de queijo em 17 laticínios. Foram isolados 16 bacteriófagos, 12 específicos para Lactococcus lactis, 3 para L. diacetylactis e um capaz de lisar ambos os microrganismos. Os experimentos mostraram que, uma diminuição de 10% na acidez em presença de soro suspeito, ao contrário do estabelecido na literatura, não reflete a veracidade da presença de bacteriófagos na amostra, uma vez que a maioria apresentou redução acima

  17. Characterization of plasmids in a human clinical strain of Lactococcus garvieae.

    Directory of Open Access Journals (Sweden)

    Mónica Aguado-Urda

    Full Text Available The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25 encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen.

  18. Fate of Lactococcus lactis starter cultures during late ripening in cheese models.

    Science.gov (United States)

    Ruggirello, Marianna; Cocolin, Luca; Dolci, Paola

    2016-10-01

    The presence of Lactococcus lactis, commonly employed as starter culture, was, recently, highlighted and investigated during late cheese ripening. Thus, the main goal of the present study was to assess the persistence and viability of this microorganism throughout manufacturing and ripening of model cheeses. Eight commercial starters, constituted of L. lactis subsp. lactis and L. lactis subsp. cremoris, were inoculated in pasteurized milk in order to manufacture miniature cheeses, ripened for six months. Samples were analysed at different steps (milk after inoculum, curd after cutting, curd after pressing and draining, cheese immediately after salting and cheese at 7, 15, 30, 60, 90, 120, 150 and 180 days of ripening) and submitted to both culture-dependent (traditional plating on M17) and -independent analysis (reverse transcription-quantitative PCR). On the basis of direct RNA analysis, L. lactis populations were detected in all miniature cheeses up to the sixth month of ripening, confirming the presence of viable cells during the whole ripening process, including late stages. Noteworthy, L. lactis was detected by RT-qPCR in cheese samples also when traditional plating failed to indicate its presence. This discrepancy could be explain with the fact that lactococci, during ripening process, enter in a stressed physiological state (viable not culturable, VNC), which might cause their inability to grow on synthetic medium despite their viability in cheese matrix. Preliminary results obtained by "resuscitation" assays corroborated this hypothesis and 2.5% glucose enrichment was effective to recover L. lactis cells in VNC state. The capability of L. lactis to persist in late ripening, and the presence of VNC cells which are known to shift their catabolism to peptides and amino acids consumption, suggests a possible technological role of this microorganism in cheese ripening with a possible impact on flavour formation. PMID:27375251

  19. Interaction between the genomes of Lactococcus lactis and phages of the P335 species.

    Directory of Open Access Journals (Sweden)

    William John Kelly

    2013-08-01

    Full Text Available Phages of the P335 species infect Lactococcus lactis and have been particularly studied because of their association with strains of L. lactis subsp. cremoris used as dairy starter cultures. Unlike other lactococcal phages, those of the P335 species may have a temperate or lytic lifestyle, and are believed to originate from the starter cultures themselves. We have sequenced the genome of L. lactis subsp. cremoris KW2 isolated from fermented corn and found that it contains an integrated P335 species prophage. This 41 kb prophage (ΦKW2 has a mosaic structure with functional modules that are highly similar to several other phages of the P335 species associated with dairy starter cultures. Comparison of the genomes of 26 phages of the P335 species, with either a lytic or temperate lifestyle, shows that they can be divided into three groups and that the morphogenesis gene region is the most conserved. Analysis of these phage genomes in conjunction with the genomes of several L. lactis strains shows that prophage insertion is site specific and occurs at seven different chromosomal locations. Exactly how induced or lytic phages of the P335 species interact with carbohydrate cell surface receptors in the host cell envelope remains to be determined. Genes for the biosynthesis of a variable cell surface polysaccharide and for lipoteichoic acids are found in L. lactis and are the main candidates for phage receptors, as the genes for other cell surface carbohydrates have been lost from dairy starter strains. Overall, phages of the P335 species appear to have had only a minor role in the adaptation of L. lactis subsp. cremoris strains to the dairy environment, and instead they appear to be an integral part of the L. lactis chromosome. There remains a great deal to be discovered about their role, and their contribution to the evolution of the bacterial genome.

  20. Detection and characterization of bacteriocin-producing Lactococcus lactis strains Detecção e caracterização de Lactococcus lactis produtores de bacteriocinas

    Directory of Open Access Journals (Sweden)

    Izildinha Moreno

    1999-04-01

    Full Text Available One hundred sixty seven strains of Lactococcus lactis were screened for bacteriocin production by well diffusion assay of GM17 agar. Fourteen (8.4% produced antimicrobial activity other than organic acids, bacteriophages or hydrogen peroxide. The frequency of bacteriocin production ranged from 2% in L. lactis subsp. cremoris up to 12% in L. lactis subsp. lactis. Antimicrobial activities were not observed in any strain of L. lactis subsp. lactis var. diacetylactis. Among thirteen bacteriocin-producing strains and two nisin-producing strains (L. lactis subsp. lactis ATCC 11454 and L. lactis subsp. lactis CNRZ 150, eight (53% were characterized as lactose-positive (Lac+ and proteinase-negative (Prt-. The bacteriocin-producing cultures were also characterized on the basis of plasmid content. All strains had 2 to 7 plasmids with molecular weights varying from 0.5 to 28.1 Mdal. Four strains (ITAL 435, ITAL 436, ITAL 437 and ITAL 438 showed identical profiles and the other were quite distinct.Um total de 167 linhagens de L. lactis foi selecionado para os testes de produção de bacteriocinas pelo método de difusão em poços em agar GM17. Desse total, 14 (8.4% produziram substâncias inibidoras que não foram associadas com ácidos orgânicos, peróxido de hidrogênio e bacteriófagos. A frequência de produção de bacteriocinas variou de 2% em L. lactis subsp. cremoris a 12% em L. lactis subsp. lactis. Nenhuma das linhagens de L. lactis subsp. lactis var. diacetylactis produziu substâncias inibidoras. De 13 linhagens produtoras de bacteriocinas e duas de nisina (L. lactis subsp. lactis ATCC 11454 e L. lactis subsp. lactis CNRZ 150, 8 (53% foram caracterizadas como lactose-positivas (Lac+ e proteinase-negativas (Prt-. As linhagens produtoras de bacteriocinas também foram caracterizadas no seu conteúdo de plasmídios. Elas apresentaram de 2 a 7 plasmídios, com pesos moleculares aproximados de 0.5 a 28.1 Mdal. Quatro linhagens (ITAL 435, ITAL 436

  1. 乳酸菌Enterococcuse faecalis TN-9低温蛋白酶的提纯及性质%Purification and Properties of Cold-Adapted Protease from Lactic Acid Bacterium Enterococcus faecalis TN-9

    Institute of Scientific and Technical Information of China (English)

    袁清珠; 林笃志; 北村良久; 岛田贵志

    2009-01-01

    对产自乳酸菌Enterococcuse faecalis TN-9的蛋白酶,进行了硫酸铵沉淀,DEAE-Sephadex A-25以及DEAE Cellulofine A-500离子交换层析的3步纯化和特性研究.纯化酶Native PAGE显示1条蛋白带.SDS-PAGE和凝胶层析分子量分别为30 ku及69 ku.纯化酶最适作用温度为30℃,最适作用pH为7.5~8.0,在pH 6.0~9.5和45℃以下条件下稳定,在0℃下显示了6.1%的相对活性,60℃以上热处理完全失去酶活.该酶被EDTA-2Na,Hg~(2+)、Cu~(2+)、Ni~(2+)、Ag~(2+)、Co~(2+)及Pepstatin A不完全抑制.Zn~(2+)对蛋白酶具有明显的激活作用.纯化酶作用于偶氮酪蛋白的K_m和V_max分别为0.098%和72 mg/(h·mg).该酶为N末端VGSEVTLKNS的明胶酶(Gelatinase)的一种,性质属于低温蛋白酶.%Protease from lactic acid bacterium Enterococcus faecalis TN-9 was purified with three steps, ammonium sulfate precipitation, DEAE-Sephadex A-25, and DEAE Cellnlofine A-500 ion exchange chromatography and studied its properties. Native PAGE analysis of the purified enzyme showed a single protein band. The molecular weight was 30 ku by SDS-PAGE analysis and 69 ku by gel chromatography analysis respectively. The optimal reaction temperature and pH of the enzyme were at 30 ℃ and 7.5 ~ 8.0 respeetively. It was stable at pH 6.0 ~ 9.5 and 45 ℃. Under 0 ℃ it showed 6.1% of relative activity. Heat treatment above 60 ℃ it totally lost its activity. The enzyme was ineomplete-ly inhibited by EDTA-2Na, Hg~(2+) , Cu~(2+) ,Ni~(2+) , Ag~(2+) , Co~(2+) , and Pepstatin. Zn~(2+) had obvious activation to the pro-tease. K_m and V_(max) of the purified enzyme were 0.098% and 72 mg/(h·mg) respectively. The enzyme was one of gelatinase with N-terminal sequence of VGSEVTLKNS. Its property belonged to cold-adapted protease.

  2. Functional Analysis of Promoters in the Nisin Gene Cluster of Lactococcus lactis

    NARCIS (Netherlands)

    Ruyter, Pascalle G.G.A. de; Kuipers, Oscar P.; Beerthuyzen, Marke M.; Alen-Boerrigter, Ingrid van; Vos, Willem M. de

    1996-01-01

    The promoters in the nisin gene cluster nisABTCIPRKFEG of Lactococcus lactis were characterized by primer extension and transcriptional fusions to the Escherichia coli promoterless β-glucuronidase gene (gusA). Three promoters preceding the nisA, nisR, and nisF genes, which all give rise to gusA expr

  3. Rerouting Citrate Metabolism in Lactococcus lactis to Citrate-Driven Transamination

    NARCIS (Netherlands)

    Pudlik, Agata M.; Lolkema, Juke S.

    2012-01-01

    Oxaloacetate is an intermediate of the citrate fermentation pathway that accumulates in the cytoplasm of Lactococcus lactis ILCitM(pFL3) at a high concentration due to the inactivation of oxaloacetate decarboxylase. An excess of toxic oxaloacetate is excreted into the medium in exchange for citrate

  4. Morphology, genome sequence, and structural proteome of type phage P335 from Lactococcus lactis

    DEFF Research Database (Denmark)

    Labrie, Simon J.; Josephsen, Jytte; Neve, Horst;

    2008-01-01

    Lactococcus lactis phage P335 is a virulent type phage for the species that bears its name and belongs phage P335 is a virulent type phage for the species that bears its name and belongs to the Siphoviridae family. Morphologically, P335 resembled the L. lactis phages TP901-1 and Tuc2009, except f...

  5. Complete Genome Sequence of Nonagglutinating Lactococcus garvieae Strain 122061 Isolated from Yellowtail in Japan

    Science.gov (United States)

    Nishiki, Issei; Oinaka, Daisaku; Iwasaki, Yuki; Yasuike, Motoshige; Nakamura, Yoji; Yoshida, Terutoyo; Nagai, Satoshi; Katoh, Masaya; Kobayashi, Takanori

    2016-01-01

    Nonagglutinating Lactococcus garvieae has been isolated from diseased farmed yellowtail in Japan since 2012. In this study, the complete genome and plasmid sequence of nonagglutinating L. garvieae strain 122061 was determined, to our knowledge, for the first time. PMID:27389264

  6. Heterologous expression and characterization of recombinant Lactococcus lactis neutral endopeptidase (Neprilysin)

    NARCIS (Netherlands)

    Lian, W; Wu, D; Konings, W.N; Mierau, I; Hersh, L.B

    1996-01-01

    A neutral endopeptidase (NEP) from Lactococcus lactis has recently been cloned and shown to contain high sequence homology with the human neutral endopeptidase, endopeptidase 24.11 (I. Mierau et al., J. Bacteriol. 175, 2087-2096, 1993). The gene for the neutral endopeptidase from L. lactis was clone

  7. Comparative analyses of prophage-like elements present in two Lactococcus lactis strains

    NARCIS (Netherlands)

    Ventura, Marco; Zomer, Aldert; Canchaya, Carlos; O'Connell-Motherway, Mary; Kuipers, Oscar; Turroni, Francesca; Ribbera, Angela; Foroni, Elena; Buist, Girbe; Wegmann, Udo; Shearman, Claire; Gasson, Michael J.; Fitzgerald, Gerald F.; Kok, Jan; van Sinderen, Douwe; O’Connell-Motherway, Mary

    2007-01-01

    In this study, we describe the genetic organizations of six and five apparent prophage-like elements present in the genomes of the Lactococcus lactis subsp. cremoris strains MG1363 and SK11, respectively. Phylogenetic investigation as well bioinformatic analyses indicates that all 11 prophages belon

  8. Bacteriophage resistance of a Delta thyA mutant of Lactococcus lactis blocked in DNA replication

    DEFF Research Database (Denmark)

    Pedersen, M.B.; Jensen, Peter Ruhdal; Janzen, T.;

    2002-01-01

    The thyA gene, which encodes thymidylate synthase (TS), of Lactococcus lactis CHCC373 was sequenced, including the upstream and downstream regions. We then deleted part of thyA by gene replacement. The resulting strain, MBP71 DeltathyA, was devoid of TS activity, and in media without thymidine, s...

  9. Effect of X-Prolyl Dipeptidyl Aminopeptidase Deficiency on Lactococcus lactis

    NARCIS (Netherlands)

    Mayo, Baltasar; Kok, Jan; Bockelmann, Wilhelm; Haandrikman, Alfred; Leenhouts, Kees J.; Venema, Gerhardus

    1993-01-01

    The genetic determinant (pepXP) of an X-prolyl dipeptidyl aminopeptidase (PepXP) has recently been cloned and sequenced from both Lactococcus lactis subsp. cremoris (B. Mayo, J. Kok, K. Venema, W. Bockelmann, M. Teuber, H. Reinke, and G. Venema, Appl. Environ. Microbiol. 57:38-44, 1991) and L. lacti

  10. Complete Genome Sequence of Lactococcus lactis subsp. lactis A12, a Strain Isolated from Wheat Sourdough

    Science.gov (United States)

    Guellerin, Maéva; Passerini, Delphine; Fontagné-Faucher, Catherine; Robert, Hervé; Gabriel, Valérie; Loux, Valentin; Klopp, Christophe; Le Loir, Yves; Coddeville, Michèle; Daveran-Mingot, Marie-Line; Ritzenthaler, Paul

    2016-01-01

    We report here the complete genome sequence of Lactococcus lactis subsp. lactis strain A12, a strain isolated from sourdough. The circular chromosome and the four plasmids reveal genes involved in carbohydrate metabolism that are potentially required for the persistence of this strain in such a complex ecosystem. PMID:27634985

  11. Sec-Mediated Transport of Posttranslationally Dehydrated Peptides in Lactococcus lactis

    NARCIS (Netherlands)

    Kuipers, Anneke; Wierenga, Jenny; Rink, Rick; Kluskens, Leon D.; Driessen, Arnold J.M.; Kuipers, Oscar P.; Moll, Gert N.

    2006-01-01

    Nisin is a lanthionine-containing antimicrobial peptide produced by Lactococcus lactis. Its (methyl)lanthionines are introduced by two posttranslational enzymatic steps involving the dehydratase NisB, which dehydrates serine and threonine residues, and the cyclase NisC, which couples these dehydrate

  12. Lactococcus lactis Uses MscL as Its Principal Mechanosensitive Channel

    NARCIS (Netherlands)

    Folgering, Joost H.A.; Moe, Paul C.; Schuurman-Wolters, Gea K.; Blount, Paul; Poolman, Bert

    2005-01-01

    The functions of the mechanosensitive channels from Lactococcus lactis were determined by biochemical, physiological, and electrophysiological methods. Patchclamp studies showed that the genes yncB and mscL encode MscS and MscL-like channels, respectively, when expressed in Escherichia coli or if th

  13. Complete Genome Sequence of Lactococcus lactis subsp. lactis A12, a Strain Isolated from Wheat Sourdough.

    Science.gov (United States)

    Guellerin, Maéva; Passerini, Delphine; Fontagné-Faucher, Catherine; Robert, Hervé; Gabriel, Valérie; Loux, Valentin; Klopp, Christophe; Le Loir, Yves; Coddeville, Michèle; Daveran-Mingot, Marie-Line; Ritzenthaler, Paul; Le Bourgeois, Pascal

    2016-01-01

    We report here the complete genome sequence of Lactococcus lactis subsp. lactis strain A12, a strain isolated from sourdough. The circular chromosome and the four plasmids reveal genes involved in carbohydrate metabolism that are potentially required for the persistence of this strain in such a complex ecosystem. PMID:27634985

  14. Genotype-phenotype matching analysis of 38 Lactococcus lactis strains using random forest methods

    NARCIS (Netherlands)

    Bayjanov, J.; Starrenburg, M.J.; Sijde, M.R. van der; Siezen, R.J.; Hijum, S.A.F.T. van

    2013-01-01

    BACKGROUND: Lactococcus lactis is used in dairy food fermentation and for the efficient production of industrially relevant enzymes. The genome content and different phenotypes have been determined for multiple L. lactis strains in order to understand intra-species genotype and phenotype diversity a

  15. Complete genome sequence of Lactococcus lactis S0, an efficient producer of nisin.

    Science.gov (United States)

    Zhao, Fangyuan; Ma, Hongchu; Lu, Ying; Teng, Kunling; Kang, Xusheng; Wang, Fangfang; Yang, Xiaopan; Zhong, Jin

    2015-03-20

    Lactococcus lactis S0 is a nisin Z-producing strain isolated from milk, and the nisin production of the strain can reach 4000 IU/ml under fermenting condition. Here, we present the complete genome sequence of L. lactis S0 which includes a single circular chromosome.

  16. Increasing acidification of nonreplicating Lactococcus lactis Delta thyA mutants by incorporating ATPase activity

    DEFF Research Database (Denmark)

    Pedersen, Martin Bastian; Købmann, Brian Jensen; Jensen, Peter Ruhdal;

    2002-01-01

    Lactococcus lactis MBP71 DeltathyA (thymidylate synthase) cannot synthesize dTTP de novo, and DNA replication is dependent on thymidine in the growth medium. In the nonreplicating state acidification by MBP71 was completely insensitive to bacteriophages (M. B. Pedersen, P. R. Jensen, T. Janzen, and...

  17. Lactococcus lactis YfiA is necessary and sufficient for ribosome dimerization

    NARCIS (Netherlands)

    Puri, Pranav; Eckhardt, Thomas H; Franken, Linda E; Fusetti, Fabrizia; Stuart, Marc C A; Boekema, Egbert J; Kuipers, Oscar P; Kok, Jan; Poolman, Berend

    2014-01-01

    Dimerization and inactivation of ribosomes in Escherichia coli is a two-step process that involves the binding of ribosome modulation factor (RMF) and hibernation promotion factor (HPF). Lactococcus lactisMG1363 expresses a protein, YfiA(Ll), which associates with ribosomes in the stationary phase o

  18. Standardized Assay Medium To Measure Lactococcus lactis Enzyme Activities while Mimicking Intracellular Conditions

    NARCIS (Netherlands)

    Goel, A.; Santos, dos F.; Vos, de W.M.; Teusink, B.; Molenaar, D.

    2012-01-01

    Knowledge of how the activity of enzymes is affected under in vivo conditions is essential for analyzing their regulation and constructing models that yield an integrated understanding of cell behavior. Current kinetic parameters for Lactococcus lactis are scattered through different studies and per

  19. Supplementation with engineered Lactococcus lactis improves the folate status in deficient rats

    NARCIS (Netherlands)

    J.G. LeBlanc; W. Sybesma; M. Starrenburg; F. Sesma; W.M. de Vos; G. Savoy de Giori; J. Hugenholtz

    2010-01-01

    Objective: The aim of this study was to establish the bioavailability of different folates produced by engineered Lactococcus lactis strains using a rodent depletion-repletion bioassay. Methods: Rats were fed a folate-deficient diet, which produces a reversible subclinical folate deficiency, supplem

  20. Characteristics and Osmoregulatory Roles of Uptake Systems for Proline and Glycine Betaine in Lactococcus lactis

    NARCIS (Netherlands)

    Molenaar, Douwe; Hagting, Anja; Alkema, Harmen; Driessen, Arnold J.M.; Konings, Wilhelmus

    1993-01-01

    Lactococcus lactis subsp. lacti ML3 contains high pools of proline or betaine when grown under conditions of high osmotic strength. These pools are created by specific transport systems. A high-affinity uptake system for glycine betaine (betaine) with a Km of 1.5 µM is expressed constitutively. The

  1. A Case of Infective Endocarditis and Pulmonary Septic Emboli Caused by Lactococcus lactis

    Science.gov (United States)

    Habib, Adib; Asli, Nazih; Geffen, Yuval; Miron, Dan; Elias, Nael

    2016-01-01

    Infective endocarditis is a rare condition in children with normal hearts. We present here a case of previously healthy eleven-year-old girl with infective endocarditis and pulmonary septic emboli caused by a very rare bacterial etiology (Lactococcus lactis). Identification of this pathogen was only made by polymerase chain reaction.

  2. Quantitative physiology of Lactococcus lactis at extreme low-growth rates

    NARCIS (Netherlands)

    Ercan, O.; Smid, E.J.; Kleerebezem, M.

    2013-01-01

    This paper describes the metabolic adaptation of Lactococcus lactis during the transition from a growing to a non-growing state using retentostat cultivation. Under retentostat cultivation, the specific growth rate decreased from 0.025 h-1 to 0.0001 h-1 in 42 days, while doubling time increased to m

  3. Mechanism of Citrate Metabolism by an Oxaloacetate Decarboxylase-Deficient Mutant of Lactococcus lactis IL1403

    NARCIS (Netherlands)

    Pudlik, Agata M.; Lolkema, Juke S.

    2011-01-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706-714, 2011). Pyruvate is formed from citrate following uptake by the transport

  4. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    OpenAIRE

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and c...

  5. Lactobionic and cellobionic acid production profiles of the resting cells of acetic acid bacteria.

    Science.gov (United States)

    Kiryu, Takaaki; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2015-01-01

    Lactobionic acid was produced by acetic acid bacteria to oxidize lactose. Gluconobacter spp. and Gluconacetobacter spp. showed higher lactose-oxidizing activities than Acetobacter spp. Gluconobacter frateurii NBRC3285 produced the highest amount of lactobionic acid per cell, among the strains tested. This bacterium assimilated neither lactose nor lactobionic acid. At high lactose concentration (30%), resting cells of the bacterium showed sufficient oxidizing activity for efficient production of lactobionic acid. These properties may contribute to industrial production of lactobionic acid by the bacterium. The bacterium showed higher oxidizing activity on cellobiose than that on lactose and produced cellobionic acid. PMID:25965080

  6. Influence of cofermentation by amylolytic Lactobacillus plantarum and Lactococcus lactis strains on the fermentation process and rheology of sorghum porridge.

    Science.gov (United States)

    Mukisa, Ivan M; Byaruhanga, Yusuf B; Muyanja, Charles M B K; Aijuka, Matthew; Schüller, Reidar B; Sahlstrøm, Stefan; Langsrud, Thor; Narvhus, Judith A

    2012-08-01

    Amylolytic lactic acid bacteria (ALAB) can potentially replace malt in reducing the viscosity of starchy porridges. However, the drawback of using ALAB is their low and delayed amylolytic activity. This necessitates searching for efficient ALAB and strategies to improve their amylolytic activity. Two ALAB, Lactobacillus plantarum MNC 21 and Lactococcus lactis MNC 24, isolated from Obushera, were used to ferment starches in MRS broth: sorghum, millet, sweet potato, and commercial soluble starch. The amylolytic activity of MNC 21 was comparable to that of the ALAB collection strain Lb. plantarum A6, while that of MNC 24 was extremely low. MNC 21, MNC 24, and their coculture were compared to A6 and sorghum malt for ability to ferment and reduce the viscosity of sorghum porridge (11.6% dry matter). ALAB and the coculture lowered the pH from 6.2 to porridge than the monocultures. The coculture initiated changes in the rheological parameters storage modulus (G'), loss modulus (G″), phase angle (δ), and complex viscosity (η*) earlier than its constituent monocultures. The shear viscosity of sorghum porridge was reduced significantly (P < 0.05) from 1950 cP to 110 cP (malt), 281 cP (coculture), 382 cP (MNC 21), 713 cP (MNC 24), and 722 cP (A6). Coculturing strong ALAB with weak ALAB or non-ALAB can be exploited for preparation of nutrient-dense weaning foods and increasing lactic acid yield from starchy materials.

  7. Lacticin LC14, a new bacteriocin produced by Lactococcus lactis BMG6.14: isolation, purification and partial characterization.

    Science.gov (United States)

    Lasta, Samar; Ouzari, Hadda; Andreotti, Nicolas; Fajloun, Ziad; Mansuelle, Pascal; Boudabous, Abdellatif; Sampieri, Francois; Sabatier, Jean Marc

    2012-08-01

    A new bacteriocin, lacticin LC14, produced by Lactococcus lactis BMG6.14, was isolated and characterized. It was purified to homogeneity from overnight broth culture by ammonium sulfate precipitation, Sep-Pak chromatography, and two steps of reversed-phase HPLC. Lacticin LC14 showed bactericidal-type antimicrobial activity against several lactic acid bacteria and pathogenic strains including Listeria monocytogenes. It was inactivated by proteinase K and pronase E, but was resistant to papain, lysozyme, lipase and catalase. Lacticin LC14 was heat resistant, stable over a wide range of pH (2-10) and after treatment by solvents and detergents. Its N-terminal end was found unreactive towards Edman sequencing. Based on MALDI-TOF mass spectrometry, its molecular mass was 3333.7 Da. LC14 amino acid composition revealed a high proportion of hydrophobic residues, but no modified ones. LC14 may be able to challenge other well known other bacteriocins in probiotic and therapeutic applications.

  8. Oral immunization with Lactococcus lactis-expressing EspB induces protective immune responses against Escherichia coli O157:H7 in a murine model of colonization.

    Science.gov (United States)

    Ahmed, B; Loos, M; Vanrompay, D; Cox, E

    2014-06-30

    Enterohemorrhagic Escherichia coli (EHEC) have been responsible for several outbreaks of hemolytic-uremic syndrome (HUS) worldwide. HUS is the most common cause of acute renal failure in children and results in fatalities as high as 50% in the elderly. Currently, neither a specific treatment nor a vaccine is available for EHEC. Lactococcus lactis is a generally regarded as safe "GRAS" bacterium that offers a valuable platform for oral vaccine delivery. Toward the development of an oral vaccine against EHEC, we have previously constructed a recombinant L. lactis strain expressing the EHEC antigen, EspB in the cytoplasmic compartment. However, oral immunization of mice with this strain induced weak priming of the immune system. This outcome was attributed to the rather low levels of EspB expressed by this recombinant strain. Therefore, in the present study we optimized the expression of EspB in L. lactis by secreting the antigen either under constitutive or nisin-inducible control. Indeed, oral immunization of mice with the EspB-secreting strains successfully induced specific mucosal and systemic antibody responses. These responses were associated with mixed Th1/Th2 cell responses in Peyer's Patches and mesenteric lymph nodes. Moreover, immunized mice exhibited significant protection against E. coli O157:H7 colonization, as indicated by the reduced amount and/or duration of the bacterial fecal shedding. Our results demonstrate the protective potential of EspB as an oral vaccine against EHEC infection. Additionally, the study demonstrates the efficient delivery of recombinant EspB by the "GRAS" bacterium, L. lactis. The safety profile of L. lactis as a vaccine vehicle can particularly be beneficial to children and elderly as high-risk groups for HUS incidence. PMID:24877767

  9. Influence of autochthonous lactic acid bacteria on the proteolysis, microstructure and sensory properties of low fat UF cheeses during ripening

    Directory of Open Access Journals (Sweden)

    Dragana Pesic Mikulec

    2012-06-01

    Full Text Available The influence of commercial bacteria Lactococcus lactis ssp. lactis and Lactococcus lactis ssp. cremoris (cheese A and combinations of autochthonous lactic acid bacteria (LAB strains Lactobacillus paracasei ssp. paracasei 08, Lactococcus lactis ssp. cremoris 656, Lactococcus lactis ssp. lactis 653 (cheese B and C on composition, proteolysis, microstructure and sensory properties of low fat cheeses during ripening was investigated. Low fat cast ultra-filtered (UF cheeses were produced according to the defined production procedure by mixing UF milk protein powder, skim milk and cream. Significant influence of different LAB strains on composition, primary proteolysis and microstructure was not found. Cheeses made with autochthonous LAB showed a higher rate of secondary proteolysis, as well as higher flavour scores, and were more acceptable than control cheese.

  10. Cloning and Expression of Plantaricin W Produced by Lactobacillus plantarum U10 Isolate from "Tempoyak" Indonesian Fermented Food as Immunity Protein in Lactococcus lactis.

    Science.gov (United States)

    Lages, Aksar Chair; Mustopa, Apon Zaenal; Sukmarini, Linda; Suharsono

    2015-10-01

    Plantaricins, one of bacteriocin produced by Lactobacillus plantarum, are already known to have activities against several pathogenic bacterium. L. plantarum U10 isolated from "tempoyak," an Indonesian fermented food, produced one kind of plantaricin designated as plantaricin W (plnW). The plnW is suggested as a putative membrane location of protein and has similar conserved motif which is important as immunity to bacteriocin itself. Thus, due to study about this plantaricin, several constructs have been cloned and protein was analyzed in Lactococcus lactis. In this study, plnW gene was successfully cloned into vector NICE system pNZ8148 and created the transformant named L. lactis NZ3900 pNZ8148-WU10. PlnW protein was 25.3 kDa in size. The concentration of expressed protein was significantly increased by 10 ng/mL nisin induction. Furthermore, PlnW exhibited protease activity with value of 2.22 ± 0.05 U/mL and specific activity about 1.65 ± 0.03 U/mg protein with 50 ng/mL nisin induction. Immunity study showed that the PlnW had immunity activity especially against plantaricin and rendered L. lactis recombinant an immunity broadly to other bacteriocins such as pediocin, fermentcin, and acidocin.

  11. A food-grade fimbrial adhesin FaeG expression system in Lactococcus lactis and Lactobacillus casei.

    Science.gov (United States)

    Lu, W W; Wang, T; Wang, Y; Xin, M; Kong, J

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) infection is the major cause of diarrhea in neonatal piglets. The fimbriae as colonizing factor in the pathogenesis of ETEC constitute a primary target for vaccination against ETEC. Lactic acid bacteria (LAB) are attractive tools to deliver antigens at the mucosal level. With the safety of genetically modified LAB in mind, a food-grade secretion vector (pALRc or pALRb) was constructed with DNA entirely from LAB, including the replicon, promoter, signal peptide, and selection marker alanine racemase gene (alr). To evaluate the feasibility of the system, the nuclease gene (nuc) from Staphylococcus aureus was used as a reporter to be expressed in both Lactococcus lactis and Lactobacillus casei. Subsequently, the extracellular secretion of the fimbrial adhesin FaeG of ETEC was confirmed by Western blot analysis. These results showed that this food-grade expression system has potential as the delivery vehicle for the safe use of genetically modified LAB for the development of vaccines against ETEC infection.

  12. A food-grade fimbrial adhesin FaeG expression system in Lactococcus lactis and Lactobacillus casei.

    Science.gov (United States)

    Lu, W W; Wang, T; Wang, Y; Xin, M; Kong, J

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) infection is the major cause of diarrhea in neonatal piglets. The fimbriae as colonizing factor in the pathogenesis of ETEC constitute a primary target for vaccination against ETEC. Lactic acid bacteria (LAB) are attractive tools to deliver antigens at the mucosal level. With the safety of genetically modified LAB in mind, a food-grade secretion vector (pALRc or pALRb) was constructed with DNA entirely from LAB, including the replicon, promoter, signal peptide, and selection marker alanine racemase gene (alr). To evaluate the feasibility of the system, the nuclease gene (nuc) from Staphylococcus aureus was used as a reporter to be expressed in both Lactococcus lactis and Lactobacillus casei. Subsequently, the extracellular secretion of the fimbrial adhesin FaeG of ETEC was confirmed by Western blot analysis. These results showed that this food-grade expression system has potential as the delivery vehicle for the safe use of genetically modified LAB for the development of vaccines against ETEC infection. PMID:26825016

  13. Preliminary X-ray crystallographic analysis of the d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis

    International Nuclear Information System (INIS)

    The expression, purification, preliminary crystallization and crystallographic analysis of phosphoketolase from L. lactis ssp. lactis (strain IL 1403) are reported. Phosphoketolases are thiamine diphosphate-dependent enzymes which play a central role in the pentose-phosphate pathway of heterofermentative lactic acid bacteria. They belong to the family of aldehyde-lyases and in the presence of phosphate ion cleave the carbon–carbon bond of the specific substrate d-xylulose 5-phosphate (or d-fructose 6-phosphate) to give acetyl phosphate and d-glyceraldehyde 3-phosphate (or d-erythrose 4-phosphate). Structural information about phosphoketolases is particularly important in order to fully understand their mechanism as well as the steric course of phosphoketolase-catalyzed reactions. Here, the purification, preliminary crystallization and crystallographic characterization of d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis are reported. The presence of thiamine diphosphate during purification was essential for the enzymatic activity of the purified protein. The crystals belonged to the monoclinic space group P21. Diffraction data were obtained to a resolution of 2.2 Å

  14. Biogenic amine production by Lactococcus lactis subsp. cremoris strains in the model system of Dutch-type cheese.

    Science.gov (United States)

    Flasarová, Radka; Pachlová, Vendula; Buňková, Leona; Menšíková, Anna; Georgová, Nikola; Dráb, Vladimír; Buňka, František

    2016-03-01

    The aim of this study was to compare the biogenic amine production of two starter strains of Lactococcus lactis subsp. cremoris (strains from the Culture Collection of Dairy Microorganisms - CCDM 824 and CCDM 946) with decarboxylase positive activity in a model system of Dutch-type cheese during a 90-day ripening period at 10°C. During ripening, biogenic amine and free amino acid content, microbiological characteristics and proximate chemical properties were observed. By the end of the ripening period, the putrescine content in both samples with the addition of the biogenic amine producing strain almost evened out and the concentration of putrescine was >800mg/kg. The amount of tyramine in the cheeses with the addition of the strain of CCDM 824 approached the limit of 400mg/kg by the end of ripening. In the cheeses with the addition of the strain of CCDM 946 it even exceeded 500mg/kg. In the control samples, the amount of biogenic amines was insignificant. PMID:26471528

  15. Biogenic amine production by Lactococcus lactis subsp. cremoris strains in the model system of Dutch-type cheese.

    Science.gov (United States)

    Flasarová, Radka; Pachlová, Vendula; Buňková, Leona; Menšíková, Anna; Georgová, Nikola; Dráb, Vladimír; Buňka, František

    2016-03-01

    The aim of this study was to compare the biogenic amine production of two starter strains of Lactococcus lactis subsp. cremoris (strains from the Culture Collection of Dairy Microorganisms - CCDM 824 and CCDM 946) with decarboxylase positive activity in a model system of Dutch-type cheese during a 90-day ripening period at 10°C. During ripening, biogenic amine and free amino acid content, microbiological characteristics and proximate chemical properties were observed. By the end of the ripening period, the putrescine content in both samples with the addition of the biogenic amine producing strain almost evened out and the concentration of putrescine was >800mg/kg. The amount of tyramine in the cheeses with the addition of the strain of CCDM 824 approached the limit of 400mg/kg by the end of ripening. In the cheeses with the addition of the strain of CCDM 946 it even exceeded 500mg/kg. In the control samples, the amount of biogenic amines was insignificant.

  16. Interaction of Saccharomyces cerevisiae and Lactococcus lactis in the fermentation and quality of artisanal cachaça

    Directory of Open Access Journals (Sweden)

    Fernanda Paula Carvalho

    2014-11-01

    Full Text Available Lactococcus lactis and Saccharomyces cerevisiae in co-culture were evaluated during sugar cane fermentantion for cachaça production. The inocula containing L. lactis UFLA CA 312 and S. cerevisiae UFLA CA 11 were used in the population of approximately 105 CFU mL-1 and 108 CFU mL-1,  respectively. The sugar cane medium plus 1% of yeast extract (SCM was efficient for growth of L. lactis UFLA CA 312 and S. cerevisiae UFLA CA 11 (letter b -Tukey test. In flasks and vats fermentation the growth of UFLA CA 11 was not negatively influenced by L. lactis UFLA CA 312. However, after 19 h of fermentation, bacterial population showed a slight decrease. Considering parameters higher alcohols and aldehydes, cachaça produced by pure culture of S. cerevisiae was similar to cachaça produced by mixed culture. Cachaça produced by mixed culture showed high values of volatile acidity (letter b -Scott-Knott test being characterized by this parameters in the principal component analysis. High percentage of acceptance (81.10% for the attribute aroma was observed in samples from cachaça produced by mixed culture.

  17. Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol

    KAUST Repository

    Liu, Xiang

    2013-03-01

    We have determined the X-ray crystal structures of the NADH-dependent alcohol dehydrogenase LlAdhA from Lactococcus lactis and its laboratory-evolved variant LlAdhA(RE1) at 1.9Å and 2.5Å resolution, respectively. LlAdhA(RE1), which contains three amino acid mutations (Y50F, I212T, and L264V), was engineered to increase the microbial production of isobutanol (2-methylpropan-1-ol) from isobutyraldehyde (2-methylpropanal). Structural comparison of LlAdhA and LlAdhA(RE1) indicates that the enhanced activity on isobutyraldehyde stems from increases in the protein\\'s active site size, hydrophobicity, and substrate access. Further structure-guided mutagenesis generated a quadruple mutant (Y50F/N110S/I212T/L264V), whose KM for isobutyraldehyde is ∼17-fold lower and catalytic efficiency (kcat/KM) is ∼160-fold higher than wild-type LlAdhA. Combining detailed structural information and directed evolution, we have achieved significant improvements in non-native alcohol dehydrogenase activity that will facilitate the production of next-generation fuels such as isobutanol from renewable resources.

  18. Chemical synthesis and characterization of J46 peptide, an atypical class IIa bacteriocin from Lactococcus lactis subsp. cremoris J46 Strain.

    Science.gov (United States)

    Lasta, Samar; Fajloun, Ziad; Darbon, Hervé; Mansuelle, Pascal; Andreotti, Nicolas; Sabatier, Jean-Marc; Boudabous, Abdellatif; Sampieri, François

    2008-02-01

    Bacteriocin J46 is a 27-residue polypeptide produced by Lactococcus lactis subsp. cremoris J46 in fermented milk. The natural form of J46 (nJ46) exhibits a broad antimicrobial spectrum. Herein, we produced the synthetic form of J46 (sJ46) by solid-phase chemical synthesis. The biochemical and physico-chemical properties of sJ46, as well as its antimicrobial activity, were found to be identical to those of its natural counterpart nJ46. It showed a potent antimicrobial activity against both lactic acid bacteria and other Gram-positive microorganisms. (1)H-NMR conformational analysis of sJ46 indicates that it adopts a flexible random coil structure.

  19. The pyrH gene of Lactococcus lactis subsp. cremoris encoding UMP kinase is transcribed as part of an operon including the frr1 gene encoding ribosomal recycling factor

    DEFF Research Database (Denmark)

    Wadskov-Hansen, Steen Lüders; Martinussen, Jan; Hammer, Karin

    2000-01-01

    The pyrH gene of Lactococcus lactis subsp. cremoris MG1363, encoding UMP kinase, has been sequenced and cloned. It encodes a polypeptide of 239 amino acid residues (deduced molecular weight of 25951), which was shown to complement a temperature sensitive pyrH mutation in Escherichia coli, thus...... establishing the ability of the encoded protein to synthesize UDP. The pyrH gene in L. lactis is flanked downstream by frr1 encoding ribosomal recycling factor 1 and upstream by an open reading frame, orfA, of unknown function. The three genes were shown to constitute an operon transcribed in the direction orf...

  20. PURIFICATION AND CHARACTERIZATION OF NISIN PRODUCED BY LACTOCOCCUS LACTIS ISOLATED FROM INDIAN CURD

    Directory of Open Access Journals (Sweden)

    Saba A. Mahdy

    2015-12-01

    Full Text Available Lactococcus lactis isolated from traditional dairy Indian curd. Strains were preliminarily identified by PCR analysis and partial 16S rRNA confirmed that N5 were 100% identical to Lactococcus. lactis sp. lactis. The results revealed that only the bacteriocin produced from strain N5 was shown as being active against mostly gram positive bacteria The bacteriocin produced purified by precipitation followed by loading with gel chromatography. The partially purified bacteriocin was found to be stable over a wide range of pH, temperature and enzymes. The molecular weight of the peptide was judged to be 3.5 kDa by SDSpolyacrylamide gel electrophoresis.and conform to the result of mass spectrometry by maldi-tof test which calculated the mass of 3354.07 Da for nisin.These results indicate that bacteriocin produced by L. lactis sp. lactis N5 is a nisin.

  1. Gene-cassette for adaptation of Lactococcus lactis to a plant environment

    OpenAIRE

    Doman-Pytka, Monika; Renault, Pierre; Bardowski, Jacek

    2004-01-01

    International audience The generally accepted opinion is that the natural niche for lactococci are plants. Several genes reminiscent of the environmental adaptation of these bacteria to the plant habitat were found as a result of our work on the pullulanase coding region in the Lactococcus lactis IBB500 strain. All genes were located within an 11-kb DNA fragment of a 35-kb plasmid. Analysis of the nucleotide sequence of the 11-kb DNA fragment showed three regions: (i) a middle region - enc...

  2. Generation of Dipeptidyl Peptidase-IV-Inhibiting Peptides from β-Lactoglobulin Secreted by Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Suguru Shigemori

    2014-01-01

    Full Text Available Previous studies showed that hydrolysates of β-lactoglobulin (BLG prepared using gastrointestinal proteases strongly inhibit dipeptidyl peptidase-IV (DPP-IV activity in vitro. In this study, we developed a BLG-secreting Lactococcus lactis strain as a delivery vehicle and in situ expression system. Interestingly, trypsin-digested recombinant BLG from L. lactis inhibited DPP-IV activity, suggesting that BLG-secreting L. lactis may be useful in the treatment of type 2 diabetes mellitus.

  3. Plasmid biology of natural Lactococcus lactis strains and molecular mechanisms of bacteriophage-host interaction

    OpenAIRE

    Fallico, Vincenzo

    2011-01-01

    Lacticin 3147, enterocin AS-48, lacticin 481, variacin, and sakacin P are bacteriocins offering promising perspectives in terms of preservation and shelf-life extension of food products and should find commercial application in the near future. The studies detailing their characterization and bio-preservative applications are reviewed. Transcriptomic analyses showed a cell wall-targeted response of Lactococcus lactis IL1403 during the early stages of infection with the lytic bacteriophage c2,...

  4. Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis.

    OpenAIRE

    Liu, W.; Hansen, J N

    1990-01-01

    Nisin is a small gene-encoded antimicrobial protein produced by Lactococcus lactis that contains unusual dehydroalanine and dehydrobutyrine residues. The reactivity of these residues toward nucleophiles was explored by reacting nisin with a variety of mercaptans. The kinetics of reaction with 2-mercaptoethane-sulfonate and thioglycolate indicated that the reaction pathway includes a binding step. Reaction of nisin at high pH resulted in the formation of multimeric products, apparently as a re...

  5. Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein

    OpenAIRE

    Xue Xiao; Changbin Zhang; Dajun Liu; Weibin Bai; Qihao Zhang; Qi Xiang; Yadong Huang; Zhijian Su

    2016-01-01

    Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)–small molecule ubiquitin-like modifier protein (SUMO)–metallothionein-I (GST-SUMO-MT). T...

  6. Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons

    DEFF Research Database (Denmark)

    Larsen, Rasmus; van Hijum, Sacha A. F. T.; Martinussen, Jan;

    2008-01-01

    In previous studies, we have shown that direct protein-protein. interaction between the two regulators ArgR and AhrC in Lactococcus lactis is required for arginine-dependent repression of the biosynthetic argC promoter and the activation of the catabolic arcA promoter. Here, we establish the global...... ArgR and AhrC regulons by transcriptome analyses and show that both regulators are dedicated to the control of arginine metabolism in L. lactis....

  7. Engineering of Carbon Distribution between Glycolysis and Sugar Nucleotide Biosynthesis in Lactococcus lactis

    OpenAIRE

    Boels, Ingeborg C.; Kleerebezem, Michiel; de Vos, Willem M.

    2003-01-01

    We describe the effects of modulating the activities of glucokinase, phosphofructokinase, and phosphoglucomutase on the branching point between sugar degradation and the biosynthesis of sugar nucleotides involved in the production of exopolysaccharide biosynthesis by Lactococcus lactis. This was realized by using a described isogenic L. lactis mutant with reduced enzyme activities or by controlled expression of the well-characterized genes for phosphoglucomutase or glucokinase from Escherichi...

  8. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.

    Science.gov (United States)

    Larsen, Nadja; Moslehi-Jenabian, Saloomeh; Werner, Birgit Brøsted; Jensen, Maiken Lund; Garrigues, Christel; Vogensen, Finn Kvist; Jespersen, Lene

    2016-06-01

    Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production. PMID:27015296

  9. Formation of Amino Acid Derived Cheese Flavour Compounds

    NARCIS (Netherlands)

    Smit, B.A.

    2004-01-01

    Lactic acid bacteria (LAB), among them Lactococcus lactis, are often used for the fermentation of milk into various products, such as cheeses. For their growth and maintenance LAB metabolise milk sugar, protein and fat into various low molecular compounds, which sometimes have strong flavour charact

  10. Engineering Dehydrated Amino Acid Residues in the Antimicrobial Peptide Nisin

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Rollema, Harry S.; Yap, Wyanda M.G.J.; Boot, Hein J.; Siezen, Roland J.; Vos, Willem M. de

    1992-01-01

    The small antimicrobial peptide nisin, produced by Lactococcus lactis, contains the uncommon amino acid residues dehydroalanine and dehydrobutyrine and five thio ether bridges. Since these structures are posttranslationally formed from Ser, Thr, and Cys residues, it is feasible to study their role i

  11. Use of Lactococcus lactis subsp. cremoris NCDO 763 and α-ketoglutarate to improve the sensory quality of dry fermented sausages.

    Science.gov (United States)

    Herranz, B; Fernández, M; Hierro, E; Bruna, J M; Ordóñez, J A; de la Hoz, L

    2004-01-01

    The aim of the present work was to enhance the degradation of free amino acids in dry fermented sausages as precursors of volatile compounds responsible for the ripened flavour. For this purpose, Lactococcus lactis subsp. cremoris NCDO 763, its intracellular cell free extract (ICFE) and α-ketoglutarate were added to sausages. Papain was also used to increase the amount of free amino acids. When L. lactis was inoculated in sausages, an increase in the proteolytic phenomena was observed. The addition of α-ketoglutarate increased transamination phenomena in batches where it was added. The enhancement of these phenomena determined a noticeable rise in the content of glutamic acid (the main final product in transamination reactions) and a decrease, among other amino acids, of valine and leucine, with the formation of high amounts of their derivatives 2-methylpropanal and 3-methylbutanal. These aldehydes are responsible for the ripened flavour of dry fermented sausages. Sensory analysis showed an improvement of odour and flavour when L. lactis and α-ketoglutarate were combined. On the other hand, the intracellular cell free extract of L. lactis did not show any important activity in relation to amino acid breakdown even when used together with α-ketoglutarate and/or papain. PMID:22063943

  12. Fermentation of Prefermented and Extruded Rice Flour by Lactic Acid Bacteria from Sikhae

    DEFF Research Database (Denmark)

    Lee, C. H.; Min, K. C.; Souane, M.;

    1992-01-01

    The acid- and flavor-forming properties of Lactobacillus plantarum and Leuconostoc mesenteroides isolated from Sikhae, a Korean traditional lactic acid fermented fish product, were examined and compared to those of Lactobacillus casei and Lactococcus lactis subsp. diacetylactis DRC3. The effects...... digestion. The amount of sugar consumption during lactic fermentation varied with the type of bacteria. Leuconostoc mesenteroides(sikhae) and Lactobacillus plantarum(sikhae) increased up to 6 times of original cell number by 24 hrs of fermentation in rice + soymilk substrate, but Lactococcus lactis...

  13. Isolation and characterization of an anaerobic ruminal bacterium capable of degrading hydrolyzable tannins.

    OpenAIRE

    Nelson, K E; A. N. Pell; Schofield, P; Zinder, S

    1995-01-01

    An anaerobic diplococcoid bacterium able to degrade hydrolyzable tannins was isolated from the ruminal fluid of a goat fed desmodium (Desmodium ovalifolium), a tropical legume which contains levels as high as 17% condensed tannins. This strain grew under anaerobic conditions in the presence of up to 30 g of tannic acid per liter and tolerated a range of phenolic monomers, including gallic, ferulic, and p-coumaric acids. The predominant fermentation product from tannic acid breakdown was pyrog...

  14. Lactococcus lactis NCC 2287 Alleviates Food Allergic Manifestations in Sensitized Mice by Reducing IL-13 Expression Specifically in the Ileum

    Directory of Open Access Journals (Sweden)

    Adrian W. Zuercher

    2012-01-01

    Full Text Available Objective. Utilizing a food allergy murine model, we have investigated the intrinsic antiallergic potential of the Lactococcus lactis NCC 2287 strain. Methods. BALB/c mice were sensitized at weekly intervals with ovalbumin (OVA plus cholera toxin (CT by the oral route for 7 weeks. In this model, an oral challenge with a high dose of OVA at the end of the sensitization period leads to clinical symptoms. Lactococcus lactis NCC 2287 was given to mice via the drinking water during sensitization (prevention phase or after sensitization (management phase. Results. Lactococcus lactis NCC 2287 administration to sensitized mice strikingly reduced allergic manifestations in the management phase upon challenge, when compared to control mice. No preventive effect was observed with the strain. Lactococcus lactis NCC 2287 significantly decreased relative expression levels of the Th-2 cytokine, IL-13, and associated chemokines CCL11 (eotaxin-1 and CCL17 (TARC in the ileum. No effect was observed in the jejunum. Conclusion/Significance. These results taken together designate Lactococcus lactis NCC 2287 as a candidate probiotic strain appropriate in the management of allergic symptoms.

  15. Microbiology of Cheddar cheese made with different fat contents using a Lactococcus lactis single-strain starter.

    Science.gov (United States)

    Broadbent, J R; Brighton, C; McMahon, D J; Farkye, N Y; Johnson, M E; Steele, J L

    2013-07-01

    Flavor development in low-fat Cheddar cheese is typified by delayed or muted evolution of desirable flavor and aroma, and a propensity to acquire undesirable meaty-brothy or burnt-brothy off-flavor notes early in ripening. The biochemical basis for these flavor deficiencies is unclear, but flavor production in bacterial-ripened cheese is known to rely on microorganisms and enzymes present in the cheese matrix. Lipid removal fundamentally alters cheese composition, which can modify the cheese microenvironment in ways that may affect growth and enzymatic activity of starter or nonstarter lactic acid bacteria (NSLAB). Additionally, manufacture of low-fat cheeses often involves changes to processing protocols that may substantially alter cheese redox potential, salt-in-moisture content, acid content, water activity, or pH. However, the consequences of these changes on microbial ecology and metabolism remain obscure. The objective of this study was to investigate the influence of fat content on population dynamics of starter bacteria and NSLAB over 9 mo of aging. Duplicate vats of full fat, 50% reduced-fat, and low-fat (containing cheeses were manufactured at 3 different locations with a single-strain Lactococcus lactis starter culture using standardized procedures. Cheeses were ripened at 8°C and sampled periodically for microbiological attributes. Microbiological counts indicated that initial populations of nonstarter bacteria were much lower in full-fat compared with low-fat cheeses made at all 3 sites, and starter viability also declined at a more rapid rate during ripening in full-fat compared with 50% reduced-fat and low-fat cheeses. Denaturing gradient gel electrophoresis of cheese bacteria showed that the NSLAB fraction of all cheeses was dominated by Lactobacillus curvatus, but a few other species of bacteria were sporadically detected. Thus, changes in fat level were correlated with populations of different bacteria, but did not appear to alter the

  16. Production of Fibronectin Binding Protein A at the surface of Lactococcus lactis increases plasmid transfer in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Daniela Pontes

    Full Text Available Lactococci are noninvasive lactic acid bacteria frequently used as protein delivery vectors and, more recently, as DNA delivery vehicles. We previously showed that Lactococcus lactis (LL expressing the Fibronectin-Binding Protein A of Staphylococcus aureus (LL-FnBPA+ showed higher internalization rates in vitro in Caco-2 cells than the native (wt lactococci and were able to deliver a eukaryotic Green Fluorescent Protein (GFP expression plasmid in 1% of human Caco-2 cells. Here, using the bovine beta-lactoglobulin (BLG, one of the major cow's milk allergen, and GFP we characterized the potential of LL-FnBPA+ as an in vivo DNA vaccine delivery vehicle. We first showed that the invasive strain LL-FnBPA+ carrying the plasmid pValac:BLG (LL-FnBPA+ BLG was more invasive than LL-BLG and showed the same invasivity as LL-FnBPA+. Then we demonstrated that the Caco-2 cells, co-incubated with LL-FnBPA+ BLG produced up to 30 times more BLG than the Caco-2 cells co-incubated with the non invasive LL-BLG. Using two different gene reporters, BLG and GFP, and two different methods of detection, EIA and fluorescence microscopy, we showed in vivo that: i in order to be effective, LL-FnBPA+ required a pre-coating with Fetal Calf Serum before oral administration; ii plasmid transfer occurred in enterocytes without regard to the strains used (invasive or not; iii the use of LL-FnBPA+ increased the number of mice producing BLG, but not the level of BLG produced. We thus confirmed the good potential of invasive recombinant lactic acid bacteria as DNA delivery vector in vivo.

  17. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis

    International Nuclear Information System (INIS)

    The ltp gene, located within the lysogeny module of temperate Streptococcus thermophilus phage TP-J34, has been shown to be expressed in lysogenic strain S. thermophilus J34. It codes for a lipoprotein, as demonstrated by inhibition of cleavage of the signal sequence by globomycin. Exposure of Ltp on the surface of Lactococcus lactis protoplasts bearing a plasmid-encoded copy of ltp has been demonstrated by immunogold labeling and electron microscopy. Expression of ltp in prophage- and plasmid-cured S. thermophilus J34-6f interfered with TP-J34 infection. While plating efficiency was reduced by a factor of about 40 and lysis of strain J34-6f in liquid medium was delayed considerably, phage adsorption was not affected at all. Intracellular accumulation of phage DNA was shown to be inhibited by Ltp. This indicates interference of Ltp with infection at the stage of triggering DNA release and injection into the cell, indicating a role of Ltp in superinfection exclusion. Expression of ltp in L. lactis Bu2-60 showed that the same superinfection exclusion mechanism was strongly effective against phage P008, a member of the lactococcal 936 phage species: no plaque-formation was detectable with even 109 phage per ml applied, and lysis in liquid medium did not occur. In Lactococcus also, Ltp apparently inhibited phage DNA release and/or injection. Ltp appears to be a member of a family of small, secreted proteins with a 42 amino acids repeat structure encoded by genes of Gram-positive bacteria. Some of these homologous genes are part of the genomes of prophages

  18. Metabolic Engineering of Exopolysaccharide Production in Lactococcus lactis

    NARCIS (Netherlands)

    Boels, I.C.

    2002-01-01

    Exopolysaccharides (EPS) produced by lactic acid bacteria are important structural components in fermented foods. In addition, they may confer health benefits to the consumer, as mouse model studies have indicated that EPS may have immunostimulatory, anti-tumoral,

  19. Exopolysaccharide biosynthesis in Lactococcus lactis : a molecular characterisation

    NARCIS (Netherlands)

    Kranenburg, van R.

    1999-01-01

    Lactic acid bacteria are Gram-positive bacteria which are used for industrial food fermentation processes. Some have the ability to form exopolysaccharides (EPSs) and these bacteria or the produced EPSs can be used to enhance the structural properties of food products. Furthermore, these EPSs are cl

  20. Characterization of bacteriocins produced by Lactococcus lactis strains Caracterização de bacteriocinas produzidas por linhagens de Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Izildinha Moreno

    2000-09-01

    Full Text Available Bacteriocins produced by fifteen strains of Lactococcus lactis (14 L. lactis subsp. lactis and one L. lactis subsp. cremoris were heat resistant, sensitive to several proteolytic enzymes and active over a wide range of pH. Their resistance to the heating was greatly influenced by the pH. Only the strain L. lactis subsp. lactis ITAL 383 produced a bacteriocin with a wide activity spectrum, similar to nisin of L. lactis subsp. lactis ATCC 11454. This bacteriocin inhibited closely related species and other Gram-positive microorganisms including Listeria monocytogenes and Staphylococcus aureus, but it was not active against the Gram-negative bacteria tested. The identification of partially purified antimicrobial compounds by SDS-PAGE showed that bacteriocin produced by strain ITAL 383 had the same molecular weight of nisin produced by L. lactis subsp. lactis ATCC 11454.Bacteriocinas resistentes ao aquecimento produzidas por quinze linhagens de Lactococcus lactis (14 L. lactis subsp. lactis e 1 L. lactis subsp. cremoris foram sensíveis à enzimas proteolíticas e ativas em uma ampla faixa de pH. A resistência dessas bacteriocinas ao aquecimento foi fortemente influenciada pelo pH do meio. Somente a linhagem L. lactis subsp. lactis ITAL 383 produziu uma bacteriocina com um amplo espectro de atividade, semelhante ao da nisina de L. lactis subsp. lactis ATCC 11454. Esta bacteriocina inibiu as espécies relacionadas e outros microorganismos gram-positivos, inclusive Listeria monocytogenes e Staphylococcus aureus, mas não as bactérias Gram-negativas examinadas. A identificação do composto antimicrobiano parcialmente purificado por SDS-PAGE revelou um peso molecular similar entre a bacteriocina ITAL 383 e a nisina de L. lactis subsp lactis ATCC 11454.

  1. Structural characterisation and enzymic modification of exopolysaccharides from Lactococcus lactis

    OpenAIRE

    Casteren, van, DTEH Dave

    2000-01-01

    Since ancient times, lactic acid bacteria have been used for the preservation of food. Some of these bacteria are able to produce exopolysaccharides (EPSs), which may contribute to the peculiar rheology and texture of, for example, milk-derived products. Insight into the relationship between the chemical structure of EPSs and their physical properties can lead to tailor-made polysaccharides, which meet particular requirements in terms of structure and function. In this thesis, the elucidation...

  2. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species

    OpenAIRE

    GiudittaPerozzi

    2013-01-01

    Lactobacilli represent a major Lactic Acid Bacteria (LAB) component within the complex microbiota of fermented foods obtained from meat, dairy and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented products. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geograp...

  3. Cadmium and zinc interactions with a Gram-positive soil bacterium.

    NARCIS (Netherlands)

    Plette, A.C.C.

    1996-01-01

    A detailed study is presented on the cadmium and zinc sorption to both isolated cell walls and intact, living cells of the Gram-positive soil bacterium Rhodococcus erythropolis A177. Acid/base titrations were performed on isolated cell wall material to characterize the type and amount of reactive si

  4. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    Science.gov (United States)

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. PMID:26853478

  5. ClpE from Lactococcus lactis promotes repression of CtsR-dependent gene expression

    DEFF Research Database (Denmark)

    Varmanen, P.; Vogensen, F.K.; Hammer, Karin;

    2003-01-01

    ATPase (ClpE) in Lactococcus lactis is required for such a decrease in expression of a gene negatively regulated by the heat shock regulator (CtsR). Northern blot analysis showed that while a shift to a high temperature in wild-type cells resulted in a temporal increase followed by a decrease......R homologue in Bacillus subtilis. Thus, our data point to a regulatory role of ClpE in turning off clpP gene expression following temporal heat shock induction, and we propose that this effect is mediated through CtsR....

  6. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri

    OpenAIRE

    van Pijkeren, Jan-Peter; Neoh, Kar Mun; Sirias, Denise; Findley, Anthony S.; Britton, Robert A.

    2012-01-01

    Single-stranded DNA (ssDNA) recombineering is a technology which is used to make subtle changes in the chromosome of several bacterial genera. Cells which express a single-stranded DNA binding protein (RecT or Bet) are transformed with an oligonucleotide which is incorporated via an annealing and replication-dependent mechanism. By in silico analysis we identified ssDNA binding protein homologs in the genus Lactobacillus and Lactococcus lactis. To assess whether we could further improve the r...

  7. Elucidating Flux Regulation of the Fermentation Modes of Lactococcus lactis:A Mutlilevel Study

    OpenAIRE

    Chan, Siu Hung Joshua; Solem, Christian; Jensen, Peter Ruhdal

    2014-01-01

    De mange års anvendelse af mælkesyrebakterien Lactococcus lactis (L. lactis) indenfor mejeriindustrien, har været medvirkende til at L. lactis er blevet en af de mest velkarakteriserede bakterier. Denne Gram positive bakterie, som har et lavt GC indhold, har en relativt simpel metabolisme og er let at modificere genetisk. Dette har gjort den til et attraktivt mål for ”metabolic engineering”, bl.a. med henblik på produktion af non-food relaterede kemikalier. Derudover har den status som den fø...

  8. Non-Fusion and Fusion Expression of β-Galactosidase from Lactobacillus bulgaricus in Lactococcus lactis

    Institute of Scientific and Technical Information of China (English)

    CHUAN WANG; CHAO-WU ZHANG; HENG-CHUAN LIU; QIAN YU; XIAO-FANG PEI

    2008-01-01

    Objective To construct four recombinant Lactococcus lactis strains exhibiting high β-galactosidase activity in fusion or non-fusion ways, and to study the influence factors for their protein expression and secretion. Methods The gene fragments encoding β-galactosidase from two strains of Lactobacillus bulgaricus, wch9901 isolated from yogurt and 1.1480 purchased from the Chinese Academy of Sciences, were amplified and inserted into lactococcal expression vector pMG36e. For fusion expression, the open reading frame of the β-galactosidase gene was amplified, while for non-fusion expression, the open reading frame of the β-galactosidase gene was amplified with its native Shine-Dalgarno sequence upstream. The start codon of the β-galactosidase gene partially overlapped with the stop codon of vector origin open reading frame. Then, the recombinant plasmids were transformed into Escherichia coli DH5α and Lactococcus lactis subsp, lactis MG1363 and confirmed by determining β-galactosidase activities. Results The non-fusion expression plasmids showed a significantly higher β-galactosidase activity in transformed strains than the fusion expression plasmids. The highest enzyme activity was observed in Lactococcus lactis transformed with the non-fusion expression plasmids which were inserted into the β-galactosidase gene from Lactobacillus bulgaricus wch9901. The β-galactosidase activity was 2.75 times as high as that of the native counterpart. In addition, β-galactosidase expressed by recombinant plasmids in Lactococcus lactis could be secreted into the culture medium. The highest secretion rate (27.1%) was observed when the culture medium contained 20 g/L of lactose. Conclusion Different properties of the native bacteria may have some effects on the protein expression of recombinant plasmids. Non-fusion expression shows a higher enzyme activity in host bacteria. There may be a ost-related weak secretion signal peptide gene within the structure gene of Lb

  9. Lactococcus lactis-based vaccines from laboratory bench to human use: an overview.

    Science.gov (United States)

    Bahey-El-Din, Mohammed

    2012-01-17

    Developing effective vaccines is an important weapon in the battle against potential pathogens and their evolving antibiotic resistance trends. Several vaccine delivery vectors have been investigated among which the generally regarded as safe (GRAS) Lactococcus lactis has a distinguished position. In this review, different factors affecting the efficacy of L. lactis-based vaccines are discussed. In addition, the issues of biological containment and pharmaceutical quality assurance of L. lactis vaccines are highlighted. These issues are critical for the success of medical translation of L. lactis-based vaccines from research laboratories to clinical use by ensuring consistent manufacturing of safe and efficacious vaccines.

  10. Mechanism of flavin reduction in the class 1A dihydroorotate dehydrogenase from Lactococcus lactis

    DEFF Research Database (Denmark)

    Fagan, Rebecca L; Jensen, Kaj Frank; Björnberg, Olof;

    2007-01-01

    is concerted or stepwise was addressed for the class 1A enzyme from Lactococcus lactis by determining kinetic isotope effects (KIEs) on flavin reduction in anaerobic stopped-flow experiments. Isotope effects were determined at two pH values. At pH 7.0, KIEs were approximately 2-fold for DHO labeled singly...... mutants was extremely slow compared to that of the wild type; the rate of reduction increased with pH, showing no sign of a plateau. Interestingly, double-deuterium isotope effects on the Cys130Ser mutant also showed a concerted mechanism for flavin reduction....

  11. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.

    Science.gov (United States)

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA sequencing (dRNA-seq) and a combination of manual and automated transcriptome mining. This resulted in a high-resolution genome annotation of L. lactis and the identification of 60 cis-encoded antisense RNAs (asRNAs), 186 trans-encoded putative regulatory RNAs (sRNAs) and 134 novel small ORFs. Based on the putative targets of asRNAs, a novel classification is proposed. Several transcription factor DNA binding motifs were identified in the promoter sequences of (a)sRNAs, providing insight in the interplay between lactococcal regulatory RNAs and transcription factors. The presence and lengths of 14 putative sRNAs were experimentally confirmed by differential Northern hybridization, including the abundant RNA 6S that is differentially expressed depending on the available carbon source. For another sRNA, LLMGnc_147, functional analysis revealed that it is involved in carbon uptake and metabolism. L. lactis contains 13% leaderless mRNAs (lmRNAs) that, from an analysis of overrepresentation in GO classes, seem predominantly involved in nucleotide metabolism and DNA/RNA binding. Moreover, an A-rich sequence motif immediately following the start codon was uncovered, which could provide novel insight in the translation of lmRNAs. Altogether, this first experimental genome-wide assessment of the transcriptome landscape of L. lactis and subsequent sRNA studies provide an extensive basis for the investigation of regulatory RNAs in L. lactis and related lactococcal species. PMID:26950529

  12. Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model.

    Directory of Open Access Journals (Sweden)

    Chunqing Ai

    Full Text Available Mucosal vaccine based on lactic acid bacteria is an attractive concept for the prevention and treatment of allergic diseases, but their mechanisms of action in vivo are poorly understood. Therefore, we sought to investigate how recombinant major dust mite allergen Der p2-expressing Lactococcus lactis as a mucosal vaccine induced the immune tolerance against house dust mite allergy in a mouse model.Three strains of recombinant L. lactis producing Der p2 in different cell components (extracellular, intracellular and cell wall were firstly constructed. Their prophylactic potential was evaluated in a Der p2-sensitised mouse model, and immunomodulation properties at the cellular level were determined by measuring cytokine production in vitro.Der p2 expressed in the different recombinant L. lactis strains was recognized by a polyclonal anti-Der p2 antibody. Oral treatment with the recombinant L. lactis prior sensitization significantly prevented the development of airway inflammation in the Der p2-sensitized mice, as determined by the attenuation of inflammatory cells infiltration in the lung tissues and decrease of Th2 cytokines IL-4 and IL-5 levels in bronchoalveolar lavage. In addition, the serum allergen-specific IgE levels were significantly reduced, and the levels of IL-4 in the spleen and mesenteric lymph nodes cell cultures were also markedly decreased upon allergen stimulation in the mice fed with the recombinant L. lactis strains. These protective effects correlated with a significant up-regulation of regulatory T cells in the mesenteric lymph nodes.Oral pretreatment with live recombinant L. lactis prevented the development of allergen-induced airway inflammation primarily by the induction of specific mucosal immune tolerance.

  13. IDENTIFICATION OF THE BACTERIUM TOMATO STEM CANKER

    Directory of Open Access Journals (Sweden)

    Goner A. Shaker

    2014-01-01

    Full Text Available Diseased tomato samples were collected from green house was evaluated for isolation, pathogenicity and biochemical tests. The symptoms of the infected tomato plants were as sudden wilting after curled on leaves and necrotic streak regions developed at the crown and base of the stem and the cavities deepen and expand up and down, brown discoloration and necrosis occurring on xylem and phloem vasculer. All of ages of tomato plant were susceptible to bacteria when the weather condition favorable and immediately, seen collapse symptom on tomato plant at once fail and die. The bacterium was isolated from diseased plant in all regions on nutrient Agar; a yellow bacterium was isolated from infected tomato plant in green houses and fields in Abu-Ghraib, Rashiedia and Qanat Al-Geiaysh nurseries in Baghdad provinces of Iraq. The bacterium was found gram positive, rod-shaped, non-motile and capable an aerobic growth and based on the morphological and biochemical characteristics revealed that this bacterium belongs to: Clavibacter michiganensis subsp. michiganensis. (smith pathogenicity and hypersensitivity of the bacterium Cmm showed the disease index were 18.33, 6.66, 16.66, 5, 0% for tomato seedlings were inoculated treatments as the wounding roots, without wounding roots, crown of the stem, petiole and control respectively.

  14. 耐高温高醇醋酸菌的筛选及其发酵工艺的初步优化%Screening and fermentation optimization of a thermoresistant and alcohol-tolerant acetic acid bacterium

    Institute of Scientific and Technical Information of China (English)

    孙文瑛; 陈雄; 王志; 王永泽; 雷锦成; 姚娟

    2011-01-01

    Twelve acetic acid bacteria were isolated from some rotten fruits, one of which was selected for its comprehensive performance on alcohol tolerance, temperature tolerance and acetic acid production was highest, and identified as Acetobacter according to physiological-biochemical characteristics and 16S rDNA analysis. The optimal fermentation medium for the strain was op timized by orthogonal test as follows: glucose 2%,yeast extract 2%, MgSO4·7H2O 0.02%, KH2PO4 0.1%, ethanol 7%vol. and the ultimate acetic acid production can reach to 48.6g/L.%分别从各种腐烂水果中分离出12株产醋酸菌,比较其对乙醇和温度的耐受性以及发酵产醋酸的量,选择综合性能相对最高的一株,利用生理生化实验和16S rDNA同源序列分析,初步认定其为Acetobacter属.正交试验优化该菌最佳发酵培养基为:葡萄糖2%,酵母粉2%,MgSO4·7H2O.02%,KH2PO40.1%,乙醇7%vol,醋酸产量为48.6g/L.

  15. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol.

  16. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. PMID:26965627

  17. Lactic acid bacteria from Jijel's traditional butter: Isolation, identification and major technological traits

    Directory of Open Access Journals (Sweden)

    Idoui, Tayeb

    2008-12-01

    Full Text Available Twenty seven (27 lactic acid bacteria were isolated from Jijel’s traditional butter. These strains belong to three genera: Lactococcus, Lactobacillus and Leuconostoc. The results showed that Lactobacillus plantarum was the predominant species in this traditional butter. It appears that these strains have some interesting technological properties.Se aíslan veintisiete (27 bacterias acidolácticas de la mantequilla tradicional de Jijel. Éstas pertenecen a los géneros Lactococcus, Lactobacillus y Leuconostoc. Los resultados muestran que Lactobacillus plantarum es la especie predominante en dicha mantequilla. Diversas cepas presentan algunas propiedades tecnológicas interesantes.

  18. Enhancing bile tolerance improves survival and persistence of Bifidobacterium and Lactococcus in the murine gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Hill Colin

    2008-10-01

    Full Text Available Abstract Background The majority of commensal gastrointestinal bacteria used as probiotics are highly adapted to the specialised environment of the large bowel. However, unlike pathogenic bacteria; they are often inadequately equipped to endure the physicochemical stresses of gastrointestinal (GI delivery in the host. Herein we outline a patho-biotechnology strategy to improve gastric delivery and host adaptation of a probiotic strain Bifidobacterium breve UCC2003 and the generally regarded as safe (GRAS organism Lactococcus lactis NZ9000. Results In vitro bile tolerance of both strains was significantly enhanced (P Listeria monocytogenes bile resistance mechanism BilE. Strains harbouring bilE were also recovered at significantly higher levels (P n = 5, following oral inoculation. Furthermore, a B. breve strain expressing bilE demonstrated increased efficacy relative to the wild-type strain in reducing oral L. monocytogenes infection in mice. Conclusion Collectively the data indicates that bile tolerance can be enhanced in Bifidobacterium and Lactococcus species through rational genetic manipulation and that this can significantly improve delivery to and colonisation of the GI tract.

  19. Tulum Peynirlerinden izole Edilen Lactococcus lactis subsp. lactis YBML9 ve

    Directory of Open Access Journals (Sweden)

    Yasin TUNCER

    2009-04-01

    Full Text Available Bu çalısmanın amacı tulum peynirlerinden izole edilen Lactococcus lactis suslarının fenotipik tanısı ve bu suslar tarafından üretilen bakteriyosinlerin kısmi karakterizasyonlarıdır. Bu amaçla Türkiye'nin sekiz farklı ilinden (Ankara, Antalya, Burdur, Denizli, Erzincan, Isparta, İstanbul ve İzmir yöresel pazarlardan toplanan 60 adet tulum peyniri örneginden 40 adet Lactococcus lactis susu (31 adet L. lactis subsp. lactis ve 9 adet L. lactis subsp. cremoris izole edildi. 40 adet L. lactis susu içerisinden, 2 adet L. lactis subsp. lactis (YBML9 ve YBML21 susu bakteriyosin üretme yeteneginde bulundu. L. lactis subsp. lactis YBML9 ve YBML21 susları tarafından üretilen bakteriyosinler, farklı enzim, pH ve sıcaklık uygulamaları sonucu; sırasıyla nisin ve laktisin 481 olarak tanımlandı.

  20. Antibacterial effects of medicinal plant extracts against Lactococcus garvieae, the etiological agent of rainbow trout lactococcosis

    Directory of Open Access Journals (Sweden)

    Mohammad Saeid Fereidouni

    2013-05-01

    Full Text Available Eight medicinal plants were assessed for antimicrobial activity against Lactococcus garvieae isolate obtained from diseased Oncorhynchus mykiss collected from rainbow trout fish farms in Iran. Lactococcus garvieae is among the major pathogens of a large number of fish species cultured in fresh and marine recirculating and net pen production systems. The antibacterial activity of the medicinal plants against L. garvieae was evaluated using disc diffusion, well diffusion and minimum inhibitory concentration. Results showed that the extracts and essential oils had a relatively high antibacterial activity against L. garvieae. Of the plants studied, the most active extracts were those from the methanol extract of Peganum harmala, the essential oil of Satureja bachtiarica, the ethanol extract of Juglans regia and Trachyspermum copticum with minimum inhibitory concentration (MIC of 105, 126, 510 and 453 μg/ml, respectively. Conversly, some of the extracts such as Quercus branti Lindley and Glycyrrhiza glabra L. had lower activity against L. garvieae with MIC values of 978 and 920 μg/ml respectively. Plant extracts as natural and environment- friendly compounds can be an important source of antibacterial agents against L. garvieae. They may be used for disinfection of instruments and rainbow trout raceways or treatment of the fish.

  1. The anaerobic (Class III) ribonucleotide reductase from Lactococcus lactis : Catalytic properties and allosteric regulation of the pure enzyme system

    NARCIS (Netherlands)

    Torrents, Eduard; Buist, Girbe; Liu, Aimin; Eliasson, Rolf; Kok, Jan; Gibert, Isidre; Gräslund, Astrid; Reichard, Peter

    2000-01-01

    Lactococcus lactis contains an operon with the genes (nrdD and nrdG) for a class III ribonucleotide reductase, Strict anaerobic growth depends on the activity of these genes. Both were sequenced, cloned, and overproduced in Escherichia coli, The corresponding proteins, NrdD and NrdG, were purified c

  2. Lytic Infection of Lactococcus lactis by Bacteriophages Tuc2009 and c2 Triggers Alternative Transcriptional Host Responses

    NARCIS (Netherlands)

    Ainsworth, S.; Zomer, A.L.; Mahony, J.; Sinderen, D. van

    2013-01-01

    Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed thro

  3. Complete Genome of Lactococcus lactis subsp. cremoris UC509.9, Host for a Model Lactococcal P335 Bacteriophage

    NARCIS (Netherlands)

    Ainsworth, S.; Zomer, A.L.; Jager, V.C.L. de; Bottacini, F.; Hijum, S.A. van; Mahony, J.; Sinderen, D. van

    2013-01-01

    Here, we report the complete genome of Lactococcus lactis subsp. cremoris UC509.9, an Irish dairy starter. The circular chromosome of L. lactis UC509.9 represents the smallest among those of the sequenced lactococcal strains, while its large complement of eight plasmids appears to be a reflection of

  4. Cloning and verification of the Lactococcus lactis pyrG gene and characterization of the gene product, CTP synthase

    DEFF Research Database (Denmark)

    Wadskov-Hansen, Steen Lyders Lerche; Willemoës, M.; Martinussen, Jan;

    2001-01-01

    The pyrG gene of Lactococcus lactis subsp. cremoris, encoding CTP synthase, has been cloned and sequenced. It is flanked upstream by an open reading frame showing homology to several aminotransferases and downstream by an open reading frame of unknown function. L. lactis strains harboring disrupted...

  5. Two nucleoside uptake systems in Lactococcus lactis: Competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools

    DEFF Research Database (Denmark)

    Martinussen, Jan; Wadskov-Hansen, Steen Lyders Lerche; Hammer, Karin

    2003-01-01

    in Lactococcus lactis were investigated by measuring the uptake of radioactively labeled nucleosides. The K. for for inosine, cytidine, and uridine was determined to be in the micromolar range. Furthermore, it was found that cytidine and inosine are competitive inhibitors of each other, whereas no competition...

  6. Heterologous Gene Expression in Lactococcus lactis subsp. lactis : Synthesis, Secretion, and Processing of the Bacillus subtilis Neutral Protease

    NARCIS (Netherlands)

    Guchte, Maarten van de; Kodde, Jan; Vossen, Jos M.B.M. van der; Kok, Jan; Venema, Gerard

    1990-01-01

    The Bacillus subtilis nprE gene lacking its own promoter sequence was inserted in the lactococcal expression vector pMG36e. Upon introduction of the recombinant plasmid into Lactococcus lactis subsp. lactis strain MG1363, neutral protease activity could be visualized by the appearance of large clear

  7. Classification of Lactococcus lactis cell envelope proteinase based on gene sequencing, peptides formed after hydrolysis of milk, and computer modeling

    DEFF Research Database (Denmark)

    Børsting, Mette Winther; Qvist, K.B.; Brockmann, E.;

    2015-01-01

    Lactococcus lactis strains depend on a proteolytic system for growth in milk to release essential AA from casein. The cleavage specificities of the cell envelope proteinase (CEP) can vary between strains and environments and whether the enzyme is released or bound to the cell wall. Thirty-eight Lc...

  8. Complete Genome Sequence of Lactococcus lactis Strain AI06, an Endophyte of the Amazonian Açaí Palm

    OpenAIRE

    McCulloch, John Anthony; de Oliveira, Viviane Matoso; de Almeida Pina, André Vicioli; Pérez-Chaparro, Paula Juliana; Almeida, Lara Mendes; de Vasconcelos, Janaina Mota; de Oliveira, Layanna Freitas; da Silva, Daisy Elaine Andrade; Rogez, Hervé Louis Ghislain; CRETENET, Marina; Mamizuka, Elsa Masae; Nunes, Marcio Roberto Teixeira

    2014-01-01

    We report the genome, in a single chromosome, of Lactococcus lactis strain AI06, isolated from the mesocarp of the açaí fruit (Euterpe oleracea) in eastern Amazonia, Brazil. This strain is an endophyte of the açaí palm and also a component of the microbiota of the edible food product.

  9. Fermentation-induced variation in heat and oxidative stress phenotypes of Lactococcus lactis MG1363 reveals transcriptome signatures for robustness

    NARCIS (Netherlands)

    A.R. Dijkstra; W. Alkema; M.J.C. Starrenburg; J. Hugenholtz; S.A.F.T. van Hijum; P.A. Bron

    2014-01-01

    Background: Lactococcus lactis is industrially employed to manufacture various fermented dairy products. The most cost-effective method for the preservation of L. lactis starter cultures is spray drying, but during this process cultures encounter heat and oxidative stress, typically resulting in low

  10. Identification and functional characterization of the Lactococcus lactis rfb operon, required for dTDP-rhamnose biosynthesis

    NARCIS (Netherlands)

    Boels, I.C.; Beerthuyzen, M.M.; Kosters, M.H.; Kaauwen, van M.P.W.; Kleerebezem, M.; Vos, de W.M.

    2004-01-01

    dTDP-rhamnose is an important precursor of cell wall polysaccharides and rhamnose-containing exopolysaccharides (EPS) in Lactococcus lactis. We cloned the rfbACBD operon from L. lactis MG1363, which comprises four genes involved in dTDP-rhamnose biosynthesis. When expressed in Escherichia coli, the

  11. Metabolic Engineering of Mannitol Production in Lactococcus lactis: Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds

    NARCIS (Netherlands)

    Wisselink, H.W.; Mars, A.E.; Meer, van der P.; Eggink, G.; Hugenholtz, J.

    2004-01-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance l

  12. Complete Genome Sequence of Lactococcus lactis Strain AI06, an Endophyte of the Amazonian Açaí Palm.

    Science.gov (United States)

    McCulloch, John Anthony; de Oliveira, Viviane Matoso; de Almeida Pina, André Vicioli; Pérez-Chaparro, Paula Juliana; de Almeida, Lara Mendes; de Vasconcelos, Janaina Mota; de Oliveira, Layanna Freitas; da Silva, Daisy Elaine Andrade; Rogez, Hervé Louis Ghislain; Cretenet, Marina; Mamizuka, Elsa Masae; Nunes, Marcio Roberto Teixeira

    2014-01-01

    We report the genome, in a single chromosome, of Lactococcus lactis strain AI06, isolated from the mesocarp of the açaí fruit (Euterpe oleracea) in eastern Amazonia, Brazil. This strain is an endophyte of the açaí palm and also a component of the microbiota of the edible food product. PMID:25414513

  13. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Burd, G.I.; Dixon, D.G.; Glick, B.R. [Univ. of Waterloo, Ontario (Canada). Dept. of Biology

    1998-10-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, and CrO{sub 4}{sup {minus}}, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride were partially protected against nickel toxicity. In addition, protection by the bacterium against nickel toxicity was evident in pot experiments with canola and tomato seeds. The presence of K. ascorbata SUD165 had no measurable influence on the amount of nickel accumulated per milligram (dry weight) of either roots or shoots of canola plants. Therefore, the bacterial plant growth-promoting effect in the presence of nickel was probably not attributable to the reduction of nickel uptake by seedlings. Rather, it may reflect the ability of the bacterium to lower the level of stress ethylene induced by the nickel.

  14. 基于2%莫匹罗星软膏治细菌感染性皮肤病作用观察2%夫西地酸乳膏的疗效及安全性%Safety and Cure Effect of 2% Fusidic Acid Cream on Bacterium-infected Skin Disease

    Institute of Scientific and Technical Information of China (English)

    陈俊; 李玉良

    2012-01-01

    [目的]观察2%夫西地酸乳膏(fusidic acid cream,FAC)治疗细菌感染性皮肤病的疗效和安全性.[方法]设计采用2%FAC治疗为治疗组,采用2%莫匹罗星软膏(Mupirocin ointment,MO)治疗为对照组;研究病例选择按照两组患者在性别、年龄、皮肤病各类上差异无统计学意义(P>0.05)为前提,在2011年1月至2011年12月来我院就诊并被确诊为细菌感染性皮肤病的病例资料里选出82例患者分为两组(治疗组、对照组各41例);疗程结束后,观察两组疗效和安全性.[结果]两组治疗后按皮损面积与严重程度指数(Eczema area severity index,EASI)评分并予比较,差异有统计学意义(P<0.05).治疗组治疗后有效35例,总有效率35/41(85.37%),对照组有效36例,有效率36/41(87.8%),两组比较差异无统计学意义(P>0.05).治疗组未发现明显不良反应病例,对照组有1例患者出现中度瘙痒,未经任何处理,自行缓解,发生率为1/41(2.44%),两组比较差异无统计学意义(P>0.05).[结论]2%FAC治疗细菌感染性皮肤病的疗效确切,安全性高,可在临床推广应用.%[Objective] To study the safety and effect of 2% Fusidic Acid Cream on bacterium infected skin disease. [Method] The design takes 2% Fusidic Acid Cream therapy as treatment group, 2% Mupirocin Ointment as control group; the cases selection has no difference of statistical meaning on sex, age and skin disease types. Choose 82 cases and divide them into 2 groups, 41 cases in each one. After treating course, observe their cure effect and safety. [Result] Compare both EAST scores, with statistical meaning for difference. In treatment group, 35 cases are effective, the total effective rate is 35/41(85.37%); for control one, they are 36 and 36/41 (87.8%) respectively; the difference of comparison has no statistical meaning. There's no marked side effects in treatment group, but in control one, 1 case has moderate pruritus, which is relieved without

  15. Surface of Lactic Acid Bacteria: Relationships between Chemical Composition and Physicochemical Properties

    OpenAIRE

    Boonaert, C J; Rouxhet, Paul

    2000-01-01

    The surface chemical composition and physicochemical properties (hydrophobicity and zeta potential) of two lactic acid bacteria, Lactococcus lactis subsp. lactis bv. diacetilactis and Lactobacillus helveticus, have been investigated using cells harvested in exponential or stationary growth phase. The surface composition determined by X-ray photoelectron spectroscopy (XPS) was converted into a molecular composition in terms of proteins, polysaccharides, and hydrocarbonlike compounds. The conce...

  16. Effects of cultivation conditions on folate production by lactic acid bacteria

    NARCIS (Netherlands)

    Sybesma, W.; Starrenburg, M.; Tijsseling, L.; Hoefnagel, M.H.N.; Hugenholtz, J.

    2003-01-01

    A variety of lactic acid bacteria were screened for their ability to produce folate intracellularly and/or extracellularly. Lactococcus lactis, Streptococcus thermophilus, and Leuconostoc spp. all produced folate, while most Lactobacillus spp., with the exception of Lactobacillus plantarum, were not

  17. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species

    Directory of Open Access Journals (Sweden)

    Chiara eDevirgiliis

    2013-10-01

    Full Text Available Lactobacilli represent a major Lactic Acid Bacteria (LAB component within the complex microbiota of fermented foods obtained from meat, dairy and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented products. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geographical origin, seasonality, animal feeding/plant growth conditions. Although a few species of opportunistic pathogens have been described in lactobacilli and lactococci, they are mostly non-pathogenic, Gram-positive bacteria displaying probiotic features. Since antibiotic resistant (AR strains do not constitute an immediate threat to human health, scientific interest for detailed studies on AR genes in these species has been greatly hindered. However, increasing evidence points at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption. The availability of a growing number of sequenced bacterial genomes has been very helpful in identifying the presence/distribution of mobile elements associated with AR genes, but open questions and knowledge gaps still need to be filled, underlining the need for systematic and datasharing approaches to implement both surveillance and mechanistic studies on transferability of AR genes. In the present review we report an update of the recent literature on AR in lactobacilli and lactococci following the 2006 EU-wide ban of the use of antibiotics as feed additives in animal farming, and we discuss the limits of the present knowledge in evaluating possible risks for human health.

  18. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species.

    Science.gov (United States)

    Devirgiliis, Chiara; Zinno, Paola; Perozzi, Giuditta

    2013-01-01

    Lactobacilli represent a major Lactic Acid Bacteria (LAB) component within the complex microbiota of fermented foods obtained from meat, dairy, and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented foods. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geographical origin, seasonality, animal feeding/plant growth conditions. Although a few species of opportunistic pathogens have been described, lactobacilli and lactococci are mostly non-pathogenic, Gram-positive bacteria displaying probiotic features. Since antibiotic resistant (AR) strains do not constitute an immediate threat to human health, scientific interest for detailed studies on AR genes in these species has been greatly hindered. However, increasing evidence points at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption. The availability of a growing number of sequenced bacterial genomes has been very helpful in identifying the presence/distribution of mobile elements associated with AR genes, but open questions and knowledge gaps still need to be filled, highlighting the need for systematic and datasharing approaches to implement both surveillance and mechanistic studies on transferability of AR genes. In the present review we report an update of the recent literature on AR in lactobacilli and lactococci following the 2006 EU-wide ban of the use of antibiotics as feed additives in animal farming, and we discuss the limits of the present knowledge in evaluating possible risks for human health. PMID:24115946

  19. Microflora of urogenital tract in pregnancy with asymptomatic bacterium

    International Nuclear Information System (INIS)

    The article contains results of research interrelationship from colonization of vagina and urinary tract diseases. E.coli one of the main factors in development asymptomatic bacterium. Presented high effects of penicillin medicaments and nitrofurans in treatment of asymptomatic bacterium

  20. N-Acyl Dehydrotyrosines, Tyrosinase Inhibitors from the Marine Bacterium Thalassotalea sp. PP2-459.

    Science.gov (United States)

    Deering, Robert W; Chen, Jianwei; Sun, Jiadong; Ma, Hang; Dubert, Javier; Barja, Juan L; Seeram, Navindra P; Wang, Hong; Rowley, David C

    2016-02-26

    Thalassotalic acids A-C and thalassotalamides A and B are new N-acyl dehydrotyrosine derivatives produced by Thalassotalea sp. PP2-459, a Gram-negative bacterium isolated from a marine bivalve aquaculture facility. The structures were elucidated via a combination of spectroscopic analyses emphasizing two-dimensional NMR and high-resolution mass spectrometric data. Thalassotalic acid A (1) displays in vitro inhibition of the enzyme tyrosinase with an IC50 value (130 μM) that compares favorably to the commercially used control compounds kojic acid (46 μM) and arbutin (100 μM). These are the first natural products reported from a bacterium belonging to the genus Thalassotalea. PMID:26824128

  1. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  2. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico.

    Science.gov (United States)

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A; Setién, Alvaro Aguilar

    2015-12-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc.

  3. Content Determination of Total Triterpenes Compound and Oleanolic Acid in scum coloratura and Its Photosynthetic Bacterium Transformation Products%槲寄生与光合细菌转化槲寄生培养液中总三萜类化合物与齐墩果酸的含量测定

    Institute of Scientific and Technical Information of China (English)

    李建文; 张忠鹏; 牛红军; 杨官娥

    2011-01-01

    OBJECTIVE: To establish the methods for the content determination of total triterpenes compound and oleanolic acid in Viscum coloratum and its photosynthetic bacterium transformation products, and to compare the contents of each sample.METHODS: With oleanolic acid as control, total triterpenes compound was measured by UV spectrophotometry with 5% vanillin-glacial acetic acid solution and perchloric acid as color-developing agent at detection wavelength of 548 nm. The content of oleanolic acid was determined by HPLC. The determination was performed on Diamonsil C18(200 mm×4.6 mm, 5 μm) column with mobile phase consisted of methanol-0.18% phosphoric acid water (86: 14) with the detection wavelength at 210 nm and the column temperature at 25 ℃. RESULTS: The linear range of total triterpenes compound was 2~ 12 μg·mL-1 (r=0.995 3), and the linear range of oleanolic acid was 0.41~4.1 μg· mL-1(r=0.999 1 ). 75% ethanol extracts of V. coloratum was transformed by Rhodobacter sphaeroides and Rhodopseudononas palustris respectively. The contents of the total triterpenes increased by 36.0% and 14.7%, and the contents of oleanolic acid increased by 880.0% and 260.0%, respectively. CONCLUSION: The contents of total triterpenes and oleanolic acid in 75% ethanol extracts of mistletoe could be increased by the transformation of two kinds of photosynthetic bacterium. It may lead to the production of some enzymes. The experiments lay a foundation for the research of chemical constituents and transformation mechanism of V. coloratum.%目的:建立测定槲寄生与光合细菌转化槲寄生培养液中总三萜类化合物与齐墩果酸含量的方法,并对各个样品的含量进行比较.方法:采用紫外分光光度法测定总三萜类化合物的含量,以齐墩果酸为对照品,以5%香草醛冰醛酸溶液、高氯酸为显色系统,检测波长为548nm;采用高效液相色谱法测定齐墩果酸的含量,色谱柱为Diamonsil C18(200mmx4.6mm

  4. Comparative effect of Pediococcus acidilactici and Lactococcus lactis on growth performance, survival and enzyme activity of western white leg shrimp (Litopenaeus vannamei)

    OpenAIRE

    Ahmadi, Sara

    2014-01-01

    This study was done in Shahid Kiani Marine Aquaculture Development Center, Choebde, Abadan in order to evaluate the effects of Pediiococcus acidilactici, Lactococcus lactis and vitamin C on growth performance, survival, enzymatic activities and immune responses of L. vannamei during three months. Treatments were included control group, Pediiococcus and Lactococcus treatments which fed with diet containing 1×10P9P cfu gP_1P bacteria and vitamin C. At the end of the experiment, the growth facto...

  5. The pyrimidine operon pyrRPB-carA from Lactococcus lactis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Schallert, J.; Andersen, Birgit;

    2001-01-01

    The four genes pyrR, pyrP, pyrB, and carA were found to constitute an operon in Lactococcus lactis subsp, lactis MG1363. The functions of the different genes were established by mutational analysis. The first gene in the operon is the pyrimidine regulatory gene, pyrR, which is responsible for the...... regulation of the expression of the pyrimidine biosynthetic genes leading to UMP formation. The second gene encodes a membrane-bound high-affinity uracil permease, required for utilization of exogenous uracil. The last two genes in the operon, pyrB and carA, encode pyrimidine biosynthetic enzymes; aspartate...... transcarbamoylase (pyrB) is the second enzyme in the pathway, whereas carbamoyl-phosphate synthetase subunit A (carA) is the small subunit of a heterodimeric enzyme, catalyzing the formation of carbamoyl phosphate. The carA gene product is shown to be required for both pyrimidine and arginine biosynthesis. The...

  6. Oxidative Stress at High Temperatures in Lactococcus lactis Due to an Insufficient Supply of Riboflavin

    DEFF Research Database (Denmark)

    Shen, Jing; Solem, Christian; Jensen, Peter Ruhdal;

    2013-01-01

    Lactococcus lactis MG1363 was found to be unable to grow at temperatures above 37°C in a defined medium without riboflavin, and the cause was identified to be dissolved oxygen introduced during preparation of the medium. At 30°C, growth was unaffected by dissolved oxygen and oxygen was consumed...... riboflavin to the medium, it was possible to improve growth and oxygen consumption at 37°C, and this also normalized the [ATP]-to-[ADP] ratio. A codon-optimized redox-sensitive green fluorescent protein (GFP) was introduced into L. lactis and revealed a more oxidized cytoplasm at 37°C than at 30°C. These...... results indicate that L. lactis suffers from heat-induced oxidative stress at increased temperatures. A decrease in intracellular flavin adenine dinucleotide (FAD), which is derived from riboflavin, was observed with increasing growth temperature, but the presence of riboflavin made the decrease smaller...

  7. Characterization of Lactococcus lactis mutants with improved performance at high temperatures and potential dairy applications

    DEFF Research Database (Denmark)

    Chen, Jun

    Lactococcus lactis (L. lactis) is a Gram-positive mesophile, which has considerable importance in the dairy industry for production of cheese and butter milk, and which carries the “GRAS” (generally recognized as safe) designation. Temperature has a great impact on dairy fermentation processes......, the latter because the increased energy consumption at high temperatures potentially could stimulate glycolysis. However in many cases the fitness is affected and mostly negative effects on productivity are observed. In this study, the non-GMO approach, experimental adaptation, was employed for isolating...... thermo-tolerant L. lactis. The adaptation was carried out using a serial-transfer regime at steadily increasing temperatures, and the strain used was L. lactis subsp. cremoris MG1363, which is a well-characterized dairy isolate. After exposure to increasing temperatures over 900 generations, one mutant...

  8. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Blank, Lars Mathias; Solem, Christian;

    2008-01-01

    Lactococcus lactis is known to be capable of respiration under aerobic conditions in the presence of haemin. In the present study the effect of respiration on ATP production during growth on different sugars was examined. With glucose as the sole carbon source, respiratory conditions in L. lactis...... MG1363 resulted in only a minor increase, 21%, in biomass yield. Since ATP production through substrate-level phosphorylation was essentially identical with and without respiration, the increased biomass yield was a result of energy-saving under respiratory conditions estimated to be 0.4 mol of ATP...... subtracting these contributions, approx. 0.3 mol of ATP/mol of glucose remained unaccounted for. A similar response to respiratory conditions (0.2 mol of ATP/mol of glucose) was observed in a mutant that had a decreased glucose uptake rate during growth on glucose caused by disruption of the PTSmannose...

  9. Angiotensin-converting enzyme inhibitory activity of milk fermented by wild and industrial Lactococcus lactis strains.

    Science.gov (United States)

    Rodríguez-Figueroa, J C; Reyes-Díaz, R; González-Córdova, A F; Troncoso-Rojas, R; Vargas-Arispuro, I; Vallejo-Cordoba, B

    2010-11-01

    Angiotensin I-converting enzyme inhibitory (ACEI) activity was evaluated and compared in milk fermented by wild and commercial starter culture Lactococcus lactis strains after 48 h of incubation. The highest ACEI activities were found in WSE from milk inoculated with wild L. lactis strains isolated from artisanal dairy products and commercial starter cultures. On the other hand, the lowest ACEI activities were found in WSE from milk inoculated with wild strains isolated from vegetables. Moreover, the IC(50) values (concentration that inhibits 50% activity) of WSE from artisanal dairy products were the lowest, indicating that these fractions were the most effective in inhibiting 50% of ACE activity. In fact, a strain isolated from artisanal cheese presented the lowest IC(50) (13 μg/mL). Thus, it appears that wild L. lactis strains isolated from artisanal dairy products and commercial starter cultures showed good potential for the production of fermented dairy products with ACEI properties. PMID:20965317

  10. Physiochemical parameters optimization for enhanced nisin production by Lactococcus lactis (MTCC 440

    Directory of Open Access Journals (Sweden)

    Puspadhwaja Mall

    2010-02-01

    Full Text Available The influence of various physiochemical parameters on the growth of Lactococcus lactis sub sp. lactis MTCC 440 was studied at shake flask level for 20 h. Media optimization (MRS broth was studied to achieve enhanced growth of the organism and also nisin production. Bioassay of nisin was done with agar diffusion method using Streptococcus agalactae NCIM 2401 as indicator strain. MRS broth (6%, w/v with 0.15μg/ml of nisin supplemented with 0.5% (v/v skimmed milk was found to be the best for nisin production as well as for growth of L lactis. The production of nisin was strongly influenced by the presence of skimmed milk and nisin in MRS broth. The production of nisin was affected by the physical parameters and maximum nisin production was at 30(0C while the optimal temperature for biomass production was 37(0C.

  11. Effects of Lactococcus lactis on composition of intestinal microbiota: Role of nisin

    DEFF Research Database (Denmark)

    Bernbom, Nete; Licht, Tine Rask; Brogren, Carl-Henrik;

    2006-01-01

    This study examined the ability of (i) pure nisin, (ii) nisin-producing Lactococcus lactis strain CHCC5826, and (iii) the non-nisin-producing L. lactis strain CHCH2862 to affect the composition of the intestinal microbiota of human flora-associated rats. The presence of both the nisin......-producing and the non-nisin-producing L. lactis strains significantly increased the number of Bifidobacterium cells in fecal samples during the first 8 days but decreased the number of enterococci/streptococci in duodenum, ileum, cecum, and colon samples as detected by selective cultivation. No significant changes...... in the rat fecal microbiota were observed after dosage with nisin. Pearson cluster analysis of denaturing gradient gel electrophoresis profiles of the 16S rRNA genes present in the fecal microbial population revealed that the microbiota of animals dosed with either of the two L. lactis strains were different...

  12. Microbiota of Minas cheese as influenced by the nisin producer Lactococcus lactis subsp. lactis GLc05.

    Science.gov (United States)

    Perin, Luana Martins; Dal Bello, Barbara; Belviso, Simona; Zeppa, Giuseppe; de Carvalho, Antônio Fernandes; Cocolin, Luca; Nero, Luís Augusto

    2015-12-01

    Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or pasteurized cow milk. This study proposed an alternative production of Minas cheese using raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production of biogenic amines (BAs) was assessed as a safety aspect. Minas cheese was produced in two treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and independent (rep-PCR and PCR-DGGE) methods were employed to characterize the microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, separating them into two different clusters. Lactococcus sp. was found as the main microorganism in both cheeses, and the microbiota of cheese A presented a higher number of species. High concentrations of tyramine were found in both cheeses and, at specific ripening times, the BA amounts in cheese B were significantly higher than in cheese A (pnisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by demonstration of its influence in the complex microbiota naturally present in a raw goat milk cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis GLc05 influenced also the production of BA determining that their amounts in the cheeses were maintained at acceptable levels for human consumption.

  13. Microbiota of Minas cheese as influenced by the nisin producer Lactococcus lactis subsp. lactis GLc05.

    Science.gov (United States)

    Perin, Luana Martins; Dal Bello, Barbara; Belviso, Simona; Zeppa, Giuseppe; de Carvalho, Antônio Fernandes; Cocolin, Luca; Nero, Luís Augusto

    2015-12-01

    Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or pasteurized cow milk. This study proposed an alternative production of Minas cheese using raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production of biogenic amines (BAs) was assessed as a safety aspect. Minas cheese was produced in two treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and independent (rep-PCR and PCR-DGGE) methods were employed to characterize the microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, separating them into two different clusters. Lactococcus sp. was found as the main microorganism in both cheeses, and the microbiota of cheese A presented a higher number of species. High concentrations of tyramine were found in both cheeses and, at specific ripening times, the BA amounts in cheese B were significantly higher than in cheese A (p<0.05). The interaction of nisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by demonstration of its influence in the complex microbiota naturally present in a raw goat milk cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis GLc05 influenced also the production of BA determining that their amounts in the cheeses were maintained at acceptable levels for human consumption. PMID:26310130

  14. Role of phosphate in the central metabolism of two lactic acid bacteria-a comparative systems biology approach

    NARCIS (Netherlands)

    Levering, J.; Musters, M.W.J.M.; Bekker, M.; Bellomo, D.; Fiedler, T.; Vos, de W.M.; Hugenholtz, F.; Kreikemeyer, B.; Kummer, U.; Teusink, B.

    2012-01-01

    Lactic acid-producing bacteria survive in distinct environments, but show common metabolic characteristics. Here we studied the dynamic interactions of the central metabolism in Lactococcus lactis, extensively used as a starter culture in the dairy industry, and Streptococcus pyogenes, a human patho

  15. Role of phosphate in the central metabolism of two lactic acid bacteria - a comparative systems biology approach.

    NARCIS (Netherlands)

    J. Levering; M.W. Musters; M. Bekker; D. Bellomo; T. Fiedler; W.M. de Vos; J. Hugenholtz; B. Kreikemeyer; U. Kummer; B. Teusink

    2012-01-01

    Lactic acid-producing bacteria survive in distinct environments, but show common metabolic characteristics. Here we studied the dynamic interactions of the central metabolism in Lactococcus lactis, extensively used as a starter culture in the dairy industry, and Streptococcus pyogenes, a human patho

  16. Mass Spectrometry Analysis of the Extracellular Peptidome of Lactococcus lactis: Lines of Evidence for the Coexistence of Extracellular Protein Hydrolysis and Intracellular Peptide Excretion.

    Science.gov (United States)

    Guillot, Alain; Boulay, Mylène; Chambellon, Émilie; Gitton, Christophe; Monnet, Véronique; Juillard, Vincent

    2016-09-01

    We report here the use of a peptidomic approach to revisit the extracellular proteolysis of Lactococcus lactis. More than 1800 distinct peptides accumulate externally during growth of the plasmid-free protease-negative strain L. lactis IL1403 in a protein- and peptide-free medium. These peptides mainly originate from cell-surface- and cytoplasmic-located proteins, despite the fact that no cell lysis could be evidenced. Positioning each identified peptide on its parental protein sequence demonstrated the involvement of exo- and endopeptidase activities. The endopeptidases responsible for the release of surface and cytoplasmic peptides had distinct specificities. The membrane-anchored protease HtrA was responsible for the release of only a part of the surface peptides, and its preference for branched-chain amino acids in the N-terminal side of the cleaved bond was established in situ. Other yet uncharacterized surface proteases were also involved. Several lines of evidence suggest that surface and cytoplasmic peptides were produced by different routes, at least part of the latter being most likely excreted as peptides from the cells. The mechanism by which these cytoplasmic peptides are excreted remains an open question, as it is still the case for excreted cytoplasmic proteins. PMID:27439475

  17. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese.

    Science.gov (United States)

    Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M

    2015-03-01

    Listeria monocytogenes is a pathogen frequently found in dairy products. Its control in fresh cheeses is difficult, due to the psychrotrophic properties and salt tolerance. Bacteriocinogenic lactic acid bacteria (LAB) with proven in vitro antilisterial activity can be an innovative technological approach but their application needs to be evaluated by means of in situ tests. In this study, a novel bacteriocinogenic Lactococcus lactis strain ( Lc . lactis DF4Mi), isolated from raw goat milk, was tested for control of growth of L. monocytogenes in artificially contaminated fresh Minas type goat cheese during storage under refrigeration. A bacteriostatic effect was achieved, and counts after 10 days were 3 log lower than in control cheeses with no added LAB. However, this effect did not differ significantly from that obtained with a non-bacteriocinogenic Lc. lactis strain. Addition of nisin (12.5 mg/kg) caused a rapid decrease in the number of viable L. monocytogenes in the cheeses, suggesting that further studies with the purified bacteriocin DF4Mi may open new possibilities for this strain as biopreservative in dairy products. PMID:26221109

  18. Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor.

    Science.gov (United States)

    Rosenbaum, Miriam A; Bar, Haim Y; Beg, Qasim K; Segrè, Daniel; Booth, James; Cotta, Michael A; Angenent, Largus T

    2011-02-01

    Bioelectrochemical systems (BESs) employing mixed microbial communities as biocatalysts are gaining importance as potential renewable energy, bioremediation, or biosensing devices. While we are beginning to understand how individual microbial species interact with an electrode as electron donor, little is known about the interactions between different microbial species in a community: sugar fermenting bacteria can interact with current producing microbes in a fashion that is either neutral, positively enhancing, or even negatively affecting. Here, we compare the bioelectrochemical performance of Shewanella oneidensis in a pure-culture and in a co-culture with the homolactic acid fermenter Lactococcus lactis at conditions that are pertinent to conventional BES operation. While S. oneidensis alone can only use lactate as electron donor for current production, the co-culture is able to convert glucose into current with a comparable coulombic efficiency of ∼17%. With (electro)-chemical analysis and transcription profiling, we found that the BES performance and S. oneidensis physiology were not significantly different whether grown as a pure- or co-culture. Thus, the microbes worked together in a purely substrate based (neutral) relationship. These co-culture experiments represent an important step in understanding microbial interactions in BES communities with the goal to design complex microbial communities, which specifically convert target substrates into electricity. PMID:21036604

  19. Psychrotrophic members of Leuconostoc gasicomitatum, Leuconostoc gelidum and Lactococcus piscium dominate at the end of shelf-life in packaged and chilled-stored food products in Belgium.

    Science.gov (United States)

    Pothakos, Vasileios; Snauwaert, Cindy; De Vos, Paul; Huys, Geert; Devlieghere, Frank

    2014-05-01

    Previously, a considerable underestimation (+0.5-3.2 log CFU/g) on the contamination levels of psychrotrophic lactic acid bacteria (LAB) was observed for 33 retail, packaged food products stored at chilling temperature when the mesophilic enumeration technique was implemented as reference shelf-life parameter. In the present study, the microbial diversity of the dominant psychrotrophic LAB recovered after incubation of plates at 22 °C for 5 days was determined using a polyphasic taxonomic approach. A total of 212 LAB isolates were identified using a combination of rep-PCR fingerprinting, amplified fragment length polymorphism (AFLP) analysis and pheS gene sequencing. Leuconostoc gasicomitatum, Leuconostoc gelidum, Leuconostoc spp., Lactococcus piscium and Lactobacillus algidus proved to be the most competent and predominant species that may go undetected by the widely applied mesophilic enumeration protocols (ISO 4833:2003 and ISO 15214:1998). This study has assessed the interspecific variation among potential spoilage LAB, and highlights the significance of implementing a reference shelf-life parameter based on the enumeration of the total psychrotrophic bacterial load for industrial microbiological routine analyses.

  20. The C-terminus of nisin is important for the ABC transporter NisFEG to confer immunity in Lactococcus lactis.

    Science.gov (United States)

    AlKhatib, Zainab; Lagedroste, Marcel; Zaschke, Julia; Wagner, Manuel; Abts, André; Fey, Iris; Kleinschrodt, Diana; Smits, Sander H J

    2014-10-01

    The lantibiotic nisin is a small 3.4 kDa antimicrobial peptide, which acts against Gram-positive bacteria in the nmol/L range. Nisin is produced and secreted by several Lactococcus lactis strains to ensure advantages against other bacteria in their habitat. Nisin contains five specific lanthionine rings of which the first two are important for Lipid II binding and the last two are crucial for the pore formation in the membrane. To gain immunity against nisin, the producing strain is expressing an ABC transporter called NisFEG, which expels nisin from the membrane. As a result six to eightfold more nisin is needed to affect the cells. The hydrolysis of ATP by NisFEG is required for this immunity as shown by a mutant, where the ATP hydrolysis is disrupted (NisFH181A EG). Furthermore, NisFEG recognizes the C-terminus of nisin, since deletion of the last six amino acids as well as of the last ring lowered the fold of immunity displayed by NisFEG.

  1. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese

    Directory of Open Access Journals (Sweden)

    Danielle N. Furtado

    2015-03-01

    Full Text Available Listeria monocytogenes is a pathogen frequently found in dairy products. Its control in fresh cheeses is difficult, due to the psychrotrophic properties and salt tolerance. Bacteriocinogenic lactic acid bacteria (LAB with proven in vitro antilisterial activity can be an innovative technological approach but their application needs to be evaluated by means of in situ tests. In this study, a novel bacteriocinogenic Lactococcus lactis strain (Lc. lactis DF4Mi, isolated from raw goat milk, was tested for control of growth of L. monocytogenes in artificially contaminated fresh Minas type goat cheese during storage under refrigeration. A bacteriostatic effect was achieved, and counts after 10 days were 3 log lower than in control cheeses with no added LAB. However, this effect did not differ significantly from that obtained with a non-bacteriocinogenic Lc. lactis strain. Addition of nisin (12.5 mg/kg caused a rapid decrease in the number of viable L. monocytogenes in the cheeses, suggesting that further studies with the purified bacteriocin DF4Mi may open new possibilities for this strain as biopreservative in dairy products.

  2. On Lactococcus lactis UL719 competitivity and nisin (Nisaplin® capacity to inhibit Clostridium difficile in a model of human colon

    Directory of Open Access Journals (Sweden)

    Christophe eLe Lay

    2015-09-01

    Full Text Available Clostridium difficile is the most frequently identified enteric pathogen in patients with nocosocomially acquired, antibiotic-associated diarrhea and pseudomembranous colitis. Although metronidazole and vancomycin were effective, an increasing number of treatment failures and recurrence of C. difficile infection are being reported. Use of probiotics, particularly metabolically active lactic acid bacteria, was recently proposed as an alternative for the medical community. The aim of this study was to assess a probiotic candidate, nisin Z-producer Lactococcus lactis UL719, competitivity and nisin (Nisaplin® capacity to inhibit C. difficile in a model of human colon. Bacterial populations was enumerated by qPCR coupled to PMA treatment. L. lactis UL719 was able to survive and proliferate under simulated human colon, did not alter microbiota composition, but failed to inhibit C. difficile. While a single dose of 19 µmol/L (5× the MIC was not sufficient to inhibit C. difficile, nisin at 76 µmol/L (20× the MIC was effective at killing the pathogen. Nisin (at 76 µmol/L caused some temporary changes in the microbiota with Gram-positive bacteria being the mostly affected. These results highlight the capacity of L. lactis UL719 to survive under simulated human colon and the efficacy of nisin as an alternative in the treatment of C. difficile infections.

  3. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major.

    Science.gov (United States)

    Dawood, Mahmoud A O; Koshio, Shunsuke; Ishikawa, Manabu; Yokoyama, Saichiro; El Basuini, Mohammed F; Hossain, Md Sakhawat; Nhu, Truong H; Dossou, Serge; Moss, Amina S

    2016-02-01

    Pagrus major fingerlings (3·29 ± 0·02 g) were fed with basal diet (control) supplemented with Lactobacillus rhamnosus (LR), Lactococcus lactis (LL), and L. rhamnosus + L. lactis (LR + LL) at 10(6) cell g(-1) feed for 56 days. Feeding a mixture of LR and LL significantly increased feed utilization (FER and PER), intestine lactic acid bacteria (LAB) count, plasma total protein, alternative complement pathway (ACP), peroxidase, and mucus secretion compared with the other groups (P growth performance (Fn wt, WG, and SGR) and protein digestibility than the groups fed an individual LR or the control diet. Superoxide dismutase (SOD) significantly increased in LR and LR + LL groups when compared with the other groups. Moreover, the fish fed LR or LL had better improvement (P growth, feed utilization, body protein and lipid contents, digestibility coefficients (dry matter, protein, and lipid), protease activity, total intestine and LAB counts, hematocrit, total plasma protein, biological antioxidant potential, ACP, serum and mucus LZY and bactericidal activities, peroxidase, SOD, and mucus secretion than the control group. Interestingly, fish fed diets with LR + LL showed significantly lower total cholesterol and triglycerides when compared with the other groups (P < 0.05). These data strongly suggest that a mixture of LR and LL probiotics may serve as a healthy immunostimulating feed additive in red sea bream aquaculture.

  4. Optimization of Fermentation Conditions for Nisin Production by Lactococcus lactis N302%Nisin生产菌株Lactococcus lactis N302的发酵优化

    Institute of Scientific and Technical Information of China (English)

    李瑞青; 轩辕铮铮; 姜德洲; 苏俊杰; 徐海津; 张秀明; 乔明强

    2011-01-01

    对一株Nisin生产菌株Lactococcus lactis N302现有培养基进行了氮源替代,并采用Plackett-Burman(PB)法和中心复合设计(Central Composite Design)对影响其发酵生产Nisin的6个培养条件进行筛选优化.PB实验表明,蔗糖、初始pH值和酵母粉是影响Nisin效价的三个关键因素.对三因素进行中心复合设计,经响应面法优化分析(RSM)确定了L.Lactis N302发酵生产Nisin的最优条件为:蔗糖13.7g.L-1,初始pH值7.74,酵母粉25.7g.L-1,大豆蛋白胨10.0g.L-1,K2HPO410.0g.L-1,接种量3%.优化后Nisin效价较优化前提高了7.2%.小试(10 L)研究表明,分批发酵18h、补碱分批发酵16h菌株L.lactis N302单位Nisin效价最高,分别为4 597.03 IU.mL-1和8 773.34 IU.mL-1.%Nisin is a bacteriocin widely used in food industry as an effective food preservative. High nisin production was aimed by optimizing the fermentation conditions of Lactococcus lactis N302. First, soybean peptone was used the main nitrogen source of the culture medium instead of peptone. Then, the Plackett-Burman design (PB) and the path of steepest ascent method were applied to investigate the main factors that affect the yield of nisin, and to find the optimum region of the response. The results indicated that sucrose, initial pH value and yeast extract were the significant factors for nisin production. Central composite experimental design and response surface methodology (RSM) were further adopted to derive a statistical model for optimizing the fermentation conditions. The optimum fermentation conditions were found to be sucrose 13. 7 g · L-1, initial pH value 7. 74, yeast extract 25. 7 g · L-1, soybean peptone 10 g · L-1, K2HPO410 g · L-1, inoculum size 3%. The nisin yield increased by 7. 2% compared to the no-optimized conditions. Finally, 10 liter batch and pH fed-batch fermentation with the optimized conditions were carried out. The maximum nisin yield was achieved at 18 h for batch fermentation and 16 h for fed

  5. Effect of fermented broth from lactic acid bacteria on pathogenic bacteria proliferation.

    Science.gov (United States)

    Gutiérrez, S; Martínez-Blanco, H; Rodríguez-Aparicio, L B; Ferrero, M A

    2016-04-01

    In this study, the effect that 5 fermented broths of lactic acid bacteria (LAB) strains have on the viability or proliferation and adhesion of 7 potentially pathogenic microorganisms was tested. The fermented broth from Lactococcus lactis C660 had a growth inhibitory effect on Escherichia coli K92 that reached of 31%, 19% to Pseudomonas fluorescens, and 76% to Staphylococcus epidermidis. The growth of Staph. epidermidis was negatively affected to 90% by Lc. lactis 11454 broth, whereas the growth of P. fluorescens (25%) and both species of Staphylococcus (35% to Staphylococcus aureus and 76% to Staph. epidermidis) were inhibited when they were incubated in the presence of Lactobacillus casei 393 broth. Finally, the fermented broth of Lactobacillus rhamnosus showed an inhibitory effect on growth of E. coli K92, Listeria innocua, and Staph. epidermidis reached values of 12, 28, and 76%, respectively. Staphylococcus epidermidis was the most affected strain because the effect was detected from the early stages of growth and it was completely abolished. The results of bacterial adhesion revealed that broths from Lc. lactis strains, Lactobacillus paracasei, and Lb. rhamnosus caused a loss of E. coli K92 adhesion. Bacillus cereus showed a decreased of adhesion in the presence of the broths of Lc. lactis strains and Lb. paracasei. Listeria innocua adhesion inhibition was observed in the presence of Lb. paracasei broth, and the greatest inhibitory effect was registered when this pathogenic bacterium was incubated in presence of Lc. lactis 11454 broth. With respect to the 2 Pseudomonas, we observed a slight adhesion inhibition showed by Lactobacillus rhamnosus broth against Pseudomonas putida. These results confirm that the effect caused by the different LAB assayed is also broth- and species-specific and reveal that the broth from LAB tested can be used as functional bioactive compounds to regulate the adhesion and biofilm synthesis and ultimately lead to preventing food and

  6. Heterologous production of methionine-γ-lyase from brevibacterium linens in lactococcus lactis and formation of volatile sulfur compounds

    OpenAIRE

    Hanniffy, Sean; Philo, Mark; Peláez, Carmen; Gasson, M. J.; Requena, Teresa; Martínez-Cuesta, M. Carmen

    2009-01-01

    The conversion of methionine to volatile sulfur compounds (VSCs) is of great importance in flavor formation during cheese ripening and is the focus of biotechnological approaches toward flavor improvement. A synthetic mgl gene encoding methionine-γ-lyase (MGL) from Brevibacterium linens BL2 was cloned into a Lactococcus lactis expression plasmid under the control of the nisin-inducible promoter PnisA. When expressed in L. lactis and purified as a recombinant protein, MGL was shown to degrade ...

  7. The carB Gene Encoding the Large Subunit of Carbamoylphosphate Synthetase from Lactococcus lactis Is Transcribed Monocistronically

    OpenAIRE

    Martinussen, Jan; Hammer, Karin

    1998-01-01

    The biosynthesis of carbamoylphosphate is catalyzed by the heterodimeric enzyme carbamoylphosphate synthetase. The genes encoding the two subunits of this enzyme in procaryotes are normally transcribed as an operon, but the gene encoding the large subunit (carB) in Lactococcus lactis is shown to be transcribed as an isolated unit. Carbamoylphosphate is a precursor in the biosynthesis of both pyrimidine nucleotides and arginine. By mutant analysis, L. lactis is shown to possess only one carB g...

  8. Reassessing the Role of Staphylococcus aureus Clumping Factor and Fibronectin-Binding Protein by Expression in Lactococcus lactis

    OpenAIRE

    Que, Yok-Ai; François, Patrice; Haefliger, Jacques-Antoine; Entenza, José-Manuel; Vaudaux, Pierre; Moreillon, Philippe

    2001-01-01

    Since Staphylococcus aureus expresses multiple pathogenic factors, studying their individual roles in single-gene-knockout mutants is difficult. To circumvent this problem, S. aureus clumping factor A (clfA) and fibronectin-binding protein A (fnbA) genes were constitutively expressed in poorly pathogenic Lactococcus lactis using the recently described pOri23 vector. The recombinant organisms were tested in vitro for their adherence to immobilized fibrinogen and fibronectin and in vivo for the...

  9. Oral Treatment with Lactococcus lactis Expressing Staphylococcus hyicus Lipase Enhances Lipid Digestion in Pigs with Induced Pancreatic Insufficiency

    OpenAIRE

    Drouault, Sophie; Juste, Catherine; Marteau, Philippe; Renault, Pierre; Corthier, Gérard

    2002-01-01

    The Staphylococcus hyicus lip gene was cloned in Lactococcus lactis. Pancreatic insufficiency was induced by ligation of the pancreatic duct in pigs. In pigs who had undergone pancreatic ligation, the coefficient of fat absorption was higher after consumption of lipase-expressing L. lactis (91.9% ± 3.7%) than that after consumption of the inactive control strain (78.4% ± 2.4%).

  10. Purification and Characterization of a Feruloyl Esterase from the Intestinal Bacterium Lactobacillus acidophilus

    OpenAIRE

    Wang, Xiaokun; Geng, Xin; Egashira, Yukari; Sanada, Hiroo

    2004-01-01

    Dietary ferulic acid (FA), a significant antioxidant substance, is currently the subject of extensive research. FA in cereals exists mainly as feruloylated sugar ester. To release FA from food matrices, it is necessary to cleave ester cross-linking by feruloyl esterase (FAE) (hydroxycinnamoyl esterase; EC 3.1.1.73). In the present study, the FAE from a human typical intestinal bacterium, Lactobacillus acidophilus, was isolated, purified, and characterized for the first time. The enzyme was pu...

  11. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.

    Science.gov (United States)

    Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn

    2011-05-01

    The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.

  12. Dual-Color Bioluminescence Imaging for Simultaneous Monitoring of the Intestinal Persistence of Lactobacillus plantarum and Lactococcus lactis in Living Mice.

    Science.gov (United States)

    Daniel, Catherine; Poiret, Sabine; Dennin, Véronique; Boutillier, Denise; Lacorre, Delphine Armelle; Foligné, Benoit; Pot, Bruno

    2015-08-15

    Lactic acid bacteria are found in the gastrointestinal tract of mammals and have received tremendous attention due to their health-promoting properties. We report the development of two dual-color luciferase-producing Lactobacillus (Lb.) plantarum and Lactococcus (Lc.) lactis strains for noninvasive simultaneous tracking in the mouse gastrointestinal tract. We previously described the functional expression of the red luciferase mutant (CBRluc) from Pyrophorus plagiophthalamus in Lb. plantarum NCIMB8826 and Lc. lactis MG1363 (C. Daniel, S. Poiret, V. Dennin, D. Boutillier, and B. Pot, Appl Environ Microbiol 79:1086-1094, 2013, http://dx.doi.org/10.1128/AEM.03221-12). In this study, we determined that CBRluc is a better-performing luciferase for in vivo localization of both lactic acid bacteria after oral administration than the green click beetle luciferase mutant construct developed in this study. We further established the possibility to simultaneously detect red- and green-emitting lactic acid bacteria by dual-wavelength bioluminescence imaging in combination with spectral unmixing. The difference in spectra of light emission by the red and green click beetle luciferase mutants and dual bioluminescence detection allowed in vitro and in vivo quantification of the red and green emitted signals; thus, it allowed us to monitor the dynamics and fate of the two bacterial populations simultaneously. Persistence and viability of both strains simultaneously administered to mice in different ratios was studied in vivo in anesthetized mice and ex vivo in mouse feces. The application of dual-luciferase-labeled bacteria has considerable potential to simultaneously study the interactions and potential competitions of different targeted bacteria and their hosts.

  13. Formation of Amino Acid Derived Cheese Flavour Compounds

    OpenAIRE

    Smit, B.A.

    2004-01-01

    Lactic acid bacteria (LAB), among them Lactococcus lactis, are often used for the fermentation of milk into various products, such as cheeses. For their growth and maintenance LAB metabolise milk sugar, protein and fat into various low molecular compounds, which sometimes have strong flavour characteristics. This thesis focuses on the production of one class of these compounds as a model system: aldehydes, in particular the key-flavour compounds 3-methylbutanal and 2-methyl propanal, which ar...

  14. Metabolic and Transcriptional Analysis of Acid Stress in Lactococcus lactis , with a Focus on the Kinetics of Lactic Acid Pools

    OpenAIRE

    Carvalho, Ana Lúcia; David L Turner; Fonseca, Luís L.; Solopova, Ana; Catarino, Teresa; Kuipers, Oscar P; Voit, Eberhard O.; Neves, Ana Rute; Santos, Helena

    2013-01-01

    The effect of pH on the glucose metabolism of non-growing cells of L. lactis MG1363 was studied by in vivo NMR in the range 4.8 to 6.5. Immediate pH effects on glucose transporters and/or enzyme activities were distinguished from transcriptional/translational effects by using cells grown at the optimal pH of 6.5 or pre-adjusted to low pH by growth at 5.1. In cells grown at pH 5.1, glucose metabolism proceeds at a rate 35% higher than in non-adjusted cells at the same pH. Besides the upregulat...

  15. Metabolic and Transcriptional Analysis of Acid Stress in Lactococcus lactis, with a Focus on the Kinetics of Lactic Acid Pools

    NARCIS (Netherlands)

    Carvalho, Ana Lucia; Turner, David L.; Fonseca, Luis L.; Solopova, Ana; Catarino, Teresa; Kuipers, Oscar P.; Voit, Eberhard O.; Neves, Ana Rute; Santos, Helena

    2013-01-01

    The effect of pH on the glucose metabolism of non-growing cells of L. lactis MG1363 was studied by in vivo NMR in the range 4.8 to 6.5. Immediate pH effects on glucose transporters and/or enzyme activities were distinguished from transcriptional/translational effects by using cells grown at the opti

  16. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    Directory of Open Access Journals (Sweden)

    NEENA GARG

    2015-10-01

    Full Text Available Lactic acid bacteria (LAB is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LAB are used as starter culture, consortium members and bioprotective agents in food industry that improve food quality, safety and shelf life. A variety of probiotic LAB species are available including Lactobacillus acidophilus, L. bulgaricus, L. lactis, L. plantarum, L. rhamnosus, L. reuteri, L. fermentum, Bifidobacterium longum, B. breve, B. bifidum, B. esselnsis, B. lactis, B. infantis that are currently recommended for development of functional food products with health-promoting capacities.

  17. Lactic acid bacteria from Sheep's Dhan, a traditional butter from sheep's milk: Isolation, identification and major technological traits

    Energy Technology Data Exchange (ETDEWEB)

    Idoui, T.; Boudjerda, J.; Leghouchi, E.; Karam, N. E.

    2009-07-01

    Twenty six lactic acid bacteria were isolated from sheep's Dhan, a traditional butter made from sheep's milk in Jijel (East of Algeria). These strains belong to three genera: Lactococcus, Leuconostoc and Lactobacillus. The results showed that Lactococcus lactic ssp diacetylactis was the predominant species in this traditional butter. The results of the assessment of the technological aptitude indicate that a major strain has a good acidification aptitude, some of them show good proteolytic activity and only Leuconostoc mesenteroides ssp. dextranicum isolates were able to produce exo polysaccharide. (Author) 42 refs.

  18. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture

    DEFF Research Database (Denmark)

    Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist;

    2015-01-01

    ) and after (anaerobic maximum) oxygen depletion. The redox potential decreased concurrently with oxygen consumption and continued to decrease at slower rate until reaching the final values, indicating involvement of both oxygen and microbiological activity in the redox state of milk. Oxygen flushing had......Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study...... was to investigate the effect of dissolved oxygen on acidification kinetics and redox potential during milk fermentation by lactic acid bacteria (LAB). Fermentations were conducted by single strains isolated from mixed DL-starter culture, including Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris...

  19. Isolation of a Bacterium Strain Degraded Agar

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    One in 58 strains of bacteria isolated from the compost showed clear colonies after a few days of growth on the plates containing medium made of only agar and water.Water suspension contained only agar (2 and 8g·L -1 ) with two controls (normal saline,LB medium) was inoculated with the bacterium BR5-1 to see whether there was an increasement of the alive bacteria concentration after 48 h of the growth.The results showed that there was a significant rising of the alive bacteria concentration in the agar susp...

  20. Swimming Efficiency of Bacterium Escherichia Coli

    CERN Document Server

    Chattopadhyay, S; Wu, X L; Yeung, C; Chattopadhyay, Suddhashil; Moldovan, Radu; Yeung, Chuck

    2005-01-01

    We use in vivo measurements of swimming bacteria in an optical trap to determine fundamental properties of bacterial propulsion. In particular, we determine the propulsion matrix, which relates the angular velocity of the flagellum to the torques and forces propelling the bacterium. From the propulsion matrix dynamical properties such as forces, torques, swimming speed and power can be obtained from measurements of the angular velocity of the motor. We find significant heterogeneities among different individuals even though all bacteria started from a single colony. The propulsive efficiency, defined as the ratio of the propulsive power output to the rotary power input provided by the motors, is found to be 0.2%.

  1. Role of Antioxidant Enzymes in Bacterial Resistance to Organic Acids

    OpenAIRE

    Bruno-Bárcena, Jose M.; Azcárate-Peril, M. Andrea; Hassan, Hosni M.

    2010-01-01

    Growth in aerobic environments has been shown to generate reactive oxygen species (ROS) and to cause oxidative stress in most organisms. Antioxidant enzymes (i.e., superoxide dismutases and hydroperoxidases) and DNA repair mechanisms provide protection against ROS. Acid stress has been shown to be associated with the induction of Mn superoxide dismutase (MnSOD) in Lactococcus lactis and Staphylococcus aureus. However, the relationship between acid stress and oxidative stress is not well under...

  2. Influence of extracellular pH on growth, viability, cell size, acidification activity, and intracellular pH of Lactococcus lactis in batch fermentations.

    Science.gov (United States)

    Hansen, Gunda; Johansen, Claus Lindvald; Marten, Gunvor; Wilmes, Jacqueline; Jespersen, Lene; Arneborg, Nils

    2016-07-01

    In this study, we investigated the influence of three extracellular pH (pHex) values (i.e., 5.5, 6.5, and 7.5) on the growth, viability, cell size, acidification activity in milk, and intracellular pH (pHi) of Lactococcus lactis subsp. lactis DGCC1212 during pH-controlled batch fermentations. A universal parameter (e.g., linked to pHi) for the description or prediction of viability, specific acidification activity, or growth behavior at a given pHex was not identified. We found viability as determined by flow cytometry to remain high during all growth phases and irrespectively of the pH set point. Furthermore, regardless of the pHex, the acidification activity per cell decreased over time which seemed to be linked to cell shrinkage. Flow cytometric pHi determination demonstrated an increase of the averaged pHi level for higher pH set points, while the pH gradient (pHi-pHex) and the extent of pHi heterogeneity decreased. Cells maintained positive pH gradients at a low pHex of 5.5 and even during substrate limitation at the more widely used pHex 6.5. Moreover, the strain proved able to grow despite small negative or even absent pH gradients at a high pHex of 7.5. The larger pHi heterogeneity at pHex 5.5 and 6.5 was associated with more stressful conditions resulting, e.g., from higher concentrations of non-dissociated lactic acid, while the low pHi heterogeneity at pHex 7.5 most probably corresponded to lower concentrations of non-dissociated lactic acid which facilitated the cells to reach the highest maximum active cell counts of the three pH set points. PMID:27020293

  3. Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution

    OpenAIRE

    Zhao, Ming-Wei; Zhu, Bin; Hao, Rui; Xu, Min-Gang; Eriani, Gilbert; Wang, En-Duo

    2005-01-01

    The editing reactions catalyzed by aminoacyl-tRNA synthetases are critical for the faithful protein synthesis by correcting misactivated amino acids and misaminoacylated tRNAs. We report that the isolated editing domain of leucyl-tRNA synthetase from the deep-rooted bacterium Aquifex aeolicus (αβ-LeuRS) catalyzes the hydrolytic editing of both mischarged tRNALeu and minihelixLeu. Within the domain, we have identified a crucial 20-amino-acid peptide that confers editing capacity when transplan...

  4. A bacterium that can grow by using arsenic instead of phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2010-11-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical significance.

  5. Mageeibacillus indolicus gen. nov., sp. nov: A novel bacterium isolated from the female genital tract

    OpenAIRE

    Austin, Michele N.; Rabe, Lorna K.; Srinivasan, Sujatha; Fredricks, David N.; Wiesenfeld, Harold C.; Hillier, Sharon L.

    2014-01-01

    Three isolates of a bacterium recovered from human endometrium using conventional culture methods were characterized biochemically and subjected to 16S rRNA gene sequencing and phylogenetic analysis. Isolates were non-motile, obligately anaerobic, non-spore forming, asaccharolytic, non-cellulolytic, indole positive, Gram positive rods. Cell wall fatty acid profiling revealed C14:0, C16:0, C18:2 ω6, 9c, C18:1 ω9c and C18:0 to be the major fatty acid composition. The DNA mol % G+C was determine...

  6. Isolation and identification of berberine and berberrubine metabolites by berberine-utilizing bacterium Rhodococcus sp. strain BD7100.

    Science.gov (United States)

    Ishikawa, Kazuki; Takeda, Hisashi; Wakana, Daigo; Sato, Fumihiko; Hosoe, Tomoo

    2016-05-01

    Based on the finding of a novel berberine (BBR)-utilizing bacterium, Rhodococcus sp. strain BD7100, we investigated the degradation of BBR and its analog berberrubine (BRU). Resting cells of BD7100 demethylenated BBR and BRU, yielding benzeneacetic acid analogs. Isolation of benzeneacetic acid analogs suggested that BD7100 degraded the isoquinoline ring of the protoberberine skeleton. This work represents the first report of cleavage of protoberberine skeleton by a microorganism. PMID:26882131

  7. Studies on culture condition of new marine bacterium Zooshikella sp. SY01

    Institute of Scientific and Technical Information of China (English)

    Wenjian LAN; Linfeng MO; Chuanghua CAI; Yipin ZHOU; Junhua YAO; Houjin LI

    2008-01-01

    New marine bacterium Zooshikella sp. SY01, producer of prodigiosin, was isolated from the seawaters of Sanya Bay. The culture conditions of this bacterium were investigated. Zooshikella sp. SY01 was cultured in 2216E media which contained tryptophan, histidine, lac-tonic acid, camphor, limonene, casein, diphenyl guani-dine, coumarin and 1,3-dinitrobenzene, respectively. After 5 days cultivation, the extracts of different culture broths were detected by direct infusion mass spectroscopy using positive ESI mode. As the results, tryptophan, his-tidine and casein didn't show any observable influences on the biosynthesis of prodigiosin. Lactonic acid, camphor, limonene, diphenyl guanidine, coumarin could inhibit the bacterium growth and prodigiosin biosynthesis to a cer-tain extent, slower the culture broth to turn red. However, 1, 3-dinitrobenzene inhibited the bacteria to produce pro-digiosin completely. MS data suggested that various metabolites with chemodiversity were produced in differ-ent culture media. In particular, a series of high-molecu-lar-weight compounds with high relative abundances were observed in the medium containing limonene. To further optimize the culture condition, more new prodigiosin ana-logues and lead compounds can be obtained and the goal of "one strain-many compounds" can be achieved.

  8. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666.

    Science.gov (United States)

    Del Rio, Beatriz; Linares, Daniel M; Redruello, Begoña; Martin, Maria Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P; Ladero, Victor; Alvarez, Miguel A

    2015-12-01

    Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine) into the biogenic amine putrescine by the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC[1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2], which is also transcriptionally regulated by carbon catabolic repression (CCR) via glucose, but not by other sugars such as lactose and galactose [1], [3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR) [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE59514. PMID:26697381

  9. Time-resolved genetic responses of Lactococcus lactis to a dairy environment.

    Science.gov (United States)

    Bachmann, Herwig; de Wilt, Leonie; Kleerebezem, Michiel; van Hylckama Vlieg, Johan E T

    2010-05-01

    Lactococcus lactis is one of main bacterial species found in mixed dairy starter cultures for the production of semi-hard cheese. Despite the appreciation that mixed cultures are essential for the eventual properties of the manufactured cheese the vast majority of studies on L. lactis were carried out in laboratory media with a pure culture. In this study we applied an advanced recombinant in vivo expression technology (R-IVET) assay in combination with a high-throughput cheese-manufacturing protocol for the identification and subsequent validation of promoter sequences specifically induced during the manufacturing and ripening of cheese. The system allowed gene expression measurements in an undisturbed product environment without the use of antibiotics and in combination with a mixed strain starter culture. The utilization of bacterial luciferase as reporter enabled the real-time monitoring of gene expression in cheese for up to 200 h after the cheese-manufacturing process was initiated. The results revealed a number of genes that were clearly induced in cheese such as cysD, bcaP, dppA, hisC, gltA, rpsE, purL, amtB as well as a number of hypothetical genes, pseudogenes and notably genetic elements located on the non-coding strand of annotated open reading frames. Furthermore genes that are likely to be involved in interactions with bacteria used in the mixed strain starter culture were identified.

  10. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666.

    Science.gov (United States)

    Del Rio, Beatriz; Linares, Daniel M; Redruello, Begoña; Martin, Maria Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P; Ladero, Victor; Alvarez, Miguel A

    2015-12-01

    Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine) into the biogenic amine putrescine by the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC[1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2], which is also transcriptionally regulated by carbon catabolic repression (CCR) via glucose, but not by other sugars such as lactose and galactose [1], [3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR) [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE59514.

  11. Improvement of bovine ß-lactoglobulin production and secretion by Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    S. Nouaille

    2005-03-01

    Full Text Available The stabilizing effects of staphylococcal nuclease (Nuc and of a synthetic propeptide (LEISSTCDA, hereafter called LEISS on the production of a model food allergen, bovine ß-lactoglobulin (BLG, in Lactococcus lactis were investigated. The fusion of Nuc to BLG (Nuc-BLG results in higher production and secretion of the hybrid protein. When LEISS was fused to BLG, the production of the resulting protein LEISS-BLG was only slightly improved compared to the one obtained with Nuc-BLG. However, the secretion of LEISS-BLG was dramatically enhanced (~10- and 4-fold higher than BLG and Nuc-BLG, respectively. Finally, the fusion of LEISS to Nuc-BLG resulting in the protein LEISS-Nuc-BLG led to the highest production of the hybrid protein, estimated at ~8 µg/ml (~2-fold higher than Nuc-BLG. In conclusion, the fusions described here led to the improvement of the production and secretion of BLG. These tools will be used to modulate the immune response against BLG via delivery of recombinant lactococci at the mucosal level, in a mouse model of cow's milk allergy.

  12. A genome-scale integration and analysis of Lactococcus lactis translation data.

    Directory of Open Access Journals (Sweden)

    Julien Racle

    Full Text Available Protein synthesis is a template polymerization process composed by three main steps: initiation, elongation, and termination. During translation, ribosomes are engaged into polysomes whose size is used for the quantitative characterization of translatome. However, simultaneous transcription and translation in the bacterial cytosol complicates the analysis of translatome data. We established a procedure for robust estimation of the ribosomal density in hundreds of genes from Lactococcus lactis polysome size measurements. We used a mechanistic model of translation to integrate the information about the ribosomal density and for the first time we estimated the protein synthesis rate for each gene and identified the rate limiting steps. Contrary to conventional considerations, we find significant number of genes to be elongation limited. This number increases during stress conditions compared to optimal growth and proteins synthesized at maximum rate are predominantly elongation limited. Consistent with bacterial physiology, we found proteins with similar rate and control characteristics belonging to the same functional categories. Under stress conditions, we found that synthesis rate of regulatory proteins is becoming comparable to proteins favored under optimal growth. These findings suggest that the coupling of metabolic states and protein synthesis is more important than previously thought.

  13. Analysis of heat shock gene expression in Lactococcus lactis MG1363

    DEFF Research Database (Denmark)

    Arnau, José; Sørensen, Kim; Appel, Karen Fuglede;

    1996-01-01

    The induction of the heat shock response in Lactococcus lactis subsp. cremoris strain MG1363 was analysed at the RNA level using a novel RNA isolation procedure to prevent degradation. Cloning of the dnaJ and groEL homologous was carried out. Nothern blot analysis showed a similar induction pattern...... for dnaK, dnaJ and groELS after transfer from 30°C to 43°C when MG1363 was grown in defined medium. The dnaK gene showed a 100-fold induction level 15 min after temperature shifting. Induction of the first two genes in the dnaK operon, orf1 and grpW, resembled the pattern observed for the above genes......, although maximum induction was observed earlier for orf1 and grpE. Novel transcript sizes were detected in heat-shocked cells. The induction kinetics observed for ftsH suggested a different regulation for this gene. Experimental evidence for a prenounced transcriptional regulation being involved...

  14. Improved viability of bifidobacteria in fermented milk by cocultivation with Lactococcus lactis subspecies lactis.

    Science.gov (United States)

    Odamaki, T; Xiao, J Z; Yonezawa, S; Yaeshima, T; Iwatsuki, K

    2011-03-01

    The poor survival of probiotic bacteria in commercial yogurts may limit their potential to exert health benefits in humans. The objective was to improve the survival of bifidobacteria in fermented milk. Cocultivation with some strains of Lactococcus lactis ssp. lactis improved the survival of bifidobacteria in fermented milk during refrigerated storage. Studies on one strain, Lc. lactis ssp. lactis MCC866, showed that the concentrations of dissolved oxygen were kept lower in the cocultivated fermented milk during storage compared with monocultured Bifidobacterium longum BB536 or samples cocultured with another noneffective Lc. lactis ssp. lactis strain. Degradation of genomic DNA was suppressed in the cocultivating system with Lc. lactis ssp. lactis MCC866. Several genes that participated in protection from active oxygen species (e.g., genes coding for alkyl hydroperoxide reductase and Fe(2+) transport system) were expressed at higher levels during refrigerated storage in Lc. lactis ssp. lactis MCC 866 compared with another noneffective Lc. lactis ssp. lactis strain. Concentration of free iron ion was also lower in supernatants of fermented milk cocultivated with B. longum BB536 and Lc. lactis ssp. lactis MCC866. These results suggest that Lc. lactis ssp. lactis MCC 866 is potentially superior in reducing oxygen damage and consequently improves the survival of bifidobacteria in the cocultivating system. This cocultivation system is of industrial interest for producing fermented milk containing viable bifidobacteria with long shelf life.

  15. The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis.

    Science.gov (United States)

    Filipic, Brankica; Golic, Natasa; Jovcic, Branko; Tolinacki, Maja; Bay, Denice C; Turner, Raymond J; Antic-Stankovic, Jelena; Kojic, Milan; Topisirovic, Ljubisa

    2013-01-01

    Functional characterization of the multidrug resistance CmbT transporter was performed in Lactococcus lactis. The cmbT gene is predicted to encode an efflux protein homologous to the multidrug resistance major facilitator superfamily. The cmbT gene (1377 bp) was cloned and overexpressed in L. lactis NZ9000. Results from cell growth studies revealed that the CmbT protein has an effect on host cell resistance to lincomycin, cholate, sulbactam, ethidium bromide, Hoechst 33342, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametoxazole. Moreover, in vivo transport assays showed that overexpressed CmbT-mediated extrusion of ethidium bromide and Hoechst 33342 was higher than in the control L. lactis NZ9000 strain. CmbT-mediated extrusion of Hoechst 33342 was inhibited by the ionophores nigericin and valinomycin known to dissipate proton motive force. This indicates that CmbT-mediated extrusion is based on a drug-proton antiport mechanism. Taking together results obtained in this study, it can be concluded that CmbT is a novel major facilitator multidrug resistance transporter candidate in L. lactis, with a possible signaling role in sulfur metabolism.

  16. Interaction of benzoate pyrimidine analogues with class 1A dihydroorotate dehydrogenase from Lactococcus lactis

    DEFF Research Database (Denmark)

    Wolfe, Abigail E; Thymark, Majbritt; Gattis, Samuel G;

    2007-01-01

    of the rapid formation of a complex that isomerized to the final charge-transfer complex. Orotate and 3,5-diOHB bind too quickly to follow directly, but their dissociation kinetics were studied by competition and described adequately with a single step. Crystal structures of both inhibitor complexes were......-specific inhibitor directed against this site are poor. Nonetheless, two compounds that bind specifically to the Class 1A DHOD from Lactococcus lactis, 3,4-dihydroxybenzoate (3,4-diOHB) and 3,5-dihydroxybenzoate (3,5-diOHB), have been identified [Palfey et al. (2001) J. Med. Chem. 44, 2861-2864]. The mechanism...... of inhibitor binding to the Class 1A DHOD from L. lactis has now been studied in detail and is reported here. Titrations showed that 3,4-diOHB binds more tightly at higher pH, whereas the opposite is true for 3,5-diOHB. Isothermal titration calorimetry and absorbance spectroscopy showed that 3,4-diOHB ionizes...

  17. Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein.

    Science.gov (United States)

    Xiao, Xue; Zhang, Changbin; Liu, Dajun; Bai, Weibin; Zhang, Qihao; Xiang, Qi; Huang, Yadong; Su, Zhijian

    2016-01-01

    Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)-small molecule ubiquitin-like modifier protein (SUMO)-metallothionein-I (GST-SUMO-MT). The thermodynamic data indicated that the average number of lead bound to a GST-SUMO-MT molecule was 3.655 and this binding reaction was a spontaneous, exothermic and entropy-increasing process. The total lead-binding capacity of pGSMT/MG1363 was 4.11 ± 0.15 mg/g dry mass. Oral administration of pGSMT/MG1363 (1 × 10(10) Colony-Forming Units) to pubertal male rats that were also treated with 5 mg/kg of lead acetate daily significantly inhibited the increase of blood lead levels, the impairment of hepatic function and the decrease of testosterone concentration in the serum, which were all impaired in rats treated by lead acetate alone. Moreover, the administration of pGSMT/MG1363 for 6 weeks did not affect the serum concentration of calcium, magnesium, potassium or sodium ions. This study provides a convenient and economical biomaterial for preventing lead poisoning via the digestive tract. PMID:27045906

  18. Induction and characterization of a lysogenic bacteriophage of Lactococcus garvieae isolated from marine fish species.

    Science.gov (United States)

    Hoai, T D; Yoshida, T

    2016-07-01

    This study investigated the presence of prophages in Lactococcus garvieae isolated from several marine fish species in Japan. Representative strains of 16 bacterial genotypes (S1-S16) selected from more than 400 L. garvieae isolates were used to induce lysogenic bacteriophages. These strains were treated with 500 ng mL(-1) freshly prepared mitomycin C. A cross-spotting assay was performed to validate the lysogenic and indicator strains. The lysogenic strains were selected for isolation and concentration of the phages. Phage DNA was digested with EcoRI for biased sinusoidal field gel electrophoresis analysis. Polymerase chain reaction (PCR) was used to detect integrated prophage DNA. Of the 16 representative bacterial genotypes, 12 strains integrated prophages as indicated by the PCR assay, and 10 phages were detected and isolated using two indicator bacterial strains. Analysis of genomic DNA showed that these phages were homologous and named as PLgT-1. Transmission electron microscopy revealed that the morphology of PLgT-1 was consistent with the virus family Siphoviridae. PCR analysis of the prophage DNA revealed that all of the S1 genotype strains were lysogenic (30/30), but none of the S16 genotype strains were lysogenic (0/30). This is the first study to investigate lysogenic bacteriophages from L. garvieae. PMID:26471724

  19. Lactic acid bacteria from "Sheep's Dhan", a traditional butter: Isolation, identification and major technological traits

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Twenty six lactic acid bacteria were isolated from sheep’s Dhan, a traditional butter made from sheep’s milk in Jijel (East of Algeria. These strains belong to three genera: Lactococcus, Leuconostoc and Lactobacillus. The results showed that Lactococcus lactis ssp diacetylactis was the predominant species in this traditional butter. The results of the assessment of the technological aptitude indicate that a major strain has a good acidification aptitude, some of them show good proteolytic activity and only Leuconostoc mesenteroides ssp. dextranicum isolates were able to produce exopolysaccharide.

    Veintiséis bacterias lácticas fueron aisladas de “Sheep´s Dhan”, una mantequilla tradicional hecha con leche de oveja en Jijel (al Este de Argelia. Estas cepas pertenecen a tres géneros: Lactococcus, Leuconostoc y Lactobacillus. Los resultados mostraron que Lactococcus lactis ssp diacetylactis fue la especie predominante en esta mantequilla tradicional. Los resultados de la evaluación de la aptitud tecnológica indican que la principal cepa tiene una buena aptitud de acidificación, algunas de ellas mostraron una buena actividad proteolítica y únicamente Leuconostoc mesenteroides ssp. dextranicum fue capaz de producir exopolisacárido.

  20. Estudo dos parâmetros da ultrafiltração de permeado de soro de queijo fermentado por Lactococcus lactis subsp. lactis Ultrafiltration conditions of whey permeate fermented by Lactococcus lactis subsp. lactis

    Directory of Open Access Journals (Sweden)

    Viviane BRONSTEIN

    1998-04-01

    Full Text Available Permeado de soro doce, suplementado com extrato de levedura e peptona, foi utilizado como meio de crescimento para Lactococcus lactis subsp. lactis. No final da fase exponencial de crescimento, o meio de cultura fermentado foi submetido a uma ultrafiltração com o objetivo de concentrar o microrganismo. Foram realizados 6 processamentos diferentes, nos quais variou-se as condições iniciais da ultrafiltração, tendo sido avaliados os seguintes parâmetros: porosidade da membrana, pH e número de células viáveis no permeado e no retentado, a fim de ser estudado a influência de cada parâmetro na taxa de permeação da ultrafiltração. As membranas utilizadas foram eficazes como meio de barragem para o microrganismo Lactococcus lactis subsp. lactis, ficando o retentado com uma média celular de 10(8 ufc/ml e o permeado com uma média celular de 10² ufc/ml. Membranas de diferentes porosidades tiveram taxas de fluxo semelhantes. O aumento da concentração celular provocou a diminuição do fluxo. O pH também influenciou a taxa de permeação, havendo um aumento do fluxo quando foi utilizado um pH inicial mais alto.Cheese whey permeate supplemented with yeast extract and peptone was used as a growth medium for the bacteria Lactococcus lactis subsp. lactis. At the end of the exponential growth phase, the fermented growth medium was ultrafiltered to concentrate the microorganism and to evaluate the effect of the membrane porosity, inicial UF pH and cellular concentration in permeation rate during the ultrafiltration process. The membranes used were efficient as a mean of a barrage for the Lactococcus lactis subsp. lactis. On average, the cellular concentrations were 10(8 CFU/mL and 10² CFU/mL for retentate and permeate, respectively. Membranes of different porosities had very similar flux rates. Better flow rates were obtained with inicial UF pH 6,5 and with the minors micrrorganism concentration.

  1. Diffusion of magnetotactic bacterium in rotating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Cebers, A., E-mail: aceb@tesla.sal.l [Department of Physics, University of Latvia, Zellu 8, Ri-bar ga, LV-1002 (Latvia)

    2011-02-15

    Swimming trajectory of a magnetotactic bacterium in a rotating magnetic field is a circle. Random reversals of the direction of the bacterium motion induces a random walk of the curvature center of the trajectory. In assumption of the distribution of the switching events according to the Poisson process the diffusion coefficient is calculated in dependence on the frequency of the rotating field and the characteristic time between the switching events. It is confirmed by the numerical simulation of the random walk of the bacterium in the rotating magnetic field. - Research highlights: Random switching of the flagella leads to diffusion of a bacterium in the field. Mean square displacement of the curvature center is proportional to time. Diffusion coefficient depends on the period of a rotating field. At zero frequency diffusion coefficient is the same as for a tumbling bacterium.

  2. Fluctuation-Enhanced Sensing of Bacterium Odors

    CERN Document Server

    Chang, Hung-Chih; King, Maria D; Kwan, Chiman

    2009-01-01

    The goal of this paper is to explore the possibility to detect and identify bacteria by sensing their odor via fluctuation-enhanced sensing with commercial Taguchi sensors. The fluctuations of the electrical resistance during exposure to different bacterial odors, Escherichia coli and anthrax-surrogate Bacillus subtilis, have been measured and analyzed. In the present study, the simplest method, the measurement and analysis of power density spectra was used. The sensors were run in the normal heated and the sampling-and-hold working modes, respectively. The results indicate that Taguchi sensors used in these fluctuation-enhanced modes are effective tools of bacterium detection and identification even when they are utilizing only the power density spectrum of the stochastic sensor signal.

  3. The chemical formula of a magnetotactic bacterium.

    Science.gov (United States)

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life.

  4. Identification of the Minimal Replicon of Lactococcus lactis subsp. lactis UC317 Plasmid pCI305

    OpenAIRE

    Hayes, Finbarr; Daly, Charles; Fitzgerald, Gerald F.

    1990-01-01

    Replication functions of the stable, cryptic 8.7-kilobase (kb) plasmid pCI305 from multi-plasmid-containing Lactococcus lactis subsp. lactis UC317 were studied. Analysis of this replicon was facilitated by the construction of replication probe vectors that consisted of the pBR322 replication region, a pUC18-derived multiple cloning site, and either the cat gene of pC194 (pCI341; 3.1 kb) or the erm gene of pAMβ1 (pCI3330; 4.0 kb). Plasmid pCI305 was introduced into plasmid-free L. lactis subsp...

  5. Integrating biocompatible chemistry and manipulating cofactor partitioning in metabolically engineeredLactococcus lactisfor fermentative production of (3S)-acetoin

    DEFF Research Database (Denmark)

    Liu, Jianming; Solem, Christian; Jensen, Peter Ruhdal

    2016-01-01

    Biocompatible chemistry (BC), i.e. non-enzymatic chemical reactions compatible with living organisms, is increasingly used in conjunction with metabolically engineered microorganisms for producing compounds that do not usually occur naturally. Here we report production of one such compound, (3S......)-acetoin, a valuable precursor for chiral synthesis, using a metabolically engineered Lactococcus lactis strain growing under respiratory conditions with ferric iron serving as a BC component. The strain used has all competing product pathways inactivated, and an appropriate cofactor balance is achieved by fine...

  6. Glucose metabolism in Lactococcus lactis MG1363 under different aeration conditions: Requirement of acetate to sustain growth under microaerobic conditions

    DEFF Research Database (Denmark)

    Nordkvist, Mikkel; Jensen, N.B.S.; Villadsen, John

    2003-01-01

    Lactococcus lactis subsp. lactis MG1363 was grown in batch cultures on a defined medium with glucose as the energy source under different aeration conditions, namely, anaerobic conditions, aerobic conditions, and microaerobic conditions with a dissolved oxygen tension of 5% (when saturation...... with air was used as the reference). The maximum specific growth rate was high (0.78 to 0.91 h(-1)) under all aeration conditions but decreased with increasing aeration, and more than 90% of the glucose was converted to lactate. However, a shift in by-product formation was observed. Increasing aeration...

  7. Mdt(A), a New Efflux Protein Conferring Multiple Antibiotic Resistance in Lactococcus lactis and Escherichia coli

    OpenAIRE

    Perreten, Vincent; Schwarz, Franziska V.; Teuber, Michael; Levy, Stuart B.

    2001-01-01

    The mdt(A) gene, previously designated mef214, from Lactococcus lactis subsp. lactis plasmid pK214 encodes a protein [Mdt(A) (multiple drug transporter)] with 12 putative transmembrane segments (TMS) that contain typical motifs conserved among the efflux proteins of the major facilitator superfamily. However, it also has two C-motifs (conserved in the fifth TMS of the antiporters) and a putative ATP-binding site. Expression of the cloned mdt(A) gene decreased susceptibility to macrolides, lin...

  8. Lactococcus lactis expressing food-grade β-galactosidase alleviates lactose intolerance symptoms in post-weaning Balb/c mice.

    Science.gov (United States)

    Li, Jingjie; Zhang, Wen; Wang, Chuan; Yu, Qian; Dai, Ruirui; Pei, Xiaofang

    2012-12-01

    The endogenous β-galactosidase expressed in intestinal microbes is demonstrated to help humans in lactose usage, and treatment associated with the promotion of beneficial microorganism in the gut is correlated with lactose tolerance. From this point, a kind of recombinant live β-galactosidase delivery system using food-grade protein expression techniques and selected probiotics as vehicle was promoted by us for the purpose of application in lactose intolerance subjects. Previously, a recombinant Lactococcus lactis MG1363 strain expressing food-grade β-galactosidase, the L. lactis MG1363/FGZW, was successfully constructed and evaluated in vitro. This study was conducted to in vivo evaluate its efficacy on alleviating lactose intolerance symptoms in post-weaning Balb/c mice, which were orally administered with 1 × 10⁶ CFU or 1 × 10⁸ CFU of L. lactis MG1363/FGZW daily for 4 weeks before lactose challenge. In comparison with naïve mice, the mice administered with L. lactis MG1363/FGZW showed significant alleviation of diarrhea symptoms in less total feces weight within 6 h post-challenge and suppressed intestinal motility after lactose challenge, although there was no significant increase of β-galactosidase activity in small intestine. The alleviation also correlated with higher species abundance, more Bifidobacterium colonization, and stronger colonization resistance in mice intestinal microflora. Therefore, this recombinant L. lactis strain effectively alleviated diarrhea symptom induced by lactose uptake in lactose intolerance model mice with the probable mechanism of promotion of lactic acid bacteria to differentiate and predominantly colonize in gut microbial community, thus making it a promising probiotic for lactose intolerance subjects.

  9. Production and purification of staphylococcal nuclease in Lactococcus lactis using a new expression-secretion system and a pH-regulated mini-reactor

    Directory of Open Access Journals (Sweden)

    Duvignau Thomas

    2010-05-01

    Full Text Available Abstract Background Staphylococcal (or micrococcal nuclease or thermonuclease (SNase or Nuc is a naturally-secreted nucleic acid degrading enzyme that participates in Staphylococcus aureus spread in the infected host. Purified Nuc protein can be used as an exogenous reagent to clear cellular extracts and improve protein purification. Here, a recombinant form of Nuc was produced and secreted in a Gram-positive host, Lactococcus lactis, and purified from the culture medium. Results The gene segment corresponding to the S. aureus nuclease without its signal peptide was cloned in an expression-secretion vector. It was then fused to a lactococcal sequence encoding a signal peptide, and expressed under the control of a lactococcal promoter that is inducible by zinc starvation. An L. lactis subsp cremoris model strain (MG1363 transformed with the resulting plasmid was grown in either of two media (GM17v and CDM that are free of animal compounds, allowing GMP (Good Manufacturing Practice production. Induction conditions (concentration of the metal chelator EDTA and timing of addition in small-scale pH-regulated fermentors were optimized using LacMF (Lactis Multi-Fermentor, a home-made parallel fermentation control system able to monitor 12 reactors simultaneously. Large amounts of recombinant Nuc (rNuc were produced and secreted in both media, and rNuc was purified from GM17v medium in a single-step procedure. Conclusions In L. lactis, rNuc production and secretion were optimal after induction by 0.5 mM EDTA in small scale (200 mL GM17v exponential phase cultures (at an OD600 of 2, leading to a maximal protein yield of 210 mg per L of culture medium. Purified rNuc was highly active, displaying a specific activity of 2000 U/mg.

  10. Lactic Acid Yield Using Different Bacterial Strains, Its Purification, and Polymerization through Ring-Opening Reactions

    Directory of Open Access Journals (Sweden)

    F. G. Orozco

    2014-01-01

    Full Text Available Laboratory-scale anaerobic fermentation was performed to obtain lactic acid from lactose, using five lactic acid bacteria: Lactococcus lactis, Lactobacillus bulgaricus, L. delbrueckii, L. plantarum, and L. delbrueckii lactis. A yield of 0.99 g lactic acid/g lactose was obtained with L. delbrueckii, from which a final concentration of 80.95 g/L aqueous solution was obtained through microfiltration, nanofiltration, and inverse osmosis membranes. The lactic acid was polymerized by means of ring-opening reactions (ROP to obtain poly-DL-lactic acid (PDLLA, with a viscosity average molecular weight (Mv of 19,264 g/mol.

  11. Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine.

    Science.gov (United States)

    Del Rio, Beatriz; Redruello, Begoña; Martin, M Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P; Ladero, Victor; Alvarez, Miguel A

    2016-03-01

    The dairy strain Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC, which encodes the proteins necessary for agmatine uptake and its conversion into putrescine [1], [2]. The first gene of the cluster, aguR, encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2]. The catabolic operon aguBDAC is transcriptionally activated by agmatine [2] and transcriptionally regulated by carbon catabolite repression (CCR) via glucose, but not by other sugars such as lactose or galactose [1], [3]. On the contrary, the transcription of the aguR regulatory gene is not subject to CCR regulation [1], [3] nor is regulated by agmatine [2]. In this study we report the transcriptional profiling of L. lactis subsp. cremoris CECT 8666 grown in M17 medium with galactose (GalM17) as carbon source and supplemented with agmatine, compared to that of the strain grown in the same culture medium without agmatine. The transcriptional profiling data of agmatine-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under Accession no. GSE74808. PMID:26981381

  12. Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine.

    Science.gov (United States)

    Del Rio, Beatriz; Redruello, Begoña; Martin, M Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P; Ladero, Victor; Alvarez, Miguel A

    2016-03-01

    The dairy strain Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC, which encodes the proteins necessary for agmatine uptake and its conversion into putrescine [1], [2]. The first gene of the cluster, aguR, encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2]. The catabolic operon aguBDAC is transcriptionally activated by agmatine [2] and transcriptionally regulated by carbon catabolite repression (CCR) via glucose, but not by other sugars such as lactose or galactose [1], [3]. On the contrary, the transcription of the aguR regulatory gene is not subject to CCR regulation [1], [3] nor is regulated by agmatine [2]. In this study we report the transcriptional profiling of L. lactis subsp. cremoris CECT 8666 grown in M17 medium with galactose (GalM17) as carbon source and supplemented with agmatine, compared to that of the strain grown in the same culture medium without agmatine. The transcriptional profiling data of agmatine-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under Accession no. GSE74808.

  13. Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications

    Directory of Open Access Journals (Sweden)

    Mond James

    2005-05-01

    Full Text Available Abstract Background The nisin-controlled gene expression system NICE of Lactococcus lactis is one of the most widely used expression systems in Gram-positive bacteria. Despite its widespread use, no optimization of the culture conditions and nisin induction has been carried out to obtain maximum yields. As a model system induced production of lysostaphin, an antibacterial protein (mainly against Staphylococcus aureus produced by S. simulans biovar. Staphylolyticus, was used. Three main areas need optimization for maximum yields: cell density, nisin-controlled induction and protein production, and parameters specific for the target-protein. Results In a series of pH-controlled fermentations the following parameters were optimized: pH of the culture, use of NaOH or NH4OH as neutralizing agent, the addition of zinc and phosphate, the fermentation temperature, the time point of induction (cell density of the culture, the amount of nisin added for induction and the amount of three basic medium components, i.e. yeast extract, peptone and lactose. For each culture growth and lysostaphin production was followed. Lysostaphin production yields depended on all parameters that were varied. In the course of the optimization a three-fold increase in lysostaphin yield was achieved from 100 mg/l to 300 mg/l. Conclusion Protein production with the NICE gene expression system in L. lactis strongly depends on the medium composition, the fermentation parameters and the amount of nisin added for induction. Careful optimization of key parameters lead to a significant increase in the yield of the target protein.

  14. Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine

    Directory of Open Access Journals (Sweden)

    Beatriz del Rio

    2016-03-01

    Full Text Available The dairy strain Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14 synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC, which encodes the proteins necessary for agmatine uptake and its conversion into putrescine [1,2]. The first gene of the cluster, aguR, encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC [2]. The catabolic operon aguBDAC is transcriptionally activated by agmatine [2] and transcriptionally regulated by carbon catabolite repression (CCR via glucose, but not by other sugars such as lactose or galactose [1,3]. On the contrary, the transcription of the aguR regulatory gene is not subject to CCR regulation [1,3] nor is regulated by agmatine [2]. In this study we report the transcriptional profiling of L. lactis subsp. cremoris CECT 8666 grown in M17 medium with galactose (GalM17 as carbon source and supplemented with agmatine, compared to that of the strain grown in the same culture medium without agmatine. The transcriptional profiling data of agmatine-regulated genes were deposited in the Gene Expression Omnibus (GEO database under Accession no. GSE74808.

  15. Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis.

    Science.gov (United States)

    Liu, W; Hansen, J N

    1990-08-01

    Nisin is a small gene-encoded antimicrobial protein produced by Lactococcus lactis that contains unusual dehydroalanine and dehydrobutyrine residues. The reactivity of these residues toward nucleophiles was explored by reacting nisin with a variety of mercaptans. The kinetics of reaction with 2-mercaptoethane-sulfonate and thioglycolate indicated that the reaction pathway includes a binding step. Reaction of nisin at high pH resulted in the formation of multimeric products, apparently as a result of intramolecular and intermolecular reactions between nucleophilic groups and the dehydro residues. One of the nucleophiles had a pKa of about 9.8. The unique vinyl protons of the dehydro residues that give readily identifiable proton nuclear magnetic resonances were used to observe the addition of nucleophiles to the dehydro moiety. After reaction with nucleophiles, nisin lost its antibiotic activity and no longer showed the dehydro resonances, indicating that the dehydro groups had been modified. The effect of pH on the solubility of nisin was determined; the solubility was quite high at low pH (57 mg/ml at pH 2) and was much lower at high pH (0.25 mg/ml at pH 8 to 12), as measured before significant pH-induced chemical modification had occurred. High-performance liquid chromatography on a C18 column was an effective technique for separating unmodified nisin from its reaction products. The cyanogen bromide cleavage products of nisin were about 90% less active toward inhibition of bacterial spore outgrowth than was native nisin. These results are consistent with earlier observations, which suggested that the dehydro residues of nisin have a role in the mechanism of antibiotic action, in which they act as electrophilic Michael acceptors toward nucleophiles in the cellular target. PMID:2119570

  16. Detection and characterization of a bacteriocin produced by Lactococcus lactis subsp. cremoris R isolated from radish.

    Science.gov (United States)

    Yildirim, Z; Johnson, M G

    1998-04-01

    Bacteria isolated from radish were identified as Lactococcus lactis subsp. cremoris R and their bacteriocin was designated lactococcin R. Lactococcin R was sensitive to some proteolytic enzymes (proteinase-K, pronase-E, proteases, pepsin, alpha-chymotrypsin) but was resistant to trypsin, papain, catalase, lysozyme and lipase, organic solvents, or heating at 90 degrees C for 15, 30 and 60 min, or 121 degrees C for 15 min. Lactococcin R remained active after storage at -20 and -70 degrees C for 3 months and after exposure to a pH of 2-9. The molecular weight of lactococcin R was about 2.5 kDa. Lactococcin R was active against many food-borne pathogenic and food spoilage bacteria such as Clostridium, Staphylococcus, Listeria, Bacillus, Micrococcus, Enterococcus, Lactobacillus, Leuconostoc, Streptococcus and Pediococcus spp., but was not active against any Gram-negative bacteria. Lactococcin R was produced during log phase and reached a maximum activity (1600 AU ml-1) at early stationary phase. The highest lactococcin R production was obtained in MRS broth with 0.5% glucose, at 6.5-7.0 initial pH values, 30 degrees C temperature and 18-24-h incubation times. Lactococcin R adsorbed maximally to its heat-killed producing cells at pH 6-7 (95%). Crude lactococcin R at 1280 AU ml-1 was bactericidal, reducing colony counts of Listeria monocytogenes by 99.98% in 3 h. Lactococcin R should be useful as a biopreservative to prevent growth of food-borne pathogenic and food spoilage bacteria in ready-to-eat, dairy, meat, poultry and other food products. Lactococcin R differs from nisin in having a lower molecular weight, 2.5 kDa vs 3.4 kDa, and in being sensitive to pepsin and alpha-chymotrypsin to which nisin is resistant. PMID:9633097

  17. Coculture-inducible bacteriocin biosynthesis of different probiotic strains by dairy starter culture Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Blaženka Kos

    2011-12-01

    Full Text Available Bacteriocins produced by probiotic strains effectively contribute to colonization ability of probiotic strains and facilitate their establishment in the competitive gut environment and also protect the gut from gastrointestinal pathogens. Moreover, bacteriocins have received considerable attention due to their potential application as biopreservatives, especially in dairy industry. Hence, the objective of this research was to investigate antimicrobial activity of probiotic strains Lactobacillus helveticus M92, Lactobacillus plantarum L4 and Enterococcus faecium L3, with special focus on their bacteriocinogenic activity directed towards representatives of the same or related bacterial species, and towards distant microorganisms including potential food contaminants or causative agents of gut infections. In order to induce bacteriocin production, probiotic cells were cocultivated with Lactococcus lactis subsp. lactis LMG 9450, one of the most important starter cultures in cheese production. The presence of bacteriocin coding genes was investigated by PCR amplification with sequence-specific primers for helveticin and was confirmed for probiotic strain L. helveticus M92. All examined probiotic strains have shown bacteriocinogenic activity against Staphylococcus aureus 3048, Staphylococcus aureus K-144, Escherichia coli 3014, Salmonella enterica serovar Typhimurium FP1, Bacillus subtilis ATCC 6633, Bacillus cereus TM2, which is an important functional treat of probiotic strains significant in competitive exclusion mechanism which provides selective advantage of probiotic strains against undesirable microorganisms in gastrointestinal tract of the host. According to obtained results, living cells of starter culture Lc. lactis subsp. lactis LMG 9450 induced bacteriocin production by examined probiotic strains but starter culture itself was not sensitive to bacteriocin activity.

  18. Kefir-isolated Lactococcus lactis subsp. lactis inhibits the cytotoxic effect of Clostridium difficile in vitro.

    Science.gov (United States)

    Bolla, Patricia Araceli; Carasi, Paula; Serradell, María de los Angeles; De Antoni, Graciela Liliana

    2013-02-01

    Kefir is a dairy product obtained by fermentation of milk with a complex microbial population and several health-promoting properties have been attributed to its consumption. In this work, we tested the ability of different kefir-isolated bacterial and yeast strains (Lactobacillus kefir, Lb. plantarum, Lactococcus lactis subps. lactis, Saccharomyces cerevisiae and Kluyveromyces marxianus) or a mixture of them (MM) to antagonise the cytopathic effect of toxins from Clostridium difficile (TcdA and TcdB). Cell detachment assays and F-actin network staining using Vero cell line were performed. Although incubation with microbial cells did not reduce the damage induced by C. difficile spent culture supernatant (SCS), Lc. lactis CIDCA 8221 and MM supernatants were able to inhibit the cytotoxicity of SCS to Vero cells. Fraction of Lc. lactis CIDCA 8221 supernatant containing components higher than 10 kDa were responsible for the inhibitory activity and heating of this fraction for 15 min at 100 °C completely abrogated this ability. By dot-blot assay with anti-TcdA or anti-TcdB antibodies, concentration of both toxins seems to be reduced in SCS treated with Lc. lactis CIDCA 8221 supernatant. However, protective effect was not affected by treatment with proteases or proteases-inhibitors tested. In conclusion, we demonstrated that kefir-isolated Lc. lactis CIDCA 8221 secreted heat-sensitive products able to protect eukaryotic cells from cytopathic effect of C. difficile toxins in vitro. Our findings provide new insights into the probiotic action of microorganisms isolated from kefir against virulence factors from intestinal pathogens. PMID:23217732

  19. Nisin Z Production by Lactococcus lactis subsp. cremoris WA2-67 of Aquatic Origin as a Defense Mechanism to Protect Rainbow Trout (Oncorhynchus mykiss, Walbaum) Against Lactococcus garvieae.

    Science.gov (United States)

    Araújo, Carlos; Muñoz-Atienza, Estefanía; Pérez-Sánchez, Tania; Poeta, Patrícia; Igrejas, Gilberto; Hernández, Pablo E; Herranz, Carmen; Ruiz-Zarzuela, Imanol; Cintas, Luis M

    2015-12-01

    Probiotics represent an alternative to chemotherapy and vaccination to control fish diseases, including lactococcosis caused by Lactococcus garvieae. The aims of this study were (i) to determine the in vitro probiotic properties of three bacteriocinogenic Lactococcus lactis subsp. cremoris of aquatic origin, (ii) to evaluate in vivo the ability of L. cremoris WA2-67 to protect rainbow trout (Oncorhynchus mykiss, Walbaum) against infection by L. garvieae, and (iii) to demonstrate the role of nisin Z (NisZ) production as an anti-infective mechanism. The three L. cremoris strains survived in freshwater at 18 °C for 7 days, withstood exposure to pH 3.0 and 10 % (v/v) rainbow trout bile, and showed different cell surface hydrophobicity (37.93-58.52 %). The wild-type NisZ-producer L. cremoris WA2-67 and its non-bacteriocinogenic mutant L. cremoris WA2-67 ∆nisZ were administered orally (10(6) CFU/g) to rainbow trout for 21 days and, subsequently, fish were challenged with L. garvieae CLG4 by the cohabitation method. The fish fed with the bacteriocinogenic strain L. cremoris WA2-67 reduced significantly (p fish farming to prevent lactococcosis in rainbow trout. PMID:26307018

  20. Isolation of a Highly Tolerant Lactic Acid Bacterium and High-Titer L-Lactic Acid Fermentation Using Lignocellulosic Feedstock%一株高耐受性乳酸菌的分离及其在木质纤维素发酵生产高浓度L-乳酸中的应用

    Institute of Scientific and Technical Information of China (English)

    楚德强; 赵凯; 吴倩; 陶泰河; 鲍杰

    2011-01-01

    利用资源丰富的纤维质原料生产新一代可降解聚乳酸塑料的单体原料L-乳酸,是目前一个极为重要的研究热点和产业方向。从高温纤维乙醇发酵介质中分离到一株高耐受性乳酸菌,经16S rDNA分子生物学鉴定为乳酸片球菌(Pediococcus acidilactici),并命名为P.acidilacticiDQ2。此菌株具有极为优异的耐高温和耐受高浓度木质纤维素降解产物的特性,这一特性可能与母株的环境变异和体系中存在的调控物质有关。利用该乳酸菌以稀酸预处理后的玉米秸秆为原料进行同步糖化与乳酸发酵,发酵液中的乳酸质量浓度为75 g/L,乳酸对纤维素得率达到0.63 g/g,具备了纤维素乳酸产业化生产的潜力。%Production of L-lactic acid from abundant lignocellulosic resource has become an important trend for research and commercialization because poly-lactic acid(PLA) from L-lactic acid is regarded as the next generation biodegradable plastic.A highly tolerant lactic acid bacterium(LAB) was isolated from the cellulosic ethanol fermentation broth at elevated temperature and identified as Pediococcus acidilactici using 16S rDNA and phylogenic analysis.P.acidilactici DQ2 is high thermotolerance and high resistance to the lignocellulose derived inhibitors.These characteristics probably are associated with environmental mutation and stimulating factors naturally present in the lignocellulosic hydrolysate system.The titer and yield of L-lactic acid in the simultaneous saccharification and fermentation(SSF) using the diluted acid pretreated corn stover(CS) were 75 g/L and 0.63 g/g cellulose,respectively,and showed a great potential for cellulosic lactic acid production for the future commercial application.

  1. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    Science.gov (United States)

    Braakman, Rogier; Smith, Eric

    2014-01-01

    Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA) cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere. PMID:24516572

  2. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere.

  3. Molecular Cloning and Nucleotide Sequence of the Gene Encoding the Major Peptidoglycan Hydrolase of Lactococcus lactis, a Muramidase Needed for Cell Separation

    NARCIS (Netherlands)

    Buist, Girbe; Kok, Jan; Leenhouts, Kees J.; Dabrowska, Magdalena; Venema, Gerhardus; Haandrikman, Alfred J.

    1995-01-01

    A gene of Lactococcus lactis subsp, cremoris MG1363 encoding a peptidoglycan hydrolase was identified in a genomic library of the strain in pUC19 by screening Escherichia coli transformants for cell wall lysis activity on a medium containing autoclaved, lyophilized Micrococcus lysodeikticus cells, I

  4. Biosynthesis and secretion of a precursor of nisin Z by Lactococcus lactis, directed by the leader peptide of the homologous lantibiotic subtilin from Bacillus subtilis

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Rollema, Harry S.; Vos, Willem M. de; Siezen, Roland J.

    1993-01-01

    The DNA sequence encoding the leader peptide of the lantibiotic subtilin from Bacillus subtilis was fused to the sequence encoding pronisin Z, and this hybrid gene was expressed in a Lactococcus lactis strain that produces nisin A. This strain simultaneously secreted nisin A and a protein of approxi

  5. Differential expression of proteins and genes in the lag phase of Lactococcus lactis subsp lactis grown in synthetic medium and reconstituted skim milk

    DEFF Research Database (Denmark)

    Larsen, N.; Boye, Mette; Jakobsen, Marianne;

    2006-01-01

    We investigated protein and gene expression in the lag phase of Lactococcus lactis subsp. lactis CNRZ 157 and compared it to the exponential and stationary phases. By means of two-dimensional polyacrylamide gel electrophoresis, 28 highly expressed lag-phase proteins, implicated in nucleotide meta...

  6. How to distinguish between the vacuum cleaner and flippase mechanisms of the LmrA multi-drug transporter in Lactococcus lactis

    NARCIS (Netherlands)

    Hofmeyr, JHS; Rohwer, JM; Snoep, JL; Westerhoff, HV; Konings, WN

    2002-01-01

    A numerical model of the LmrA multi-drug transport system of Lactococcus lactis is used to explore the possibility of distinguishing experimentally between two putative transport mechanisms, i.e., the vacuum-cleaner and the flippase mechanisms. This comparative model also serves as an example of num

  7. Induction of antigen-specific tolerance by oral administration of Lactococcus lactis delivered immunodominant DQ8-restricted gliadin peptide in sensitized nonobese diabetic Abo Dq8 transgenic mice

    NARCIS (Netherlands)

    I.L. Huibregtse; E.V. Marietta; S. Rashtak; F. Koning; P. Rottiers; C.S. David; S.J.H. van Deventer; J.A. Murray

    2009-01-01

    Active delivery of recombinant autoantigens or allergens at the intestinal mucosa by genetically modified Lactococcus lactis (LL) provides a novel therapeutic approach for the induction of tolerance. Celiac disease is associated with either HLA-DQ2- or HLA-DQ8-restricted responses to specific antige

  8. Lactococcus lactis TrxD represents a subgroup of thioredoxins prevalent in Gram-positive bacteria containing WCXDC active site motifs

    DEFF Research Database (Denmark)

    Björnberg, Olof; Efler, Petr; Epie, Denis Ebong;

    2014-01-01

    Three protein disulfide reductases of the thioredoxin superfamily from the industrially important Gram-positive Lactococcus lactis (LlTrxA, LlTrxD and LlNrdH) are compared to the "classical" thioredoxin from Escherichia coil (EcTrx1). LlTrxA resembles EcTrx1 with a WCGPC active site motif and oth...

  9. Draft genome sequence of Lactococcus garvieae str. PAQ102015-99, an outbreak strain isolated from a commercial trout farm in the Northwestern United States.

    Science.gov (United States)

    We announce the draft genome assembly of Lactococcus garvieae str. PAQ102015-99, a recently isolated strain from an outbreak of lactococcosis at a commercial trout farm in the Northwestern US. The draft genome comprises 14 contigs totaling 2,068,357 bp with an N50 of 496,618 bp and average G+C conte...

  10. Cloning and characterization of nif structural and regulatory genes in the purple sulfur bacterium, Halorhodospira halophila.

    Science.gov (United States)

    Tsuihiji, Hisayoshi; Yamazaki, Yoichi; Kamikubo, Hironari; Imamoto, Yasushi; Kataoka, Mikio

    2006-03-01

    Halorhodospira halophila is a halophilic photosynthetic bacterium classified as a purple sulfur bacterium. We found that H. halophila generates hydrogen gas during photoautotrophic growth as a byproduct of a nitrogenase reaction. In order to consider the applied possibilities of this photobiological hydrogen generation, we cloned and characterized the structural and regulatory genes encoding the nitrogenase, nifH, nifD and nifA, from H. halophila. This is the first description of the nif genes for a purple sulfur bacterium. The amino-acid sequences of NifH and NifD indicated that these proteins are an Fe protein and a part of a MoFe protein, respectively. The important residues are conserved completely. The sequence upstream from the nifH region and sequence similarities of nifH and nifD with those of the other organisms suggest that the regulatory system might be a NifL-NifA system; however, H. halophila lacks nifL. The amino-acid sequence of H. halophila NifA is closer to that of the NifA of the NifL-NifA system than to that of NifA without NifL. H. halophila NifA does not conserve either the residue that interacts with NifL or the important residues involved in NifL-independent regulation. These results suggest the existence of yet another regulatory system, and that the development of functional systems and their molecular counterparts are not necessarily correlated throughout evolution. All of these Nif proteins of H. halophila possess an excess of acidic residues, which acts as a salt-resistant mechanism.

  11. Antimicrobial Effect of Lactic Acid Bacteria against Common Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammaddoost Chakoosari ( Msc

    2016-01-01

    Full Text Available Background and Objective: Probiotics are living microorganisms that have beneficial effects on the health of digestive system. The aim of this study was to evaluate the antimicrobial ability of acidic and neutral supernatants (culture supernatant of lactic acid bacteria against common bacterial pathogens. Methods: Four species of lactic acid bacteria (Lactobacillus plantarum PTCC1745, Lactobacillus PTCC1608, Lactobacillus Saki PTCC1712 and Lactobacillus Lactis PTCC1336 were obtained from the microbial collection of Iranian Research Organization for Science and Technology in Lyophilized form. The antimicrobial activity of neutral and acidic supernatants against bacterial pathogens was investigated using the Disk and Well Diffusion Agar methods. Results: Lactic acid bacteria showed good antimicrobial ability against six pathogenic bacteria with the highest inhibitory effect observed in Lactococcus lactis against E. coli PTCC1399 through well method with an average diameter of 14 mm inhibition zone. In this study, the well diffusion method was far more sensitive compared to the disk method and acidic supernatants showed higher antimicrobial efficiency compared to neutral types. Conclusion: the Metabolites produced by lactic acid bacteria are able to inhibit the growth of pathogenic bacteria that can be an important and practical solution for the prevention and treatment of infections and ultimately improve human health. Keywords: Lactobacillus; Lactococcus; Probiotic; Antibacterial

  12. Clostridium peptidivorans sp. nov., a peptide-fermenting bacterium from an olive mill wastewater treatment digester

    OpenAIRE

    Mechichi, T.; Fardeau, Marie-Laure; Labat, Marc; Garcia, Jean-Louis; Verhé, F.; Patel, B.K.C.

    2000-01-01

    A new peptid-degrading, strictly anaerobic bacterium, designated strain TMC4T, was isolated from an olive mill wastewater treatment digester. Cells of strain TMC4T were motile, rod-shaped (5-10 x 0.6-1.2 microns), stained Gram-positive and formed terminal to subterminal spores that distended the cells. Optimal growth occurred at 37°C and pH 7 in an anaerobic basal medium containing 0.5% Casamino acids. Arginine, lysine, cysteine, methionine, histidine, serine, isoleucine, yeast extract, pepto...

  13. Experimental evolution of aging in a bacterium

    Directory of Open Access Journals (Sweden)

    Stearns Stephen C

    2007-07-01

    Full Text Available Abstract Background Aging refers to a decline in reproduction and survival with increasing age. According to evolutionary theory, aging evolves because selection late in life is weak and mutations exist whose deleterious effects manifest only late in life. Whether the assumptions behind this theory are fulfilled in all organisms, and whether all organisms age, has not been clear. We tested the generality of this theory by experimental evolution with Caulobacter crescentus, a bacterium whose asymmetric division allows mother and daughter to be distinguished. Results We evolved three populations for 2000 generations in the laboratory under conditions where selection was strong early in life, but very weak later in life. All populations evolved faster growth rates, mostly by decreasing the age at first division. Evolutionary changes in aging were inconsistent. The predominant response was the unexpected evolution of slower aging, revealing the limits of theoretical predictions if mutations have unanticipated phenotypic effects. However, we also observed the spread of a mutation causing earlier aging of mothers whose negative effect was reset in the daughters. Conclusion Our results confirm that late-acting deleterious mutations do occur in bacteria and that they can invade populations when selection late in life is weak. They suggest that very few organisms – perhaps none- can avoid the accumulation of such mutations over evolutionary time, and thus that aging is probably a fundamental property of all cellular organisms.

  14. Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics.

    Science.gov (United States)

    Ting, Lily; Williams, Timothy J; Cowley, Mark J; Lauro, Federico M; Guilhaus, Michael; Raftery, Mark J; Cavicchioli, Ricardo

    2010-10-01

    The cold marine environment constitutes a large proportion of the Earth's biosphere. Sphingopyxis alaskensis was isolated as a numerically abundant bacterium from several cold marine locations, and has been extensively studied as a model marine bacterium. Recently, a metabolic labelling platform was developed to comprehensively identify and quantify proteins from S. alaskensis. The approach incorporated data normalization and statistical validation for the purpose of generating highly confident quantitative proteomics data. Using this approach, we determined quantitative differences between cells grown at 10°C (low temperature) and 30°C (high temperature). Cold adaptation was linked to specific aspects of gene expression: a dedicated protein-folding system using GroESL, DnaK, DnaJ, GrpE, SecB, ClpB and PPIase; polyhydroxyalkanoate-associated storage materials; a link between enzymes in fatty acid metabolism and energy generation; de novo synthesis of polyunsaturated fatty acids in the membrane and cell wall; inorganic phosphate ion transport by a phosphate import PstB homologue; TonB-dependent receptor and bacterioferritin in iron homeostasis; histidine, tryptophan and proline amino acid metabolism; and a large number of proteins without annotated functions. This study provides a new level of understanding on how important marine bacteria can adapt to compete effectively in cold marine environments. This study is also a benchmark for comparative proteomic analyses with other important marine bacteria and other cold-adapted organisms. PMID:20482592

  15. Characterization and in vitro probiotic evaluation of lactic acid bacteria isolated from idli batter

    OpenAIRE

    Iyer, Bharti K.; Singhal, Rekha S; Ananthanarayan, Laxmi

    2011-01-01

    An Indian traditional fermented food, idli batter, was used as a source for isolation of lactic acid bacteria (LAB). A total of 15 LAB strains were isolated on the basis of their Gram nature and catalase activity. Of these, one lactobacilli strain and one lactococci strain which showed antimicrobial activity were identified using biochemical characterization, sugar utilization and molecular sequencing. The microbes, labeled as IB-1 (Lactobacillus plantarum) and IB-2 (Lactococcus lactis) were ...

  16. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711

    OpenAIRE

    Shoemaker, William R.; Muscarella, Mario E.; Lennon, Jay T

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments.

  17. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium

    OpenAIRE

    Little, C. Deane; Palumbo, Anthony V; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine...

  18. Secretion of biologically active interferon-gamma inducible protein-10 (IP-10 by Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Saucedo-Cardenas Odila

    2008-07-01

    Full Text Available Abstract Background Chemokines are a large group of chemotactic cytokines that regulate and direct migration of leukocytes, activate inflammatory responses, and are involved in many other functions including regulation of tumor development. Interferon-gamma inducible-protein-10 (IP-10 is a member of the C-X-C subfamily of the chemokine family of cytokines. IP-10 specifically chemoattracts activated T lymphocytes, monocytes, and NK cells. IP-10 has been described also as a modulator of other antitumor cytokines. These properties make IP-10 a novel therapeutic molecule for the treatment of chronic and infectious diseases. Currently there are no suitable live biological systems to produce and secrete IP-10. Lactococcus lactis has been well-characterized over the years as a safe microorganism to produce heterologous proteins and to be used as a safe, live vaccine to deliver antigens and cytokines of interest. Here we report a recombinant strain of L. lactis genetically modified to produce and secrete biologically active IP-10. Results The IP-10 coding region was isolated from human cDNA and cloned into an L. lactis expression plasmid under the regulation of the pNis promoter. By fusion to the usp45 secretion signal, IP-10 was addressed out of the cell. Western blot analysis demonstrated that recombinant strains of L. lactis secrete IP-10 into the culture medium. Neither degradation nor incomplete forms of IP-10 were detected in the cell or supernatant fractions of L. lactis. In addition, we demonstrated that the NICE (nisin-controlled gene expression system was able to express IP-10 "de novo" even two hours after nisin removal. This human IP-10 protein secreted by L. lactis was biological active as demonstrated by Chemotaxis assay over human CD3+T lymphocytes. Conclusion Expression and secretion of mature IP-10 was efficiently achieved by L. lactis forming an effective system to produce IP-10. This recombinant IP-10 is biologically active as

  19. Nisin Z Production by Lactococcus lactis subsp. cremoris WA2-67 of Aquatic Origin as a Defense Mechanism to Protect Rainbow Trout (Oncorhynchus mykiss, Walbaum) Against Lactococcus garvieae.

    Science.gov (United States)

    Araújo, Carlos; Muñoz-Atienza, Estefanía; Pérez-Sánchez, Tania; Poeta, Patrícia; Igrejas, Gilberto; Hernández, Pablo E; Herranz, Carmen; Ruiz-Zarzuela, Imanol; Cintas, Luis M

    2015-12-01

    Probiotics represent an alternative to chemotherapy and vaccination to control fish diseases, including lactococcosis caused by Lactococcus garvieae. The aims of this study were (i) to determine the in vitro probiotic properties of three bacteriocinogenic Lactococcus lactis subsp. cremoris of aquatic origin, (ii) to evaluate in vivo the ability of L. cremoris WA2-67 to protect rainbow trout (Oncorhynchus mykiss, Walbaum) against infection by L. garvieae, and (iii) to demonstrate the role of nisin Z (NisZ) production as an anti-infective mechanism. The three L. cremoris strains survived in freshwater at 18 °C for 7 days, withstood exposure to pH 3.0 and 10 % (v/v) rainbow trout bile, and showed different cell surface hydrophobicity (37.93-58.52 %). The wild-type NisZ-producer L. cremoris WA2-67 and its non-bacteriocinogenic mutant L. cremoris WA2-67 ∆nisZ were administered orally (10(6) CFU/g) to rainbow trout for 21 days and, subsequently, fish were challenged with L. garvieae CLG4 by the cohabitation method. The fish fed with the bacteriocinogenic strain L. cremoris WA2-67 reduced significantly (p < 0.01) the mortality (20 %) compared to the fish treated with its non-bacteriocinogenic knockout isogenic mutant (50 %) and the control (72.5 %). We demonstrated the effectiveness of L. cremoris WA2-67 to protect rainbow trout against infection with the invasive pathogen L. garvieae and the relevance of NisZ production as an anti-infective mechanism. This is the first report demonstrating the effective in vivo role of LAB bacteriocin (NisZ) production as a mechanism to protect fish against bacterial infection. Our results suggest that the wild-type NisZ-producer strain L. cremoris WA2-67 could be used in fish farming to prevent lactococcosis in rainbow trout.

  20. Cellular lipid production of a heterotrophic bacterium isolated from poultry processing wastewater

    Directory of Open Access Journals (Sweden)

    Rattiya Ongmali

    2014-06-01

    Full Text Available Cell growth and lipid production of a heterotrophic bacterium, R4.4 which accumulated the highest lipid content among 12 bacterial colonies being isolated from wastewater of a poultry processing plant in Thailand, were evaluated in this study. The culture was identified as Aeromonas sp. by 16S ribosomal DNA sequencing analysis.The highest lipid content was obtained when the cells were in the early stationary growth phase compared to the cells in the exponential and the late stationary phase. Over 50% of the fatty acid production by Aeromonas sp. KMITL-R4.4 were unsaturated fatty acids, including linoleic acid (C18:2, 43.2%, oleic acid (C18:1, 19.0%, and palmitoleic acid (C16:1, 8.2%. The culture had a preference for glucose and fructose as seen from the maximum biomass and lipid contents that were obtained. Among volatile fatty acid (VFA species tested, acetic acid was the preferred substrate for lipid production but not favorable for cell growth. In addition, ammonium sulfate was found to be the best among nitrogen sources tested. The C/N ratio exerts significant impact on lipid production as seen from an increase of the lipid content from 10.8% to 18.2% by exposing the bacterial cells to a medium with lower nitrogen concentration (0.1g/l and higher level of glucose (28 g/l.

  1. Structural characterization of the lipid A from the LPS of the haloalkaliphilic bacterium Halomonas pantelleriensis.

    Science.gov (United States)

    Carillo, Sara; Pieretti, Giuseppina; Casillo, Angela; Lindner, Buko; Romano, Ida; Nicolaus, Barbara; Parrilli, Michelangelo; Giuliano, Mariateresa; Cammarota, Marcella; Lanzetta, Rosa; Corsaro, Maria Michela

    2016-09-01

    Halomonas pantelleriensis DSM9661(Τ) is a Gram-negative haloalkaliphilic bacterium isolated from the sand of the volcanic Venus mirror lake, closed to seashore in the Pantelleria Island in the south of Italy. It is able to optimally grow in media containing 3-15 % (w/v) total salt and at pH between 9 and 10. To survive in these harsh conditions, the bacterium has developed several strategies that probably concern the bacteria outer membrane, a barrier regulating the exchange with the environment. In such a context, the lipopolysaccharides (LPSs), which are among the major constituent of the Gram-negative outer membrane, are thought to contribute to the restrictive membrane permeability properties. The structure of the lipid A family derived from the LPS of Halomonas pantelleriensis DSM 9661(T) is reported herein. The lipid A was obtained from the purified LPS by mild acid hydrolysis. The lipid A, which contains different numbers of fatty acids residues, and its partially deacylated derivatives were completely characterized by means of ESI FT-ICR mass spectrometry and chemical analysis. Preliminary immunological assays were performed, and a comparison with the lipid A structure of the phylogenetic proximal Halomonas magadiensis is also reported. PMID:27329160

  2. Mdt(A), a New Efflux Protein Conferring Multiple Antibiotic Resistance in Lactococcus lactis and Escherichia coli

    Science.gov (United States)

    Perreten, Vincent; Schwarz, Franziska V.; Teuber, Michael; Levy, Stuart B.

    2001-01-01

    The mdt(A) gene, previously designated mef214, from Lactococcus lactis subsp. lactis plasmid pK214 encodes a protein [Mdt(A) (multiple drug transporter)] with 12 putative transmembrane segments (TMS) that contain typical motifs conserved among the efflux proteins of the major facilitator superfamily. However, it also has two C-motifs (conserved in the fifth TMS of the antiporters) and a putative ATP-binding site. Expression of the cloned mdt(A) gene decreased susceptibility to macrolides, lincosamides, streptogramins, and tetracyclines in L. lactis and Escherichia coli, but not in Enterococcus faecalis or in Staphylococcus aureus. Glucose-dependent efflux of erythromycin and tetracycline was demonstrated in L. lactis and in E. coli. PMID:11257023

  3. Draft Genome Sequence of Human-Pathogenic Lactococcus garvieae LG-ilsanpaik-gs201105 That Caused Acute Acalculous Cholecystitis.

    Science.gov (United States)

    Kim, Ji Hyung; Kang, Do-Hyung; Park, Se Chang

    2015-06-04

    Lactococcus garvieae, which is generally known as a marine and freshwater fish pathogen, is now considered to be an emerging zoonotic pathogen in both human and veterinary medicine. In recent years, we have reported the infection of L. garvieae LG-ilsanpaik-gs201105 in the gallbladder of an old fisherman. In this study, we present the draft genome sequence of L. garvieae LG-ilsanpaik-gs201105, with a total genome size of 1,960,261 bp in 53 contigs and a 38.1% average G+C content. Interestingly, the capsule gene cluster, which was known as one of the crucial virulence factors in L. garvieae, was not detected in our isolate. This is the first genome sequence of human-pathogenic L. garvieae, which caused acute acalculous cholecystitis.

  4. Microencapsulation of probiotics in hydrogel particles: enhancing Lactococcus lactis subsp. cremoris LM0230 viability using calcium alginate beads.

    Science.gov (United States)

    Yeung, Timothy W; Arroyo-Maya, Izlia J; McClements, David J; Sela, David A

    2016-04-01

    Probiotics are beneficial microbes often added to food products to enhance the health and wellness of consumers. A major limitation to producing efficacious functional foods containing probiotic cells is their tendency to lose viability during storage and gastrointestinal transit. In this study, the impact of encapsulating probiotics within food-grade hydrogel particles to mitigate sensitivity to environmental stresses was examined. Confocal fluorescence microscopy confirmed that Lactococcus lactis were trapped within calcium alginate beads formed by dripping a probiotic-alginate mixture into a calcium solution. Encapsulation improved the viability of the probiotics during aerobic storage: after seven days, less than a two-log reduction was observed in encapsulated cells stored at room temperature, demonstrating that a high concentration of cells survived relative to non-encapsulated bacteria. These hydrogel beads may have applications for improving the stability and efficacy of probiotics in functional foods.

  5. Identification and Characterization of the Novel LysM Domain-Containing Surface Protein Sep from Lactobacillus fermentum BR11 and Its Use as a Peptide Fusion Partner in Lactobacillus and Lactococcus

    Science.gov (United States)

    Turner, Mark S.; Hafner, Louise M.; Walsh, Terry; Giffard, Philip M.

    2004-01-01

    Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria. PMID:15184172

  6. Role in Cheese Flavour Formation of Heterofermentative Lactic Acid Bacteria from Mesophilic Starter Cultures

    DEFF Research Database (Denmark)

    Pedersen, Thomas Bæk

    Undefined mesophilic cheese starters are complex ecosystems that contain both homofermentative and heterofermentative lactic acid bacteria, with the Lactococcus genera representing the former and Lceuonostoc and sometimes Lactobacillus the latter. These starters originate from old butter starters....... A cheese trial was performed with selected strains to investigate how the heterofermentative strains influenced the ripening in semi-hard cheese. The cheeses were made using a Lactococcus starter including citrate positive Lactoccus and with the addition of one strain of heterofermentative bacteria...... at the time. Differences were seen in the establishment of the heterofermentative bacteria in the cheese matrix, Le. pseudomesenteroides and Lb. danicus grew to a higher number and survived longer than Le. mesenteroides subsp. cremoris. More secondary alcohols and less acetoin were found in cheeses where...

  7. Anaerobic n-Alkane Metabolism by a Sulfate-Reducing Bacterium, Desulfatibacillum aliphaticivorans Strain CV2803T

    OpenAIRE

    Cravo-Laureau, Cristiana; Grossi, Vincent; Raphel, Danielle; Matheron, Robert; Hirschler-Réa, Agnès

    2005-01-01

    The alkane-degrading, sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, recently isolated from marine sediments, was investigated for n-alkane metabolism. The total cellular fatty acids of this strain had predominantly odd numbers of carbon atoms (C odd) when the strain was grown on a C-odd alkane (pentadecane) and even numbers of carbon atoms (C even) when it was grown on a C-even alkane (hexadecane). Detailed analyses of those fatty acids by gas chromatography/ma...

  8. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    Nirakar Pradhan

    2015-06-01

    Full Text Available As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.

  9. Producción de ácido láctico por una mezcla de lactococcus lactis y streptococcus salivarius en fermentaciones en discontinuo

    OpenAIRE

    Serna Cock, Liliana; Rodríguez de Stouvenel, Aida

    2006-01-01

    Se estudió la producción de ácido láctico (AL), la conversión de sustrato (CG), y el rendimiento(Yp/s) de Lactococcus lactis, Streptococcus salivarius y una mezcla 1:1 de ambas cepas en sustrato glucosado. Lactococcus lactis se seleccionó de 20 cepas homofermentativas aisladas de cultivos de caña de azúcar variedad CC85-92 y Streptococcus salivarius se aisló de un fermento láctico comercial. En fermentaciones llevadas a cabo con la mezcla microbiana, a 32 °C con 60 gL-1 de glucosa y pH 6,0 se...

  10. Abscesses associated with a Brucella inopinata-like bacterium in a big-eyed tree frog (Leptopelis vermiculatus).

    Science.gov (United States)

    Fischer, Dominik; Lorenz, Nadja; Heuser, Wenke; Kämpfer, Peter; Scholz, Holger C; Lierz, Michael

    2012-09-01

    A 4-yr-old big-eyed tree frog (Leptopelis vermiculatus) was submitted with two pea-sized (4-mm diameter), firm, and painful masses on the right side of its back. The two abscess-like masses were surgically opened, and a whitish-yellow pasty content was removed. A Brucella inopinata-like bacterium was obtained in pure culture and was resistant against ampicillin and tylosin but sensitive to the 8 other antibiotics tested. The organism was identified by polymerase chain reaction and sequencing of the 16S ribosomal ribonucleic acid (acc. no. HE608873) and recA (acc. no. HE608874) genes after preliminary misidentification as Ochrobactrum anthropi when using a commercial identification system. To the authors' knowledge, a B. inopinata-like bacterium has not been reported previously in amphibians. The organism is a potential human pathogen and may present a risk for people handling amphibians. PMID:23082529

  11. Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation.

    Science.gov (United States)

    Luo, Shenglian; Wan, Yong; Xiao, Xiao; Guo, Hanjun; Chen, Liang; Xi, Qiang; Zeng, Guangming; Liu, Chengbin; Chen, Jueliang

    2011-03-01

    Valuable endophytic strains facilitating plants growth and detoxification of heavy metals are required because the application of plant-endophyte symbiotic system is a promising potential technique to improve efficiency of phytoremediation. In this study, endophytic bacterium LRE07 was isolated from cadmium hyperaccumulator Solanum nigrum L. It was identified as Serratia sp. by 16S rRNA sequence analysis. The endophytic bacterium LRE07 was resistant to the toxic effects of heavy metals, solubilized mineral phosphate, and produced indoleacetic acid and siderophore. The heavy metal detoxification was studied in growing LRE07 cells. The strain bound over 65% of cadmium and 35% of zinc in its growing cells from single metal solutions 72 h after inoculation. Besides the high removal efficiencies in single-ion system, an analogous removal phenomenon was also observed in multi-ions system, indicating that the endophyte possesses specific and remarkable heavy metal remediation abilities. PMID:20953602

  12. Pontibacter diazotrophicus sp. nov., a novel nitrogen-fixing bacterium of the family Cytophagaceae.

    Directory of Open Access Journals (Sweden)

    Linghua Xu

    Full Text Available Few diazotrophs have been found to belong to the family Cytophagaceae so far. In the present study, a Gram-negative, rod-shaped bacterium that forms red colonies, was isolated from sands of the Takalamakan desert. It was designated H4XT. Phylogenetic and biochemical analysis indicated that the isolate is a new species of the genus Pontibacter. The 16S rRNA gene of H4XT displays 94.2-96.8% sequence similarities to those of other strains in Pontibacter. The major respiratory quinone is menaquinone-7 (MK-7. The DNA G+C content is 46.6 mol%. The major cellular fatty acids are iso-C15∶0, C16∶1ω5c, summed feature 3 (containing C16∶1ω6c and/or C16∶1ω7c and summed feature 4 (comprising anteiso-C17∶1B and/or iso-C17∶1I. The major polar lipids are phosphatidylethanolamine (PE, one aminophospholipid (APL and some unknown phospholipids (PLs. It is interesting to see that this bacterium can grow very well in a nitrogen-free medium. PCR amplification suggested that the bacterium possesses at least one type of nitrogenase gene. Acetylene reduction assay showed that H4XT actually possesses nitrogen-fixing activity. Therefore, it can be concluded that H4XT is a new diazotroph. We thus referred it to as Pontibacter diazotrophicus sp. nov. The type strain is H4XT ( = CCTCC AB 2013049T = NRRL B-59974T.

  13. Draft Genome Sequence of Lactococcus garvieae Strain PAQ102015-99, an Outbreak Strain Isolated from a Commercial Trout Farm in the Northwestern United States.

    Science.gov (United States)

    Nelson, Michael C; Varney, Jed S; Welch, Timothy J; Graf, Joerg

    2016-01-01

    We announce the draft genome assembly of Lactococcus garvieae strain PAQ102015-99, a recently isolated strain from an outbreak of lactococcosis at a commercial trout farm in the northwestern United States. The draft genome comprises 14 contigs totaling 2,068,357 bp with an N50 of 496,618 bp and average G+C content of 38%. PMID:27492003

  14. Heme and menaquinone induced electron transport in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Santos Filipe

    2009-05-01

    Full Text Available Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  15. Maturation of the cell envelope-associated proteinase of lactococcus lactis.

    NARCIS (Netherlands)

    Haandrikman, Alfred Jacques

    1990-01-01

    Lactococci are of major economic importance for their use in production and preservation of cheese and other fermented milk products. The succes of this use depends on the fast production of lactic acid, which goes together with fast growth of lacctococci in milk. The amount of free amino acids and

  16. Non-specific immune response of bullfrog Rana catesbeiana to intraperitoneal injection of bacterium Aeromonas hydrophila

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Non-specific immune response of bullfrog Rana catesbeiana to pathogenic Aeromonas hydrophila was studied to 60 individuals in two groups. Each bullfrog in bacterium-injected group was injected intraperitoneally (i.p.) with 0.2 ml bacterial suspension at a density of 5.2 × 106 CFU/ml, while each one in control group injected i.p. with 0.2 ml sterile saline solution (0.85%, w/v). Three bullfrogs in both groups were sampled at 0, 1, 3, 7, 11, 15 and 20 days post-injection (dpi) for the evaluation of non-specific immune parameters. It was observed that intraperitoneal injection of A. hydrophila significantly increased the number of leucocytes and that of NBT-positive cells in peripheral blood. Significant increases in serum bactericidal activity and serum acid phosphatase activity were also observed in the bacterium-injected frogs when compared with those in the control group. However, a significant reduction was detected in vitro in phagocytosis activity of peripheral blood phagocytes. No significant difference in changes in the number of peripheral erythrocytes, serum superoxide dismutase (SOD) activity, and lysozyme activity was detected between the two groups. It is suggested that bullfrogs may produce a series of non-specific immune reactions in response to the A. hydrophila infection.

  17. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  18. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers.

    Science.gov (United States)

    Mellbye, Brett L; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2015-09-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS.

  19. Enhanced Cadmium (Cd Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    Directory of Open Access Journals (Sweden)

    Kunchaya Setkit

    2014-01-01

    Full Text Available A cadmium (Cd-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also significantly increased Cd accumulation in the root and above-ground tissues of H. annuus L. compared to uninoculated control. Re-inoculation with Micrococcus sp. MU1in contaminated soil helped in promoting plant growth and Cd phytoextraction throughout the cultivation period. In addition, phytoextraction coefficient and translocation factor (TF of H. annuus L. inoculated with Micrococcus sp. MU1were higher than that of uninoculated control and TF continuously increased with time. Our results suggested that Micrococcus sp. MU1 has an ability to enhance plant growth and Cd uptake in H. annuus L. Synergistic interaction between Micrococcus sp. MU1 and H. annuus L. could be further applied for Cd phytoextraction in polluted areas.

  20. Rnf Genes in Purple Sulfur Bacterium Allochromatium vinosum

    OpenAIRE

    DİNÇTÜRK, H. Benan; DEMİR, Volkan

    2006-01-01

    Allochromatium vinosum is a photosynthetic, diazotrophic purple sulfur bacterium that oxidizes reduced sulfur compounds hydrogen sulfide, elemental sulfur and thiosulfide. In this article, we report the presence of rnf genes in Allochromatium vinosum, some of which have been reported to take part in nitrogen fixation in some species.

  1. Draft Genome Sequence of Oral Bacterium Streptococcus mutans JH1140

    OpenAIRE

    Escano, Jerome; Deng, Peng; Lu, Shi-En; Smith, Lief

    2016-01-01

    Streptococcus mutans JH1140 is an oral bacterium known to produce the bacteriocin mutacin 1140, and the strain has been genetically engineered to combat dental caries. Here, we report the 2.0-Mb draft genome of S. mutans JH1140. This genome provides new insights into the strain’s superior colonization properties and its utility in replacement therapy.

  2. Genome of a mosquito-killing bacterium decoded

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Researchers with the CAS Wuhan Institute of Virology (WHIOV) recently completed the genome sequencing of a mosquitocidal bacterium Bacillus shaericus C3-41. The feat, first of its kind in China, is expected to further promote the bio-control studies of mosquitoes.

  3. Shotgun Genome Sequence of the Large Purple Photosynthetic Bacterium Rhodospirillum photometricum DSM122

    OpenAIRE

    Duquesne, K.; Sturgis, James N.

    2012-01-01

    Here, we present the shotgun genome sequence of the purple photosynthetic bacterium Rhodospirillum photometricum DSM122. The photosynthetic apparatus of this bacterium has been particularly well studied by microscopy. The knowledge of the genome of this oversize bacterium will allow us to compare it with the other purple bacterial organisms to follow the evolution of the photosynthetic apparatus.

  4. Comparation of the Flavor of Different Cheese Flavouring Agents Produced by Using Surface Ripening Bacterium and/or Enzymes

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2013-10-01

    Full Text Available To accelerate cheese ripening, enhance its flavor types and intensity and make cheese flavoring agent in shorter time, surface ripening bacterium (Brevibacterium linens and Debaryomyces hansenii and/or enzymes (Flavorzyme 500 MG and Palatase 20000 L were used in cheese curd. In this study, aroma compounds generated by using ripening cultures and/or enzymes were analyzed. The control l was made by inoculating ripening cultures, while the control 2 was made through enzymes-modified only. Results showed that cheese flavoring agent made by using ripening strains in combination with enzymes had more volatile flavor compounds (at least 44 than that used just ripening bacterium (26 or just two enzymes (27. Then, through Solid-phase microextraction and Gas Chromatography-Mass Spectrometry analysis, we knew that sample 1, which was made through proteolysis first, next sprayed ripening cultures and last lipolysis, generated 54 flavor compounds. Sample 2, which enzymed cheese curd first, then incubated ripening cultures, had 44 aroma compounds. However, the controls 1, incubated ripening strains only, had 26 volatile compounds, while the control 2, enzymed only, had 27 volatile compounds. This study reveals that ripening bacterium could contribute more to the generation of acids, sulphur compounds, miscellaneous compounds and alcohols, it has a good potential to be used in cheese flavoring agents making. Besides, the combination of surface strains and enzymes, especially using Flavorzyme 500 MG first, then sprayed ripening cultures and at last Palatase 20000 L, could get more volatile compounds.

  5. The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia.

    Science.gov (United States)

    Kube, Michael; Migdoll, Alexander Michael; Müller, Ines; Kuhl, Heiner; Beck, Alfred; Reinhardt, Richard; Geider, Klaus

    2008-09-01

    The complete genome of the bacterium Erwinia tasmaniensis strain Et1/99 consisting of a 3.9 Mb circular chromosome and five plasmids was sequenced. Strain Et1/99 represents an epiphytic plant bacterium related to Erwinia amylovora and E. pyrifoliae, which are responsible for the important plant diseases fire blight and Asian pear shoot blight, respectively. Strain Et1/99 is a non-pathogenic bacterium and is thought to compete with these and other bacteria when occupying the same habitat during initial colonization. Genome analysis revealed tools for colonization, cellular communication and defence modulation, as well as genes coding for the synthesis of levan and a not detected capsular exopolysaccharide. Strain Et1/99 may secrete indole-3-acetic acid to increase availability of nutrients provided on plant surfaces. These nutrients are subsequently accessed and metabolized. Secretion systems include the hypersensitive response type III pathway present in many pathogens. Differences or missing parts within the virulence-related factors distinguish strain Et1/99 from pathogens such as Pectobacterium atrosepticum and the related Erwinia spp. Strain Et1/99 completely lacks the sorbitol operon, which may also affect its inability to invade fire blight host plants. Erwinia amylovora in contrast depends for virulence on utilization of sorbitol, the dominant carbohydrate in rosaceous plants. The presence of other virulence-associated factors in strain Et1/99 indicates the ancestral genomic background of many plant-associated bacteria.

  6. Bioconversion of ferulic acid to vanillic acid by Halomonas elongata isolated from table-olive fermentation

    OpenAIRE

    Abdelkafi, Slim; Sayadi, S.; Ben Ali Gam, Zouhaier; Casalot, Laurence; Labat, Marc

    2006-01-01

    Halomonas elongata strain Mar (=CCUG 52759) isolated from table-olive fermentation is the first halophilic bacterium to be shown to transform ferulic acid to vanillic acid under hypersaline conditions. During growth on ferulic acid, this strain was capable of promoting the formation of a significant amount of vanillic acid and trace quantities of vanillin. The products were confirmed by high-performance liquid chromatography and gas chromatography-mass spectrometry analyses. Based on the diff...

  7. Use of Potential Probiotic Lactic Acid Bacteria (LAB) Biofilms for the Control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 Biofilms Formation

    OpenAIRE

    Gómez, Natacha C.; Ramiro, Juan M. P.; Quecan, Beatriz X. V.; de Melo Franco, Bernadette D. G.

    2016-01-01

    Use of probiotic biofilms can be an alternative approach for reducing the formation of pathogenic biofilms in food industries. The aims of this study were (i) to evaluate the probiotic properties of bacteriocinogenic (Lactococcus lactis VB69, L. lactis VB94, Lactobacillus sakei MBSa1, and Lactobacillus curvatus MBSa3) and non-bacteriocinogenic (L. lactis 368, Lactobacillus helveticus 354, Lactobacillus casei 40, and Weissela viridescens 113) lactic acid bacteria (LAB) isolated from Brazilian’...

  8. Antimicrobial properties of lactic acid bacteria isolated from uruguayan artisan cheese

    Directory of Open Access Journals (Sweden)

    Martín Fraga Cotelo

    2013-12-01

    Full Text Available Uruguayan artisan cheese is elaborated with raw milk and non-commercial starters. The associated native microbiota may include lactic acid bacteria and also potentially pathogenic bacteria. Lactic acid bacteria were isolated from artisan cheese, raw milk, and non-commercial starter cultures, and their potential bacteriocin production was assessed. A culture collection of 509 isolates was obtained, and five isolates were bacteriocin-producers and were identified as Enterococcus durans,Lactobacillus casei, and Lactococcus lactis. No evidence of potential virulence factors were found in E. durans strains. These are promising results in terms of using these native strains for cheese manufacture and to obtain safe products.

  9. A Mutant Strain of a Surfactant-Producing Bacterium with Increased Emulsification Activity

    Institute of Scientific and Technical Information of China (English)

    Liu Qingmei; Yao Jianming; Pan Renrui; Yu Zengliang

    2005-01-01

    As reported in this paper, a strain of oil-degrading bacterium Sp- 5- 3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery(MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2 × 10TM N+/cm2 of dose - the optimum condition, a mutant,S - 34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsification activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.

  10. A Mutant Strain of a Surfactant-Producing Bacterium with Increased Emulsification Activity

    Science.gov (United States)

    Liu, Qingmei; Yao, Jianming; Pan, Renrui; Yu, Zengliang

    2005-06-01

    As reported in this paper, a strain of oil-degrading bacterium Sp-5-3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2 × 1014 N+/cm2 of dose - the optimum condition, a mutant, S-34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsification activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.

  11. The Antitumor Components from Marine-derived Bacterium Streptoverticillium luteoverticillatum 11014 Ⅱ

    Institute of Scientific and Technical Information of China (English)

    LI Dehai; ZHU Tianjiao; FANG Yuchun; LIU Hongbing; GU Qianqun; ZHU Weiming

    2007-01-01

    Eight known compounds were isolated from a marine-derived bacterium Streptoverticillium luteoverticillatum 11014 using bioassay-guided fractionations. Their structures were identified by spectral analysis as bis (4-hydroxybenzyl) ether (1), p-hydroxyphenylethyl alcohol (2), N-(4-hydroxyphenethyl) acetamide (3), indole-3 carboxylic acid methyl ester (4), dibenzo[b,e] [1,4]dioxine (5), thymine (6), cytosine deoxyribonucleoside (7) and 2, 3-butanediol (8). These compounds were evaluated for their cytotoxic activities against K562 cell line with the SRB method for the first time. Compounds 2 and 4 showed cytotoxcities with IC50 values of 101.1 and 165.3 μmolL-1, respectively. All compounds were isolated from S. luteoverticillatum 11014 for the first time.

  12. Skin lesion-associated pathogens from Octopus vulgaris: first detection of Photobacterium swingsii, Lactococcus garvieae and betanodavirus.

    Science.gov (United States)

    Fichi, G; Cardeti, G; Perrucci, S; Vanni, A; Cersini, A; Lenzi, C; De Wolf, T; Fronte, B; Guarducci, M; Susini, F

    2015-07-23

    The common octopus Octopus vulgaris Cuvier, 1798 is extremely important in fisheries and is a useful protein source in most Mediterranean countries. Here we investigated pathogens associated with skin lesions in 9 naturally deceased specimens that included both cultured and wild common octopus. Within 30 min after death, each octopus was stored at 4°C and microbiologically examined within 24 h. Bacterial colonies, cultured from swabs taken from the lesions, were examined using taxonomical and biochemical analyses. Vibrio alginolyticus and V. parahaemolyticus were only isolated from cultured animals. A conventional PCR targeting the 16S ribosomal RNA (rRNA) gene and sequencing were performed on 2 bacterial isolates that remained unidentified after taxonomical and biochemical analysis. The sequence results indicated that the bacteria had a 99% identity with Lactococcus garvieae and Photobacterium swingsii. L. garvieae was confirmed using a specific PCR based on the 16S-23S rRNA internal transcribed spacer region, while P. swingsii was confirmed by phylogenetic analyses. Although all animals examined were found to be infected by the protozoan species Aggregata octopiana localised in the intestines, it was also present in skin lesions of 2 of the animals. Betanodavirus was detected in both cultured and wild individuals by cell culture, PCR and electron microscopy. These findings are the first report of L. garvieae and betanodavirus from skin lesions of common octopus and the first identification of P. swingsii both in octopus skin lesions and in marine invertebrates in Italy.

  13. Antimicrobial activity of the Nisin Z producer Lactococcus lactis subsp. lactis Lc08 against Listeria monocytogenes in skim milk

    Directory of Open Access Journals (Sweden)

    L.M. Perin

    2013-10-01

    Full Text Available The presented study aimed to verify the effect of different pH values, enzyme solutions and heat treatments on the antimicrobial activity of the bacteriocinogenic strain Lactococcus lactis subsp. lactis Lc08 and to test their antimicrobial activity against Listeria monocytogenes in reconstituted skim milk at refrigeration temperatures. This strain was previously described as a nisin Z producer and capable of inhibiting L. monocytogenes growth in in vitro tests. The antimicrobial activity of the bacteriocin cell-free supernatant of Lc08 was sensitive to enzyme treatments (except papain. The pH values and heating (65ºC for 30min, 75ºC for 15s had no apparent effect on the antimicrobial activity of the bacteriocin produced by Lc08. Only treatment at autoclave conditions result in loss of their antimicrobial activity. Lc08 presented antimicrobial activity against L. monocytogenes in the milk system after 12h at 25ºC. No effect was found at 7ºC. The results show the application viability of the Lc08 in food systems as a biopreservative against L. monocytogenes.

  14. A distinct single-stranded DNA-binding protein encoded by the Lactococcus lactis bacteriophage bIL67.

    Science.gov (United States)

    Szczepanska, Agnieszka K; Bidnenko, Elena; Płochocka, Danuta; McGovern, Stephen; Ehrlich, S Dusko; Bardowski, Jacek; Polard, Patrice; Chopin, Marie-Christine

    2007-06-20

    Single-stranded binding proteins (SSBs) are found to participate in various processes of DNA metabolism in all known organisms. We describe here a SSB protein encoded by the Lactococcus lactis phage bIL67 orf14 gene. It is the first noted attempt at characterizing a SSB protein from a lactococcal phage. The purified Orf14(bIL67) binds unspecifically to ssDNA with the same high affinity as the canonical Bacillus subtilis SSB. Electrophoretic mobility-shift assays performed with mutagenized Orf14(bIL67) protein derivatives suggest that ssDNA-binding occurs via a putative OB-fold structure predicted by three-dimensional modeling. The native Orf14(bIL67) forms homotetramers as determined by gel filtration studies. These results allow distinguishing the first lactococcal phage protein with single-strand binding affinity, which defines a novel cluster of phage SSBs proteins. The possible role of Orf14(bIL67) in phage multiplication cycle is also discussed.

  15. Oral Vaccination with the Porcine Rotavirus VP4 Outer Capsid Protein Expressed by Lactococcus lactis Induces Specific Antibody Production

    Directory of Open Access Journals (Sweden)

    Yi-jing Li

    2010-01-01

    Full Text Available The objective of this study to design a delivery system resistant to the gastrointestinal environment for oral vaccine against porcine rotavirus. Lactococcus lactis NZ9000 was transformed with segments of vP4 of the porcine rotavirus inserted into the pNZ8112 surface-expression vector, and a recombinant L. lactis expressing VP4 protein was constructed. An approximately 27 kDa VP4 protein was confirmed by SDS-PAGE , Western blot and immunostaining analysis. BALB/c mice were immunized orally with VP4-expression recombinant L. lactis and cellular, mucosal and systemic humoral immune responses were examined. Specific anti-VP4 secretory IgA and IgG were found in feces, ophthalmic and vaginal washes and in serum. The induced antibodies demonstrated neutralizing effects on porcine rotavirus infection on MA104 cells. Our findings suggest that oral immunization with VP4-expressing L. lactis induced both specific local and systemic humoral and cellular immune responses in mice.

  16. Expression of Helicobacter pylori hspA Gene in Lactococcus lactis NICE System and Experimental Study on Its Immunoreactivity

    Directory of Open Access Journals (Sweden)

    Xiao-Juan Zhang

    2015-01-01

    Full Text Available Aim. The aim of this study was to develop an oral Lactococcus lactis (L. lactis vaccine against Helicobacter pylori (H. pylori. Methods. After L. lactis NZ3900/pNZ8110-hspA was constructed, growth curves were plotted to study whether the growth of recombinant L. lactis was affected after hspA was cloned into L. lactis and whether the growth of empty bacteria, empty plasmid bacteria, and recombinant L. lactis was affected by different concentrations of Nisin; SDS-PAGE and Western blot were adopted, respectively, to detect the HspA expressed by recombinant L. lactis and its immunoreactivity. Results. There was no effect observed from the growth curve after exogenous gene hspA was cloned into L. lactis NZ3900; different concentrations of Nisin did not affect the growth of NZ3900 and NZ3900/pNZ8110, while different concentrations of Nisin inhibited the growth of NZ3900/pNZ8110-hspA except 10 ng/mL Nisin. No HspA strip was observed from SDS-PAGE. Western blot analysis showed that HspA expressed by recombinant bacteria had favorable immunoreactivity. Conclusion. The growth of recombinant L. lactis was suppressed even though a small amount of HspA had been induced to express. Therefore recombinant L. lactis only express HspA which was not suitable to be oral vaccine against Helicobacter pylori.

  17. Nisin production of Lactococcus lactis N8 with hemin-stimulated cell respiration in fed-batch fermentation system.

    Science.gov (United States)

    Kördikanlıoğlu, Burcu; Şimşek, Ömer; Saris, Per E J

    2015-01-01

    In this study, nisin production of Lactococcus lactis N8 was optimized by independent variables of glucose, hemin and oxygen concentrations in fed-batch fermentation in which respiration of cells was stimulated with hemin. Response surface model was able to explain the changes of the nisin production of L. lactis N8 in fed-batch fermentation system with high fidelity (R(2) 98%) and insignificant lack of fit. Accordingly, the equation developed indicated the optimum parameters for glucose, hemin, and dissolved oxygen were 8 g L(-1) h(-1) , 3 μg mL(-1) and 40%, respectively. While 1711 IU mL(-1) nisin was produced by L. lactis N8 in control fed-batch fermentation, 5410 IU mL(-1) nisin production was achieved within the relevant optimum parameters where the respiration of cell was stimulated with hemin. Accordingly, nisin production was enhanced 3.1 fold in fed-batch fermentation using hemin. In conclusion the nisin production of L. lactis N8 was enhanced extensively as a result of increasing the biomass by stimulating the cell respiration with adding the hemin in the fed-batch fermentation.

  18. Effect of oral Lactococcus lactis containing endostatin on 1,2-dimethvlhvdrazine-induced colon tumor in rats

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Chong-Bi Li

    2005-01-01

    AIM: To investigate the effects of oral Lactococcus lactis (Llactis) containing endostatin on 1, 2-dimethylhydrazine (DMH)-induced rat colorectal cancer.METHODS: Recombinant endostatin was produced by the expression of L lactis NZ9000. Sixty male Wistar rats were injected with DMH (40 mg/kg body weight) subcutaneously once a week for 10 wk to induce colorectal cancer. The rats were gavaged with 1 mL of endostatin at a dose of 1×108/d and fed with the basal diet. The animals were killed after 22 wk for histopathological examination. The total time of experimental observation was 58 wk.RESULTS: Rat endostatin protein was expressed in L lactis. Recombinant endostatin exhibited a significant effect on colorectal cancer (P<0.05). Furthermore, the mean survival time of the rats treated with endostatin was longer than that of the animals treated with DMH.There was no statistically significant difference between the rats treated with endostatin and those treated with DMH. The results showed that endostatin could not result in complete cure.CONCLUSION: Oral endostatin exerts an influence on the progression of chemically induced colon tumors.

  19. Induction of a stress response in Lactococcus lactis is associated with a resistance to ribosomally active antibiotics.

    Science.gov (United States)

    Dorrian, James M; Briggs, Deborah A; Ridley, Michael L; Layfield, Robert; Kerr, Ian D

    2011-11-01

    The acquisition of multidrug resistance in bacteria underlies the failure of antimicrobial therapy, and the emergence of pathogens that are resistant to almost the entire armoury of antibiotics. Among the proteins that can mediate or contribute to the drug-resistance profile in Gram-positive bacteria is a subset of ATP-binding cassette proteins that are comprised of a tandem-repeated nucleotide-binding domain. In this study, we expressed one of these NBD(2) proteins, LmrC, in an antibiotic-sensitive Gram-positive host strain (Lactococcus lactis) and demonstrated the acquisition of resistance to ribosomally active antibiotics. Mutation of key catalytic residues suggested that the resistance profile was the result of a cellular response, rather than being a function of the NBD(2) protein itself. This observation was confirmed by 2D SDS/PAGE, which demonstrated that the expression of the NBD(2) protein induced a stress response in L. lactis. A model combining this stress response induction and the acquisition of antibiotic resistance is proposed. PMID:21848804

  20. Lytic infection of Lactococcus lactis by bacteriophages Tuc2009 and c2 triggers alternative transcriptional host responses.

    Science.gov (United States)

    Ainsworth, Stuart; Zomer, Aldert; Mahony, Jennifer; van Sinderen, Douwe

    2013-08-01

    Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed throughout lytic infection. Whole-genome microarrays performed at various time points postinfection demonstrated a rather modest impact on host transcription. The majority of changes in the host transcriptome occur during late infection stages; few changes in host gene transcription occur during the immediate and early infection stages. Alterations in the L. lactis UC509.9 transcriptome during lytic infection appear to be phage specific, with relatively few differentially transcribed genes shared between cells infected with Tuc2009 and those infected with c2. Despite the apparent lack of a coordinated general phage response, three themes common to both infections were noted: alternative transcription of genes involved in catabolic flux and energy production, differential transcription of genes involved in cell wall modification, and differential transcription of genes involved in the conversion of ribonucleotides to deoxyribonucleotides. The transcriptional profiles of both bacteriophages during lytic infection generally correlated with the findings of previous studies and allowed the confirmation of previously predicted promoter sequences. In addition, the host transcriptional response to lysogenization with Tuc2009 was monitored along with tiling array analysis of Tuc2009 in the lysogenic state. Analysis identified 44 host genes with altered transcription during lysogeny, 36 of which displayed levels of transcription significantly reduced from those for uninfected cells.