WorldWideScience

Sample records for acid bacteria elicit

  1. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Christensen, Hanne

    2007-01-01

    Lactic acid bacteria (LAB) are abundant in the gastrointestinal tract where they continuously regulate the immune system. NK cells are potently activated by dendritic cells (DCs) matured by inflammatory stimuli, and NK cells are present in the gut epithelium and in mesenteric lymph nodes...

  2. Chitin elicitation of natural product production in marine bacteria

    DEFF Research Database (Denmark)

    Månsson, Maria; Wietz, Matthias; Larsen, Thomas Ostenfeld

    indicating that andrimid serves a function while growing on chitin-containing surfaces. In contrast, a Photobacterium halotolerans sustained production of all metabolites including the antibiotic holomycin. Furthermore, chitin stimulated the production of two potentially novel metabolites not observed...... uncharacterized chemical potential of these organisms. As part of a new project on ecology-driven drug discovery at the Technical University of Denmark, we investigate the use of chitin to elicit or alter production of antibacterial compounds in marine bacteria. Within our large collection of Gram......-negative bacteria (mainly Pseudoalteromonas and Vibrio), we found that some strains were capable of producing antibacterial compounds when grown on chitin, an N-acetyl-D-glucosamine polymer found in the exoskeleton of zooplankton.2 A strain of Vibrio coralliilyticus solely produced the antibiotic andrimid,3...

  3. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    OpenAIRE

    NEENA GARG

    2015-01-01

    Lactic acid bacteria (LAB) is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LA...

  4. [Teichoic acids from lactic acid bacteria].

    Science.gov (United States)

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  5. Mucosal Vaccination and Therapy with Genetically Modified Lactic Acid Bacteria

    NARCIS (Netherlands)

    Wells, J.

    2011-01-01

    Lactic acid bacteria (LAB) have proved to be effective mucosal delivery vehicles that overcome the problem of delivering functional proteins to the mucosal tissues. By the intranasal route, both live and killed LAB vaccine strains have been shown to elicit mucosal and systemic immune responses that

  6. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    Directory of Open Access Journals (Sweden)

    NEENA GARG

    2015-10-01

    Full Text Available Lactic acid bacteria (LAB is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LAB are used as starter culture, consortium members and bioprotective agents in food industry that improve food quality, safety and shelf life. A variety of probiotic LAB species are available including Lactobacillus acidophilus, L. bulgaricus, L. lactis, L. plantarum, L. rhamnosus, L. reuteri, L. fermentum, Bifidobacterium longum, B. breve, B. bifidum, B. esselnsis, B. lactis, B. infantis that are currently recommended for development of functional food products with health-promoting capacities.

  7. Engineering robust lactic acid bacteria

    NARCIS (Netherlands)

    Bron, P.A.; Bokhorst-van de Veen, van H.; Wels, M.; Kleerebezem, M.

    2011-01-01

    For centuries, lactic acid bacteria (LAB) have been industrially exploited as starter cultures in the fermentation of foods and feeds for their spoilage-preventing and flavor-enhancing characteristics. More recently, the health-promoting effects of LAB on the consumer have been widely acknowledged,

  8. Genetics of Lactic Acid Bacteria

    Science.gov (United States)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  9. Electron transport chains of lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic bact

  10. Fatty acid composition of selected prosthecate bacteria.

    Science.gov (United States)

    Carter, R N; Schmidt, J M

    1976-10-11

    The cellular fatty acid composition of 14 strains of Caulobacter speices and types, two species of Prosthecomicrobium, and two species of Asticcacaulis was determined by gas-liquid chromatography. In most of these bacteria, the major fatty acids were octadecenoic acid (C18:1), hexadecenoic acid (C16:1) and hexadecanoic acid (C16:0). Some cyclopropane and branched chain fatty acids were detected in addition to the straight chained acids. Hydroxytetradecanoic acid was an important component of P.enhydrum but significant amounts of hydroxy acids were not detected in other prosthecate bacteria examined.

  11. Lactic Acid Bacteria in the Gut

    NARCIS (Netherlands)

    Stolaki, M.; Vos, de W.M.; Kleerebezem, M.; Zoetendal, E.G.

    2012-01-01

    From all bacterial groups, the lactic acid bacteria (LAB) are probably the group of bacteria that is most associated with human lifestyle. The term LAB mainly refers to the ability of these organisms to convert sugars to lactic acid. The LAB comprise non-sporing, aerotolerant, coccus or rod-shaped,

  12. Quorum sensing mechanism in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Hatice Yılmaz - Yıldıran

    2015-04-01

    and detection occurs as a consecution it is hard to understand their QS mechanism. In this review, connection between QS mechanism and some characteristics of lactic acid bacteria are evaluated such as concordance with its host, inhibition of pathogen development and colonization in gastrointestinal system, bacteriocin production, acid and bile resistance, adhesion to epithelium cells. Understanding QS mechanism of lactic acid bacteria will be useful to design metabiotics which is defined as novel probiotics.

  13. Genetics of proteinases of lactic acid bacteria

    NARCIS (Netherlands)

    Kok, Jan; Venema, Gerhardus

    1988-01-01

    Because it is essential for good growth with concomitant rapid acid production, and for the production of flavorous peptides and amino acids, the proteolytic ability of lactic acid bacteria is of crucial importance for reliable dairy product quality. In view of this importance, considerable research

  14. Comparative genomics of the lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O' Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  15. [Bacteriocins produced by lactic acid bacteria].

    Science.gov (United States)

    Bilková, Andrea; Sepova, Hana Kinová; Bilka, Frantisek; Balázová, Andrea

    2011-04-01

    Lactic acid bacteria comprise several genera of gram-positive bacteria that are known for the production of structurally different antimicrobial substances. Among them, bacteriocins are nowadays in the centre of scientific interest. Bacteriocins, proteinaceous antimicrobial substances, are produced ribosomally and have usually a narrow spectrum of bacterial growth inhibition. According to their structure and the target of their activity, they are divided into four classes, although there are some suggestions for a renewed classification. The most interesting and usable class are lantibiotics. They comprise the most widely commercially used and well examined bacteriocin, nisin. The non-pathogenic character of lactic acid bacteria is advantageous for using their bacteriocins in food preservation as well as in feed supplements or in veterinary medicine.

  16. Discovering lactic acid bacteria by genomics

    NARCIS (Netherlands)

    Klaenhammer, T; Altermann, E; Arigoni, F; Bolotin, A; Breidt, F; Broadbent, J; Cano, R; Chaillou, S; Deutscher, J; Gasson, M; van de Guchte, M; Guzzo, J; Hartke, A; Hawkins, T; Hols, P; Hutkins, R; Kleerebezem, M; Kok, J; Kuipers, O; Maguin, E; McKay, L; Mills, D; Nauta, A; Overbeek, R; Pel, H; Pridmore, D; Saier, M; van Sinderen, D; Sorokin, A; Steele, J; O'Sullivan, D; de Vos, W; Weimer, B; Zagorec, M; Siezen, R

    2002-01-01

    This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, environmental habitat, and its role in ferment

  17. Discovering lactic acid bacteria by genomics

    NARCIS (Netherlands)

    Klaenhammer, T.; Altermann, E.; Arigoni, F.; Bolotin, A.; Breidt, F.; Broadbent, J.; Cano, R.; Chaillou, S.; Deutscher, J.; Gasson, M.; Guchte, van de M.; Guzzo, J.; Hartke, A.; Hawkins, T.; Hols, P.; Hutkins, R.; Kleerebezem, M.; Kok, J.; Kuipers, O.; Lubbers, M.; Maguin, E.; McKay, L.; Mills, D.; Nauta, A.; Overbeek, R.; Pel, H.; Pridmore, D.; Saier, M.; Sinderen, van D.; Sorokin, A.; Steele, J.; O'Sullivan, D.; Vos, de W.; Weimer, B.; Zagorec, M.; Siezen, R.

    2002-01-01

    This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, nvironmental habitat, and its role in fermenta

  18. Why engineering lactic acid bacteria for biobutanol

    Science.gov (United States)

    The Gram-positive Lactic acid bacteria (LAB) are considered attractive biocatalysts for biomass to biofuels for several reasons. They have GRAS (Generally Recognized As Safe) status that are acceptable in food, feed, and medical applications. LAB are fermentative: selected strains are capable of f...

  19. Exopolysaccharides produced by lactic acid bacteria

    NARCIS (Netherlands)

    Caggianiello, Graziano; Kleerebezem, Michiel; Spano, Giuseppe

    2016-01-01

    A wide range of lactic acid bacteria (LAB) is able to produce capsular or extracellular polysaccharides, with various chemical compositions and properties. Polysaccharides produced by LAB alter the rheological properties of the matrix in which they are dispersed, leading to typically viscous and

  20. Multidrug transporters in lactic acid bacteria

    NARCIS (Netherlands)

    Mazurkiewicz, P; Sakamoto, K; Poelarends, GJ; Konings, WN

    2005-01-01

    Gram-positive lactic acid bacteria possess several Multi-Drug Resistance systems (MDRs) that excrete out of the cell a wide variety of mainly cationic lipophilic cytotoxic compounds as well as many clinically relevant antibiotics. These MDRs are either proton/drug antiporters belonging to the major

  1. Anchoring of proteins to lactic acid bacteria

    NARCIS (Netherlands)

    Leenhouts, K; Buist, Girbe; Kok, Jan

    1999-01-01

    The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been exp

  2. The proteolytic systems of lactic acid bacteria

    NARCIS (Netherlands)

    Kunji, Edmund R.S.; Mierau, Igor; Hagting, Anja; Poolman, Bert; Konings, Wil N.

    1996-01-01

    Proteolysis in dairy lactic acid bacteria has been studied in great detail by genetic, biochemical and ultrastructural methods. From these studies the picture emerges that the proteolytic systems of lactococci and lactobacilli are remarkably similar in their components and mode of action. The proteo

  3. Precision genome engineering in lactic acid bacteria.

    Science.gov (United States)

    van Pijkeren, Jan Peter; Britton, Robert A

    2014-08-29

    Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety.

  4. Bacteriocins From Lactic Acid Bacteria: Interest For Food Products Biopreservation

    OpenAIRE

    Dortu, C.; Thonart, Philippe

    2009-01-01

    Bacteriocins from lactic acid bacteria: interest for food products biopreservation. Bacteriocins from lactic acid bacteria are low molecular weight antimicrobial peptides. They have inhibitory activity against the bacteria that are closed related to the producer strains and a narrow inhibitory spectrum. Nevertheless, most of them have activity against some food-born pathogenic bacteria as Listeria monocytogenes. The application of bacteriocins or bacteriocin producing lactic acid bacteria in ...

  5. Freeze-drying of lactic acid bacteria.

    Science.gov (United States)

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.

  6. Progress in engineering acid stress resistance of lactic acid bacteria.

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-02-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.

  7. Abiotic elicitation of gymnemic acid in the suspension cultures of Gymnema sylvestre.

    Science.gov (United States)

    Ch, Bhuvaneswari; Rao, Kiranmayee; Gandi, Suryakala; Giri, Archana

    2012-02-01

    Elicitation is one of the few strategies that find commercial application in the enhancement of secondary metabolite production from plants as well as cell culture systems. Due to their immense medicinal value, production of saponins in suspension cultures has been attempted by many researchers. Gymnema sylvestre is a rich source of gymnemic acids (saponins) that find application in the treatment of diabetes. The present study is an attempt to evaluate the effect of various metal salts (cadmium chloride, mercuric chloride, silver nitrate, cupric chloride, cobaltous chloride and calcium chloride) in eliciting the response from G. sylvestre suspension cultures. The maximum gymnemic acid production in the suspensions was achieved on day 12 of culture, though the maximum biomass was obtained on day 16. Among the different salts, CdCl(2) gave maximum response (59.97 mg/gDCW) at 2 mM concentration after a 24 h time period, while, AgNO(3) gave the least response (18.35 mg/gDCW) on incubation of 48 h at 1 mM concentration, in terms of gymnemic acid accumulation. The accumulation of gymnemic acid was found to be dependent on treatment time and concentration of the elicitor. The enhanced gymnemic acid production shown by the suspensions in response to the metal salts indicates their role in evoking the plant defense mechanisms. These elicitation studies help in providing a platform for improved commercial supply of bioactive gymnemic acids.

  8. Exopolysaccharides from sourdough lactic acid bacteria.

    Science.gov (United States)

    Galle, Sandra; Arendt, Elke K

    2014-01-01

    The use of sourdough improves the quality and increases the shelf life of bread. The positive effects are associated with metabolites produced by lactic acid bacteria (LAB) during sourdough fermentation, including organic acids, exopolysaccharides (EPS), and enzymes. EPS formed during sourdough fermentation by glycansucrase activity from sucrose influence the viscoelastic properties of the dough and beneficially affect the texture and shelf life (in particular, starch retrogradation) of bread. Accordingly, EPS have the potential to replace hydrocolloids currently used as bread improvers and meet so the consumer demands for a reduced use of food additives. In this review, the current knowledge about the functional aspects of EPS formation by sourdough LAB especially in baking applications is summarized.

  9. The effect of lactic acid bacteria on cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  10. Identification of Lactic Acid Bacteria and Propionic Acid Bacteria using FTIR Spectroscopy and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Beata Nalepa

    2012-01-01

    Full Text Available In the present study, lactic acid bacteria and propionic acid bacteria have been identified at the genus level with the use of artificial neural networks (ANNs and Fourier transform infrared spectroscopy (FTIR. Bacterial strains of the genera Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Propionibacterium were analyzed since they deliver health benefits and are routinely used in the food processing industry. The correctness of bacterial identification by ANNs and FTIR was evaluated at two stages. At first stage, ANNs were tested based on the spectra of 66 reference bacterial strains. At second stage, the evaluation involved 286 spectra of bacterial strains isolated from food products, deposited in our laboratory collection, and identified by genus-specific PCR. ANNs were developed based on the spectra and their first derivatives. The most satisfactory results were reported for the probabilistic neural network, which was built using a combination of W5W4W3 spectral ranges. This network correctly identified the genus of 95 % of the lactic acid bacteria and propionic acid bacteria strains analyzed.

  11. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    Science.gov (United States)

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  12. [Regulating acid stress resistance of lactic acid bacteria--a review].

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-07-04

    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  13. Gluconacetobacter diazotrophicus Elicits a Sugarcane Defense Response Against a Pathogenic Bacteria Xanthomonas albilineans.

    Science.gov (United States)

    Arencibia, Ariel D; Vinagre, Fabiano; Estevez, Yandi; Bernal, Aydiloide; Perez, Juana; Cavalcanti, Janaina; Santana, Ignacio; Hemerly, Adriana S

    2006-09-01

    A new role for the plant growth-promoting nitrogen-fixing endophytic bacteria Gluconacetobacter diazotrophicus has been identified and characterized while it is involved in the sugarcane-Xanthomonas albilineans pathogenic interactions. Living G.diazotrophicus possess and/or produce elicitor molecules which activate the sugarcane defense response resulting in the plant resistance to X. albilineans, in this particular case controlling the pathogen transmission to emerging agamic shoots. A total of 47 differentially expressed transcript derived fragments (TDFs) were identified by cDNA-AFLP. Transcripts showed significant homologies to genes of the ethylene signaling pathway (26%), proteins regulates by auxins (9%), beta-1,3 Glucanase proteins (6%) and ubiquitin genes (4%), all major signaling mechanisms. Results point toward a form of induction of systemic resistance in sugarcane-G. diazotrophicus interactions which protect the plant against X. albilineans attack.

  14. Gluconacetobacter diazotrophicus Elicits a Sugarcane Defense Response Against a Pathogenic Bacteria Xanthomonas albilineans

    Science.gov (United States)

    Vinagre, Fabiano; Estevez, Yandi; Bernal, Aydiloide; Perez, Juana; Cavalcanti, Janaina; Santana, Ignacio; Hemerly, Adriana S

    2006-01-01

    A new role for the plant growth-promoting nitrogen-fixing endophytic bacteria Gluconacetobacter diazotrophicus has been identified and characterized while it is involved in the sugarcane-Xanthomonas albilineans pathogenic interactions. Living G.diazotrophicus possess and/or produce elicitor molecules which activate the sugarcane defense response resulting in the plant resistance to X. albilineans, in this particular case controlling the pathogen transmission to emerging agamic shoots. A total of 47 differentially expressed transcript derived fragments (TDFs) were identified by cDNA-AFLP. Transcripts showed significant homologies to genes of the ethylene signaling pathway (26%), proteins regulates by auxins (9%), β-1,3 Glucanase proteins (6%) and ubiquitin genes (4%), all major signaling mechanisms. Results point toward a form of induction of systemic resistance in sugarcane-G. diazotrophicus interactions which protect the plant against X. albilineans attack. PMID:19516988

  15. Towards lactic acid bacteria-based biorefineries.

    Science.gov (United States)

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.

  16. A computerised system for the identification of lactic acid bacteria.

    NARCIS (Netherlands)

    Wijtzes, T.; Bruggeman, M.R.; Nout, M.J.R.; Zwietering, M.H.

    1997-01-01

    A generic computerised system for the identification of bacteria was developed. The system is equipped with a key to the identification of lactic acid bacteria. The identification is carried out in two steps. The first step distinguishes groups of bacteria by following a decision tree with general i

  17. Manipulating anthocyanin composition in Vitis vinifera suspension cultures by elicitation with jasmonic acid and light irradiation.

    Science.gov (United States)

    Curtin, Chris; Zhang, Wei; Franco, Chris

    2003-07-01

    Jasmonic acid altered the accumulation of major anthocyanins in Vitis vinifera cell culture. Peonidin 3-glucoside content at day three was increased from 0.3 to 1.7 mg g(-1) dry cell wt while other major anthocyanins were increased by smaller increments. By day 14, the content of methylated and acylated anthocyanins (peonidin 3-p-coumaroylglucoside and malvidin 3-p-coumaroylglucoside) was 6.3 mg g(-1) DCW, in response to treatment with jasmonic acid, and comprising approximately 45% (w/w) of total anthocyanins. In comparison, the untreated control culture contained 1.2 mg g(-1) DCW which made up approximately 32% (w/w) of total anthocyanins. Light further enhanced anthocyanin accumulation induced by jasmonic acid elicitation. The content of peonidin 3-glucoside at day 3 was 6.6 mg g(-1) DCW, 22-fold higher than control cultures while the content in response to light irradiation alone was 0.6 mg g(-1) DCW. When a highly pigmented cell line was elicited with jasmonic acid total anthocyanins increased from 9.2 to 20.7 mg g(-1) DCW, but there was no change in the anthocyanin composition.

  18. Stress Physiology of Lactic Acid Bacteria.

    Science.gov (United States)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.

  19. Molecular screening of wine lactic acid bacteria degrading hydroxycinnamic acids.

    Science.gov (United States)

    de las Rivas, Blanca; Rodríguez, Héctor; Curiel, José Antonio; Landete, José María; Muñoz, Rosario

    2009-01-28

    The potential to produce volatile phenols from hydroxycinnamic acids was investigated for lactic acid bacteria (LAB) isolated from Spanish grape must and wine. A PCR assay was developed for the detection of LAB that potentially produce volatile phenols. Synthetic degenerate oligonucleotides for the specific detection of the pdc gene encoding a phenolic acid decarboxylase were designed. The pdc PCR assay amplifies a 321 bp DNA fragment from phenolic acid decarboxylase. The pdc PCR method was applied to 85 strains belonging to the 6 main wine LAB species. Lactobacillus plantarum, Lactobacillus brevis, and Pediococcus pentosaceus strains produce a positive response in the pdc PCR assay, whereas Oenococcus oeni, Lactobacillus hilgardii, and Leuconostoc mesenteroides strains did not produce the expected PCR product. The production of vinyl and ethyl derivatives from hydroxycinnamic acids in culture media was determined by high-performance liquid chromatography. A relationship was found between pdc PCR amplification and volatile phenol production, so that the LAB strains that gave a positive pdc PCR response produce volatile phenols, whereas strains that did not produce a PCR amplicon did not produce volatile phenols. The proposed method could be useful for a preliminary identification of LAB strains able to produce volatile phenols in wine.

  20. 9th International Symposium on Lactic Acid Bacteria

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Poolman, Berend; Hugenholtz, Jeroen

    2008-01-01

    What’s new in the field of lactic acid bacteria? The 9th International Symposium on Lactic Acid Bacteria (LAB9) will take place 31 August to 4 September 2008 in Egmond aan Zee, The Netherlands. Traditionally, the triannual LAB symposium focuses on the themes of genetics, physiology, and applications

  1. Heme and menaquinone induced electron transport in lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.; Smit, B.; Santos, dos F.; Riel, van J.; Vos, de W.M.; Hugenholtz, J.

    2009-01-01

    ABSTRACT: BACKGROUND: For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. RES

  2. Functional genomics of lactic acid bacteria: from food to health

    NARCIS (Netherlands)

    Douillard, F.P.; Vos, de W.M.

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria a

  3. Bacteriocins of lactic acid bacteria : extending the family

    NARCIS (Netherlands)

    Alvarez-Sieiro, Patricia; Montalbán-López, Manuel; Mu, Dongdong; Kuipers, Oscar P

    2016-01-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are proteinaceo

  4. Lactic Acid Bacteria : embarking on 30 more years of research

    NARCIS (Netherlands)

    Kok, Jan; Johansen, Eric; Kleerebezem, Michiel; Teusink, Bas

    2014-01-01

    The 11th International Symposium on Lactic Acid Bacteria Lactic Acid Bacteria play important roles in the pro- duction of food and feed and are increasingly used as health-promoting probiotics. The incessant scientific interest in these microorganisms by academic research groups as well as by indust

  5. Compatible solutes in lactic acid bacteria subjected to water stress.

    NARCIS (Netherlands)

    Kets, E.P.W.

    1997-01-01

    The goal of the research project described in this thesis was to investigate the protective effect of compatible solutes on tactic acid bacteria subjected to drying. Dried preparations of lactic acid bacteria are applied as starter cultures in feed and food industries. Dried starter cultures compare

  6. Flow cytometric assessment of viability of lactic acid bacteria

    NARCIS (Netherlands)

    Bunthof, C.J.; Bloemen, K.; Breeuwer, P.; Rombouts, F.M.; Abee, T.

    2001-01-01

    The viability of lactic acid bacteria is crucial for their applications as dairy starters and as probiotics. We investigated the usefulness of flow cytometry (FCM) for viability assessment of lactic acid bacteria. The esterase substrate carboxyfluorescein diacetate (cFDA) and the dye exclusion DNA b

  7. Metabolite Profiles of Lactic Acid Bacteria in Grass Silage▿

    OpenAIRE

    Broberg, Anders; Jacobsson, Karin; Ström, Katrin; Schnürer, Johan

    2007-01-01

    The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydro...

  8. Zinc Binding by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Jasna Mrvčić

    2009-01-01

    Full Text Available Zinc is an essential trace element in all organisms. A common method for the prevention of zinc deficiency is pharmacological supplementation, especially in a highly available form of a metalloprotein complex. The potential of different microbes to bind essential and toxic heavy metals has recently been recognized. In this work, biosorption of zinc by lactic acid bacteria (LAB has been investigated. Specific LAB were assessed for their ability to bind zinc from a water solution. Significant amount of zinc ions was bound, and this binding was found to be LAB species-specific. Differences among the species in binding performance at a concentration range between 10–90 mg/L were evaluated with Langmuir model for biosorption. Binding of zinc was a fast process, strongly influenced by ionic strength, pH, biomass concentration, and temperature. The most effective metal-binding LAB species was Leuconostoc mesenteroides (27.10 mg of Zn2+ per gram of dry mass bound at pH=5 and 32 °C, during 24 h. FT-IR spectroscopy analysis and electron microscopy demonstrated that passive adsorption and active uptake of the zinc ions were involved.

  9. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing

    Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates...... diacetyl and lactic acid, 6 antifungal hydroxy acids were identified. Of these, 3 have previously been reported from antifungal lactic acid bacteria, whereas the other 3 hydroxy acids have not previously been reported produced by antifungal lactic acid bacteria....... factors thereby facilitating development of new protective cultures. The aim of the current thesis was to determine and study metabolites involved in antifungal activity of protective Lactobacillus paracasei and Propionibacterium freudenreichii subsp. shermanii. This involved development of a suitable...

  10. Lactic Acid Bacteria Differentially Activate Natural Killer Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    . In contrast, a Lactobacillus paracasei strain caused the NK cells to proliferate only in the presence of monocytes. Conclusion: In this study we have demonstrated that various strains of gut flora-derived lactic acid bacteria have the capacity to activate NK cells in vitro, in a monocyte dependent...... antigen presenting cells and T-cells. Bacteria translocating across the gastrointestinal mucosa are presumed to gain access to NK cell compartments, as consumption of certain strains of lactic acid bacteria has been shown to increase in vivo NK cytotoxic activity. On-going research in our lab aims...... at describing strain-dependent effects of lactic acid bacteria on regulatory functions of NK-cells. Here, we have investigated how human gut flora-derived non-pathogenic lactic acid bacteria affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human peripheral blood NK cells upon...

  11. COMPARISON OF OCCURENCE LACTIC ACID BACTERIA IN CHOSEN YOGURTS

    Directory of Open Access Journals (Sweden)

    Silvia Pinterová

    2010-11-01

    Full Text Available The yogurt is healthy food, which contains at least 100 million cultures per gram. Probiotic bacteria have been proven to reduce the effects of some gastrointestinal problems, probiotics can greatly reduce lactose intolerance, have also been proven to prevent colon cancers, there are also a natural immune system booster. In our research we detected numbers of lactid acid bacteria in yogurts in slovak market. There were classical yogurts, yogurts with probiotics, yogurts with fat and non fat. We numbered lactid acid bacteria from and after expiration, in agars MRS and Lee´s. In examined yogurts we detected from expiration from 78.107  to 169.107  and after expiration from 59.107 to 133.107 lactic acid bacteria in 1 ml of yogurt. In agreement with Food Codex of SR (2010 of rules all these yogurts satisfy number of lactid acid bacteria. doi:10.5219/31

  12. Salicylic acid-induced elicitation of folates in coriander (Coriandrum sativum L.) improves bioaccessibility and reduces pro-oxidant status.

    Science.gov (United States)

    Puthusseri, Bijesh; Divya, Peethambaran; Lokesh, Veeresh; Neelwarne, Bhagyalakshmi

    2013-01-15

    Foliage of Coriandrum sativum is a rich source of natural folates amenable for enhancement through salicylic acid-mediated elicitation, thereby holding a great promise for natural-mode alleviation of this vitamin (B(9)) deficiency. In the present study we report salicylic acid-mediated differential elicitation of different forms of folates - 5-methyltetrahydrofolate, 5-formyltetrahydrofolate and 10-formyltetrahydrofolate - their stabilities during microwave-drying and bioaccessibilities from fresh and dried foliage. The first two compounds nearly doubled and the third increased sixfold post-elicitation, with all three showing concomitant increase in bioaccessibilities. Although a slight decrease in bioaccessibility was observed in dried foliage, over twofold increase of each form of folate upon elicitation would deliver much higher levels of natural folates from this traditional culinary foliage, which is widely used in many cuisines. Elicitor-mediated folate enhancement also imparted reduction of oxidative status and the enhancement of antioxidant enzyme activities in coriander foliage.

  13. Genetics of the proteolytic system of lactic acid bacteria

    NARCIS (Netherlands)

    Kok, Jan

    1990-01-01

    The proteolytic system of lactic acid bacteria is of eminent importance for the rapid growth of these organisms in protein-rich media. The combined action of proteinases and peptidases provides the cell with small peptides and essential amino acids. The amino acids and peptides thus liberated have t

  14. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations

    Science.gov (United States)

    Previous studies using traditional biochemical methods to study the ecology of commercial sauerkraut fermentations revealed that four lactic acid bacteria species, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis were the primary microorganisms in...

  15. Effect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine.

    Science.gov (United States)

    Campos, Francisco M; Figueiredo, Ana R; Hogg, Tim A; Couto, José A

    2009-06-01

    The influence of phenolic (p-coumaric, caffeic, ferulic, gallic and protocatechuic) acids on glucose and organic acid metabolism by two strains of wine lactic acid bacteria (Oenococcus oeni VF and Lactobacillus hilgardii 5) was investigated. Cultures were grown in modified MRS medium supplemented with different phenolic acids. Cellular growth was monitored and metabolite concentrations were determined by HPLC-RI. Despite the strong inhibitory effect of most tested phenolic acids on the growth of O. oeni VF, the malolactic activity of this strain was not considerably affected by these compounds. While less affected in its growth, the capacity of L. hilgardii 5 to degrade malic acid was clearly diminished. Except for gallic acid, the addition of phenolic acids delayed the metabolism of glucose and citric acid in both strains tested. It was also found that the presence of hydroxycinnamic acids (p-coumaric, caffeic and ferulic) increased the yield of lactic and acetic acid production from glucose by O. oeni VF and not by L. hilgardii 5. The results show that important oenological characteristics of wine lactic acid bacteria, such as the malolactic activity and the production of volatile organic acids, may be differently affected by the presence of phenolic acids, depending on the bacterial species or strain.

  16. Metabolite Profiles of Lactic Acid Bacteria in Grass Silage▿

    Science.gov (United States)

    Broberg, Anders; Jacobsson, Karin; Ström, Katrin; Schnürer, Johan

    2007-01-01

    The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydroxybenzoic acid, (trans, trans)-3,4-dihydroxycyclohexane-1-carboxylic acid, p-hydrocoumaric acid, vanillic acid, azelaic acid, hydroferulic acid, p-coumaric acid, hydrocaffeic acid, ferulic acid, and caffeic acid. Among these metabolites, the antifungal compounds 3-phenyllactic acid and 3-hydroxydecanoic acid were previously isolated in our laboratory from liquid cultures of the same LAB strains by bioassay-guided fractionation. It was concluded that other metabolites, e.g., p-hydrocoumaric acid, hydroferulic acid, and p-coumaric acid, were released from the grass by the added LAB strains. The antifungal activities of the identified metabolites in 100 mM lactic acid were investigated. The MICs against Pichia anomala, Penicillium roqueforti, and Aspergillus fumigatus were determined, and 3-hydroxydecanoic acid showed the lowest MIC (0.1 mg ml−1 for two of the three test organisms). PMID:17616609

  17. The impact of lactic acid bacteria on sourdough fermentation

    Directory of Open Access Journals (Sweden)

    Savić Dragiša S.

    2005-01-01

    Full Text Available The baking of sourdough breads represents one of the oldest biotechnological processes. Despite traditionality, sourdough bread has great potential because of its benefits. Sourdough is a mixture of flour and water that is dominated by a complex microflora composed of yeasts and lactic acid bacteria that are crucial in the preparation of bread dough. Lactic acid bacteria cause acidification by producing lactic acid that increases the shelf life of bread by preventing the growth of undesirable microorganisms and affects the nutritional value of bread by increasing the availability of minerals. In addition to these advantages, the use of sourdough fermentation also improves dough machinability, breadcrumb structure and the characteristic flavour of bread. Lactic acid bacteria in sourdough fermentation are well known representing both homofermentative and heterofermentative bacteria. They may originate from selected natural contaminants in the flour or from a starter culture containing one or more known species of lactic acid bacteria. Sourdough can be cultivated in bakeries or obtained from commercial suppliers. However, many bakeries in Europe still use spontaneously fermented sourdoughs, which have been kept metabolically active for decades by the addition of flour and water at regular intervals. The impact of lactic acid bacteria on sourdough fermentation and their influence on dough and bread quality was discussed on the basis of research and literature data.

  18. Effects of Lactic Acid Bacteria Inoculated Fermentation on Pickled Cucumbers

    OpenAIRE

    2013-01-01

    The aim of this study was to determine the effects of Lactic Acid Bacteria (LAB) fermentation on the texture and organic acid of pickled cucumbers. Texture and sensory evaluation as well as a microscopic observation were performed to study the textural differences among fresh cucumber, Spontaneous fermentation (SF) cucumber and LAB Inoculating Fermentation (LABIF) cucumber. Accumulation of seven organic acids i.e., oxalic, tartaric, malic, lactic, acetic, citric and succinic acid during cucum...

  19. Lactic acid bacteria as a cell factory for riboflavin production.

    Science.gov (United States)

    Thakur, Kiran; Tomar, Sudhir Kumar; De, Sachinandan

    2016-07-01

    Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin-enriched functional foods, proper selection and exploitation of riboflavin-producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production.

  20. Making More of Milk Sugar by Engineering Lactic Acid Bacteria

    NARCIS (Netherlands)

    Vos, Willem M. de; Hols, Pascal; Kranenburg, Richard van; Luesink, Evert; Kuipers, Oscar P.; Oost, John van der; Kleerebezem, Michiel; Hugenholtz, Jeroen

    1998-01-01

    By exploiting their genetic and metabolic capacity, lactic acid bacteria can be used to generate a variety of products from milk sugar lactose other than the archetypical lactic acid. This review will outline the different genetic and metabolic engineering strategies that can be applied to lactic ac

  1. Continuous Cultivation of Photosynthetic Bacteria for Fatty Acids Production

    DEFF Research Database (Denmark)

    Kim, Dong-Hoon; Lee, Ji-Hye; Hwang, Yuhoon

    2013-01-01

    In the present work, we introduced a novel approach for microbial fatty acids (FA) production. Photosynthetic bacteria, Rhodobacter sphaeroides KD131, were cultivated in a continuous-flow, stirred-tank reactor (CFSTR) at various substrate (lactate) concentrations.At hydraulic retention time (HRT) 4....... sphaeroides was around 35% of dry cell weight, mainly composed of vaccenic acid (C18:1, omega-7)....

  2. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    Science.gov (United States)

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  3. Engineering metabolic highways in Lactococci and other lactic acid bacteria

    NARCIS (Netherlands)

    Vos, de W.M.; Hugenholtz, J.

    2004-01-01

    Lactic acid bacteria (LAB) are widely used in industrial food fermentations and are receiving increased attention for use as cell factories for the production of food and pharmaceutical products. Glycolytic conversion of sugars into lactic acid is the main metabolic highway in these Gram-positive ba

  4. Structural diversity and biological significance of lipoteichoic acid in Gram-positive bacteria: focusing on beneficial probiotic lactic acid bacteria.

    Science.gov (United States)

    Shiraishi, Tsukasa; Yokota, Shinichi; Fukiya, Satoru; Yokota, Atsushi

    2016-01-01

    Bacterial cell surface molecules are at the forefront of host-bacterium interactions. Teichoic acids are observed only in Gram-positive bacteria, and they are one of the main cell surface components. Teichoic acids play important physiological roles and contribute to the bacterial interaction with their host. In particular, lipoteichoic acid (LTA) anchored to the cell membrane has attracted attention as a host immunomodulator. Chemical and biological characteristics of LTA from various bacteria have been described. However, most of the information concerns pathogenic bacteria, and information on beneficial bacteria, including probiotic lactic acid bacteria, is insufficient. LTA is structurally diverse. Strain-level structural diversity of LTA is suggested to underpin its immunomodulatory activities. Thus, the structural information on LTA in probiotics, in particular strain-associated diversity, is important for understanding its beneficial roles associated with the modulation of immune response. Continued accumulation of structural information is necessary to elucidate the detailed physiological roles and significance of LTA. In this review article, we summarize the current state of knowledge on LTA structure, in particular the structure of LTA from lactic acid bacteria. We also describe the significance of structural diversity and biological roles of LTA.

  5. Agroinfiltration reduces ABA levels and suppresses Pseudomonas syringae-elicited salicylic acid production in Nicotiana tabacum.

    Directory of Open Access Journals (Sweden)

    Arantza Rico

    Full Text Available BACKGROUND: Agrobacterium tumefaciens strain GV3101 (pMP90 is widely used in transient gene expression assays, including assays to study pathogen effectors and plant disease resistance mechanisms. However, inoculation of A. tumefaciens GV3101 into Nicotiana tabacum (tobacco leaves prior to infiltration with pathogenic and non-host strains of Pseudomonas syringae results in suppression of macroscopic symptoms when compared with leaves pre-treated with a buffer control. METHODOLOGY/FINDINGS: To gain further insight into the mechanistic basis of symptom suppression by A. tumefaciens we examined the effect of pre-treatment with A. tumefaciens on the growth of P. syringae, the production of the plant signalling molecules salicylic acid (SA and abscisic acid (ABA, and the presence of callose deposits. Pre-treatment with A. tumefaciens reduced ABA levels, P. syringae multiplication and P. syringae-elicited SA and ABA production, but promoted increased callose deposition. However, pre-treatment with A. tumefaciens did not suppress necrosis or SA production in leaves inoculated with the elicitor HrpZ. CONCLUSIONS/SIGNIFICANCE: Collectively, these results show that inoculation of N. tabacum leaves with A. tumefaciens alters plant hormone levels and plant defence responses to P. syringae, and demonstrate that researchers should consider the impact of A. tumefaciens on plant signal transduction when using A. tumefaciens-mediated transient expression assays to investigate ABA-regulated processes or pathogenicity and plant defence mechanisms.

  6. Brain and muscle redox imbalance elicited by acute ethylmalonic acid administration.

    Directory of Open Access Journals (Sweden)

    Patrícia Fernanda Schuck

    Full Text Available Ethylmalonic acid (EMA accumulates in tissues and biological fluids of patients affected by short-chain acyl-CoA dehydrogenase deficiency (SCADD and ethylmalonic encephalopathy, illnesses characterized by neurological and muscular symptoms. Considering that the mechanisms responsible for the brain and skeletal muscle damage in these diseases are poorly known, in the present work we investigated the effects of acute EMA administration on redox status parameters in cerebral cortex and skeletal muscle from 30-day-old rats. Animals received three subcutaneous injections of EMA (6 μmol/g; 90 min interval between injections and were killed 1 h after the last administration. Control animals received saline in the same volumes. EMA administration significantly increased thiobarbituric acid-reactive substances levels in cerebral cortex and skeletal muscle, indicating increased lipid peroxidation. In addition, carbonyl content was increased in EMA-treated animal skeletal muscle when compared to the saline group. EMA administration also significantly increased 2',7'-dihydrodichlorofluorescein oxidation and superoxide production (reactive species markers, and decreased glutathione peroxidase activity in cerebral cortex, while glutathione levels were decreased only in skeletal muscle. On the other hand, respiratory chain complex I-III activity was altered by acute EMA administration neither in cerebral cortex nor in skeletal muscle. The present results show that acute EMA administration elicits oxidative stress in rat brain and skeletal muscle, suggesting that oxidative damage may be involved in the pathophysiology of the brain and muscle symptoms found in patients affected by SCADD and ethylmalonic encephalopathy.

  7. Brain and muscle redox imbalance elicited by acute ethylmalonic acid administration.

    Science.gov (United States)

    Schuck, Patrícia Fernanda; Milanez, Ana Paula; Felisberto, Francine; Galant, Leticia Selinger; Machado, Jéssica Luca; Furlanetto, Camila Brulezi; Petronilho, Fabricia; Dal-Pizzol, Felipe; Streck, Emilio Luiz; Ferreira, Gustavo Costa

    2015-01-01

    Ethylmalonic acid (EMA) accumulates in tissues and biological fluids of patients affected by short-chain acyl-CoA dehydrogenase deficiency (SCADD) and ethylmalonic encephalopathy, illnesses characterized by neurological and muscular symptoms. Considering that the mechanisms responsible for the brain and skeletal muscle damage in these diseases are poorly known, in the present work we investigated the effects of acute EMA administration on redox status parameters in cerebral cortex and skeletal muscle from 30-day-old rats. Animals received three subcutaneous injections of EMA (6 μmol/g; 90 min interval between injections) and were killed 1 h after the last administration. Control animals received saline in the same volumes. EMA administration significantly increased thiobarbituric acid-reactive substances levels in cerebral cortex and skeletal muscle, indicating increased lipid peroxidation. In addition, carbonyl content was increased in EMA-treated animal skeletal muscle when compared to the saline group. EMA administration also significantly increased 2',7'-dihydrodichlorofluorescein oxidation and superoxide production (reactive species markers), and decreased glutathione peroxidase activity in cerebral cortex, while glutathione levels were decreased only in skeletal muscle. On the other hand, respiratory chain complex I-III activity was altered by acute EMA administration neither in cerebral cortex nor in skeletal muscle. The present results show that acute EMA administration elicits oxidative stress in rat brain and skeletal muscle, suggesting that oxidative damage may be involved in the pathophysiology of the brain and muscle symptoms found in patients affected by SCADD and ethylmalonic encephalopathy.

  8. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors.

    Directory of Open Access Journals (Sweden)

    Shreoshi Pal Choudhuri

    Full Text Available Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5' ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5' monophosphate (IMP. The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex.

  9. Lactic acid bacteria found in fermented fish in Thailand.

    Science.gov (United States)

    Tanasupawat, Somboon; Okada, Sanae; Komagata, Kazuo

    1998-06-01

    Forty-seven strains of homofermentative rod-shaped and 5 heterofermentative sphere-shaped lactic acid bacteria were isolated from 4 kinds of fermented fish (pla-ra, pla-chom, kung-chom, and hoi-dong) in Thailand. These bacteria were separated into four groups by phenotypic and chemotaxonomic characteristics, including fluorometric DNA-DNA hybridization. Five strains (Group I) contained meso-diaminopimelic acid in the cell wall. Four strains were identified as Lactobacillus pentosus, and one strain was L. plantarum. Tested strains of this group produced DL-lactic acid. The rest of the rod-shaped bacteria, 23 strains (Group II) and 19 strains (Group III), lacked meso-diaminopimelic acid in the cell wall and were identified as L. farciminis and Lactobacillus species, respectively. The tested strains of these groups produced L-lactic acid. The amount of cellular fatty acids of C16:0 and C18:1, and the DNA base compositions were significant for differentiating the strains in Groups II and III. Five strains of cocci in chains (Group IV) produced gas from glucose. The tested strains of this group produced d-lactic acid. They were identified as a Leuconostoc species. The distribution of these bacteria in fermented fish in Thailand is discussed.

  10. Functional genomics of lactic acid bacteria: from food to health.

    Science.gov (United States)

    Douillard, François P; de Vos, Willem M

    2014-08-29

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.

  11. Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling.

    Science.gov (United States)

    Zhang, Peng-Jun; Li, Wei-Di; Huang, Fang; Zhang, Jin-Ming; Xu, Fang-Cheng; Lu, Yao-Bin

    2013-05-01

    Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their "success" is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying whitefly suppression of JA-regulated defenses. Here, we showed that the expression of salicylic acid (SA)-responsive genes (EDS1 and PR1) in Arabidopsis thaliana was significantly enhanced during feeding by whitefly nymphs. Whereas upstream JA-responsive genes (LOX2 and OPR3) also were induced, the downstream JA-responsive gene (VSP1) was repressed, i.e., whiteflies only suppressed downstream JA signaling. Gene-expression analyses with various Arabidopsis mutants, including NahG, npr-1, ein2-1, and dde2-2, revealed that SA signaling plays a key role in the suppression of downstream JA defenses by whitefly feeding. Assays confirmed that SA activation enhanced whitefly performance by suppressing downstream JA defenses.

  12. Role of inorganic carbon in lactic acid bacteria metabolism

    OpenAIRE

    Arsène-Ploetze, Florence; Bringel, Françoise

    2004-01-01

    International audience; Capnophiles are bacteria stimulated by bicarbonate and CO$_2$, the two major forms of inorganic carbon (IC) in physiological neutral liquids. Capnophiles are often pathogenic heterotrophs found in IC-rich ecological niches such as human cavities. Like capnophiles, the growth of lactic acid bacteria (LAB) such as Lactobacillus plantarum and Enterococcus faecalis is stimulated by IC. CO$_2$ or HCO$^{-}_3$ are substrates in carbamoyl phosphate (CP) synthesis and other car...

  13. Nucleotide Metabolism and its Control in Lactic Acid Bacteria

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Hammer, Karin; Jensen, Peter Ruhdal

    2005-01-01

    Most metabolic reactions are connected through either their utilization of nucleotides or their utilization of nucleotides or their regulation by these metabolites. In this review the biosynthetic pathways for pyrimidine and purine metabolism in lactic acid bacteria are described including...... the interconversion pathways, the formation of deoxyribonucleotides and the salvage pathways for use of exogenous precursors. The data for the enzymatic and the genetic regulation of these pathways are reviewed, as well as the gene organizations in different lactic acid bacteria. Mutant phenotypes and methods...... for manipulation of nucleotide pools are also discussed. Our aim is to provide an overview of the physiology and genetics of nucleotide metabolism and its regulation that will facilitate the interpretation of data arising from genetics, metabolomics, proteomics, and transcriptomics in lactic acid bacteria....

  14. Acetic Acid bacteria: physiology and carbon sources oxidation.

    Science.gov (United States)

    Mamlouk, Dhouha; Gullo, Maria

    2013-12-01

    Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called "oxidative fermentations", especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism.

  15. Acid tolerance in root nodule bacteria.

    Science.gov (United States)

    Glenn, A R; Reeve, W G; Tiwari, R P; Dilworth, M J

    1999-01-01

    Biological nitrogen fixation, especially via the legume Rhizobium symbiosis, is important for world agriculture. The productivity of legume crops and pastures is significantly affected by soil acidity; in some cases it is the prokaryotic partner that is pH sensitive. Growth of Rhizobium is adversely affected by low pH, especially in the 'acid stress zone'. Rhizobia exhibit an adaptive acid tolerance response (ATR) that is influenced by calcium concentration. Using Tn5-mutagenesis, gusA fusions and 'proteome' analysis, we have identified a range of genes that are essential for growth at low pH (such as actA, actP, exoR, actR and actS). At least three regulatory systems exist. The two-component sensor-regulator system, actSR, is essential for induction of the adaptive ATR. Two other regulatory circuits exist that are independent of ActR. One system involves the low pH-induced regulator gene, phrR, which may control other low pH-regulated genes. The other circuit, involving a regulator that is yet unidentified, controls the expression of a pH-regulated structural gene (lpiA). We have used pH-responsive gusA fusions to identify acid-inducible genes (such as lpiA), and then attempted to identify the regulators of these genes. The emerging picture is of a relatively complex set of systems that respond to external pH.

  16. ldentification and Mutagenesis of Lactic Acid Bacteria from Chinese Sauerkraut

    Institute of Scientific and Technical Information of China (English)

    Yajing CHAl; Hao SHl; Ri NA

    2015-01-01

    ln order to analyze the fermentation properties of lactic acid bacteria in Chinese sauerkraut and to improve acid production, 21 samples of Chinese sauerkraut from lnner Mongolia and Northeast China were col ected and isolated with a Man-Rogosa-Sharpe (MRS) culture. Sixteen strains of lactic acid bacteria were identified by combining both phenotype and genotype methods. After activation, the 16 strains were inoculated into the MRS medium with a concentration of 4%and then incubated at 37 ℃. The pH and the absorbance of the culture were mea-sured. The activated strains were then mutagenized in a field of 4 KV/cm mutation, with dosages administered within 20 minutes and 30 minutes, respectively. The variation curves of the pH and the absorbance of the culture were determined. The experimental results showed that the lactic acid bacteria isolated from the soup were identified as Lactobacil us and the acid production of the bacteria was signifi-cantly improved by the mutagenesis of the corona electric field.

  17. Elicitation of gymnemic acid production in cell suspension cultures of Gymnema sylvestre R.Br. through endophytic fungi.

    Science.gov (United States)

    Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Gaddam, Susmila Aparna; Ghosh, Sukhendu Bikash; Tartte, Vijaya

    2016-12-01

    The enhancement of plant secondary metabolite production in cell suspension cultures through biotic or abiotic elicitation has become a potential biotechnological approach for commercialization or large-scale production of bioactive compounds. Gymnema sylvestre R.Br. is an important medicinal plant, rich in a group of oleanane triterpenoid saponins called gymnemic acid, well known for its anti-diabetic activity. Two endophytic fungal strains were isolated from the leaves of G. sylvestre and identified as Polyancora globosa and Xylaria sp. based on the PCR amplification and internal transcribed spacer (ITS 1-5.8S-ITS 2) sequencing of 18S rRNA gene. The process of elicitation of cell suspension cultures of G. sylvestre with dried powder of fungal mycelia (DPFM) and extracellular culture filtrate (ECF) of endophytic fungi consistently enhanced the accumulation of gymnemic acid and the DPFM was proved to be an effective elicitor when compared to the ECF. The DPFM elicited the gymnemic acid content in the range of 2.57-10.45-fold, while the ECF elicited the gymnemic acid content in the range of 2.39-7.8-fold. P. globosa, a novel and a rare endophytic fungal strain, has shown a great influence on the production of gymnemic acid. Cell suspension cultures elicited with DPFM of P. globosa produced higher amount of gymnemic acid content (124.23 mg/g dried cell weight) compared to the cultures elicited with DPFM of Xylaria sp. (102.24 mg/g DCW). But the cultures treated with consortium of DPFM of both fungi showed great influence on the production of gymnemic acid (139.98 mg/g DCW) than the cultures treated with DPFM alone. Similarly, cultures treated with consortium of ECF of both fungi produced more gymnemic acid content (94.86 mg/g DCW) compared with cultures treated with ECF of Xylaria sp. (77.93 mg/g DCW) and ECF of P. globosa (78.65 mg/g DCW) alone.

  18. Effects of Lactic Acid Bacteria Inoculated Fermentation on Pickled Cucumbers

    Directory of Open Access Journals (Sweden)

    Xiaoyi Ji

    2013-12-01

    Full Text Available The aim of this study was to determine the effects of Lactic Acid Bacteria (LAB fermentation on the texture and organic acid of pickled cucumbers. Texture and sensory evaluation as well as a microscopic observation were performed to study the textural differences among fresh cucumber, Spontaneous fermentation (SF cucumber and LAB Inoculating Fermentation (LABIF cucumber. Accumulation of seven organic acids i.e., oxalic, tartaric, malic, lactic, acetic, citric and succinic acid during cucumber pickling were also studied. The disruption extent of the middle lamella in SF cucumber displayed more obviously than that in LABIF cucumber, implying that LABIF contributed to keep the cucumber original structure intact. Based on the organic acid accumulation pattern, in SF LAB and Acetic Acid Bacteria (AAB fermented simultaneously, while in LABIF LAB fermented beforehand thus being in dominant position, then AAB fermented vigorously in a acidic condition created by LAB. The acetic acid accumulaton pattern could be regarded as the distinctive feature between SF and LABIF. The orgnic acids produced in LABIF were higher than that in SF. The final score of sensory evaluation combining texture analysis demonstrated that LABIF overmatched SF. It was concluded that LABIF could obviously enhance the quality of pickled cucumber and overwhelming SF, due to LABIF more beneficial to keep the cucumber original structure intact and organic acids accumulation.

  19. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Science.gov (United States)

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance.

  20. Quorum sensing-controlled gene expression in lactic acid bacteria

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Ruyter, Pascalle G.G.A. de; Kleerebezem, Michiel; Vos, Willem M. de

    1998-01-01

    Quorum sensing in lactic acid bacteria (LAB) involves peptides that are directly sensed by membrane-located histidine kinases, after which the signal is transmitted to an intracellular response regulator. This regulator in turn activates transcription of target genes, that commonly include the struc

  1. Lactic acid bacteria : the bugs of the new millennium

    NARCIS (Netherlands)

    Konings, W.N; Kok, J.; Kuipers, O.P.; Poolman, B.

    2000-01-01

    Lactic acid bacteria (LABs) are widely used in the manufacturing of fermented food and are among the best-studied microorganisms. Detailed knowledge of a number of physiological traits has opened new potential applications for these organisms in the food industry, while other traits might be benefic

  2. Lactic acid bacteria in a changing legislative environment

    NARCIS (Netherlands)

    Feord, J.

    2002-01-01

    The benefits of using lactic acid bacteria in the food chain, both through direct consumption and production of ingredients, are increasingly recognised by the food industry and consumers alike. The regulatory environment surrounding these products is diverse, covering foods and food ingredients, pr

  3. Genetic manipulation of the peptidolytic system in lactic acid bacteria

    NARCIS (Netherlands)

    Kok, J; Venema, G

    1995-01-01

    Due to their presumed involvenment in product flavour the peptidases of lactic acid bacteria have been subject to extensive research. A major breakthrough, was the isolation and purification of the various enzymes to homogeniety. This allowed a reevaluation of the number of different enzymes in one

  4. Effects of lactic acid bacteria contamination on lignocellulosic ethanol fermentation

    Science.gov (United States)

    Slower fermentation rates, mixed sugar compositions, and lower sugar concentrations may make lignocellulosic fermentations more susceptible to contamination by lactic acid bacteria (LAB), which is a common and costly problem to the corn-based fuel ethanol industry. To examine the effects of LAB con...

  5. Systems solutions by lactic acid bacteria: from paradigms to practice

    NARCIS (Netherlands)

    Vos, de W.M.

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serv

  6. Modelling strategies for the industrial exploitation of lactic acid bacteria

    NARCIS (Netherlands)

    Teusink, B.; Smid, E.J.

    2006-01-01

    Lactic acid bacteria (LAB) have a long tradition of use in the food industry, and the number and diversity of their applications has increased considerably over the years. Traditionally, process optimization for these applications involved both strain selection and trial and error. More recently, me

  7. Systems solutions by lactic acid bacteria: from paradigms to practice.

    Science.gov (United States)

    de Vos, Willem M

    2011-08-30

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications.

  8. Heme and menaquinone induced electron transport in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Santos Filipe

    2009-05-01

    Full Text Available Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  9. Lactic acid bacteria isolated from soy sauce mash in Thailand.

    Science.gov (United States)

    Tanasupawat, Somboon; Thongsanit, Jaruwan; Okada, Sanae; Komagata, Kazuo

    2002-08-01

    Fourteen sphere-shaped and 30 rod-shaped lactic acid bacteria were isolated from soy sauce mash of two factories in Thailand. These strains were separated into two groups, Group A and Group B, by cell shape and DNA-DNA similarity. Group A contained 14 tetrad-forming strains, and these strains were identified as Tetragenococcus halophilus by DNA similarity. Group B contained 30 rod-shaped bacteria, and they were further divided into four Subgroups, B1, B2, B3, and B4, and three ungrouped strains by phenotypic characteristics and DNA similarity. Subgroup B1 contained 16 strains, and these strains were identified as Lactobacillus acidipiscis by DNA similarity. Subgroup B2 included two strains, and the strains were identified as Lactobacillus farciminis by DNA similarity. Subgroup B3 contained five strains. The strains had meso-diaminopimelic acid in the cell wall, and were identified as Lactobacillus pentosus by DNA similarity. The strains tested produced DL-lactic acid from D-glucose. Subgroup B4 contained four strains. The strains had meso-diaminopimelic acid in the cell wall, and they were identified as Lactobacillus plantarum by DNA similarity. Two ungrouped strains were homofermentative, and one was heterofermentative. They showed a low degree of DNA similarity with the type strains tested, and were left unnamed. The distribution of lactic acid bacteria in soy sauce mash in Thailand is discussed.

  10. Isolation of lactic acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Bohn, Jelena; Yüksel-Dadak, Aytül; Dröge, Stefan; König, Helmut

    2017-02-20

    Direct molecular approaches provide hints that lactic acid bacteria play an important role in the degradation process of organic material to methanogenetic substrates in biogas plants. However, their diversity in biogas fermenter samples has not been analyzed in detail yet. For that reason, five different biogas fermenters, which were fed mainly with maize silage and manure from cattle or pigs, were examined for the occurrence of lactic acid-forming bacteria. A total of 197 lactic acid-forming bacterial strains were isolated, which we assigned to 21 species, belonging to the genera Bacillus, Clostridium, Lactobacillus, Pediococcus, Streptococcus and Pseudoramibacter-related. A qualitative multiplex system and a real-time quantitative PCR could be developed for most isolates, realized by the selection of specific primers. Their role in biogas plants was discussed on the basis of the quantitative results and on physiological data of the isolates.

  11. Acetic acid bacteria spoilage of bottled red wine -- a review.

    Science.gov (United States)

    Bartowsky, Eveline J; Henschke, Paul A

    2008-06-30

    Acetic acid bacteria (AAB) are ubiquitous organisms that are well adapted to sugar and ethanol rich environments. This family of Gram-positive bacteria are well known for their ability to produce acetic acid, the main constituent in vinegar. The oxidation of ethanol through acetaldehyde to acetic acid is well understood and characterised. AAB form part of the complex natural microbial flora of grapes and wine, however their presence is less desirable than the lactic acid bacteria and yeast. Even though AAB were described by Pasteur in the 1850s, wine associated AAB are still difficult to cultivate on artificial laboratory media and until more recently, their taxonomy has not been well characterised. Wine is at most risk of spoilage during production and the presence of these strictly aerobic bacteria in grape must and during wine maturation can be controlled by eliminating, or at least limiting oxygen, an essential growth factor. However, a new risk, spoilage of wine by AAB after packaging, has only recently been reported. As wine is not always sterile filtered prior to bottling, especially red wine, it often has a small resident bacterial population (bacteria. This spoilage is evident as a distinct deposit of bacterial biofilm in the neck of the bottle at the interface of the wine and the headspace of air, and is accompanied with vinegar, sherry, bruised apple, nutty, and solvent like off-aromas, depending on the degree of spoilage. This review focuses on the wine associated AAB species, the aroma and flavour changes in wine due to AAB metabolism, discusses the importance of oxygen ingress into the bottle and presents a hypothesis for the mechanism of spoilage of bottled red wine.

  12. Adaptation and tolerance of bacteria against acetic acid.

    Science.gov (United States)

    Trček, Janja; Mira, Nuno Pereira; Jarboe, Laura R

    2015-08-01

    Acetic acid is a weak organic acid exerting a toxic effect to most microorganisms at concentrations as low as 0.5 wt%. This toxic effect results mostly from acetic acid dissociation inside microbial cells, causing a decrease of intracellular pH and metabolic disturbance by the anion, among other deleterious effects. These microbial inhibition mechanisms enable acetic acid to be used as a preservative, although its usefulness is limited by the emergence of highly tolerant spoilage strains. Several biotechnological processes are also inhibited by the accumulation of acetic acid in the growth medium including production of bioethanol from lignocellulosics, wine making, and microbe-based production of acetic acid itself. To design better preservation strategies based on acetic acid and to improve the robustness of industrial biotechnological processes limited by this acid's toxicity, it is essential to deepen the understanding of the underlying toxicity mechanisms. In this sense, adaptive responses that improve tolerance to acetic acid have been well studied in Escherichia coli and Saccharomyces cerevisiae. Strains highly tolerant to acetic acid, either isolated from natural environments or specifically engineered for this effect, represent a unique reservoir of information that could increase our understanding of acetic acid tolerance and contribute to the design of additional tolerance mechanisms. In this article, the mechanisms underlying the acetic acid tolerance exhibited by several bacterial strains are reviewed, with emphasis on the knowledge gathered in acetic acid bacteria and E. coli. A comparison of how these bacterial adaptive responses to acetic acid stress fit to those described in the yeast Saccharomyces cerevisiae is also performed. A systematic comparison of the similarities and dissimilarities of the ways by which different microbial systems surpass the deleterious effects of acetic acid toxicity has not been performed so far, although such exchange

  13. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods.

    Science.gov (United States)

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound.

  14. Cell wall structure and function in lactic acid bacteria.

    Science.gov (United States)

    Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius

    2014-08-29

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts.

  15. Bacteriocins of lactic acid bacteria: extending the family.

    Science.gov (United States)

    Alvarez-Sieiro, Patricia; Montalbán-López, Manuel; Mu, Dongdong; Kuipers, Oscar P

    2016-04-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are proteinaceous antimicrobial molecules with a diverse genetic origin, posttranslationally modified or not, that can help the producer organism to outcompete other bacterial species. In this review, we focus on the various types of bacteriocins that can be found in LAB and the organization and regulation of the gene clusters responsible for their production and biosynthesis, and consider the food applications of the prototype bacteriocins from LAB. Furthermore, we propose a revised classification of bacteriocins that can accommodate the increasing number of classes reported over the last years.

  16. Optimization of (-galactosidase production from lactic acid bacteria

    OpenAIRE

    2015-01-01

    β-galactosidase, commonly known as lactase, represents commercially important enzyme that is prevalently used for lactose hydrolysis in milk and whey. To the date, it has been isolated from various sources. In this study different strains of lactic acid bacteria were assessed for their β-galactosidase productivity, and Lactobacillus acidophilus ATCC 4356 resulted with the highest production potential. Thereafter, optimal conditions for accomplishing high yi...

  17. SCREENING OF BACTERIA FOR LACTIC ACID PRODUCTION FROM WHEY WATER

    Directory of Open Access Journals (Sweden)

    Vethakanraj Helen Shiphrah

    2013-01-01

    Full Text Available Lactobacilli have the property of converting lactose and other sugars to lactic acid through fermentation. So whey water, the greenish translucent liquid rich in lactose, vitamins, proteins and mineral salts, obtained as a by-product after the precipitation of cheese can be used as a substrate for Lactobacilli for lactic acid production which otherwise is a serious environmental pollutant when disposed without pre-treatment. 16 isolates of Lactic acid producing bacteria isolated from various biological sources were inoculated in whey water (1% inoculum and kept at 37°C in the shaker at a speed of 150 revolutions per minute for 36 h. Lactic acid production was estimated after 36 h and the strains 4a, 12a and 15b showed lactic acid production of which 12a produced the highest concentration. The amount of Lactic acid produced by 12a was 0.62 g L-1 under unadjusted condition which is comparable to previously reported strains in enriched medium. So the lactic acid production by strain 12a was further investigated to find the effect of pH and temperature on the production efficiency. Lactic acid production was also checked in Luria-Bertani broth and whey water was found to be the medium of choice for prolonged lactic acid production.

  18. LACTIC ACID BACTERIA AND THEIR ROLE IN THE MEAT PROCESSING

    Directory of Open Access Journals (Sweden)

    Josef Kameník

    2016-01-01

    Full Text Available Abstract Lactic acid bacteria (LAB play in meat processing a positive but also a negative role. The principal advantage of LAB in the production of dry fermented sausages lies in the fermentation of saccharides, i.e. the creation of lactic acid and the subsequent fall in pH. The role of LAB in fresh meat spoilage is still controversial. Several species are able to dominate the meat system in VP and MAP storage conditions and can release odor-impact molecules. On the other hand they can provide favorable antagonistic activity against other undesired microorganisms. LAB are important spoilage agents in cooked meat products.

  19. Chemotactic behavior of deep subsurface bacteria toward carbohydrates, amino acids and a chlorinated alkene

    Energy Technology Data Exchange (ETDEWEB)

    Lopez de Victoria, G. (Puerto Rico Univ., Rio Piedras (Puerto Rico). Dept. of Biology)

    1989-02-01

    The chemotactic behavior of deep terrestrial subsurface bacteria toward amino acids, carbohydrates and trichloroethylene was assayed using a modification of the capillary method and bacterial enumeration by acridine orange direct counts. Eleven isolates of bacteria isolated from six different geological formations were investigated. A bimodal response rather than an absolute positive or negative response was observed in most assays. Most of the isolates were positively chemotactic to low concentrations of substrates and were repelled by high concentrations of the same substrate. However, this was not the case for trichloroethylene (TCE) which was mostly an attractant and elicited the highest responses in all the isolates when compared with amino acids and carbohydrates. The movement rates of these isolates in aseptic subsurface sediments in the absence and presence of TCE were also determined using a laboratory model. All of the isolates showed distinct response range, peak, and threshold concentrations when exposed to the same substrates suggesting that they are possibly different species as has been inferred from DNA homology studies. 101 refs., 4 figs., 57 tabs.

  20. [Lactic acid bacteria and health: are probiotics safe for human?].

    Science.gov (United States)

    Kubiszewska, Izabela; Januszewska, Milena; Rybka, Joanna; Gackowska, Lidia

    2014-11-17

    The effect of Lactobacillus and Bifidobacterium on human health has been examined for many years. Numerous in vivo and in vitro studies have confirmed the beneficial activity of some exogenous lactic acid bacteria in the treatment and prevention of rotaviral infection, antibiotic-associated diarrhea, inflammatory bowel disease and other gastrointestinal disorders. Probiotics support the action of the intestinal microflora and exhibit a favorable modulatory effect on the host's immune system. However, it should be remembered that relatively harmless lactobacilli can occasionally induce opportunistic infections. Due to reaching almost 20x10(12) probiotic doses per year which contain live cultures of bacteria, it is essential to monitor the safety aspect of their administration. In recent years, infections caused by Lactobacillus and Bifidobacterium made up 0.05% to 0.4% of cases of endocarditis and bacteremia. In most cases, the infections were caused by endogenous microflora of the host or bacterial strains colonizing the host's oral cavity. According to a review of cases of infections caused by bacteria of the genus Lactobacillus from 2005 (collected by J.P. Cannot'a), 1.7% of infections have been linked directly with intensive dairy probiotic consumption by patients. Additionally, due to the lack of a precise description of most individuals' eating habits, the possible effect of probiotics on infection development definitively should not be ruled out. The present paper describes cases of diseases caused by lactic acid bacteria, a potential mechanism for the adverse action of bacteria, and the possible hazard connected with probiotic supplementation for seriously ill and hospitalized patients.

  1. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    Science.gov (United States)

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation.

  2. Comparative functional genomics of amino acid metabolism of lactic acid bacteria

    NARCIS (Netherlands)

    Pastink, M.I.

    2009-01-01

    The amino acid metabolism of lactic acid bacteria used as starters in industrial fermentations has profound effects on the quality of the fermented foods. The work described in this PhD thesis was initiated to use genomics technologies and a comparative approach to link the gene content of some well

  3. Potential of lactic acid bacteria in aflatoxin risk mitigation.

    Science.gov (United States)

    Ahlberg, Sara H; Joutsjoki, Vesa; Korhonen, Hannu J

    2015-08-17

    Aflatoxins (AF) are ubiquitous mycotoxins contaminating food and feed. Consumption of contaminated food and feed can cause a severe health risk to humans and animals. A novel biological method could reduce the health risks of aflatoxins through inhibiting mold growth and binding aflatoxins. Lactic acid bacteria (LAB) are commonly used in fermented food production. LAB are known to inhibit mold growth and, to some extent, to bind aflatoxins in different matrices. Reduced mold growth and aflatoxin production may be caused by competition for nutrients between bacterial cells and fungi. Most likely, binding of aflatoxins depends on environmental conditions and is strain-specific. Killed bacteria cells possess consistently better binding abilities for aflatoxin B1 (AFB1) than viable cells. Lactobacilli especially are relatively well studied and provide noticeable possibilities in binding of aflatoxin B1 and M1 in food. It seems that binding is reversible and that bound aflatoxins are released later on (Haskard et al., 2001; Peltonen et al., 2001). This literature review suggests that novel biological methods, such as lactic acid bacteria, show potential in mitigating toxic effects of aflatoxins in food and feed.

  4. Industrial production of amino acids by coryneform bacteria.

    Science.gov (United States)

    Hermann, Thomas

    2003-09-04

    In the 1950s Corynebacterium glutamicum was found to be a very efficient producer of L-glutamic acid. Since this time biotechnological processes with bacteria of the species Corynebacterium developed to be among the most important in terms of tonnage and economical value. L-Glutamic acid and L-lysine are bulk products nowadays. L-Valine, L-isoleucine, L-threonine, L-aspartic acid and L-alanine are among other amino acids produced by Corynebacteria. Applications range from feed to food and pharmaceutical products. The growing market for amino acids produced with Corynebacteria led to significant improvements in bioprocess and downstream technology as well as in molecular biology. During the last decade big efforts were made to increase the productivity and to decrease the production costs. This review gives an overview of the world market for amino acids produced by Corynebacteria. Significant improvements in bioprocess technology, i.e. repeated fed batch or continuous production are summarised. Bioprocess technology itself was improved furthermore by application of more sophisticated feeding and automatisation strategies. Even though several amino acids developed towards commodities in the last decade, side aspects of the production process like sterility or detection of contaminants still have increasing relevance. Finally one focus of this review is on recent developments in downstream technology.

  5. Current taxonomy of phages infecting lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Jennifer eMahony

    2014-01-01

    Full Text Available Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp. and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species.

  6. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    Science.gov (United States)

    Bermúdez-Humarán, Luis G.; Innocentin, Silvia; Lefèvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  7. Screening and characterization of novel bacteriocins from lactic acid bacteria.

    Science.gov (United States)

    Zendo, Takeshi

    2013-01-01

    Bacteriocins produced by lactic acid bacteria (LAB) are expected to be safe antimicrobial agents. While the best studied LAB bacteriocin, nisin A, is widely utilized as a food preservative, various novel ones are required to control undesirable bacteria more effectively. To discover novel bacteriocins at the early step of the screening process, we developed a rapid screening system that evaluates bacteriocins produced by newly isolated LAB based on their antibacterial spectra and molecular masses. By means of this system, various novel bacteriocins were identified, including a nisin variant, nisin Q, a two-peptide bacteriocin, lactococcin Q, a leaderless bacteriocin, lacticin Q, and a circular bacteriocin, lactocyclicin Q. Moreover, some LAB isolates were found to produce multiple bacteriocins. They were characterized as to their structures, mechanisms of action, and biosynthetic mechanisms. Novel LAB bacteriocins and their biosynthetic mechanisms are expected for applications such as food preservation and peptide engineering.

  8. Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Nakano, Shigeru; Fukaya, Masahiro

    2008-06-30

    Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation.

  9. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  10. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-04

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  11. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots.

    Science.gov (United States)

    Kudoyarova, Guzel R; Melentiev, Alexander I; Martynenko, Elena V; Timergalina, Leila N; Arkhipova, Tatiana N; Shendel, Galina V; Kuz'mina, Ludmila Yu; Dodd, Ian C; Veselov, Stanislav Yu

    2014-10-01

    Phytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B. subtilis IB-21 (which failed to accumulate cytokinins). Growing plants in a split root system allowed spatial separation of zeatin application or rhizobacterial inoculation to one compartment and analyses of amino acid release from roots (rhizodeposition) into the other compartment (without either microbial inoculation or treatment with exogenous hormone). Supplying B. subtilis IB-22 or zeatin to either the whole root system or half of the roots increased concentrations of amino acids in the soil solution although the magnitude of the increase was greater when whole roots were treated. There was some similarity in amino acid concentrations induced by either bacterial or zeatin treatment. Thus B. subtilis IB-22 increased amino acid rhizodeposition, likely due to its ability to produce cytokinins. Furthermore, B. subtilis strain IB-21, which failed to accumulate cytokinins in culture media, did not significantly affect amino acid concentrations in the wheat rhizosphere. The ability of rhizobacteria to produce cytokinins and thereby stimulate rhizodeposition may be important in enhancing rhizobacterial colonization of the rhizoplane.

  12. Functional fermented whey-based beverage using lactic acid bacteria.

    Science.gov (United States)

    Pescuma, Micaela; Hébert, Elvira María; Mozzi, Fernanda; de Valdez, Graciela Font

    2010-06-30

    Whey protein concentrate (WPC) is employed as functional food ingredient because of its nutritional value and emulsifying properties. However, the major whey protein beta-lactoglobulin (BLG) is the main cause of milk allergy. The aim of this study was to formulate a fermented whey beverage using selected lactic acid bacteria and WPC35 (WPC containing 35% of proteins) to obtain a fermented product with low lactose and BLG contents and high essential amino acid concentration. Cell viability, lactose consumption, lactic acid production, proteolytic activity, amino acid release and BLG degradation by the selected strains Lactobacillus acidophilus CRL 636, Lactobacillus delbrueckii subsp. bulgaricus CRL 656 and Streptococcus thermophilus CRL 804, as single or mixed (SLaB) cultures were evaluated in WPC35 (10%, w/v) incubated at 37 degrees C for 24h. Then, the fermented WPC35 was mixed with peach juice and calcium lactate (2%, w/v) and stored at 10 degrees C for 28 days. During fermentation, single cultures grew 1.7-3.1 log CFU/ml and produced 25.1-95.0 mmol/l of lactic acid as consequence of lactose consumption (14.0-41.8 mmol/l) after 12h fermentation. L. delbrueckii subsp. bulgaricus CRL 656 was the most proteolytic strain (626 microg/ml Leu) and released the branched-chain essential amino acids Leu (16 microg/ml), Ile (27 microg/ml) and Val (43 microg/ml). All strains were able to degrade BLG in a range of 41-85% after 12h incubation. The starter culture SLaB grew 3.0 log CFU/ml, showed marked pH reduction, produced 122.0 mmol/l of lactic acid, displayed high proteolytic activity (484 microg/ml Leu) releasing Leu (13 microg/ml), Ile (18 microg/ml) and Val (35 microg/ml), and hydrolyzed 92% of BLG. The addition of calcium lactate to WPC35 maintained the drink pH stable during shelf life; no contamination was detected during this period. After 28 days, a decrease in cell viability of all strains was observed being more pronounced for L. delbrueckii subsp. bulgaricus

  13. Lactic acid bacteria: the bugs of the new millennium.

    Science.gov (United States)

    Konings, W N; Kok, J; Kuipers, O P; Poolman, B

    2000-06-01

    Lactic acid bacteria (LABs) are widely used in the manufacturing of fermented food and are among the best-studied microorganisms. Detailed knowledge of a number of physiological traits has opened new potential applications for these organisms in the food industry, while other traits might be beneficial for human health. Important new developments have been made in the research of LABs in the areas of multidrug resistance, bacteriocins and quorum sensing, osmoregulation, proteolysis, autolysins and bacteriophages. Recently, progress has been made in the construction of food-grade genetically modified LABs.

  14. Continuous Cultivation of Photosynthetic Bacteria for Fatty Acids Production

    OpenAIRE

    Kim, Dong-Hoon; Lee, Ji-Hye; Hwang, Yuhoon; Kang, Seoktae; Kim, Mi-Sun

    2013-01-01

    In the present work, we introduced a novel approach for microbial fatty acids (FA) production. Photosynthetic bacteria, Rhodobacter sphaeroides KD131, were cultivated in a continuous-flow, stirred-tank reactor (CFSTR) at various substrate (lactate) concentrations.At hydraulic retention time (HRT) 4 d, cell concentration continuously increased from 0.97 g dcw/L to 2.05 g dcw/L as lactate concentration increased from 30 mM to 60 mM. At 70 mM, however, cell concentration fluctuated with incomple...

  15. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  16. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates.

    Science.gov (United States)

    Fritsch, Caroline; Heinrich, Veronika; Vogel, Rudi F; Toelstede, Simone

    2016-08-01

    Sunflower flour provides a high content of protein with a well-balanced amino acid composition and is therefore regarded as an attractive source for protein. The use for human nutrition is hindered by phenolic compounds, mainly chlorogenic acid, which can lead under specific circumstances to undesirable discolorations. In this study, growth behavior and degradation ability of chlorogenic acid of four lactic acid bacteria were explored. Data suggested that significant higher fermentation performances on sunflower flour as compared to sunflower protein concentrate were reached by Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus gasseri and Bifidobacterium animalis subsp. lactis. In fermentation with the latter two strains reduced amounts of chlorogenic acid were observed in sunflower flour (-11.4% and -19.8%, respectively), which were more pronounced in the protein concentrate (-50.7% and -95.6%, respectively). High tolerances against chlorogenic acid and the cleavage product quinic acid with a minimum inhibitory concentration (MIC) of ≥20.48 mg/ml after 48 h were recorded for all strains except Bifidobacterium animalis subsp. lactis, which was more sensitive. The second cleavage compound, caffeic acid revealed a higher antimicrobial potential with MIC values of 0.64-5.12 mg/ml. In this proof of concept study, degradation versus inhibitory effect suggest the existence of basic mechanisms of interaction between phenolic acids in sunflower and lactic acid bacteria and a feasible way to reduce the chlorogenic acid content, which may help to avoid undesired color changes.

  17. Genome level analysis of bacteriocins of lactic acid bacteria.

    Science.gov (United States)

    Singh, Neetigyata Pratap; Tiwari, Abhay; Bansal, Ankiti; Thakur, Shruti; Sharma, Garima; Gabrani, Reema

    2015-06-01

    Bacteriocins are antimicrobial peptides which are ribosomally synthesized by mainly all bacterial species. LABs (lactic acid bacteria) are a diverse group of bacteria that include around 20 genera of various species. Though LABs have a tremendous potential for production of anti-microbial peptides, this group of bacteria is still underexplored for bacteriocins. To study the diversity among bacteriocin encoding clusters and the putative bacteriocin precursors, genome mining was performed on 20 different species of LAB not reported to be bacteriocin producers. The phylogenetic tree of gyrB, rpoB, and 16S rRNA were constructed using MEGA6 software to analyze the diversity among strains. Putative bacteriocins operons identified were found to be diverse and were further characterized on the basis of physiochemical properties and the secondary structure. The presence of at least two cysteine residues in most of the observed putative bacteriocins leads to disulphide bond formation and provide stability. Our data suggests that LABs are prolific source of low molecular weight non modified peptides.

  18. Enhanced daidzin production from jasmonic and acetyl salicylic acid elicited hairy root cultures of Psoralea corylifolia L. (Fabaceae).

    Science.gov (United States)

    Zaheer, Mohd; Reddy, Vudem Dashavantha; Giri, Charu Chandra

    2016-07-01

    Daidzin (7-O-glucoside of daidzein) has several pharmacological benefits in herbal remedy, as antioxidant and shown antidipsotropic activity. Hairy root culture of Psoralea corylifolia L. was developed for biomass and enhanced daidzin production using signalling compounds such as jasmonic acid (JA) and acetyl salicylic acid (ASA). Best response of 2.8-fold daidzin (5.09% DW) with 1 μM JA treatment after second week and 7.3-fold (3.43% DW) with 10 μM JA elicitation after 10th week was obtained from hairy roots compared to untreated control. ASA at 10 μM promoted 1.7-fold increase in daidzin (1.49% DW) content after seventh week compared to control (0.83% DW). Addition of 25 μM ASA resulted in 1.44% DW daidzin (1.5-fold increase) with 0.91% DW in control after fifth week and 1.44% DW daidzin (2.3-fold increase) after eighth week when compared to untreated control (0.62% DW). Reduced biomass with increased daidzin content was facilitated by elicited hairy root cultures.

  19. Antagonism Between Osmophilic Lactic Acid Bacteria and Yeasts in Brine Fermentation of Soy Sauce

    OpenAIRE

    NODA, FUMIO; Hayashi, Kazuya; Mizunuma, Takeji

    1980-01-01

    Brine fermentation by osmophilic lactic acid bacteria and yeasts for long periods of time is essential to produce a good quality of shoyu (Japanese fermented soy sauce). It is well known that lactic acid fermentation by osmophilic lactic acid bacteria results in the depression of alcoholic fermentation by osmophilic yeasts, but the nature of the interaction between osmophilic lactic acid bacteria and yeasts in brine fermentation of shoyu has not been revealed. The inhibitory effect of osmophi...

  20. Bacteriocins produced by lactic acid bacteria: A review

    Directory of Open Access Journals (Sweden)

    Vesković-Moračanin Slavica M.

    2014-01-01

    Full Text Available Lactic acid bacteria (LAB have an essential role in the production of fermented products. With their metabolic activity, they influence the ripening processes - leading to desired sensory qualities while at the same time inhibiting the growth of undesired microorganisms. Because of their dominant role during fermentation and because of a long tradition of utilization, Lhave been designated as “safe microbiota”. Biological protection of LAB, as a naturally present and/or selected and intentionally added microflora, is realized through the production of non-specific (lactic acid, acetic acid and other volatile organic acids, hydrogen peroxide, diacetyl, etc and specific metabolites, bacteriocins. Bacteriocins are extracellularly released proteins or peptides which possess certain antibacterial activity towards certain types of microorganisms, usually related to the producing bacteria. Today, bacteriocins represent a very interesting potential for their application in the food industry. Their application can reduce the use of synthetic preservatives and/or the intensity of thermal treatment during food production consumer’s need for safe, fresh and minimally-processed food. With the intention of realizing this potential to the fullest, it is necessary to understand the nature of bacteriocins, their production mechanisms, regulations and actions, as well as the influence of external factors on the their antimicrobial activity. The composition of food, i.e. its characteristics (pH, temperature, ingredients and additives, types and quantities of epiphytic microbiota and the actual technological process used in production, can all influence the stability and activity of the added bacteriocins. The future research in this field should also aim to clarify this unknown aspect of the application of bacteriocins, to provide the necessary knowledge about the optimization of the external conditions and open up the possibility of discovering their new

  1. Hydrolytic breakdown of lactoferricin by lactic acid bacteria.

    Science.gov (United States)

    Paul, Moushumi; Somkuti, George A

    2010-02-01

    Lactoferricin is a 25-amino acid antimicrobial peptide fragment that is liberated by pepsin digestion of lactoferrin present in bovine milk. Along with its antibacterial properties, lactoferricin has also been reported to have immunostimulatory, antiviral, and anticarcinogenic effects. These attributes provide lactoferricin and other natural bioactive peptides with the potential to be functional food ingredients that can be used by the food industry in a variety of applications. At present, commercial uses of these types of compounds are limited by the scarcity of information on their ability to survive food processing environments. We have monitored the degradation of lactoferricin during its incubation with two types of lactic acid bacteria used in the yogurt-making industry, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, with the aim of assessing the stability of this milk protein-derived peptide under simulated yogurt-making conditions. Analysis of the hydrolysis products isolated from these experiments indicates degradation of this peptide near neutral pH by lactic acid bacteria-associated peptidases, the extent of which was influenced by the bacterial strain used. However, the data also showed that compared to other milk-derived bioactive peptides that undergo complete degradation under these conditions, the 25-amino acid lactoferricin is apparently more resistant, with approximately 50% of the starting material remaining after 4 h of incubation. These findings imply that lactoferricin, as a natural milk protein-derived peptide, has potential applications in the commercial production of yogurt-like fermented dairy products as a multi-functional food ingredient.

  2. Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation.

    Science.gov (United States)

    van Beek, S; Priest, F G

    2000-12-01

    Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation.

  3. Probiotic properties of endemic strains of lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Flora N. Tkhruni

    2013-01-01

    Full Text Available Strains of lactic acid bacteria (LAB isolated from various samples of matsun, yogurt and salted cheese from natural farms of Armenia were studied. They have high antimicrobial and probiotic activities, growth rate and differ by their resistance to enzymes. Supernatants of LAB retain bactericidal activity at рН 3.0-8.0 and inhibit growth of various microflora. The application of different methods of identification and LAB genotyping (API 50 CH, 16S rRNA sequencing, GS-PCR, RAPD PCR showed that isolated LAB evidenced a 99.9% similarity with L. rhamnosus, L. plantarum and L. pentosus species and coccoid forms of Streptococcus and Enterococcus species. It can be concluded, that some strains of lactic acid bacteria, isolated from dairy products from natural farms of Armenia, can be properly used for biopreservation of some foodstuffs. On the basis of experimental data, the LAB can be used as basis for obtaining the new products of functional nutrition.

  4. Naturally Occurring Lactic Acid Bacteria Isolated from Tomato Pomace Silage

    Science.gov (United States)

    Wu, Jing-jing; Du, Rui-ping; Gao, Min; Sui, Yao-qiang; Xiu, Lei; Wang, Xiao

    2014-01-01

    Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence and carbohydrate fermentation tests, the isolates were identified as 17 species namely: Lactobacillus coryniformis subsp. torquens (0.97%), Lactobacillus pontis (0.97%), Lactobacillus hilgardii (0.97%), Lactobacillus pantheris (0.97%), Lactobacillus amylovorus (1.9%), Lactobacillus panis (1.9%), Lactobacillus vaginalis (1.9%), Lactobacillus rapi (1.9%), Lactobacillus buchneri (2.9%), Lactobacillus parafarraginis (2.9%), Lactobacillus helveticus (3.9%), Lactobacillus camelliae (3.9%), Lactobacillus fermentum (5.8%), Lactobacillus manihotivorans (6.8%), Lactobacillus plantarum (10.7%), Lactobacillus harbinensis (16.5%) and Lactobacillus paracasei subsp. paracasei (35.0%). This study has shown that TP can be well preserved for 90 days by ensilaging and that TPS is not only rich in essential nutrients, but that physiological and biochemical properties of the isolates could provide a platform for future design of lactic acid bacteria (LAB) inoculants aimed at improving the fermentation quality of silage. PMID:25049999

  5. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    Science.gov (United States)

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  6. [Systematic analysis and metabolic regulation of physiological functions for lactic acid bacteria--a review].

    Science.gov (United States)

    Wu, Chongde; Zhang, Juan; Liu, Liming

    2012-01-01

    As cell factories, lactic acid bacteria are widely used in food, agriculture, medicine and other industries, and play a great role in industrial processes. However, lactic acid bacteria encounter various environmental stresses both in industrial processes and in the gastrointestinal tract, which impair their physiological functions and food manufacture efficiency. Recently, the development of metabolic engineering and system biology brings unprecedented opportunity for the physiological modification of lactic acid bacteria. In this review, we addresses the progress of lactic acid bacterium system biology, and based on this, the metabolic engineering strategies for manipulating and optimizing lactic acid bacteria physiological function were summarized.

  7. Insights into the evolution of sialic acid catabolism among bacteria

    Directory of Open Access Journals (Sweden)

    Almagro-Moreno Salvador

    2009-05-01

    Full Text Available Abstract Background Sialic acids comprise a family of nine-carbon amino sugars that are prevalent in mucus rich environments. Sialic acids from the human host are used by a number of pathogens as an energy source. Here we explore the evolution of the genes involved in the catabolism of sialic acid. Results The cluster of genes encoding the enzymes N-acetylneuraminate lyase (NanA, epimerase (NanE, and kinase (NanK, necessary for the catabolism of sialic acid (the Nan cluster, are confined 46 bacterial species, 42 of which colonize mammals, 33 as pathogens and 9 as gut commensals. We found a putative sialic acid transporter associated with the Nan cluster in most species. We reconstructed the phylogenetic history of the NanA, NanE, and NanK proteins from the 46 species and compared them to the species tree based on 16S rRNA. Within the NanA phylogeny, Gram-negative and Gram-positive bacteria do not form distinct clades. NanA from Yersinia and Vibrio species was most closely related to the NanA clade from eukaryotes. To examine this further, we reconstructed the phylogeny of all NanA homologues in the databases. In this analysis of 83 NanA sequences, Bacteroidetes, a human commensal group formed a distinct clade with Verrucomicrobia, and branched with the Eukaryotes and the Yersinia/Vibrio clades. We speculate that pathogens such as V. cholerae may have acquired NanA from a commensal aiding their colonization of the human gut. Both the NanE and NanK phylogenies more closely represented the species tree but numerous incidences of incongruence are noted. We confirmed the predicted function of the sialic acid catabolism cluster in members the major intestinal pathogens Salmonella enterica, Vibrio cholerae, V. vulnificus, Yersinia enterocolitica and Y. pestis. Conclusion The Nan cluster among bacteria is confined to human pathogens and commensals conferring them the ability to utilize a ubiquitous carbon source in mucus rich surfaces of the human body

  8. Recent advances in nitrogen-fixing acetic acid bacteria.

    Science.gov (United States)

    Pedraza, Raúl O

    2008-06-30

    Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects

  9. Isolation and Identification of Epiphytic Lactic Acid Bacteria from Guinea Grass (Panicum maximum

    Directory of Open Access Journals (Sweden)

    M. Pasebani

    2010-01-01

    Full Text Available Problem statement: Bacteria can perform a variety of beneficial functions, for example many lactic acid bacteria are responsible for fermentation of silage in the process of forage conservation. In the making of silage, epiphytic lactic acid bacteria are usually insufficient in numbers to promote efficient lactate fermentation. This study was conducted to identify the predominant indigenous bacteria, with emphasis on lactic acid bacteria, from Guinea grass (Panicum maximum. Approach: Two different condition of growth using nutrient and MRS agar were prepared for isolation of the bacteria. In total, 18 purified isolates were identified by BIOLOG identification system which comprised of 9 bacterial species. Standard plate count in the both conditions was considered. Results: Three bacterial species based on the first condition of growth were identified which were belonging to Flavimonas oryzihabitans, Enerobacter cloacae, Sphingomonas paucimobilis B. Lactic acid bacteria based on the second condition of growth were belonging to Weissella confusa, Weissella paramesenteroides, Leuconostoc mesenteroides ssp. dextranicum, Lactococcus lactis ssp. hordniae. Result of plate count showed that 8.3×103 CFU lactic acid bacteria are available per gram of fresh guinea grass. Conclusion: Three hetero-fermentative and one homo-fermentative lactic acid bacteria were identified which would be suggested to use as bacterial inoculants because of the insufficient amount of epiphytic lactic acid bacteria and the availability of pathogenic bacteria in the grass.

  10. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    Science.gov (United States)

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  11. Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts.

    Science.gov (United States)

    Zhou, N; Zhang, J X; Fan, M T; Wang, J; Guo, G; Wei, X Y

    2012-09-01

    The aim of this study was to evaluate the susceptibility of 43 strains of lactic acid bacteria, isolated from Chinese yogurts made in different geographical areas, to 11 antibiotics (ampicillin, penicillin G, roxithromycin, chloramphenicol, tetracycline, chlortetracycline, lincomycin, kanamycin, streptomycin, neomycin, and gentamycin). The 43 isolates (18 Lactobacillus bulgaricus and 25 Streptococcus thermophilus) were identified at species level and were typed by random amplified polymorphic DNA analysis. Thirty-five genotypically different strains were detected and their antimicrobial resistance to 11 antibiotics was determined using the agar dilution method. Widespread resistance to ampicillin, chloramphenicol, chlortetracycline, tetracyclines, lincomycin, streptomycin, neomycin, and gentamycin was found among the 35 strains tested. All of the Strep. thermophilus strains tested were susceptible to penicillin G and roxithromycin, whereas 23.5 and 64.7% of Lb. bulgaricus strains, respectively, were resistant. All of the Strep. thermophilus and Lb. bulgaricus strains were found to be resistant to kanamycin. The presence of the corresponding resistance genes in the resistant isolates was investigated through PCR, with the following genes detected: tet(M) in 1 Lb. bulgaricus and 2 Strep. thermophilus isolates, ant(6) in 2 Lb. bulgaricus and 2 Strep. thermophilus isolates, and aph(3')-IIIa in 5 Lb. bulgaricus and 2 Strep. thermophilus isolates. The main threat associated with these bacteria is that they may transfer resistance genes to pathogenic bacteria, which has been a major cause of concern to human and animal health. To our knowledge, the aph(3')-IIIa and ant(6) genes were found in Lb. bulgaricus and Strep. thermophilus for the first time. Further investigations are required to analyze whether the genes identified in Lb. bulgaricus and Strep. thermophilus isolates might be horizontally transferred to other species.

  12. PROBIOTIC POTENTIALS AMONG LACTIC ACID BACTERIA ISOLATED FROM CURD

    Directory of Open Access Journals (Sweden)

    Shruthy VV

    2011-02-01

    Full Text Available Curd is a commonly used fermented milk product in India since time immemorial. The scientific use of curd as a source of probiotic (good bacteria for health has not been much examined. The yougurt (curd containing probiotics is in Indian market and highly acclaimed. Therefore the status of curd as a source of probiotics is in question and requires scientific examination of its content, so the study was carried out. Probiotic potentials of two bacterial isolates from 20 different curd samples were identified as Lactobacillus spp. by the determination of morphological, cultural, physiological and biochemical characteristics, were investigated. The antibacterial potential against diarrhoegenic bacterial pathogens was also examined. The reference strain used was Lactobacillus acidophilus, MTCC 447. The percentage survivability of the strains at pH 3.5, was found to be satisfactory (>90%. Bile salt resistance (0.3% sodium thioglycollate was found to be between 80.41% and 83.2%. The pH decrease of the strains with time showed slow acidification activity. The lactic acid production of the strains ranges from 1.83 ± 0.12 to 3.93 ± 0.07 g. The strains were β-galactosidase producer and were resistant to principal antibiotics tested. But the absence of plasmids showed that they are intrinsically resistant or chromosome encoded. Strains showed maximum inhibition zone against V. cholerae O139 (13.67 ± 0.57 to 15.33 ± 0.57 mm in comparison to other diarrhoeagenic bacteria. Only 10% of the examined curd samples had probiotic bacteria. Isolated strains of Lactobacillus spp. showed satisfactory probiotic potentials in comparison with reference strains and with antibacterial activity against diarrhoeagenic pathogens and thus maybe useful in the management of diarrhoea and also in functional food industry.

  13. Bioprotective potential of lactic acid bacteria in malting and brewing.

    Science.gov (United States)

    Rouse, Susan; van Sinderen, Douwe

    2008-08-01

    Lactic acid bacteria (LAB) are naturally associated with many foods or their raw ingredients and are popularly used in food fermentation to enhance the sensory, aromatic, and textural properties of food. These microorganisms are well recognized for their biopreservative properties, which are achieved through the production of antimicrobial compounds such as lactic acid, diacetyl, bacteriocins, and other metabolites. The antifungal activity of certain LAB is less well characterized, but organic acids, as yet uncharacterized proteinaceous compounds, and cyclic dipeptides can inhibit the growth of some fungi. A variety of microbes are carried on raw materials used in beer brewing, rendering the process susceptible to contamination and often resulting in spoilage or inferior quality of the finished product. The application of antimicrobial-producing LAB at various points in the malting and brewing process could help to negate this problem, providing an added hurdle for spoilage organisms to overcome and leading to the production of a higher quality beer. This review outlines the bioprotective potential of LAB and its application with specific reference to the brewing industry.

  14. Biological formation of 5-aminolevulinic acid by photosynthetic bacteria

    Institute of Scientific and Technical Information of China (English)

    LIU Xiu-yan; XU Xiang-yang; MA Qing-lan; WU Wei-hong

    2005-01-01

    In this study, 7 stains of Rhodopseudomonas sp. were selected from 36 photosynthetic bacteria stains storied in our laboratory.Rhodopseudomonas sp. strain 99-28 has the highest 5-aminolevulinic acid(ALA) production ability in these 7 strains. Rhodopseudomonas sp. 99-28 strain was mutated using ultraviolet radiation and a mutant strain L-1, which ALA production is higher than wild strain 99-28 about one times, was obtained. The elements affecting ALA formation of strain 99-28 and L-1 were studied. Under the optimal condition(pH 7.5,supplement of ALA dehydratase(ALAD) inhibitor, levulinic acid(LA) and precursors of ALA synthesis, glycine and succinat, 3000 Ix of light density), ALA formation of mutant L-1 was up to 22.15 mg/L. Strain L-1 was used to treat wastewater to remove CODCr and produce ALA. ALA production was 2.819 my/L, 1.531 rog/L, 2.166 mg/L, and 2.424 mg/L in monosodium glutamate wastewater(MGW),succotash wastewater(SW), brewage wastewater(BW), and citric acid wastewater(CAW) respectively. More than 90% of CODCr was removed in four kinds of wastewater. When LA, glycin and succinate were supplied, ALA production was dramatically increased,however, CODCr could hardly be removed.

  15. Characterisation of lactic acid bacteria isolated from fermented milk "laban".

    Science.gov (United States)

    Chammas, Gisele I; Saliba, Rachad; Corrieu, Georges; Béal, Catherine

    2006-07-01

    The technological properties of 96 lactic acid bacteria isolated from Lebanese traditional fermented milk "laban" were characterised. They were classified by phenotypic and biochemical analyses as Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, thus indicating that laban is a fermented milk similar to yogurt. Most strains of L. bulgaricus (87.5%) exhibited a high acidification activity, whereas strains of streptococci showed low acidification ability. 33.3% of streptococci strains and 25% of lactobacilli strains displayed similar acidification performances as European strains. Results obtained for syneresis, texture and rheological parameters led us to consider that isolated strains were not low polymer-producing strains. Some of them displayed interesting characteristics such as low syneresis and high values for rheological parameters. The major flavour compounds found in pure cultures were acetaldehyde, acetone, 2-butanone, dimethyl disulfide, acetoin, 2,3-butanedione, 2,3-pentanedione, and acetic, hexanoic and butanoic acids. Acetaldehyde (7.4%) and organic acids (48.3%) were mainly produced by L. bulgaricus strains, whereas streptococci cultures contained high relative levels of 2,3-butanedione and acetoin, which represented around 82% of the total flavour compounds. Finally, strains isolated from laban samples exhibited different technological properties than those used in yogurt production, thus conferring specific characteristics to this product.

  16. Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria

    KAUST Repository

    Mazzetto, Fabio

    2016-03-24

    Some species of acetic acid bacteria (AAB) play relevant roles in the metabolism and physiology of Drosophila spp. and in some cases convey benefits to their hosts. The pest Drosophila suzukii harbors a set of AAB similar to those of other Drosophila species. Here, we investigate the potential to exploit the ability of AAB to produce volatile substances that attract female D. suzukii. Using a two-way olfactometer bioassay, we investigate the preference of D. suzukii for strains of AAB, and using solid-phase microextraction gas chromatography–mass spectrometry we specifically characterize their volatile profiles to identify attractive and non-attractive components produced by strains from the genera Acetobacter, Gluconobacter, and Komagataeibacter. Flies had a preference for one strain of Komagataeibacter and two strains of Gluconobacter. Analyses of the volatile profiles from the preferred Gluconobacter isolates found that acetic acid is distinctively emitted even after 2 days of bacterial growth, confirming the relevance of this volatile in the profile of this isolate for attracting flies. Analyses of the volatile profile from the preferred Komagataeibacter isolate showed that a different volatile in its profile could be responsible for attracting D. suzukii. Moreover, variation in the concentration of butyric acid derivatives found in some strains may influence the preference of D. suzukii. Our results indicate that Gluconobacter and Komagataeibacter strains isolated from D. suzukii have the potential to provide substances that could be exploited to develop sustainable mass-trapping-based control approaches. © 2016 Springer-Verlag Berlin Heidelberg

  17. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin

    Directory of Open Access Journals (Sweden)

    Keita Nishiyama

    2016-09-01

    Full Text Available Lactic acid bacteria (LAB are Gram-positive bacteria that are natural inhabitants of the gastrointestinal (GI tracts of mammals, including humans. Since Mechnikov first proposed that yogurt could prevent intestinal putrefaction and aging, the beneficial effects of LAB have been widely demonstrated. The region between the duodenum and the terminal of the ileum is the primary region colonized by LAB, particularly the Lactobacillus species, and this region is covered by a mucus layer composed mainly of mucin-type glycoproteins. The mucus layer plays a role in protecting the intestinal epithelial cells against damage, but is also considered to be critical for the adhesion of Lactobacillus in the GI tract. Consequently, the adhesion exhibited by lactobacilli on mucin has attracted attention as one of the critical factors contributing to the persistent beneficial effects of Lactobacillus in a constantly changing intestinal environment. Thus, understanding the interactions between Lactobacillus and mucin is crucial for elucidating the survival strategies of LAB in the GI tract. This review highlights the properties of the interactions between Lactobacillus and mucin, while concomitantly considering the structure of the GI tract from a histochemical perspective.

  18. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin

    Science.gov (United States)

    Nishiyama, Keita; Sugiyama, Makoto; Mukai, Takao

    2016-01-01

    Lactic acid bacteria (LAB) are Gram-positive bacteria that are natural inhabitants of the gastrointestinal (GI) tracts of mammals, including humans. Since Mechnikov first proposed that yogurt could prevent intestinal putrefaction and aging, the beneficial effects of LAB have been widely demonstrated. The region between the duodenum and the terminal of the ileum is the primary region colonized by LAB, particularly the Lactobacillus species, and this region is covered by a mucus layer composed mainly of mucin-type glycoproteins. The mucus layer plays a role in protecting the intestinal epithelial cells against damage, but is also considered to be critical for the adhesion of Lactobacillus in the GI tract. Consequently, the adhesion exhibited by lactobacilli on mucin has attracted attention as one of the critical factors contributing to the persistent beneficial effects of Lactobacillus in a constantly changing intestinal environment. Thus, understanding the interactions between Lactobacillus and mucin is crucial for elucidating the survival strategies of LAB in the GI tract. This review highlights the properties of the interactions between Lactobacillus and mucin, while concomitantly considering the structure of the GI tract from a histochemical perspective. PMID:27681930

  19. Determination of peroxy radical-scavenging of lactic acid bacteria.

    Science.gov (United States)

    Stecchini, M L; Del Torre, M; Munari, M

    2001-02-28

    Responses of lactic acid bacteria (LAB) to peroxy radicals generated via thermal (40 degrees C) decomposition of the diazocompound 2,2,-azo-bis (2-amidinopropane) dihydrochloride (ABAP), were studied. In general, LAB displayed survival curves with shoulders and tails indicative of 'multihit' killing by exposure to peroxy radicals. One strain, Lactococcus lactis subsp. lactis DIP15, producing a slope of 0.0105 in the kinetic analysis when exposed to 4 mM ABAP, exhibited a measurable antioxidant capacity. The other LAB failed to show any significant antioxidant capacity. The antioxidant capacity of strain DIP15 remained constant after cells have been heat-treated, suggesting that compounds bearing free radical scavenging capacity are rather stable.

  20. Lactic acid bacteria as adjuvants for sublingual allergy vaccines.

    Science.gov (United States)

    Van Overtvelt, Laurence; Moussu, Helene; Horiot, Stéphane; Samson, Sandrine; Lombardi, Vincent; Mascarell, Laurent; van de Moer, Ariane; Bourdet-Sicard, Raphaëlle; Moingeon, Philippe

    2010-04-01

    We compared immunomodulatory properties of 11 strains of lactic acid bacteria as well as their capacity to enhance sublingual immunotherapy efficacy in a murine asthma model. Two types of bacterial strains were identified, including: (i) potent inducers of IL-12p70 and IL-10 in dendritic cells, supporting IFN-gamma and IL-10 production in CD4+ T cells such as Lactobacillus helveticus; (ii) pure Th1 inducers such as L. casei. Sublingual administration in ovalbumin-sensitized mice of L. helveticus, but not L. casei, reduced airways hyperresponsiveness, bronchial inflammation and proliferation of specific T cells in cervical lymph nodes. Thus, probiotics acting as a Th1/possibly Treg, but not Th1 adjuvant, potentiate tolerance induction via the sublingual route.

  1. Modelling strategies for the industrial exploitation of lactic acid bacteria.

    Science.gov (United States)

    Teusink, Bas; Smid, Eddy J

    2006-01-01

    Lactic acid bacteria (LAB) have a long tradition of use in the food industry, and the number and diversity of their applications has increased considerably over the years. Traditionally, process optimization for these applications involved both strain selection and trial and error. More recently, metabolic engineering has emerged as a discipline that focuses on the rational improvement of industrially useful strains. In the post-genomic era, metabolic engineering increasingly benefits from systems biology, an approach that combines mathematical modelling techniques with functional-genomics data to build models for biological interpretation and--ultimately--prediction. In this review, the industrial applications of LAB are mapped onto available global, genome-scale metabolic modelling techniques to evaluate the extent to which functional genomics and systems biology can live up to their industrial promise.

  2. Antiviral potential of lactic acid bacteria and their bacteriocins.

    Science.gov (United States)

    Al Kassaa, I; Hober, D; Hamze, M; Chihib, N E; Drider, D

    2014-12-01

    Emerging resistance to antiviral agents is a growing public health concern worldwide as it was reported for respiratory, sexually transmitted and enteric viruses. Therefore, there is a growing demand for new, unconventional antiviral agents which may serve as an alternative to the currently used drugs. Meanwhile, published literature continues shedding the light on the potency of lactic acid bacteria (LAB) and their bacteriocins as antiviral agents. Health-promoting LAB probiotics may exert their antiviral activity by (1) direct probiotic-virus interaction; (2) production of antiviral inhibitory metabolites; and/or (3) via stimulation of the immune system. The aim of this review was to highlight the antiviral activity of LAB and substances they produce with antiviral activity.

  3. Antibiotic susceptibility of different lactic acid bacteria strains.

    Science.gov (United States)

    Karapetkov, N; Georgieva, R; Rumyan, N; Karaivanova, E

    2011-12-01

    Five lactic acid bacteria (LAB) strains belonging to species Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus delbrueckii subsp. lactis and Streptococcus thermophilus were tested for their susceptibility to 27 antibiotics. The minimum inhibitory concentrations of each antimicrobial were determined using a microdilution test. Among the strains a high susceptibility was detected for most of the cell-wall synthesis inhibitors (penicillins, cefoxitin and vancomycin) and resistance toward inhibitors of DNA synthesis (trimethoprim/sulfonamides and fluoroquinolones). Generally, the Lactobacillus strains were inhibited by antibiotics such as chloramphenicol, erythromycin and tetracycline at breakpoint levels lower or equal to the levels defined by the European Food Safety Authority. Despite the very similar profile of S. thermophilus LC201 to lactobacilli, the detection of resistance toward erythromycin necessitates the performance of additional tests in order to prove the absence of transferable resistance genes.

  4. Modulation of phorbol ester-elicited events in mouse epidermis by dietary n-3 and n-6 fatty acids.

    Science.gov (United States)

    Belury, M A; Leyton, J; Patrick, K E; Cumberland, A G; Locniskar, M; Fischer, S M

    1991-09-01

    Because arachidonic acid-derived eicosanoids are potent modulators of hyperproliferation and inflammation during skin tumor promotion with the phorbol ester, 12-0-tetradecanoylphorbol-13-acetate (TPA) (17, 18), it was hypothesized that dietary modification of epidermal fatty acids might modulate TPA-induced biochemical events in mouse skin. Semipurified diets containing 10% total fat composed of corn oil (CO) or a combination of CO and menhaden oil (MO) or coconut oil (CT) were fed to SENCAR mice for 4 weeks. Fatty acid composition of epidermal phospholipids generally reflected fatty acid composition of dietary oils fed to the mice. Since fatty acid-derived eicosanoids are thought to be essential in tumorigenesis, we compared the effects of dietary fats on prostaglandin E (PGE) production in epidermis treated with a single dose of TPA. TPA-induced PGE production in mouse epidermis from mice fed the MO diet was significantly reduced compared to PGE production in epidermal homogenates from mice fed the CO or CT diets. Type of dietary fats did not appear to modulate TPA-induced vascular permeability, however hyperplasia was slightly elevated in skins of mice fed MO. The subcellular distribution of protein kinase C, the plasma membrane receptor for TPA predominantly located in the cytosol (80%), was altered in epidermis from mice fed the MO diet compared to preparations from mice fed CO or CT diets which exhibited normal protein kinase C distribution. Our results suggest that n-3 rich dietary lipids modulate TPA-elicited events in mouse skin to a greater extent than diets containing higher proportions of saturated or n-6 fatty acids.

  5. Bacteriocins from lactic acid bacteria: production, purification, and food applications.

    Science.gov (United States)

    De Vuyst, Luc; Leroy, Frédéric

    2007-01-01

    In fermented foods, lactic acid bacteria (LAB) display numerous antimicrobial activities. This is mainly due to the production of organic acids, but also of other compounds, such as bacteriocins and antifungal peptides. Several bacteriocins with industrial potential have been purified and characterized. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail through mathematical modeling and positive predictive microbiology. Application of bacteriocin-producing starter cultures in sourdough (to increase competitiveness), in fermented sausage (anti-listerial effect), and in cheese (anti-listerial and anti-clostridial effects), have been studied during in vitro laboratory fermentations as well as on pilot-scale level. The highly promising results of these studies underline the important role that functional, bacteriocinogenic LAB strains may play in the food industry as starter cultures, co-cultures, or bioprotective cultures, to improve food quality and safety. In addition, antimicrobial production by probiotic LAB might play a role during in vivo interactions occurring in the human gastrointestinal tract, hence contributing to gut health.

  6. Continuous cultivation of photosynthetic bacteria for fatty acids production.

    Science.gov (United States)

    Kim, Dong-Hoon; Lee, Ji-Hye; Hwang, Yuhoon; Kang, Seoktae; Kim, Mi-Sun

    2013-11-01

    In the present work, we introduced a novel approach for microbial fatty acids (FA) production. Photosynthetic bacteria, Rhodobacter sphaeroides KD131, were cultivated in a continuous-flow, stirred-tank reactor (CFSTR) at various substrate (lactate) concentrations. At hydraulic retention time (HRT) 4d, cell concentration continuously increased from 0.97 g dcw/L to 2.05 g dcw/L as lactate concentration increased from 30 mM to 60mM. At 70 mM, however, cell concentration fluctuated with incomplete substrate degradation. By installing a membrane unit to CFSTR, a stable performance was observed under much higher substrate loading (lactate 100mM and HRT 1.5d). A maximum cell concentration of 16.2g dcw/L, cell productivity of 1.9 g dcw/L/d, and FA productivity of 665 mg FA/L/d were attained, and these values were comparable with those achieved using microalgae. The FA content of R. sphaeroides was around 35% of dry cell weight, mainly composed of vaccenic acid (C18:1, omega-7).

  7. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.).

    Science.gov (United States)

    Złotek, Urszula; Michalak-Majewska, Monika; Szymanowska, Urszula

    2016-12-15

    The effect of elicitation with jasmonic acid (JA) on the plant yield, the production and composition of essential oils of lettuce leaf basil was evaluated. JA-elicitation slightly affected the yield of plants and significantly increased the amount of essential oils produced by basil - the highest oil yield (0.78±0.005mL/100gdw) was achieved in plants elicited with 100μM JA. The application of the tested elicitor also influenced the chemical composition of basil essential oils - 100μM JA increased the linalool, eugenol, and limonene levels, while 1μM JA caused the highest increase in the methyl eugenol content. Essential oils from JA-elicited basil (especially 1μM and 100μM) exhibited more effective antioxidant and anti-inflammatory potential; therefore, this inducer may be a very useful biochemical tool for improving production and composition of herbal essential oils.

  8. Salicylic-acid elicited phospholipase D responses in Capsicum chinense cell cultures.

    Science.gov (United States)

    Rodas-Junco, B A; Muñoz-Sánchez, J A; Vázquez-Flota, F; Hernández-Sotomayor, S M T

    2015-05-01

    The plant response to different stress types can occur through stimulus recognition and the subsequent signal transduction through second messengers that send information to the regulation of metabolism and the expression of defense genes. The phospholipidic signaling pathway forms part of the plant response to several phytoregulators, such as salicylic acid (SA), which has been widely used to stimulate secondary metabolite production in cell cultures. In this work, we studied the effects of SA treatment on [(32)-P]Pi phospholipid turnover and phospholipase D (PLD) activity using cultured Capsicum chinense cells. In cultured cells, the PIP2 turnover showed changes after SA treatment, while the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), did not show changes during the temporal course. SA treatment significantly increased phosphatidic acid (PA) turnover over time compared to control cells. The PA accumulation in cells treated with 1-butanol showed a decrease in messengers; at the same time, there was a 1.5-fold increase in phosphatidylbutanol. These results suggest that the participation of the PLD pathway is a source of PA production, and the activation of this mechanism may be important in the cell responses to SA treatment.

  9. Arachidonic acid drives postnatal neurogenesis and elicits a beneficial effect on prepulse inhibition, a biological trait of psychiatric illnesses.

    Directory of Open Access Journals (Sweden)

    Motoko Maekawa

    Full Text Available Prepulse inhibition (PPI is a compelling endophenotype (biological markers for mental disorders including schizophrenia. In a previous study, we identified Fabp7, a fatty acid binding protein 7 as one of the genes controlling PPI in mice and showed that this gene was associated with schizophrenia. We also demonstrated that disrupting Fabp7 dampened hippocampal neurogenesis. In this study, we examined a link between neurogenesis and PPI using different animal models and exploring the possibility of postnatal manipulation of neurogenesis affecting PPI, since gene-deficient mice show biological disturbances from prenatal stages. In parallel, we tested the potential for dietary polyunsaturated fatty acids (PUFAs, arachidonic acid (ARA and/or docosahexaenoic acid (DHA, to promote neurogenesis and improve PPI. PUFAs are ligands for Fabp members and are abundantly expressed in neural stem/progenitor cells in the hippocampus. Our results are: (1 an independent model animal, Pax6 (+/- rats, exhibited PPI deficits along with impaired postnatal neurogenesis; (2 methylazoxymethanol acetate (an anti-proliferative drug elicited decreased neurogenesis even in postnatal period, and PPI defects in young adult rats (10 weeks when the drug was given at the juvenile stage (4-5 weeks; (3 administering ARA for 4 weeks after birth promoted neurogenesis in wild type rats; (4 raising Pax6 (+/- pups on an ARA-containing diet enhanced neurogenesis and partially improved PPI in adult animals. These results suggest the potential benefit of ARA in ameliorating PPI deficits relevant to psychiatric disorders and suggest that the effect may be correlated with augmented postnatal neurogenesis.

  10. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria.

    Science.gov (United States)

    Sainz, F; Navarro, D; Mateo, E; Torija, M J; Mas, A

    2016-04-01

    The oxidative metabolism of acetic acid bacteria (AAB) can be exploited for the production of several compounds, including D-gluconic acid. The production of D-gluconic acid in fermented beverages could be useful for the development of new products without glucose. In the present study, we analyzed nineteen strains belonging to eight different species of AAB to select those that could produce D-gluconic acid from D-glucose without consuming D-fructose. We tested their performance in three different media and analyzed the changes in the levels of D-glucose, D-fructose, D-gluconic acid and the derived gluconates. D-Glucose and D-fructose consumption and D-gluconic acid production were heavily dependent on the strain and the media. The most suitable strains for our purpose were Gluconobacter japonicus CECT 8443 and Gluconobacter oxydans Po5. The strawberry isolate Acetobacter malorum (CECT 7749) also produced D-gluconic acid; however, it further oxidized D-gluconic acid to keto-D-gluconates.

  11. Optimization of β-galactosidase production from lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Carević Milica

    2015-01-01

    Full Text Available β-galactosidase, commonly known as lactase, represents commercially important enzyme that is prevalently used for lactose hydrolysis in milk and whey. To the date, it has been isolated from various sources. In this study different strains of lactic acid bacteria were assessed for their β-galactosidase productivity, and Lactobacillus acidophilus ATCC 4356 resulted with the highest production potential. Thereafter, optimal conditions for accomplishing high yields of β-galactosidase activity were determined. Maximal specific activity (1.01 IU mL-1 was accomplished after 2 days shake flask culture fermentation (150 rpm at 37ºC, with modified Man Rogosa Sharpe culture broth using lactose (2.5% as sole carbon source. Finally, in order to intensify release of intracellular β-galactosidase different mechanical and chemical methods were conducted. Nevertheless, vortexing with quartz sand (150 μm as abrasive was proven to be the most efficient method of cell disruption. The optimum temperature of obtained β-galactosidase was 45°C and the optimum range pH 6.5-7.5.

  12. Lactic acid bacteria in dried vegetables and spices.

    Science.gov (United States)

    Säde, Elina; Lassila, Elisa; Björkroth, Johanna

    2016-02-01

    Spices and dried vegetable seasonings are potential sources of bacterial contamination for foods. However, little is known about lactic acid bacteria (LAB) in spices and dried vegetables, even though certain LAB may cause food spoilage. In this study, we enumerated LAB in 104 spices and dried vegetables products aimed for the food manufacturing industry. The products were obtained from a spice wholesaler operating in Finland, and were sampled during a one-year period. We picked isolates (n = 343) for species identification based on numerical analysis of their ribotyping patterns and comparing them with the corresponding patterns of LAB type strains. We found LAB at levels >2 log CFU/g in 68 (65%) of the samples, with the highest counts detected from dried onion products and garlic powder with counts ranging from 4.24 to 6.64 log CFU/g. The LAB identified were predominantly Weissella spp. (61%) and Pediococcus spp. (15%) with Weissella confusa, Weissella cibaria, Weissella paramesenteroides, Pediococcus acidilactici and Pediococcus pentosaceus being the species identified. Other species identified belonged to the genera of Enterococcus spp. (8%), Leuconostoc spp. (6%) and Lactobacillus spp. (2%). Among the LAB identified, Leuconostoc citreum, Leuconostoc mesenteroides and W. confusa have been associated with food spoilage. Our findings suggest that spices and dried vegetables are potential sources of LAB contamination in the food industry.

  13. Removal of Paralytic Shellfish Toxins by Probiotic Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Mari Vasama

    2014-07-01

    Full Text Available Paralytic shellfish toxins (PSTs are non-protein neurotoxins produced by saltwater dinoflagellates and freshwater cyanobacteria. The ability of Lactobacillus rhamnosus strains GG and LC-705 (in viable and non-viable forms to remove PSTs (saxitoxin (STX, neosaxitoxin (neoSTX, gonyautoxins 2 and 3 (GTX2/3, C-toxins 1 and 2 (C1/2 from neutral and acidic solution (pH 7.3 and 2 was examined using HPLC. Binding decreased in the order of STX ~ neoSTX > C2 > GTX3 > GTX2 > C1. Removal of STX and neoSTX (77%–97.2% was significantly greater than removal of GTX3 and C2 (33.3%–49.7%. There were no significant differences in toxin removal capacity between viable and non-viable forms of lactobacilli, which suggested that binding rather than metabolism is the mechanism of the removal of toxins. In general, binding was not affected by the presence of other organic molecules in solution. Importantly, this is the first study to demonstrate the ability of specific probiotic lactic bacteria to remove PSTs, particularly the most toxic PST-STX, from solution. Further, these results warrant thorough screening and assessment of safe and beneficial microbes for their usefulness in the seafood and water industries and their effectiveness in vivo.

  14. A gene network engineering platform for lactic acid bacteria.

    Science.gov (United States)

    Kong, Wentao; Kapuganti, Venkata S; Lu, Ting

    2016-02-29

    Recent developments in synthetic biology have positioned lactic acid bacteria (LAB) as a major class of cellular chassis for applications. To achieve the full potential of LAB, one fundamental prerequisite is the capacity for rapid engineering of complex gene networks, such as natural biosynthetic pathways and multicomponent synthetic circuits, into which cellular functions are encoded. Here, we present a synthetic biology platform for rapid construction and optimization of large-scale gene networks in LAB. The platform involves a copy-controlled shuttle for hosting target networks and two associated strategies that enable efficient genetic editing and phenotypic validation. By using a nisin biosynthesis pathway and its variants as examples, we demonstrated multiplex, continuous editing of small DNA parts, such as ribosome-binding sites, as well as efficient manipulation of large building blocks such as genes and operons. To showcase the platform, we applied it to expand the phenotypic diversity of the nisin pathway by quickly generating a library of 63 pathway variants. We further demonstrated its utility by altering the regulatory topology of the nisin pathway for constitutive bacteriocin biosynthesis. This work demonstrates the feasibility of rapid and advanced engineering of gene networks in LAB, fostering their applications in biomedicine and other areas.

  15. Bioconversion of oleuropein to hydroxytyrosol by lactic acid bacteria.

    Science.gov (United States)

    Santos, M M; Piccirillo, C; Castro, P M L; Kalogerakis, N; Pintado, M E

    2012-06-01

    The aim of this work is to study the conversion of oleuropein-a polyphenol present in olives and olive oil by-products-into hydroxytyrosol, a polyphenol with antioxidant and antibacterial properties. The hydrolysis reaction is performed by lactic acid bacteria. Six bacterial strains (Lactobacillus plantarum 6907, Lactobacillus paracasei 9192, Lactobacillus casei, Bifidobacterium lactis BO, Enterococcus faecium 32, Lactobacillus LAFTI 10) were tested under aerobic and anaerobic conditions. The oleuropein degradation and hydroxytyrosol formation were monitored by HPLC. Results showed that oleuropein could be successfully converted into hydroxytyrosol. The most effective strain was Lactobacillus plantarum 6907, with a reaction yield of hydroxytyrosol of about 30 %. Different reaction mechanisms were observed for different microorganisms; a different yield was observed for Lactobacillus paracasei 9192 under aerobic or anaerobic conditions and an intermediate metabolite (oleuropein aglycone) was detected for Lactobacillus paracasei 9192 and Lactobacillus plantarum 6907 only. This study could have significant applications, as this reaction can be used to increase the value of olive oil by-products and/or to improve the taste of unripe olives.

  16. Isolation and characterisation of lactic acid bacteria from donkey milk.

    Science.gov (United States)

    Soto Del Rio, Maria de Los Dolores; Andrighetto, Christian; Dalmasso, Alessandra; Lombardi, Angiolella; Civera, Tiziana; Bottero, Maria Teresa

    2016-08-01

    During the last years the interest in donkey milk has increased significantly mainly because of its compelling functional elements. Even if the composition and nutritional properties of donkey milk are known, its microbiota is less studied. This Research Communication aimed to provide a comprehensive characterisation of the lactic acid bacteria in raw donkey milk. RAPD-PCR assay combined with 16S rDNA sequencing analysis were used to describe the microbial diversity of several donkey farms in the North West part of Italy. The more frequently detected species were: Lactobacillus paracasei, Lactococcus lactis and Carnobacterium maltaromaticum. Less abundant genera were Leuconostoc, Enterococcus and Streptococcus. The yeast Kluyveromyces marxianus was also isolated. The bacterial and biotype distribution notably diverged among the farms. Several of the found species, not previously detected in donkey milk, could have an important probiotic activity and biotechnological potential. This study represents an important insight to the ample diversity of the microorganisms present in the highly selective ecosystem of raw donkey milk.

  17. Production of anti-cancer triterpene (betulinic acid) from callus cultures of different Ocimum species and its elicitation.

    Science.gov (United States)

    Pandey, Harshita; Pandey, Pallavi; Singh, Sailendra; Gupta, Ruby; Banerjee, Suchitra

    2015-03-01

    Betulinic acid (BA), a pentacyclic triterpenoid, is gaining unmatched attention owing to its unique anti-cancer activity with selective melanoma growth inhibition without damaging normal cells. It is also well-known for its multifaceted pharmacokinetics, entailing antibacterial, antimalarial, anti-HIV and antioxidant merits. Considering the escalating demand with diminishing bioresource of this molecule, the present study was undertaken that revealed the untapped potentials of Ocimum calli, contrasting to that in the in vitro derived leaves, as effective production alternative of BA in three out of four tested species (i.e. Ocimum basilicum, Ocimum kilimandscharicum, Ocimum sanctum excluding Ocimum grattisimum). Callus inductions were obtained in all the four species with different 2,4-dichlorophenoxyacetic acid (2,4-D)/α-naphthaleneacetic acid (NAA) concentrations with kinetin. Notably, 2,4-D favoured maximum callus growth in all whereas NAA proved beneficial for the highest metabolite yield in the calli of each BA-producing species. The O. basilicum calli demonstrated the maximum growth (growth index (GI) 678.7 ± 24.47) and BA yield (2.59 ± 0.55 % dry weight [DW]), whereas those in O. kilimandscharicum (GI 533.33 ± 15.87; BA 1.87 ± 0.6 % DW) and O. sanctum (GI 448 ± 16.07; BA 0.39 ± 0.12 % DW) followed a descending order. The O. gratissimum calli revealed minimum growth (GI 159 ± 13.25) with no BA accumulation. Elicitation with methyl jasmonate at 200-μM concentration after 48-h exposure doubled the BA yield (5.10 ± 0.18 % DW) in NAA-grown O. basilicum calli compared to that in the untreated counterpart (2.61 ± 0.19 % DW), which further enthused its future application.

  18. Engineering strategies aimed at control of acidification rate of lactic acid bacteria

    DEFF Research Database (Denmark)

    Martinussen, Jan; Solem, Christian; Holm, Anders Koefoed

    2013-01-01

    The ability of lactic acid bacteria to produce lactic acid from various sugars plays an important role in food fermentations. Lactic acid is derived from pyruvate, the end product of glycolysis and thus a fast lactic acid production rate requires a high glycolytic flux. In addition to lactic acid......, alternative end products - ethanol, acetic acid and formic acid - are formed by many species. The central role of glycolysis in lactic acid bacteria has provoked numerous studies aiming at identifying potential bottleneck(s) since knowledge about flux control could be important not only for optimizing food...... fermentation processes, but also for novel applications of lactic acid bacteria, such as cell factories for the production of green fuels and chemicals. With respect to the control and regulation of the fermentation mode, some progress has been made, but the question of which component(s) control the main...

  19. Examination of Lactic Acid Bacteria to Secretion of Bacteriocins

    Directory of Open Access Journals (Sweden)

    Maira Urazova

    2014-01-01

    Full Text Available Introduction: Bacteriocins produced by lactic acid bacteria (LAB have the potential to cover a very broad field of applications, including the food industry and the medical sector. In the food industry, bacteriocinogenic LAB strains can be used as starter cultures, co-cultures, and bioprotective cultures, which would be used to improve food quality and safety. In the medical sector, bacteriocins of probiotic LAB might play a role in interactions, which take place in human gastrointestinal tract, and contribute to gut health. The aim of this study was the examine the effect of LAB antimicrobial activity. Methods: LAB were isolated from different commercial and home made products, such as kazy and sour cream. To screen for bacteriocin producing LAB, we used an agar diffusion bioassay, described in a previous study by Dr. Yang, with three modifications in cell-free supernatant (CFS. First we had a clear supernatant, second we adjusted the CFS to pH 6.0 to eliminate acids antimicrobial effects, and third the CFS pH 6.0 was treated with catalase to exclude the action of H2O2 and confirm action of bacteriocin-like substances. Pathogenic S.marcescens, E. coli, S.aureus cultures were used as indicators. Results: Screening of 95 strains of LAB through deferred antagonism to six indicator cultures showed that all of the selected strains had a high value of antibacterial activity. However, CFS of only 50 strains retained their antimicrobial activity, and 10 of them lost this activity in the second modification of CFS with pH 6.0 to test culture S.marcescens, which confirmed the acidic nature of antimicrobial activity of CFS. Lb.rhamnosus (P-1, Lb.fermentum (N-6, and Lc.lactis (7M lost antibacterial activity in the presence of the catalase. All modifications of CFS of three strains: Lb.pentosus (16al, Lb.pentosus (P-2, and Pediococcusacidilactici (8 retained inhibitory activity to E.coli and S. aureus. Supernatants of only Lactococcusgarvieae (10a and

  20. Production of γ-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    Science.gov (United States)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of γ-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25°C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  1. Occurrence of Arginine Deiminase Pathway Enzymes in Arginine Catabolism by Wine Lactic Acid Bacteria

    OpenAIRE

    Liu., S; Pritchard, G. G.; Hardman, M. J.; Pilone, G. J.

    1995-01-01

    l-Arginine, an amino acid found in significant quantities in grape juice and wine, is known to be catabolized by some wine lactic acid bacteria. The correlation between the occurrence of arginine deiminase pathway enzymes and the ability to catabolize arginine was examined in this study. The activities of the three arginine deiminase pathway enzymes, arginine deiminase, ornithine transcarbamylase, and carbamate kinase, were measured in cell extracts of 35 strains of wine lactic acid bacteria....

  2. Plants know where it hurts: root and shoot jasmonic acid induction elicit differential responses in Brassica oleracea.

    Directory of Open Access Journals (Sweden)

    Tom O G Tytgat

    Full Text Available Plants respond to herbivore attack by rapidly inducing defenses that are mainly regulated by jasmonic acid (JA. Due to the systemic nature of induced defenses, attack by root herbivores can also result in a shoot response and vice versa, causing interactions between above- and belowground herbivores. However, little is known about the molecular mechanisms underlying these interactions. We investigated whether plants respond differently when roots or shoots are induced. We mimicked herbivore attack by applying JA to the roots or shoots of Brassica oleracea and analyzed molecular and chemical responses in both organs. In shoots, an immediate and massive change in primary and secondary metabolism was observed. In roots, the JA-induced response was less extensive and qualitatively different from that in the shoots. Strikingly, in both roots and shoots we also observed differential responses in primary metabolism, development as well as defense specific traits depending on whether the JA induction had been below- or aboveground. We conclude that the JA response is not only tissue-specific but also dependent on the organ that was induced. Already very early in the JA signaling pathway the differential response was observed. This indicates that both organs have a different JA signaling cascade, and that the signal eliciting systemic responses contains information about the site of induction, thus providing plants with a mechanism to tailor their responses specifically to the organ that is damaged.

  3. Dietary interesterified fat enriched with palmitic acid induces atherosclerosis by impairing macrophage cholesterol efflux and eliciting inflammation.

    Science.gov (United States)

    Afonso, Milessa Silva; Lavrador, Maria Silvia Ferrari; Koike, Marcia Kiyomi; Cintra, Dennys Esper; Ferreira, Fabiana Dias; Nunes, Valeria Sutti; Castilho, Gabriela; Gioielli, Luiz Antonio; Paula Bombo, Renata; Catanozi, Sergio; Caldini, Elia Garcia; Damaceno-Rodrigues, Nilsa Regina; Passarelli, Marisa; Nakandakare, Edna Regina; Lottenberg, Ana Maria

    2016-06-01

    Interesterified fats are currently being used to replace trans fatty acids. However, their impact on biological pathways involved in the atherosclerosis development was not investigated. Weaning male LDLr-KO mice were fed for 16weeks on a high-fat diet (40% energy as fat) containing polyunsaturated (PUFA), TRANS, palmitic (PALM), palmitic interesterified (PALM INTER), stearic (STEAR) or stearic interesterified (STEAR INTER). Plasma lipids, lipoprotein profile, arterial lesion area, macrophage infiltration, collagen content and inflammatory response modulation were determined. Macrophage cholesterol efflux and the arterial expression of cholesterol uptake and efflux receptors were also performed. The interesterification process did not alter plasma lipid concentrations. Although PALM INTER did not increase plasma cholesterol concentration as much as TRANS, the cholesterol enrichment in the LDL particle was similar in both groups. Moreover, PALM INTER induced the highest IL-1β, MCP-1 and IL-6 secretion from peritoneal macrophages as compared to others. This inflammatory response elicited by PALM INTER was confirmed in arterial wall, as compared to PALM. These deleterious effects of PALM INTER culminate in higher atherosclerotic lesion, macrophage infiltration and collagen content than PALM, STEAR, STEAR INTER and PUFA. These events can partially be attributed to a macrophage cholesterol accumulation, promoted by apoAI and HDL2-mediated cholesterol efflux impairment and increased Olr-1 and decreased Abca1 and Nr1h3 expressions in the arterial wall. Interesterified fats containing palmitic acid induce atherosclerosis development by promoting cholesterol accumulation in LDL particles and macrophagic cells, activating the inflammatory process in LDLr-KO mice.

  4. Who will win the race in childrens' oral cavities? Streptococcus mutans or beneficial lactic acid bacteria?

    Science.gov (United States)

    Güngör, Ö E; Kırzıoğlu, Z; Dinçer, E; Kıvanç, M

    2013-09-01

    Adhesion to oral soft and hard tissue is crucial for bacterial colonisation in the mouth. The aim of this work was to select strains of oral lactic acid bacteria that could be used as probiotics for oral health. To this end, the adhesive properties of some lactic acid bacteria were investigated. Seventeen lactic acid bacteria including two Streptococcus mutans strains were isolated from the oral cavity of healthy children, while other strains were isolated from fermented meat products. The bacterial strains were applied to teeth surfaces covered with saliva or without saliva. A significant diversity in adhesion capacity to teeth surfaces among the lactic acid bacteria was observed. Lactic acid bacteria isolated from the oral cavity adhered the best to teeth surfaces covered with saliva, whereas lactic acid bacteria isolated from fermented meat samples adhered the best to tooth surface without saliva. All strains of lactic acid bacteria were able to reduce the number of S. mutans cells, in particular on saliva-coated tooth surface. Therefore, they might have potential as probiotics for the oral cavity.

  5. Resistance to antibiotics in Lacid acid bacteria - strain Lactococcus

    Directory of Open Access Journals (Sweden)

    Filipić Brankica

    2015-01-01

    Full Text Available Lactic acid bacteria (LAB are widely used in the food industry, especially in the production of fermented dairy products and meat. The most studied species among Lis Lactococcus lactis. L. lactis strains are of great importance in the production of fermented dairy products such as yogurt, butter, fresh cheese and some kind of semi-hard cheese. Although L. lactis acquired the „Generally Regarded As Safe“ (GRAS status, many investigations indicated that lactococci may act as reservoirs of antibiotic resistance genes, which could be transferred to other bacterial species in human gastrointestinal tract includ­ing pathogens. The genome analysis of L. lactis indicated the presence of at least 40 putative drug transporter genes, and only four multidrug resistance (MDR transporters are functionally characterized: LmrA, LmrP, LmrCD i CmbT. LmrA is the first described MDR transporter in prokaryotes. LmrCD is responsible for resistance to cholate, which is an integral part of human bile and LmrCD is important for intestinal survival of lactococci that are used as probiotics. Secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. CmbT protein has an effect on the host cell resistance to lincomycin, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametox­azole. Since the food chain is an important way of transmitting resistance genes in human and animal population, it is of great importance to study the mechanisms of resistance in lactococci and other LAB, intended for the food industry. [Projekat Ministarstva nauke Republike Srbije, br. 173019: Izučavanje gena i molekularnih mehanizama u osnovi probiotičke aktivnosti bakterija mlečne kiseline izolovanih sa područja Zapadnog Balkana

  6. Selection of Lactic Acid Bacteria as Probiotic Candidate for Chicken

    Directory of Open Access Journals (Sweden)

    F. Hamida

    2015-08-01

    Full Text Available Lactic acid bacteria (LAB regarded as safe microorganisms; they can naturally live in gastrointestinal tract, so appropriately used as a probiotic for chicken. This study aimed to select six isolates of LAB (E1223, E3, E4, E5, E7, and E8 to obtain the isolates potentially as probiotic candidate for chicken. The six isolates were derived from spontaneous fermented corn obtained from Laboratory of Animal Biotechnology and Biomedical, PPSHB, Bogor Agricultural University, Indonesia. LAB isolates were tested their susceptibility to antibiotics (bambermycin, erythromycin, chloramphenicol, and tetracycline then were examined in vitro for their tolerance to gastrointestinal pH (2, 3, 4, and 7.2 and 0.5% bile salt condition, antimicrobial activity against Salmonella enteritidis and Enterococcus casseliflavus, and ability to adhere to chicken ileal cells. The results showed the isolates E5, E7, and E8 were sensitive to tetracycline and chloramphenicol, they could survive at pH 2, 3, 4, and 7.2, could survive at 0.5% bile salts, produced antimicrobial activity, and able to adhere to ileal cells (9.40±0.00 Log CFU/cm2 of E8 and were significantly (P<0.05 higher than those of control (5.30±0.14 Log CFU/cm2. In conclusion, this study showed that isolate E8 had better potential compared to isolates E5 and E7 in most in vitro assays as a probiotic candidate for chicken. E5, E7, and E8 were closely related with Pediococcus pentosaceus based on 16S rRNA gene.

  7. Hydrogen Peroxide Is Involved in Salicylic Acid-Elicited Rosmarinic Acid Production in Salvia miltiorrhiza Cell Cultures

    Directory of Open Access Journals (Sweden)

    Wenfang Hao

    2014-01-01

    Full Text Available Salicylic acid (SA is an elicitor to induce the biosynthesis of secondary metabolites in plant cells. Hydrogen peroxide (H2O2 plays an important role as a key signaling molecule in response to various stimuli and is involved in the accumulation of secondary metabolites. However, the relationship between them is unclear and their synergetic functions on accumulation of secondary metabolites are unknown. In this paper, the roles of SA and H2O2 in rosmarinic acid (RA production in Salvia miltiorrhiza cell cultures were investigated. The results showed that SA significantly enhanced H2O2 production, phenylalanine ammonia-lyase (PAL activity, and RA accumulation. Exogenous H2O2 could also promote PAL activity and enhance RA production. If H2O2 production was inhibited by NADPH oxidase inhibitor (IMD or scavenged by quencher (DMTU, RA accumulation would be blocked. These results indicated that H2O2 is secondary messenger for signal transduction, which can be induced by SA, significantly and promotes RA accumulation.

  8. Hypolipidemic effects of lactic acid bacteria fermented cereal in rats

    Directory of Open Access Journals (Sweden)

    Banjoko Immaculata

    2012-12-01

    Full Text Available Abstract Background The objectives of the present study were to investigate the efficacy of the mixed culture of Lactobacillus acidophilus (DSM 20242, Bifidobacterium bifidum (DSM 20082 and Lactobacillus helveticus (CK60 in the fermentation of maize and the evaluation of the effect of the fermented meal on the lipid profile of rats. Methods Rats were randomly assigned to 3 groups and each group placed on a Diet A (high fat diet into which a maize meal fermented with a mixed culture of Lb acidophilus (DSM 20242, B bifidum (DSM 20082 and Lb helveticus (CK 60 was incorporated, B (unfermented high fat diet or C (commercial rat chow respectively after the first group of 7 rats randomly selected were sacrificed to obtain the baseline data. Thereafter 7 rats each from the experimental and control groups were sacrificed weekly for 4 weeks and the plasma, erythrocytes, lipoproteins and organs of the rats were assessed for cholesterol, triglyceride and phospholipids. Results Our results revealed that the mixed culture of Lb acidophilus (DSM 20242, B bifidum (DSM 20082 and Lb helveticus (CK 60 were able to grow and ferment maize meal into ‘ogi’ of acceptable flavour. In addition to plasma and hepatic hypercholesterolemia and hypertriglyceridemia, phospholipidosis in plasma, as well as cholesterogenesis, triglyceride constipation and phospholipidosis in extra-hepatic tissues characterized the consumption of unfermented hyperlipidemic diets. However, feeding the animals with the fermented maize diet reversed the dyslipidemia. Conclusion The findings of this study indicate that consumption of mixed culture lactic acid bacteria (Lb acidophilus (DSM 20242, Bifidobacterium bifidum (DSM 20082 and Lb helveticus (CK 60 fermented food results in the inhibition of fat absorption. It also inhibits the activity of HMG CoA reductase. This inhibition may be by feedback inhibition or repression of the transcription of the gene encoding the enzyme via activation of the

  9. The proteolytic system of lactic acid bacteria revisited : a genomic comparison

    NARCIS (Netherlands)

    Liu, M.; Bayjanov, J.; Renckens, B.A.M.; Nauta, A.; Siezen, R.J.

    2010-01-01

    BACKGROUND: Lactic acid bacteria (LAB) are a group of gram-positive, lactic acid producing Firmicutes. They have been extensively used in food fermentations, including the production of various dairy products. The proteolytic system of LAB converts proteins to peptides and then to amino acids, which

  10. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria

    DEFF Research Database (Denmark)

    Gaspar, Paula; Carvalho, Ana L.; Vinga, Susana

    2013-01-01

    The lactic acid bacteria (LAB) are a functionally related group of low-GC Gram-positive bacteria known essentially for their roles in bioprocessing of foods and animal feeds. Due to extensive industrial use and enormous economical value, LAB have been intensively studied and a large body...

  11. Characterization of anti-listerial lactic acid bacteria isolated from Thai fermented fish products

    DEFF Research Database (Denmark)

    Østergaard, Anya; Embarek, Peter Karim Ben; Wedell-Neergaard, C.

    1998-01-01

    to a mesophilic fish spoilage bacterium tan Aeromonas sp.). Inhibition of Gram-negative bacteria was attributed to production of lactic acid. Most strains were identified as Lactobacillus spp., and all grew well at ambient temperatures (25-37 degrees C) and tolerated up to 6.5% NaCl. Glucose was fermented rapidly......Thai fermented fish products were screened for lactic acid bacteria capable of inhibiting Listeria sp. (Listeria innocua). Of 4150 assumed lactic acid bacteria colonies from MRS agar plates that were screened by an agar-overlay method 58 (1.4%) were positive. Forty four of these strains were...... further characterized and 43 strains were inhibitory against Listeria monocytogenes. The strains were inhibitory to other Gram- positive (lactic acid) bacteria probably because of production of bacteriocins. All 44 strains inhibited both Vibrio cholerae and Vibrio parahaemolyticus and 37 were inhibitory...

  12. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria

    NARCIS (Netherlands)

    Hijum, S.A.F.T. van; Kralj, S.; Ozimek, L.K.; Dijkhuizen, L.; Geel-Schutten, G.H. van

    2006-01-01

    Lactic acid bacteria (LAB) employ sucrase-type enzymes to convert sucrose into homopolysaccharides consisting of either glucosyl units (glucans) or fructosyl units (fructans). The enzymes involved are labeled glucansucrases (GS) and fructansucrases (FS), respectively. The available molecular, bioche

  13. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Science.gov (United States)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  14. Molecular Characterization of Intrinsic and Acquired antibiotic resistance in lactic Acid bacteria and Bifidobacteria

    NARCIS (Netherlands)

    Ammor, M.S.; Flórez, A.B.; Hoek, van A.H.A.M.; Reyes-Gavilan, de los C.G.; Aarts, H.J.M.; Margolles, A.; Mayo, B.

    2008-01-01

    The minimum inhibitory concentrations (MICs) of 6 different antibiotics (chloramphenicol, clindamycin, erythromycin, streptomycin, tetracycline and vancomycin) were determined for 143 strains of lactic acid bacteria and bifidobacteria using the Etest. Different MICs were found for different species

  15. Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications.

    Science.gov (United States)

    Michon, C; Langella, P; Eijsink, V G H; Mathiesen, G; Chatel, J M

    2016-05-03

    Lactic acid bacteria (LAB) are promising vectors of choice to deliver active molecules to mucosal tissues. They are recognized as safe by the World Health Organization and some strains have probiotic properties. The wide range of potential applications of LAB-driven mucosal delivery includes control of inflammatory bowel disease, vaccine delivery, and management of auto-immune diseases. Because of this potential, strategies for the display of proteins at the surface of LAB are gaining interest. To display a protein at the surface of LAB, a signal peptide and an anchor domain are necessary. The recombinant protein can be attached to the membrane layer, using a transmembrane anchor or a lipoprotein-anchor, or to the cell wall, by a covalent link using sortase mediated anchoring via the LPXTG motif, or by non-covalent liaisons employing binding domains such as LysM or WxL. Both the stability and functionality of the displayed proteins will be affected by the kind of anchor used. The most commonly surfaced exposed recombinant proteins produced in LAB are antigens and antibodies and the most commonly used LAB are lactococci and lactobacilli. Although it is not necessarily so that surface-display is the preferred localization in all cases, it has been shown that for certain applications, such as delivery of the human papillomavirus E7 antigen, surface-display elicits better biological responses, compared to cytosolic expression or secretion. Recent developments include the display of peptides and proteins targeting host cell receptors, for the purpose of enhancing the interactions between LAB and host. Surface-display technologies have other potential applications, such as degradation of biomass, which is of importance for some potential industrial applications of LAB.

  16. Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine.

    Science.gov (United States)

    Raghavendra, Ponnala; Halami, Prakash M

    2009-07-31

    This study was undertaken to screen and select potent phytate degrading lactic acid bacteria and to evaluate their additional characteristic features. Forty lactic acid bacterial strains were isolated from different sources and screened for their ability to degrade myo-inositol hexaphosphate or IP(6) by cobalt chloride staining (plate assay) method, using calcium or sodium salt of phytic acid as substrate. All the forty isolates were able to degrade calcium phytate. However, only two Pediococcus pentosaceus strains (CFR R38 and CFR R35) were found to degrade sodium phytate. These strains showed phytase activity of 213 and 89 U at 50 degrees C, respectively and poor acid phosphatase activity. These strains were further evaluated for additional characteristic features. At pH 2, P. pentosaceus strains CFR R38 and CFR R35 showed 50.7 and 48.5 percentage survivability after 2 h of incubation respectively and they could also withstand 0.3% ox-bile. These cultures exhibited 54.6 and 44.8% of hydrophobicity to xylene, antibacterial activity against food borne pathogens and possessed beta-galactosidase activity. The resistance pattern to several antibiotics was also analyzed. The present study indicates that these strains, having phytate degrading ability and other characteristic features can be exploited as starter cultures in fermented foods to improve the mineral bioavailability.

  17. Inhibitory effect of bacteriocin-producing lactic acid bacteria against histamine-forming bacteria isolated from Myeolchi-jeot

    Directory of Open Access Journals (Sweden)

    Eun-Seo Lim

    2016-12-01

    Full Text Available Abstract The objectives of this study were to identify the histamine-forming bacteria and bacteriocin- producing lactic acid bacteria (LAB isolated from Myeolchi-jeot according to sequence analysis of the 16S rRNA gene, to evaluate the inhibitory effects of the bacteriocin on the growth and histamine accumulation of histamine-forming bacteria, and to assess the physico-chemical properties of the bacteriocin. Based on 16S rRNA gene sequences, histamine-forming bacteria were identified as Bacillus licheniformis MCH01, Serratia marcescens MCH02, Staphylococcus xylosus MCH03, Aeromonas hydrophila MCH04, and Morganella morganii MCH05. The five LAB strains identified as Pediococcus acidilactici MCL11, Leuconostoc mesenteroides MCL12, Enterococcus faecium MCL13, Lactobacillus sakei MCL14, and Lactobacillus acidophilus MCL15 were found to produce an antibacterial compound with inhibitory activity against the tested histamine-producing bacteria. The inhibitory activity of these bacteriocins obtained from the five LAB remained stable after incubation at pH 4.0–8.0 and heating for 10 min at 80 °C; however, the bacteriocin activity was destroyed after treatment with papain, pepsin, proteinase K, α-chymotrypsin, or trypsin. Meanwhile, these bacteriocins produced by the tested LAB strains also exhibited histamine-degradation ability. Therefore, these antimicrobial substances may play a role in inhibiting histamine formation in the fermented fish products and preventing seafood-related food-borne disease caused by bacterially generated histamine.

  18. ISOLATION OF LACTIC ACID BACTERIA UNDER LOW TEMPERATURE FOR THE PREPARATION OF YOGURT

    OpenAIRE

    Javid Ahmad Bhat; Mohd Irfan Naik; R.K. Tenguria

    2014-01-01

    An investigation of isolation of Lactic acid bacteria was carried out under low temperature for the preparation of Yogurt by using various food supplements like carrot, ground-nut and tomato juices. Methods: Various samples of Cow milk, Skimmed milk were processed along with nutrients like Carrot, ground nut and tomato juices with Tryptone glucose yeast extract agar (TGYA) at different temperatures like 50C, 150C and 220C for the isolation of Lactic acid bacteria for the preparation of yogurt...

  19. ISOLATION AND IDENTIFICATION OF LACTIC ACID PRODUCING BACTERIA FROM CAMEL MILK

    OpenAIRE

    Toqeer Ahmad, Rashida Kanwal, Izhar Hussain Athar1, Najam Ayub

    2002-01-01

    Lactic acid bacteria (LAB) were isolated from camel milk by culturing the camel milk on specific media and pure culture was obtained by sub culturing. Purification of culture was confirmed by Gram's staining and identified by different bio-chemical tests. Camel milk contains lactic acid producing bacteria including Strpptococci such as S. cremoris and S. lactis and Lactobacilli such as L. acidophilus L. acidophilus grows more rapidly in camel milk than others as its growth is supported by cam...

  20. Characterization of the spoilage lactic acid bacteria in "sliced vacuum-packed cooked ham".

    Science.gov (United States)

    Kalschne, Daneysa Lahis; Womer, Rute; Mattana, Ademir; Sarmento, Cleonice Mendes Pereira; Colla, Luciane Maria; Colla, Eliane

    2015-03-01

    The lactic acid bacteria are involved with food fermentation and in such cases with food spoilage. Considering the need to reduce the lactic acid bacteria growth in meat products, the aim of this work was to enumerated and investigated the lactic acid bacteria present on sliced vacuum-packed cooked ham stored at 4 °C and 8 °C for 45 days by phenotypic and molecular techniques. The quantification showed that the lactic acid bacteria were present from the first day with mean count of 1.98 log cfu/g for the four batches analyzed. The lactic acid bacteria grew rapidly on the samples, and plate counts around 7.59 log cfu/g and 8.25 log cfu/g were detected after 45 days of storage at 4 °C and 8 °C, respectively; storage temperatures studied showed significant influence on the microorganism in study growth. The predominant lactic acid bacteria associated with the spoilage samples at one day of storage includes Lactobacillus sp., the phenotypic overlap Leuconostoc / Weissella sp. and Enterococcus sp. At 45 days of storage at 4 and 8 °C the mainly specie was Lactobacillus curvatus , following by Lactobacillus sakei and Leuconostoc mesentereoides ; the Enterococcus sp. was not present in the samples.

  1. Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods

    Directory of Open Access Journals (Sweden)

    K Beheshti-Maal

    2010-06-01

    Full Text Available Background and Objectives: Acetic acid bacteria (AAB are useful in industrial production of vinegar. The present study aims at isolation and identification of acetic acid bacteria with characterization, optimization, and evaluation of their acetic acid productivity."nMaterials and Methods: Samples from various fruits were screened for presence of acetic acid bacteria on glucose, yeast extract, calcium carbonate (GYC medium. Carr medium supplemented with bromocresol green was used for distinguishing Acetobacter from Gluconobacter. The isolates were cultured in basal medium to find the highest acetic acid producer. Biochemical tests followed by 16S rRNA and restriction analyses were employed for identification of the isolate and phylogenic tree was constructed. Bacterial growth and acid production conditions were optimized based on optimal inoculum size, pH, temperature, agitation, aeration and medium composition."nResults: Thirty-seven acetic acid bacteria from acetobacter and gluconobacter members were isolated. Acetic acid productivity yielded 4 isolates that produced higher amounts of acid. The highest producer of acid (10.03% was selected for identification. The sequencing and restriction analyses of 16S rRNA revealed a divergent strain of Acetobacter pasteurianus (Gene bank accession number # GU059865. The optimum condition for acid production was a medium composed of 2% glucose, 2% yeast extract, 3% ethanol and 3% acid acetic at inoculum size of 4% at 3L/Min aeration level in the production medium. The isolate was best preserved in GYC medium at 12oC for more than a month. Longer preservation was possible at -70oC."nConclusion: The results are suggestive of isolation of an indigenous acetic acid bacteria. Pilot plan is suggested to study applicability of the isolated strain in acetic acid production.

  2. Antimicrobial properties of lactic acid bacteria isolated from uruguayan artisan cheese

    Directory of Open Access Journals (Sweden)

    Martín Fraga Cotelo

    2013-12-01

    Full Text Available Uruguayan artisan cheese is elaborated with raw milk and non-commercial starters. The associated native microbiota may include lactic acid bacteria and also potentially pathogenic bacteria. Lactic acid bacteria were isolated from artisan cheese, raw milk, and non-commercial starter cultures, and their potential bacteriocin production was assessed. A culture collection of 509 isolates was obtained, and five isolates were bacteriocin-producers and were identified as Enterococcus durans,Lactobacillus casei, and Lactococcus lactis. No evidence of potential virulence factors were found in E. durans strains. These are promising results in terms of using these native strains for cheese manufacture and to obtain safe products.

  3. Probiotic lactic acid bacteria – the fledgling cuckoos of the gut?

    Directory of Open Access Journals (Sweden)

    Arnold Berstad

    2016-05-01

    Full Text Available It is tempting to look at bacteria from our human egocentric point of view and label them as either ‘good’ or ‘bad’. However, a microbial society has its own system of government – ‘microcracy’ – and its own rules of play. Lactic acid bacteria are often referred to as representatives of the good ones, and there is little doubt that those belonging to the normal intestinal flora are beneficial for human health. But we should stop thinking of lactic acid bacteria as always being ‘friendly’ – they may instead behave like fledgling cuckoos.

  4. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    Science.gov (United States)

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters.

  5. Metabolic Induction of Lactic Acid Bacteria for Urea Removal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Su-ai; BAI Yu; LI Dong-xia; CHEN Bo-li; SONG Cun-jiang; QIAO Ming-qiang; KONG De-ling; YU Yao-ting

    2009-01-01

    Objective:This study aims to induce nonpathogenic bacteria for urea removal as a potential treatment in renal failure. Methods:Lactococus lactis MG1363 was induced by repeated exposure to urea-rich culture media, the ability to remove urea from the media was evaluated. The effect of gastroenteric environment, such as low pH, bile salt and antiagonistic properties were investigated.The antimicrobial activities on pathogenic E.coli and S.aureus in the intestinal tract and the antibiotic tolerance of the induced bacteria were also studied.Results: Induced bacteria of 50 generations could decrease the urea level from 40.01 mg/dL to 32.99 mg/dL after 24 h. The bacteria could grow after treatment at pH3.0 for 2 h and in 0.1% bile salt for 6 h, and the urea removal activity was retained in such simulated gastroenteric environment. The removal of urea was significantly enhanced to 35.8% by addition of Ni2+ to the culture medium at neutral pH. It was also found that the induced bacteria could inhibit the growth of E.coli and S.aureus, and tolerate ampicillin,gentamicin,roxithromycin,tetracycline and cefradine. The safety tests were performed by feeding normal rats with either Lactococus lactis MG1363 or induced Lactococus lactis MG1363. The two materials did not cause any changes in blood cells, blood biochemical indexes and body weight. Conclusion: These results suggest that the induced Lactococus lactis MG1363 has the potential as an oral therapy for the removal of urea in patients with renal failure.

  6. Capacity of lactic acid bacteria in immunity enhancement and cancer prevention.

    Science.gov (United States)

    Riaz Rajoka, Muhammad Shahid; Shi, Junling; Zhu, Jing; Shao, Dongyan; Huang, Qingsheng; Yang, Hui; Jin, Mingliang

    2017-01-01

    Lactic acid bacteria are associated with the human gastrointestinal tract. They are important for maintaining the balance of microflora in the human gut. An increasing number of published research reports in recent years have denoted the importance of producing interferon-gamma and IgA for treatment of disease. These agents can enhance the specific and nonspecific immune systems that are dependent on specific bacterial strains. The mechanisms of these effects were revealed in this investigation, where the cell walls of these bacteria were modulated by the cytokine pathways, while the whole bacterial cell mediated the host cell immune system and regulated the production of tumor necrosis factors and interleukins. A supplement of highly active lactic acid bacteria strains provided significant potential to enhance host's immunity, offering prevention from many diseases including some cancers. This review summarizes the current understanding of the function of lactic acid bacteria immunity enhancement and cancer prevention.

  7. Applications for biotechnology: present and future improvements in lactic acid bacteria.

    Science.gov (United States)

    McKay, L L; Baldwin, K A

    1990-09-01

    The lactic acid bacteria are involved in the manufacture of fermented foods from raw agricultural materials such as milk, meat, vegetables, and cereals. These fermented foods are a significant part of the food processing industry and are often prepared using selected strains that have the ability to produce desired products or changes efficiently. The application of genetic engineering technology to improve existing strains or develop novel strains for these fermentations is an active research area world-wide. As knowledge about the genetics and physiology of lactic acid bacteria accumulates, it becomes possible to genetically construct strains with characteristics shaped for specific purposes. Examples of present and future applications of biotechnology to lactic acid bacteria to improve product quality are described. Studies of the basic biology of these bacteria are being actively conducted and must be continued, in order for the food fermentation industry to reap the benefits of biotechnology.

  8. Isolation of lactic acid bacteria with potential protective culture characteristics from fruits

    Science.gov (United States)

    Hashim, Nurul Huda; Sani, Norrakiah Abdullah

    2015-09-01

    Lactic acid bacteria are also known as beneficial microorganisms abundantly found in fermented food products. In this study, lactic acid bacteria were isolated from fresh cut fruits obtained from local markets. Throughout the isolation process from 11 samples of fruits, 225 presumptive lactic acid bacteria were isolated on MRS agar medium. After catalase and oxidase tests, 149 resulted to fit the characteristics of lactic acid bacteria. Further identification using Gram staining was conducted to identify the Gram positive bacteria. After this confirmation, the fermentation characteristics of these isolates were identified. It was found that 87 (58.4%) isolates were heterofermentative, while the rest of 62 (41.6%) are homofermentative lactic acid bacteria. Later, all these isolates were investigated for the ability to inhibit growth of Staphylococcus aureus using agar spot assay method. Seven (4.7%) isolates showed strong antagonistic capacity, while 127 (85.2%) and 8 (5.4%) isolates have medium and weak antagonistic capacity, respectively. The other 7 (4.7%) isolates indicated to have no antagonistic effect on S. aureus. Results support the potential of LAB isolated in this study which showed strong antagonistic activity against S. aureus may be manipulated to become protective cultures in food products. While the homofermentative or heterofermentative LAB can be utilized in fermentation of food and non-food products depending on the by-products required during the fermentation.

  9. Putrescine production from different amino acid precursors by lactic acid bacteria from wine and cider.

    Science.gov (United States)

    Costantini, Antonella; Pietroniro, Roberta; Doria, Francesca; Pessione, Enrica; Garcia-Moruno, Emilia

    2013-07-01

    The aim of this work was to study the production of biogenic amines and particularly putrescine in lactic acid bacteria (LAB) related to wine and cider. We applied an analytical protocol that involves the use of PCR and TLC techniques to determine the production of putrescine from different precursors. Moreover, we also studied the ability of the Lactobacillus and Pediococcus tested to produce histamine and tyramine. The results showed that the majority of the Lactobacillus brevis analyzed harbour both AgDI and tdc genes and are tyramine and putrescine producers. Conversely, among the other LAB tested, only one Lactobacillus hilgardii and one Pediococcus pentosaceus produced putrescine. The AgDI gene was also detected in two other LAB (Lactobacillus mali and Pediococcus parvulus), but no putrescine production was observed. Finally, hdc gene and histamine production were found in strains (L. hilgardii 5211, isolated from wine, and Lactobacillus casei 18, isolated from cider) that were not putrescine producers.

  10. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of "Shanxi aged vinegar", a traditional Chinese vinegar.

    Science.gov (United States)

    Wu, Jia Jia; Ma, Ying Kun; Zhang, Fen Fen; Chen, Fu Sheng

    2012-05-01

    Shanxi aged vinegar is a famous traditional Chinese vinegar made from several kinds of cereal by spontaneous solid-state fermentation techniques. In order to get a comprehensive understanding of culturable microorganism's diversity present in its fermentation, the indigenous microorganisms including 47 yeast isolates, 28 lactic acid bacteria isolates and 58 acetic acid bacteria isolates were recovered in different fermenting time and characterized based on a combination of phenotypic and genotypic approaches including inter-delta/PCR, PCR-RFLP, ERIC/PCR analysis, as well as 16S rRNA and 26S rRNA partial gene sequencing. In the alcoholic fermentation, the dominant yeast species Saccharomyces (S.) cerevisiae (96%) exhibited low phenotypic and genotypic diversity among the isolates, while Lactobacillus (Lb.) fermentum together with Lb. plantarum, Lb. buchneri, Lb. casei, Pediococcus (P.) acidilactici, P. pentosaceus and Weissella confusa were predominated in the bacterial population at the same stage. Acetobacter (A.) pasteurianus showing great variety both in genotypic and phenotypic tests was the dominant species (76%) in the acetic acid fermentation stage, while the other acetic acid bacteria species including A. senegalensis, A. indonesiensis, A. malorum and A. orientalis, as well as Gluconobacter (G.) oxydans were detected at initial point of alcoholic and acetic acid fermentation stage respectively.

  11. Lactic acid bacteria in the quality improvement and depreciation of wine.

    Science.gov (United States)

    Lonvaud-Funel, A

    1999-01-01

    The winemaking process includes two main steps: lactic acid bacteria are responsible for the malolactic fermentation which follows the alcoholic fermentation by yeasts. Both types of microorganisms are present on grapes and on cellar equipment. Yeasts are better adapted to growth in grape must than lactic acid bacteria, so the alcoholic fermentation starts quickly. In must, up to ten lactic acid bacteria species can be identified. They belong to the Lactobacillus, Pediococcus, Leuconostoc and Oenococcus genera. Throughout alcoholic fermentation, a natural selection occurs and finally the dominant species is O. oeni, due to interactions between yeasts and bacteria and between bacteria themselves. After bacterial growth, when the population is over 10(6) CFU/ml, malolactic transformation is the obvious change in wine composition. However, many other substrates can be metabolized. Some like remaining sugars and citric acid are always assimilated by lactic acid bacteria, thus providing them with energy and carbon. Other substrates such as some amino acids may be used following pathways restricted to strains carrying the adequate enzymes. Some strains can also produce exopolysaccharides. All these transformations greatly influence the sensory and hygienic quality of wine. Malic acid transformation is encouraged because it induces deacidification. Diacetyl produced from citric acid is also helpful to some extent. Sensory analyses show that many other reactions change the aromas and make malolactic fermentation beneficial, but they are as yet unknown. On the contrary, an excess of acetic acid, the synthesis of glucane, biogenic amines and precursors of ethylcarbamate are undesirable. Fortunately, lactic acid bacteria normally multiply in dry wines; moreover some of these activities are not widespread. Moreover, the most striking trait of wine lactic acid bacteria is their capacity to adapt to a hostile environment. The mechanisms for this are not yet completely elucidated

  12. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts

    Science.gov (United States)

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but sp...

  13. Extraction, isolation and purification of exopolysaccharide from lactic acid bacteria using ethanol precipitation method

    Directory of Open Access Journals (Sweden)

    Vivek K. Bajpai

    2016-09-01

    Full Text Available Lactic acid bacteria are classified ‘Generally Recognized As Safe’ (GRAS with most effective potential to divert significant amount of fermentable sugars towards the biosynthesis of functional exopolysaccharide. Exopolysaccharides from lactic acid bacteria are receiving a renewed interest due to the claims of human health benefits, such as modulation of immune response system and more importantly in food and pharma industries as a texturizer, viscosifer, emulsifier and syneresis-lowering agent. Its purification methodology involves: a Extraction of cell-free supernatant from lactic acid bacteria; b Denature of protein using trichloroacetic acid; c Ethanol precipitation; d Dialysis; and e Freeze drying. However, depending on nature of research, compounds can be further purified using scanning electron microscopy (SEM, infrared spectrum (IR; and nuclear magnetic resonance (NMR spectral analyses.

  14. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; Park, Si-Bum; Kishino, Shigenobu; Ogawa, Jun; Kawada, Teruo

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism.

  15. Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation.

    Science.gov (United States)

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-12-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a selection of strains was made out of a pool of strains of these LAB and AAB species, obtained from previous studies, based on their fermentation kinetics in PSM. Also, various concentrations of citric acid in the presence of glucose and/or fructose (PSM-LAB) and of lactic acid in the presence of ethanol (PSM-AAB) were tested. These data could explain the competitiveness of particular cocoa-specific strains, namely, L. plantarum 80 (homolactic and acid tolerant), L. fermentum 222 (heterolactic, citric acid fermenting, mannitol producing, and less acid tolerant), and A. pasteurianus 386B (ethanol and lactic acid oxidizing, acetic acid overoxidizing, acid tolerant, and moderately heat tolerant), during the natural cocoa bean fermentation process. For instance, it turned out that the capacity to use citric acid, which was exhibited by L. fermentum 222, is of the utmost importance. Also, the formation of mannitol was dependent not only on the LAB strain but also on environmental conditions. A mixture of L. plantarum 80, L. fermentum 222, and A. pasteurianus 386B can now be considered a mixed-strain starter culture for better controlled and more reliable cocoa bean fermentation processes.

  16. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana.

    Science.gov (United States)

    Camu, Nicholas; De Winter, Tom; Verbrugghe, Kristof; Cleenwerck, Ilse; Vandamme, Peter; Takrama, Jemmy S; Vancanneyt, Marc; De Vuyst, Luc

    2007-03-01

    The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as "Weissella ghanaensis," was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named "Acetobacter senegalensis" (A. tropicalis-like) and "Acetobacter

  17. Repetitive sequence based polymerase chain reaction to differentiate close bacteria strains in acidic sites

    Institute of Scientific and Technical Information of China (English)

    XIE Ming; YIN Hua-qun; LIU Yi; LIU Jie; LIU Xue-duan

    2008-01-01

    To study the diversity of bacteria strains newly isolated from several acid mine drainage(AMD) sites in China,repetitive sequence based polymerase chain reaction (rep-PCR),a well established technology for diversity analysis of closely related bacteria strains,was conducted on 30 strains of bacteria Leptospirillum ferriphilium,8 strains of bacteria Acidithiobacillus ferrooxidans,as well as the Acidithiobacillus ferrooxidans type strain ATCC (American Type Culture Collection) 23270.The results showed that,using ERIC and BOX primer sets,rep-PCR produced highly discriminatory banding patterns.Phylogenetic analysis based on ERIC-PCR banding types was made and the results indicated that rep-PCR could be used as a rapid and highly discriminatory screening technique in studying bacterial diversity,especially in differentiating bacteria within one species in AMD.

  18. Application of molecular techniques for identification and ennumeration of acetic acid bacteria

    OpenAIRE

    González Benito, Angel

    2005-01-01

    Application of molecular techniques for identification and enumeration of acetic acid bacteria:Los principales objetivos de la tesis son el desarrollo de técnicas de biología molecular rápidas y fiables para caracterizar bacterias acéticas.Las bacterias acéticas son las principales responsables del picado de los vinos y de la producción de vinagre. Sin embargo, existe un desconocimiento importante sobre su comportamiento y evolución. Las técnicas de enumeración y de identificación basadas en ...

  19. Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.

    Science.gov (United States)

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria; Di Cagno, Raffaella

    2014-12-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD(+)/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD(+)/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons.

  20. THE SEARCH AND PROPERTIES OF LACTIC ACID BACTERIA PERSPECTIVE FOR BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Naumenko О. V.

    2014-10-01

    Full Text Available Search of biologically active Lactobacillus strains prospective for functional milk food production was the aim of the research. The study involved the lactic acid bacteria isolated from biological material of healthy humen and non- dairy lactic products. Using modern methodological approaches, the strains of lactic acid bacteria such as Lactobacillus casei 302, Lactobacillus acidophilus 35 and Streptococcus thermophilus 21 having high level of biological activity were selected. High biological potential of selected cultures of lactic acid bacteria, which could provide stability for the technological process of production and essential characteristics of bacterial preparations and fermented their products, was set. In vitro the experiments demonstrated that selected strains had valuable production properties, namely the ability to reduce level of cholesterol and lactose during development in milk, were resistant to virulent bacteriophages and aggressive compounds of the gastrointestinal tract, and high adhesive and antagonistic activities as well.

  1. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production.

    Science.gov (United States)

    García-Hernández, Yaneisy; Pérez-Sánchez, Tania; Boucourt, Ramón; Balcázar, José L; Nicoli, Jacques R; Moreira-Silva, João; Rodríguez, Zoraya; Fuertes, Héctor; Nuñez, Odalys; Albelo, Nereyda; Halaihel, Nabil

    2016-10-01

    In livestock production, lactic acid bacteria (LAB) are the most common microorganisms used as probiotics. For such use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. In the present study, LAB were isolated from broiler excreta, where a fermentation process was used. Nine among sixteen isolates were identified by biochemical and molecular (sequencing of the 16S rRNA gene) methods as Lactobacillus crispatus (n=1), Lactobacillus pentosus (n=1), Weissella cibaria (n=1), Pediococcus pentosaceus (n=2) and Enterococcus hirae (n=4). Subsequently, these bacteria were characterized for their growth capabilities, lactic acid production, acidic pH and bile salts tolerance, cell surface hydrophobicity, antimicrobial susceptibility and antagonistic activity. Lactobacillus pentosus strain LB-31, which showed the best characteristics, was selected for further analysis. This strain was administered to broilers and showed the ability of modulating the immune response and producing beneficial effects on morpho-physiological, productive and health indicators of the animals.

  2. Phenotypic and genotypic characterization of lactic acid bacteria isolated from raw goat milk and effect of farming practices on the dominant species of lactic acid bacteria.

    Science.gov (United States)

    Tormo, Hélène; Ali Haimoud Lekhal, Djamila; Roques, C

    2015-10-01

    Lactic acid bacteria, in particular Lactococcus lactis, play a decisive role in the cheese making process and more particularly in lactic cheeses which are primarily produced on goat dairy farms. The objective of this study was therefore to identify the main lactic acid bacteria found in raw goats' milk from three different regions in France and evaluate if certain farming practices have an effect on the distribution of species of lactic acid bacteria in the various milk samples. Identification at genus or species level was carried out using phenotypic tests and genotypic methods including repetitive element REP-PCR, species-specific PCR and 16S rRNA gene sequencing. The distribution of the main bacterial species in the milk samples varied depending on farms and their characteristics. Out of the 146 strains identified, L. lactis was the dominant species (60% of strains), followed by Enterococcus (38%) of which Enterococcus faecalis and Enterococcus faecium. Within the species L. lactis, L. lactis subsp lactis was detected more frequently than L. lactis subsp cremoris (74% vs. 26%). The predominance of L. lactis subsp cremoris was linked to geographical area studied. It appears that the animals' environment plays a role in the balance between the dominance of L. lactis and enterococci in raw goats' milk. The separation between the milking parlor and the goat shed (vs no separation) and only straw in the bedding (vs straw and hay) seems to promote L. lactis in the milk (vs enterococci).

  3. Phytase-active lactic acid bacteria from sourdoughs

    DEFF Research Database (Denmark)

    Nuobariene, Lina; Cizeikiene, Dalia; Gradzeviciute, Egle

    2015-01-01

    at conditions optimal for leavening of bread dough (pH 5.5 and 30°C). The phytase active isolates belonged to the species Lactobacillus panis, Lactobacillus reuteri, Lactobacillus fermentum, and Pediococcus pentosaceus. Phytase activities of the tested LAB isolates were both extra- and intra...... bacteria (LAB) which could be used as a starter to increase mineral bioavailability in whole-meal bread. Hence, LAB isolates were isolated from Lithuanian sourdoughs, tested for phytase activity, and phytase active isolates were identified. Studies of phytase activity of the isolates were carried out......-cellular. The highest extracellular phytase production was found in L.panis with a volumetric phytase activity of 140U/mL. Phytate degradation in whole-wheat dough fermented with L.panis or L.fermentum was 90% and 70%, respectively....

  4. Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria.

    Science.gov (United States)

    Papalexandratou, Zoi; Vrancken, Gino; De Bruyne, Katrien; Vandamme, Peter; De Vuyst, Luc

    2011-10-01

    Spontaneous organic cocoa bean box fermentations were carried out on two different farms in Brazil. Physical parameters, microbial growth, bacterial species diversity [mainly lactic acid bacteria (LAB) and acetic acid bacteria (AAB)], and metabolite kinetics were monitored, and chocolates were produced from the fermented dry cocoa beans. The main end-products of the catabolism of the pulp substrates (glucose, fructose, and citric acid) by yeasts, LAB, and AAB were ethanol, lactic acid, mannitol, and/or acetic acid. Lactobacillus fermentum and Acetobacter pasteurianus were the predominating bacterial species of the fermentations as revealed through (GTG)(5)-PCR fingerprinting of isolates and PCR-DGGE of 16S rRNA gene PCR amplicons of DNA directly extracted from fermentation samples. Fructobacillus pseudoficulneus, Lactobacillus plantarum, and Acetobacter senegalensis were among the prevailing species during the initial phase of the fermentations. Also, three novel LAB species were found. This study emphasized the possible participation of Enterobacteriaceae in the cocoa bean fermentation process. Tatumella ptyseos and Tatumella citrea were the prevailing enterobacterial species in the beginning of the fermentations as revealed by 16S rRNA gene-PCR-DGGE. Finally, it turned out that control over a restricted bacterial species diversity during fermentation through an ideal post-harvest handling of the cocoa beans will allow the production of high-quality cocoa and chocolates produced thereof, independent of the fermentation method or farm.

  5. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    Science.gov (United States)

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-04

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 °C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product.

  6. Inactivation of Gram-Positive Bacteria by Novel Phenolic Branched-Chain Fatty Acids.

    Science.gov (United States)

    Fan, Xuetong; Wagner, Karen; Sokorai, Kimberly J B; Ngo, Helen

    2017-01-01

    Novel phenolic branched-chain fatty acids (PBC-FAs) were evaluated for their antimicrobial properties against both gram-positive ( Listeria innocua , Bacillus subtilis , Enterococcus faecium ) and gram-negative ( Escherichia coli , Salmonella Typhimurium, and Pseudomonas tolaasii ) bacteria. In addition, PBC-FA derivatives, such as PBC-FA methyl ester mixture, methyl-branched fatty acid mixtures, and trimethylsilyl-PBC-FA methyl esters, were synthesized to study the structure activity relationship. Results showed that PBC-FAs were a potent antimicrobial against gram-positive bacteria with MICs of 1.8 to 3.6 μg/ml. The compounds were less effective against gram-negative bacteria. Derivatives of PBC-FAs and an equimolar mixture of oleic acid and phenol all had MICs above 233 μg/ml against both gram-positive and gram-negative bacteria. Comparison of antimicrobial activities of the PBC-FAs with those of the derivatives suggests that the carboxylic group in the fatty acid moiety and the hydroxyl group on the phenol moiety were responsible for the antimicrobial efficacy. Growth curves of L. innocua revealed that PBC-FAs prevented bacterial growth, while MBC-FAs only delayed the onset of rapid growth of L. innocua . Our results demonstrated that the novel PBC-FAs have potential for use as antimicrobials against gram-positive bacteria.

  7. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    Science.gov (United States)

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria.

  8. Modulation of folate production in lactic acid bacteria

    NARCIS (Netherlands)

    Wegkamp, H.B.A.

    2008-01-01

    Food fortification has proven to be very useful in reducing health problems associated with mal-intake of essential nutrients, such as the B-vitamin folate. Folate is used as one-carbon donor/acceptor in several biochemical processes like synthesis of DNA, RNA and some amino acids. Sufficient intake

  9. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Kim, Young-Il; Furuzono, Tomoya [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Ohue, Ryuji [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Nomura, Wataru [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Sugawara, Tatsuya [Laboratory of Marine Bioproducts Technology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Yu, Rina [Department of Food Science and Nutrition, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Kitamura, Nahoko [Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  10. Acetic Acid Bacteria and the Production and Quality of Wine Vinegar

    Directory of Open Access Journals (Sweden)

    Albert Mas

    2014-01-01

    Full Text Available The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either “fast” or “traditional”, the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties.

  11. Acetic acid bacteria and the production and quality of wine vinegar.

    Science.gov (United States)

    Mas, Albert; Torija, María Jesús; García-Parrilla, María del Carmen; Troncoso, Ana María

    2014-01-01

    The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either "fast" or "traditional"), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties.

  12. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments

    Directory of Open Access Journals (Sweden)

    Yanhua Cui

    2015-06-01

    Full Text Available Plasmids are widely distributed in different sources of lactic acid bacteria (LAB as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research.

  13. Microbial Quality and Direct PCR Identification of Lactic Acid Bacteria and Nonpathogenic Staphylococci from Artisanal Low-Acid Sausages

    OpenAIRE

    Aymerich, T.; B. Martín; Garriga, M.; Hugas, M

    2005-01-01

    Detection of six species of lactic acid bacteria and six species of gram-positive catalase-positive cocci from low-acid fermented sausages (fuets and chorizos) was assessed by species-specific PCR. Without enrichment, Lactobacillus sakei and Lactobacillus curvatus were detected in 11.8% of the samples, and Lactobacillus plantarum and Staphylococcus xylosus were detected in 17.6%. Enriched samples allowed the detection of L. sakei and S. xylosus in all of the samples (100%) and of Enterococcus...

  14. Lactic Acid Bateria - Friend or Foe? Lactic Acid Bacteria in the Production of Polysaccharides and Fuel Ethanol

    Science.gov (United States)

    Lactic acid bacteria (LAB) have been widely used in the production of fermented foods and as probiotics. Alternan is a glucan with a distinctive backbone structure of alternating alpha-(1,6) and alpha-(1,3) linkages produced by the LAB Leuconostoc mesenteroides. In recent years, improved strains f...

  15. Growth-inhibition of hiochi bacteria in namazake (raw sake) by bacteriocins from lactic acid bacteria.

    Science.gov (United States)

    Taniguchi, Masayuki; Ishiyama, Yohei; Takata, Takeomi; Nakanishi, Toshihiro; Kaneoke, Mitsuoki; Watanabe, Ken-ichi; Yanagida, Fujitoshi; Chen, Yi-sheng; Kouya, Tomoaki; Tanaka, Takaaki

    2010-06-01

    The bacteriocins produced by Lactococcus lactis subsp. lactis C101910 (C101910) and NBRC 12007 (NBRC 12007) were used to prevent the growth of sake spoiling hiochi bacteria (Lactobacillus hilgardii, Lactobacillus fructivorans, and Lactobacillus paracasei) in namazake, which is raw (unpasteurized) sake. The bacteriocin concentrations required for decreasing the viable cell concentrations of L. hilgardii and L. fructivorans below the detection limit (1.0 x 10(2) cells/ml) in 24 h from the initial concentration of 4.0-9.5 x 10(5) cells/ml in the namazake at pH 4.5 and at 4 degrees C, were 18-35 U/ml and 5.6 U/ml for the bacteriocin from C101910 and NBRC 12007, respectively. To decrease the viable cell concentration of L. paracasei from the initial concentration of 7.5 x 10(5) cells/ml to below the detection limit (1.0 x 10(2) cells/ml) in 24 h, 350 U/ml bacteriocin from C101910 and 140 U/ml bacteriocin from NBRC 12007 were required. In experiments using McIlvaine buffer (pH 4.5) with 15% ethanol instead of namazake as the medium, the viable cell concentrations of L. hilgardii and L. paracasei decreased to less than 1.0 x 10(2) cells/ml, whereas those of L. fructivorans decreased to less than 1.0 x 10(3) cells/ml, when bacteriocins were added at the concentrations that had proven effective in namazake. The membrane depolarization assay using a fluorescent probe showed that the presence of ethanol stimulated the collapse of the membrane potential induced by bacteriocins. The ethanol induced collapse of the membrane potential suggests that the application of bacteriocins at the storage stage of namazake is more beneficial than when used in other stages of the sake brewing process.

  16. Local domestication of lactic acid bacteria via cassava beer fermentation.

    Science.gov (United States)

    Colehour, Alese M; Meadow, James F; Liebert, Melissa A; Cepon-Robins, Tara J; Gildner, Theresa E; Urlacher, Samuel S; Bohannan, Brendan J M; Snodgrass, J Josh; Sugiyama, Lawrence S

    2014-01-01

    Cassava beer, or chicha, is typically consumed daily by the indigenous Shuar people of the Ecuadorian Amazon. This traditional beverage made from cassava tuber (Manihot esculenta) is thought to improve nutritional quality and flavor while extending shelf life in a tropical climate. Bacteria responsible for chicha fermentation could be a source of microbes for the human microbiome, but little is known regarding the microbiology of chicha. We investigated bacterial community composition of chicha batches using Illumina high-throughput sequencing. Fermented chicha samples were collected from seven Shuar households in two neighboring villages in the Morona-Santiago region of Ecuador, and the composition of the bacterial communities within each chicha sample was determined by sequencing a region of the 16S ribosomal gene. Members of the genus Lactobacillus dominated all samples. Significantly greater phylogenetic similarity was observed among chicha samples taken within a village than those from different villages. Community composition varied among chicha samples, even those separated by short geographic distances, suggesting that ecological and/or evolutionary processes, including human-mediated factors, may be responsible for creating locally distinct ferments. Our results add to evidence from other fermentation systems suggesting that traditional fermentation may be a form of domestication, providing endemic beneficial inocula for consumers, but additional research is needed to identify the mechanisms and extent of microbial dispersal.

  17. Local domestication of lactic acid bacteria via cassava beer fermentation

    Directory of Open Access Journals (Sweden)

    Alese M. Colehour

    2014-07-01

    Full Text Available Cassava beer, or chicha, is typically consumed daily by the indigenous Shuar people of the Ecuadorian Amazon. This traditional beverage made from cassava tuber (Manihot esculenta is thought to improve nutritional quality and flavor while extending shelf life in a tropical climate. Bacteria responsible for chicha fermentation could be a source of microbes for the human microbiome, but little is known regarding the microbiology of chicha. We investigated bacterial community composition of chicha batches using Illumina high-throughput sequencing. Fermented chicha samples were collected from seven Shuar households in two neighboring villages in the Morona-Santiago region of Ecuador, and the composition of the bacterial communities within each chicha sample was determined by sequencing a region of the 16S ribosomal gene. Members of the genus Lactobacillus dominated all samples. Significantly greater phylogenetic similarity was observed among chicha samples taken within a village than those from different villages. Community composition varied among chicha samples, even those separated by short geographic distances, suggesting that ecological and/or evolutionary processes, including human-mediated factors, may be responsible for creating locally distinct ferments. Our results add to evidence from other fermentation systems suggesting that traditional fermentation may be a form of domestication, providing endemic beneficial inocula for consumers, but additional research is needed to identify the mechanisms and extent of microbial dispersal.

  18. Naturally fermented Jijelian black olives: microbiological characteristics and isolation of lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Karam, Nour-Eddine

    2009-12-01

    Full Text Available A study of the microflora of traditionally fermented black olives in Eastern Algeria is presented. A count of the following microbial groups was carried out: mesophilic bacteria, enterobacteria, lactic acid bacteria (LAB, staphylococci and yeast. In a second phase, the identification and assessment of the technological traits of LAB was performed. Seventeen lactic acid bacteria were isolated and identified. These isolates were represented by two genera: Lactobacillus and Leuconostoc. The results showed that Lactobacillus plantarum was the predominant species in this traditional product.Un estudio sobre la microflora de aceitunas negras fermentada por métodos tradicionales en el Este de Argelia es presentado. Se realizo el siguiente recuento de grupos de microorganismos: bacterias mesófilas, enterobacterias, bacterias ácido lácticas (LAB, staphylococcus y levaduras. En una segunda fase, la identificación y evaluación de aspectos tecnológicos de LAB fue realizada. Setenta bacterias ácido lácticas fueron aisladas e identificadas. Estos aislados contenían principalmente dos géneros: Lactobacillus y Leuconostoc. Los resultados mostraron que Lactobacillus plantarum fue la especie predominante en este producto tradicional.

  19. Lactic acid bacteria in dairy food: surface characterization and interactions with food matrix components.

    Science.gov (United States)

    Burgain, J; Scher, J; Francius, G; Borges, F; Corgneau, M; Revol-Junelles, A M; Cailliez-Grimal, C; Gaiani, C

    2014-11-01

    This review gives an overview of the importance of interactions occurring in dairy matrices between Lactic Acid Bacteria and milk components. Dairy products are important sources of biological active compounds of particular relevance to human health. These compounds include immunoglobulins, whey proteins and peptides, polar lipids, and lactic acid bacteria including probiotics. A better understanding of interactions between bioactive components and their delivery matrix may successfully improve their transport to their target site of action. Pioneering research on probiotic lactic acid bacteria has mainly focused on their host effects. However, very little is known about their interaction with dairy ingredients. Such knowledge could contribute to designing new and more efficient dairy food, and to better understand relationships between milk constituents. The purpose of this review is first to provide an overview of the current knowledge about the biomolecules produced on bacterial surface and the composition of the dairy matter. In order to understand how bacteria interact with dairy molecules, adhesion mechanisms are subsequently reviewed with a special focus on the environmental conditions affecting bacterial adhesion. Methods dedicated to investigate the bacterial surface and to decipher interactions between bacteria and abiotic dairy components are also detailed. Finally, relevant industrial implications of these interactions are presented and discussed.

  20. Acid production in dental plaque after exposure to probiotic bacteria

    Directory of Open Access Journals (Sweden)

    Keller Mette K

    2012-10-01

    Full Text Available Abstract Background The increasing interest in probiotic lactobacilli in health maintenance has raised the question of potential risks. One possible side effect could be an increased acidogenicity in dental plaque. The aim of this study was to investigate the effect of probiotic lactobacilli on plaque lactic acid (LA production in vitro and in vivo. Methods In the first part (A, suspensions of two lactobacilli strains (L. reuteri DSM 17938, L. plantarum 299v were added to suspensions of supragingival dental plaque collected from healthy young adults (n=25. LA production after fermentation with either xylitol or fructose was analyzed. In the second part (B, subjects (n=18 were given lozenges with probiotic lactobacilli (L. reuteri DSM 17938 and ATCC PTA 5289 or placebo for two weeks in a double-blinded, randomized cross-over trial. The concentration of LA in supragingival plaque samples was determined at baseline and after 2 weeks. Salivary counts of mutans streptococci (MS and lactobacilli were estimated with chair-side methods. Results Plaque suspensions with L. reuteri DSM 17938 produced significantly less LA compared with L. plantarum 299v or controls (p Conclusion Lactic acid production in suspensions of plaque and probiotic lactobacilli was strain-dependant and the present study provides no evidence of an increase in plaque acidity by the supply of selected probiotic lactobacilli when challenged by fructose or xylitol. The study protocol was approved by The Danish National Committee on Biomedical Research Ethics (protocol no H-2-2010-112. Trial registration NCT01700712

  1. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation.

    Science.gov (United States)

    Liu, Yuping; Tang, Hongzhi; Lin, Zhanglin; Xu, Ping

    2015-11-15

    Acidogenic and aciduric bacteria have developed several survival systems in various acidic environments to prevent cell damage due to acid stress such as that on the human gastric surface and in the fermentation medium used for industrial production of acidic products. Common mechanisms for acid resistance in bacteria are proton pumping by F1-F0-ATPase, the glutamate decarboxylase system, formation of a protective cloud of ammonia, high cytoplasmic urease activity, repair or protection of macromolecules, and biofilm formation. The field of synthetic biology has rapidly advanced and generated an ever-increasing assortment of genetic devices and biological modules for applications in biofuel and novel biomaterial productions. Better understanding of aspects such as overproduction of general shock proteins, molecular mechanisms, and responses to cell density adopted by microorganisms for survival in low pH conditions will prove useful in synthetic biology for potential industrial and environmental applications.

  2. Identification and Characteristics of Lactic Acid Bacteria Isolated from Sour Dough Sponges.

    Science.gov (United States)

    Okada, S; Ishikawa, M; Yoshida, I; Uchimura, T; Ohara, N; Kozaki, M

    1992-01-01

    Lactic acid bacteria in four samples of sour dough sponges were studied quantitatively and qualitatively. In each sponge, there were one or two species of the genus Lactobacillus: L. reuteri and L. curvatus in San Francisco sour dough sponge, L. brevis and L. hilgardii in panettone sour dough sponge produced in Italy, L. sanfrancisco from a rye sour dough sponge produced in Germany, and L. casei and L. curvatus from a rye sour dough sponge produced in Switzerland. For all isolates except the L. reuteri strains oleic acid, a component of the Tween 80 added to the medium, was essential for growth. It was of interest that lactobacilli requiring oleic acid were the predominant flora of lactic acid bacteria in the microbial environment of sour dough sponges.

  3. Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Lechtenfeld, O.J.; Benner, R.

    2014-01-01

    Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological...... production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of combined neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining...... degradation was characterized by a high galactose content (33 mol %), followed by glucose (22 mol %) and the remaining neutral sugars (7–11 mol %). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days, the D/L ratios of aspartic...

  4. Genetically modified lactic acid bacteria: applications to food or health and risk assessment.

    Science.gov (United States)

    Renault, Pierre

    2002-11-01

    Lactic acid bacteria have a long history of use in fermented food products. Progress in gene technology allows their modification by introducing new genes or by modifying their metabolic functions. These modifications may lead to improvements in food technology (bacteria better fitted to technological processes, leading to improved organoleptic properties em leader ), or to new applications including bacteria producing therapeutic molecules that could be delivered by mouth. Examples in these two fields will be discussed, at the same time evaluating their potential benefit to society and the possible risks associated with their use. Risk assessment and expected benefits will determine the future use of modified bacteria in the domains of food technology and health.

  5. Heterologous surface display on lactic acid bacteria: non-GMO alternative?

    Science.gov (United States)

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union.

  6. Comparison of the Morphology and Deoxyribonucleic Acid Composition of 27 Strains of Nitrifying Bacteria1

    Science.gov (United States)

    Watson, Stanley W.; Mandel, Manley

    1971-01-01

    The gross morphology, fine structure, and per cent guanine plus cytosine (GC) composition of deoxyribonucleic acid of 27 strains of nitrifying bacteria were compared. Based on morphological differences, the ammonia-oxidizing bacteria were separated into four genera. Nitrosomonas species and Nitrosocystis species formed one homogenous group, and Nitrosolobus species and Nitrosospira species formed a second homogenous group in respect to their deoxyribonucleic acid GC compositions. Similarly, the nitrite-oxidizing bacteria were separated into three genera based on their morphology. The members of two of these nitrite-oxidizing genera, Nitrobacter and Nitrococcus, had similar GC compositions, but Nitrospina gracilis had a significantly lower GC composition than the members of the other two genera. Images PMID:4939767

  7. Comparison of the morphology and deoxyribonucleic acid composition of 27 strains of nitrifying bacteria.

    Science.gov (United States)

    Watson, S W; Mandel, M

    1971-08-01

    The gross morphology, fine structure, and per cent guanine plus cytosine (GC) composition of deoxyribonucleic acid of 27 strains of nitrifying bacteria were compared. Based on morphological differences, the ammonia-oxidizing bacteria were separated into four genera. Nitrosomonas species and Nitrosocystis species formed one homogenous group, and Nitrosolobus species and Nitrosospira species formed a second homogenous group in respect to their deoxyribonucleic acid GC compositions. Similarly, the nitrite-oxidizing bacteria were separated into three genera based on their morphology. The members of two of these nitrite-oxidizing genera, Nitrobacter and Nitrococcus, had similar GC compositions, but Nitrospina gracilis had a significantly lower GC composition than the members of the other two genera.

  8. Natural Killer Cells Are Activated by Lactic Acid Bacteria-Matured Dendritic Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    of certain lactic acid bacteria has been shown to increase in vivo NK cytotoxicity. Here, we investigated how human gut flora-derived lactobacilli affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human NK cells upon bacterial stimulation. Human peripheral blood NK cells were...... with lactic acid bacteria will affect NK cell activation. Such activation of NK cells may potentially skew an on-going or subsequent immune response towards a Th1 response....... incubated with 10 microg/ml UV-inactivated bacteria or 10 microg/ml phytohemagglutinin (PHA) for four days. Proliferation was assessed by incorporation of radioactive thymidine into NK cell DNA. The IFN-gamma concentration was measured by ELISA. Incubation of NK cells with a Lactobacillus acidophilus strain...

  9. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids

    Directory of Open Access Journals (Sweden)

    Richardson Anthony J

    2013-01-01

    Full Text Available Abstract Background The products of protein breakdown in the human colon are considered to be detrimental to gut health. Amino acid catabolism leads to the formation of sulfides, phenolic compounds and amines, which are inflammatory and/or precursors to the formation of carcinogens, including N-nitroso compounds. The aim of this study was to investigate the kinetics of protein breakdown and the bacterial species involved. Results Casein, pancreatic casein hydrolysate (mainly short-chain peptides or amino acids were incubated in vitro with suspensions of faecal bacteria from 3 omnivorous and 3 vegetarian human donors. Results from the two donor groups were similar. Ammonia production was highest from peptides, followed by casein and amino acids, which were similar. The amino acids metabolized most extensively were Asp, Ser, Lys and Glu. Monensin inhibited the rate of ammonia production from amino acids by 60% (P = 0.001, indicating the involvement of Gram-positive bacteria. Enrichment cultures were carried out to investigate if, by analogy with the rumen, there was a significant population of asaccharolytic, obligately amino acid-fermenting bacteria (‘hyper-ammonia-producing’ bacteria; HAP in the colon. Numbers of bacteria capable of growth on peptides or amino acids alone averaged 3.5% of the total viable count, somewhat higher than the rumen. None of these were HAP, however. The species enriched included Clostridium spp., one of which was C. perfringens, Enterococcus, Shigella and Escherichia coli. Conclusions Protein fermentation by human faecal bacteria in the absence of sugars not only leads to the formation of hazardous metabolic products, but also to the possible proliferation of harmful bacteria. The kinetics of protein metabolism were similar to the rumen, but HAP bacteria were not found.

  10. Multiple Genome Sequences of Important Beer-Spoiling Lactic Acid Bacteria

    Science.gov (United States)

    Geissler, Andreas J.; Vogel, Rudi F.

    2016-01-01

    Seven strains of important beer-spoiling lactic acid bacteria were sequenced using single-molecule real-time sequencing. Complete genomes were obtained for strains of Lactobacillus paracollinoides, Lactobacillus lindneri, and Pediococcus claussenii. The analysis of these genomes emphasizes the role of plasmids as the genomic foundation of beer-spoiling ability. PMID:27795248

  11. Identification of lactic acid bacteria isolated from Tarhana, a traditional Turkish fermented food

    DEFF Research Database (Denmark)

    Sengun, Ilkin Yucel; Nielsen, Dennis Sandris; Karapinar, Mehmet

    2009-01-01

    Tarhana is a traditional fermented product produced from a mixture of spontaneously fermented yogurt and wheat flour in Turkey. The aims of the present study were to enumerate and identify for the first time by molecular biology-based methods predominant lactic acid bacteria (LAB) isolated during...

  12. Identification of lactic acid bacteria isolated from Tarkhineh, a traditional Iranian fermented food

    Directory of Open Access Journals (Sweden)

    Faride Tabatabaee

    2013-01-01

    Full Text Available Tarkhineh is a traditional Iranian fermented product produced from a mixture of doogh and wheat grout. The purposes of the present study were identifying of lactic acid bacteria (LAB isolated and Changes of lactic acid bacteria flora throughout spontaneous fermentation of Tarkhineh. Results have shown a total of ten strains of LAB were isolated from Tarkhineh on the 3th day of fermentation using MRS agar plates and identified on the basis of morphological, biochemical, and physiological characteristics. The isolates were identified as L.nagelii(67%, L.bifermentans(21.3%, Leu.cermoris(6%, L.fructosus(1.45%, L.fermentum(1%, L.intestinalis(0.9%, L.agilis(0.9% L.acidipiscis(0.9% was reported, and approximately %1 of isolated samples remained unknown. The naturally occurring lactic acid bacteria load was found to vary between 1.97×105 and 4.3×105 cfu/gr. The main source of lactic acid bacteria was found to be the doogh.

  13. Concentrations of butyric acid bacteria spores in silage and relationships with aerobic deterioration

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, M.C.T.; Jong, de P.; Lankveld, J.M.G.

    2007-01-01

    Germination and growth of spores of butyric acid bacteria ( BAB) may cause severe defects in semihard cheeses. Silage is the main source of BAB spores in cheese milk. The objectives of the study were to determine the significance of grass silages and corn silages as sources of BAB spores and to inve

  14. Use of the alr gene as a food-grade selection marker in lactic acid bacteria

    NARCIS (Netherlands)

    Bron, P.A.; Benchimol, M.G.; Lambert, J.; Palumbo, E.; Deghorain, M.; Delcour, J.; Vos, de W.M.; Kleerebezem, M.; Hols, P.

    2002-01-01

    Both Lactococcus lactis and Lactobacillus plantarum contain a single alr gene, encoding an alanine racemase (EC 5.1.1.1), which catalyzes the interconversion of D-alanine and L-alanine. The alr genes of these lactic acid bacteria were investigated for their application as food-grade selection marker

  15. Perspectives on the contribution of lactic acid bacteria to cheese flavor development

    NARCIS (Netherlands)

    Steele, James; Broadbent, Jeffery; Kok, Jan

    2013-01-01

    It has been known since the 1960s that lactic acid bacteria are essential for the development of cheese flavor. In the ensuing 50 years significant research has been directed at understanding the microbiology, genetics and biochemistry of this process. This review briefly covers the current status o

  16. Survival and growth of probiotic lactic acid bacteria in refrigerated pickle products

    Science.gov (United States)

    We examined 10 lactic acid bacteria that have been previously characterized for commercial use as probiotic cultures, mostly for dairy products, including 1 Pediococcus and 9 Lactobacilli. Our objectives were to develop a rapid procedure for determining the long-term survivability of these cultures ...

  17. Glucansucrases from lactic acid bacteria which produce water-insoluble polysaccharides from sucrose

    Science.gov (United States)

    Dextrans and related glucans produced from sucrose by lactic acid bacteria have been studied for many years and are used in numerous commercial applications and products. Most of these glucans are water-soluble, except for a few notable exceptions from cariogenic Streptococcus spp. and a very small ...

  18. Drivers for the establishment and composition of the sourdough lactic acid bacteria biota.

    Science.gov (United States)

    Gobbetti, Marco; Minervini, Fabio; Pontonio, Erica; Di Cagno, Raffaella; De Angelis, Maria

    2016-12-19

    The drivers for the establishment and composition of the sourdough microbiota, with particular emphasis on lactic acid bacteria, are reviewed and discussed. More than 60 different species of lactobacilli were identified from sourdoughs, showing the main overlapping between sourdough and human intestine ecosystems. The microbial kinetics during sourdough preparation was described by several studies using various methodological approaches, including culture-dependent and -independent (e.g., high throughput sequencing), and metabolite and meta-transcriptome analyses. Although the abundant microbial diversity harbored by flours, a succession of dominating and sub-dominating populations of lactic acid bacteria suddenly occurred during sourdough propagation, leading to the progressive assembly of the bacterial community. The contribution of all the potential sources (house microbiota, flour, types of flours and additional ingredients) for contaminating lactic acid bacteria was compared with the aim to find overlapping or specific routes that affect the sourdough microbiota. Once established and mature, pros and cons regarding the stability of the sourdough lactic acid bacteria biota were also reviewed, showing contradictory results, which were mainly dependent on the species/strains. Probably, the future research efforts should be dedicated to decrease the sources/drivers of noticeable variation rather than to full standardization of the process for sourdough preparation and use.

  19. Inducible gene expression and environmentally regulated genes in lactic acid bacteria

    NARCIS (Netherlands)

    Kok, Jan

    1996-01-01

    Relatively recently, a number of genes and operons have been identified in lactic acid bacteria that are inducible and respond to environmental factors. Some of these genes/operons had been isolated and analysed because of their importance in the fermentation industry and, consequently, their transc

  20. TECHNOLOGICAL AND FUNCTIONAL PROPERTIES OF LACTIC ACID BACTERIA: THE IMPORTANCE OF THESE MICROORGANISMS FOR FOOD

    Directory of Open Access Journals (Sweden)

    Amanda de Souza Motta

    2015-12-01

    Full Text Available Eacters of coccus or rods Gram-positive, catalase negative, non-sporulating, which produce lactic acid as the major end product during the fermentation of carbohydrates. When applied on food, provides beneficial effects to consumers through its functional and technological properties. With this the present review article, explore the potential application of lactic acid bacteria in food. The following genera are considered the principal lactic acid bacteria: Aerococcus, Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella. These cultures have been used as starter or adjunct cultures for the fermentation of foods and beverages due to their contributions to the sensorial characteristics of these products and by microbiological stability. Their probiotic properties have also been investigated. More recent studies by indigenous cultures have received increased attention in light of the search for isolated cultures of a given raw material and a certain region. These microorganisms are being investigated for its functional and technological potential that may be applied in product development with its own characteristics and designation of origin. Those properties will be discussed in the present review in order to highlight the performance of these bacteria and the high degree of control over the fermentation process and standardization of the final product. The use of autochthonous cultures will be considered due the increase of studies of new cultures of lactic acid bacteria isolated of milk and meat of distinct products.

  1. Minimizing the level of butyric acid bacteria spores in farm tank milk

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, M.C.T.; Jong, de P.; Lankveld, J.M.G.

    2007-01-01

    A year-long survey of 24 dairy farms was conducted to determine the effects of farm management on the concentrations of butyric acid bacteria (BAB) spores in farm tank milk (FTM). The results were used to validate a control strategy derived from model simulations. The BAB spore concentrations were m

  2. Improving farm management by modeling the contamination of farm tank milk with butyric acid bacteria

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, te M.C.; Jong, de P.; Lankveld, J.M.G.

    2006-01-01

    Control of contamination of farm tank milk (FTM) with the spore-forming butyric acid bacteria (BAB) is important to prevent the late-blowing defect in semi-hard cheeses. The risk of late blowing can be decreased via control of the contamination level of FTM with BAB. A modeling approach was applied

  3. Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods

    NARCIS (Netherlands)

    Flahaut, N.A.L.; Vos, de W.M.

    2014-01-01

    Lactic acid bacteria have long been used in industrial dairy and other food fermentations that make use of their metabolic activities leading to products with specific organoleptic properties. Metabolic engineering is a rational approach to steer fermentations toward the production of desired compou

  4. Multiple Genome Sequences of Important Beer-Spoiling Lactic Acid Bacteria

    OpenAIRE

    Geissler, Andreas J.; Behr, Jürgen; Vogel, Rudi F.

    2016-01-01

    Seven strains of important beer-spoiling lactic acid bacteria were sequenced using single-molecule real-time sequencing. Complete genomes were obtained for strains of Lactobacillus paracollinoides, Lactobacillus lindneri, and Pediococcus claussenii. The analysis of these genomes emphasizes the role of plasmids as the genomic foundation of beer-spoiling ability.

  5. Competitive selection of lactic acid bacteria that persist in the human oral cavity

    NARCIS (Netherlands)

    Snel, J.; Marco, M.L.; Kingma, F.; Noordman, W.M.; Rademaker, J.; Kleerebezem, M.

    2011-01-01

    Lactic acid bacteria (LAB) might offer opportunities as oral probiotics provided candidate strains persist in the mouth. After intake of a mixture of 69 LAB, strains of Lactobacillus fermentum and Lactobacillus salivarius were especially recovered. Coaggregation with other microbes is likely not a p

  6. Fluorescent protein vectors for promoter analysis in lactic acid bacteria and Escherichia coli

    NARCIS (Netherlands)

    García-Cayuela, T.; Cadiñanos, de L.P.; Mohedano, M.L.; Palencia, de P.F.; Boden, D.; Wells, J.; Peláez, C.; López, P.; Requena, T.

    2012-01-01

    Fluorescent reporter genes are valuable tools for real-time monitoring of gene expression in living cells. In this study we describe the construction of novel promoter-probe vectors containing a synthetic mCherry fluorescent protein gene, codon-optimized for lactic acid bacteria, divergently linked,

  7. Towards metagenome-scale models for industrial applications-the case of Lactic Acid Bacteria

    NARCIS (Netherlands)

    Branco Dos Santos, F.; Vos, de W.M.; Teusink, B.

    2013-01-01

    We review the uses and limitations of modelling approaches that are in use in the field of Lactic Acid Bacteria (LAB). We describe recent developments in model construction and computational methods, starting from application of such models to monocultures. However, since most applications in food b

  8. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria

    NARCIS (Netherlands)

    Rodriguez, JM; Martinez, MI; Kok, J

    2002-01-01

    Pediocin PA-1 is a broad-spectrum lactic acid bacteria bacteriocin that shows a particularly strong activity against Listeria monocytogenes, a foodborne pathogen of special concern among the food industries. This antimicrobial peptide is the most extensively studied class IIa (or pediocin family) ba

  9. Lactic acid bacteria active during the fermentation of wheat silage in small scale silos

    Energy Technology Data Exchange (ETDEWEB)

    Moon, N.J.; Parker, J.A.; Moon, L.C.; Ely, L.O.

    1981-01-01

    Wheat was ensiled and periodically analyzed for lactic acid bacteria present. Initially Lactobacillus plantarum, Leuconostoc mesenteroides, Lactobacillus cellobiosus and Streptococcus lactis predominated. After two to four days enterococci including S. faecium and S. bovis were present in high populations as well as Lactobacillus plantarum. It was concluded that mixed populations of enterococci and L. plantarum are active in the successful fermentation of wheat silage.

  10. Genome data mining of lactic acid bacteria: the impact of bioinformatics

    NARCIS (Netherlands)

    Siezen, R.J.; Enckevort, F.H.J. van; Kleerebezem, M.; Teusink, B.

    2004-01-01

    Lactic acid bacteria (LAB) have been widely used in food fermentations and, more recently, as probiotics in health-promoting food products. Genome sequencing and functional genomics studies of a variety of LAB are now rapidly providing insights into their diversity and evolution and revealing the mo

  11. Characterization and application of lactic acid bacteria for tropical silage preparation.

    Science.gov (United States)

    Pholsen, Suradej; Khota, Waroon; Pang, Huili; Higgs, David; Cai, Yimin

    2016-10-01

    Strains TH 14, TH 21 and TH 64 were isolated from tropical silages, namely corn stover, sugar cane top and rice straw, respectively, prepared in Thailand. These strains were selected by low pH growth range and high lactic acid-producing ability, similar to some commercial inoculants. Based on the analysis of 16S ribosomal RNA gene sequence and DNA-DNA relatedness, strain TH 14 was identified as Lactobacillus casei, and strains TH 21 and TH 64 were identified as L. plantarum. Strains TH 14, TH 21, TH 64 and two commercial inoculants, CH (L. plantarum) and SN (L. rhamnosus), were used as additives to fresh and wilted purple Guinea and sorghum silages prepared using a small-scale fermentation method. The number of epiphytic lactic acid bacteria (LAB) in the forages before ensilage was relatively low but the numbers of coliform and aerobic bacteria were higher. Sorghum silages at 30 days of fermentation were all well preserved with low pH (3.56) and high lactic acid production (72.86 g/kg dry matter). Purple Guinea silage inoculated with LAB exhibited reduced count levels of aerobic and coliform bacteria, lower pH, butyric acid and ammonia nitrogen and increased lactic acid concentration, compared with the control. Strain TH 14 more effectively improved lactic acid production compared with inoculants and other strains. © 2016 Japanese Society of Animal Science.

  12. Isolation of alkaliphilic bacteria for production of high optically pure L-(+)-lactic acid.

    Science.gov (United States)

    Yokaryo, Hiroto; Tokiwa, Yutaka

    2014-01-01

    Lactic acid bacteria that grow under alkaline conditions (pH 10) were isolated from various sources in Okinawa (Japan). These alkali-tolerant and alkaliphilic bacteria were classified as follows: Microbacterium sp. (1 strain), Enterococcus spp. (9 strains), Alkalibacterium spp. (3 strains), Exiguobacterium spp. (5 strains), Oceanobacillus spp. (3 strains) and Bacillus spp. (7 strains) by 16S rRNA gene sequencing. By fermentation, many strains were able to convert glucose into mainly L-(+)-lactic acid of high optical purity in alkaline broth. This result indicated that valuable L-(+)-lactic acid-producing bacteria could be isolated efficiently by screening under alkaline conditions. Six strains were selected and their ability to produce lactic acid at different initial pH was compared. Enterococcus casseliflavus strain 79w3 gave the highest lactic acid concentration. Lactic acid concentration and productivity were 103 g L(-1) (optical purity of 99.5% as L-isomer) and 2.2 g L(-1) h(-1), respectively when 129 g L(-1) of glucose was used by batch fermentation.

  13. Genome-wide Studies of Mycolic Acid Bacteria: Computational Identification and Analysis of a Minimal Genome

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-12-01

    The mycolic acid bacteria are a distinct suprageneric group of asporogenous Grampositive, high GC-content bacteria, distinguished by the presence of mycolic acids in their cell envelope. They exhibit great diversity in their cell and morphology; although primarily non-pathogens, this group contains three major pathogens Mycobacterium leprae, Mycobacterium tuberculosis complex, and Corynebacterium diphtheria. Although the mycolic acid bacteria are a clearly defined group of bacteria, the taxonomic relationships between its constituent genera and species are less well defined. Two approaches were tested for their suitability in describing the taxonomy of the group. First, a Multilocus Sequence Typing (MLST) experiment was assessed and found to be superior to monophyletic (16S small ribosomal subunit) in delineating a total of 52 mycolic acid bacterial species. Phylogenetic inference was performed using the neighbor-joining method. To further refine phylogenetic analysis and to take advantage of the widespread availability of bacterial genome data, a computational framework that simulates DNA-DNA hybridisation was developed and validated using multiscale bootstrap resampling. The tool classifies microbial genomes based on whole genome DNA, and was deployed as a web-application using PHP and Javascript. It is accessible online at http://cbrc.kaust.edu.sa/dna_hybridization/ A third study was a computational and statistical methods in the identification and analysis of a putative minimal mycolic acid bacterial genome so as to better understand (1) the genomic requirements to encode a mycolic acid bacterial cell and (2) the role and type of genes and genetic elements that lead to the massive increase in genome size in environmental mycolic acid bacteria. Using a reciprocal comparison approach, a total of 690 orthologous gene clusters forming a putative minimal genome were identified across 24 mycolic acid bacterial species. In order to identify new potential drug

  14. Phytic acid degrading lactic acid bacteria in tef-injera fermentation.

    Science.gov (United States)

    Fischer, Maren M; Egli, Ines M; Aeberli, Isabelle; Hurrell, Richard F; Meile, Leo

    2014-11-03

    Ethiopian injera, a soft pancake, baked from fermented batter, is preferentially prepared from tef (Eragrostis tef) flour. The phytic acid (PA) content of tef is high and is only partly degraded during the fermentation step. PA chelates with iron and zinc in the human digestive tract and strongly inhibits their absorption. With the aim to formulate a starter culture that would substantially degrade PA during injera preparation, we assessed the potential of microorganisms isolated from Ethiopian household-tef fermentations to degrade PA. Lactic acid bacteria (LAB) were found to be among the dominating microorganisms. Seventy-six isolates from thirteen different tef fermentations were analyzed for phytase activity and thirteen different isolates of seven different species were detected to be positive in a phytase screening assay. In 20-mL model tef fermentations, out of these thirteen isolates, the use of Lactobacillus (L.) buchneri strain MF58 and Pediococcus pentosaceus strain MF35 resulted in lowest PA contents in the fermented tef of 41% and 42%, respectively of its initial content. In comparison 59% of PA remained when spontaneously fermented. Full scale tef fermentation (0.6L) and injera production using L. buchneri MF58 as culture additive decreased PA in cooked injera from 1.05 to 0.34±0.02 g/100 g, representing a degradation of 68% compared to 42% in injera from non-inoculated traditional fermentation. The visual appearance of the pancakes was similar. The final molar ratios of PA to iron of 4 and to zinc of 12 achieved with L. buchneri MF58 were decreased by ca. 50% compared to the traditional fermentation. In conclusion, selected LAB strains in tef fermentations can degrade PA, with L. buchneri MF58 displaying the highest PA degrading potential. The 68% PA degradation achieved by the application of L. buchneri MF58 would be expected to improve human zinc absorption from tef-injera, but further PA degradation is probably necessary if iron absorption has to

  15. Isolation of lactic acid bacteria for its possible use in the fermentation of green algerian olives

    Directory of Open Access Journals (Sweden)

    Nour-Eddine, Karam

    2004-12-01

    Full Text Available This study was undertaken with the aim of obtaining lactic acid bacteria with the ability to ferment olives for possible use as starter cultures. For this reason, 32 isolates of lactic acid bacteria isolated from the spontaneous fermentation of green olives were characterized and identified on the basis of morphological and biochemical criteria. 14 of them were identified as Lactococcus lactis, 11 isolates as Lactobacillus plantarum and 7 isolates as Enterococcus sp. Of the 18 isolates examined for antagonistic activity, 3 isolates of Lactobacillus plantarum and one isolate of Enterococcus sp. were able to give distinct zones of inhibition against 5 indicator strains of lactic acid bacteria isolated in this study. Cell free supernatant of Lactobacillus plantarum OL9 was active against Gram-positive bacteria (Lactobacillus, Enterococcus and Propionibacterium and also against one Gram-negative bacteria strain of spoilage significance (Erwinia.Este estudio se emprendió con el objetivo de obtener bacterias del ácido láctico con capacidad para utilizarse como cultivo iniciador en la fermentación de aceitunas. Por esta razón, 32 cepas de bacterias del ácido láctico procedentes de fermentaciones espontáneas de aceitunas verdes se caracterizaron e identificaron en función de criterios morfológicos y bioquímicos. Catorce cepas se identificaron como Lactococcus lactis, 11 cepas como Lactobacillus plantarum y 7 cepas como Enterococcus sp. De las 18 cepas que se examinaron para detectar actividades antagónicas, se encontró que 3 cepas de Lactobacillus plantarum y una de Enterococcus sp. mostraban zonas de inhibición contra 5 cepas indicadoras de bacterias del ácido láctico aisladas en este estudio. El sobrenadante libre de células Lactobacillus plantarum OL9 fue activo contra diversas bacterias Gram-positivas (Lactobacillus, Enterococcus y Propionibacterium y contra una cepa de bacteria Gram-negativa relacionada con alteraciones (Erwinia.

  16. Antibacterial activity of hen egg white lysozyme modified by heat and enzymatic treatments against oenological lactic acid bacteria and acetic acid bacteria.

    Science.gov (United States)

    Carrillo, W; García-Ruiz, A; Recio, I; Moreno-Arribas, M V

    2014-10-01

    The antimicrobial activity of heat-denatured and hydrolyzed hen egg white lysozyme against oenological lactic acid and acetic acid bacteria was investigated. The lysozyme was denatured by heating, and native and heat-denatured lysozymes were hydrolyzed by pepsin. The lytic activity against Micrococcus lysodeikticus of heat-denatured lysozyme decreased with the temperature of the heat treatment, whereas the hydrolyzed lysozyme had no enzymatic activity. Heat-denatured and hydrolyzed lysozyme preparations showed antimicrobial activity against acetic acid bacteria. Lysozyme heated at 90°C exerted potent activity against Acetobacter aceti CIAL-106 and Gluconobacter oxydans CIAL-107 with concentrations required to obtain 50% inhibition of growth (IC50) of 0.089 and 0.013 mg/ml, respectively. This preparation also demonstrated activity against Lactobacillus casei CIAL-52 and Oenococcus oeni CIAL-91 (IC50, 1.37 and 0.45 mg/ml, respectively). The two hydrolysates from native and heat-denatured lysozyme were active against O. oeni CIAL-96 (IC50, 2.77 and 0.3 mg/ml, respectively). The results obtained suggest that thermal and enzymatic treatments increase the antibacterial spectrum of hen egg white lysozyme in relation to oenological microorganisms.

  17. Organism-adapted specificity of the allosteric regulation of pyruvate kinase in lactic acid bacteria.

    Directory of Open Access Journals (Sweden)

    Nadine Veith

    Full Text Available Pyruvate kinase (PYK is a critical allosterically regulated enzyme that links glycolysis, the primary energy metabolism, to cellular metabolism. Lactic acid bacteria rely almost exclusively on glycolysis for their energy production under anaerobic conditions, which reinforces the key role of PYK in their metabolism. These organisms are closely related, but have adapted to a huge variety of native environments. They include food-fermenting organisms, important symbionts in the human gut, and antibiotic-resistant pathogens. In contrast to the rather conserved inhibition of PYK by inorganic phosphate, the activation of PYK shows high variability in the type of activating compound between different lactic acid bacteria. System-wide comparative studies of the metabolism of lactic acid bacteria are required to understand the reasons for the diversity of these closely related microorganisms. These require knowledge of the identities of the enzyme modifiers. Here, we predict potential allosteric activators of PYKs from three lactic acid bacteria which are adapted to different native environments. We used protein structure-based molecular modeling and enzyme kinetic modeling to predict and validate potential activators of PYK. Specifically, we compared the electrostatic potential and the binding of phosphate moieties at the allosteric binding sites, and predicted potential allosteric activators by docking. We then made a kinetic model of Lactococcus lactis PYK to relate the activator predictions to the intracellular sugar-phosphate conditions in lactic acid bacteria. This strategy enabled us to predict fructose 1,6-bisphosphate as the sole activator of the Enterococcus faecalis PYK, and to predict that the PYKs from Streptococcus pyogenes and Lactobacillus plantarum show weaker specificity for their allosteric activators, while still having fructose 1,6-bisphosphate play the main activator role in vivo. These differences in the specificity of allosteric

  18. Spatio-Temporal Variations of High and Low Nucleic Acid Content Bacteria in an Exorheic River.

    Science.gov (United States)

    Liu, Jie; Hao, Zhenyu; Ma, Lili; Ji, Yurui; Bartlam, Mark; Wang, Yingying

    2016-01-01

    Bacteria with high nucleic acid (HNA) and low nucleic acid (LNA) content are commonly observed in aquatic environments. To date, limited knowledge is available on their temporal and spatial variations in freshwater environments. Here an investigation of HNA and LNA bacterial abundance and their flow cytometric characteristics was conducted in an exorheic river (Haihe River, Northern China) over a one year period covering September (autumn) 2011, December (winter) 2011, April (spring) 2012, and July (summer) 2012. The results showed that LNA and HNA bacteria contributed similarly to the total bacterial abundance on both the spatial and temporal scale. The variability of HNA on abundance, fluorescence intensity (FL1) and side scatter (SSC) were more sensitive to environmental factors than that of LNA bacteria. Meanwhile, the relative distance of SSC between HNA and LNA was more variable than that of FL1. Multivariate analysis further demonstrated that the influence of geographical distance (reflected by the salinity gradient along river to ocean) and temporal changes (as temperature variation due to seasonal succession) on the patterns of LNA and HNA were stronger than the effects of nutrient conditions. Furthermore, the results demonstrated that the distribution of LNA and HNA bacteria, including the abundance, FL1 and SSC, was controlled by different variables. The results suggested that LNA and HNA bacteria might play different ecological roles in the exorheic river.

  19. Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria.

    Science.gov (United States)

    Bienert, Gerd P; Desguin, Benoît; Chaumont, François; Hols, Pascal

    2013-09-15

    MIPs (major intrinsic proteins), also known as aquaporins, are membrane proteins that channel water and/or uncharged solutes across membranes in all kingdoms of life. Considering the enormous number of different bacteria on earth, functional information on bacterial MIPs is scarce. In the present study, six MIPs [glpF1 (glycerol facilitator 1)-glpF6] were identified in the genome of the Gram-positive lactic acid bacterium Lactobacillus plantarum. Heterologous expression in Xenopus laevis oocytes revealed that GlpF2, GlpF3 and GlpF4 each facilitated the transmembrane diffusion of water, dihydroxyacetone and glycerol. As several lactic acid bacteria have GlpFs in their lactate racemization operon (GlpF1/F4 phylogenetic group), their ability to transport this organic acid was tested. Both GlpF1 and GlpF4 facilitated the diffusion of D/L-lactic acid. Deletion of glpF1 and/or glpF4 in Lb. plantarum showed that both genes were involved in the racemization of lactic acid and, in addition, the double glpF1 glpF4 mutant showed a growth delay under conditions of mild lactic acid stress. This provides further evidence that GlpFs contribute to lactic acid metabolism in this species. This lactic acid transport capacity was shown to be conserved in the GlpF1/F4 group of Lactobacillales. In conclusion, we have functionally analysed the largest set of bacterial MIPs and demonstrated that the lactic acid membrane permeability of bacteria can be regulated by aquaglyceroporins.

  20. Use of autochthonous lactic acid bacteria starters to ferment mango juice for promoting its probiotic roles.

    Science.gov (United States)

    Liao, Xue-Yi; Guo, Li-Qiong; Ye, Zhi-Wei; Qiu, Ling-Yan; Gu, Feng-Wei; Lin, Jun-Fang

    2016-05-18

    Strains of Leuconostoc mesenteroides, Pediococcus pentosaceus, and Lactobacillus brevis were identified from mango fruits by partial 16S rDNA gene sequence. Based on the ability of producing mannitol and diacetyl, Leuconostoc mesenteroides MPL18 and MPL39 were selected within the lactic acid bacteria isolates, and used as mixed starters to ferment mango juice (MJ). Both the autochthonous strains grew well in fermented mango juice (FMJ) and remained viable at 9.81 log cfu mL(-1) during 30 days of storage at 4°C. The content of total sugar of FMJ was lower than that of MJ, while the concentration of mannitol was higher than that of MJ, and the concentration of diacetyl was 3.29 ± 0.12 mg L(-1). Among detected organic acids including citric acid, gallic acid, lactic acid, and acetic acid, only citric acid and gallic acid were found in MJ, while all detected organic acids were found in FMJ. The concentration of lactic acid of FMJ was the highest (78.62 ± 13.66 mM) among all detected organic acids. The DPPH radical scavenging capacity of FMJ was higher than that of MJ. Total phenolic compounds were better preserved in FMJ. The acidity and sweetness had a noticeable impact on the overall acceptance of the treated sample.

  1. Role in Cheese Flavour Formation of Heterofermentative Lactic Acid Bacteria from Mesophilic Starter Cultures

    DEFF Research Database (Denmark)

    Pedersen, Thomas Bæk

    Undefined mesophilic cheese starters are complex ecosystems that contain both homofermentative and heterofermentative lactic acid bacteria, with the Lactococcus genera representing the former and Lceuonostoc and sometimes Lactobacillus the latter. These starters originate from old butter starters...... aminopeptidase activity compared to Lactobacillus danicus and especially Le. mesenteroides subsp. cremoris had a low and narrow activity. Aminotransferase activity was high on aromatic amino acids for Lb. danicus, and the Leuconostoc species had an activity similar to Lb. danicus only after growth in CBM...... with plant isolates, the ability to ferment citrate and lacked several genes involved in the fermentation of complex carbohydrates. The presented research in this thesis has gained insight in to the role of heterofermentative lactic acid bacteria in cheese flavour formation. The traditional DL...

  2. Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.

    Science.gov (United States)

    Polen, Tino; Wendisch, Volker F

    2004-01-01

    DNA microarray technology has become an important research tool for biotechnology and microbiology. It is now possible to characterize genetic diversity and gene expression in a genomewide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Escherichia coli, but only recently have they been developed for the Gram-positive Corynebacterium glutamicum. Both bacteria are widely used for biotechnological amino acid production. In this article, in addition to the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, we describe recent applications of DNA microarray technology regarding amino acid production in C. glutamicum and E. coli. We also discuss the impact of functional genomics studies on fundamental as well as applied aspects of amino acid production with C. glutamicum and E. coli.

  3. [The microflora of sourdough. XVIII. The protein degrading capabilities of lactic acid bacteria in sourdough].

    Science.gov (United States)

    Spicher, G; Nierle, W

    1984-05-01

    Acidification of the dough by the use of sourdough or acidifiers is necessary not only for good baking quality of rye flour but it is also very important for development of the typical sensory characteristics of rye bread. We confirmed that the lactic acid bacteria of sour dough are proteolytic. Proteolytic effects are observed in the increase of the amino acid content during fermentation. A marked increase was found in the content of leucine, alanine, valine, isoleucine, glutamic acid, glutamine, arginine, lysine, methionine, phenylalanine, tyrosine and serine. Lactobacillus plantarum showed a higher proteolytic activity than L. brevis ssp. lindneri or L. fructivorans.

  4. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Noike, Tatsuya; Takabatake, Hiroo [Tohoku Univ., Sendai (Japan). Dept. of Civil Engineering; Japan Science and Technology Corporation, Saitama (Japan). CREST; Mizuno, Osama [Ataka Construction and Engineering Co., Osaka (Japan); Ohba, Mika [Japan Science and Technology Corporation, Saitama (Japan). CREST

    2002-12-01

    The effects of lactic acid bacteria (LAB) on hydrogen fermentation of organic waste were investigated. For this three hydrogen producing strains of Clostridium were cultured with two lactic acid bacteria, i.e. Lactobacillus paracasei and Enterococcus durans, which were isolated from the wastes generated in the bean curd manufacturing. The decrease or cessation of hydrogen production by Clostridium was caused by the addition of LAB. The supernatants of L. paracasei and E. durans suspensions also inhibited hydrogen production by Clostridium. This inhibition was partially destroyed in the presence of trypsin, which is a protease inactivating a bacteriocin. These results suggest that the inhibitory effect of lactic acid bacteria on hydrogen production was caused by bacteriocins excreted from LAB which have a deleterious effect on other bacteria. To suppress any effect by LAB, heat treatment of this waste was investigated as a possible pretreatment step. The inhibition of hydrogen production was reduced by heat treatment for 30 min at temperatures ranging from 50{sup o}C to 90{sup o}C. This means that a temperature of 50{sup o}C is already adequate to prevent growth of LAB. (Author)

  5. Isolation and identification of indigenous lactic acid bacteria from North Sumatra river buffalo milk

    Directory of Open Access Journals (Sweden)

    Heni Rizqiati

    2015-06-01

    Full Text Available Buffalo milk is a source of various lactic acid bacteria (LAB which is potential as culture starter as well as the probiotic. This study was conducted to isolate and identify LAB from indigenous North Sumatra river buffalo milk. Lactic acid bacteria was isolated and grown in medium De Man Rogosa Sharpe Agar (MRSA. The isolation was conducted to obtain pure isolate. The identification of LAB was studied in terms of morphology, physiology, biochemistry and survival on low pH. Morphology tests were conducted by Gram staining and cell forming; physiology tests were conducted for growing viability at pH 4.5 and temperature at 45oC; whereas biochemistry tests were conducted for CO2, dextran and NH3 productions. Determination of LAB species was conducted using Analytical Profile Index (API test CHL 50. Results of identification showed that 41 isolates were identified as LAB with Gram-positive, catalase-negative, rod and round shaped characteristics. Resistance test done to low pH (pH 2 for the lactic acid bacteria showed decrease of bacteria viability up to1.24±0.68 log cfu/ml. The resistant isolates at low pH were L12, L16, L17, L19, L20, M10, P8, S3, S19 and S20. Identification with API test CHL 50 for 10 isolates showed that four isolates were identified as Lactobacillus plantarum, L. brevis, L. pentosus and Lactococuslactis.

  6. Inducible gene expression and environmentally regulated genes in lactic acid bacteria.

    Science.gov (United States)

    Kok, J

    1996-10-01

    Relatively recently, a number of genes and operons have been identified in lactic acid bacteria that are inducible and respond to environmental factors. Some of these genes/operons had been isolated and analysed because of their importance in the fermentation industry and, consequently, their transcription was studied and found to be regulatable. Examples are the lactose operon, the operon for nisin production, and genes in the proteolytic pathway of Lactococcus lactis, as well as xylose metabolism in Lactobacillus pentosus. Some other operons were specifically targetted with the aim to compare their mode of regulation with known regulatory mechanisms in other well-studied bacteria. These studies, dealing with the biosynthesis of histidine, tryptophan, and of the branched chain amino acids in L. lactis, have given new insights in gene regulation and in the occurrence of auxotrophy in these bacteria. Also, nucleotide sequence analyses of a number of lactococcal bacteriophages was recently initiated to, among other things, specifically learn more about regulation of the phage life cycle. Yet another approach in the analysis of regulated genes is the 'random' selection of genetic elements that respond to environmental stimuli and the first of such sequences from lactic acid bacteria have been identified and characterized. The potential of these regulatory elements in fundamental research and practical (industrial) applications will be discussed.

  7. Development of radiation sterilized dip slides for enumerating lactic acid bacteria and total count in foodstuffs

    Science.gov (United States)

    Eisenberg, E.; Padova, R.; Kirsch, E.; Weissman, Sh.; Hirshfeld, T.; Shenfeld, A.

    APT agar (APT) used for enumeration of lactic acid bacteria and Plate Count agar (PCA) applied for total count were sterilized by gamma radiation using radiation dose of 10-15 kGy. Radiosterilized PCA and APT modified by adding catalase prior to irradiation, or APT with increased content of yeast extract performed, as well as, the heat sterilized commercial media. Growth performance was evaluated on several strains of microorganisms, as well as, by enumeration of bacteria in food products. Radiosterilization of culture media in final packaging, can be applied to produce dip slide kits containing PCA or APT.

  8. Understanding the industrial application potential of lactic acid bacteria through genomics.

    Science.gov (United States)

    Zhu, Yan; Zhang, Yanping; Li, Yin

    2009-06-01

    Lactic acid bacteria (LAB) are a heterogeneous group of bacteria contributing to various industrial applications, ranging from food and beverage fermentation, bulk and fine chemicals production to pharmaceuticals manufacturing. Genome sequencing is booming; hitherto, 25 genomes of LAB have been published and many more are in progress. Based on genomic content of LAB, this review highlights some findings related to applications revealed by genomics and functional genomics analyses. Finally, this review summarizes mathematical modeling strategies of LAB in the context of genomics, to further our understanding of industrial related features.

  9. DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer.

    Science.gov (United States)

    Becker, Jordan T; Olson, Brian M; Johnson, Laura E; Davies, James G; Dunphy, Edward J; McNeel, Douglas G

    2010-01-01

    Prostatic acid phosphatase (PAP) is a tumor antigen in prostate cancer and the target of several anti-tumor vaccines in earlier clinical trials. Ultimately, the goal of anti-tumor vaccines is to elicit a sustainable immune response, able to eradicate a tumor, or at least restrain its growth. We have investigated plasmid DNA vaccines and have previously conducted a phase 1 trial in which patients with recurrent prostate cancer were vaccinated with a DNA vaccine encoding PAP. In this study, we investigated the immunologic efficacy of subsequent booster immunizations, and conducted more detailed longitudinal immune analysis, to answer several questions aimed at guiding optimal schedules of vaccine administration for future clinical trials. We report that antigen-specific cytolytic T-cell responses were amplified after immunization in 7 of 12 human leukocyte antigen-A2-expressing individuals, and that multiple immunizations seemed necessary to elicit PAP-specific interferon-gamma-secreting immune responses detectable by enzyme-linked immunosorbent spot assay. Moreover, among individuals who experienced a >/=200% increase in prostate-specific antigen doubling time, long-term PAP-specific interferon-gamma-secreting T-cell responses were detectable in 6 of 8, but in only 1 of 14 individuals without an observed change in prostate-specific antigen doubling time (P=0.001). Finally, we identified that immune responses elicited could be further amplified by subsequent booster immunizations. These results suggest that future trials using this DNA vaccine, and potentially other anti-tumor DNA vaccines, could investigate ongoing schedules of administration with periodic booster immunizations. Moreover, these results suggest that DNA vaccines targeting PAP could potentially be combined in heterologous immunization strategies with other vaccines to further augment PAP-specific T-cell immunity.

  10. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed.

  11. Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels.

    Science.gov (United States)

    Lefeber, Timothy; Gobert, William; Vrancken, Gino; Camu, Nicholas; De Vuyst, Luc

    2011-05-01

    To speed up research on the usefulness and selection of bacterial starter cultures for cocoa bean fermentation, a benchmark cocoa bean fermentation process under natural fermentation conditions was developed successfully. Therefore, spontaneous fermentations of cocoa pulp-bean mass in vessels on a 20 kg scale were tried out in triplicate. The community dynamics and kinetics of these fermentations were studied through a multiphasic approach. Microbiological analysis revealed a limited bacterial species diversity and targeted community dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation, as was the case during cocoa bean fermentations processes carried out in the field. LAB isolates belonged to two main (GTG)(5)-PCR clusters, namely Lactobacillus plantarum and Lactobacillus fermentum, with Fructobacillus pseudofilculneus occurring occasionally; one main (GTG)(5)-PCR cluster, composed of Acetobacter pasteurianus, was found among the AAB isolates, besides minor clusters of Acetobacter ghanensis and Acetobacter senegalensis. 16S rRNA-PCR-DGGE revealed that L. plantarum and L. fermentum dominated the fermentations from day two until the end and Acetobacter was the only AAB species present at the end of the fermentations. Also, species of Tatumella and Pantoea were detected culture-independently at the beginning of the fermentations. Further, it was shown through metabolite target analyses that similar substrate consumption and metabolite production kinetics occurred in the vessels compared to spontaneous cocoa bean fermentation processes. Current drawbacks of the vessel fermentations encompassed an insufficient mixing of the cocoa pulp-bean mass and retarded yeast growth.

  12. Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile.

    Science.gov (United States)

    Ordóñez, J L; Sainz, F; Callejón, R M; Troncoso, A M; Torija, M J; García-Parrilla, M C

    2015-07-01

    This paper studies the amino acid profile of beverages obtained through the fermentation of strawberry purée by a surface culture using three strains belonging to different acetic acid bacteria species (one of Gluconobacter japonicus, one of Gluconobacter oxydans and one of Acetobacter malorum). An HPLC-UV method involving diethyl ethoxymethylenemalonate (DEEMM) was adapted and validated. From the entire set of 21 amino acids, multiple linear regressions showed that glutamine, alanine, arginine, tryptophan, GABA and proline were significantly related to the fermentation process. Furthermore, linear discriminant analysis classified 100% of the samples correctly in accordance with the microorganism involved. G. japonicus consumed glucose most quickly and achieved the greatest decrease in amino acid concentration. None of the 8 biogenic amines were detected in the final products, which could serve as a safety guarantee for these strawberry gluconic fermentation beverages, in this regard.

  13. Dual-coated lactic acid bacteria: an emerging innovative technology in the field of probiotics.

    Science.gov (United States)

    Alvarez-Calatayud, Guillermo; Margolles, Abelardo

    2016-01-01

    Probiotics are living micro-organisms that do not naturally have shelf life, and normally are weakly protected against the digestive action of the GI tract. A new dual coating technology has been developed in an effort to maximize survival, that is, to be able to reach the intestine alive and in sufficient numbers to confer the beneficial health effects on the host. Dual-coating of lactic acid bacteria (LAB) is the result of fourth-generation coating technology for the protection of these bacteria at least 100-fold or greater than the uncoated LAB. This innovative technique involves a first pH-dependent protein layer that protects bacteria from gastric acid and bile salt, and a second polysaccharide matrix that protects bacteria from external factors, such as humidity, temperature and pressure, as well as the digestive action during the passage through the GI tract. Dual-coated probiotic formulation is applicable to different therapeutic areas, including irritable bowel syndrome, atopic dermatitis, acute diarrhea, chronic constipation, Helicobacter pylori eradication, and prevention of antibiotic-associated diarrhea. An updated review of the efficacy of doubly coated probiotic strains for improving bacterial survival in the intestinal tract and its consequent clinical benefits in humans is here presented.

  14. Modelling of the acid base properties of two thermophilic bacteria at different growth times

    Science.gov (United States)

    Heinrich, Hannah T. M.; Bremer, Phil J.; McQuillan, A. James; Daughney, Christopher J.

    2008-09-01

    Acid-base titrations and electrophoretic mobility measurements were conducted on the thermophilic bacteria Anoxybacillus flavithermus and Geobacillus stearothermophilus at two different growth times corresponding to exponential and stationary/death phase. The data showed significant differences between the two investigated growth times for both bacterial species. In stationary/death phase samples, cells were disrupted and their buffering capacity was lower than that of exponential phase cells. For G. stearothermophilus the electrophoretic mobility profiles changed dramatically. Chemical equilibrium models were developed to simultaneously describe the data from the titrations and the electrophoretic mobility measurements. A simple approach was developed to determine confidence intervals for the overall variance between the model and the experimental data, in order to identify statistically significant changes in model fit and thereby select the simplest model that was able to adequately describe each data set. Exponential phase cells of the investigated thermophiles had a higher total site concentration than the average found for mesophilic bacteria (based on a previously published generalised model for the acid-base behaviour of mesophiles), whereas the opposite was true for cells in stationary/death phase. The results of this study indicate that growth phase is an important parameter that can affect ion binding by bacteria, that growth phase should be considered when developing or employing chemical models for bacteria-bearing systems.

  15. Application of Lactic Acid Bacteria (LAB) in freshness keeping of tilapia fillets as sashimi

    Science.gov (United States)

    Cao, Rong; Liu, Qi; Chen, Shengjun; Yang, Xianqing; Li, Laihao

    2015-08-01

    Aquatic products are extremely perishable food commodities. Developing methods to keep the freshness of fish represents a major task of the fishery processing industry. Application of Lactic Acid Bacteria (LAB) as food preservative is a novel approach. In the present study, the possibility of using lactic acid bacteria in freshness keeping of tilapia fillets as sashimi was examined. Fish fillets were dipped in Lactobacillus plantarum 1.19 (obtained from China General Microbiological Culture Collection Center) suspension as LAB-treated group. Changes in K-value, APC, sensory properties and microbial flora were analyzed. Results showed that LAB treatment slowed the increase of K-value and APC in the earlier storage, and caused a smooth decrease in sensory score. Gram-negative bacteria dominated during refrigerated storage, with Pseudomonas and Aeromonas being relatively abundant. Lactobacillus plantarum 1.19 had no obvious inhibitory effect against these Gram-negatives. However, Lactobacillus plantarum 1.19 changed the composition of Gram-positive bacteria. No Micrococcus were detected and the proportion of Staphylococcus decreased in the spoiled LAB-treated samples. The period that tilapia fillets could be used as sashimi material extended from 24 h to 48 h after LAB treatment. The potential of using LAB in sashimi processing was confirmed.

  16. Molecular Identification of Lactic Acid Bacteria Producing Antimicrobial Agents from Bakasang, An Indonesian Traditional Fermented Fish Product

    Directory of Open Access Journals (Sweden)

    Helen Joan Lawalata

    2015-11-01

    Full Text Available AbstractTwenty seven strains of lactic acid bacteria (LAB were isolated from bakasang, Indonesian traditional fermented fish product. In general, LAB have inhibitory activity againts pathogenic bacteria and spoilage bacteria. Screening for antimicrobia activity of isolates were performed with well-diffusion method. One isolate that was designed as Pediococcus BksC24 was the strongest against bacteria pathogenic and spoilage bacteria. This strain was further identified by 16S rRNA gen sequence comparison. Isolates LAB producing antimicrobial agents from bakasang were identified as Pediococcus acidilactici.Keywords : Bakasang, LAB, antimicrobial, phenotypic characteristics, 16S rRNA gene

  17. Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Lechtenfeld, O.J.; Benner, R.;

    2014-01-01

    Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological...... production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of combined neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining...... after 32 days of bacterial degradation. Results from bioassay incubations with natural seawater (sampled from water masses originating from the surface waters of the Arctic Ocean and the North Atlantic Ocean) and artificial seawater indicate that the molecular compositions following bacterial...

  18. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt.

    Science.gov (United States)

    Martin, F; Cachon, R; Pernin, K; De Coninck, J; Gervais, P; Guichard, E; Cayot, N

    2011-02-01

    The aim of this study was to investigate the effect of oxidoreduction potential (Eh) on the biosynthesis of aroma compounds by lactic acid bacteria in non-fat yogurt. The study was done with yogurts fermented by Lactobacillus bulgaricus and Streptococcus thermophilus. The Eh was modified by the application of different gaseous conditions (air, nitrogen, and nitrogen/hydrogen). Acetaldehyde, dimethyl sulfide, diacetyl, and pentane-2,3-dione, as the major endogenous odorant compounds of yogurt, were chosen as tracers for the biosynthesis of aroma compounds by lactic acid bacteria. Oxidative conditions favored the production of acetaldehyde, dimethyl sulfide, and diketones (diacetyl and pentane-2,3-dione). The Eh of the medium influences aroma production in yogurt by modifying the metabolic pathways of Lb. bulgaricus and Strep. thermophilus. The use of Eh as a control parameter during yogurt production could permit the control of aroma formation.

  19. Biopreservation of refrigerated and vacuum-packed Dicentrarchus labrax by lactic acid bacteria.

    Science.gov (United States)

    El Bassi, Leila; Hassouna, Mnasser; Shinzato, Naoya; Matsui, Toru

    2009-08-01

    Two lactic acid bacteria (LAB) were selected from 100 LAB isolated from various sea products to examine their use in Dicentrarchus labrax preservation. The isolates, tentatively named strain nr 3 and 7, were identified as Lactobacillus plantarum and L. pentosus, respectively. They showed antagonistic activity against psychrotroph, pathogenic, and coliform bacteria. The antagonistic activity of strain 3 was suggested to be by bacteriocins since activity was abolished by protease treatment, while that of strain 7 was due to the effect of pH decrease caused by the produced organic acids. Their use prevented total volatile basic nitrogen contents (TVB-N) and trimethylamine (TMA) to some extent, suggesting that inoculation could extend the period of storage.

  20. The influence of gene transfer on the lactic acid bacteria evolution

    Directory of Open Access Journals (Sweden)

    Višnja Bačun-Družina

    2009-09-01

    Full Text Available In the case of preparing various dairy products, the exploitation of lactic acid bacteria has been essential in the course of past millennia in all known nations. Numerous comparative analyses of gene and genome sequences reveal that the exchange of genetic material within and between bacterial species is far more general and frequent than has previously been thought. Consequently, the horizontal gene transfer between distant species or within the same species is an important factor in the Lactobacillales evolution. Knowledge about the exchange of lactobacillus genetic information through horizontal gene transfer, mobile genetic elements, and its evolution is very important due to characterizations and stability maintenance of autochthonous as well as industrial lactic acid bacteria strains in dairy products that benefit human health.

  1. Development of growth rate measuring method for intracellular, parasitic acid-fast bacteria using radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Noboru; Fukutomi, Yasuo [National Inst. of Infectious Deseases, Tokyo (Japan)

    1998-02-01

    To prevent and treat infections diseases caused by pathogenic acid-fast bacteria such as Mycobacterium leprae, Tubercle bacillus, it is important to elucidate the mechanisms of intracellular proliferations of these bacteria. This research project was started to make DNA library using a new constructed shuttle vector. Development of in vitro evaluation method for intracellular proliferation of mycobacterium and its transformed cells was attempted on the basis of Buddemeyer method. This method was able to precisely determine the metabolic activities as low as those in leprae and its modified method using {sup 14}C-palmitic acid was highly sensitive and the results were obtainable in a shorter period. The generated CO{sub 2} was satisfactorily absorbed into scintillator without using a filter paper. A new culture medium from which arginine, a NO-producing compound was eliminated was used to repress the sterilizing effects of NO, but the metabolic activities of leprae was not enhanced. (M.N.)

  2. LACTIC ACID BACTERIA FLORA OF KONYA KUFLU CHEESE: A TRADITIONAL CHEESE FROM KONYA PROVINCE IN TURKEY

    Directory of Open Access Journals (Sweden)

    Ziba Guley

    2014-12-01

    Full Text Available The aim of this study was to characterize the lactic acid bacteria flora of mature Konya Kuflu cheese. Konya Kuflu cheese is a traditional blue cheese which is produced from raw milk without starter culture addition and mould growth occurs in uncontrolled conditions during its ripening. Lactic acid bacteria (LAB isolated from 9 mature Konya Kuflu cheese samples were investigated using a combination of conventional biochemical tests, API test kits, and molecular approaches. For some isolates, different results were obtained according to the identification technique. The overall LAB profile of Konya Kuflu cheese samples revealed that Lactobacillus brevis, Lactobacillus paracasei/Lactobacillus casei, Lactobacillus plantarum, Enterococcus faecium, and Enterococcus faecalis are the predominant species. In addition, 1 Pediococcus parvulus and 1 Enterococcus durans were also identified.

  3. Molecular characterization of lactic acid bacteria isolated from industrially fermented Greek table olives

    OpenAIRE

    Doulgeraki, Agapi; Pramateftaki, Paraskevi; Argyri, Anthoula; Nychas, George John; Tassou, Chrysoula; Panagou, Efstathios

    2012-01-01

    A total of 145 lactic acid bacteria (LAB) isolates have been recovered from fermented table olives and brine and characterized at strain level with molecular tools. Pulsed-Field Gel Electrophoresis (PFGE) of ApaI macrorestriction fragments was applied for strain differentiation. Species differentiation was based either on Denaturing Gradient Gel Electrophoresis (PCR-DGGE) (black olives) or on restriction analysis of the amplified 16S rRNA gene (PCR-ARDRA) (brine and green olives). Species ide...

  4. Alkyl hydroperoxide reductase enhances the growth of Leuconostoc mesenteroides lactic acid bacteria at low temperatures

    OpenAIRE

    Goto, Seitaro; Kawamoto, Jun; Sato, Satoshi B; Iki, Takashi; WATANABE, Itaru; Kudo, Kazuyuki; Esaki, Nobuyoshi; Kurihara, Tatsuo

    2015-01-01

    Lactic acid bacteria (LAB) can cause deterioration of food quality even at low temperatures. In this study, we investigated the cold-adaptation mechanism of a novel food spoilage LAB, Leuconostoc mesenteroides NH04 (NH04). L. mesenteroides was isolated from several spoiled cooked meat products at a high frequency in our factories. NH04 grew rapidly at low temperatures within the shelf-life period and resulted in heavy financial losses. NH04 grew more rapidly than related strains such as Leuco...

  5. Fighting Off Wound Pathogens in Horses with Honeybee Lactic Acid Bacteria

    OpenAIRE

    Olofsson, Tobias C.; Butler, Éile; Lindholm, Christina; Nilson, Bo; Michanek, Per; Vásquez, Alejandra

    2016-01-01

    In the global perspective of antibiotic resistance, it is urgent to find potent topical antibiotics for the use in human and animal infection. Healing of equine wounds, particularly in the limbs, is difficult due to hydrostatic factors and exposure to environmental contaminants, which can lead to heavy bio-burden/biofilm formation and sometimes to infection. Therefore, antibiotics are often prescribed. Recent studies have shown that honeybee-specific lactic acid bacteria (LAB), involved in ho...

  6. Oxalate-Degrading Capacities of Gastrointestinal Lactic Acid Bacteria and Urinary Tract Stone Formation

    OpenAIRE

    Mohammad Kargar; Rouhi Afkari; Sadegh Ghorbani-Dalini

    2013-01-01

    Background: Calcium oxalate is one the most significant causes of human kidney stones. Increasing oxalate uptake results in increased urinary oxalate. Elevated urinary oxalate is one the most important causes of kidney stone formation. This study aims to evaluate oxalate-degrading capacity of lactic acid bacteria and its impact on incidence of kidney stone.Materials and Methods: This case-control study was conducted on serum, urinary, and fecal samples. The research population included a tota...

  7. Heterologous surface display on lactic acid bacteria: non-GMO alternative?

    OpenAIRE

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been is...

  8. Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages

    OpenAIRE

    Mokoena, Mduduzi Paulos; Mutanda, Taurai; Olaniran, Ademola O.

    2016-01-01

    Diverse African traditional fermented foods and beverages, produced using different types of fermentation, have been used since antiquity because of their numerous nutritional values. Lactic acid bacteria (LAB) isolated from these products have emerged as a welcome source of antimicrobials and therapeutics, and are accepted as probiotics. Probiotics are defined as live microbial food supplements which beneficially affect the host by improving the intestinal microbial balance. Currently, popul...

  9. Structure of an Extracellular Polysaccharide from a Strain of Lactic Acid Bacteria

    Institute of Scientific and Technical Information of China (English)

    顾笑梅; 马桂荣; 吴厚铭

    2003-01-01

    A new extracellular polysaccharide (EPS-I) isolated and purified from Z222, a strain of Lactic acid bacteria has been investigated. Sugar composition analysis, methylation analysis and 1H NMR and 13C NMR spectroscopy reveal that the EPS-I is composed of a pentasaccharide repeating unit. The sequence of sugar residue was determined by using two-dlmensional NMR spectroscopy, including heteronudear multiple-bond correlation(HMBC) and nuclear overhauser effect spectroscopy (NOESY).

  10. Efficacy of microencapsulated lactic acid bacteria in Helicobater pylori eradication therapy

    OpenAIRE

    Maha A Khalil; El-Sheekh, Mostafa M.; El-Adawi, Hala I.; EL-Deeb, Nehal M.; Hussein, Mohamed Z.

    2015-01-01

    Background: Probiotic delivery systems are widely used nutraceutical products for the supplementation of natural intestinal flora. These delivery systems vary greatly in the effectiveness to exert health benefits for a patient. This study focuses on providing probiotic living cells with a physical barrier against adverse environmental conditions. Materials and Methods: Microencapsulation of the selected lactic acid bacteria (LAB) using chitosan and alginate was performed. Physical examination...

  11. A review: Health promoting lactic acid bacteria in traditional Indonesian fermented foods

    OpenAIRE

    Lilis Nuraida

    2015-01-01

    Traditional Indonesian fermented foods can be used as potential sources of probiotics as they commonly contain lactic acid bacteria (LAB), including species of Lactobacillus, Pediococcus, Enterococcus, Weisella and Leuconostoc. The occurrence of LAB in Indonesian fermented foods is not only limited to lactic fermented foods but is also present in foods with molds as the main starter culture. This review aims to describe the significance of Indonesian fermented foods as potential sources of pr...

  12. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives

    OpenAIRE

    José Luis Parada; Carolina Ricoy Caron; Medeiros,Adriane Bianchi P.; Carlos Ricardo Soccol

    2007-01-01

    Biopreservation systems in foods are of increasing interest for industry and consumers. Bacteriocinogenic lactic acid bacteria and/or their isolated bacteriocins are considered safe additives (GRAS), useful to control the frequent development of pathogens and spoiling microorganisms in foods and feed. The spreading of bacterial antibiotic resistance and the demand for products with fewer chemicals create the necessity of exploring new alternatives, in order to reduce the abusive use of therap...

  13. Lactic acid bacteria active during the fermentation of wheat silage in small scale silos

    Energy Technology Data Exchange (ETDEWEB)

    Moon, N.J.; Moon, L.C.; Ely, L.O.; Parker, J.A.

    1981-01-01

    Wheat was ensiled and periodically analyzed for lactic acid bacteria present. Initially Lactobacillus plantarum, Leuconostoc mesenteroides, Lactobacillus cellobiosus and Streptococcus lactis predominated. After two to four days enterococci including S. faecium and S. bovis were present in high populations as well as Lactobacillus plantarum. It was concluded that mixed populations of enterococci and L. plantarum are active in the successful fermentation of wheat silage. (Refs. 5).

  14. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria.

    Science.gov (United States)

    Furukawa, Soichi; Akiyoshi, Yuko; O'Toole, George A; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-03-31

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001% (w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the S. aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01% (w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1% (w/w)) of the sugar fatty acid esters.

  15. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits.

    Science.gov (United States)

    Settanni, Luca; Moschetti, Giancarlo

    2010-09-01

    Non-starter lactic acid bacteria (NSLAB) dominate cheese microbiota during ripening. They tolerate the hostile environment well and strongly influence the biochemistry of curd maturation, contributing to the development of the final characteristics of cheese. Several NSLAB are selected on the basis of their health benefits (enhancement of intestinal probiosis, production of bioactive peptides, generation of gamma-aminobutyric acid and inactivation of antigenotoxins) and are employed in cheese-making. This review describes the ecology of NSLAB, and focuses on their application as adjunct cultures, in order to drive the ripening process and promote health advantages. The scopes of future directions of research are summarised.

  16. Bacteriocin-Producing Lactic Acid Bacteria Isolated from Traditional Fermented Food

    Science.gov (United States)

    Kormin, Salasiah; Rusul, Gulam; Radu, Son; Ling, Foo Hooi

    2001-01-01

    Lactic Acid Bacteria (LAB) isolated from several traditional fermented foods such as “tempeh”, “tempoyak” and “tapai” were screened for the production of bacteriocin. One strain isolated from “tempeh” gives an inhibitory activity against several LAB. The strain was later identified as Lactobacillus plantarum BS2. Study shows that the inhibitory activity was not caused by hydrogen peroxide, organic acids or bacteriophage. The bacteriocin production was maximum after 10 hours of incubation with an activity of 200 AU/ml. The bacteriocin was found to be sensitive towards trypsin, α-chymotrypsin, β-chymotrypsin, α-amylase and lysozyme. PMID:22973159

  17. Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures

    DEFF Research Database (Denmark)

    Østergaard, Nina Bjerre; Christiansen, Lasse Engbo; Dalgaard, Paw

    2015-01-01

    A stochastic model was developed for simultaneous growth of low numbers of Listeria monocytogenes and populations of lactic acid bacteria from the aroma producing cultures applied in cottage cheese. During more than two years, different batches of cottage cheese with aroma culture were analysed...... for pH, lactic acid concentration and initial concentration of lactic acid bacteria. These data and bootstrap sampling were used to represent product variability in the stochastic model. Lag time data were estimated from observed growth data (lactic acid bacteria) and from literature on L. monocytogenes....... 2014. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. International Journal of Food Microbiology. 188, 15-25]. Growth of L. monocytogenes single cells, using lag time distributions corresponding to three different...

  18. Distribution of D-amino acids in vinegars and involvement of lactic acid bacteria in the production of D-amino acids.

    Science.gov (United States)

    Mutaguchi, Yuta; Ohmori, Taketo; Akano, Hirofumi; Doi, Katsumi; Ohshima, Toshihisa

    2013-01-01

    Levels of free D-amino acids were compared in 11 vinegars produced from different sources or through different manufacturing processes. To analyze the D- and L-amino acids, the enantiomers were initially converted into diastereomers using pre-column derivatization with o-phthaldialdehyde plus N-acethyl-L-cysteine or N-tert-butyloxycarbonyl-L-cysteine. This was followed by separation of the resultant fluorescent isoindol derivatives on an octadecylsilyl stationary phase using ultra-performance liquid chromatography. The analyses showed that the total D-amino acid level in lactic fermented tomato vinegar was very high. Furthermore, analysis of the amino acids in tomato juice samples collected after alcoholic, lactic and acetic fermentation during the production of lactic fermented tomato vinegar showed clearly that lactic fermentation is responsible for the D-amino acids production; marked increases in D-amino acids were seen during lactic fermentation, but not during alcoholic or acetic fermentation. This suggests lactic acid bacteria have a greater ability to produce D-amino acids than yeast or acetic acid bacteria.

  19. Key volatile aroma compounds of lactic acid fermented malt based beverages - impact of lactic acid bacteria strains.

    Science.gov (United States)

    Nsogning Dongmo, Sorelle; Sacher, Bertram; Kollmannsberger, Hubert; Becker, Thomas

    2017-08-15

    This study aims to define the aroma composition and key aroma compounds of barley malt wort beverages produced from fermentation using six lactic acid bacteria (LAB) strains. Gas chromatography mass spectrometry-olfactometry and flame ionization detection was employed; key aroma compounds were determined by means of aroma extract dilution analysis. Fifty-six detected volatile compounds were similar among beverages. However, significant differences were observed in the concentration of individual compounds. Key aroma compounds (flavor dilution (FD) factors ≥16) were β-damascenone, furaneol, phenylacetic acid, 2-phenylethanol, 4-vinylguaiacol, sotolon, methional, vanillin, acetic acid, nor-furaneol, guaiacol and ethyl 2-methylbutanoate. Furthermore, acetaldehyde had the greatest odor activity value of up to 4266. Sensory analyses revealed large differences in the flavor profile. Beverage from L. plantarum Lp. 758 showed the highest FD factors in key aroma compounds and was correlated to fruity flavors. Therefore, we suggest that suitable LAB strain selection may improve the flavor of malt based beverages.

  20. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria.

    Science.gov (United States)

    Le Lay, Céline; Coton, Emmanuel; Le Blay, Gwenaëlle; Chobert, Jean-Marc; Haertlé, Thomas; Choiset, Yvan; Van Long, Nicolas Nguyen; Meslet-Cladière, Laurence; Mounier, Jérôme

    2016-12-19

    Fungal growth in bakery products represents the most frequent cause of spoilage and leads to economic losses for industrials and consumers. Bacteria, such as lactic acid bacteria and propionibacteria, are commonly known to play an active role in preservation of fermented food, producing a large range of antifungal metabolites. In a previous study (Le Lay et al., 2016), an extensive screening performed both in vitro and in situ allowed for the selection of bacteria exhibiting an antifungal activity. In the present study, active supernatants against Penicillium corylophilum and Aspergillus niger were analyzed to identify and quantify the antifungal compounds associated with the observed activity. Supernatant treatments (pH neutralization, heating and addition of proteinase K) suggested that organic acids played the most important role in the antifungal activity of each tested supernatant. Different methods (HPLC, mass spectrometry, colorimetric and enzymatic assays) were then applied to analyze the supernatants and it was shown that the main antifungal compounds corresponded to lactic, acetic and propionic acids, ethanol and hydrogen peroxide, as well as other compounds present at low levels such as phenyllactic, hydroxyphenyllactic, azelaic and caproic acids. Based on these results, various combinations of the identified compounds were used to evaluate their effect on conidial germination and fungal growth of P. corylophilum and Eurotium repens. Some combinations presented the same activity than the bacterial culture supernatant thus confirming the involvement of the identified molecules in the antifungal activity. The obtained results suggested that acetic acid was mainly responsible for the antifungal activity against P. corylophilum and played an important role in E. repens inhibition.

  1. Antimicrobial Potentials of Lactic Acid Bacteria Isolated From a Nigerian Menstruating Woman

    Directory of Open Access Journals (Sweden)

    Funmilola Abidemi Ayeni

    2013-06-01

    Full Text Available ABSTRACT Background: Racial differences affect the composition of lactic acid bacteria (LAB in women’s vagina. However, the bacteria present in women’s vagina exert protective effect against invading uropathogens through production of several inhibitory compounds. The LAB composition of the vagina of a menstruating Nigerian woman was examined to detect any difference between the subject’s vaginal LAB flora and reported cases of women from western world and to investigate the antimicrobial activities of these lactic acid bacteria against potential uropathogens and enteropathogens with analysis of possible compounds that may be responsible for inhibition. Methods: Informed consent was obtained from the subject. LAB were identified by partially sequencing the 16S rRNA gene. The organic acids were detected through High Performance Liquid Chromatography (HPLC while the volatile compounds were detected by gas chromatography. The hydrogen peroxide production was assayed through enzymatic reactions. Results: Enterococcus faecalis FAA025 and Streptococcus equines FAA026 were the only bacterial strains isolated. The two LAB strains inhibited the growth of all tested uropathogens and enteropathogens to remarkable degree. Both strains produced high quantities of lactic acid while high quantities of hydrogen peroxide, acetic acid and ethanol were only observed in Streptococcus equines FAA026. Conclusions: The results of this study suggest that in spite of absence of lactobacilli during menstruation in the subject, other LAB present (Enterococcus faecalis FAA025 and Streptococcus equines FAA026 can exert protective effects against invading uropathogens. Also, the LAB composition of the Nigerian woman is similar to her counterparts in the West. [TAF Prev Med Bull 2013; 12(3.000: 283-290

  2. Isolation and identification of lactid acid bacteria originated from king grass (Pennisetum purpureophoides) as candidate of probiotic for livestock

    OpenAIRE

    Santoso B; Maunatin A; Hariadi BT; Abubakar H

    2013-01-01

    A study was conducted to isolate and identify strain of lactic acid bacteria (LAB) isolated from king grass, and to determine their potential as candidate of probiotic for livestock. The LAB was isolated by culturing king grass extract in De Man, Rogosa and Sharpe (MRS) medium. The pure culture LAB was used to identify strain of bacteria using Analytical Profile Index (API) 50 CH kit. The result showed that the strain bacteria was identified as Lactobacillus plantarum. L. plantarum was able t...

  3. Study of Lactic Acid Bacteria Community From Raw Milk of Iranian One Humped Camel and Evaluation of Their Probiotic Properties

    OpenAIRE

    Davati, Nafiseh; Tabatabaee Yazdi, Farideh; Zibaee, Saeed; Shahidi, Fakhri; Edalatian, Mohammad Reza

    2015-01-01

    Background: Camel milk is amongst valuable food sources in Iran. On the other hand, due to the presence of probiotic bacteria and bacteriocin producers in camel milk, probiotic bacteria can be isolated and identified from this food product. Objectives: The objectives of the present research were the isolation and molecular identification of lactic acid bacteria from camel milk and evaluation of their probiotic properties. Materials and Methods: A total of ten samples of camel milk were collec...

  4. Effects of lactic acid bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle

    NARCIS (Netherlands)

    Ellis, J.L.; Hindrichsen, I.K.; Klop, G.; Kinley, R.D.; Milora, N.; Bannink, A.; Dijkstra, J.

    2016-01-01

    Inoculants of lactic acid bacteria (LAB) are used to improve silage quality and prevent spoilage via increased production of lactic acid and other organic acids and a rapid decline in silage pH. The addition of LAB inoculants to silage has been associated with increases in silage digestibility, d

  5. Important impacts of intestinal bacteria on utilization of dietary amino acids in pigs.

    Science.gov (United States)

    Yang, Yu-Xiang; Dai, Zhao-Lai; Zhu, Wei-Yun

    2014-11-01

    Bacteria in pig intestine can actively metabolize amino acids (AA). However, little research has focused on the variation in AA metabolism by bacteria from different niches. This study compared the metabolism of AA by microorganisms derived from the lumen and epithelial wall of the pig small intestine, aiming to test the hypothesis that the metabolic profile of AA by gut microbes was niche specific. Samples from the digesta, gut wall washes and gut wall of the jejunum and ileum were used as inocula. Anaerobic media containing single AA were used and cultured for 24 h. The 24-h culture served as inocula for the subsequent 30 times of subcultures. Results showed that for the luminal bacteria, all AA concentrations except phenylalanine in the ileum decreased during the 24-h in vitro incubation with a increase of ammonia concentration, while 4 AA (glutamate, glutamine, arginine and lysine) in the jejunum decreased, with the disappearance rate at 60-95 %. For tightly attached bacteria, all AA concentrations were generally increased during the first 12 h and then decreased coupled with first a decrease and then an increase of ammonia concentration, suggesting a synthesis first and then a catabolism pattern. Among them, glutamate in both segments, histidine in the jejunum and lysine in the ileum increased significantly during the first 12 h and then decreased at 24 h. The concentrations of glutamine and arginine did not change during the first 12 h, but significantly decreased at 24 h. Jejunal lysine and ileal threonine were increased for the first 6 or 12 h. For the loosely attached bacteria, there was no clear pattern for the entire AA metabolism. However, glutamate, methionine and lysine in the jejunum decreased after 24 h of cultivation, while glutamine and threonine in the jejunum and glutamine and lysine in the ileum increased in the first 12 h. During subculture, AA metabolism, either utilization or synthesis, was generally decreased with disappearance

  6. Biotransformations of Bile Acids with Bacteria from Cayambe Slaughterhouse (Ecuador): Synthesis of Bendigoles.

    Science.gov (United States)

    Costa, Stefania; Maldonado Rodriguez, Maria Elena; Rugiero, Irene; De Bastiani, Morena; Medici, Alessandro; Tamburini, Elena; Pedrini, Paola

    2016-08-01

    The biotransformations of cholic acid (1a), deoxycholic acid (1b), and hyodeoxycholic acid (1c) to bendigoles and other metabolites with bacteria isolated from the rural slaughterhouse of Cayambe (Pichincha Province, Ecuador) were reported. The more active strains were characterized, and belong to the genera Pseudomonas and Rhodococcus. Various biotransformation products were obtained depending on bacteria and substrates. Cholic acid (1a) afforded the 3-oxo and 3-oxo-4-ene derivatives 2a and 3a (45% and 45%, resp.) with P. mendocina ECS10, 3,12-dioxo-4-ene derivative 4a (60%) with Rh. erythropolis ECS25, and 9,10-secosteroid 6 (15%) with Rh. erythropolis ECS12. Bendigole F (5a) was obtained in 20% with P. fragi ECS22. Deoxycholic acid (1b) gave 3-oxo derivative 2b with P. prosekii ECS1 and Rh. erythropolis ECS25 (20% and 61%, resp.), while 3-oxo-4-ene derivative 3b was obtained with P. prosekii ECS1 and P. mendocina ECS10 (22% and 95%, resp.). Moreover, P. fragi ECS9 afforded bendigole A (8b; 80%). Finally, P. mendocina ECS10 biotransformed hyodeoxycholic acid (1c) to 3-oxo derivative 2c (50%) and Rh. erythropolis ECS12 to 6α-hydroxy-3-oxo-23,24-dinor-5β-cholan-22-oic acid (9c, 66%). Bendigole G (5c; 13%) with P. prosekii ECS1 and bendigole H (8c) with P. prosekii ECS1 and Rh. erythropolis ECS12 (20% and 16%, resp.) were obtained.

  7. Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread.

    Science.gov (United States)

    Axel, Claudia; Brosnan, Brid; Zannini, Emanuele; Furey, Ambrose; Coffey, Aidan; Arendt, Elke K

    2016-12-19

    The use of sourdough fermented with specific strains of antifungal lactic acid bacteria can reduce chemical preservatives in bakery products. The main objective of this study was to investigate the production of antifungal carboxylic acids after sourdough fermentation of quinoa and rice flour using the antifungal strains Lactobacillus reuteri R29 and Lactobacillus brevis R2Δ as bioprotective cultures and the non-antifungal L. brevis L1105 as a negative control strain. The impact of the fermentation substrate was evaluated in terms of metabolic activity, acidification pattern and quantity of antifungal carboxylic acids. These in situ produced compounds (n=20) were extracted from the sourdough using a QuEChERS method and detected by a new UHPLC-MS/MS chromatography. Furthermore, the sourdough was applied in situ using durability tests against environmental moulds to investigate the biopreservative potential to prolong the shelf life of bread. Organic acid production and TTA values were lowest in rice sourdough. The sourdough fermentation of the different flour substrates generated a complex and significantly different profile of carboxylic acids. Extracted quinoa sourdough detected the greatest number of carboxylic acids (n=11) at a much higher concentration than what was detected from rice sourdough (n=9). Comparing the lactic acid bacteria strains, L. reuteri R29 fermented sourdoughs contained generally higher concentrations of acetic and lactic acid but also the carboxylic acids. Among them, 3-phenyllactic acid and 2-hydroxyisocaproic acid were present at a significant concentration. This was correlated with the superior protein content of quinoa flour and its high protease activity. With the addition of L. reuteri R29 inoculated sourdough, the shelf life was extended by 2 days for quinoa (+100%) and rice bread (+67%) when compared to the non-acidified controls. The L. brevis R2Δ fermented sourdough bread reached a shelf life of 4 days for quinoa (+100%) and

  8. Population dynamics of mixed cultures of yeast and lactic acid bacteria in cider conditions

    Directory of Open Access Journals (Sweden)

    Leila Roseli Dierings

    2013-10-01

    Full Text Available The objective of this work was to study the malolactic bioconversion in low acidity cider, according Brazilian conditions. The apple must was inoculated with Saccharomyces cerevisiae or S. cerevisiae with Oenococcus oeni. The control contained the indigenous microorganisms. Fermentation assays were carried out with clarified apple must from the Gala variety. At the beginning of fermentation, there was a fast growth of the non-Saccharomyces yeast population. Competitive inhibition occurred in all the assays, either with inoculated or indigenous populations of the yeast. The lactic acid bacteria count was ca. 1.41·10²CFU/mL at the beginning and 10(6CFU/mL after yeast cells autolysis. The lactic bacteria O. oeni reached the highest population (10(7CFU/mL when added to the apple must after the decline of the yeast. The malic acid was totally consumed during the alcoholic fermentation period (80.0 to 95.5 % and lactic acid was still synthesized during the 35 days of malolactic fermentation. These results could be important in order to achieve a high quality brut, or sec cider obtained from the dessert apple must.

  9. Antimicrobial resistance of coagulase-negative staphylococci and lactic acid bacteria from industrially produced dairy products

    Directory of Open Access Journals (Sweden)

    Nevijo Zdolec

    2013-03-01

    Full Text Available In this research, the susceptibility to clindamycin, tetracycline, amikacin, amoxicillin + clavulanic acid, enrofloxacine, vancomycin, trimethoprim + sulphametoxazol, tobramycin, chloramphenicol, ciprofloxacin, erythromycin, penicillin and trimethoprim was tested in coagulase-negative staphylococci (n=78 and lactic acid bacteria (n=30 by means of disk diffusion test and E-test. The isolates were collected from soft and hard cheeses, butter and brine. All isolates of coagulase-negative staphylococci were susceptible to clindamycin, amikacin, amoxicillin + clavulanic acid, enrofloxacine, vancomycin, chloramphenicol and ciprofloxacin according to CLSI breakpoints. A total of 30 staphylococci isolates (38.46 % were resistant to erythromycin, 18 to penicillin (23.07 %, 4 to tetracycline (5.12 %, and one isolate to trimethoprim, tobramicin and trimethoprim + sulphametoxazol (1.28 %. Among 78 tested staphylococci, 35 of them were resistant to at least one antimicrobial substance (44.87 %. The rate of resistant isolates of different soft cheese types ranged from 22 to 70 %, while resistant staphylococci were absent in hard cheese and brine. The growth of lactic acid bacteria was not influenced by trimethoprim + sulphametoxazol (n=29, vancomycin (n=29, trimethoprim (n=28, amikacin (n=10 and tobramycin (n=10. The results show that significant part of apathogenic microbiota in different dairy products is phenotypically resistant to antimicrobial agents.

  10. ISOLATION AND IDENTIFICATION OF LACTIC ACID PRODUCING BACTERIA FROM CAMEL MILK

    Directory of Open Access Journals (Sweden)

    Toqeer Ahmad, Rashida Kanwal, Izhar Hussain Athar1, Najam Ayub

    2002-03-01

    Full Text Available Lactic acid bacteria (LAB were isolated from camel milk by culturing the camel milk on specific media and pure culture was obtained by sub culturing. Purification of culture was confirmed by Gram's staining and identified by different bio-chemical tests. Camel milk contains lactic acid producing bacteria including Strpptococci such as S. cremoris and S. lactis and Lactobacilli such as L. acidophilus L. acidophilus grows more rapidly in camel milk than others as its growth is supported by camel milk. A variety of food can be preserved by lactic acid fermentation, so starter culture was prepared from strains which were isolated from camel milk. Camel and buffalo's milk cheese was prepared by using starter culture. The strains isolated from camel milk were best for acid production and can coagulate the milk in less lime. Camel milk cheese was prepared and compared with buffalo's milk cheese. It is concluded that cheese can be prepared successfully from camel milk and better results can be obtained by coagulating milk with starter culture.

  11. Growth inhibitory effect of grape phenolics against wine spoilage yeasts and acetic acid bacteria.

    Science.gov (United States)

    Pastorkova, E; Zakova, T; Landa, P; Novakova, J; Vadlejch, J; Kokoska, L

    2013-02-15

    This paper investigates the in vitro antimicrobial potential of 15 grape phenolic compounds of various chemical classes (phenolic acids, stilbenes and flavonoids) using the broth microdilution method against yeasts and acetic acid bacteria frequently occurring in deteriorated wine. Pterostilbene (MICs=32-128 μg/mL), resveratrol (MICs=256-512 μg/mL) and luteolin (MICs=256-512 μg/mL) are among six active compounds that possessed the strongest inhibitory effects against all microorganisms tested. In the case of phenolic acids, myricetin, p-coumaric and ferulic acids exhibited selective antimicrobial activity (MICs=256-512 μg/mL), depending upon yeasts and bacteria tested. In comparison with potassium metabisulphite, all microorganisms tested were more susceptible to the phenolics. The results revealed the antibacterial and antiyeast effects against wine spoilage microorganisms of several highly potent phenolics naturally occurring in grapes. These findings also provide arguments for further investigation of stilbenes as prospective compounds reducing the need for the use of sulphites in winemaking.

  12. Population dynamics of acetic acid bacteria during traditional wine vinegar production.

    Science.gov (United States)

    Vegas, Carlos; Mateo, Estibaliz; González, Angel; Jara, Carla; Guillamón, José Manuel; Poblet, Montse; Torija, Ma Jesús; Mas, Albert

    2010-03-31

    The population dynamics of acetic acid bacteria in traditional vinegar production was determined in two independent vinegar plants at both the species and strain level. The effect of barrels made of four different woods upon the population dynamics was also determined. Acetic acid bacteria were isolated on solid media and the species were identified by RFLP-PCR of 16S rRNA genes and confirmed by 16S rRNA gene sequencing, while strains were typed by ERIC-PCR and (GTG)(5)-rep-PCR. The most widely isolated species was Acetobacter pasteurianus, which accounted for 100% of all the isolates during most of the acetification. Gluconacetobacter europaeus only appeared at any notable level at the end of the process in oak barrels from one vinegar plant. The various A. pasteurianus strains showed a clear succession as the concentration of acetic acid increased. In both vinegar plants the relative dominance of different strains was modified as the concentrations of acetic acid increased, and strain diversity tended to reduce at the end of the process.

  13. Compositional characteristics of commercial yoghurt based on quantitative determination of viable lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Niketić Gordana B.

    2009-01-01

    Full Text Available Yoghurt quality is particularly difficult to standardize because of the many forms, varieties, manufacturing methods, ingredients and consumer preferences that exist. Since these factors will always play an important role, it is unlikely that a uniform yoghurt quality concept will ever emerge, such as has been developed for other dairy products. There are a number of common denominators, however that have bearing on yoghurt quality. Since a number of producers are recognized within the broad category entitled yoghurt. This situation makes yoghurt an interesting, challenging, but also a confusing area to work in. The present investigation was undertaken to isolate from commercial yoghurt the strains involved in its manufacture and determine the characteristics of Streptococcus thermophilus and Lactobacillus delbrueckii subsp.bulgaricus. This study is concerned with the lactic acid bacteria (L.delbrueckii subsp. bulgaricus and S. thermophilus growth in yoghurt from involving different procedures and with the determination of the number of lactic acid bacteria in dependence of the temperature and acidity in the period of storage. Predominant samples of yoghurt were with 11-107/ml lactic acid lactococci (44.28%.

  14. The Occurrence of Beer Spoilage Lactic Acid Bacteria in Craft Beer Production.

    Science.gov (United States)

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Aquilanti, Lucia; Clementi, Francesca

    2015-12-01

    Beer is one of the world's most ancient and widely consumed fermented alcoholic beverages produced with water, malted cereal grains (generally barley and wheat), hops, and yeast. Beer is considered an unfavorable substrate of growth for many microorganisms, however, there are a limited number of bacteria and yeasts, which are capable of growth and may spoil beer especially if it is not pasteurized or sterile-filtered as craft beer. The aim of this research study was to track beer spoilage lactic acid bacteria (LAB) inside a brewery and during the craft beer production process. To that end, indoor air and work surface samples, collected in the brewery under study, together with commercial active dry yeasts, exhausted yeasts, yeast pellet (obtained after mature beer centrifugation), and spoiled beers were analyzed through culture-dependent methods and PCR-DGGE in order to identify the contaminant LAB species and the source of contamination. Lactobacillus brevis was detected in a spoiled beer and in a commercial active dry yeast. Other LAB species and bacteria ascribed to Staphylococcus sp., Enterobaceriaceae, and Acetobacter sp. were found in the brewery. In conclusion, the PCR-DGGE technique coupled with the culture-dependent method was found to be a useful tool for identifying the beer spoilage bacteria and the source of contamination. The analyses carried out on raw materials, by-products, final products, and the brewery were useful for implementing a sanitization plan to be adopted in the production plant.

  15. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages

    Directory of Open Access Journals (Sweden)

    Marie-Pierre eChapot-Chartier

    2014-05-01

    Full Text Available Lactic acid bacteria (LAB are Gram positive bacteria widely used in the production of fermented food in particular cheese and yoghurts. Bacteriophage infections during fermentation processes have been for many years a major industrial concern and have stimulated numerous research efforts. Better understanding of the molecular mechanisms of bacteriophage interactions with their host bacteria is required for the development of efficient strategies to fight against infections. The bacterial cell wall plays key roles in these interactions. First, bacteriophages must adsorb at the bacterial surface through specific interactions with receptors that are cell wall components. At next step, phages must overcome the barrier constituted by cell wall peptidoglycan to inject DNA inside bacterial cell. Also at the end of the infection cycle, phages synthesize endolysins able to hydrolyze peptidoglycan and lyse bacterial cells to release phage progeny. In the last decade, concomitant development of genomics and structural analysis of cell wall components allowed considerable advances in the knowledge of their structure and function in several model LAB. Here, we describe the present knowledge on the structure of the cell wall glycopolymers of the best characterized LAB emphasizing their structural variations and we present the available data regarding their role in bacteria-phage specific interactions at the different steps of the infection cycle.

  16. Current status and emerging role of glutathione in food grade lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Pophaly Sarang

    2012-08-01

    Full Text Available Abstract Lactic acid bacteria (LAB have taken centre stage in perspectives of modern fermented food industry and probiotic based therapeutics. These bacteria encounter various stress conditions during industrial processing or in the gastrointestinal environment. Such conditions are overcome by complex molecular assemblies capable of synthesizing and/or metabolizing molecules that play a specific role in stress adaptation. Thiols are important class of molecules which contribute towards stress management in cell. Glutathione, a low molecular weight thiol antioxidant distributed widely in eukaryotes and Gram negative organisms, is present sporadically in Gram positive bacteria. However, new insights on its occurrence and role in the latter group are coming to light. Some LAB and closely related Gram positive organisms are proposed to possess glutathione synthesis and/or utilization machinery. Also, supplementation of glutathione in food grade LAB is gaining attention for its role in stress protection and as a nutrient and sulfur source. Owing to the immense benefits of glutathione, its release by probiotic bacteria could also find important applications in health improvement. This review presents our current understanding about the status of glutathione and its role as an exogenously added molecule in food grade LAB and closely related organisms.

  17. Current status and emerging role of glutathione in food grade lactic acid bacteria.

    Science.gov (United States)

    Pophaly, Sarang Dilip; Singh, Rameshwar; Pophaly, Saurabh Dilip; Kaushik, Jai K; Tomar, Sudhir Kumar

    2012-08-25

    Lactic acid bacteria (LAB) have taken centre stage in perspectives of modern fermented food industry and probiotic based therapeutics. These bacteria encounter various stress conditions during industrial processing or in the gastrointestinal environment. Such conditions are overcome by complex molecular assemblies capable of synthesizing and/or metabolizing molecules that play a specific role in stress adaptation. Thiols are important class of molecules which contribute towards stress management in cell. Glutathione, a low molecular weight thiol antioxidant distributed widely in eukaryotes and Gram negative organisms, is present sporadically in Gram positive bacteria. However, new insights on its occurrence and role in the latter group are coming to light. Some LAB and closely related Gram positive organisms are proposed to possess glutathione synthesis and/or utilization machinery. Also, supplementation of glutathione in food grade LAB is gaining attention for its role in stress protection and as a nutrient and sulfur source. Owing to the immense benefits of glutathione, its release by probiotic bacteria could also find important applications in health improvement. This review presents our current understanding about the status of glutathione and its role as an exogenously added molecule in food grade LAB and closely related organisms.

  18. Phylogenetic analysis of antimicrobial lactic acid bacteria from farmed seabass Dicentrarchus labrax.

    Science.gov (United States)

    Bourouni, Ouissal Chahad; El Bour, Monia; Calo-Mata, Pilar; Mraouna, Radhia; Abedellatif, Boudabous; Barros-Velàzquez, Jorge

    2012-04-01

    The use of lactic acid bacteria (LAB) in the prevention or reduction of fish diseases is receiving increasing attention. In the present study, 47 LAB strains were isolated from farmed seabass ( Dicentrarchus labrax ) and were phenotypically and phylogenetically analysed by 16S rDNA and randomly amplified polymorphic DNA - polymerase chain reaction (RAPD-PCR). Their antimicrobial effect was tested in vitro against a wide variety of pathogenic and spoilage bacteria. Most of the strains isolated were enterococci belonging to the following species: Enterococcus faecium (59%), Enterococcus faecalis (21%), Enterococcus sanguinicola (4 strains), Enterococcus mundtii (1 strain), Enterococcus pseudoavium (1 strain), and Lactococcus lactis (1 strain). An Aerococcus viridans strain was also isolated. The survey of their antimicrobial susceptibility showed that all isolates were sensitive to vancomycin and exhibited resistance to between 4 and 10 other antibiotics relevant for therapy in human and animal medicine. Different patterns of resistance were noted for skin and intestines isolates. More than 69% (32 strains) of the isolates inhibited the growth of the majority of pathogenic and spoilage bacteria tested, including Listeria monocytogenes, Staphylococcus aureus, Aeromonas hydrophila, Aeromonas salmonicida, Vibrio anguillarum, and Carnobacterium sp. To our knowledge, this is the first report of bioactive enterococcal species isolated from seabass that could potentially inhibit the undesirable bacteria found in food systems.

  19. Incidence of Bacteriocins Produced by Food-Related Lactic Acid Bacteria Active towards Oral Pathogens

    Directory of Open Access Journals (Sweden)

    Konstantinos Papadimitriou

    2013-02-01

    Full Text Available In the present study we investigated the incidence of bacteriocins produced by 236 lactic acid bacteria (LAB food isolates against pathogenic or opportunistic pathogenic oral bacteria. This set of LAB contained several strains (≥17% producing bacteriocins active against food-related bacteria. Interestingly only Streptococcus macedonicus ACA-DC 198 was able to inhibit the growth of Streptococcus oralis, Streptococcus sanguinis and Streptococcus gordonii, while Lactobacillus fermentum ACA-DC 179 and Lactobacillus plantarun ACA-DC 269 produced bacteriocins solely against Streptococcus oralis. Thus, the percentage of strains that were found to produce bacteriocins against oral bacteria was ~1.3%. The rarity of bacteriocins active against oral LAB pathogens produced by food-related LAB was unexpected given their close phylogenetic relationship. Nevertheless, when tested in inhibition assays, the potency of the bacteriocin(s of S. macedonicus ACA-DC 198 against the three oral streptococci was high. Fourier-transform infrared spectroscopy combined with principal component analysis revealed that exposure of the target cells to the antimicrobial compounds caused major alterations of key cellular constituents. Our findings indicate that bacteriocins produced by food-related LAB against oral LAB may be rare, but deserve further investigation since, when discovered, they can be effective antimicrobials.

  20. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese

    DEFF Research Database (Denmark)

    Østergaard, Nina Bjerre; Eklöw, Annelie; Dalgaard, Paw

    2014-01-01

    Four mathematical models were developed and validated for simultaneous growth of mesophilic lactic acid bacteria from added cultures and Listeria monocytogenes, during chilled storage of cottage cheese with freshor cultured cream dressing. The mathematical models include the effect of temperature...... cheese to improvemodel performance. The inhibiting effect of mesophilic lactic acid bacteria from added cultures on growth of L. monocytogenes was efficiently modelled using the Jameson approach. The new models appropriately predicted the maximum population density of L. monocytogenes in cottage cheese....... The developed models were successfully validated by using 25 growth rates for L. monocytogenes, 17 growth rates for lactic acid bacteria and a total of 26 growth curves for simultaneous growth of L. monocytogenes and lactic acid bacteria in cottage cheese. These data were used in combination with bias...

  1. Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts.

    Science.gov (United States)

    Ripamonti, Barbara; Agazzi, Alessandro; Bersani, Carla; De Dea, Paola; Pecorini, Chiara; Pirani, Silvia; Rebucci, Raffaella; Savoini, Giovanni; Stella, Simone; Stenico, Alberta; Tirloni, Erica; Domeneghini, Cinzia

    2011-06-01

    The selection of promising specific species of lactic acid bacteria with potential probiotic characteristics is of particular interest in producing multi species-specific probiotic adjuncts in veal calves rearing. The aim of the present work was to select and evaluate in vitro the functional activity of lactic acid bacteria, Bifidobacterium longum and Bacillus coagulans strains isolated from veal calves in order to assess their potential use as multi species-specific probiotics for veal calves. For this purpose, bacterial strains isolated from faeces collected from 40 healthy 50-day-calves, were identified by RiboPrinter and 16s rRNA gene sequence. The most frequent strains belonged to the species B. longum, Streptococcus bovis, Lactobacillus animalis and Streptococcus macedonicus. Among these, 7 strains were chosen for testing their probiotic characteristics in vitro. Three strains, namely L. animalis SB310, Lactobacillus paracasei subsp. paracasei SB137 and B. coagulans SB117 showed varying individual but promising capabilities to survive in the gastrointestinal tract, to adhere, to produce antimicrobial compounds. These three selected species-specific bacteria demonstrated in vitro, both singularly and mixed, the functional properties needed for their use as potential probiotics in veal calves.

  2. Influence of Perfluorooctanoic Acid on the Transport and Deposition Behaviors of Bacteria in Quartz Sand.

    Science.gov (United States)

    Wu, Dan; Tong, Meiping; Kim, Hyunjung

    2016-03-01

    The significance of perfluorooctanoic acid (PFOA) on the transport and deposition behaviors of bacteria (Gram-negative Escherichia coli and Gram-positive Bacillus subtilis) in quartz sand is examined in both NaCl and CaCl2 solutions at pH 5.6 by comparing both breakthrough curves and retained profiles with PFOA in solutions versus those without PFOA. All test conditions are found to be highly unfavorable for cell deposition regardless of the presence of PFOA; however, 7%-46% cell deposition is observed depending on the conditions. The cell deposition may be attributed to micro- or nanoscale roughness and/or to chemical heterogeneity of the sand surface. The results show that, under all examined conditions, PFOA in suspensions increases cell transport and decreases cell deposition in porous media regardless of cell type, presence or absence of extracellular polymeric substances, ionic strength, and ion valence. We find that the additional repulsion between bacteria and quartz sand caused by both acid-base interaction and steric repulsion as well as the competition for deposition sites on quartz sand surfaces by PFOA are responsible for the enhanced transport and decreased deposition of bacteria with PFOA in solutions.

  3. The aflatoxin B1 isolating potential of two lactic acid bacteria

    Institute of Scientific and Technical Information of China (English)

    Adel Hamidi; Reza Mirnejad; Emad Yahaghi; Vahid Behnod; Ali Mirhosseini; Sajad Amani; Sara Sattari; Ebrahim Khodaverdi Darian

    2013-01-01

    Objective:To determine lactic acid bacteria’s capability to enhance the process of binding and isolating aflatoxin B1 and to utilize such lactic acid bacteria as a food supplement or probiotic products for preventing absorption of aflatoxin B1 in human and animal bodies. Methods: In the present research, the bacteria were isolated from five different sources. For surveying the capability of the bacteria in isolating aflatoxin B1, ELISA method was implemented, and for identifying the resultant strains through 16S rRNA sequencing method, universal primers were applied. Results: Among the strains which were isolated, two strains of Lactobacillus pentosus and Lactobacillus beveris exhibited the capability of absorbing and isolating aflatoxin B1 by respectively absorbing and discharging 17.4%and 34.7%of the aforementioned toxin existing in the experiment solution. Conclusions:Strains of Lactobacillus pentosus and Lactobacillus beveris were isolated from human feces and local milk samples, respectively. And both strains has the ability to isolate or bind with aflatoxin B1.

  4. Coexistence of Lactic Acid Bacteria and Potential Spoilage Microbiota in a Dairy Processing Environment.

    Science.gov (United States)

    Stellato, Giuseppina; De Filippis, Francesca; La Storia, Antonietta; Ercolini, Danilo

    2015-11-01

    Microbial contamination in food processing plants can play a fundamental role in food quality and safety. In this study, the microbiota in a dairy plant was studied by both 16S rRNA- and 26S rRNA-based culture-independent high-throughput amplicon sequencing. Environmental samples from surfaces and tools were studied along with the different types of cheese produced in the same plant. The microbiota of environmental swabs was very complex, including more than 200 operational taxonomic units with extremely variable relative abundances (0.01 to 99%) depending on the species and sample. A core microbiota shared by 70% of the samples indicated a coexistence of lactic acid bacteria with a remarkable level of Streptococcus thermophilus and possible spoilage-associated bacteria, including Pseudomonas, Acinetobacter, and Psychrobacter, with a relative abundance above 50%. The most abundant yeasts were Kluyveromyces marxianus, Yamadazyma triangularis, Trichosporon faecale, and Debaryomyces hansenii. Beta-diversity analyses showed a clear separation of environmental and cheese samples based on both yeast and bacterial community structure. In addition, predicted metagenomes also indicated differential distribution of metabolic pathways between the two categories of samples. Cooccurrence and coexclusion pattern analyses indicated that the occurrence of potential spoilers was excluded by lactic acid bacteria. In addition, their persistence in the environment can be helpful to counter the development of potential spoilers that may contaminate the cheeses, with possible negative effects on their microbiological quality.

  5. ISOLATION OF LACTIC ACID BACTERIA UNDER LOW TEMPERATURE FOR THE PREPARATION OF YOGURT

    Directory of Open Access Journals (Sweden)

    Javid Ahmad Bhat

    2014-02-01

    Full Text Available An investigation of isolation of Lactic acid bacteria was carried out under low temperature for the preparation of Yogurt by using various food supplements like carrot, ground-nut and tomato juices. Methods: Various samples of Cow milk, Skimmed milk were processed along with nutrients like Carrot, ground nut and tomato juices with Tryptone glucose yeast extract agar (TGYA at different temperatures like 50C, 150C and 220C for the isolation of Lactic acid bacteria for the preparation of yogurt. The characteristic isolates were identified by using various biochemical tests and direct microscopy. Results: Lactic acid bacteria (LAB dominated the microbial population of Yogurt, and were identified according to their morphological and physiological characteristics. Among these lactobacilli were frequently occurring organisms. The most abundant species were Lactobacillus delbrueckii subspecies Bulgaricus and Streptococcus thermophilus. The Lactic Streptococci was subjected to bio-chemical tests to identify the species. Based on the biochemical reactions the species was identified as Lactococcus Lactis, sub species di-acetylactis. Isolated culture of lactic Streptococci was found to grow at low temperature. When this was used as an inoculum to prepare yogurt at 50C, 150C and 220C curdling took place in 3days time. In order to reduce the setting time, nutrients in the form of carrot, ground-nut and tomato juices were added. The yogurt was found to set at 50C in 30hrs which is considered useful. Acidity of yogurt was found to be 0.53%- 0.55%. The yogurt was found to contain di-acetyl and quality of yogurt was good.

  6. Fermentation by amylolytic lactic acid bacteria and consequences for starch digestibility of plantain, breadfruit, and sweet potato flours

    OpenAIRE

    Haydersah, J.; Chevallier, I.; Rochette, Isabelle; Mouquet Rivier, Claire; Picq, Christian; Marianne Pépin, T.; Icard-Vernière, Christèle; Guyot, Jean-Pierre

    2012-01-01

    The potential of tropical starchy plants such as plantain (Musa paradisiaca), breadfruit (Artocarpus communis), and sweet potato (Ipomoea batatas) for the development of new fermented foods was investigated by exploiting the capacity of some lactic acid bacteria to hydrolyze starch. The amylolytic lactic acid bacteria (ALAB) Lactobacillus plantarum A6 and Lactobacillus fermentum Ogi E1 were able to change the consistency of thick sticky gelatinized slurries of these starchy fruits and tubers ...

  7. BIOCHEMICAL CHARACTERISTICS OF LACTIC ACID PRODUCING BACTERIA AND PREPARATION OF CAMEL MILK CHEESE BY USING STARTER CULTURE

    OpenAIRE

    T. Ahmed and R. Kanwal

    2004-01-01

    Lactic acid bacteria (LAB) were isolated from camel milk by culturing the milk on specific media and pure culture was obtained by sub-culturing. Purification of culture was confirmed by Gram’s staining and identified by different biochemical tests. Camel milk contained lactic acid producing bacteria like Streptococci such as S. cremoris and S. lactis and Lactobacilli such as L. acidophilus. L. acidophilus grew more rapidly in camel milk than others as its growth was supported by camel milk...

  8. Fermentation of Prefermented and Extruded Rice Flour by Lactic Acid Bacteria from Sikhae

    DEFF Research Database (Denmark)

    Lee, C. H.; Min, K. C.; Souane, M.

    1992-01-01

    The acid- and flavor-forming properties of Lactobacillus plantarum and Leuconostoc mesenteroides isolated from Sikhae, a Korean traditional lactic acid fermented fish product, were examined and compared to those of Lactobacillus casei and Lactococcus lactis subsp. diacetylactis DRC3. The effects...... of prefermentation of rice flour in solid-state with Bacillus laevolacticus and Saccharomyces cerevisiae, extrusion cooking and addition of soymilk as the substrate of lactic acid fermentation were tested. Extrusion cooking and prefermentation of rice increased the soluble solid and sugar contents before malt...... digestion. The amount of sugar consumption during lactic fermentation varied with the type of bacteria. Leuconostoc mesenteroides(sikhae) and Lactobacillus plantarum(sikhae) increased up to 6 times of original cell number by 24 hrs of fermentation in rice + soymilk substrate, but Lactococcus lactis...

  9. THE EFFECTS OF INOCULANT LACTIC ACID BACTERIA ON THE FERMENTATION AND AEROBIC STABILITY OF SUNFLOWER SILAGE

    Directory of Open Access Journals (Sweden)

    Fisun Koc

    2009-12-01

    Full Text Available This study was carried out to determine the effects of actic acid bacterial inoculant on the fermentation and aerobic stability of sunflower silages. Sunflower was harvested at the milk stage. Inoculant-1174 (Pioneer®,USA was used as homofermentative lactic acid bacterial inoculant. Inoculant was applied 6.00 log10 cfu/g silage levels. Silages with no additive served as controls. After treatment, the chopped sunflower was ensiled in the PVC type laboratory silos. Three silos for each group were sampled for chemical and microbiological analysis on days 2, 4, 7, 14, 21, 28 and 56 after ensiling. At the end of the ensiling period, all silages were subjected to an aerobic stability test for 14 days. Neither inoculant improved the fermentation parameters of sunflower silages. At the end of the ensiling period, inoculant increased lactic acid bacteria (LAB and decreased yeast and mould numbers of silages. Inoculant treatment did not affect aerobic stability of silages.

  10. Sample to answer: a fully integrated nucleic acid identification system for bacteria monitoring

    Science.gov (United States)

    Kim, Jungkyu; Elsnab, John; Johnson, Michael; Gale, Bruce K.

    2010-02-01

    A fully integrated microfluidic system was developed and incorporates an EC-MWCNT (electrochemical multiwalled carbon nanotube) sensor for the detection of bacteria. Sample metering, reagent metering and delivery was implemented with microvalves and pumps embedded inside the microfluidic system. The nucleic acid extraction was performed using microchannels controlled using automated platforms and a disposable microfluidic silica cartridge. The target samples were flowed and hybridized with probe ssDNA (single strand DNA) across the MWCNT-EC sensor (built on a silicon chip), which was embedded in a microfluidic cell. The 9-pad sensor was scanned before and after hybridization to measure the quantity of RNA (Ribonucleic acid) bound to the array surface. A rapid and accurate sample-in answer-out nucleic acid system was realized with automated volume metering, microfluidic sample preparation, and integrated nano-biosensors.

  11. Questioning As a Pedagogical Tool for Eliciting Student Generated Questions During the Teaching of Acid-base Equilibria

    Directory of Open Access Journals (Sweden)

    Ayoade Ejiwale Okanlawon

    2012-04-01

    Full Text Available Traditionally, teachers simply taught problem-solving by explaining the worked-out examples taken from textbooks and students were expected to listen quietly, copy the solution to the problem, and then work independently at their desks. But a large body of research notes that guiding students to develop a solution pathway with questioning is more effective than simply explaining the sequence of steps to solve the problem. Students involved in question- and-answer sessions are more attentive than those who listen passively to teacher explanations and they are more likely to generate questions. The questions students ask during a lesson perform a number of important functions, including providing the teacher with valuable information about students’ understanding and misunderstanding, fostering self-regulation, inviting classroom discussions and aiding comprehension of contents presented. The skill of posing questions during classroom instruction is often under-valued and under taught in today’s classrooms. To encourage students to ask quality and thought provoking questions related to the contents taught, explicit instruction is required. This paper, therefore, qualitatively reports factors that foster student generated questions during the problem-solving instruction involving acid-base titration problem.

  12. Effects of Lactic Acid Bacteria Fermentation on the Quality of Little Yellow Croaker

    Directory of Open Access Journals (Sweden)

    Yuan Wu

    2013-11-01

    Full Text Available This research was to study the effects of lactic acid bacteria fermentation on the quality of little yellow croaker. The effects of the LAB starter composed of Lactobacillus plantarum and Lactobacillus acidophilus on the quality of little yellow croaker were studied through a 72 h fermentation process in this study. During 72 h fermentation at 30°C, little yellow croaker inoculated with the LAB starter not only resulted in a rapid pH decrease and suppression of spoilage bacteria, but also receded chemical changes such as total volatile base nitrogen and biogenic amines, its texture profile and whiteness also satisfying. Besides, Scanning Electron Micrograph (SEM images indicated some microstructure changes in LAB fermentation. The results demonstrated that the LAB starter could be developed as bio-preservatives to improve the quality of little yellow croaker in storage.

  13. Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality.

    Science.gov (United States)

    Mrvčić, Jasna; Stanzer, Damir; Solić, Ema; Stehlik-Tomas, Vesna

    2012-09-01

    Certain species of lactic acid bacteria (LAB), as well as other microorganisms, can bind metal ions to their cells surface or transport and store them inside the cell. Due to this fact, over the past few years interactions of metal ions with LAB have been intensively investigated in order to develop the usage of these bacteria in new biotechnology processes in addition to their health and probiotic aspects. Preliminary studies in model aqueous solutions yielded LAB with high absorption potential for toxic and essential metal ions, which can be used for improving food safety and quality. This paper provides an overview of results obtained by LAB application in toxic metal ions removing from drinking water, food and human body, as well as production of functional foods and nutraceutics. The biosorption abilities of LAB towards metal ions are emphasized. The binding mechanisms, as well as the parameters influencing the passive and active uptake are analyzed.

  14. Development of specific fluorescent oligonucleotide probes for in situ identification of wine lactic acid bacteria.

    Science.gov (United States)

    Blasco, Lucía; Ferrer, Sergi; Pardo, Isabel

    2003-08-08

    A rapid method for the identification of lactic acid bacteria (LAB) from wine has been developed. This method is based on fluorescence in situ hybridisation (FISH), using fluorescent oligonucleotide probes, homologous to 16S rDNA of those species of LAB commonly found in wines. The protocol for the specific detection of these bacteria was established through the hybridisation of 36 reference strains. The specificity of the probes was evaluated by using pure cultures. Probes were used to identify species in different wines, making it evident that direct identification and quantification from natural samples without culturing is also possible. The results show that FISH is a promising technique for the rapid identification of LAB, allowing positive identification in a few hours (4-16 h).

  15. Biotechnological and in situ food production of polyols by lactic acid bacteria.

    Science.gov (United States)

    Ortiz, Maria Eugenia; Bleckwedel, Juliana; Raya, Raúl R; Mozzi, Fernanda

    2013-06-01

    Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation.

  16. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications.

    Science.gov (United States)

    Perez, Rodney H; Zendo, Takeshi; Sonomoto, Kenji

    2014-08-29

    Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed.

  17. Biotechnology and pasta-making: lactic Acid bacteria as a new driver of innovation.

    Science.gov (United States)

    Capozzi, Vittorio; Russo, Pasquale; Fragasso, Mariagiovanna; De Vita, Pasquale; Fiocco, Daniela; Spano, Giuseppe

    2012-01-01

    Cereals-derived foods represent a key constituent in the diet of many populations. In particular, pasta is consumed in large quantities throughout the world in reason of its nutritive importance, containing significant amounts of complex carbohydrates, proteins, B-vitamins, and iron. Lactic acid bacteria (LAB) are a heterogeneous group of bacteria that play a key role in the production of fermented foods and beverages with high relevance for human and animal health. A wide literature testifies the multifaceted importance of LAB biotechnological applications in cereal-based products. Several studies focused on LAB isolation and characterization in durum wheat environment, in some cases with preliminary experimental applications of LAB in pasta-making. In this paper, using sourdough as a model, we focus on the relevant state-of-art to introduce a LAB-based biotechnological step in industrial pasta-making, a potential world driver of innovation that might represent a cutting-edge advancement in pasta production.

  18. Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues.

    Science.gov (United States)

    Yang, Jinsong; Tan, Haisheng; Cai, Yimin

    2016-07-01

    The natural lactic acid bacteria (LAB) population, chemical composition, and silage fermentation of fruit residues were studied. Eighty-two strains of LAB were isolated from fruit residues such as banana leaf and stem, pineapple peel, and papaya peel. All strains were gram-positive and catalase-negative bacteria, and they were divided into 7 groups (A-G) according to morphological and biochemical characters. Strains in groups A to F were rods, and group G was cocci. Group F produced gas from glucose; other groups did not. Groups A to C and F formed dl-lactic acid, whereas groups D, E, and G formed l-lactic acid. Based on the 16S rRNA gene sequence and DNA-DNA hybridization analysis, groups A to G strains were identified as Lactobacillus plantarum (54.9% of the total isolates), Lactobacillus paraplantarum (3.6%), Lactobacillus nagelii (8.5%), Lactobacillus perolens (4.9%), Lactobacillus casei (11.0%), Lactobacillus fermentum (9.8%), and Enterococcus gallinarum (7.3%), respectively. Lactobacillus plantarum and Lactobacillus casei are the most frequently isolated from fruit residues as a dominant species, and they could grow at a lower pH conditions and produce more lactic acid than other isolates. Pineapple and papaya peels contained higher crude protein (11.5-13.8%) and water-soluble carbohydrate (16.8-22.4%), but lower acid detergent fiber contents (21.2 to 26.4%) than banana stems and leaves (8.2% crude protein, 42.8% acid detergent fiber, and 5.1% water-soluble carbohydrate). Compared with banana stem and leaf silages, the pineapple and papaya peel silages were well preserved with a lower pH and higher lactate content. The study suggests that the fruit residues contain excellent LAB species and abundant feed nutrients, and that they can be preserved as silage to be potential food resources for livestock.

  19. Role of specific components from commercial inactive dry yeast winemaking preparations on the growth of wine lactic acid bacteria.

    Science.gov (United States)

    Andújar-Ortiz, Inmaculada; Pozo-Bayón, Maria Angeles; García-Ruiz, Almudena; Moreno-Arribas, M Victoria

    2010-07-28

    The role of specific components from inactive dry yeast preparations widely used in winemaking on the growth of three representative wine lactic acid bacteria (Oenococcus oeni, Lactobacillus hilgardii and Pediococcus pentosaceus) has been studied. A pressure liquid extraction technique using solvents of different polarity was employed to obtain extracts with different chemical composition from the inactive dry yeast preparations. Each of the extracts was assayed against the three lactic acid bacteria. Important differences in the effect of the extracts on the growth of the bacteria were observed, which depended on the solvent employed during the extraction, on the type of commercial preparations and on the lactic acid bacteria species. The extracts that exhibited the most different activity were chemically characterized in amino acids, free monosaccharides, monosaccharides from polysaccharides, fatty acids and volatile compounds. In general, specific amino acids and monosaccharides were related to a stimulating effect whereas fatty acid composition and likely some volatile compounds seemed to show an inhibitory effect on the growth of the lactic acid bacteria. These results may provide novel and useful information in trying to obtain better and more specific formulations of winemaking inactive dry yeast preparations.

  20. Phenotypic and technological diversity of lactic acid bacteria and staphylococci isolated from traditionally fermented sausages in southern Greece.

    Science.gov (United States)

    Drosinos, Eleftherios H; Paramithiotis, Spiros; Kolovos, George; Tsikouras, Ioannis; Metaxopoulos, Ioannis

    2007-05-01

    The physicochemical and microbiological characteristics of spontaneously fermented sausages made by two medium-sized enterprises (MSE) located in southern Greece have been studied. A total of 300 lactic acid bacteria and 300 staphylococcal strains have been isolated and identified by their physiological characteristics. Lactobacillus plantarum strains were found to dominate the lactic acid bacteria microbiota in most of the cases with L. sakei strains prevailing in some of them and L. rhamnosus strains occasionally accompanying the dominant lactic acid bacteria microbiota. On the other hand, S. saprophyticus strains were found to dominate the staphylococcal microbiota in all spontaneously fermented sausages with of S. simulans, S. xylosus, S. gallinarum and S. cohnii cohnii strains being sporadically present. Following the identification, an evaluation of their technological properties, namely proteolytic and lipolytic capacities as well as production of biogenic amines and antimicrobial compounds, took place. None of the lactic acid bacteria and staphylococci was found to possess lipolytic activity whereas a total of 6 lactic acid bacteria and 51 staphylococci strains were found to be able to hydrolyse either the sarcoplasic, myofibrillar or both protein fractions. Furthermore, only one L. sakei strain and 185 staphylococci strains were found to possess decarboxylase activity against lysine, tyrosine, ornithine or histidine. Finally none of the staphylococcal microbiota and 3 lactic acid bacteria strains were found to be able to produce antimicrobial compounds of proteinaceous nature against Listeria monocytogenes.

  1. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    Science.gov (United States)

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation.

  2. Synthetic teichoic acid conjugate vaccine against nosocomial Gram-positive bacteria.

    Science.gov (United States)

    Laverde, Diana; Wobser, Dominique; Romero-Saavedra, Felipe; Hogendorf, Wouter; van der Marel, Gijsbert; Berthold, Martin; Kropec, Andrea; Codee, Jeroen; Huebner, Johannes

    2014-01-01

    Lipoteichoic acids (LTA) are amphiphilic polymers that are important constituents of the cell wall of many Gram-positive bacteria. The chemical structures of LTA vary among organisms, albeit in the majority of Gram-positive bacteria the LTAs feature a common poly-1,3-(glycerolphosphate) backbone. Previously, the specificity of opsonic antibodies for this backbone present in some Gram-positive bacteria has been demonstrated, suggesting that this minimal structure may be sufficient for vaccine development. In the present work, we studied a well-defined synthetic LTA-fragment, which is able to inhibit opsonic killing of polyclonal rabbit sera raised against native LTA from Enterococcus faecalis 12030. This promising compound was conjugated with BSA and used to raise rabbit polyclonal antibodies. Subsequently, the opsonic activity of this serum was tested in an opsonophagocytic assay and specificity was confirmed by an opsonophagocytic inhibition assay. The conjugated LTA-fragment was able to induce specific opsonic antibodies that mediate killing of the clinical strains E. faecalis 12030, Enterococcus faecium E1162, and community-acquired Staphylococcus aureus strain MW2 (USA400). Prophylactic immunization with the teichoic acid conjugate and with the rabbit serum raised against this compound was evaluated in active and passive immunization studies in mice, and in an enterococcal endocarditis rat model. In all animal models, a statistically significant reduction of colony counts was observed indicating that the novel synthetic LTA-fragment conjugate is a promising vaccine candidate for active or passive immunotherapy against E. faecalis and other Gram-positive bacteria.

  3. Recent investigations and updated criteria for the assessment of antibiotic resistance in food lactic acid bacteria.

    Science.gov (United States)

    Clementi, Francesca; Aquilanti, Lucia

    2011-12-01

    The worldwide use, and misuse, of antibiotics for about sixty years in the so-called antibiotic era, has been estimated in some one to ten million tons, a relevant part of which destined for non-therapeutic purposes such as growth promoting treatments for livestock or crop protection. As highly adaptable organisms, bacteria have reacted to this dramatic change in their environment by developing several well-known mechanisms of antibiotic resistance and are becoming increasingly resistant to conventional antibiotics. In recent years, commensal bacteria have become a cause of concern since they may act as reservoirs for the antibiotic resistance genes found in human pathogens. In particular, the food chain has been considered the main route for the introduction of animal and environment associated antibiotic resistant bacteria into the human gastrointestinal tract (GIT) where these genes may be transferred to pathogenic and opportunistic bacteria. As fundamental microbial communities in a large variety of fermented foods and feed, the anaerobe facultative, aerotolerant lactic acid bacteria (LAB) are likely to play a pivotal role in the resistance gene exchange occurring in the environment, food, feed and animal and human GIT. Therefore their antibiotic resistance features and their genetic basis have recently received increasing attention. The present article summarises the results of the latest studies on the most typical genera belonging to the low G + C branch of LAB. The evolution of the criteria established by European regulatory bodies to ensure a safe use of microorganisms in food and feed, including the assessment of their antibiotic resistance is also reviewed.

  4. Efficacy of microencapsulated lactic acid bacteria in Helicobater pylori eradication therapy

    Directory of Open Access Journals (Sweden)

    Maha A Khalil

    2015-01-01

    Full Text Available Background: Probiotic delivery systems are widely used nutraceutical products for the supplementation of natural intestinal flora. These delivery systems vary greatly in the effectiveness to exert health benefits for a patient. This study focuses on providing probiotic living cells with a physical barrier against adverse environmental conditions. Materials and Methods: Microencapsulation of the selected lactic acid bacteria (LAB using chitosan and alginate was performed. Physical examination of the formulated LAB microcapsules was observed using phase contrast inverted microscope and scanning electron microscope (SEM. Finally, the survival of microencapsulated and noncapsulated bacteria was cheeked in the simulated human gastric tract (GT. The potential antimicrobial activity of the most potent microencapsulated LAB strain was in vivo evaluated in rabbit models. Results: Microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 were loaded with 1.03 × 10 10 CFU viable bacteria/g, 1.9 × 10 10 CFU viable bacteria/g, and 5.5 × 10 9 CFU viable bacteria/g, respectively. The survival of microencapsulated cells was significantly higher than that of the free cells after exposure to simulated gastric juice (SGJ at pH 2. Additionally, in simulated small intestine juice (SSJ, larger amounts of the selected LAB cells were found, whereas in simulated colon juice (SCJ, the released LAB reached the maximum counts. In vivo results pointed out that an 8-week supplementation with a triple therapy of a microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 might be able to reduce H. pylori. Conclusion: Microencapsulated probiotics could possibly compete with and downregulate H. pylori infection in humans.

  5. Oxalic acid: a signal molecule for fungus-feeding bacteria of the genus Collimonas?

    Science.gov (United States)

    Rudnick, M B; van Veen, J A; de Boer, W

    2015-10-01

    Mycophagous (=fungus feeding) soil bacteria of the genus Collimonas have been shown to colonize and grow on hyphae of different fungal hosts as the only source of energy and carbon. The ability to exploit fungal nutrient resources might require a strategy for collimonads to sense fungi in the soil matrix. Oxalic acid is ubiquitously secreted by soil fungi, serving different purposes. In this study, we investigated the possibility that collimonads might use oxalic acid secretion to localize a fungal host and move towards it. We first confirmed earlier indications that collimonads have a very limited ability to use oxalic acid as growth substrate. In a second step, with using different assays, we show that oxalic acid triggers bacterial movement in such a way that accumulation of cells can be expected at micro-sites with high free oxalic acid concentrations. Based on these observations we propose that oxalic acid functions as a signal molecule to guide collimonads to hyphal tips, the mycelial zones that are most sensitive for mycophagous bacterial attack.

  6. Biofilm-forming bacteria with varying tolerance to peracetic acid from a paper machine.

    Science.gov (United States)

    Rasimus, Stiina; Kolari, Marko; Rita, Hannu; Hoornstra, Douwe; Salkinoja-Salonen, Mirja

    2011-09-01

    Biofilms cause runnability problems in paper machines and are therefore controlled with biocides. Peracetic acid is usually effective in preventing bulky biofilms. This study investigated the microbiological status of a paper machine where low concentrations (≤ 15 ppm active ingredient) of peracetic acid had been used for several years. The paper machine contained a low amount of biofilms. Biofilm-forming bacteria from this environment were isolated and characterized by 16S rRNA gene sequencing, whole-cell fatty acid analysis, biochemical tests, and DNA fingerprinting. Seventy-five percent of the isolates were identified as members of the subclades Sphingomonas trueperi and S. aquatilis, and the others as species of the genera Burkholderia (B. cepacia complex), Methylobacterium, and Rhizobium. Although the isolation media were suitable for the common paper machine biofoulers Deinococcus, Meiothermus, and Pseudoxanthomonas, none of these were found, indicating that peracetic acid had prevented their growth. Spontaneous, irreversible loss of the ability to form biofilm was observed during subculturing of certain isolates of the subclade S. trueperi. The Sphingomonas isolates formed monoculture biofilms that tolerated peracetic acid at concentrations (10 ppm active ingredient) used for antifouling in paper machines. High pH and low conductivity of the process waters favored the peracetic acid tolerance of Sphingomonas sp. biofilms. This appears to be the first report on sphingomonads as biofilm formers in warm water using industries.

  7. [Studies on rapid detection of food-borne pathogenic bacteria by nucleic acid testing and related technology].

    Science.gov (United States)

    Cao, Wei; Wang, Mingzhong; Wang, Xiaoying; Liu, Xiumei

    2008-03-01

    The traditional methods of bacteria isolation, cultivation and identification are time-consuming, which can't meet the needs of the control and prevention of food-borne diseases. Recently, various kinds of rapid methods for food-borne pathogenic bacteria detection have emerged with the prompt development of nucleic acid testing technology. The application studies on polymerase chain reaction and the techniques derived from it, nucleic acid isothermal amplification, oligonucleotide microarray, immunomagnetic separation and DNA biosensing on food-borne pathogenic bacteria including Salmonella, Staphylococcus aureus and Enterohemorrhagic Escherchia coli, etc. were reviewed.

  8. Characteristic of cow milk dadih using starter of probiotic of lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Sri Usmiati

    2011-06-01

    Full Text Available Dadih is an original dairy product from West Sumatera processed traditionally. It is a spontaneous fermentation of buffalo milk at room temperature for 48 hours in a bamboo tube, has no standard of processing and quality. Dadih is potentially to be develop into probiotic products (functional food that can be enjoyed by the public widely. Development of cow's milk dadih is necessary since buffalo milk is available only in certain area. Product and characteristic information of cow milk dadih using probiotic of lactic acid bacteria starter has not been known. The research objective was to determine the characteristics of cow milk dadih that used starter of probiotic lactic acid bacteria during storage at room temperature (27oC and cold temperature (4oC. The study was designed using a factorial randomized block design pattern 12x3 at room temperature and 12X4 at cold temperatures, with the number of repeatation of 3 times. Treatment consisted of: (i starter formula (A using a single bacterium or a combination of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum, and (ii storage time (B. Observed parameters included pH value, titrable acidity, the total plate count, and in-vitro probiotic testing (bacterial resistance to bile salts and low pH of cow milk dadih. The results showed that L. acidophilus early exponential phase was at the hour 3rd, L. casei at the hour 4th and B. longum on the 3rd of which is used as the optimum time of mixing two or more bacteria in the manufacture of cow milk dadih. The volume of starter used was 3% with time fermentation of 48 hours at room temperature (27-30oC. Cow milk dadih that was stored for 7 days at room temperature (27-30oC and for 21 days at cold temperatures (4-10oC was able to maintain viability of bacteria to bile salts and low pH at 1010-1012 cfu/ml with percentage resistance varied. The cow milk dadih using a combination starter of B. longum with other probiotics on the

  9. Screening of probiotic lactic acid bacteria from Thai fermented foods for human.

    Directory of Open Access Journals (Sweden)

    Kantachote, D.

    2004-09-01

    Full Text Available Total of 327 strains of lactic acid bacteria were isolated from 179 samples of various Thai fermented foods. The strains were investigated for their probiotic properties based on stability in bile salt (0.15% and high acidity (pH 2, 3 and 4. Moreover, utilization of protein or fat or starch, growth in the absence of vitamin B12 and growth under both aerobic and anaerobic conditions with no significant difference were also considered. According to the above criteria, 67 strains were selected for antibiotics sensitivity test. The selected strains were susceptible to following antibiotics: ampicillin, cephalothin, cefoperazone, tetracycline andchloramphenicol; however the strains were resistant to vancomycin, kanamycin, streptomycin, norfloxacin and polymyxin B. Using agar spot method, only 5 strains were able to inhibit 13 strains of manifest by a bacteria indicator as clear zone greater than 10 mm. A further investigation using co-culture technique showed inhibition of the tested organisms was between 80 and 100 percent. The strains grew under media of MRS and SPY2 (no materials from animal over 36 hours with no significant difference. The strains were investigated for survival in condition of high acidity within 3 hours. It was found that at pH 4 almost 100% were maintained but at pH 2 and 3 the survival reduced approximately 1 log cycle. The strain LA71 which showed the highest survival was identified as Lactobacillus plantarum.

  10. Fast identification of wine related lactic acid bacteria by multiplex PCR.

    Science.gov (United States)

    Petri, A; Pfannebecker, J; Fröhlich, J; König, H

    2013-02-01

    The microflora of must and wine consists of yeasts, acetic acid bacteria and lactic acid bacteria (LAB). The latter group plays an important role for wine quality. The malolactic fermentation carried out by LAB leads to deacidification and stabilisation of wines. Nevertheless, LAB are often associated with wine spoilage. They are mainly responsible for the formation of biogenic amines. Furthermore, some strains produce exopolysaccharide slimes, acetic acid, diacetyl and other off-flavours. In this context a better monitoring of the vinification process is crucial to improve wine quality. Moreover, a lot of biodiversity studies would also profit from a fast and reliable identification method. In this study, we propose a species-specific multiplex PCR system for a rapid and simultaneous detection of 13 LAB species, frequently occurring in must or wine: Lactobacillus brevis, Lb. buchneri, Lb. curvatus, Lb. hilgardii, Lb. plantarum, Leuconostoc mesenteroides, Oenococcus oeni, Pediococcus acidilactici, P. damnosus, P. inopinatus, P. parvulus, P. pentosaceus and Weissella paramesenteroides.

  11. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria.

    Science.gov (United States)

    Rizzello, Carlo Giuseppe; Lorusso, Anna; Russo, Vito; Pinto, Daniela; Marzani, Barbara; Gobbetti, Marco

    2017-01-16

    Lactic acid bacteria strains, previously isolated from the same matrix, were used to ferment quinoa flour aiming at exploiting the antioxidant potential. As in vitro determined on DPPH and ABTS radicals, the scavenging activity of water/salt-soluble extracts (WSE) from fermented doughs was significantly (Pquinoa dough fermented with Lactobacillus plantarum T0A10. The corresponding WSE was subjected to Reverse Phase Fast Protein Liquid Chromatography, and 32 fractions were collected and subjected to in vitro assays. The most active fraction was resistant to further hydrolysis by digestive enzymes. Five peptides, having sizes from 5 to 9 amino acid residues, were identified by nano-Liquid Chromatography-Electrospray Ionisation-Mass Spectra/Mass Spectra. The sequences shared compositional features which are typical of antioxidant peptides. As shown by determining cell viability and radical scavenging activity (MTT and DCFH-DA assays, respectively), the purified fraction showed antioxidant activity on human keratinocytes NCTC 2544 artificially subjected to oxidative stress. This study demonstrated the capacity of autochthonous lactic acid bacteria to release peptides with antioxidant activity through proteolysis of native quinoa proteins. Fermentation of the quinoa flour with a selected starter might be considered suitable for novel applications as functional food ingredient, dietary supplement or pharmaceutical preparations.

  12. Caciotta della Garfagnana cheese: selection and evaluation of autochthonous mesophilic lactic acid bacteria as starter cultures

    Directory of Open Access Journals (Sweden)

    Domenico Cerri

    2011-04-01

    Full Text Available The aim of this study was to isolate, identify and select, with respect to acidification and proteolytic activities, the autochthonous mesophilic lactic acid bacteria (LAB present in milk and Caciotta della Garfagnana, a cheese produced either with raw or thermised cow’s milk in small dairies and family plants of Garfagnana (Tuscany, to obtain LAB strains with attributes suitable to be employed as starter cultures in this type of cheese, particularly when thermised milk is used to control spoilage microflora. Samples of raw milk, curd and cheese were collected from three representative farmers of the production area and used to isolate autochthonous LAB. Phenotypic and genotypic (species-specific PCR assay identification of isolated LAB was done. Twenty-eight strains of LAB isolated from milk, curd and cheese were screened for acidifying and proteolytic activities. LAB strains with the better attributes were used as mesophilic starter cultures in technological trials: experimental cheeses manufactured with the addition of autochthonous LAB and control cheeses were compared for LAB and pH evolution. Experimental cheeses presented a significant increase in the mesophilic lactic acid microflora up to 14 days of ripening and significantly lower pH values up to seven days of ripening. The use of wild selected mesophilic lactic acid bacteria, together with thermisation of milk, for the Caciotta della Garfagnana looks very promising and could help to both standardise the production and improve quality and traditional characteristics of this type of cheese.

  13. Caciotta della Garfagnana cheese: selection and evaluation of autochthonous mesophilic lactic acid bacteria as starter cultures

    Directory of Open Access Journals (Sweden)

    Barbara Turchi

    2011-05-01

    Full Text Available he aim of this study was to isolate, identify and select, with respect to acidification and proteolytic activities, the autochthonous mesophilic lactic acid bacteria (LAB present in milk and Caciotta della Garfagnana, a cheese produced either with raw or thermised cow’s milk in small dairies and family plants of Garfagnana (Tuscany, to obtain LAB strains with attributes suitable to be employed as starter cultures in this type of cheese, particularly when thermised milk is used to control spoilage microflora. Samples of raw milk, curd and cheese were collected from three representative farmers of the production area and used to isolate autochthonous LAB. Phenotypic and genotypic (species-specific PCR assay identification of isolated LAB was done. Twenty-eight strains of LAB isolated from milk, curd and cheese were screened for acidifying and proteolytic activities. LAB strains with the better attributes were used as mesophilic starter cultures in technological trials: experimental cheeses manufactured with the addition of autochthonous LAB and control cheeses were compared for LAB and pH evolution. Experimental cheeses presented a significant increase in the mesophilic lactic acid microflora up to 14 days of ripening and significantly lower pH values up to seven days of ripening. The use of wild selected mesophilic lactic acid bacteria, together with thermisation of milk, for the Caciotta della Garfagnana looks very promising and could help to both standardise the production and improve quality and traditional characteristics of this type of cheese.

  14. The Effects of Lactic Acid Bacteria+Enzyme Mixture Silage Inoculant on Wheat Silage

    Directory of Open Access Journals (Sweden)

    C. Polat

    2008-09-01

    Full Text Available This study was carried out to determine the effects of a commercial lactic acid bacteria+enzyme inoculants used as silage additive on the fermentation, crude nutritient contents, cell wall fractions and in vitro dry and organic matter digestibilities wheat (Triticum aestivum L. harvested and ensiled at milk and dough stages of maturity. Sil-All (Altech, UK containing water soluble Pediococcus acidilactici, Lactobacillus plantarum and Streptococcus faecium bacteria with cellulase, hemicellulase, pentosonase and amylase was used as bacterial inoculants. The inoculant was applied to the silages at 6.0 log10 cfu/g levels. Wheats were ensiled in 2 liter glass jars and stored at 25 ±2 C in the laboratory. Three jars from each group were sampled for pH, ammonia nitrogen, water soluble carbohydrates, organic acids (acetic, butyric and lactic, crude nutritients, cell wall fractions and microbiological analyses following the 75-day ensiling period. In additions in vitro dry and organic matters digestibility of the silages were determined with enzymatic methods. The inoculant improved fermentation characteristics, decreased neutral and acid detergent fiber contents of wheat silages. However, the in vitro dry and organic matter digestibilities of the silages were not affected by the treatments.

  15. Antibiotic Resistance of Probiotic Strains of Lactic Acid Bacteria Isolated from Marketed Foods and Drugs

    Institute of Scientific and Technical Information of China (English)

    CHANG LIU; ZHUO-YANG ZHANG; KE DONG; JIAN-PING YUAN; XIAO-KUI GUO

    2009-01-01

    Objective To identify the antimicrobial resistance of commercial lactic acid bacteria present in microbial foods and drug additives by analyzing their isolated strains used for fermentation and probioties. Methods Antimicrobial susceptibility of 41 screened isolates was tested with disc diffusion and E-test methods after species-level identification. Resistant strains were selected and examined for the presence of resistance genes by PCR. Results Distribution of resistance was found in different species. All isolates were susceptible to chloramphenicol, tetracycline, ampicillin, amoxicillin/clavulanic acid, cephalothin, and imipenem. In addition, isolates resistant to vancomycin, rifampicin, streptomycin, bacitracin, and erythromycin were detected, although the incidence of resistance to these antibiotics was relatively low. In contrast, most strains were resistant to ciprofloxacin, amikacin, trimethoprim/sulphamethoxazole, and gentamycin. The genes msrC, vanX, and dfrA were detected in strains of Enterococcus faecium, Lactobacillus plantarum, Streptococcus thermophilus, and Lactococcus lactis. Conclusion Antibiotic resistance is present in different species of probiotic strains, which poses a threat to food safety. Evaluation of the safety of lactic acid bacteria for human consumption should be guided by established criteria, guidelines and regulations.

  16. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    Science.gov (United States)

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF.

  17. Lactic acid bacteria protect human intestinal epithelial cells from Staphylococcus aureus and Pseudomonas aeruginosa infections.

    Science.gov (United States)

    Affhan, S; Dachang, W; Xin, Y; Shang, D

    2015-12-16

    Staphylococcus aureus and Pseudomonas aeruginosa are opportunistic pathogens that cause nosocomial and food-borne infections. They promote intestinal diseases. Gastrointestinal colonization by S. aureus and P. aeruginosa has rarely been researched. These organisms spread to extra gastrointestinal niches, resulting in increasingly progressive infections. Lactic acid bacteria are Gram-positive bacteria that produce lactic acid as the major end-product of carbohydrate fermentation. These bacteria inhibit pathogen colonization and modulate the host immune response. This study aimed to investigate the effects of Lactobacillus acidophilus and Lactobacillus rhamnosus on enteric infections caused by the paradigmatic human pathogens S. aureus ATCC25923 and P. aeruginosa ATCC27853. The effect of whole cells and neutralized cell-free supernatant (CFS) of the lactobacilli on LoVo human carcinoma enterocyte (ATCC CCL-229) infection was analyzed by co-exposure, pre-exposure, and post-exposure studies. Simultaneous application of whole cells and CFS of the lactobacilli significantly eradicated enterocyte infection (P cells and CFS were added after or prior to the infection (P > 0.05). This result could be attributed to interference by extracellular polymeric substances and cell surface hydrophobicity, which resulted in the development of a pathogen that did not form colonies. Furthermore, results of the plate count and LIVE/ DEAD BacLight bacterial viability staining attributed this inhibition to a non-bacteriocin-like substance, which acted independently of organic acid and H2O2 production. Based on these results, the cell-free supernatant derived from lactobacilli was concluded to restrain the development of S. aureus and P. aeruginosa enteric infections.

  18. Ethanol production by selected intestinal microorganisms and lactic acid bacteria growing under different nutritional conditions

    Directory of Open Access Journals (Sweden)

    Fouad M.F. Elshaghabee

    2016-01-01

    Full Text Available To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD, some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose, pentoses (arabinose and ribose, disaccharides (lactose and lactulose, and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05 reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD+/NADP+, drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05 increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and

  19. Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses.

    Science.gov (United States)

    Franciosi, Elena; Carafa, Ilaria; Nardin, Tiziana; Schiavon, Silvia; Poznanski, Elisa; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M

    2015-01-01

    "Nostrano-cheeses" are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of "Nostrano-cheeses" and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus.

  20. Developing Lactic Acid Bacteria for the conversion of brown macroalgae into green chemicals and fuels

    DEFF Research Database (Denmark)

    Bosma, Elleke Fenna; Nielsen, Alex Toftgaard

    or sea weed, which do not contain lignin, do not require fresh water, are not a major food source, and contain a higher sugar fraction. The main sugars are mannitol, laminarin (glucose) and alginate (guluronate and mannuronate). We will use metabolic engineering and laboratory evolution of Lactic Acid...... Bacteria (LAB) for the conversion of brown macroalgae into green chemicals and fuels. To select the best-suited production platform, we are screening Lactobacillus and Pediococcus strains for traits like genetic accessibility, substrate utilization and several stress tolerances. Most microorganisms...

  1. Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives

    Energy Technology Data Exchange (ETDEWEB)

    Ghabbour, N.; Lamzira, Z.; Thonart, P.; Cidalia, P.; Markaouid, M.; Asehraoua, A.

    2011-07-01

    A total of 177 strains of lactic acid bacteria (LAB) were isolated from early-stage Moroccan Picholine green olive fermentation, including Lactobacillus plantarum (44.63%), Lactobacillus pentosus (25.99%), Lactobacillus brevis (9.61%) and Pediococcus pentosaceus (19.77%). All the isolates were screened for their tolerance to olive leaf extract and oleuropein. Most of the isolates (85.3%) were found able to degrade oleuropein, when evaluated by either oleuropein or 5-Bromo-4-chloro-3-indolyl {beta}-D-glucuronide (X-Gluc) as substrates. The biodegradation capacity of the selected strains of each species was confirmed by HPLC analysis. (Author).

  2. Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo

    DEFF Research Database (Denmark)

    Fuglsang, Anders; Rattray, Fergal; Nilsson, Dan

    2003-01-01

    A total of 26 strains of wild-type lactic acid bacteria, mainly belonging to Lactococcus lactis and Lactobacillus helveticus , were assayed in vitro for their ability to produce a milk fermentate with inhibitory activity towards angiotensin converting enzyme (ACE). It was clear that the test...... were pre-fed with milks fermented using two strains of Lactobacillus helveticus . An increased response to bradykinin (10 μg/kg, intravenously injected) was observed using one of these fermented milks. It is concluded that Lactobacillus helveticus produces substances which in vivo can give rise...

  3. Lactic acid bacteria and their controversial role in fresh meat spoilage.

    Science.gov (United States)

    Pothakos, Vasileios; Devlieghere, Frank; Villani, Francesco; Björkroth, Johanna; Ercolini, Danilo

    2015-11-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group that has been widely associated with fresh meat and cooked meat products. They represent a controversial cohort of microbial species that either contribute to spoilage through generation of offensive metabolites and the subsequent organoleptic downgrading of meat or serve as bioprotective agents with strains of certain species causing unperceivable or no alterations. Therefore, significant distinction among biotypes is substantiated by studies determining spoilage potential as a strain-specific trait corroborating the need to revisit the concept of spoilage.

  4. Tyramine and phenylethylamine production among lactic acid bacteria isolated from wine.

    Science.gov (United States)

    Landete, José María; Pardo, Isabel; Ferrer, Sergi

    2007-04-20

    The ability of wine lactic acid bacteria to produce tyramine and phenylethylamine was investigated by biochemical and genetic methods. An easy and accurate plate medium was developed to detect tyramine-producer strains, and a specific PCR assay that detects the presence of tdc gene was employed. All strains possessing the tdc gene were shown to produce tyramine and phenylethylamine. Wines containing high quantities of tyramine and phenylethylamine were found to contain Lactobacillus brevis or Lactobacillus hilgardii. The main tyramine producer was L. brevis. The ability to produce tyramine was absent or infrequent in the rest of the analysed wine species.

  5. Alpha-picolinic acid,a fungal toxin and mammal apoptosis-inducing agent,elicits hypersensitive-like response and enhances disease resistance in rice

    Institute of Scientific and Technical Information of China (English)

    Hai Kuo ZHANG; Xin ZHANG; Bi Zeng MAO; Qun LI; Zu Hua HE

    2004-01-01

    Alpha-picolinic acid (PA),a metabolite of tryptophan and an inducer of apoptosis in the animal cell,has been reported to be a toxin produced by some of plant fungal pathogens and used in screening for disease resistant mutants. Here,we report that PA is an efficient apoptosis agent triggering cell death of hypersensitive-like response in planta. Confirmed by Fluorescence Activated Cell Sorter (FACS),rice suspension cells and leaves exhibited programmed cell death induced by PA. The PA-induced cell death was associated with the accumulation of reactive oxygen species that could be blocked by diphenylene iodonium chloride,indicating that the generation of reactive oxygen species was NADPHoxidase dependent. We also demonstrated the induction of rice defense-related genes and subsequent resistant enhancement by PA against the rice blast fungus Magnaporthe grisea. Hence,it was concluded that the PA-stimulated defense response likely involves the onset of the hypersensitive response in rice,which also provides a simple eliciting tool for studying apoptosis in the plant cell.

  6. Regulation of acid adaptation in Lactic acid bacteria%乳酸菌的适酸性调节

    Institute of Scientific and Technical Information of China (English)

    乔磊; 崔艳华; 曲晓军

    2011-01-01

    The understanding of acid adaptation mechanisms of LAB will benefit screening the acid-tolerance bacteria, the optimization of procedures in the ferment progress and optimization of culture. This will greatly improve the quality of fermented foods. The acid adaptation mechanisms were discussed, including proton pump, the production of alkali, the changes of membrane, protection or repair of macro-molecules and the regulation of acid tolerance.%探讨了乳酸菌适酸机制有助于抗酸菌株的筛选、发酵过程中工序的优化以及培养基的优化等,进而大大提升发酵产品品质.对质子泵、产碱、细胞膜变化、大分子保护修复以及耐酸调节在内的适酸性调节机制进行了一一阐述.

  7. Alkyl hydroperoxide reductase enhances the growth of Leuconostoc mesenteroides lactic acid bacteria at low temperatures.

    Science.gov (United States)

    Goto, Seitaro; Kawamoto, Jun; Sato, Satoshi B; Iki, Takashi; Watanabe, Itaru; Kudo, Kazuyuki; Esaki, Nobuyoshi; Kurihara, Tatsuo

    2015-01-01

    Lactic acid bacteria (LAB) can cause deterioration of food quality even at low temperatures. In this study, we investigated the cold-adaptation mechanism of a novel food spoilage LAB, Leuconostoc mesenteroides NH04 (NH04). L. mesenteroides was isolated from several spoiled cooked meat products at a high frequency in our factories. NH04 grew rapidly at low temperatures within the shelf-life period and resulted in heavy financial losses. NH04 grew more rapidly than related strains such as Leuconostoc mesenteroides NBRC3832 (NBRC3832) at 10°C. Proteome analysis of NH04 demonstrated that this strain produces a homolog of alkyl hydroperoxide reductase--AhpC--the expression of which can be induced at low temperatures. The expression level of AhpC in NH04 was approximately 6-fold higher than that in NBRC3832, which was grown under the same conditions. Although AhpC is known to have an anti-oxidative role in various bacteria by catalyzing the reduction of alkyl hydroperoxide and hydrogen peroxide, the involvement of AhpC in cold adaptation of food spoilage bacteria was unclear. We introduced an expression plasmid containing ahpC into NBRC3832, which grows slower than NH04 at 10°C, and found that expression of AhpC enhanced growth. These results demonstrated that AhpC, which likely increases anti-oxidative capacity of LAB, plays an important role in their rapid growth at low temperatures.

  8. Inhibition Effect of Lactic Acid Bacteria against Food Born Pathogen, Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Rouha Kasra-Kermanshahi

    2015-09-01

    Full Text Available Disease caused by consuming microbial contaminated food has increased significantly in recent years due to changes in the livelihoods and eating habits of the human populations. Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica are three of the most important foodborne bacterial pathogens and can lead to foodborne diseases. Increased use of antibiotics, has led to development of bacterial resistance to antibiotics. Therefore, there is growing interest in the development of new types of effective and nontoxic antimicrobial compounds. Nowadays, the most extensive research and commercial practices are based on probiotic bacteria. Probiotics, specifically lactic acid bacteria are widely used in the food industry for fermentation but have gained attention from health professionals because of their potential beneficial effects. Now probiotic therapy is thought to be an effective way to improve the gut health and an alternative to antibiotic treatments. They contribute to food safety by their ability to inhibit the growth of several other bacteria. LAB can be used as protective cultures to compete with potential pathogens and other undesired organisms, thereby increasing the safety of the food product.

  9. Characterization of some bacteriocins produced by lactic acid bacteria isolated from fermented foods.

    Science.gov (United States)

    Grosu-Tudor, Silvia-Simona; Stancu, Mihaela-Marilena; Pelinescu, Diana; Zamfir, Medana

    2014-09-01

    Lactic acid bacteria (LAB) isolated from different sources (dairy products, fruits, fresh and fermented vegetables, fermented cereals) were screened for antimicrobial activity against other bacteria, including potential pathogens and food spoiling bacteria. Six strains have been shown to produce bacteriocins: Lactococcus lactis 19.3, Lactobacillus plantarum 26.1, Enterococcus durans 41.2, isolated from dairy products and Lactobacillus amylolyticus P40 and P50, and Lactobacillus oris P49, isolated from bors. Among the six bacteriocins, there were both heat stable, low molecular mass polypeptides, with a broad inhibitory spectrum, probably belonging to class II bacteriocins, and heat labile, high molecular mass proteins, with a very narrow inhibitory spectrum, most probably belonging to class III bacteriocins. A synergistic effect of some bacteriocins mixtures was observed. We can conclude that fermented foods are still important sources of new functional LAB. Among the six characterized bacteriocins, there might be some novel compounds with interesting features. Moreover, the bacteriocin-producing strains isolated in our study may find applications as protective cultures.

  10. In vitro screening of probiotic lactic acid bacteria and prebiotic glucooligosaccharides to select effective synbiotics.

    Science.gov (United States)

    Grimoud, Julien; Durand, Henri; Courtin, Céline; Monsan, Pierre; Ouarné, Françoise; Theodorou, Vassilia; Roques, Christine

    2010-10-01

    Probiotics and prebiotics have been demonstrated to positively modulate the intestinal microflora and could promote host health. Although some studies have been performed on combinations of probiotics and prebiotics, constituting synbiotics, results on the synergistic effects tend to be discordant in the published works. The first aim of our study was to screen some lactic acid bacteria on the basis of probiotic characteristics (resistance to intestinal conditions, inhibition of pathogenic strains). Bifidobacterium was the most resistant genus whereas Lactobacillus farciminis was strongly inhibited. The inhibitory effect on pathogen growth was strain dependent but lactobacilli were the most effective, especially L. farciminis. The second aim of the work was to select glucooligosaccharides for their ability to support the growth of the probiotics tested. We demonstrated the selective fermentability of oligodextran and oligoalternan by probiotic bacteria, especially the bifidobacteria, for shorter degrees of polymerisation and absence of metabolism by pathogenic bacteria. Thus, the observed characteristics confer potential prebiotic properties on these glucooligosaccharides, to be further confirmed in vivo, and suggest some possible applications in synbiotic combinations with the selected probiotics. Furthermore, the distinctive patterns of the different genera suggest a combination of lactobacilli and bifidobacteria with complementary probiotic effects in addition to the prebiotic ones. These associations should be further evaluated for their synbiotic effects through in vitro and in vivo models.

  11. In vitro testing of commercial and potential probiotic lactic acid bacteria.

    Science.gov (United States)

    Jensen, Hanne; Grimmer, Stine; Naterstad, Kristine; Axelsson, Lars

    2012-02-01

    Probiotics are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host. The objective of this study was to investigate the diversity of selected commercial and potential probiotic lactic acid bacteria using common in vitro screening assays such as transit tolerance in the upper human gastrointestinal tract, adhesion capacity to human intestinal cell lines and effect on epithelial barrier function. The selected bacteria include strains of Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus farciminis, Lactobacillus sakei, Lactobacillus gasseri, Lactobacillus rhamnosus, Lactobacillus reuteri and Pediococcus pentosaceus. Viable counts after simulated gastric transit tolerance showed that L. reuteri strains and P. pentosaceus tolerate gastric juice well, with no reduction of viability, whereas L. pentosus, L. farciminis and L. sakei strains lost viability over 180min. All strains tested tolerate the simulated small intestinal juice well. The bacterial adhesion capacity to human intestinal cells revealed major species and strain differences. Overall, L. plantarum MF1298 and three L. reuteri strains had a significant higher adhesion capacity compared to the other strains tested. All strains, both living and UV-inactivated, had little effect on the epithelial barrier function. However, living L. reuteri strains revealed a tendency to increase the transepithelial electrical resistance (TER) from 6 to 24h. This work demonstrates the diversity of 18 potential probiotic bacteria, with major species and strain specific effects in the in vitro screening assays applied. Overall, L. reuteri strains reveal some interesting characteristics compared to the other strains investigated.

  12. Proteolytic Activity in Reduced-Fat Cheddar Cheese Made with Lactic Acid Bacteria and Camel Chymosin

    DEFF Research Database (Denmark)

    Børsting, Mette Winther

    be the need of an extended ripening period to reach a similar cheese structure as in cheeses produced with BC. The aim of this project was to compensate for the lower proteolytic activity in cheese produced with CC compared to BC. Selection of dairy lactic acid bacteria (LAB) for cheese production with high...... for their ability to influence proteolysis and structure during cheese ripening. In an attempt to improve the screening methods and contribute to the development of a new classification system of Latcococcus lactic strains, the peptide profile formed by selected strains after growth in milk was analyzed...... mediated an increase in the total amount of amino acids as well as a shorter structure. A model system, used to study the retention of chymosin in a curd, showed that the retention of CC was less dependent on pH compared to BC, and the retention of CC was higher than BC in the pH interval 6...

  13. Selection of tropical lactic acid bacteria for enhancing the quality of maize silage.

    Science.gov (United States)

    Santos, A O; Ávila, C L S; Schwan, R F

    2013-01-01

    The objective of this study was to select lactic acid bacteria (LAB) strains isolated from silage and assess their effect on the quality of maize silage. The LAB strains were inoculated into aqueous extract obtained from maize to evaluate their production of metabolites and pH reduction. The ability to inhibit the pathogenic and silage-spoilage microorganisms' growth was evaluated. Nine LAB strains that showed the best results were assessed in polyvinyl chloride experimental silos. The inoculation of the LAB strains influenced the concentration of lactic and acetic acids and the diversity of Listeria. The inoculation of silages with Lactobacillus buchneri (UFLA SLM11 and UFLA SLM103 strains) resulted in silages with greater LAB populations and improvements after aerobic exposure. The UFLA SLM11 and SLM103 strains identified as L. buchneri showed to be promising in the treatment of maize silage.

  14. Evaluation of the probiotic characteristics of newly isolated lactic acid bacteria.

    Science.gov (United States)

    Aswathy, Ravindran Girija; Ismail, Bindhumol; John, Rojan Pappy; Nampoothiri, Kesavan Madhavan

    2008-12-01

    Lactic acid bacteria were isolated from fermented vegetables, sour dough, milk products, sheep and human excreta. The newly isolated cultures were evaluated for a number of probiotic characteristics like bile salt resistance, salt tolerance in general, survival in low pH, hydrophobicity of the cell surface, resistance to low phenol concentration, antimicrobial activity and susceptibility pattern against vancomycin and erythromycin. The selected cultures were further screened for their ability to produce the nutraceticals such as folic acid and exopolysaccharide (EPS). Two potent isolates, CB2 (from cabbage) and SD2 (from sour dough) were found to produce both extracellular and intracellular folate. One of the isolates from yogurt (MC-1) and the one from whey (W3) produced significant amount of EPS with a maximum production of 8.79 +/- 0.05 g/l by MC-1.

  15. Phytate degrading activities of lactic acid bacteria isolated from traditional fermented food

    Science.gov (United States)

    Damayanti, Ema; Ratisiwi, Febiyani Ndaru; Istiqomah, Lusty; Sembiring, Langkah; Febrisiantosa, Andi

    2017-03-01

    The objective of this study was to determine the potential of LAB with phytate degrading activity from fermented traditional food grain-based and legume-based. Lactic acid bacteria were isolated from different sources of traditional fermented food from Gunungkidul Yogyakarta Indonesia such as gembus tempeh (tofu waste), soybean tempeh, lamtoro tempeh (Leucaena bean) and kara tempeh. Isolation of LAB was performed using Total Plate Count (TPC) on de Man Rogosa Sharpe Agar (MRSA) medium supplemented with CaCO3. They were screened for their ability to degrade myo-inositol hexaphosphate or IP6 by using qualitative streak platemethod with modified de Man Rogosa-MorpholinoPropanesulfonic Acid Sharpe (MRS-MOPS) medium contained sodium salt of phytic acid as substrate and cobalt chloride staining (plate assay) method. The selected isolates were further assayed for phytase activities using quantitative method with spectrophotometer and the two selected isolates growth were optimized. Furthermore, thhe isolates that shown the highest phytase activity was characterized and identified using API 50 CH kitand 16S rRNA gene sequencing. The results showed that there were 18 LAB isolates obtained from samplesand 13 isolates were able to degrade sodium phytate based on qualitative screening. According to quantitative assay, the highest phytate degrading activities were found in TG-2(23.562 U/mL) and TG-1 (19.641 U/mL) isolated from gembus tempeh. The phytate activity of TG-2 was optimum at 37 °C with agitation, while the phytate activity of TG-1 was optimum at 45 °C without agitation. Characterization and identification of TG-2 isolate with the highest phytate degrading activity using API 50 CH and 16S rRNA showed that TG-2had homology with Lactobacillus fermentum. It could be concluded that LAB from from fermented traditional food grain-based and legume-based produced the extracellular phytase. Keywords: lactic acid bacteria, tempeh, phytatedegrading activity

  16. Isolation of Lactic Acid Bacteria Showing Antioxidative and Probiotic Activities from Kimchi and Infant Feces.

    Science.gov (United States)

    Ji, Keunho; Jang, Na Young; Kim, Young Tae

    2015-09-01

    The purpose of this study was to investigate lactic acid bacteria with antioxidative and probiotic activities isolated from Korean healthy infant feces and kimchi. Isolates A1, A2, S1, S2, and S3 were assigned to Lactobacillus sp. and isolates A3, A4, E1, E2, E3, and E4 were assigned to Leuconostoc sp. on the basis of their physiological properties and 16S ribosomal DNA sequence analysis. Most strains were confirmed as safe bioresources through nonhemolytic activities and non-production of harmful enzymes such as β-glucosidase, β- glucuronidase and tryptophanase. The 11 isolates showed different resistance to acid and bile acids. In addition, they exhibited antibacterial activity against foodborne bacteria, especially Bacillus cereus, Listeria monocytogenes, and Escherichia coli. Furthermore, all strains showed significantly high levels of hydrophobicity. The antioxidant effects of culture filtrates of the 11 strains included 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging capacity, 2.2'- azino-bis (2-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity, and superoxide dismutase activity. The results revealed that most of the culture filtrates have effective scavenging activity for DPPH and ABTS radicals. All strains appeared to have effective superoxide dismutase activity. In conclusion, the isolated strains A1, A3, S1, and S3 have significant probiotic activities applicable to the development of functional foods and health-related products. These strains might also contribute to preventing and controlling several diseases associated with oxidative stress, when used as probiotics.

  17. Draft Genome Sequences of Gluconobacter cerinus CECT 9110 and Gluconobacter japonicus CECT 8443, Acetic Acid Bacteria Isolated from Grape Must

    Science.gov (United States)

    Sainz, Florencia

    2016-01-01

    We report here the draft genome sequences of Gluconobacter cerinus strain CECT9110 and Gluconobacter japonicus CECT8443, acetic acid bacteria isolated from grape must. Gluconobacter species are well known for their ability to oxidize sugar alcohols into the corresponding acids. Our objective was to select strains to oxidize effectively d-glucose. PMID:27365351

  18. Peptidoglycan Hydrolases of Local Lactic Acid Bacteria from Kazakh Traditional Food

    Directory of Open Access Journals (Sweden)

    Serik Shaikhin

    2014-01-01

    Full Text Available Introduction: Peptidoglycan (PG is a major component of the cell wall of Gram-positive bacteria and is essential for maintaining the integrity of the bacterial cell and its shape. The bacteria synthesize PG hydrolases, which are capable of cleaving the covalent bonds of PG. They also play an important role in modeling PG, which is required for bacterial growth and division. In an era of increasing antibiotic-resistant pathogens, PG hydrolases that destroy these important structures of the cell wall act as a potential source of new antimicrobials. The aim of this study is to identify the main PG hydrolases of local lactic acid bacteria isolated from traditional foods that enhance probiotic activity of a biological preparation. Methods. Lactococcus lactis 17А and Lactococcus garvieae 19А were isolated from the traditional sausage-like meat product called kazy. They were isolated according to standards methods of microbiology. Genetic identification of the isolates were tested by determining the nucleotide sequences of 16S rDNA. The Republican collection of microorganisms took strains of Lactobacillus casei subsp. Rhamnosus 13-P, L. delbrueckii subsp. lactis CG-1 B-RKM 0044 from cheese, Lactobacillus casei subsp. casei B-RKM 0202 from homemade butter. They used the standard technique of renaturating polyacrylamide gel electrophoresis to detect PG hydrolases activity. Results. According to the profiles of PG hydrolase activity on zymograms, the enzymes of Lactococci 17A and 19A in kazy are similar in electrophoretic mobility to major autolysin AcmA, while the lactobacilli of industrial and home-made dairy products have enzymes similar to extracellular proteins p40 and p75, which have probiotic activity. Conclusions. Use of peptidoglycan hydrolases seems to be an interesting approach in the fight against multi-drug resistant strains of bacteria and could be a valuable tool for the treatment of diseases caused by these microorganisms in Kazakhstan.

  19. Isolation and identification of microorganisms including lactic acid bacteria and their use in microbial deacidification of wines from domestic vineyards.

    Science.gov (United States)

    Drozdz, Iwona; Makarewicz, Malgorzata; Tuszyński, Tadeusz

    2013-01-01

    The aim of this study was to identify various bacteria isolated from grapes and their wines. Additionally we investigated the capacity of lactic acid bacteria for microbiological deacidification of wines produced in Poland. We have identified Oenococcus oeni, Lactobacillus acidophilus and Lactobacillus delbrueckii. During the microbial deacidification process, we observed decreases of total acidity and increases of volatile acidity, with statistically significant changes noted for O. oeni in Marechal Foch and Seyval Blanc, and for Lb. acidophilus in Frontenac. On the other hand, a statistically significant increase in pH was observed in Marechal Foch and Seyval Blanc following deacidification by O. oeni.

  20. Aflatoxin M1 in raw milk and binding of aflatoxin by lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Aflatoxin M1 in raw milk and binding of aflatoxin by lactic acid bacteria

    2010-12-01

    Full Text Available Aflatoxin M1 (AFM1 is potential human carcinogen. Its presence in milk and dairy products represents risk for human health. Therefore, this study was carried out in order to determine thedegree of microbiological contamination by mold, and the potential presence of aflatoxin M1 in 60 raw milk samples, randomly taken from individual producers from different regions of the continental Croatia. The most common genera isolated fungi were Geotrichum (78.3 %, Aspergillus (32.4 % and Penicillium (27.0 %. From total of 60 studied milk samples, 86.66 % were positive for the presence of aflatoxin M1, and 6.66 % of samples were above the prescribed limits. Lactic acid bacteria used in fermented dairy products as a starter culture may play a role in reduction of aflatoxin in foods and nutrients. In this paper the ability of lactic acid bacteria: Lactobacillus rhamnosus GG (ATCC 53103, Lactobacillus delbrueckii S1 and Lactobacillus plantarum A1 to bind aflatoxin M1 was investigated. Standard strain L. rhamnosus GG (ATCC 53103 and L. delbrueckii S1 can significantly (P50 % compared to L. plantarum A1, which binds AFM1 between 18.7 to 28.7 %.

  1. Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation.

    Science.gov (United States)

    Coda, Rossana; Cagno, Raffaella Di; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2014-02-01

    Cereal-based foods represent a very important source of biological as well as of cultural diversity, as testified by the wide range of derived fermented products. A trend that is increasingly attracting bakery industries as well as consumers is the use of non-conventional flours for the production of novel products, characterised by peculiar flavour and better nutritional value. Lactic acid bacteria microbiota of several non-wheat cereals and pseudo-cereals has been recently deeply investigated with the aim of studying the biodiversity and finding starter cultures for sourdough fermentation. Currently, the use of ancient or ethnic grains is mainly limited to traditional typical foods and the bread making process is not well standardised with consequent negative effects on the final properties. The challenge in fermenting such grains is represented by the necessity to combine good technology and sensory properties with nutritional/health benefits. The choice of the starter cultures has a critical impact on the final quality of cereal-based products, and strains that dominate and outcompete contaminants should be applied for specific sourdough fermentations. In this sense, screening and characterisation of the lactic acid bacteria microbiota is very useful in the improvement of a peculiar flour, from both a nutritional and technological point of view.

  2. Honeybees and beehives are rich sources for fructophilic lactic acid bacteria.

    Science.gov (United States)

    Endo, Akihito; Salminen, Seppo

    2013-09-01

    Fructophilic lactic acid bacteria (FLAB) are a specific group of lactic acid bacteria (LAB) characterized and described only recently. They prefer fructose as growth substrate and inhabit only fructose-rich niches. Honeybees are high-fructose-consuming insects and important pollinators in nature, but reported to be decreasing in the wild. In the present study, we analyzed FLAB microbiota in honeybees, larvae, fresh honey and bee pollen. A total of 66 strains of LAB were isolated from samples using a selective isolation technique for FLAB. Surprisingly, all strains showed fructophilic characteristics. The 66 strains and ten FLAB strains isolated from flowers in a separate study were genotypically separated into six groups, four of which being identified as Lactobacillus kunkeei and two as Fructobacillus fructosus. One of the L. kunkeei isolates showed antibacterial activity against Melissococcus plutonius, a causative pathogen of European foulbrood, this protection being attributable to production of an antibacterial peptide or protein. Culture-independent analysis suggested that bee products and larvae contained simple Lactobacillus-group microbiota, dominated by L. kunkeei, although adult bees carried a more complex microbiota. The findings clearly demonstrate that honeybees and their products are rich sources of FLAB, and FLAB are potential candidates for future bee probiotics.

  3. Technological and functional applications of low-calorie sweeteners from lactic acid bacteria.

    Science.gov (United States)

    Patra, F; Tomar, S K; Arora, S

    2009-01-01

    Lactic acid bacteria (LAB) have been extensively used for centuries as starter cultures to carry out food fermentations and are looked upon as burgeoning "cell factories" for production of host of functional biomolecules and food ingredients. Low-calorie sugars have been a recent addition and have attracted a great deal of interest of researchers, manufacturers, and consumers for varied reasons. These sweeteners also getting popularized as low-carb sugars have been granted generally recommended as safe (GRAS) status by the U.S. Federal Drug Administration (USFDA) and include both sugars and sugar alcohols (polyols) which in addition to their technological attributes (sugar replacer, bulking agent, texturiser, humectant, cryoprotectant) have been observed to exert a number of health benefits (low calories, low glycemic index, anticariogenic, osmotic diuretics, obesity control, prebiotic). Some of these sweeteners successfully produced by lactic acid bacteria include mannitol, sorbitol, tagatose, and trehalose and there is a potential to further enhance their production with the help of metabolic engineering. These safe sweeteners can be exploited as vital food ingredients for development of low-calorie foods with added functional values especially for children, diabetic patients, and weight watchers.

  4. Effect of lactic acid bacteria isolated from fermented mustard on immunopotentiating activity

    Institute of Scientific and Technical Information of China (English)

    Chen-Kai; Chang; Shu-Chen; Wang; Chih-Kwang; Chiu; Shih-Ying; Chen; Zong-Tsi; Chen; Pin-Der; Duh

    2015-01-01

    Objective: To investigate the effect of lactic acid bacteria isolated from fermented mustard on immunopotentiating activity Methods: One hundred and fifty nine strains of lactic acid bacteria isolated from traditional Taiwan fermented mustard were evaluated for their immunopotentiating activity on a murine macrophage cell line RAW 264.7.Results: Of the strains, pronounced increases in the levels of nitric oxide(NO), tumor necrosis factor-α and interleukin-6 were observed in strains B0040, B0110 and B0145. Among them,strain B0145 had the highest NO and tumor necrosis factor-α generation in RAW 264.7 cells;strains B0040 and B0110 were also superior to that of Lactobacillus casei. These results demonstrated that NO and cytokines were effectively induced when the bacterial stimulants were treated with macrophages. In addition, strains B0040 and B0110 were identified as Lactobacillus plantarum, and B0145 as Weissella cibaria using 16 S rDNA analysis.Conclusions: The results implicated selected strains may be regarded as a biological response modifier and had a broad application prospects in exploiting new functional food or as a feed additive.

  5. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications.

    Science.gov (United States)

    Ryan, P M; Ross, R P; Fitzgerald, G F; Caplice, N M; Stanton, C

    2015-03-01

    The human enteric microbiome represents a veritable organ relied upon by the host for a range of metabolic and homeostatic functions. Through the production of metabolites such as short chain fatty acids (SCFA), folate, vitamins B and K, lactic acid, bacteriocins, peroxides and exopolysaccharides, the bacteria of the gut microbiome provide nutritional components for colonocytes, liver and muscle cells, competitively exclude potential pathogenic organisms and modulate the hosts immune system. Due to the extensive variation in structure, size and composition, microbial exopolysaccharides represent a useful set of versatile natural ingredients for the food industrial sector, both in terms of their rheological properties and in many cases, their associated health benefits. The exopolysaccharide-producing bacteria that fall within the 35 Lactobacillus and five Bifidobacterium species which have achieved qualified presumption of safety (QPS) and generally recognised as safe (GRAS) status are of particular interest, as their inclusion in food products can avoid considerable scrutiny. In addition, additives commonly utilised by the food industry are becoming unattractive to the consumer, due to the demand for a more 'natural' and 'clean labelled' diet. In situ production of exopolysaccharides by food-grade cultures in many cases confers similar rheological and sensory properties in fermented dairy products, as traditional additives, such as hydrocolloids, collagen and alginate. This review will focus on microbial synthesis of exopolysaccharides, the human health benefits of dietary exopolysaccharides and the technofunctional applications of exopolysaccharide-synthesising microbes in the food industry.

  6. Comparative Antifungal Effect of Lactic Acid Bacteria Strains on Penicillium digitatum

    Directory of Open Access Journals (Sweden)

    Adrian Matei

    2015-11-01

    Full Text Available Lactic acid bacteria (LAB are natural alternative to chemical preservatives for fruits. The aim of the research was to select LAB strains with high antifungal activity against Penicillium digitatum for the biopreservation of fruits. The antifungal activity of eight lactic acid bacteria strains has been evaluated against Penicilliuum digitatum isolated from orange, by overlay assay method and by optical microscope examination. The reversion of inhibition zone after 96 h was recorded as a fungistatic effect while those with inhibition zone for at least 7 days were recorded as fungicidal. The antifungal effect of efficient LAB strains was assessed by comparing inhibition of fungal biofilm formation in liquid media. The strains Lpl, Lpa, LAB 13, LAB 15, LAB 43 and LAB 58 presented intense antifungal activity with clear inhibition zones diameter over 20 mm. The microscopy evidenced atypical hyphae and delaying of conidial chain formation. The strains Lpa, LAB 13, LAB 15 fully inhibited the mycelia growth, strains LAB 43 and LAB 58 partly with delaying of biofilm formation on the surface of culture medium. The results of comparative antifungal activity of LAB strains evidenced the highest inhibition of fungal biofilm formation and structural damages of hyphae and spores caused by the strains Lpa, LAB 13 and LAB 15. These strains could be efficient biocontrol agents of Penicillium digitatum in fruits.

  7. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction.

  8. Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products.

    Science.gov (United States)

    Capozzi, Vittorio; Russo, Pasquale; Dueñas, María Teresa; López, Paloma; Spano, Giuseppe

    2012-12-01

    Wheat contains various essential nutrients including the B group of vitamins. However, B group vitamins, normally present in cereals-derived products, are easily removed or destroyed during milling, food processing or cooking. Lactic acid bacteria (LAB) are widely used as starter cultures for the fermentation of a large variety of foods and can improve the safety, shelf life, nutritional value, flavor and overall quality of the fermented products. In this regard, the identification and application of strains delivering health-promoting compounds is a fascinating field. Besides their key role in food fermentations, several LAB found in the gastrointestinal tract of humans and animals are commercially used as probiotics and possess generally recognized as safe status. LAB are usually auxotrophic for several vitamins although certain strains of LAB have the capability to synthesize water-soluble vitamins such as those included in the B group. In recent years, a number of biotechnological processes have been explored to perform a more economical and sustainable vitamin production than that obtained via chemical synthesis. This review article will briefly report the current knowledge on lactic acid bacteria synthesis of vitamins B2, B11 and B12 and the potential strategies to increase B-group vitamin content in cereals-based products, where vitamins-producing LAB have been leading to the elaboration of novel fermented functional foods. In addition, the use of genetic strategies to increase vitamin production or to create novel vitamin-producing strains will be also discussed.

  9. Isolation, enumeration, molecular identification and probiotic potential evaluation of lactic acid bacteria isolated from sheep milk

    Directory of Open Access Journals (Sweden)

    L.B. Acurcio

    2014-06-01

    Full Text Available Lactic acid bacteria species were molecularly identified in milk from Lacaune, Santa Inês and crossbred sheep breeds and their in vitro probiotic potential was evaluated. The species identified were Enterococcus faecium (56.25%, E. durans (31.25% and E. casseliflavus (12.5%. No other lactic acid bacteria species, such as lactobacilli, was identified. Most of the isolated enterococci were resistant to gastric pH (2.0 and to 0.3% oxgall. All tested enterococci were resistant to ceftazidime, oxacillin and streptomycin and sensible to clindamycin, erythromycin and penicillin. The resistance to ciprofloxacin, gentamicin, tetracycline and vancomycin varied among tested species. All tested enterococci strongly inhibited (P<0.05 Escherichia coli and Listeria monocytogenes, moderately inhibited E. faecalis and Staphylococcus aureus and did not inhibit Pseudomonas aeruginosa, Salmonella enterica var. Typhimurium and also one E. durans sample isolated from sheep milk. Four samples of E. faecium, one of E. durans and one of E. casseliflavus presented the best probiotic potential.

  10. Isolation and characterization of lactic acid bacteria strains with ornithine producing capacity from natural sea salt.

    Science.gov (United States)

    Yu, Jin-Ju; Oh, Suk-Heung

    2010-08-01

    Two lactic acid bacteria (LAB) having ornithine-producing capacity were isolated from Korean natural sea salt. They were Gram-positive, short rod-type bacteria, and able to grow anaerobically with CO(2) production. The isolates grew well on MRS broth at 30-37 degrees C and a pH of 6.5-8.0. The optimum temperature and pH for growth are 37 degrees C and pH 7.0. The isolates fermented D-ribose, D-galactose, D-lactose, D-maltose, Dcellobiose, D-tagatose, D-trehalose, sucrose, D-melezitose, gentiobiose, D-glucose but not D-melibiose, inositol, and L-sorbose. The 16S rDNA sequences of the two isolates showed 99.5% and 99.6% homology with the Weissella koreensis S5623 16S rDNA (Access no. AY035891). They were accordingly identified and named as Weissella koreensis MS1-3 and Weissella koreensis MS1-14, and produced intracellular ornithine at levels of 72 mg/100 g cell F.W. and 105 mg/100 g cell F.W. and extracellular ornithine at levels of 4.5 mg/100 ml and 4.6 mg/100 ml medium, respectively, by culturing in MRS broth supplemented with 1% arginine. High cell growth was maintained in MRS broth with a NaCl concentration of 0-6%. These results show for the first time that Korean natural sea salts contain lactic acid bacteria Weissella koreensis strains having ornithine producing capacity.

  11. Whey fermentation by thermophilic lactic acid bacteria: evolution of carbohydrates and protein content.

    Science.gov (United States)

    Pescuma, Micaela; Hébert, Elvira María; Mozzi, Fernanda; Font de Valdez, Graciela

    2008-05-01

    Whey, a by-product of the cheese industry usually disposed as waste, is a source of biological and functional valuable proteins. The aim of this work was to evaluate the potentiality of three lactic acid bacteria strains to design a starter culture for developing functional whey-based drinks. Fermentations were performed at 37 and 42 degrees C for 24h in reconstituted whey powder (RW). Carbohydrates, organic acids and amino acids concentrations during fermentation were evaluated by RP-HPLC. Proteolytic activity was measured by the o-phthaldialdehyde test and hydrolysis of whey proteins was analyzed by Tricine SDS-PAGE. The studied strains grew well (2-3log cfu/ml) independently of the temperature used. Streptococcus thermophilus CRL 804 consumed 12% of the initial lactose concentration and produced the highest amount of lactic acid (45 mmol/l) at 24h. Lactobacillus delbrueckii subsp. bulgaricus CRL 454 was the most proteolytic (91 microg Leu/ml) strain and released the branched chain amino acids Leu and Val. In contrast, Lactobacillus acidophilus CRL 636 and S. thermophilus CRL 804 consumed most of the amino acids present in whey. The studied strains were able to degrade the major whey proteins, alpha-lactalbumin being degraded in a greater extent (2.2-3.4-fold) than beta-lactoglobulin. Two starter cultures were evaluated for their metabolic and proteolytic activities in RW. Both cultures acidified and reduced the lactose content in whey in a greater extent than the strains alone. The amino acid release was higher (86 microg/ml) for the starter SLb (strains CRL 804+CRL 454) than for SLa (strains CRL 804+CRL 636, 37 microg/ml). Regarding alpha-lactalbumin and beta-lactoglobulin degradation, no differences were observed as compared to the values obtained with the single cultures. The starter culture SLb showed high potential to be used for developing fermented whey-based beverages.

  12. Acid resistance of methanogenic bacteria in a two-stage anaerobic process treating high concentration methanol Wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xuefei; REN Nanqi

    2007-01-01

    In this study,the two-stage upflow anaerobic sludge blanket(UASB)system and batch experiments were employed to evaluate the performance of anaerobic digestion for the treatment of high concentration methanol wastewater.The acid resistance of granular sludge and methanogenic bacteria and their metabolizing activity were investigated.The results show that the pH of the first UASB changed from 4.9 to 5.8 and 5.5 to 6.2 for the second reactor.Apparently,these were not the advisable pH levels that common metha nogenic bacteria could accept.The methanogenic bacteria of the system,viz.Methanosarcina barkeri,had some acid resistance and could still degrade methanol at pH 5.0.If the methanogenic bacteria were trained further,their acid resistance would be improved somewhat.Granular sludge of the system could protect the methanogenic bacteria within its body against the impact of the acidic environment and make them degrade methanol at pH 4.5.The performance of granular sludge was attributed to its structure,bacteria species,and the distribution of bacterium inside the granule.

  13. Culture-independent analysis of lactic acid bacteria diversity associated with mezcal fermentation.

    Science.gov (United States)

    Narváez-Zapata, J A; Rojas-Herrera, R A; Rodríguez-Luna, I C; Larralde-Corona, C P

    2010-11-01

    Mezcal is an alcoholic beverage obtained from the distillation of fermented juices of cooked Agave spp. plant stalks (agave must), and each region in Mexico with denomination of origin uses defined Agave species to prepare mezcal with unique organoleptic characteristics. During fermentation to produce mezcal in the state of Tamaulipas, not only alcohol-producing yeasts are involved, but also a lactic acid bacterial community that has not been characterized yet. In order to address this lack of knowledge on this traditional Mexican beverage, we performed a DGGE-16S rRNA analysis of the lactic acid bacterial diversity and metabolite accumulation during the fermentation of a typical agave must that is rustically produced in San Carlos County (Tamaulipas, Mexico). The analysis of metabolite production indicated a short but important malolactic fermentation stage not previously described for mezcal. The denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA genes showed a distinctive lactic acid bacterial community composed mainly of Pediococcus parvulus, Lactobacillus brevis, Lactobacillus composti, Lactobacillus parabuchneri, and Lactobacillus plantarum. Some atypical genera such as Weissella and Bacillus were also found in the residual must. Our results suggest that the lactic acid bacteria could strongly be implicated in the organoleptic attributes of this traditional Mexican distilled beverage.

  14. [Effects of a lactic acid bacteria community SFC-2 treated on rice straw].

    Science.gov (United States)

    Gao, Li-Juan; Wang, Xiao-Fen; Yang, Hong-Yan; Gao, Xiu-Zhi; Lü, Yu-Cai; Cui, Zong-Jun

    2007-06-01

    Aimed to utilize rice straw and lessen the pressure of environment, the rice straw was used as the fermentation material, and a lactic acid bacteria community SFC-2 from my laboratory was inoculated into the rice straw to investigate the inoculation effects. After 30 days fermentation, the inoculated fermented straw smelt acid-fragrant, and the pH value was 3.8, which was lower than the control of 4.1. Furthermore, lactic acid concentration was more than that in the control. Especially L-lactic acid concentration was two times more than in the control, and the crude protein content was 10.16% higher than that in the control, and the crude fiber content was 3.2% lower than that in the control. From the patterns of denaturing gradient gel electrophoresis (DGGE), Lactobacillus plantarum, Lactobacillus fermentum and Lactobacillus paracasei rapidly became the advantageous species in the inoculated straws. However, Enterobacter sakazakii, Pantoea agglomerans, Enterobacter endosymbiont, Pantoea ananatis, whichwere predominate in the controls, were not detected in the inoculated straws, and the fermented quality was improved significantly.

  15. Unified theory of bacterial sialometabolism: how and why bacteria metabolize host sialic acids.

    Science.gov (United States)

    Vimr, Eric R

    2013-01-01

    Sialic acids are structurally diverse nine-carbon ketosugars found mostly in humans and other animals as the terminal units on carbohydrate chains linked to proteins or lipids. The sialic acids function in cell-cell and cell-molecule interactions necessary for organismic development and homeostasis. They not only pose a barrier to microorganisms inhabiting or invading an animal mucosal surface, but also present a source of potential carbon, nitrogen, and cell wall metabolites necessary for bacterial colonization, persistence, growth, and, occasionally, disease. The explosion of microbial genomic sequencing projects reveals remarkable diversity in bacterial sialic acid metabolic potential. How bacteria exploit host sialic acids includes a surprisingly complex array of metabolic and regulatory capabilities that is just now entering a mature research stage. This paper attempts to describe the variety of bacterial sialometabolic systems by focusing on recent advances at the molecular and host-microbe-interaction levels. The hope is that this focus will provide a framework for further research that holds promise for better understanding of the metabolic interplay between bacterial growth and the host environment. An ability to modify or block this interplay has already yielded important new insights into potentially new therapeutic approaches for modifying or blocking bacterial colonization or infection.

  16. [Composition diversity of lactic acid bacteria (LAB) community Al2 used for alfalfa silage].

    Science.gov (United States)

    Wang, Xiao-Fen; Gao, Li-Juan; Yang, Hong-Yan; Wang, Wei-Dong; Cui, Zong-Jun

    2006-10-01

    Alfalfa is the most important forage grass that is difficult to ensile for good quality. Using silage inoculants are the important way for preservation of alfalfa silage. Through continuous restricted subcultivation, a lactic acid bacteria (LAB) community Al2 was selected from well-fermented alfalfa silage. Plate isolation and Denaturing Gradient Gel Electrophoresis (DGGE), construction of 16S rDNA clone library were used to identify the composition diversity of Al2 community, with 7 strains detected, and they were all belonged to Lactobacillus. The composition ratios of the 7 strains were 55.21%, 19.79%, 14.58%, 3.13%, 3.13%, 3.13%, 1.03% according to 16S rDNA clone library. Al2-1i, Al2-2i, Al2-3i, corresponding to L. plantarum (99.9%), L. kimchii (99.4%), L. farciminis (100%) were detected by plate isolation. Among 3 isolates, Al2-1i had the highest ability of dropping pH and producing lactic acid, and the amount of lactic acid was reach to 18g/L at 24h cultivated in MRS media. The ability of dropping pH and producing lactic acid of Al2-3i was the lowest. From DGGE profiles, the dominant strains in Al2 community were L. plantarum and L. kimchii. L. plantarum was detected during the whole process, and L. kimchii was detected in the later phase.

  17. A prebiotic role of Ecklonia cava improves the mortality of Edwardsiella tarda-infected zebrafish models via regulating the growth of lactic acid bacteria and pathogen bacteria.

    Science.gov (United States)

    Lee, WonWoo; Oh, Jae Young; Kim, Eun-A; Kang, Nalae; Kim, Kil-Nam; Ahn, Ginnae; Jeon, You-Jin

    2016-07-01

    In this study, the beneficial prebiotic roles of Ecklonia cava (E. cava, EC) were evaluated on the growth of lactic acid bacteria (LAB) and pathogen bacteria and the mortality of pathogen-bacteria infected zebrafish model. The result showed that the original E. cava (EC) led to the highest growth effects on three LABs (Lactobacillus brevis, L. brevis; Lactobacillus pentosus, L. pentosus; Lactobacillus plantarum; L. plantarum) and it was dose-dependent manners. Also, EC, its Celluclast enzymatic (ECC) and 100% ethanol extracts (ECE) showed the anti-bacterial activities on the fish pathogenic bacteria such as (Edwardsiella tarda; E. tarda, Streptococcus iniae; S. iniae, and Vibrio harveyi; V. harveyi). Interestingly, EC induced the higher production of the secondary metabolites from L. plantarum in MRS medium. The secondary metabolites produced by EC significantly inhibited the growth of pathogen bacteria. In further in vivo study, the co-treatment of EC and L. plantarum improved the growth and mortality of E. tarda-infected zebrafish as regulating the expression of inflammatory molecules such as iNOS and COX2. Taken together, our present study suggests that the EC plays an important role as a potential prebiotic and has a protective effect against the infection caused by E. tarda injection in zebrafish. Also, our conclusion from this evidence is that EC can be used and applied as a useful prebiotic.

  18. Lack of inhibitory effects of Lactic acid bacteria on 1,2-dimethylhydrazine-induced colon tumors in rats

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Chong-Bi Li

    2003-01-01

    AIM: A myriad of healthful effects has been attributed to the probiotic lactic acid bacteria, perhaps the most controversial issue remains that of anticancer activity. This study was aimed at investigating the putative anti-cancer effects of lactic acid bacteria strains on the progression of colon tumor in 1,2-dimethylhydrazine (DMH)-treated animals.METHODS: The strain of lactic acid bacteria used in this study was lactic acid bacteria NZ9000 that conformed to the characteristics of plasmid free. Sixty male Wistar rats were given subcutaneous injections of DMH at a dose of 40 mg/kg body wt or saline once a week for 10 weeks. The rats were divided into 6 experimental groups. After the last DMH injection,animals in groups 1 and 4 were gavaged with 1 mi of lactic acid bacteria at a dose of 5×109 per day or vehide until sacrifice at the end of week 22 or week 52. Animals in groups 1-3 were killed at the end of week 22 for histopathological examination.The whole period of experimental observation was 52 weeks.RESULTS: By the end of 22nd week, final average body weights of the rats treated with DMH alone and all animals receiving lactic acid bacteria were significantly decreased compared with the vehicle control (P<0.05). No differences in tumor inridence, multiplicity, dimensions and stage in the colonic mucosa were observed among the groups. At week 52, the survival rate of the rats administered lactic acid bacteria was lower than that of the rats treated with DMH that were fed on control fluids of non-lactococcus lactis. The mean survival time of lactic acid bacteria-treated animals was 39 weeks.CONCLUSION: These results indicate that lactic acid bacteria lacks inhibitory effects on the progression of colon tumor in DMH-treated animals, and does not support the hypothesis that alteration of colonic flora may exert an influence on the progression of colon tumor.

  19. Identification of lactic acid bacteria constituting the predominating microflora in an acid-fermented condiment (tempoyak) popular in Malaysia.

    Science.gov (United States)

    Leisner, J J; Vancanneyt, M; Rusul, G; Pot, B; Lefebvre, K; Fresi, A; Tee, L K

    2001-01-22

    Tempoyak is a traditional Malaysian fermented condiment made from the pulp of the durian fruit (Durio zibethinus). Salt is sometime added to proceed fermentation at ambient temperature. In various samples obtained from night markets, lactic acid bacteria (LAB) were the predominant microorganisms, ranging from log 8.4 to log 9.2 cfu g(-1). No other microorganisms were present to such a level. These samples contained reduced amount of saccharose, glucose and fructose but increased amount of D- and L-lactic acid and acetic acid compared with samples of non-fermented durian fruit. Sixty-four isolates of LAB were divided into five groups by use of a few phenotypic tests. A total of 38 strains of LAB were selected for comparison by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of their whole cell protein patterns with a SDS-PAGE database of LAB. These strains were also examined for their carbohydrate fermentation patterns by use of API 50 CH. Isolates belonging to the Lactobacillus plantarum group were shown to be the predominant members of the LAB flora. In addition, isolates belonging to the Lactobacillus brevis group, Leuconostoc mesenteroides, Lactobacillus mali, Lactobacilus fermentum and an unidentified Lactobacillus sp. were also observed. A high degree of diversity among isolates belonging to the Lb. plantarum group was demonstrated by analysis of their plasmid profiles.

  20. Investigation of antibacterial activity of Lactic Acid Bacteria isolated from traditional kordish cheese in comparison with commercial strains

    Directory of Open Access Journals (Sweden)

    Fereshteh Tofangsazan

    2013-12-01

    Full Text Available Background and Aim: The health benefits of lactic acid bacteria in human, especially their anti-pathogenic properties has been the focus of recent interests. The objective of this study was to investigate the antibacterial activity of lactic acid bacteria (LAB isolated from traditional Kurdish cheese against a few bacterial pathogens. Materials and Methods: The cell free culture supernatant of LAB isolated from Kurdish cheese which was treated with heat and NaOH were tested for their antibacterial activity by Agar Disk Diffusion method. Moreover, Minimum Inhibition Concentration and Co-aggregation of LAB against pathogens were determined. Each test was repeated for three times. Results: The LAB isolates, in comparison with commercial lactic acid bacteria, showed suitable antibacterial activity. Heating the bacterial supernatant eliminated its anti-bacterial property; however, alkali treatment did not have any effect. The Minimum Inhibition Concentration did not show significant differences between native and commercial lactic acid bacteria; however, the native LAB showed suitable co-aggregation with pathogens. Conclusion: Traditional lactic acid bacteria and their metabolites can inhibit growth of pathogens. This shows the positive role of LAB in human health which necessitates their increase usage as natural antimicrobial agent.

  1. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  2. Natural populations of lactic acid bacteria isolated from vegetable residues and silage fermentation.

    Science.gov (United States)

    Yang, J; Cao, Y; Cai, Y; Terada, F

    2010-07-01

    Natural populations of lactic acid bacteria (LAB) and silage fermentation of vegetable residues were studied. Fifty-two strains of LAB isolated from cabbage, Chinese cabbage, and lettuce residues were identified and characterized. The LAB strains were gram-positive and catalase-negative bacteria, which were divided into 6 groups (A to F) according to morphological and biochemical characteristics. The strains in group A were rods that did not produce gas from glucose and formed the d and l isomers of lactate. Groups B and C were homofermentative cocci that formed l-lactic acid. Groups D, E, and F were heterofermentative cocci that formed d-lactic acid. Based on 16S rDNA gene sequence analysis, group A to F strains were identified as Lactobacillus plantarum, Lactococcus piscium, Lactococcus lactis, Leuconostoc citreum, Weissella soli and Leuconostoc gelidum, respectively. The prevalent LAB, predominantly homofermentative lactobacilli, consisted of Lactobacillus plantarum (34.6%), Weissella soli (19.2%), Leuconostoc gelidum (15.4%), Leuconostoc citreum (13.5%), Lactococcus lactis (9.6%), and Lactococcus piscium (7.7%). Lactobacillus plantarum was the dominant member of the LAB population in 3 types of vegetable residues. These vegetable residues contained a high level of crude protein (20.2 to 28.4% of dry matter). These silages prepared by using a small-scale fermentation system were well preserved, with low pH and a relatively high content of lactate. This study suggests that the vegetable residues contain abundant LAB species and nutrients, and that they could be well preserved by making silage, which is a potentially good vegetable protein source for livestock diets.

  3. PCR of crtNM combined with analytical biochemistry : an efficient way to identify carotenoid producing lactic acid bacteria

    OpenAIRE

    Turpin, W.; Renaud, Cécile; Avallone, S.; Hammoumi, A.; Guyot, Jean-Pierre; Humblot, Christèle

    2016-01-01

    Lactic acid bacteria (LAB) synthesize a wide variety of biochemical compounds during food fermentation. Carotenoids provide important biological functions for bacteria, and their consumption by humans has many beneficial effects. In this study, the presence of several genes involved in the production of carotenoids was determined by BLAST analysis and PCR in a collection of 156 LAB isolated from traditional amylaceous African fermented foods. Only the crtE gene and the crtNM operon were prese...

  4. Dysfunction of organic anion transporting polypeptide 1a1 alters intestinal bacteria and bile acid metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Youcai Zhang

    Full Text Available Organic anion transporting polypeptide 1a1 (Oatp1a1 is predominantly expressed in liver and is able to transport bile acids (BAs in vitro. Male Oatp1a1-null mice have increased concentrations of taurodeoxycholic acid (TDCA, a secondary BA generated by intestinal bacteria, in both serum and livers. Therefore, in the present study, BA concentrations and intestinal bacteria in wild-type (WT and Oatp1a1-null mice were quantified to investigate whether the increase of secondary BAs in Oatp1a1-null mice is due to alterations in intestinal bacteria. The data demonstrate that Oatp1a1-null mice : (1 have similar bile flow and BA concentrations in bile as WT mice; (2 have a markedly different BA composition in the intestinal contents, with a decrease in conjugated BAs and an increase in unconjugated BAs; (3 have BAs in the feces that are more deconjugated, desulfated, 7-dehydroxylated, 3-epimerized, and oxidized, but less 7-epimerized; (4 have 10-fold more bacteria in the small intestine, and 2-fold more bacteria in the large intestine which is majorly due to a 200% increase in Bacteroides and a 30% reduction in Firmicutes; and (5 have a different urinary excretion of bacteria-related metabolites than WT mice. In conclusion, the present study for the first time established that lack of a liver transporter (Oatp1a1 markedly alters the intestinal environment in mice, namely the bacteria composition.

  5. Metabolism of fructophilic lactic acid bacteria isolated from Apis mellifera L. bee-gut: a focus on the phenolic acids as external electron acceptors.

    Science.gov (United States)

    Filannino, Pasquale; Di Cagno, Raffaella; Addante, Rocco; Pontonio, Erica; Gobbetti, Marco

    2016-09-16

    Fructophilic lactic acid bacteria (FLAB) are strongly associated to the gastrointestinal tract (GIT) of Apis mellifera L. worker bees due to the consumption of fructose as a major carbohydrate. Seventy-seven presumptive lactic acid bacteria (LAB) were isolated from GIT of healthy A. mellifera L. adults, which were collected from 5 different geographical locations of Apulia region (Italy). Almost all the isolates showed fructophilic tendencies, which were identified as Lactobacillus kunkeei (69%) or Fructobacillus fructosus (31%). A high-throughput phenotypic microarray, targeting 190 carbon sources, was used to determine that 83 compounds were differentially consumed. Phenotyping grouped the strains into two clusters, reflecting growth performance. The utilization of phenolic acids, such as p-coumaric, caffeic, syringic or gallic acids, as electron acceptors was investigated in fructose based medium. Almost all FLAB strains showed tolerance to high phenolic acid concentrations. p-Coumaric acid and caffeic acid were consumed by all FLAB strains through reductases or decarboxylases. Syringic and gallic acids were partially metabolized. The data collected suggest that FLAB require external electron acceptors to regenerate NADH. The use of phenolic acids as external electron acceptors by 4 FLAB, showing the highest phenolic acid reductase activity, was investigated in glucose based medium supplemented with p-coumaric acid. Metabolic responses observed through phenotypic microarray suggested that FLAB may use p-coumaric acid as external electron acceptor, enhancing glucose dissimilation but less efficiently than other external acceptors such as fructose or pyruvic acid.

  6. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    Science.gov (United States)

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria.

  7. Expression Analysis of Phenylalanine Ammonia Lyase Gene and Rosmarinic Acid Production in Salvia officinalis and Salvia virgata Shoots Under Salicylic Acid Elicitation.

    Science.gov (United States)

    Ejtahed, Roghayeh Sadat; Radjabian, Tayebeh; Hoseini Tafreshi, Sayed Ali

    2015-08-01

    Partial fragments of phenylalanine ammonia lyase (PAL) genes were cloned and characterized from Salvia officinalis (SoPAL) and Salvia virgata (SvPAL). Different concentrations (250 and 500 μM) of exogenous salicylic acid (SA) were used when correlation between PAL expression and rosmarinic acid (RA) accumulation was compared. The results showed that the deduced cDNA sequences of the partial genes had high similarities with those of known PAL gene from other plant species. Semi-quantitative reverse transcription PCR (RT-PCR) analysis revealed that exogenous application of SA led to up-regulating of the PAL expression. Further analysis showed that in S. virgata, at higher concentration of SA, higher accumulation of RA was achieved, while in S. officinalis, the higher RA accumulation was observed at lower concentration of SA. It was concluded that there was no positive correlation between the intensity of PAL transcription and the RA accumulation in the studied species. Therefore, despite of the increase in transcription rate of the PAL at the higher concentration of SA, the lower amounts of RA were accumulated in the case of S. officinalis. Consequently, the hypothesis that PAL is the rate-determining step in RA biosynthesis is not always valid and probably some other unknown factors participate in the synthesis of phenolics.

  8. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese.

    Science.gov (United States)

    Østergaard, Nina Bjerre; Eklöw, Annelie; Dalgaard, Paw

    2014-10-01

    Four mathematical models were developed and validated for simultaneous growth of mesophilic lactic acid bacteria from added cultures and Listeria monocytogenes, during chilled storage of cottage cheese with fresh- or cultured cream dressing. The mathematical models include the effect of temperature, pH, NaCl, lactic- and sorbic acid and the interaction between these environmental factors. Growth models were developed by combining new and existing cardinal parameter values. Subsequently, the reference growth rate parameters (μref at 25°C) were fitted to a total of 52 growth rates from cottage cheese to improve model performance. The inhibiting effect of mesophilic lactic acid bacteria from added cultures on growth of L. monocytogenes was efficiently modelled using the Jameson approach. The new models appropriately predicted the maximum population density of L. monocytogenes in cottage cheese. The developed models were successfully validated by using 25 growth rates for L. monocytogenes, 17 growth rates for lactic acid bacteria and a total of 26 growth curves for simultaneous growth of L. monocytogenes and lactic acid bacteria in cottage cheese. These data were used in combination with bias- and accuracy factors and with the concept of acceptable simulation zone. Evaluation of predicted growth rates of L. monocytogenes in cottage cheese with fresh- or cultured cream dressing resulted in bias-factors (Bf) of 1.07-1.10 with corresponding accuracy factor (Af) values of 1.11 to 1.22. Lactic acid bacteria from added starter culture were on average predicted to grow 16% faster than observed (Bf of 1.16 and Af of 1.32) and growth of the diacetyl producing aroma culture was on average predicted 9% slower than observed (Bf of 0.91 and Af of 1.17). The acceptable simulation zone method showed the new models to successfully predict maximum population density of L. monocytogenes when growing together with lactic acid bacteria in cottage cheese. 11 of 13 simulations of L

  9. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.

    Science.gov (United States)

    Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2012-03-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.

  10. Effects of the Essential Oil from Origanum vulgare L. on Survival of Pathogenic Bacteria and Starter Lactic Acid Bacteria in Semihard Cheese Broth and Slurry.

    Science.gov (United States)

    de Souza, Geany Targino; de Carvalho, Rayssa Julliane; de Sousa, Jossana Pereira; Tavares, Josean Fechine; Schaffner, Donald; de Souza, Evandro Leite; Magnani, Marciane

    2016-02-01

    This study assessed the inhibitory effects of the essential oil from Origanum vulgare L. (OVEO) on Staphylococcus aureus, Listeria monocytogenes, and a mesophilic starter coculture composed of lactic acid bacteria (Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris) in Brazilian coalho cheese systems. The MIC of OVEO was 2.5 μl/ml against both S. aureus and L. monocytogenes and 0.6 μl/ml against the tested starter coculture. In cheese broth containing OVEO at 0.6 μl/ml, no decrease in viable cell counts (VCC) of both pathogenic bacteria was observed, whereas the initial VCC of the starter coculture decreased approximately 1.0 log CFU/ml after 24 h of exposure at 10°C. OVEO at 1.25 and 2.5 μl/ml caused reductions of up to 2.0 and 2.5 log CFU/ml in S. aureus and L. monocytogenes, respectively, after 24 h of exposure in cheese broth. At these same concentrations, OVEO caused a greater decrease of initial VCC of the starter coculture following 4 h of exposure. Higher concentrations of OVEO were required to decrease the VCC of all target bacteria in semisolid coalho cheese slurry compared with cheese broth. The VCC of Lactococcus spp. in coalho cheese slurry containing OVEO were always lower than those of pathogenic bacteria under the same conditions. These results suggest that the concentrations of OVEO used to control pathogenic bacteria in semihard cheese should be carefully evaluated because of its inhibitory effects on the growth of starter lactic acid cultures used during the production of the product.

  11. Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    DEFF Research Database (Denmark)

    Hansen, K.W.; Ahring, Birgitte Kiær; Raskin, L.

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-beta-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYE, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S, wolfei LYE was closely related...... to S. wolfei subsp. wolfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas, Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid...... fatty acid-beta-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria-and methanogens were compared to specific methanogenic activities...

  12. Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine.

    Science.gov (United States)

    Salomon, María Victoria; Bottini, Rubén; de Souza Filho, Gonçalo Apolinário; Cohen, Ana Carmen; Moreno, Daniela; Gil, Mariana; Piccoli, Patricia

    2014-08-01

    Eleven bacterial strains were isolated at different soil depths from roots and rhizosphere of grapevines from a commercial vineyard. By 16S rRNA gene sequencing 10 different genera and 8 possible at species level were identified. From them, Bacillus licheniformis Rt4M10 and Pseudomonas fluorescens Rt6M10 were selected according to their characteristics as plant growth promoting rhizobacteria (PGPR). Both produced abscisic acid (ABA), indole-3-acetic acid (IAA) and the gibberellins A1 and A3 in chemically-defined medium. They also colonized roots of in vitro grown Vitis vinifera cv. Malbec plants. As result of bacterization ABA levels in 45 days-old in vitro plants were increased 76-fold by B. licheniformis and 40-fold by P. fluorescens as compared to controls. Both bacteria diminished plant water loss rate in correlation with increments of ABA. Twenty and 30 days post bacterization the plants incremented terpenes. The monoterpenes α-pinene, terpinolene, 4-carene, limonene, eucalyptol and lilac aldehyde A, and the sesquiterpenes α-bergamotene, α-farnesene, nerolidol and farnesol were assessed by gas chromatography-electron impact mass spectrometry analysis. α-Pinene and nerolidol were the most abundant (µg per g of tissue in plants bacterized with P. fluorescens). Only α-pinene, eucalyptol and farnesol were identified at low concentration in non-bacterized plants treated with ABA, while no terpenes were detected in controls. The results obtained along with others from literature suggest that B. licheniformis and P. fluorescens act as stress alleviators by inducing ABA synthesis so diminishing water losses. These bacteria also elicit synthesis of compounds of plant defense via an ABA independent mechanism.

  13. Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid.

    Science.gov (United States)

    Mohn, W W

    1995-06-01

    Eleven isolates capable of growth on the resin acid dehydroabietic acid (DhA) were obtained from a sequencing batch reactor designed to treat a high-strength process stream from a paper mill. The isolates belonged to two groups, represented by strains DhA-33 and DhA-35, which were characterized. In the bioreactor, bacteria like DhA-35 were more abundant than those like DhA-33. The population in the bioreactor of organisms capable of growth on DhA was estimated to be 1.1 x 10(6) propagules per ml, based on a most-probable-number determination. Analysis of small-subunit rRNA partial sequences indicated that DhA-33 was most closely related to Sphingomonas yanoikuyae (Sab = 0.875) and that DhA-35 was most closely related to Zoogloea ramigera (Sab = 0.849). Both isolates additionally grew on other abietanes, i.e., abietic and palustric acids, but not on the pimaranes, pimaric and isopimaric acids. For DhA-33 and DhA-35 with DhA as the sole organic substrate, doubling times were 2.7 and 2.2 h, respectively, and growth yields were 0.30 and 0.25 g of protein per g of DhA, respectively. Glucose as a cosubstrate stimulated growth of DhA-33 on DhA and stimulated DhA degradation by the culture. Pyruvate as a cosubstrate did not stimulate growth of DhA-35 on DhA and reduced the specific rate of DhA degradation of the culture. DhA induced DhA and abietic acid degradation activities in both strains, and these activities were heat labile. Cell suspensions of both strains consumed DhA at a rate of 6 mumol mg of protein-1 h-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Antibacterial Activity of Selected Standard Strains of Lactic Acid Bacteria Producing Bacteriocins – Pilot Study

    Directory of Open Access Journals (Sweden)

    Malgorzata Bodaszewska-Lubas

    2012-10-01

    Full Text Available  Introduction:In this paper, an attempt was made to evaluate the antibacterial potential of standard strains of lactic acid bacteria (LAB producing bacteriocins of various classes, thus demonstrating various mechanisms of cell membrane damages against the Streptococcus agalactiae strains (Group B Streptococcus, GBS, depending on surface polysaccharides and surface alpha-like protein genes.Materials/Methods:Antimicrobial property of the strains of L. plantarum C 11, L. sakei DSMZ 6333, and L. lactis ATCC 11454 producing bacteriocins: JK and EF plantaricins, sakacin and nisin, respectively, against the GBS strains was evaluated. The chosen to the study GBS strains were represented by serotypes Ia, Ib, II, III, V and they had bca, epsilon, rib, alp2 or alp3 alpha-like protein genes. The experiment was conducted by means of suspension culture and the bacteria count was determined using the serial dilution method.Results:A great ability of L. plantarum C 11 strain was proven to inhibit the GBS growth. The strain of L. sakei DSMZ 6333 did not demonstrate any ability to inhibit the growth of GBS, whereas L. lactis ATCC 11454 inhibited the growth of S. agalactiae indicator strains to a minor extent. Statistically significant differences were demonstrated between the GBS strains representing various serotypes against the antimicrobial activity of model LAB strains. The least sensitive to the activity of bacteriocins were the strains representing serotypes Ib and III, whereas the strains representing serotype II were the most sensitive. The sensitivity of the GBS strains to the antimicrobial activity of LAB was not dependent on alpha-like protein genes.Discussion:Among the LAB standard strains producing bacteriocins, the strongest antimicrobial property was observed in the strain of L. plantarum C 11. Because of the generally known and verified strong antagonistic property of the strains of L. plantarum species against indicator bacteria, it is necessary

  15. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages.

    Science.gov (United States)

    Fraqueza, Maria João

    2015-11-06

    Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria.

  16. "Green preservatives": combating fungi in the food and feed industry by applying antifungal lactic acid bacteria.

    Science.gov (United States)

    Pawlowska, Agata M; Zannini, Emanuele; Coffey, Aidan; Arendt, Elke K

    2012-01-01

    Fungal food spoilage plays a pivotal role in the deterioration of food and feed systems and some of them are also able to produce toxic compounds for humans and animals. The mycotoxins produced by fungi can cause serious health hazards, including cancerogenic, immunotoxic, teratogenic, neurotoxic, nephrotoxic and hepatotoxic effects, and Kashin-Beck disease. In addition to this, fungal spoilage/pathogens are causing losses of marketable quality and hygiene of foodstuffs, resulting in major economic problem throughout the world. Nowadays, food spoilage can be prevented using physical and chemical methods, but no efficient strategy has been proposed so far to reduce the microbial growth ensuring public health. Therefore, lactic acid bacteria (LAB) can play an important role as natural preservatives. The protection of food products using LAB is mainly due to the production of antifungal compounds such as carboxylic acids, fatty acids, ethanol, carbon dioxide, hydrogen peroxide, and bacteriocins. In addition to this, LAB can also positively contribute to the flavor, texture, and nutritional value of food products. This review mainly focuses on the use of LAB for food preservation given their extensive industrial application in a wide range of foods and feeds. The attention points out the several industrial patents concerning the use of antifungal LAB as biocontrol agent against spoilage organisms in different fermented foods and feeds.

  17. [Production of hydrolases by lactic acid bacteria and bifidobacteria and their antibiotic resistance].

    Science.gov (United States)

    Novik, G I; Astanovich, N I; Riabaia, N E

    2007-01-01

    It was demonstrated that bifidobacteria and lactic acid bacteria B. adolescentis and Lactobacillus sp. synthesized extracellular enzymes cleaving glycoside bonds in the molecules of dextran, pectic acid, and soluble starch. The maximal production of extracellular beta-galactosidase by B. adolescentis 91-BIM and 94-BIM at a rate of 0.08 and 0.03 U/mg h was observed during the exponential growth phase at 5 and 12 h of cultivation, respectively. The cultures of bifidobacteria retained 60-70% of beta-galactosidase and alpha-amylase activities after six months of storage. The bifidobacterium strains studied were resistant to amphotericin and aminoglycosides (gentamicin, kanamycin, and netromycin). The lactam antibiotics (ampicillin, benzylpenicillin, bicillin 3, bicillin 5, and carbenicillin), the preparations inhibiting protein synthesis at the level of ribosomes (lincomycin), RNA polymerase inhibitors (rifampin), cephalosporin, and Maxipime inhibited the growth of bifidobacteria. Rifampin, erythromycin, amphotericin, Maxipime, Fortum, doxycycline, levomycetin, streptomycin, and the aminoglycosides netromycin, gentamicin, and kanamycin did not have an effect on the growth of Lactobacillus sp., whereas semisynthetic derivatives of penicillin, carbenicillin and ampicillin, inhibited its growth as well as Oxamp and lincomycin. The lactam antibiotics benzylpenicillin, bicillin 3, and bicillin 5 inhibited the growth of lactic acid bacilli by 30-90%.

  18. Comparison of homo- and heterofermentative lactic acid bacteria for implementation of fermented wheat bran in bread.

    Science.gov (United States)

    Prückler, Michael; Lorenz, Cindy; Endo, Akihito; Kraler, Manuel; Dürrschmid, Klaus; Hendriks, Karel; Soares da Silva, Francisco; Auterith, Eric; Kneifel, Wolfgang; Michlmayr, Herbert

    2015-08-01

    Despite its potential health benefits, the integration of wheat bran into the food sector is difficult due to several adverse technological and sensory properties such as bitterness and grittiness. Sourdough fermentation is a promising strategy to improve the sensory quality of bran without inducing severe changes to the bran matrix. Therefore, identification of species/strains with potential for industrial sourdough fermentations is important. We compared the effects of different representatives of species of lactic acid bacteria (LAB) on wheat bran. Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus brevis, Lactobacillus sanfranciscensis and Fructobacillus fructosus produced highly individual fermentation patterns as judged from carbohydrate consumption and organic acid production. Interestingly, fructose was released during all bran fermentations and possibly influenced the fermentation profiles of obligately heterofermentative species to varying degrees. Except for the reduction of ferulic acid by L. plantarum and L. pentosus, analyses of phenolic compounds and alkylresorcinols suggested that only minor changes thereof were induced by the LAB metabolism. Sensory analysis of breads baked with fermented bran did not reveal significant differences regarding perceived bitterness and aftertaste. We conclude that in addition to more traditionally used sourdough species such as L. sanfranciscensis and L. brevis, also facultatively heterofermentative species such as L. plantarum and L. pentosus possess potential for industrial wheat bran fermentations and should be considered in further investigations.

  19. Characterization and in vitro probiotic evaluation of lactic acid bacteria isolated from idli batter.

    Science.gov (United States)

    Iyer, Bharti K; Singhal, Rekha S; Ananthanarayan, Laxmi

    2013-12-01

    An Indian traditional fermented food, idli batter, was used as a source for isolation of lactic acid bacteria (LAB). A total of 15 LAB strains were isolated on the basis of their Gram nature and catalase activity. Of these, one lactobacilli strain and one lactococci strain which showed antimicrobial activity were identified using biochemical characterization, sugar utilization and molecular sequencing. The microbes, labeled as IB-1 (Lactobacillus plantarum) and IB-2 (Lactococcus lactis) were tested for their in vitro tolerance to bile salts, resistance to low pH values and acidifying activity. Both the strains showed good viability (IB1- 58.11%; IB2- 60.84%) when exposed to high bile salt concentration (2%) and acidic pH of ≤pH 3.0 (IB1- 88.13%; IB2- 89.85%). Lactic acid (IB1- 181.93 mM; IB2- 154.44 mM), biomass production (IB1- 0.65; IB2- 0.58 g/l) after 54 h as well as qualitative estimation of β-galactosidase and vitamin B12 production were also studied to check their suitability as an industrially important strain for production of important biomolecules.

  20. The effect of marination on lactic acid bacteria communities in raw broiler fillet strips

    Directory of Open Access Journals (Sweden)

    Timo Tapio Nieminen

    2012-10-01

    Full Text Available Marination with marinade containing salt, sugar and acetic acid is commonly used in Finland to enhance the value of raw broiler meat. In this study, the effect of marination and marinade components on composition and evolution of bacterial communities in modified atmosphere-packaged broiler fillet strips was investigated using culture-independent partial 16S rRNA gene sequencing and terminal restriction fragment length polymorphism. In unmarinated broiler fillet strips, Lactococcus spp. and Carnobacterium spp predominated at the early storage but were partially replaced by Lactobacillus spp. and Leuconostoc spp. when the chilled storage time was extended. In the marinated fillet strips, Lactobacillus spp. and Leuconostoc spp. predominated independent from the storage time. By mixing the different marinade components with broiler meat, we showed that marination changed the community composition and favored Leuconostoc spp. and Lactobacillus spp. by the combined effect of carbohydrates and acetic acid in the marinade. Marination increased the maximum level of lactic acid bacteria in broiler meat and enhanced CO2 production and acidification of meat during chilled storage. Accumulation of CO2 in the package head-space due to the enhanced growth of Leuconostoc spp. in marinated meat may lead to bulging of packages, which is a spoilage defect frequently associated with marinated and modified atmosphere-packaged raw broiler preparations in Finland.

  1. Hyaluronic Acid--an "Old" Molecule with "New" Functions: Biosynthesis and Depolymerization of Hyaluronic Acid in Bacteria and Vertebrate Tissues Including during Carcinogenesis.

    Science.gov (United States)

    Tsepilov, R N; Beloded, A V

    2015-09-01

    Hyaluronic acid is an evolutionarily ancient molecule commonly found in vertebrate tissues and capsules of some bacteria. Here we review modern data regarding structure, properties, and biological functions of hyaluronic acid in mammals and Streptococcus spp. bacteria. Various aspects of biogenesis and degradation of hyaluronic acid are discussed, biosynthesis and degradation metabolic pathways for glycosaminoglycan together with involved enzymes are described, and vertebrate and bacterial hyaluronan synthase genes are characterized. Special attention is given to the mechanisms underlying the biological action of hyaluronic acid as well as the interaction between polysaccharide and various proteins. In addition, all known signaling pathways involving hyaluronic acid are outlined. Impaired hyaluronic acid metabolism, changes in biopolymer molecular weight, hyaluronidase activity, and enzyme isoforms often accompany carcinogenesis. The interaction between cells and hyaluronic acid from extracellular matrix that may be important during malignant change is discussed. An expected role for high molecular weight hyaluronic acid in resistance of naked mole rat to oncologic diseases and the protective role of hyaluronic acid in bacteria are discussed.

  2. Adjuvanted poly(lactic-co-glycolic acid nanoparticle-entrapped inactivated porcine reproductive and respiratory syndrome virus vaccine elicits cross-protective immune response in pigs

    Directory of Open Access Journals (Sweden)

    Binjawadagi B

    2014-01-01

    reduction in viral ribonucleic acid load detected in the blood. In conclusion, intranasal delivery of adjuvanted NP-KAg vaccine formulation to growing pigs elicited a broadly cross-protective immune response, showing the potential of this innovative vaccination strategy to prevent PRRS outbreaks in pigs. A similar approach to control other respiratory diseases in food animals and humans appears to be feasible.Keywords: porcine reproductive and respiratory syndrome, mucosal vaccine, nanoparticles, cross-protection, pigs

  3. Biotechnology and pasta-making: Lactic Acid Bacteria as a new driver of innovation

    Directory of Open Access Journals (Sweden)

    Vittorio eCapozzi

    2012-03-01

    Full Text Available Cereals-derived foods represent a key constituent in the diet of many populations. In particular, pasta is consumed in large quantities throughout the world in reason of its nutritive importance, containing significant amounts of complex carbohydrates, proteins, B-vitamins, and iron. Lactic acid bacteria (LAB are a heterogeneous group of bacteria that play a key role in the production of fermented foods and beverages with high relevance for human and animal health. A wide literature testifies the multifaceted importance of LAB biotechnological applications in cereal-based products. Several studies focused on LAB isolation and characterization in durum wheat environment, in some cases with preliminary experimental applications of LAB in pasta-making. In this paper, using sourdough as a model, we focus on the relevant state-of-art to introduce a LAB-based biotechnological step in industrial pasta-making, a potential world driver of innovation that might represent a cutting-edge advancement in pasta production.

  4. Diversity of lactic acid bacteria in two Flemish artisan raw milk Gouda-type cheeses.

    Science.gov (United States)

    Van Hoorde, Koenraad; Verstraete, Tine; Vandamme, Peter; Huys, Geert

    2008-10-01

    PCR-denaturing gradient gel electrophoresis (PCR-DGGE) was used to study the diversity of lactic acid bacteria (LAB) in two Flemish artisan raw milk Gouda-type cheeses. In parallel, conventional culturing was performed. Isolates were identified using (GTG)(5)-PCR and sequence analysis of 16S rRNA and pheS genes. Discriminant analysis revealed some differences in overall LAB diversity between the two batches and between the two cheeses. Within each batch, the diversity of 8- and 12-week-old cheeses was relatively similar. Conventional isolation mainly revealed the presence of Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus rhamnosus and Pediococcus pentosaceus. PCR-DGGE revealed the presence of three species of which no isolates were recovered, i.e. Enterococcus faecalis, Lactobacillus parabuchneri and Lactobacillus gallinarum. Conversely, not all isolated bacteria were detected by PCR-DGGE. We recommend the integrated use of culture-dependent and -independent approaches to maximally encompass the taxonomic spectrum of LAB occurring in Gouda-type and other cheeses.

  5. Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes.

    Science.gov (United States)

    Cano-Garrido, Olivia; Seras-Franzoso, Joaquin; Garcia-Fruitós, Elena

    2015-09-16

    Lactic acid bacteria (LAB) have a long history of safe exploitation by humans, being used for centuries in food production and preservation and as probiotic agents to promote human health. Interestingly, some species of these Gram-positive bacteria, which are generally recognized as safe organisms by the US Food and Drug Administration (FDA), are able to survive through the gastrointestinal tract (GIT), being capable to reach and colonize the intestine, where they play an important role. Besides, during the last decades, an important effort has been done for the development of tools to use LAB as microbial cell factories for the production of proteins of interest. Given the need to develop effective strategies for the delivery of prophylactic and therapeutic molecules, LAB have appeared as an appealing option for the oral, intranasal and vaginal delivery of such molecules. So far, these genetically modified organisms have been successfully used as vehicles for delivering functional proteins to mucosal tissues in the treatment of many different pathologies including GIT related pathologies, diabetes, cancer and viral infections, among others. Interestingly, the administration of such microorganisms would suppose a significant decrease in the production cost of the treatments agents since being live organisms, such vectors would be able to autonomously amplify and produce and deliver the protein of interest. In this context, this review aims to provide an overview of the use of LAB engineered as a promising alternative as well as a safety delivery platform of recombinant proteins for the treatment of a wide range of diseases.

  6. Effect of Inoculating Lactic Acid Bacteria Starter in Low-Salt Pickle Process of Zhacai

    Directory of Open Access Journals (Sweden)

    Shiyang Gao

    2012-10-01

    Full Text Available The traditional pickle process of Zhacai was thought unsafely and unstable, because of the high salt and nitrite contents. The study has shown a method to solve these problems. One Lactic Acid Bacteria (LAB strain, Lactobacillus plantarum was used as starter in the low salt pickle process of Chinese Zhacai. The LAB inoculation amounts were 2, 5, 8%, respectively and the group without LAB inoculation was set as the control. The inoculation groups were added with 8% salt, while the control group 10%. The dynamic changes of physical and chemical parameters of two groups were detected during the pickle process. The results showed that: pH value of the inoculated groups declined rapidly, the lowest pH value was 3.61; the LAB became the predominant bacteria strains during the pickle and the colony amounts of the inoculated groups could be up to 6.32 log10 cfu/mL; the nitrite content of each group kept rising and the nitrite peaks of the inoculated groups appeared 3 days in advance, but the peak values were nearly half of the control group; amino nitrogen contents were lower but finally higher than control group and the highest value could reach 0.46 g/100 mL finally. Therefore, the inoculated groups with the lower salt could be more safety and better flavor. This study provided important reference to optimize the pickle fermentation process of Chinese Zhacai.

  7. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Choi, Jae Im; Yoon, Kyoung-Hye; Subbammal Kalichamy, Saraswathi; Yoon, Sung-Sik; Il Lee, Jin

    2016-03-01

    Animal predators can track prey using their keen sense of smell. The bacteriovorous nematode Caenorhabditis elegans employs sensitive olfactory sensory neurons that express vertebrate-like odor receptors to locate bacteria. C. elegans displays odor-related behaviors such as attraction, aversion and adaptation, but the ecological significance of these behaviors is not known. Using a combination of food microbiology and genetics, we elucidate a possible predator-prey relationship between C. elegans and lactic acid bacteria (LAB) in rotting citrus fruit. LAB produces the volatile odor diacetyl as an oxidized by-product of fermentation in the presence of citrate. We show that C. elegans is attracted to LAB when grown on citrate media or Citrus medica L, commonly known as yuzu, a citrus fruit native to East Asia, and this attraction is mediated by the diacetyl odor receptor, ODR-10. We isolated a wild LAB strain and a wild C. elegans-related nematode from rotten yuzu, and demonstrate that the wild nematode was attracted to the diacetyl produced by LAB. These results not only identify an ecological function for a C. elegans olfactory behavior, but contribute to the growing understanding of ecological relationships between the microbial and metazoan worlds.

  8. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria.

    Science.gov (United States)

    Kaškonienė, Vilma; Stankevičius, Mantas; Bimbiraitė-Survilienė, Kristina; Naujokaitytė, Gintarė; Šernienė, Loreta; Mulkytė, Kristina; Malakauskas, Mindaugas; Maruška, Audrius

    2017-02-01

    The scientific interest for the search of natural means of microbial inhibitors has not faded for several years. A search of natural antibiotics, so-called bacteriocins which are produced by lactic acid bacteria (LAB), gains a huge attention of the scientists in the last century, in order to reduce the usage of synthetic food additives. Pure bacteriocins with wide spectra of antibacterial activity are promising among the natural biopreservatives. The usage of bacteriocin(s) producing LAB as starter culture for the fermentation of some food products, in order to increase their shelf-life, when synthetic preservatives are not allowable, is also possible. There are a lot of studies focusing on the isolation of new bacteriocins from traditional fermented food, dairy products and other foods or sometimes even from unusual non-food matrices. Bacteriocins producing bacteria have been isolated from different sources with the different antibacterial activity against food-borne microorganisms. This review covers the classification of bacteriocins, diversity of sources of bacteriocin(s) producing LAB, antibacterial spectra of isolated bacteriocins and analytical methods for the bacteriocin purification and analysis within the last 15 years.

  9. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria.

    Science.gov (United States)

    Gaspar, Paula; Carvalho, Ana L; Vinga, Susana; Santos, Helena; Neves, Ana Rute

    2013-11-01

    The lactic acid bacteria (LAB) are a functionally related group of low-GC Gram-positive bacteria known essentially for their roles in bioprocessing of foods and animal feeds. Due to extensive industrial use and enormous economical value, LAB have been intensively studied and a large body of comprehensive data on their metabolism and genetics was generated throughout the years. This knowledge has been instrumental in the implementation of successful applications in the food industry, such as the selection of robust starter cultures with desired phenotypic traits. The advent of genomics, functional genomics and high-throughput experimentation combined with powerful computational tools currently allows for a systems level understanding of these food industry workhorses. The technological developments in the last decade have provided the foundation for the use of LAB in applications beyond the classic food fermentations. Here we discuss recent metabolic engineering strategies to improve particular cellular traits of LAB and to design LAB cell factories for the bioproduction of added value chemicals.

  10. Selection of enhanced antimicrobial activity posing lactic acid bacteria characterised by (GTG)5-PCR fingerprinting.

    Science.gov (United States)

    Šalomskienė, Joana; Abraitienė, Asta; Jonkuvienė, Dovilė; Mačionienė, Irena; Repečkienė, Jūratė

    2015-07-01

    The aim of the study was a detail evaluation of genetic diversity among the lactic acid bacteria (LAB) strains having an advantage of a starter culture in order to select genotypically diverse strains with enhanced antimicrobial effect on some harmfull and pathogenic microorganisms. Antimicrobial activity of LAB was performed by the agar well diffusion method and was examined against the reference strains and foodborne isolates of Bacillus cereus, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Antifungal activity was tested against the foodborne isolates of Candida parapsilosis, Debaromyces hansenii, Kluyveromyces marxianus, Pichia guilliermondii, Yarowia lipolytica, Aspergillus brasiliensis, Aspergillus versicolor, Cladosporium herbarum, Penicillium chrysogenum and Scopulariopsis brevicaulis. A total 40 LAB strains representing Lactobacillus (23 strains), Lactococcus (13 strains) and Streptococcus spp. (4 strains) were characterised by repetitive sequence based polymerase chain reaction fingerprinting which generated highly discriminatory profiles, confirmed the identity and revealed high genotypic heterogeneity among the strains. Many of tested LAB demonstrated strong antimicrobial activity specialised against one or few indicator strains. Twelve LAB strains were superior in suppressing growth of the whole complex of pathogenic bacteria and fungi. These results demonstrated that separate taxonomic units offered different possibilities of selection for novel LAB strains could be used as starter cultures enhancing food preservation.

  11. Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria.

    Science.gov (United States)

    Volzing, Katherine; Borrero, Juan; Sadowsky, Michael J; Kaznessis, Yiannis N

    2013-11-15

    We present results of tests with recombinant Lactococcus lactis that produce and secrete heterologous antimicrobial peptides with activity against Gram-negative pathogenic Escherichia coli and Salmonella . In an initial screening, the activities of numerous candidate antimicrobial peptides, made by solid state synthesis, were assessed against several indicator pathogenic E. coli and Salmonella strains. Peptides A3APO and Alyteserin were selected as top performers based on high antimicrobial activity against the pathogens tested and on significantly lower antimicrobial activity against L. lactis . Expression cassettes containing the signal peptide of the protein Usp45 fused to the codon-optimized sequence of mature A3APO and Alyteserin were cloned under the control of a nisin-inducible promoter PnisA and transformed into L. lactis IL1403. The resulting recombinant strains were induced to express and secrete both peptides. A3APO- and Alyteserin-containing supernatants from these recombinant L. lactis inhibited the growth of pathogenic E. coli and Salmonella by up to 20-fold, while maintaining the host's viability. This system may serve as a model for the production and delivery of antimicrobial peptides by lactic acid bacteria to target Gram-negative pathogenic bacteria populations.

  12. Linking wine lactic acid bacteria diversity with wine aroma and flavour.

    Science.gov (United States)

    Cappello, Maria Stella; Zapparoli, Giacomo; Logrieco, Antonio; Bartowsky, Eveline J

    2017-02-21

    In the last two decades knowledge on lactic acid bacteria (LAB) associated with wine has increased considerably. Investigations on genetic and biochemistry of species involved in malolactic fermentation, such as Oenococcus oeni and of Lactobacillus have enabled a better understand of their role in aroma modification and microbial stability of wine. In particular, the use of molecular techniques has provided evidence on the high diversity at species and strain level, thus improving the knowledge on wine LAB taxonomy and ecology. These tools demonstrated to also be useful to detect strains with potential desirable or undesirable traits for winemaking purposes. At the same time, advances on the enzymatic properties of wine LAB responsible for the development of wine aroma molecules have been undertaken. Interestingly, it has highlighted the high intraspecific variability of enzymatic activities such as glucosidase, esterase, proteases and those related to citrate metabolism within the wine LAB species. This genetic and biochemistry diversity that characterizes wine LAB populations can generate a wide spectrum of wine sensory outcomes. This review examines some of these interesting aspects as a way to elucidate the link between LAB diversity with wine aroma and flavour. In particular, the correlation between inter- and intra-species diversity and bacterial metabolic traits that affect the organoleptic properties of wines is highlighted with emphasis on the importance of enzymatic potential of bacteria for the selection of starter cultures to control MLF and to enhance wine aroma.

  13. Bacteriocinogenic lactic acid bacteria for the biopreservation of meat and meat products.

    Science.gov (United States)

    Hugas, M

    1998-01-01

    The consumer demands for less preserved foods and the development of new food systems to fulfil these demands, urges new hurdles for pathogen growth. The strategies for pathogen reduction are not selective for pathogenic microorganism and therefore the non-spoilage microorganisms may become also inactivated, from this situation a question of concern about a freer way for pathogen growth is arised. Biopreservation refers to the extended storage life and enhanced safety of foods using their natural or controlled microflora and (or) their antibacterial products. In meats, lactic acid bacteria (LAB) constitute a part of the initial microflora which develops easily after meat is processed. LAB growth in meat can cause microbial interference to spoilage and pathogenic bacteria through several mechanisms, specially bacteriocins. The paper deals with the description of meat-borne bacteriocins and their application in meat and meat products either to extend the shelf life or to inhibit meat pathogens. The application of bacteriocinogenic LAB together with new technological hurdles is discussed.

  14. Lactic acid bacteria from "Sheep's Dhan", a traditional butter: Isolation, identification and major technological traits

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Twenty six lactic acid bacteria were isolated from sheep’s Dhan, a traditional butter made from sheep’s milk in Jijel (East of Algeria. These strains belong to three genera: Lactococcus, Leuconostoc and Lactobacillus. The results showed that Lactococcus lactis ssp diacetylactis was the predominant species in this traditional butter. The results of the assessment of the technological aptitude indicate that a major strain has a good acidification aptitude, some of them show good proteolytic activity and only Leuconostoc mesenteroides ssp. dextranicum isolates were able to produce exopolysaccharide.

    Veintiséis bacterias lácticas fueron aisladas de “Sheep´s Dhan”, una mantequilla tradicional hecha con leche de oveja en Jijel (al Este de Argelia. Estas cepas pertenecen a tres géneros: Lactococcus, Leuconostoc y Lactobacillus. Los resultados mostraron que Lactococcus lactis ssp diacetylactis fue la especie predominante en esta mantequilla tradicional. Los resultados de la evaluación de la aptitud tecnológica indican que la principal cepa tiene una buena aptitud de acidificación, algunas de ellas mostraron una buena actividad proteolítica y únicamente Leuconostoc mesenteroides ssp. dextranicum fue capaz de producir exopolisacárido.

  15. Characterisation of lactic acid bacteria isolated from naturally fermented Greek dry salami.

    Science.gov (United States)

    Samelis, J; Maurogenakis, F; Metaxopoulos, J

    1994-10-01

    A total of 348 lactic acid bacteria isolated from five batches of naturally fermented dry salami at various stages of ripening were characterised. The majority of the strains were assigned to two main phylogenetic groups of species: (i) the psychrotrophic, formerly called atypical, meat streptobacteria (169 strains) and (ii) a new genus Weissella (120), which was recently proposed (Collins et al., 1993) to include Leuconostoc paramesenteroides and some other closely related species. Meat streptobacteria were identified as Lactobacillus curvatus (88 strains) and L. sake (76), whereas 5 strains were indistinguishable and, thus designated L. sake/curvatus. Non-psychrotrophic streptobacteria were also isolated and identified as L. plantarum (34 strains), L. farciminis (10), L. coryniformis (1) and L. casei subsp. pseudoplantarum (1). The majority of the Weissella strains (86) were leuconostoc-like bacteria; four of them were identified as W. viridescens, 11 belonged to the newly described W. hellenica (Collins et al., 1993), another 11 resembled W. paramesenteroides, whereas 60 isolates were not classified to any species. The latter group comprised strains that produced D(L)-lactate. The remaining Weissella were gas-forming, arginine-positive rods assigned to W. minor (31) and W. halotolerans (3). Other species identified were Enterococcus faecium (10), Leuconostoc mesenteroides (1), L. brevis (1) and Pediococcus sp. (1). The main criteria used to distinguish between above species as well as their distribution on the five salami batches in relation to their succession with time and suitability as starters were discussed.

  16. Doping Polypyrrole Films with 4-N-Pentylphenylboronic Acid to Enhance Affinity towards Bacteria and Dopamine.

    Science.gov (United States)

    Golabi, Mohsen; Padiolleau, Laurence; Chen, Xi; Jafari, Mohammad Javad; Sheikhzadeh, Elham; Turner, Anthony P F; Jager, Edwin W H; Beni, Valerio

    2016-01-01

    Here we demonstrate the use of a functional dopant as a fast and simple way to tune the chemical affinity and selectivity of polypyrrole films. More specifically, a boronic-functionalised dopant, 4-N-Pentylphenylboronic Acid (PBA), was used to provide to polypyrrole films with enhanced affinity towards diols. In order to prove the proposed concept, two model systems were explored: (i) the capture and the electrochemical detection of dopamine and (ii) the adhesion of bacteria onto surfaces. The chemisensor, based on overoxidised polypyrrole boronic doped film, was shown to have the ability to capture and retain dopamine, thus improving its detection; furthermore the chemisensor showed better sensitivity in comparison with overoxidised perchlorate doped films. The adhesion of bacteria, Deinococcus proteolyticus, Escherichia coli, Streptococcus pneumoniae and Klebsiella pneumoniae, onto the boric doped polypyrrole film was also tested. The presence of the boronic group in the polypyrrole film was shown to favour the adhesion of sugar-rich bacterial cells when compared with a control film (Dodecyl benzenesulfonate (DBS) doped film) with similar morphological and physical properties. The presented single step synthesis approach is simple and fast, does not require the development and synthesis of functional monomers, and can be easily expanded to the electrochemical, and possibly chemical, fabrication of novel functional surfaces and interfaces with inherent pre-defined sensing and chemical properties.

  17. Detection of Sialic Acid-Utilising Bacteria in a Caecal Community Batch Culture Using RNA-Based Stable Isotope Probing

    Directory of Open Access Journals (Sweden)

    Wayne Young

    2015-03-01

    Full Text Available Sialic acids are monosaccharides typically found on cell surfaces and attached to soluble proteins, or as essential components of ganglioside structures that play a critical role in brain development and neural transmission. Human milk also contains sialic acid conjugated to oligosaccharides, glycolipids, and glycoproteins. These nutrients can reach the large bowel where they may be metabolised by the microbiota. However, little is known about the members of the microbiota involved in this function. To identify intestinal bacteria that utilise sialic acid within a complex intestinal community, we cultured the caecal microbiota from piglets in the presence of 13C-labelled sialic acid. Using RNA-based stable isotope probing, we identified bacteria that consumed 13C-sialic acid by fractionating total RNA in isopycnic buoyant density gradients followed by 16S rRNA gene analysis. Addition of sialic acid caused significant microbial community changes. A relative rise in Prevotella and Lactobacillus species was accompanied by a corresponding reduction in the genera Escherichia/Shigella, Ruminococcus and Eubacterium. Inspection of isotopically labelled RNA sequences suggests that the labelled sialic acid was consumed by a wide range of bacteria. However, species affiliated with the genus Prevotella were clearly identified as the most prolific users, as solely their RNA showed significantly higher relative shares among the most labelled RNA species. Given the relevance of sialic acid in nutrition, this study contributes to a better understanding of their microbial transformation in the intestinal tract with potential implications for human health.

  18. Improvement of Intestinal Immune Cell Function by Lactic Acid Bacteria for Dairy Products

    Science.gov (United States)

    Kamiya, Tomonori; Watanabe, Yohei; Makino, Seiya; Kano, Hiroshi; Tsuji, Noriko M

    2016-01-01

    Lactic acid bacteria (LAB) form a major component of gut microbiota and are often used as probiotics for fermented foods, such as yoghurt. In this study, we aimed to evaluate immunomodulatory activity of LAB, especially that of Lactobacillus bulgaricus ME-552 (ME552) and Streptococcus thermophilus ME-553 (ME553). In vivo/in vitro assay was performed in order to investigate their effects on T cell function. After oral administration of ME553 to C57BL/6 mice, the amount of both interferon γ (IFN-γ) and interleukin 17 (IL-17) produced by cluster of differentiation (CD) 4+ T cells from Peyer’s patches (PPs) were significantly enhanced. On the other hand, ME552 only up-regulated the production of IL-17 from PP cells. The extent of induction for IFN-γ production differed between ME552 and ME553. These results suggest that LAB modulate T cell effector functions and mucosal immunity. PMID:28025548

  19. [Antioxidant properties of lactic acid bacteria--probiotic and yogurt strains].

    Science.gov (United States)

    Uskova, M A; Kravchenko, L V

    2009-01-01

    Antioxidant properties of 14 strains of lactic acid bacteria were evaluated in vitro using FRAP assay, inhibition of luminol oxidation in Hb-H2O2 system and inhibition of NADPH-Fe2+ induced microsomal lipid peroxidation. All strains demonstrated high reducing properties, but only L. casei spp. (including L. casei 114001) and L. fermentum ME-3 revealed pronounced ability to suppress oxidation of luminol (by 43-65,8%) and microsomal lipid peroxidation (by 57,9-89,5%). Either L. casei 114001 (10(8) CFU suspended in physiological solution) or fermented dairy drink containing equivalent amount of L. casei 114001 were daily administered orally to male Wistar rats. Antioxidant capacity of blood plasma, liver and intestines of animals elevated while MDA content in blood plasma decreased.

  20. Anti-obesity effects of gut microbiota are associated with lactic acid bacteria.

    Science.gov (United States)

    Tsai, Yueh-Ting; Cheng, Po-Ching; Pan, Tzu-Ming

    2014-01-01

    The prevalence of obesity is rapidly becoming endemic in industrialized countries and continues to increase in developing countries worldwide. Obesity predisposes people to an increased risk of developing metabolic syndrome. Recent studies have described an association between obesity and certain gut microbiota, suggesting that gut microbiota might play a critical role in the development of obesity. Although probiotics have many beneficial health effects in humans and animals, attention has only recently been drawn to manipulating the gut microbiota, such as lactic acid bacteria (LAB), to influence the development of obesity. In this review, we first describe the causes of obesity, including the genetic and environmental factors. We then describe the relationship between the gut microbiota and obesity, and the mechanisms by which the gut microbiota influence energy metabolism and inflammation in obesity. Lastly, we focus on the potential role of LAB in mediating the effects of the gut microbiota in the development of obesity.

  1. Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages

    Directory of Open Access Journals (Sweden)

    Mduduzi Paul Mokoena

    2016-03-01

    Full Text Available Diverse African traditional fermented foods and beverages, produced using different types of fermentation, have been used since antiquity because of their numerous nutritional values. Lactic acid bacteria (LAB isolated from these products have emerged as a welcome source of antimicrobials and therapeutics, and are accepted as probiotics. Probiotics are defined as live microbial food supplements which beneficially affect the host by improving the intestinal microbial balance. Currently, popular probiotics are derived from fermented milk products. However, with the growing number of consumers with lactose intolerance that are affected by dietary cholesterol from milk products, there is a growing global interest in probiotics from other food sources. The focus of this review is to provide an overview of recent developments on the applications of probiotic LAB globally, and to specifically highlight the suitability of African fermented foods and beverages as a viable source of novel probiotics.

  2. Growth inhibition of lactic acid bacteria in ham by nisin: a model approach.

    Science.gov (United States)

    Kalschne, Daneysa L; Geitenes, Simone; Veit, Marilei R; Sarmento, Cleonice M P; Colla, Eliane

    2014-12-01

    Lactic acid bacteria (LAB) have been described as spoilage organisms in vacuum-packed cooked ham. A Fractional Factorial Design was performed to investigate the relative merits of sodium chloride, sodium lactate, sodium tripolyphosphate, sodium erythorbate, nisin and pediocin, in limiting the Lactobacillus sakei growth in broth culture. This allowed rejection of sodium chloride, sodium lactate and sodium erythorbate (no significant effects on growth), and a Central Composite Rotatable Design broth culture study was performed comparing the effects of nisin and pediocin. From this study, nisin was identified as a more important variable for inclusion into a cooked ham model (significant effects on growth parameters: logarithmic increase in the population, exponential microbial growth rate and lag phase extension). The validation of this outcome in a model formulation of vacuum-packed sliced cooked ham (0.001%, 0.007% and 0.013% of nisin) stored for 60days, confirmed the inhibitory effect of nisin on total LAB growth.

  3. PROTEOLYTIC AND FIBRINOLYTIC ACTIVITIES OF HALOPHILIC LACTIC ACID BACTERIA FROM TWO INDONESIAN FERMENTED FOODS

    Directory of Open Access Journals (Sweden)

    Asep A. Prihanto

    2013-04-01

    Full Text Available Exploration of fermented foods as sources of fibrinolytic enzymes is increased in the last decades. Terasi and Jambal roti is Indonesian traditional fermented fish products, which were famous in Java Island. Both are important products in Indonesian dishes, especially in Java. Investigation on halophilic lactic acid bacteria using MRS and M-17 agar obtained seventy four isolated strains. Their proteolytic and fibrinolytic activities were determined using skim milk agar and plasminogen-free fibrin plate. Twenty five isolates showed protease activities, while only four of them secreted fibrinolitic enzyme. The highest proteolytic and fibrinolytic activity was shown by TB1 strain, which is identified as Bacillus coagulans. The 16s rDNA is still in investigating to confirm the TB1 strain identity.

  4. Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method.

    Science.gov (United States)

    Fernández-Pérez, Rocío; Torres, Carmen; Sanz, Susana; Ruiz-Larrea, Fernanda

    2010-12-01

    Strain typing of 103 acetic acid bacteria isolates from vinegars elaborated by the submerged method from ciders, wines and spirit ethanol, was carried on in this study. Two different molecular methods were utilised: pulsed field gel electrophoresis (PFGE) of total DNA digests with a number of restriction enzymes, and enterobacterial repetitive intergenic consensus (ERIC) - PCR analysis. The comparative study of both methods showed that restriction fragment PFGE of SpeI digests of total DNA was a suitable method for strain typing and for determining which strains were present in vinegar fermentations. Results showed that strains of the species Gluconacetobacter europaeus were the most frequent leader strains of fermentations by the submerged method in the studied vinegars, and among them strain R1 was the predominant one. Results showed as well that mixed populations (at least two different strains) occurred in vinegars from cider and wine, whereas unique strains were found in spirit vinegars, which offered the most stressing conditions for bacterial growth.

  5. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    Science.gov (United States)

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-01

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L-1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  6. Analysis of the lactic acid bacteria microflora in traditional Caucasus cow's milk cheeses

    Directory of Open Access Journals (Sweden)

    Terzić-Vidojević Amarela

    2009-01-01

    Full Text Available A total of 157 lactic acid bacteria (LAB were isolated from three hand-made cheeses taken from different households in the region of the Caucasus Mountains. The cheeses were manufactured from cow's milk without the addition of a starter culture. The isolates of LAB were characterized by subjecting them to phenotypic and genotypic tests. The results of identification of LAB indicate that the examined cheeses contained 10 species, viz., Lactobacillus plantarum, Lactobacillus paraplantarum, Lactobacillus arizonensis, Lactobacillus farciminis, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides subsp. mesenteroides, Leuconostoc pseudomesenteroides, Enterococcus faecium, and Enterococcus faecalis. The strains within the species L. plantarum, L. arizonensis, L. paraplantarum, L. farciminis, and L. pseudomesenteroides showed good proteolytic activity.

  7. Lactic Acid Bacteria as a new platform for sustainable production of fuels and chemicals

    DEFF Research Database (Denmark)

    Boguta, Anna Monika

    generation biorefineries, the conversion of lignocellulose is a more complex process; thus, the pursue for a suitable microbe continues. In this PhD study, a wide collection of Lactic Acid Bacteria was systematically screened for the strains’ tolerance levels towards various inhibitors coming from...... the pretreatment of lignocellulosic biomass, as well as for their capabilities to utilize various sugar substrates, including both pentoses and hexoses. Almost 300 strains were tested, including 141 different isolates of Lactobacillus plantarum, L. paraplantarum, L. pentosus, L. brevis, L. buchneri and L....... paracasei, and all available Lactobacillus and Pediococcus type strains. Five most promising strains were subjected to further studies; these included L. pentosus LMG 17672, L. pentosus LMG 17673, L. pentosus 10-16, P. pentosaceous ATCC 25745 and P. acidilactici DSM 20284. The strains were tested in growth...

  8. Medical and Personal Care Applications of Bacteriocins Produced by Lactic Acid Bacteria

    Science.gov (United States)

    Dicks, L. M. T.; Heunis, T. D. J.; van Staden, D. A.; Brand, A.; Noll, K. Sutyak; Chikindas, M. L.

    The frequent use of antibiotics has led to a crisis in the antibiotic ­resistance of pathogens associated with humans and animals. Antibiotic resistance and the emergence of multiresistant bacterial pathogens have led to the investigation of alternative antimicrobial agents to treat and prevent infections in both humans and animals. Research on antimicrobial peptides, with a special interest on bacteriocins of lactic acid bacteria, is entering a new era with novel applications other than food preservation. Many scientists are now focusing on the application of these peptides in medicinal and personal care products. However, it is difficult to assess the success of such ventures due to the dearth of information that has been published and the lack of clinical trials.

  9. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides.

    Science.gov (United States)

    Zannini, Emanuele; Waters, Deborah M; Coffey, Aidan; Arendt, Elke K

    2016-02-01

    Exopolysaccharides (EPS)-producing lactic acid bacteria (LAB) are industrially important microorganisms in the development of functional food products and are used as starter cultures or coadjutants to develop fermented foods. There is large variability in EPS production by LAB in terms of chemical composition, quantity, molecular size, charge, presence of side chains, and rigidity of the molecules. The main body of the review will cover practical aspects concerning the structural diversity structure of EPS, and their concrete application in food industries is reported in details. To strengthen the food application and process feasibility of LAB EPS at industrial level, a future academic research should be combined with industrial input to understand the technical shortfalls that EPS can address.

  10. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology.

    Science.gov (United States)

    Pedersen, Martin B; Gaudu, Philippe; Lechardeur, Delphine; Petit, Marie-Agnès; Gruss, Alexandra

    2012-01-01

    The lactic acid bacteria (LAB) are essential for food fermentations and their impact on gut physiology and health is under active exploration. In addition to their well-studied fermentation metabolism, many species belonging to this heterogeneous group are genetically equipped for respiration metabolism. In LAB, respiration is activated by exogenous heme, and for some species, heme and menaquinone. Respiration metabolism increases growth yield and improves fitness. In this review, we aim to present the basics of respiration metabolism in LAB, its genetic requirements, and the dramatic physiological changes it engenders. We address the question of how LAB acquired the genetic equipment for respiration. We present at length how respiration can be used advantageously in an industrial setting, both in the context of food-related technologies and in novel potential applications.

  11. Comparative analysis of antimicrobial and proteolytic activity of lactic acid bacteria isolated from Zlatar cheese

    Directory of Open Access Journals (Sweden)

    Topisirović Ljubiša

    2007-01-01

    Full Text Available Traditional artisan Zlatar cheese belongs to the group of white, semi hard home-made cheeses, which are produced from no pasteurized cow's milk, without addition of any known bacterial starter culture. In total, 253 Gram-positive and catalase negative lactic acid bacteria (LAB were isolated. Results showed that 70 out of 253 analyzed isolates produced antimicrobial compounds known as bacteriocins. Most isolates from genera Lactococcus and Enterococcus, and isolates belonging to species Lactobacillus plantarum and Lb. brevis, do not synthesize extracellular proteinase. In contrast, isolates from subspecies Lb. paracasei subsp. paracasei showed very good proteolytic activity. It was observed that good proteolytic activity of isolates was not in correlation with their good antimicrobial activity in the most of isolates.

  12. Interaction between lactic acid bacteria and yeasts in sour-dough using a rheofermentometer.

    Science.gov (United States)

    Gobbetti, M; Corsetti, A; Rossi, J

    1995-11-01

    Rheofermentometer assays were used to characterize the leavening of sour-doughs produced using species of lactic acid bacteria (LAB) and yeasts, alone or in combination. Saccharomyces cerevisiae 141 produced the most CO2 and ethanol whereas S. exiguus M14 and Lactobacillus brevis subsp. lindneri CB1 contributed poorly to leavening and gave sour-doughs without porosity. In comparison with that seen in sour-dough produced with yeast alone, yeast fermentation with heterofermentative LAB present was faster whereas that with homofermentative LAB (L. plantarum DC400, L. farciminis CF3) present was slower and produced more CO2. Combining L. brevis subsp. lindneri CB1 with S. cerevisiae 141 decreased bacterial cell numbers and souring activity. However, addition of fructose to the sour-dough overcame these problems as well as activating S. cerevisiae 141.

  13. Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages.

    Science.gov (United States)

    Mokoena, Mduduzi Paul; Mutanda, Taurai; Olaniran, Ademola O

    2016-01-01

    Diverse African traditional fermented foods and beverages, produced using different types of fermentation, have been used since antiquity because of their numerous nutritional values. Lactic acid bacteria (LAB) isolated from these products have emerged as a welcome source of antimicrobials and therapeutics, and are accepted as probiotics. Probiotics are defined as live microbial food supplements which beneficially affect the host by improving the intestinal microbial balance. Currently, popular probiotics are derived from fermented milk products. However, with the growing number of consumers with lactose intolerance that are affected by dietary cholesterol from milk products, there is a growing global interest in probiotics from other food sources. The focus of this review is to provide an overview of recent developments on the applications of probiotic LAB globally, and to specifically highlight the suitability of African fermented foods and beverages as a viable source of novel probiotics.

  14. Improvement of Intestinal Immune Cell Function by Lactic Acid Bacteria for Dairy Products

    Directory of Open Access Journals (Sweden)

    Tomonori Kamiya

    2016-12-01

    Full Text Available Lactic acid bacteria (LAB form a major component of gut microbiota and are often used as probiotics for fermented foods, such as yoghurt. In this study, we aimed to evaluate immunomodulatory activity of LAB, especially that of Lactobacillus bulgaricus ME-552 (ME552 and Streptococcus thermophilus ME-553 (ME553. In vivo/in vitro assay was performed in order to investigate their effects on T cell function. After oral administration of ME553 to C57BL/6 mice, the amount of both interferon γ (IFN-γ and interleukin 17 (IL-17 produced by cluster of differentiation (CD 4+ T cells from Peyer’s patches (PPs were significantly enhanced. On the other hand, ME552 only up-regulated the production of IL-17 from PP cells. The extent of induction for IFN-γ production differed between ME552 and ME553. These results suggest that LAB modulate T cell effector functions and mucosal immunity.

  15. PENAMBAHAN BAKTERI ASAM LAKTAT TERENKAPSULASI UNTUK MENEKAN PERTUMBUHAN BAKTERI PATOGEN PADA PROSES PRODUKSI TAPIOKA [Addition of Encapsulated Lactic Acid Bacteria to Suppress the Growth of Pathogenic Bacteria during Tapioca Production

    Directory of Open Access Journals (Sweden)

    Glisina Dwinoor Rembulan

    2015-07-01

    Full Text Available Lactic acid bacteria (LAB produce organic acids and active compounds which can inhibit the growth of pathogenic bacteria. Lactic acid bacteria potentially can be introduced to inhibit pathogenic bacteria in the tapioca production at the extraction stage, especially during the settling process since there is possibility of starch slurry to be contaminated by pathogenic bacteria from water. The objectives of this research were to design a solid starter of LAB through encapsulation by using modified starch includes sour cassava starch, lintnerized cassava starch and nanocrystalline starch, utilize the starter for suppressing the growth of pathogenic bacteria in the production process of tapioca and characterize the functional properties of tapioca. The encapsulation of lactic acid bacteria was conducted by freeze drying at a temperature of -50°C for 48 hours. The viability of LAB after freeze drying with sour cassava starch matrix was 92% of the liquid starter, with lintnerized cassava starch matrix was 93%, while that with nanocrystalline matrix was 96%. After application of the LAB culture during settling process for tapioca extraction and the tapioca was stored at room temperature for 6 months, it was shown that E. coli, Salmonella and Shigella were  detected in the native tapioca starch (without treatment while the starch added with lactic acid bacteria starter was not absent for the pathogenic bacteria. The addition of lactic acid bacteria in extraction process can suppress the growth of pathogenic bacteria in tapioca. The results showed that lintnerized cassava starch matrix is the best matrix because after 6 months it still contained lactic acid bacteria as compared to liquid starter and that encapsulated with other matrixes.

  16. Microcultures of lactic acid bacteria: characterization and selection of strains, optimization of nutrients and gallic acid concentration.

    Science.gov (United States)

    Guzmán-López, Oswaldo; Loera, Octavio; Parada, José Luis; Castillo-Morales, Alberto; Martínez-Ramírez, Cándida; Augur, Christopher; Gaime-Perraud, Isabelle; Saucedo-Castañeda, Gerardo

    2009-01-01

    Eighteen lactic acid bacteria (LAB) strains, isolated from coffee pulp silages were characterized according to both growth and gallic acid (GA) consumption. Prussian blue method was adapted to 96-well microplates to quantify GA in LAB microcultures. Normalized data of growth and GA consumption were used to characterize strains into four phenotypes. A number of 5 LAB strains showed more than 60% of tolerance to GA at 2 g/l; whereas at 10 g/l GA growth inhibition was detected to a different extent depending on each strain, although GA consumption was observed in seven studied strains (>60%). Lactobacillus plantarum L-08 was selected for further studies based on its capacity to degrade GA at 10 g/l (97%). MRS broth and GA concentrations were varied to study the effect on growth of LAB. Cell density and growth rate were optimized by response surface methodology and kinetic analysis. Maximum growth was attained after 7.5 h of cultivation, with a dilution factor of 1-1/2 and a GA concentration between 0.625 and 2.5 g/l. Results indicated that the main factor affecting LAB growth was GA concentration. The main contribution of this study was to propose a novel adaptation of a methodology to characterize and select LAB strains with detoxifying potential of simple phenolics based on GA consumption and tolerance. In addition, the methodology presented in this study integrated the well-known RSM with an experimental design based on successive dilutions.

  17. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts

    Science.gov (United States)

    2012-01-01

    The biopreservation of foods using bacteriocinogenic lactic acid bacteria (LAB) isolated directly from foods is an innovative approach. The objectives of this study were to isolate and identify bacteriocinogenic LAB from various cheeses and yogurts and evaluate their antimicrobial effects on selected spoilage and pathogenic microorganisms in vitro as well as on a food commodity. LAB were isolated using MRS and M17 media. The agar diffusion bioassay was used to screen for bacteriocin or bacteriocin-like substances (BLS) producing LAB using Lactobacillus sakei and Listeria innocua as indicator organisms. Out of 138 LAB isolates, 28 were found to inhibit these bacteria and were identified as strains of Enterococcus faecium, Streptococcus thermophilus, Lactobacillus casei and Lactobacillus sakei subsp. sakei using 16S rRNA gene sequencing. Eight isolates were tested for antimicrobial activity at 5°C and 20°C against L. innocua, Escherichia coli, Bacillus cereus, Pseudomonas fluorescens, Erwinia carotovora, and Leuconostoc mesenteroides subsp. mesenteroides using the agar diffusion bioassay, and also against Penicillium expansum, Botrytis cinerea and Monilinia frucitcola using the microdilution plate method. The effect of selected LAB strains on L. innocua inoculated onto fresh-cut onions was also investigated. Twenty percent of our isolates produced BLS inhibiting the growth of L. innocua and/or Lact. sakei. Organic acids and/or H2O2 produced by LAB and not the BLS had strong antimicrobial effects on all microorganisms tested with the exception of E. coli. Ent. faecium, Strep. thermophilus and Lact. casei effectively inhibited the growth of natural microflora and L. innocua inoculated onto fresh-cut onions. Bacteriocinogenic LAB present in cheeses and yogurts may have potential to be used as biopreservatives in foods. PMID:22963659

  18. Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria.

    Science.gov (United States)

    Tsukahara, Takamitsu; Koyama, Hironari; Okada, Masaaki; Ushida, Kazunari

    2002-08-01

    Gluconic acid reaches the large intestine to stimulate lactic acid bacteria. However, the fermentation pattern of gluconic acid has yet to be elucidated. Accordingly, we examined the fermentation properties induced by gluconic acid in the pig cecal digesta in vitro. We also tested sorbitol and glucose, substrates for which the fermentation rate and patterns are known. The gluconic acid-utilizing bacteria were further isolated from pig cecal digesta and identified to examine the effect of gluconic acid on hind gut fermentation. Gluconic acid was fermented more slowly than were the other two substrates. Gluconic acid stimulated butyrate production; the butyrate molar percentage reached 26%, which is considered a high butyrate production. The majority of gluconic acid fermenters were identified as lactic acid bacteria, such as Lactobacillus reuteri and L. mucosae, and acid-utilizing bacteria, such as Megasphaera elsdenii and Mitsuokella multiacida. The gluconic acid fermented by lactic acid bacteria, and the lactate and acetate that were produced were used to form butyrate by acid-utilizing bacteria, such as M. elsdenii. Gluconic acid may be useful as a prebiotic to stimulate butyrate production in the large intestine.

  19. Control of Listeria monocytogenes in fresh cheese using protective lactic acid bacteria.

    Science.gov (United States)

    Coelho, M C; Silva, C C G; Ribeiro, S C; Dapkevicius, M L N E; Rosa, H J D

    2014-11-17

    In the past years, there has been a particular focus on the application of bacteriocins produced by lactic acid bacteria (LAB) in controlling the growth of pathogenic bacteria in foods. The aim of this study was to select LAB strains with antimicrobial activity, previously isolated from a traditional Azorean artisanal cheese (Pico cheese), in order to identify those with the greatest potential in reducing Listeria monocytogenes in fresh cheese. Eight bacteriocin producer strains identified as Lactococcus lactis (1) and Enterococcus faecalis (7) were tested. In general, the bacteriocin-producing strains presented a moderate growth in fresh cheese at refrigeration temperatures (4 °C), increasing one log count in three days. They exhibited slow acidification capacity, despite the increased production of lactic acid displayed by some strains after 24h. Bacteriocin activity was only detected in the whey of fresh cheese inoculated with two Enterococcus strains, but all cheeses made with bacteriocin-producing strains inhibited L. monocytogenes growth in the agar diffusion bioassay. No significant differences were found in overall sensory evaluation made by a non-trained panel of 50-52 tasters using the isolates as adjunct culture in fresh cheese, with the exception of one Enterococcus strain. To test the effect of in situ bacteriocin production against L. monocytogenes, fresh cheese was made from pasteurized cows' milk inoculated with bacteriocin-producing LAB and artificially contaminated with approximately 10(6) CFU/mL of L. monocytogenes. The numbers of L. monocytogenes were monitored during storage of fresh cheese at refrigeration temperature (4 °C) for up to 15 days. All strains controlled the growth of L. monocytogenes, although some Enterococcus were more effective in reducing the pathogen counts. After 7 days, this reduction was of approximately 4 log units compared to the positive control. In comparison, an increase of 4 log CFU/mL in pathogen numbers was

  20. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria.

    Science.gov (United States)

    Panagou, Efstathios Z; Schillinger, Ulrich; Franz, Charles M A P; Nychas, George-John E

    2008-04-01

    The effect of controlled fermentation processes on the microbial association and biochemical profile of cv. Conservolea naturally black olives processed by the traditional anaerobic method was studied. The different treatments included (a) inoculation with a commercial starter culture of Lactobacillus pentosus, (b) inoculation with a strain of Lactobacillus plantarum isolated from a fermented cassava product and (c) uninoculated spontaneous process. Microbial growth, pH, titratable acidity, organic acids and volatile compounds were monitored throughout the fermentation. The initial microbiota consisted of Gram-negative bacteria, lactic acid bacteria and yeasts. Inhibition of Gram-negative bacteria was evident in all processes. Both starter cultures were effective in establishing an accelerated fermentation process and reduced the survival period of Gram-negative bacteria by 5 days compared with the spontaneous process, minimizing thus the likelihood of spoilage. Higher acidification of the brines was observed in inoculated processes without any significant difference between the two selected starter cultures (113.5 and 117.6mM for L. plantarum and L. pentosus, respectively). L. pentosus was also determined as the major species present during the whole process of spontaneous olive fermentation. It is characteristic that lactic acid fermentation was also initiated rapidly in the spontaneous process, as the conditions of fermentation, mainly the low salt level (6%, w/v) favored the dominance of lactic acid bacteria over yeasts. Lactic, acetic and propionic were the organic acids detected by HPLC in considerable amounts, whereas citric and malic acids were also present at low levels and degraded completely during the processes. Ethanol, methanol, acetaldehyde, ethyl acetate were the major volatile compounds identified by GC. Their concentrations varied among the different treatments, reflecting varying degrees of microbial activity in the brines. The results obtained

  1. Application of electrochemical optical waveguide lightmode spectroscopy for studying the effect of different stress factors on lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Adanyi, Nora [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary)]. E-mail: n.adanyi@cfri.hu; Nemeth, Edina [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary); Halasz, Anna [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary); Szendro, Istvan [MicroVacuum Ltd., H-1147 Budapest, Kerekgyarto u. 10 (Hungary); Varadi, Maria [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary)

    2006-07-28

    Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS) has been developed to combine evanescent-field optical sensing with electrochemical control of surface adsorption processes. For bioanalytical sensing, a layer of indium tin oxide (ITO) served as both a high-refractive index waveguide and a conductive electrode. In addition, an electrochemical flow-through fluid cuvette was applied, which incorporated working, reference, and counter electrodes, and was compatible with the constraints of optical sensing. The subject of our study was to monitor how the different stress factors (lactic acid, acetic acid and hydrogen peroxide) influence the survival of lactic acid bacteria. The advantage of EC-OWLS technique is that we could carry out kinetic studies on the behaviour of bacteria under stress conditions, and after exposure of lactobacilli to acid and oxidative stress we get faster results about the status of bacteria compared to the traditional quantitative methods. After optimization of the polarization potential used, calibration curve was determined and the sensor response of different rate of living and damaged cells was studied. The bacterial cells were adsorbed in native form on the surface of the sensor by ensuring polarizing potential (1 V) and were exposed to different concentration of acetic acid and hydrogen peroxide solution to 1 h, respectively and the behaviour of bacteria was monitored. Results were compared to traditional micro-assay method.

  2. Toward Probiotict Food Product from Meat Through Isolation and Identification Lactic Acid Bacteria As Probiotic Culture Stater

    Directory of Open Access Journals (Sweden)

    Yunilas Yunilas

    2014-01-01

    Full Text Available Probiotic food products of meat can provide extensive benefits, to increase the shelf life and nutritional value also improve the taste. The use of lactic acid bacteria culture (LAB derived from the isolation of the meat and the addition of probiotic cultures (Lactobacilli and Bifidobacteria in fermented sausage processing is expected to produce a probiotic sausage products with nutritional value, and better shelf life and improve health. This study aimed to isolate and identify lactic acid bacteria (LAB of meat as a starter culture fermented sausages. The parameters observed were gram test, catalase, motility, gas production, type of fermentation, growth at various temperatures and pH. The results were obtained 28 isolates, 17 isolates were able to produce acid and 8 of them are lactic acid bacteria (LAB with the characteristics of gram-positive, catalase negative, not motile, produces gas, are hetero and homo fermentative, optimum growth temperature of 300C and a few of them are able to grow on pH 3.5. Lactic acid bacteria that able to be combined with probiotics as sausage starter culture to the probiotic food products of meat.

  3. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation.

    Science.gov (United States)

    Ventimiglia, Giusi; Alfonzo, Antonio; Galluzzo, Paola; Corona, Onofrio; Francesca, Nicola; Caracappa, Santo; Moschetti, Giancarlo; Settanni, Luca

    2015-10-01

    Fifteen sourdoughs produced in western Sicily (southern Italy) were analysed by classical methods for their chemico-physical characteristics and the levels of lactic acid bacteria (LAB). pH and total titratable acidity (TTA) were mostly in the range commonly reported for similar products produced in Italy, but the fermentation quotient (FQ) of the majority of samples was above 4.0, due to the low concentration of acetic acid estimated by high performance liquid chromatography (HPLC). Specific counts of LAB showed levels higher than 10(8) CFU g(-1) for many samples. The colonies representing various morphologies were isolated and, after the differentiation based on phenotypic characteristics, divided into 10 groups. The most numerous group was composed of facultative heterofermentative isolates, indicating a relevance of this bacterial group during fermentation. The genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR, 16S rRNA gene sequencing and species-specific PCRs identified 33 strains as Lactobacillus plantarum, Lactobacillus curvatus and Lactobacillus graminis. Due to the consistent presence of L. plantarum, it was concluded that this species codominates with obligate heterofermentative LAB in sourdough production in this geographical area. In order to evaluate the performances at the basis of their fitness, the 29 L. plantarum strains were investigated for several technological traits. Twelve cultures showed good acidifying abilities in vitro and L. plantarum PON100148 produced the highest concentrations of organic acids. Eleven strains were positive for extracellular protease activity. Bacteriocin-like inhibitory substances (BLIS) production and antifungal activity was scored positive for several strains, included L. plantarum PON100148 which was selected as starter for experimental sourdough production. The characteristics of the sourdoughs and the resulting breads indicated that the best productions were obtained in presence of L

  4. Antimicrobial Efficacy of an Array of Essential Oils Against Lactic Acid Bacteria.

    Science.gov (United States)

    Dunn, Laurel L; Davidson, P Michael; Critzer, Faith J

    2016-02-01

    The essential oils of clove bud, cinnamon bark and thyme, and their individual compounds including allyl isothiocyanate (AIT), carvacrol, cinnamaldehyde, cinnamic acid, eugenol, and thymol were initially assessed for antimicrobial activity against 9 lactic acid bacteria (LAB) species. Carvacrol and thymol were the most inhibitory with MICs of 0.1% (v/v and w/v, respectively). Cinnamaldehyde, cinnamon bark oil, clove bud oil, eugenol, and thyme oil were moderately inhibitive (MICs = 0.2% v/v), while cinnamic acid required a concentration of 0.5% (w/v). AIT was not effective with MICs in excess of concentrations tested (0.75% v/v). The bactericidal capability of the oil components carvacrol, cinnamaldehyde, eugenol, and thymol were further examined against Pediococcus acidilactici, Lactobacillus buchneri, and Leuconostoc citrovorum. Thymol at 0.1% (w/v) was bactericidal against L. citrovorum (>4-log reduction), but resulted in a 2-log CFU/mL reduction against L. buchneri and P. acidilactici. Cinnamaldehyde at 0.2% to 0.25% (v/v) was effective against L. citrovorum, L. buchneri, and P. acidilactici, resulting in a >2-log reduction. All 3 organisms were susceptible to 0.2% carvacrol with >3-log reduction observed after exposure for 6 h. Eugenol was the least effective. Concentrations of 0.2% and 0.25% (v/v) were needed to achieve an initial reduction in population, >3-log CFU/mL after 6 h exposure. However, at 0.2%, P. acidilactici and L. buchneri recovered to initial populations in 48 to 72 h. Results indicate essential oils have the capacity to inactivate LAB that are commonly associated with spoilage of shelf stable low-acid foods.

  5. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows.

    Directory of Open Access Journals (Sweden)

    Enrica ePessione

    2012-06-01

    Full Text Available Lactic Acid Bacteria (LAB are ancient organisms that cannot biosynthesize functional cytochromes, and cannot get ATP from respiration. Besides sugar fermentation, they evolved electrogenic decarboxylations and ATP-forming deiminations. The right balance between sugar fermentation and decarboxylation/deimination ensures buffered environments thus enabling LAB to survive in human gastric trait and colonize gut. A complex molecular cross-talk between LAB and host exists. LAB moonlight proteins are made in response to gut stimuli and promote bacterial adhesion to mucosa and stimulate immune cells. Similarly, when LAB are present, human enterocytes activate expression of specific genes only. Furthermore, LAB antagonistic relationships with other microorganisms constitutes the basis for their antiinfective role. Histamine and tyramine are LAB bioactive catabolites that act on the CNS, causing hypertension and allergies. Nevertheless, some LAB biosynthesize both GABA, that has relaxing effect on gut smooth muscles, and beta-phenylethylamine, that controls satiety and mood. Since LAB have reduced amino acid biosynthetic abilities, they developed a sophisticated proteolytic system, that is also involved in antihypertensive and opiod peptide generation from milk proteins.Short-chain fatty acids are glycolytic and phosphoketolase end-products, regulating epithelial cellproliferation and differentiation. Nevertheless, they constitute a supplementary energy source for the host, causing weight gain. Human metabolism can also be affected by anabolic LAB products such as conjugated linoleic acids (CLA. Some CLA isomers reduce cancer cell viability and ameliorate insulin resistance, while others lower the HDL/LDL ratio and modify eicosanoid production, with detrimental health effects.A further appreciated LAB feature is the ability to fix selenium into seleno-cysteine Thus opening interesting perspectives for their utilization as antioxidant nutraceutical

  6. Growth, induction, and substrate specificity of dehydroabietic acid-degrading bacteria isolated from a kraft mill effluent enrichment.

    Science.gov (United States)

    Bicho, P A; Martin, V; Saddler, J N

    1995-09-01

    We investigated resin acid degradation in five bacteria isolated from a bleach kraft mill effluent enrichment. All of the bacteria grew on dehydroabietic acid (DHA), a resin acid routinely detected in pulping effluents, or glycerol as the sole carbon source. None of the strains grew on acetate or methanol. Glycerol-grown, high-density, resting-cell suspensions were found to undergo a lag for 2 to 4 h before DHA degradation commenced, suggesting that this activity was inducible. This was further investigated by spiking similar cultures with tetracycline, a protein synthesis inhibitor, at various times during the DHA disappearance curve. Cultures to which the antibiotic was added prior to the lag did not degrade DHA. Those that were spiked with the antibiotic after the lag phase (4 h) degraded DHA at the same rate as did controls with no added tetracycline. Therefore, de novo protein synthesis was required for DHA biodegradation, confirming that this activity is inducible. The five strains were also evaluated for their ability to degrade other resin acids. All strains behaved in a similar fashion. Unchlorinated abietane-type resin acids (abietic acid, DHA, and 7-oxo-DHA) were completely degraded within 7 days, whereas pimarane resin acids (sandaracopimaric acid, isopimaric acid, and pimaric acid) were poorly degraded (25% or less). Chlorination of DHA affected biodegradation, with both 12,14-dichloro-DHA and 14-chloro-DHA showing resistance to degradation. However, 50 to 60% of the 12-chloro-DHA was consumed within the same period.

  7. Synergistic and antagonistic effect of lactic acid bacteria on tyramine production by food-borne pathogenic bacteria in tyrosine decarboxylase broth.

    Science.gov (United States)

    Kuley, Esmeray; Ozogul, Fatih

    2011-08-01

    The effect of lactic acid bacteria (LAB) strains on tyramine (TYR) and also other biogenic amines (BA) production by eight common food-borne pathogen (FBP) in tyrosine decarboxylase broth (TDB) was investigated by using a rapid HPLC method. Significant differences were observed among the FBP strains in ammonia (AMN) and BA production apart from tryptamine, histamine (HIS) and spermine formation (pfood-borne pathogenic bacteria, although the effect of some LAB strains on BA production was strain-dependent. Lactococcus spp. and Streptococcus spp. resulted in significantly higher TYR accumulation by Aeromonas hydrophila and Enterococcus faecalis in TDB. The presence of Lactococcus and/or Lactobacillus in TDB significantly increased HIS production by A. hydrophila, Escherichia coli, Ent. faecalis, Klebsiella pneumoniae and Pseudomonas aeruginosa, whereas HIS accumulation was significantly reduced by Staphylococcus aureus, S. paratyphi A and Listeria monocytogenes.

  8. The key to acetate: metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation-simulating conditions.

    Science.gov (United States)

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik; Wittmann, Christoph

    2014-08-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present.

  9.  Mycolic acids – potential biomarkers of opportunistic infections caused by bacteria of the suborder Corynebacterineae

    Directory of Open Access Journals (Sweden)

    Konrad Kowalski

    2012-06-01

    Full Text Available  Mycolic acids are one of the basic elements of the cell wall structure of bacteria belonging to the suborder Corynebacterineae, constituting from 20�0to 40�0of dry weight. Additionally, they show high structural diversity within each family and species. Nowadays, profiles of mycolic acids are widely described for the genus Mycobacterium, the causative agent of tuberculosis. However, the suborder Corynebacterineae also includes many representatives of opportunistic human pathogens, e.g. Dietzia, Gordonia, Nocardia and Rhodococcus. Currently, an increased infection risk caused by this group of microorganisms especially in immunocompromised patients has been observed. Better knowledge of mycolic acid profiles for Corynebacterineae may allow identification of mycolic acids as diagnostic markers in the detection of opportunistic bacterial infections. Modern techniques of chemical analysis, including mass spectrometry, may enable the development of new chemotaxonomic methods for the detection and differentiation of bacteria within the suborder Corynebacterineae.

  10. Effects of lactic acid bacteria isolated from fermented mustard on lowering cholesterol

    Institute of Scientific and Technical Information of China (English)

    Shu Chen Wang; Chen Kai Chang; Shu Chang Chan; Jiunn Shiuh Shieh; Chih Kwang Chiu; Pin-Der Duh

    2014-01-01

    Objective: To evaluate the ability of lactic acid bacteria (LAB) strains isolated from fermented mustard to lower the cholesterol in vitro.Methods:The ability of 50 LAB strains isolated from fermented mustard on lowering cholesterol in vitro was determined by modified o-phtshalaldehyde method. The LAB isolates were analyzed for their resistance to acid and bile salt. Strains with lowering cholesterol activity, were determined adherence to Caco-2 cells. Results: Strain B0007, B0006 and B0022 assimilated more cholesterol than BCRC10474 and BCRC 17010. The isolated strains showed tolerance to pH 3.0 for 3 h despite variations in the degree of viability and bile-tolerant strains, with more than 108 CFU/mL after incubation for 24 h at 1%oxigall in MRS. In addition, strain B0007 and B0022 identified as Lactobacillus plantarum with 16S rDNA sequences were able to adhere to the Caco-2 cell lines.Conclusions:These strains B0007 and B0022 may be potential functional sources for cholesterol-lowering activities as well as adhering to Caco-2 cell lines.

  11. Screening of lactic acid bacteria from vacuum packaged beef for antimicrobial activity

    Science.gov (United States)

    Oliveira, Roseane B. P.; de L. Oliveira, Afonso; Glória, M. Beatriz A.

    2008-01-01

    The objective of this study was to isolate lactic acid bacteria (LAB) from vacuum packaged beef and to investigate their antagonist activity. LAB mean counts of 5.19 log cfu/cm2 were obtained from five samples of vacuum packaged beef. Two hundred isolates were selected and screened for the inhibitory effect on five ATCC reference Lactobacillus strains. Thirty six isolates showed activity in the agar spot test against at least two of the indicator strains. However, only six cell free supernatants (CFS) from these isolates exhibited activity against the indicator strains using the well-diffusion test and conditions that eliminated the effects of organic acids and hydrogen peroxide. L. acidophilus was the most sensitive indicator tested, whereas L. plantarum and L. fermentum were the most resistant ones. Identification by MIDI system indicated that these LAB isolates were Lactococcus lactis subsp. cremoris, Pediococcus acidilactici, Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus casei GC subgroup A. The antagonistic factors produced by most of these LAB against L. acidophilus were resistant to heat treatment (100°C for 10 min) and stable over a wide pH range (4.0 to 9.0). These data suggest that these isolates could be used as promising hurdles aiming increased safety and extended shelf life of meat products. PMID:24031232

  12. Antioxidant Activity of Peptides from Fermented Milk with Mix Culture of Lactic Acid Bacteria and Yeast

    Directory of Open Access Journals (Sweden)

    Yun Li

    2015-02-01

    Full Text Available The aim of the present study is to investigate the production of antioxidant peptides during milk fermentation with co-culture of Lactic Acid Bacteria (LAB and yeast. Five LAB strains, previously screened with higher hydrolysis activity and Debaryomyces hansenii H2 which isolated from Tibet kefir were used in the study. The peptides separated from fermented milk were analysed antioxidant activity with DPPH radical scavenging, hydroxyl radical scavenging, chelation of metal ions and reducing power assays. The growth of Streptococcus. thermophilus Lactobacillus. delbrueckii ssp. bulgaricus and Lactococcus. lactis was enhanced with co-cultures and L. acidophilus was inhibited in co-culture with yeast. In co-culture with yeast, a significant decrease of the acidity was observed among all the fermentation and the pH reached higher values than in single LAB cultures. Except for L.delbrueckii ssp. bulgaricus, there was no significant difference of protein hydrolysis with other test LAB strains between co-culture and single culture. The co-incubation of LAB with the yeast developed a stronger antioxidant activity in DPPH radical and hydroxyl radical scavenging and no significant (p>0.05 difference in chelation of metal ions. The reducing power of L.delbrueckii ssp. bulgaricus and L. helveticus in co-culture was significant higher than those of single culture.

  13. Effects of lactic acid bacteria isolated from fermented mustard on lowering cholesterol

    Institute of Scientific and Technical Information of China (English)

    Shu; Chen; Wang; Chen; Kai; Chang; Shu; Chang; Chan; Jiunn; Shiuh; Shieh; Chih; Kwang; Chiu; Pin-Der; Duh

    2014-01-01

    Objective:To evaluate the ability of lactic acid bacteria(LAB)strains isolated from fermented mustard to lower the cholesterol in vitro.Methods:The ability of 50 LAB strains isolated from fermented mustard on lowering cholesterol in vitro was determined by modified o-phtshalaldehyde method.The LAB isolates were analyzed for their resistance to acid and bile salt.Strains with lowering cholesterol activity,were determined adherence to Caco-2 cells.Results:Strain B0007,B0006 and B0022 assimilated more cholesterol than BCRC10474 and BCRC17010.The isolated strains showed tolerance to pH 3.0 for 3h despite variations in the degree of viability and bile-tolerant strains,with more than 10~s CFU/mL after incubation for 24 h at 1%oxigall in MRS.In addition,strain B0007 and B0022 identified as Lactobacillus plantarum with 16S rDNA sequences were able to adhere to the Caco-2 cell lines.Conclusions:These strains B0007 and B0022 may be potential functional sources for cholesterollowering activities as well as adhering to Caco-2 cell lines.

  14. Fermentation characteristics and lactic Acid bacteria succession of total mixed ration silages formulated with peach pomace.

    Science.gov (United States)

    Hu, Xiaodong; Hao, Wei; Wang, Huili; Ning, Tingting; Zheng, Mingli; Xu, Chuncheng

    2015-04-01

    The objective of this study was to assess the use of peach pomace in total mixed ration (TMR) silages and clarify the differences in aerobic stability between TMR and TMR silages caused by lactic acid bacteria (LAB). The TMR were prepared using peach pomace, alfalfa hay or Leymus chinensis hay, maize meal, soybean meal, cotton meal, limestone, a vitamin-mineral supplement, and salt in a ratio of 6.0:34.0:44.4:7.0:5.0:2.5:1.0:0.1 on a dry matter (DM) basis. Fermentation quality, microbial composition, and the predominant LAB were examined during ensiling and aerobic deterioration. The results indicated that the TMR silages with peach pomace were well fermented, with low pH and high lactic acid concentrations. The aerobic stability of TMR silages were significantly higher than that of TMR. Compared with TMR silages with alfalfa hay, TMR silage with Leymus chinensis hay was much more prone to deterioration. Although the dominant LAB were not identical in TMR, the same dominant species, Lactobacillus buchneri and Pediococcus acidilactici, were found in both types of TMR silages after 56 d of ensiling, and they may play an important role in the aerobic stability of TMR silages.

  15. Effect of culture medium on acid production from sorbitol by oral bacteria.

    Science.gov (United States)

    Kalfas, S; Edwardsson, S

    1990-08-01

    The fermentation of sorbitol or glucose and the acid production by strains belonging to the genera Actinomyces, Lactobacillus, and Streptococcus isolated from the predominant sorbitol-fermenting human dental plaque flora were studied in cultures in complex or defined bacteriologic broths and in saliva-based broth. The growth yields of Lactobacillus and Streptococcus in the saliva-based media and of Actinomyces in the defined broth were poor. Addition of fermentable carbohydrate to the saliva-based broth favored the growth of Streptococcus and Lactobacillus but not that of Actinomyces. The results showed obvious differences in the capacity of oral bacteria to ferment sorbitol between cultures in saliva-based and bacteriologic broths. Lactobacillus failed to utilize sorbitol when saliva was the only source of nutrients. Lower proportions of lactic and formic acids were formed from sorbitol by Actinomyces and Lactobacillus in the saliva-based than in the bacteriologic media. The findings illustrate some mechanisms possibly involved in the interactions between sorbitol and dental plaque flora.

  16. Archaea rather than bacteria control nitrification in two agricultural acidic soils.

    Science.gov (United States)

    Gubry-Rangin, Cécile; Nicol, Graeme W; Prosser, James I

    2010-12-01

    Nitrification is a central component of the global nitrogen cycle. Ammonia oxidation, the first step of nitrification, is performed in terrestrial ecosystems by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Published studies indicate that soil pH may be a critical factor controlling the relative abundances of AOA and AOB communities. In order to determine the relative contributions of AOA and AOB to ammonia oxidation in two agricultural acidic Scottish soils (pH 4.5 and 6), the influence of acetylene (a nitrification inhibitor) was investigated during incubation of soil microcosms at 20 °C for 1 month. High rates of nitrification were observed in both soils in the absence of acetylene. Quantification of respective amoA genes (a key functional gene for ammonia oxidizers) demonstrated significant growth of AOA, but not AOB. A significant positive relationship was found between nitrification rate and AOA, but not AOB growth. AOA growth was inhibited in the acetylene-containing microcosms. Moreover, AOA transcriptional activity decreased significantly in the acetylene-containing microcosms compared with the control, whereas no difference was observed for the AOB transcriptional activity. Consequently, growth and activity of only archaeal but not bacterial ammonia oxidizer communities strongly suggest that AOA, but not AOB, control nitrification in these two acidic soils.

  17. Binding and detoxification of chlorpyrifos by lactic acid bacteria on rice straw silage fermentation.

    Science.gov (United States)

    Wang, Yan-Su; Wu, Tian-Hao; Yang, Yao; Zhu, Cen-Ling; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-01-01

    This investigation examined the reduction of pesticide residues on straw inoculated with lactic acid bacteria (LAB) during ensiling. Lactobacillus casei WYS3 was isolated from rice straw that contained pesticide residues. Non-sterilized rice straw, which was inoculated with L. casei WYS3, showed increased removal of chlorpyrifos after ensiling, compared with rice straw that was not inoculated with L. casei WYS3 or sterilized rice straw. In pure culture, these strains can bind chlorpyrifos as indicated by high-performance liquid chromatography analysis. Viable L. casei WYS3 was shown to bind 33.3-42% of exogenously added chlorpyrifos. These results are similar to those of acid-treated cells but less than those of heat-treated cells, which were found to bind 32.0% and 77.2% of the added chlorpyrifos respectively. Furthermore, gas chromatography-mass spectrometry analysis determined that L. casei WYS3 detoxified chlorpyrifos via P-O-C cleavage. Real-time polymerized chain reaction analysis determined that organophosphorus hydrolase gene expression tripled after the addition of chlorpyrifos to LAB cultures, compared with the control group (without chlorpyrifos). This paper highlights the potential use of LAB starter cultures for the detoxification and removal of chlorpyrifos residues in the environment.

  18. Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology.

    Science.gov (United States)

    Yakushi, Toshiharu; Matsushita, Kazunobu

    2010-05-01

    Pyrroquinoline quinone-dependent alcohol dehydrogenase (PQQ-ADH) of acetic acid bacteria is a membrane-bound enzyme involved in the acetic acid fermentation by oxidizing ethanol to acetaldehyde coupling with reduction of membranous ubiquinone (Q), which is, in turn, re-oxidized by ubiquinol oxidase, reducing oxygen to water. PQQ-ADHs seem to have co-evolved with the organisms fitting to their own habitats. The enzyme consists of three subunits and has a pyrroloquinoline quinone, 4 heme c moieties, and a tightly bound Q as the electron transfer mediators. Biochemical, genetic, and electrochemical studies have revealed the unique properties of PQQ-ADH since it was purified in 1978. The enzyme is unique to have ubiquinol oxidation activity in addition to Q reduction. This mini-review focuses on the molecular properties of PQQ-ADH, such as the roles of the subunits and the cofactors, particularly in intramolecular electron transport of the enzyme from ethanol to Q. Also, we summarize biotechnological applications of PQQ-ADH as to enantiospecific oxidations for production of the valuable chemicals and bioelectrocatalysis for sensors and fuel cells using indirect and direct electron transfer technologies and discuss unsolved issues and future prospects related to this elaborate enzyme.

  19. Source Tracking and Succession of Kimchi Lactic Acid Bacteria during Fermentation.

    Science.gov (United States)

    Lee, Se Hee; Jung, Ji Young; Jeon, Che Ok

    2015-08-01

    This study aimed at evaluating raw materials as potential lactic acid bacteria (LAB) sources for kimchi fermentation and investigating LAB successions during fermentation. The bacterial abundances and communities of five different sets of raw materials were investigated using plate-counting and pyrosequencing. LAB were found to be highly abundant in all garlic samples, suggesting that garlic may be a major LAB source for kimchi fermentation. LAB were observed in three and two out of five ginger and leek samples, respectively, indicating that they can also be potential important LAB sources. LAB were identified in only one cabbage sample with low abundance, suggesting that cabbage may not be an important LAB source. Bacterial successions during fermentation in the five kimchi samples were investigated by community analysis using pyrosequencing. LAB communities in initial kimchi were similar to the combined LAB communities of individual raw materials, suggesting that kimchi LAB were derived from their raw materials. LAB community analyses showed that species in the genera Leuconostoc, Lactobacillus, and Weissella were key players in kimchi fermentation, but their successions during fermentation varied with the species, indicating that members of the key genera may have different acid tolerance or growth competitiveness depending on their respective species.

  20. Assessment of probiotic properties in lactic acid bacteria isolated from wine.

    Science.gov (United States)

    García-Ruiz, Almudena; González de Llano, Dolores; Esteban-Fernández, Adelaida; Requena, Teresa; Bartolomé, Begoña; Moreno-Arribas, M Victoria

    2014-12-01

    Probiotic properties are highly strain-dependent but rarely studied in enological lactic acid bacteria (LAB). In this study, the probiotic features of 11 strains of Lactobacillus spp., Pediococcus spp., and Oenococcus oeni, including saliva and acid resistance, bile tolerance and exopolysaccharides' production, were investigated. The assays included two probiotic reference strains (Lactobacillus plantarum CLC 17 and Lactobacillus fermentum CECT5716). The Lactobacillus and Pediococcus strains showed high resistance to lysozyme (>80% resistance to 100 mg/L of lysozyme under conditions simulating the in vivo dilution by saliva) and were capable of surviving at low pH values (pH 1.8) and bile salts, suggesting good adaptation of the wine strains to gastrointestinal conditions. The ability of the strains to adhere to the intestinal mucosa and the inhibition of the adhesion of Escherichia coli to human intestinal cells were also evaluated. Adhesion levels of enological LAB to Caco-2 cells varied from 0.37% to 12.2%, depending on the strain. In particular, Pediococcus pentosaceus CIAL-86 showed a high percentage of adhesion to intestinal cells (>12%), even higher than that shown by the probiotic reference strains, and a high anti-adhesion activity against E. coli CIAL-153 (>30%), all of which support this wine LAB strain as a potential probiotic.

  1. Diversity and technological potential of lactic acid bacteria of wheat flours.

    Science.gov (United States)

    Alfonzo, Antonio; Ventimiglia, Giusi; Corona, Onofrio; Di Gerlando, Rosalia; Gaglio, Raimondo; Francesca, Nicola; Moschetti, Giancarlo; Settanni, Luca

    2013-12-01

    Lactic acid bacteria (LAB) were analysed from wheat flours used in traditional bread making throughout Sicily (southern Italy). Plate counts, carried out in three different media commonly used to detect food and sourdough LAB, revealed a maximal LAB concentration of approximately 4.75 Log CFU g(-1). Colonies representing various morphological appearances were isolated and differentiated based on phenotypic characteristics and genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR. Fifty unique strains were identified. Analysis by 16S rRNA gene sequencing grouped the strains into 11 LAB species, which belonged to six genera: Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Weissella. Weissella cibaria, Lactobacillus plantarum, Leuconostoc pseudomesenteroides and Leuconostoc citreum were the most prevalent species. The strains were not geographically related. Denaturing gradient gel electrophoresis (DGGE) analysis of total DNA of flour was used to provide a more complete understanding of the LAB population; it confirmed the presence of species identified with the culture-dependent approach, but did not reveal the presence of any additional LAB species. Finally, the technological characteristics (acidifying capacity, antimicrobial production, proteolytic activity, organic acid, and volatile organic compound generation) of the 50 LAB strains were investigated. Eleven strains were selected for future in situ applications.

  2. Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria.

    Science.gov (United States)

    Panhwar, Qurban Ali; Naher, Umme Aminun; Radziah, Othman; Shamshuddin, Jusop; Razi, Ismail Mohd

    2015-02-20

    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase.

  3. Use of virginiamycin to control the growth of lactic acid bacteria during alcohol fermentation.

    Science.gov (United States)

    Hynes, S H; Kjarsgaard, D M; Thomas, K C; Ingledew, W M

    1997-04-01

    The antibiotic virginiamycin was investigated for its effects on growth and lactic acid production by seven strains of lactobacilli during the alcoholic fermentation of wheat mash by yeast. The lowest concentration of virginiamycin tested (0.5 mg Lactrol kg-1 mash), was effective against most of the lactic acid bacteria under study, but Lactobacillus plantarum was not significantly inhibited at this concentration. The use of virginiamycin prevented or reduced potential yield losses of up to 11% of the produced ethanol due to the growth and metabolism of lactobacilli. However, when the same concentration of virginiamycin was added to mash not inoculated with yeast, Lactobacillus rhamnosus and L. paracasei grew after an extensive lag of 48 h and L. plantarum grew after a similar lag even in the presence of 2 mg virginiamycin kg-1 mash. Results showed a variation in sensitivity to virginiamycin between the different strains tested and also a possible reduction in effectiveness of virginiamycin over prolonged incubation in wheat mash, especially in the absence of yeast.

  4. Isolation of lactic acid bacteria from Allium cepa var. aggregatum and study of their probiotic properties

    Directory of Open Access Journals (Sweden)

    Nannu Shafakatullah

    2015-04-01

    Full Text Available The shallot (Allium cepa var. aggregatum or the A. cepa Aggregatum Group is a botanical variety of the species Allium cepa, to which the multiplier onion also belongs. Shallots are called "small onions" in South India and are used extensively in cooking. The scientific use of shallots as a source of Lactic Acid Bacteria (LAB has not yet been examined. Indigenous knowledge revealed shallots as a good health source. An attempt has been made to find out the possibilities of LAB in fresh shallots. Four isolates were identified on the basis of their morphological, cultural, physiological and biochemical tests and their probiotic properties were evaluated. These isolates were screened for resistance against bile salt, gastric juice, intestinal juice, different NaCl concentrations, acidic pH, ability to inhibit pathogens, antibiotic resistance, adherence capacity as well as survival under different storage temperatures. Isolated strains Bacillus coagulans (Lactobacillus sporogenes, Lactobacillus brevis, Lactobacillus delbrueckii subsp. bulgaricus and Lactococcus lactis showed satisfactory probiotic potentials.

  5. Lactic acid bacteria in Hamei and Marcha of North East India.

    Science.gov (United States)

    Tamang, J P; Dewan, S; Tamang, B; Rai, A; Schillinger, U; Holzapfel, W H

    2007-06-01

    Hamei and Marcha are mixed dough inocula used as starters for preparation of various indigenous alcoholic beverages in Manipur and Sikkim in India, respectively. These starters are traditionally prepared from rice with wild herbs and spices. Samples of Hamei and Marcha, collected from Manipur and Sikkim, respectively, were analysed for lactic acid bacterial composition. The population of lactic acid bacteria (LAB) was 6.9 and 7.1 Log cfu/g in Hamei and Marcha, respectively. On the basis of phenotypic and genotypic characters, LAB strains isolated from Hamei and Marcha were identified as Pediococcus pentosaceus, Lactobacillus plantarum and Lactobacillus brevis. Technological properties of LAB such as antimicrobial properties, effect on acidification, ability to produce biogenic amines and ethanol, degree of hydrophobicity and enzymatic activities were also performed. Pediococcus pentosaceus HS: B1, isolated from Hamei, was found to produce bacteriocin. None of the strains produced biogenic amines. LAB strains showed a strong acidifying ability and they also produced a wide spectrum of enzymes.

  6. Screening of lactic acid bacteria and bifidobacteria for potential probiotic use in Iberian dry fermented sausages.

    Science.gov (United States)

    Ruiz-Moyano, Santiago; Martín, Alberto; Benito, María José; Nevado, Francisco Pérez; de Guía Córdoba, María

    2008-11-01

    The purpose of this study was to select lactic acid bacteria and bifibobacteria strains as potential probiotic cultures during the processing of Iberian dry fermented sausages. A total of 1000 strains were isolated from Iberian dry fermented sausages (363), and human (337) and pig faeces (300) in different culture media. Around 30% of these strains, mainly isolated from Iberian dry fermented sausages in LAMVAB agar, were pre-selected for testing as potential probiotics by their ability to grow adequately at the pH values and NaCl concentrations of these meat products during the ripening process. Of the in vitro investigations used to predict the survival of a strain in conditions present in the gastro intestinal tract, exposure to pH 2.5 showed itself to be a highly discriminating factor with only 51 out of 312 pre-selected strains resisting adequately after 1.5h of exposure. All acid-resistant isolates identified as lactobacilli originated from human faeces (Lactobacillus casei and Lactobacillus fermentum) and pig faeces (Lactobacillus reuteri, Lactobacillus animalis, Lactobacillus murinus, and Lactobacillus vaginalis). Pediococcus acidilactici strains were isolated from Iberian dry fermented sausages and pig faeces, whereas the greatest number of Enterococcus strains were identified as Enterococcus faecium, with this species being isolated from Iberian dry fermented sausages, and human and pig faeces. Most of these strains are promising probiotic meat culture candidates suitable for Iberian dry fermented sausages.

  7. Isolation and Selection of Anti-Candida albicans Metabolites Producing Lactic Acid Bacteria from Various Sources

    Directory of Open Access Journals (Sweden)

    Tanes SUNGSRI

    2015-02-01

    Full Text Available Five hundred and fifty-two of lactic acid bacteria (LAB have been isolated and screened from fermented foods, natural sources and dairy effluents on De Mann Rogosa Sharpe (MRS agar. Fifty-one isolates, in the percentile of 9.24, produced the secondary metabolites that could inhibit the growth of Candida albicans BCC6120 by using dual culture overlay assay. The culture broth of LAB, moreover, showed anti-C. albicans activity in acidic condition at pH range of 3.0-5.0 by using agar well diffusion method. Interestingly, the isolate L-47-2 showed much more colonization surrounding the surface of sterile toothpick and test tube when growing in MRS broth. The identification of isolate L-47-2 by morphological and biochemical characteristics using API 50 CHL Test Kit and further confirmed by 16S rRNA gene sequence analysis revealed that isolate L47-2 was similar to Lactobacillus paracasei with 99% nucleotide identity.    

  8. Combined effect of sourdough lactic acid bacteria and additives on bread firmness and staling.

    Science.gov (United States)

    Corsetti, A; Gobbetti, M; De Marco, B; Balestrieri, F; Paoletti, F; Russi, L; Rossi, J

    2000-07-01

    The effect of various sourdoughs and additives on bread firmness and staling was studied. Compared to the bread produced with Saccharomyces cerevisiae 141, the chemical acidification of dough fermented by S. cerevisiae 141 or the use of sourdoughs increased the volume of the breads. Only sourdough fermentation was effective in delaying starch retrogradation. The effect depended on the level of acidification and on the lactic acid bacteria strain. The effect of sourdough made of S. cerevisiae 141-Lactobacillus sanfranciscensis 57-Lactobacillus plantarum 13 was improved when fungal alpha-amylase or amylolytic strains such as L. amylovorus CNBL1008 or engineered L. sanfranciscensis CB1 Amy were added. When pentosans or pentosans, endoxylanase enzyme, and L. hilgardii S32 were added to the same sourdough, a greater delay of the bread firmness and staling was found. When pentosans were in part hydrolyzed by the endoxylanase enzyme, the bread also had the highest titratable acidity, due to the fermentation of pentoses by L. hilgardii S32. The addition of the bacterial protease to the sourdough increased the bread firmness and staling.

  9. Isolation and identification of lactid acid bacteria originated from king grass (Pennisetum purpureophoides as candidate of probiotic for livestock

    Directory of Open Access Journals (Sweden)

    Santoso B

    2013-06-01

    Full Text Available A study was conducted to isolate and identify strain of lactic acid bacteria (LAB isolated from king grass, and to determine their potential as candidate of probiotic for livestock. The LAB was isolated by culturing king grass extract in De Man, Rogosa and Sharpe (MRS medium. The pure culture LAB was used to identify strain of bacteria using Analytical Profile Index (API 50 CH kit. The result showed that the strain bacteria was identified as Lactobacillus plantarum. L. plantarum was able to survive in extreme condition at pH 2 and 0.3% bile salt. L. plantarum also survived against pathogenic bacteria i.e. Staphylococcus aureus, Escherechia coli and Salmonella thypi. It is concluded that L. plantarum isolated from king grass could potentially to be used as probiotic for livestock.

  10. Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms

    NARCIS (Netherlands)

    Quevedo, Beatrice; Giertsen, Elin; Zijnge, Vincent; Luethi-Schaller, Helga; Guggenheim, Bernhard; Thurnheer, Thomas; Gmuer, Rudolf

    2011-01-01

    Background: The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotroph

  11. Yeasts and lactic acid bacteria microbiota from masau (Ziziphus mauritiana) fruits and their fermented fruit pulp in Zimbabwe

    NARCIS (Netherlands)

    Nyanga, L.K.; Nout, M.J.R.; Gadaga, T.H.; Theelen, R.M.C.; Boekhout, T.; Zwietering, M.H.

    2007-01-01

    Masau are Zimbabwean wild fruits, which are usually eaten raw and/ or processed into products such as porridge, traditional cakes, mahewu and jam. Yeasts, yeast-like fungi, and lactic acid bacteria present on the unripe, ripe and dried fruits, and in the fermented masau fruits collected from Muzarab

  12. Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two different Weissella confusa strains from soya

    NARCIS (Netherlands)

    Malik, Amarila; Radji, Maksum; Kralj, Slavko; Dijkhuizen, Lubbert

    2009-01-01

    Homopolysaccharide (glucan and fructan) synthesis from sucrose by sucrase enzymes in lactic acid bacteria (LAB) has been well studied in the genera Leuconostoc, Streptococcus and Lactobacillus. This study aimed to identify and characterize genes encoding glucansucrase/glucosyltransferase (GTF) and f

  13. Characterization of nitrate-reducing and amino acid-using bacteria prominent in nitrotoxin-enriched equine cecal populations

    Science.gov (United States)

    In the present study, populations of equine cecal microbes enriched for enhanced rates of 3-nitro-1-propionic acid (NPA) or nitrate metabolism were diluted and cultured for NPA-metabolizing bacteria on a basal enrichment medium (BEM) or tryptose soy agar (TSA) medium supplemented with either 5 mM NP...

  14. Production of the flavor compound benzaldehyde by lactic acid bacteria: role of manganese and its transport systems in Lactobacillus plantarum

    NARCIS (Netherlands)

    Nierop Groot, M.N.

    2001-01-01

    One of the aims of the research described in this thesis (Chapter 1 and 2) was to investigate the conversion of phenylalanine to the aromatic flavor compound benzaldehyde in lactic acid bacteria (LAB) (Chapter 3). Lactobacillus plantarum was used as the model organism to study phenylalanine degradat

  15. Controlled Gene Expression Systems for Lactic Acid Bacteria : Transferable Nisin-Inducible Expression Cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp.

    NARCIS (Netherlands)

    Kleerebezem, Michiel; Beerthuyzen, Marke M.; Vaughan, Elaine E.; Vos, Willem M. de; Kuipers, Oscar P.

    1997-01-01

    A transferable dual-plasmid inducible gene expression system for use in lactic acid bacteria that is based on the autoregulatory properties of the antimicrobial peptide nisin produced by Lactococcus lactis was developed. Introduction of the two plasmids allowed nisin-inducible gene expression in Lac

  16. 乳酸菌益生功能研究进展%Advances in Probiotic Properties of Lactic Acid Bacteria

    Institute of Scientific and Technical Information of China (English)

    林谦

    2015-01-01

    介绍了益生菌的概念、乳酸菌的益生功能,并指出了乳酸菌益生功能研究中的问题。%The concept of probiotc, probiotic properties of lactic acid bacteria and challenges of development were reviewed.

  17. Role of phosphate in the central metabolism of two lactic acid bacteria-a comparative systems biology approach

    NARCIS (Netherlands)

    Levering, J.; Musters, M.W.J.M.; Bekker, M.; Bellomo, D.; Fiedler, T.; Vos, de W.M.; Hugenholtz, F.; Kreikemeyer, B.; Kummer, U.; Teusink, B.

    2012-01-01

    Lactic acid-producing bacteria survive in distinct environments, but show common metabolic characteristics. Here we studied the dynamic interactions of the central metabolism in Lactococcus lactis, extensively used as a starter culture in the dairy industry, and Streptococcus pyogenes, a human patho

  18. Mannitol production by lactic acid bacteria grown in supplemented carob syrup.

    Science.gov (United States)

    Carvalheiro, Florbela; Moniz, Patrícia; Duarte, Luís C; Esteves, M Paula; Gírio, Francisco M

    2011-01-01

    Detailed kinetic and physiological characterisation of eight mannitol-producing lactic acid bacteria, Leuconostoc citreum ATCC 49370, L. mesenteroides subsp. cremoris ATCC19254, L. mesenteroides subsp. dextranicum ATCC 19255, L. ficulneum NRRL B-23447, L. fructosum NRRL B-2041, L. lactis ATCC 19256, Lactobacillus intermedius NRRL 3692 and Lb. reuteri DSM 20016, was performed using a carob-based culture medium, to evaluate their different metabolic capabilities. Cultures were thoroughly followed for 30 h to evaluate consumption of sugars, as well as production of biomass and metabolites. All strains produced mannitol at high yields (>0.70 g mannitol/g fructose) and volumetric productivities (>1.31 g/l h), and consumed fructose and glucose simultaneously, but fructose assimilation rate was always higher. The results obtained enable the studied strains to be divided mainly into two groups: one for which glucose assimilation rates were below 0.78 g/l h (strains ATCC 49370, ATCC 19256 and ATCC 19254) and the other for which they ranged between 1.41 and 1.89 g/l h (strains NRRL B-3692, NRRL B-2041, NRRL B-23447 and DSM 20016). These groups also exhibited different mannitol production rates and yields, being higher for the strains with faster glucose assimilation. Besides mannitol, all strains also produced lactic acid and acetic acid. The best performance was obtained for L. fructosum NRRL B-2041, with maximum volumetric productivity of 2.36 g/l h and the highest yield, stoichiometric conversion of fructose to mannitol.

  19. Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

    Science.gov (United States)

    Li, Dongxia; Ni, Kuikui; Pang, Huili; Wang, Yanping; Cai, Yimin; Jin, Qingsheng

    2015-01-01

    A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC 43971T, Micrococcus luteus ATCC 4698T and Escherichia coli ATCC 11775T were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at 100°C), but the antimicrobial activity was eliminated after treatment at 121°C for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory. PMID:25924957

  20. Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal Pico cheese.

    Science.gov (United States)

    Domingos-Lopes, M F P; Stanton, C; Ross, P R; Dapkevicius, M L E; Silva, C C G

    2017-05-01

    A total of 114 lactic acid bacteria were isolated at one and 21 days of ripening from a traditional raw cow's milk cheese without the addition of starter culture, produced by three artisanal cheese-makers in Azores Island (Pico, Portugal). Identification to species and strain level was accomplished by16S rRNA gene and PFGE analysis. Carbohydrate utilization profiles were obtained with the relevant API kits. Isolates were evaluated according to safety and technological criteria. The most frequently observed genus identified by 16S rRNA sequencing analysis was Enterococcus, whereas API system mostly identified Lactobacillus. The highest percentages of antibiotic resistance were to nalidixic acid (95%), and aminoglycosides (64-87%). All isolates were sensitive to several beta-lactam antibiotics and negative for histamine and DNase production. Gelatinase activity was detected in 49.1% of isolates, 43% were able to degrade casein and 93% were α-hemolytic. Most enterococci presented virulence genes, such as gelE, asaI, ace. Diacetyl production was found to be species dependent and one strain (Leu. citreum) produced exopolysaccharides. Selected strains were further studied for technological application and were found to be slow acid producers in milk and experimental cheeses, a desirable trait for adjunct cultures. Two strains were selected on the basis of technological and safety application as adjunct cultures in cheese production and presented the best cheese aroma and flavor in consumer preference tests. This is the first effort to characterize Pico cheese LAB isolates for potential application as adjunct cultures; the results suggest the potential of two strains to improve the quality of this traditional raw milk product.