WorldWideScience

Sample records for acid bacteria elicit

  1. [Teichoic acids from lactic acid bacteria].

    Science.gov (United States)

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  2. [Regulating acid stress resistance of lactic acid bacteria--a review].

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-07-04

    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  3. Commensal bacteria and essential amino acids control food choice behavior and reproduction.

    Science.gov (United States)

    Leitão-Gonçalves, Ricardo; Carvalho-Santos, Zita; Francisco, Ana Patrícia; Fioreze, Gabriela Tondolo; Anjos, Margarida; Baltazar, Célia; Elias, Ana Paula; Itskov, Pavel M; Piper, Matthew D W; Ribeiro, Carlos

    2017-04-01

    Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.

  4. Exogenous fatty acid metabolism in bacteria.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-10-01

    Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  5. Electron transport chains of lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic

  6. Identification of Lactic Acid Bacteria and Propionic Acid Bacteria using FTIR Spectroscopy and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Beata Nalepa

    2012-01-01

    Full Text Available In the present study, lactic acid bacteria and propionic acid bacteria have been identified at the genus level with the use of artificial neural networks (ANNs and Fourier transform infrared spectroscopy (FTIR. Bacterial strains of the genera Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Propionibacterium were analyzed since they deliver health benefits and are routinely used in the food processing industry. The correctness of bacterial identification by ANNs and FTIR was evaluated at two stages. At first stage, ANNs were tested based on the spectra of 66 reference bacterial strains. At second stage, the evaluation involved 286 spectra of bacterial strains isolated from food products, deposited in our laboratory collection, and identified by genus-specific PCR. ANNs were developed based on the spectra and their first derivatives. The most satisfactory results were reported for the probabilistic neural network, which was built using a combination of W5W4W3 spectral ranges. This network correctly identified the genus of 95 % of the lactic acid bacteria and propionic acid bacteria strains analyzed.

  7. The effect of lactic acid bacteria on cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  8. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Science.gov (United States)

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Differential staining of bacteria: acid fast stain.

    Science.gov (United States)

    Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P

    2009-11-01

    Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria. (c) 2009 by John Wiley & Sons, Inc.

  10. Comparative genomics of the lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O' Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  11. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Christensen, Hanne

    2007-01-01

    Lactic acid bacteria (LAB) are abundant in the gastrointestinal tract where they continuously regulate the immune system. NK cells are potently activated by dendritic cells (DCs) matured by inflammatory stimuli, and NK cells are present in the gut epithelium and in mesenteric lymph nodes......, but it is not known how NK-DC interactions are affected by the predominantly non-pathogenic LAB. We demonstrate that human DCs exposed to different strains of gut-derived LAB consistently induce proliferation, cytotoxicity and activation markers in autologous NK cells. On the contrary, strains of LAB differ greatly...... in their ability to induce DC-dependent IFN-gamma production by NK cells. This suggests that DCs stimulated by gut LAB may expand the pool of NK cells and increase their cytotoxic potential. Specific LAB, inducing high levels of IL-12 in DCs, may promote amplification of a type-1 response via potent stimulation...

  12. Chemotactic behavior of deep subsurface bacteria toward carbohydrates, amino acids and a chlorinated alkene

    Energy Technology Data Exchange (ETDEWEB)

    Lopez de Victoria, G. (Puerto Rico Univ., Rio Piedras (Puerto Rico). Dept. of Biology)

    1989-02-01

    The chemotactic behavior of deep terrestrial subsurface bacteria toward amino acids, carbohydrates and trichloroethylene was assayed using a modification of the capillary method and bacterial enumeration by acridine orange direct counts. Eleven isolates of bacteria isolated from six different geological formations were investigated. A bimodal response rather than an absolute positive or negative response was observed in most assays. Most of the isolates were positively chemotactic to low concentrations of substrates and were repelled by high concentrations of the same substrate. However, this was not the case for trichloroethylene (TCE) which was mostly an attractant and elicited the highest responses in all the isolates when compared with amino acids and carbohydrates. The movement rates of these isolates in aseptic subsurface sediments in the absence and presence of TCE were also determined using a laboratory model. All of the isolates showed distinct response range, peak, and threshold concentrations when exposed to the same substrates suggesting that they are possibly different species as has been inferred from DNA homology studies. 101 refs., 4 figs., 57 tabs.

  13. Interaction of neptunium with humic acid and anaerobic bacteria

    International Nuclear Information System (INIS)

    Kubota, Takumi; Sasaki, Takayuki; Kudo, Akira

    2002-01-01

    Humic acid and bacteria play an important role in the migration of radionuclides in groundwaters. The interaction of neptunium with humic acid and anaerobic bacteria has been investigated by liquid/liquid and solid/liquid extraction systems. For liquid/liquid extraction, the apparent complex formation constant, β α was obtained from the distribution between two phases of neptunium. For solid/liquid extraction, the ratio of sorption to bacteria, K d , was measured. K d of humic acid can be evaluated from β α . The large value of β α and K d means strong interaction of neptunium with organisms. In order to examine the effect of the nature of organism on interaction, the interaction with humic acid was compared to that with non-sterilized or sterilized mixed anaerobic bacteria. The value of β α of humate depended on neptunium ion concentration as well as pH, which showed the effect of polyelectrolyte properties and heterogeneous composition of humic acid. The comparison of interaction with humic acid and bacteria indicated that the K d value of humic acid was larger than that of bacteria and more strongly depend on pH. (author)

  14. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  15. The impact of lactic acid bacteria on sourdough fermentation

    Directory of Open Access Journals (Sweden)

    Savić Dragiša S.

    2005-01-01

    Full Text Available The baking of sourdough breads represents one of the oldest biotechnological processes. Despite traditionality, sourdough bread has great potential because of its benefits. Sourdough is a mixture of flour and water that is dominated by a complex microflora composed of yeasts and lactic acid bacteria that are crucial in the preparation of bread dough. Lactic acid bacteria cause acidification by producing lactic acid that increases the shelf life of bread by preventing the growth of undesirable microorganisms and affects the nutritional value of bread by increasing the availability of minerals. In addition to these advantages, the use of sourdough fermentation also improves dough machinability, breadcrumb structure and the characteristic flavour of bread. Lactic acid bacteria in sourdough fermentation are well known representing both homofermentative and heterofermentative bacteria. They may originate from selected natural contaminants in the flour or from a starter culture containing one or more known species of lactic acid bacteria. Sourdough can be cultivated in bakeries or obtained from commercial suppliers. However, many bakeries in Europe still use spontaneously fermented sourdoughs, which have been kept metabolically active for decades by the addition of flour and water at regular intervals. The impact of lactic acid bacteria on sourdough fermentation and their influence on dough and bread quality was discussed on the basis of research and literature data.

  16. Time related total lactic acid bacteria population diversity and ...

    African Journals Online (AJOL)

    user

    2011-02-07

    Feb 7, 2011 ... the diversity and dynamics of lactic acid bacteria (LAB) population in fresh ..... combining morphological, biochemical and molecular data are important for ..... acid bacteria from fermented maize (Kenkey) and their interactions.

  17. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    Science.gov (United States)

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  18. 9th International Symposium on Lactic Acid Bacteria

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Poolman, Berend; Hugenholtz, Jeroen

    What’s new in the field of lactic acid bacteria? The 9th International Symposium on Lactic Acid Bacteria (LAB9) will take place 31 August to 4 September 2008 in Egmond aan Zee, The Netherlands. Traditionally, the triannual LAB symposium focuses on the themes of genetics, physiology, and applications

  19. Bacteriocins and lactic acid bacteria - a minireview | Savadogo ...

    African Journals Online (AJOL)

    Fermentation of various foods by lactic acid bacteria (LAB) is one of the oldest forms of biopreservation practised by mankind. Bacterial antagonism has been recognized for over a century but in recent years this phenomenon has received more scientific attention, particulary in the use of various strains of lactic acid bacteria.

  20. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors

    Science.gov (United States)

    Pal Choudhuri, Shreoshi; Delay, Rona J.; Delay, Eugene R.

    2015-01-01

    Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5’ ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK) cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5’ monophosphate (IMP). The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex. PMID:26110622

  1. Heme and menaquinone induced electron transport in lactic acid bacteria

    OpenAIRE

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-01-01

    Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacill...

  2. Flow cytometric assessment of viability of lactic acid bacteria

    NARCIS (Netherlands)

    Bunthof, C.J.; Bloemen, K.; Breeuwer, P.; Rombouts, F.M.; Abee, T.

    2001-01-01

    The viability of lactic acid bacteria is crucial for their applications as dairy starters and as probiotics. We investigated the usefulness of flow cytometry (FCM) for viability assessment of lactic acid bacteria. The esterase substrate carboxyfluorescein diacetate (cFDA) and the dye exclusion DNA

  3. Screening and identification of lactic acid bacteria isolated from ...

    African Journals Online (AJOL)

    The lactic acid bacteria (LAB) isolated from sorghum (Sorghum bicolor. L.) silage were identified during different periods of evolution of sorghum silage in west Algeria. Morphological, physiological, biochemical and technological techniques were used to characterize lactic acid bacteria isolates. A total number of 27 ...

  4. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing

    Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates...... defined interaction medium (CDIM) was developed allowing growth of protective Lb. paracasei and P. freudenreichii subsp. shermaniii as well as the spoilage fungi, Penicillium spp., Rhodotorula mucilaginosa and Debaryomyces hansenii isolated from fermented dairy products. Lb. paracasei and P....... freudenreichii subsp. shermanii grew in CDIM and showed antifungal properties similar to those observed in milk-based systems. Most of the antifungal effect of the protective bacterial ferment was lost after removal of cells. This was explained by a marked decrease in diacetyl concentration, which...

  5. Lactic acid bacteria in the quality improvement and depreciation of wine.

    Science.gov (United States)

    Lonvaud-Funel, A

    1999-01-01

    The winemaking process includes two main steps: lactic acid bacteria are responsible for the malolactic fermentation which follows the alcoholic fermentation by yeasts. Both types of microorganisms are present on grapes and on cellar equipment. Yeasts are better adapted to growth in grape must than lactic acid bacteria, so the alcoholic fermentation starts quickly. In must, up to ten lactic acid bacteria species can be identified. They belong to the Lactobacillus, Pediococcus, Leuconostoc and Oenococcus genera. Throughout alcoholic fermentation, a natural selection occurs and finally the dominant species is O. oeni, due to interactions between yeasts and bacteria and between bacteria themselves. After bacterial growth, when the population is over 10(6) CFU/ml, malolactic transformation is the obvious change in wine composition. However, many other substrates can be metabolized. Some like remaining sugars and citric acid are always assimilated by lactic acid bacteria, thus providing them with energy and carbon. Other substrates such as some amino acids may be used following pathways restricted to strains carrying the adequate enzymes. Some strains can also produce exopolysaccharides. All these transformations greatly influence the sensory and hygienic quality of wine. Malic acid transformation is encouraged because it induces deacidification. Diacetyl produced from citric acid is also helpful to some extent. Sensory analyses show that many other reactions change the aromas and make malolactic fermentation beneficial, but they are as yet unknown. On the contrary, an excess of acetic acid, the synthesis of glucane, biogenic amines and precursors of ethylcarbamate are undesirable. Fortunately, lactic acid bacteria normally multiply in dry wines; moreover some of these activities are not widespread. Moreover, the most striking trait of wine lactic acid bacteria is their capacity to adapt to a hostile environment. The mechanisms for this are not yet completely elucidated

  6. [Synthesis and degradation of hyaluronic acid by bacteria of Streptococcus genus].

    Science.gov (United States)

    Beloded, A V; Samoĭlenko, I I; Tsepilov, R N

    2010-01-01

    Modern data on metabolism of hyaluronic acid by bacteria from Streptococcus genus are presented. Several species of bacteria forming capsule from hyaluronic acid, which is analogous to glycosaminoglycan of vertebrates, are considered. Different aspects of hyaluronic acid synthesis are described: biochemical synthesis pathway, genetic basis, regulation of expression of genes belonging to hyaluronic acid synthesis operon. Biological role and physiologic importance of hyaluronic acid for bacteria, including its role in overcoming immune barrier by pathogenic species, are discussed. Process of depolymerization of hyaluronic acid in presence of hyaluronatlyases secreted by certain streptococci is considered. Characteristic of streptococcal enzyme hyaluronatlyase, its mechanism of catalytic effect, and biological function are presented.

  7. Characterization of lactic acid bacteria from local cow´s milk kefir

    Science.gov (United States)

    Ismail, YS; Yulvizar, C.; Mazhitov, B.

    2018-03-01

    One of products from milk fermentation is kefir. It is made by adding kefir grains which are composed of lactic acid bacteria and yeast into milk. The lactic acid bacteria are a group of bacteria that produce antimicrobial substances and able to inhibit the growth of pathogenic bacteria. In this research, the lactic acid bacteria were isolated from Aceh local cow`s milk kefir to determine the genus of the isolates. The methods used in the characterization of lactic acid bacteria are colony morphology, cell morphology, and biochemical tests which includes a catalase test; 5%, 6.5%, and 10% salt endurance tests; 37°C and 14°C temperature endurance tests, SIM test, TSIA test, MR-VP test, and O/F test. Of the four isolates found from the cow’s milk kefir, two isolates were confirmed as lactic acid bacteria (isolates SK-1 and SK-4). Both isolates are Gram positive bacteria, and have negative catalase activity. From the observations of colony morphology, cell morphology, and biochemical tests, it was found that the genus of SK-1 is Lactobacillus and the genus of SK-4 is Enterococcus.

  8. Isolation and Characterization of Lactic Acid Bacteria from Inasua

    Directory of Open Access Journals (Sweden)

    Ferymon Mahulette

    2017-04-01

    Full Text Available Inasua is a traditionally product of wet salt fish fermentation produced by Teon, Nila and Serua (TNS Communities in Central Maluku, Indonesia. The community made this fermented fish to anticipate the lean time when fisherman could not go to sea.  The  fish that used as inasua raw material is demersal fishes that live around coral reefs, such as Samandar fish (Siganatus guttatus, Gala-gala fish (Lutjanus sp. and Sikuda fish (Lethrinus ornatus. The objective of the research was to isolate and characterize of bacterial indigenous in  Inasua from three producers in Seram Island. The measurement of pH from inasua samples were 5.9, 5.0 and 5.8, respectively. The highest number of lactic acid bacteria was found from  Gala – gala inasua was 2,5x107 cfu/g sample. Isolation of all isolates bacteria from inasua showed that a total of 7 isolates of bacteria was obtained  from Samadar inasua, 9 isolates from  Gala-gala inasua, and 7 isolates from  Sikuda inasua.  From a total of 23 isolates, only 6 isolates had characteristic as lactic acid bacteria that were Gram  positive, negative catalase, and cocci shape. The microscopic characteristics  of the isolates are coccid in pairs or uniforms which combine to form tetrads. Carbohydrate utilization test  of selected isolate by using API 50 CHB kit indicated that 13 carbohydrates are fermented by these isolates  after incubation for 48 hours. The research  was concluded that the dominant bacteria in inasua sample  is  cocci-lactic acid bacteria. Keywords : fermented fish, inasua, lactic acid bacteria, MRSA medium

  9. Compatible solutes in lactic acid bacteria subjected to water stress

    NARCIS (Netherlands)

    Kets, E.P.W.

    1997-01-01

    The goal of the research project described in this thesis was to investigate the protective effect of compatible solutes on tactic acid bacteria subjected to drying. Dried preparations of lactic acid bacteria are applied as starter cultures in feed and food industries. Dried starter

  10. Phenolic biotransformations during conversion of ferulic acid to vanillin by lactic acid bacteria.

    Science.gov (United States)

    Kaur, Baljinder; Chakraborty, Debkumar; Kumar, Balvir

    2013-01-01

    Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB), and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives.

  11. Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria

    Science.gov (United States)

    Kaur, Baljinder; Kumar, Balvir

    2013-01-01

    Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB), and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives. PMID:24066293

  12. Selection of lactic acid bacteria able to ferment inulin hydrolysates

    Directory of Open Access Journals (Sweden)

    Octavian BASTON

    2012-12-01

    Full Text Available Eight homofermentative lactic acid bacteria isolates were tested for lactic acid production using chicory and Jerusalem artichoke hydrolysate as substrate. The pH, lactic acid yield and productivity were used to select the best homolactic bacteria for lactic acid production. The selected strains produced lactic acid at maximum yield after 24 hours of fermentation and the productivity was greater at 24 hours of fermentation. From all studied strains, Lb1 and Lb2 showed the best results regarding lactic acid yields andproductivity. After 48 hours of chicory and Jerusalem artichhoke hydrolysates fermentation, from all the studied strains, Lb2 produced the highest lactic acid yield (0.97%. Lb2 produced after 48 hours of fermentation the lowest pH value of 3.45±0.01. Lb2 showed greater lactic acid productivity compared to the other studied lactic acid bacteria, the highest values, 0.13 g·L-1·h-1fromJerusalem artichoke hydrolysate and 0.11g·L-1·h-1 from chicory hydrolysate, being produced after 24 hours of fermentation.

  13. Heme and menaquinone induced electron transport in lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.; Smit, B.; Santos, dos F.; Riel, van J.; Vos, de W.M.; Hugenholtz, J.

    2009-01-01

    ABSTRACT: BACKGROUND: For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait.

  14. Lactic Acid Bacteria : embarking on 30 more years of research

    NARCIS (Netherlands)

    Kok, Jan; Johansen, Eric; Kleerebezem, Michiel; Teusink, Bas

    2014-01-01

    The 11th International Symposium on Lactic Acid Bacteria Lactic Acid Bacteria play important roles in the pro- duction of food and feed and are increasingly used as health-promoting probiotics. The incessant scientific interest in these microorganisms by academic research groups as well as by

  15. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha.

    Science.gov (United States)

    Nguyen, Nguyen Khoi; Dong, Ngan Thi Ngoc; Nguyen, Huong Thuy; Le, Phu Hong

    2015-01-01

    Kombucha is sweetened black tea that is fermented by a symbiosis of bacteria and yeast embedded within a cellulose membrane. It is considered a health drink in many countries because it is a rich source of vitamins and may have other health benefits. It has previously been reported that adding lactic acid bacteria (Lactobacillus) strains to kombucha can enhance its biological functions, but in that study only lactic acid bacteria isolated from kefir grains were tested. There are many other natural sources of lactic acid bacteria. In this study, we examined the effects of lactic acid bacteria from various fermented Vietnamese food sources (pickled cabbage, kefir and kombucha) on kombucha's three main biological functions: glucuronic acid production, antibacterial activity and antioxidant ability. Glucuronic acid production was determined by high-performance liquid chromatography-mass spectrometry, antibacterial activity was assessed by the agar-well diffusion method and antioxidant ability was evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. Four strains of food-borne pathogenic bacteria were used in our antibacterial experiments: Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028 and Bacillus cereus ATCC 11778. Our findings showed that lactic acid bacteria strains isolated from kefir are superior to those from other sources for improving glucuronic acid production and enhancing the antibacterial and antioxidant activities of kombucha. This study illustrates the potential of Lactobacillus casei and Lactobacillus plantarum isolated from kefir as biosupplements for enhancing the bioactivities of kombucha.

  16. 49-60 Characterization of Lactic Acid Bacteria from Camel Milk and the

    African Journals Online (AJOL)

    Reviwer

    bacteria in the food industry is the lactic acid bacteria. (LAB) which are used ... Weinberg et al., 2007) as well as for their preservative ... Food and Drug Administration FDA (2003). In the ... lactic acid bacteria species were characterized as fast.

  17. Fermentation of D-Tagatose by Human Intestinal Bacteria and Dairy Lactic Acid Bacteria

    OpenAIRE

    Bertelsen, Hans; Andersen, Hans; Tvede, Michael

    2011-01-01

    A number of 174 normal or pathogenic human enteric bacteria and dairy lactic acid bacteria were screened for D-tagatose fermentation by incubation for 48 hours. Selection criteria for fermentation employed included a drop in pH below 5.5 and a distance to controls of more than 0.5. Only a few of the normal occurring enteric human bacteria were able to ferment D-tagatose, among those Enterococcus faecalis, Enterococcus faecium and Lactobacillus strains. D-Tagatose fermentation seems to be comm...

  18. Selection of local extremophile lactic acid bacteria with high capacity ...

    African Journals Online (AJOL)

    This study is related to the isolation and identification of strains of local thermophilic lactic acid bacteria belonging to the species, Streptococcus thermophilus and Lactobacillus bulgaricus. These bacteria can exist under extreme conditions of the digestive tract (acidity and high concentration of bile salts) and have a high ...

  19. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria.

    Science.gov (United States)

    Ding, W K; Shah, N P

    2007-11-01

    Eight strains of probiotic bacteria, including Lactobacillus rhamnosus, Bifidobacterium longum, L. salivarius, L. plantarum, L. acidophilus, L. paracasei, B. lactis type Bl-O4, and B. lactis type Bi-07, were studied for their acid, bile, and heat tolerance. Microencapsulation in alginate matrix was used to enhance survival of the bacteria in acid and bile as well as a brief exposure to heat. Free probiotic organisms were used as a control. The acid tolerance of probiotic organisms was tested using HCl in MRS broth over a 2-h incubation period. Bile tolerance was tested using 2 types of bile salts, oxgall and taurocholic acid, over an 8-h incubation period. Heat tolerance was tested by exposing the probiotic organisms to 65 degrees C for up to 1 h. Results indicated microencapsulated probiotic bacteria survived better (P strains. At 30 min of heat treatment, microencapsulated probiotic bacteria survived with an average loss of only 4.17-log CFU/mL, compared to 6.74-log CFU/mL loss with free probiotic bacteria. However, after 1 h of heating both free and microencapsulated probiotic strains showed similar losses in viability. Overall microencapsulation improved the survival of probiotic bacteria when exposed to acidic conditions, bile salts, and mild heat treatment.

  20. Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Baljinder Kaur

    2013-01-01

    Full Text Available Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB, and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives.

  1. Lactic acid bacteria and the human gastrointestinal tract

    DEFF Research Database (Denmark)

    Hove, H; Nørgaard, H; Mortensen, P B

    1999-01-01

    OBJECTIVE: This review summarises the effects of lactic acid bacteria on lactose malabsorption, bacterial/viral or antibiotic associated diarrhoea, and describes the impact of lactic acid bacteria on cancer and the fermentative products in the colon. RESULTS: Eight studies (including 78 patients......) demonstrated that lactase deficient subjects absorbed lactose in yogurt better than lactose in milk, while two studies (25 patients) did not support this. Two studies (22 patients) showed that unfermented acidophilus milk was absorbed better than milk, while six studies (68 patients) found no significant...

  2. Nucleotide Metabolism and its Control in Lactic Acid Bacteria

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Hammer, Karin; Jensen, Peter Ruhdal

    2005-01-01

    Most metabolic reactions are connected through either their utilization of nucleotides or their utilization of nucleotides or their regulation by these metabolites. In this review the biosynthetic pathways for pyrimidine and purine metabolism in lactic acid bacteria are described including...... the interconversion pathways, the formation of deoxyribonucleotides and the salvage pathways for use of exogenous precursors. The data for the enzymatic and the genetic regulation of these pathways are reviewed, as well as the gene organizations in different lactic acid bacteria. Mutant phenotypes and methods...... for manipulation of nucleotide pools are also discussed. Our aim is to provide an overview of the physiology and genetics of nucleotide metabolism and its regulation that will facilitate the interpretation of data arising from genetics, metabolomics, proteomics, and transcriptomics in lactic acid bacteria....

  3. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of "Shanxi aged vinegar", a traditional Chinese vinegar.

    Science.gov (United States)

    Wu, Jia Jia; Ma, Ying Kun; Zhang, Fen Fen; Chen, Fu Sheng

    2012-05-01

    Shanxi aged vinegar is a famous traditional Chinese vinegar made from several kinds of cereal by spontaneous solid-state fermentation techniques. In order to get a comprehensive understanding of culturable microorganism's diversity present in its fermentation, the indigenous microorganisms including 47 yeast isolates, 28 lactic acid bacteria isolates and 58 acetic acid bacteria isolates were recovered in different fermenting time and characterized based on a combination of phenotypic and genotypic approaches including inter-delta/PCR, PCR-RFLP, ERIC/PCR analysis, as well as 16S rRNA and 26S rRNA partial gene sequencing. In the alcoholic fermentation, the dominant yeast species Saccharomyces (S.) cerevisiae (96%) exhibited low phenotypic and genotypic diversity among the isolates, while Lactobacillus (Lb.) fermentum together with Lb. plantarum, Lb. buchneri, Lb. casei, Pediococcus (P.) acidilactici, P. pentosaceus and Weissella confusa were predominated in the bacterial population at the same stage. Acetobacter (A.) pasteurianus showing great variety both in genotypic and phenotypic tests was the dominant species (76%) in the acetic acid fermentation stage, while the other acetic acid bacteria species including A. senegalensis, A. indonesiensis, A. malorum and A. orientalis, as well as Gluconobacter (G.) oxydans were detected at initial point of alcoholic and acetic acid fermentation stage respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Lactic Acid Bacteria Differentially Activate Natural Killer Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    antigen presenting cells and T-cells. Bacteria translocating across the gastrointestinal mucosa are presumed to gain access to NK cell compartments, as consumption of certain strains of lactic acid bacteria has been shown to increase in vivo NK cytotoxic activity. On-going research in our lab aims...

  5. Potential of lactic acid bacteria as suppressors of wine allergies

    Directory of Open Access Journals (Sweden)

    Yıldırım Hatice Kalkan

    2017-01-01

    Full Text Available Allergens causes some symptoms as all asthma, allergic conjunctivitis, and allergic rhinitis. These symptoms are seen twice as many in women than in men. The major wine allergens reported in wines are endochitinase 4A and lipid-transfer protein (LTP. This review deal with possibilities of using lactic acid bacteria as suppressors of wine allergies. Phenolic compounds present in wines have not only antioxidant properties causing radical scavenging but also some special properties reported in many in vitro studies as regulating functions in inflammatory cells as mast cells. So what is the role of lactic acid bacteria in these cases? Lactic acid bacteria are used during malolactic fermentation step of wine production with purpose of malic acid reduction. During this bioconversion complex phenolic compounds could be hydrolysed by bacterial enzymes to their aglycone forms. Obtained aglycons could pass through the intestinal epithelium of human and allowed reduction of IgE antibody production by affecting Th1/ Th2 ratio. Considering different contents and quantities of phenols in different grape varieties and consequently in different wines more studies are required in order to determine which lactic acid bacteria and strains could be effective in suppressing wine allergens.

  6. Biotechnological applications of acetic acid bacteria.

    Science.gov (United States)

    Raspor, Peter; Goranovic, Dusan

    2008-01-01

    The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other

  7. Antioxidant activity of probiotic lactic acid bacteria isolated from Mongolian airag

    OpenAIRE

    E Uugantsetseg; B Batjargal

    2014-01-01

    This research aimed to determine the antioxidant activity of probiotic lactic acid bacteria isolated from airag. In this study, 42 lactic acid bacteria were isolated from Mongolian airag. All isolates were identified by using morphological, biochemical and physiological methods. The isolated bacteria were studied for antagonistic effects on Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, 22 strains showed antibacterial activity. When we examined thei...

  8. Heme and menaquinone induced electron transport in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Santos Filipe

    2009-05-01

    Full Text Available Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  9. Heme and menaquinone induced electron transport in lactic acid bacteria.

    Science.gov (United States)

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-05-29

    For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  10. Amino acid catabolism and generation of volatiles by lactic acid bacteria

    OpenAIRE

    Tavaria, F. K.; Dahl, S.; Carballo, F. J.; Malcata, F. X.

    2002-01-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180- d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts...

  11. Proteolytic enzymes of lactic acid bacteria

    NARCIS (Netherlands)

    Law, J; Haandrikman, A

    The proteolytic system of lactic acid bacteria is essential for their growth in milk and contributes significantly to flavour development in fermented milk products where these microorganisms are used as starter cultures. The proteolytic system is composed of proteinases which initially cleave the

  12. Lactic acid bacteria: microbiological and functional aspects

    National Research Council Canada - National Science Library

    Lahtinen, Sampo

    2012-01-01

    "Updated with the substantial progress made in lactic acid and bacteria research since the third edition, this fourth volume discusses improved insights in genetics and new molecular biological techniques...

  13. Probiotic lactic acid bacteria ? the fledgling cuckoos of the gut?

    OpenAIRE

    Berstad, Arnold; Raa, Jan; Midtvedt, Tore; Valeur, J?rgen

    2016-01-01

    It is tempting to look at bacteria from our human egocentric point of view and label them as either ‘good’ or ‘bad’. However, a microbial society has its own system of government – ‘microcracy’ – and its own rules of play. Lactic acid bacteria are often referred to as representatives of the good ones, and there is little doubt that those belonging to the normal intestinal flora are beneficial for human health. But we should stop thinking of lactic acid bacteria as always being ‘friendly’ – th...

  14. Probiotic lactic acid bacteria - the fledgling cuckoos of the gut?

    Science.gov (United States)

    Berstad, Arnold; Raa, Jan; Midtvedt, Tore; Valeur, Jørgen

    2016-01-01

    It is tempting to look at bacteria from our human egocentric point of view and label them as either 'good' or 'bad'. However, a microbial society has its own system of government - 'microcracy' - and its own rules of play. Lactic acid bacteria are often referred to as representatives of the good ones, and there is little doubt that those belonging to the normal intestinal flora are beneficial for human health. But we should stop thinking of lactic acid bacteria as always being 'friendly' - they may instead behave like fledgling cuckoos.

  15. [Methanotrophic bacteria of acid sphagnum bogs].

    Science.gov (United States)

    Dedysh, S N

    2002-01-01

    Acid sphagnum bogs cover a considerable part of the territory of Russia and are an important natural source of biogenic methane, which is formed in their anaerobic layers. A considerable portion of this methane is consumed in the aerobic part of the bog profile by acidophilic methanotrophic bacteria, which comprise the methane filter of sphagnum bogs and decrease CH4 emission to the atmosphere. For a long time, these bacteria escaped isolation, which became possible only after the elucidation of the optimal conditions of their functioning in situ: pH 4.5 to 5.5; temperature, from 15 to 20 degrees C; and low salt concentration in the solution. Reproduction of these conditions and rejection of earlier used media with a high content of biogenic elements allowed methanotrophic bacteria of two new genera and species--Methylocella palustris and Methylocapsa acidophila--to be isolated from the peat of sphagnum bogs of the northern part of European Russia and West Siberia. These bacteria are well adapted to the conditions in cold, acid, oligotrophic sphagnum bogs. They grow in a pH range of 4.2-7.5 with an optimum at 5.0-5.5, prefer moderate temperatures (15-25 degrees C) and media with a low content of mineral salts (200-500 mg/l), and are capable of active nitrogen fixation. Design of fluorescently labeled 16S rRNA-targeted oligonucleotide probes for the detection of Methylocella palustris and Methylocapsa acidophila and their application to the analysis of sphagnum peat samples showed that these bacteria represent dominant populations of methanotrophs with a density of 10(5)-10(6) cells/g peat. In addition to Methylocella and Methylocapsa populations, one more abundant population of methanotrophs was revealed (10(6) cells/g peat), which were phylogenetically close to the genus Methylocystis.

  16. Multidrug transporters in lactic acid bacteria

    NARCIS (Netherlands)

    Mazurkiewicz, P; Sakamoto, K; Poelarends, GJ; Konings, WN

    Gram-positive lactic acid bacteria possess several Multi-Drug Resistance systems (MDRs) that excrete out of the cell a wide variety of mainly cationic lipophilic cytotoxic compounds as well as many clinically relevant antibiotics. These MDRs are either proton/drug antiporters belonging to the major

  17. Exopolysaccharides produced by lactic acid bacteria

    NARCIS (Netherlands)

    Caggianiello, Graziano; Kleerebezem, Michiel; Spano, Giuseppe

    2016-01-01

    A wide range of lactic acid bacteria (LAB) is able to produce capsular or extracellular polysaccharides, with various chemical compositions and properties. Polysaccharides produced by LAB alter the rheological properties of the matrix in which they are dispersed, leading to typically viscous and

  18. Effects of culture conditions on acetic acid production by bacteria ...

    African Journals Online (AJOL)

    SARAH

    2015-11-30

    Nov 30, 2015 ... acid under certain culture conditions similar to cocoa fermentation stress. However ... Keywords: Acetic acid bacteria, acetic acid production, Cocoa fermentation, culture conditions ..... American Society Microbiology Press, pp.

  19. Engineering strategies aimed at control of acidification rate of lactic acid bacteria

    DEFF Research Database (Denmark)

    Martinussen, Jan; Solem, Christian; Holm, Anders Koefoed

    2013-01-01

    The ability of lactic acid bacteria to produce lactic acid from various sugars plays an important role in food fermentations. Lactic acid is derived from pyruvate, the end product of glycolysis and thus a fast lactic acid production rate requires a high glycolytic flux. In addition to lactic acid......, alternative end products - ethanol, acetic acid and formic acid - are formed by many species. The central role of glycolysis in lactic acid bacteria has provoked numerous studies aiming at identifying potential bottleneck(s) since knowledge about flux control could be important not only for optimizing food...

  20. Stimulation of Lactic Acid Bacteria by a Micrococcus Isolate: Evidence for Multiple Effects

    Science.gov (United States)

    Nath, K. R.; Wagner, B. J.

    1973-01-01

    Growth of, and rate of acid production by, six cultures of lactic acid bacteria were increased in the presence of Micrococcus isolate F4 or a preparation of its capsular material. Concentrations of hydrogen peroxide found in pure cultures of the lactic acid bacteria were not detectable, or were greatly reduced, in mixed culture with Micrococcus isolate F4. The capsular material was not as effective as whole cells in preventing accumulation of H2O2. Catalase stimulated growth of, and the rate of acid production by, the lactic acid bacteria, but not to the same extent as Micrococcus isolate F4 in some cultures. The existence of two mechanisms for micrococcal stimulation of the lactic acid bacteria is postulated. One mechanism involves removal of H2O2; the other has not been characterized. PMID:4199337

  1. Genetics of the proteolytic system of lactic acid bacteria

    NARCIS (Netherlands)

    Kok, Jan

    1990-01-01

    The proteolytic system of lactic acid bacteria is of eminent importance for the rapid growth of these organisms in protein-rich media. The combined action of proteinases and peptidases provides the cell with small peptides and essential amino acids. The amino acids and peptides thus liberated have

  2. The inhibitory activity of Lactic acid bacteria isolated from fresh cow cheese

    Directory of Open Access Journals (Sweden)

    Nevijo Zdolec

    2007-04-01

    Full Text Available Lactic acid bacteria are the constituent part of milk microbial flora that could influence the safety of dairy products due production of organic acids, hydrogen peroxide, carbon dioxide and bacteriocins. Taking this in consideration, the objective of this study was to investigate the composition of lactic acid bacteria population in fresh cow cheeses taken from local markets, as well as their antimicrobial capacity. Lactic acid bacteria counts were determined according to ISO 1524:1998 method, biochemical determination using API 50 CHL system, and inhibitory activity against L. monocytogenes NCTC 10527 by agar well diffusion assay. Lactic acid bacteria count in fresh cow cheeses (n=10 ranged from 5.87 to 8.38 log10 CFU g-1. Among 52 MRS isolates collected, 61.54 % were assigned to the Lactococcus lactis subsp. Lactis species, 23.07 % Lactobacillus helveticus, 11.54 % Leuconostoc mesenteroides subsp. cremoris and 3.85 % Leuconostoc mesenteroides subsp. mesenteroides. Antilisterial activity was found in 18 isolates.

  3. Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content.

    Science.gov (United States)

    Dziedzic, Krzysztof; Szwengiel, Artur; Górecka, Danuta; Gujska, Elżbieta; Kaczkowska, Joanna; Drożdżyńska, Agnieszka; Walkowiak, Jarosław

    2016-06-01

    The influence of bile acid concentration on the growth of Bifidobacterium spp. and Lactobacillus spp. bacteria was demonstrated. Exposing these bacteria to the environment containing bile acid salts, and very poor in nutrients, leads to the disappearance of these microorganisms due to the toxic effect of bile acids. A multidimensional analysis of data in the form of principal component analysis indicated that lactic acid bacteria bind bile acids and show antagonistic effect on E. coli spp. bacteria. The growth in E. coli spp. population was accompanied by a decline in the population of Bifidobacterium spp. and Lactobacillus spp. with a simultaneous reduction in the concentration of bile acids. This is direct proof of acid binding ability of the tested lactic acid bacteria with respect to cholic acid, lithocholic acid and deoxycholic acid. This research demonstrated that the degree of fineness of wheat dietary fibre does not affect the sorption of bile acids and growth of some bacteria species; however, it has an impact on the profile of synthesized short-chained fatty acids. During the digestion of a very fine wheat fibre fraction (WF 90), an increase in the concentration of propionic and butyric acids, as compared with the wheat fiber fraction of larger particles - WF 500, was observed. Our study suggested that wheat fibre did not affect faecal bacteria growth, however, we observed binding of bile acids by Bifidobacterium spp. and Lactobacillus spp.

  4. Effects of a combination of elicitation and precursor feeding on grape amino acid composition through foliar applications to Garnacha vineyard.

    Science.gov (United States)

    Gutiérrez-Gamboa, Gastón; Portu, Javier; López, Rosa; Santamaría, Pilar; Garde-Cerdán, Teresa

    2018-04-01

    Vine foliar applications of phenylalanine (Phe) or methyl jasmonate (MeJ) could improve the synthesis of secondary metabolites. However, there are no reports focusing on the effects of elicitation supported by precursor feeding on must amino acid composition in grapevines. The aim of this research was to study the effect of the elicitation of methyl jasmonate (MeJ) supported by phenylalanine (Phe) as a precursor feeding (MeJ+Phe) and its application individually on must amino acid composition. Results showed that foliar Phe and MeJ treatments decreased the concentration of most of the studied amino acids with respect to the control (p≤0.05). MeJ+Phe treatment did not affect must nitrogen content. Musts obtained from MeJ+Phe showed higher concentration of several amino acids than samples from Phe and MeJ applications. Therefore, other sources of precursor feeding could support elicitation, to improve amino acid composition and be considered as a tool for viticulture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Antibacterial Activities of Lactic Acid Bacteria Isolated from Selected ...

    African Journals Online (AJOL)

    Members of lactic acid bacteria (LAB) are known probiotics and have been reported to have antimicrobial properties. Although various researchers have documented the isolation of these bacteria from fruits and vegetables, studies on LAB associated with lettuce, cucumber and cabbage are limited and non-existing in ...

  6. Metabolite Profiles of Lactic Acid Bacteria in Grass Silage▿

    OpenAIRE

    Broberg, Anders; Jacobsson, Karin; Ström, Katrin; Schnürer, Johan

    2007-01-01

    The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydro...

  7. Intermittent apnea elicits inactivity-induced phrenic motor facilitation via a retinoic acid- and protein synthesis-dependent pathway.

    Science.gov (United States)

    Baertsch, Nathan A; Baker, Tracy L

    2017-11-01

    Respiratory motoneuron pools must provide rhythmic inspiratory drive that is robust and reliable, yet dynamic enough to respond to respiratory challenges. One form of plasticity that is hypothesized to contribute to motor output stability by sensing and responding to inadequate respiratory neural activity is inactivity-induced phrenic motor facilitation (iPMF), an increase in inspiratory output triggered by a reduction in phrenic synaptic inputs. Evidence suggests that mechanisms giving rise to iPMF differ depending on the pattern of reduced respiratory neural activity (i.e., neural apnea). A prolonged neural apnea elicits iPMF via a spinal TNF-α-induced increase in atypical PKC activity, but little is known regarding mechanisms that elicit iPMF following intermittent neural apnea. We tested the hypothesis that iPMF triggered by intermittent neural apnea requires retinoic acid and protein synthesis. Phrenic nerve activity was recorded in urethane-anesthetized and -ventilated rats treated intrathecally with an inhibitor of retinoic acid synthesis (4-diethlyaminobenzaldehyde, DEAB), a protein synthesis inhibitor (emetine), or vehicle (artificial cerebrospinal fluid) before intermittent (5 episodes, ~1.25 min each) or prolonged (30 min) neural apnea. Both DEAB and emetine abolished iPMF elicited by intermittent neural apnea but had no effect on iPMF elicited by a prolonged neural apnea. Thus different patterns of reduced respiratory neural activity elicit phenotypically similar iPMF via distinct spinal mechanisms. Understanding mechanisms that allow respiratory motoneurons to dynamically tune their output may have important implications in the context of respiratory control disorders that involve varied patterns of reduced respiratory neural activity, such as central sleep apnea and spinal cord injury. NEW & NOTEWORTHY We identify spinal retinoic acid and protein synthesis as critical components in the cellular cascade whereby repetitive reductions in respiratory

  8. Characterization of lactic acid bacteria isolated from Algerian arid ...

    African Journals Online (AJOL)

    Diversity and density of lactic acid bacteria isolated from Algerian raw goats\\' milk in arid zones were studied by determination of morphological, cultural, physiological and biochemical characteristics. 206 lactic acid bacterial strains were isolated, with 115 of them belonging to lactic acid cocci and others to the genus, ...

  9. Isolation of lactic acid bacteria with potential protective culture characteristics from fruits

    Science.gov (United States)

    Hashim, Nurul Huda; Sani, Norrakiah Abdullah

    2015-09-01

    Lactic acid bacteria are also known as beneficial microorganisms abundantly found in fermented food products. In this study, lactic acid bacteria were isolated from fresh cut fruits obtained from local markets. Throughout the isolation process from 11 samples of fruits, 225 presumptive lactic acid bacteria were isolated on MRS agar medium. After catalase and oxidase tests, 149 resulted to fit the characteristics of lactic acid bacteria. Further identification using Gram staining was conducted to identify the Gram positive bacteria. After this confirmation, the fermentation characteristics of these isolates were identified. It was found that 87 (58.4%) isolates were heterofermentative, while the rest of 62 (41.6%) are homofermentative lactic acid bacteria. Later, all these isolates were investigated for the ability to inhibit growth of Staphylococcus aureus using agar spot assay method. Seven (4.7%) isolates showed strong antagonistic capacity, while 127 (85.2%) and 8 (5.4%) isolates have medium and weak antagonistic capacity, respectively. The other 7 (4.7%) isolates indicated to have no antagonistic effect on S. aureus. Results support the potential of LAB isolated in this study which showed strong antagonistic activity against S. aureus may be manipulated to become protective cultures in food products. While the homofermentative or heterofermentative LAB can be utilized in fermentation of food and non-food products depending on the by-products required during the fermentation.

  10. Lactic acid bacteria as a cell factory for riboflavin production.

    Science.gov (United States)

    Thakur, Kiran; Tomar, Sudhir Kumar; De, Sachinandan

    2016-07-01

    Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin-enriched functional foods, proper selection and exploitation of riboflavin-producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Purification of bacteriocins produced by lactic acid bacteria.

    Science.gov (United States)

    Saavedra, Lucila; Castellano, Patricia; Sesma, Fernando

    2004-01-01

    Bacteriocins are antibacterial substances of a proteinaceous nature that are produced by different bacterial species. Lactic acid bacteria (LAB) produce biologically active peptides or protein complexes that display a bactericidal mode of action almost exclusively toward Gram-positive bacteria and particularly toward closely related species. Generally they are active against food spoilage and foodborne pathogenic microorganisms including Bacillus cereus, Clostridium perfringens, Staphylococcus aureus, and Listeria monocytogenes. There is an increased tendency to use natural occurring metabolites to prevent the growth of undesirable flora in foodstuffs. These metabolites could replace the use of chemical additives such as sorbic acid, sulfur dioxide, nitrite, nitrate, and others. For instance, bacteriocins produced by LAB may be promising for use as bio-preservaties. Bacteriocins of lactic acid bacteria are typically cationic, hydrophobic peptides and differ widely in many characteristics including molecular weight, presence of particular groups of amino acids, pI, net positive charge, and post-translational modifications of certain amino acids. This heterogeneity within the LAB bacteriocins may explain the different procedures for isolation and purification developed so far. The methods most frequently used for isolation, concentration, and purification involve salt precipitation of bacteriocins from culture supernatants, followed by various combinations of gel filtration, ion-exchange chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). In this chapter, a protocol is described that combines several methods used in our laboratory for the purification of two cationic bacteriocins, Lactocin 705AL and Enterocin CRL10, produced by Lactobacillus casei CRL705 and Enterococcus mundtii CRL10, respectively.

  12. Beneficial effects of antioxidative lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Hisako Nakagawa

    2017-01-01

    Full Text Available Oxidative stress is caused by exposure to reactive oxygen intermediates. The oxidative damage of cell components such as proteins, lipids, and nucleic acids one of the important factors associated with diabetes mellitus, cancers and cardiovascular diseases. This occurs as a result of imbalance between the generations of oxygen derived radicals and the organism’s antioxidant potential. The amount of oxidative damage increases as an organism ages and is postulated to be a major causal factor of senescence. To date, many studies have focused on food sources, nutrients, and components that exert antioxidant activity in worms, flies, mice, and humans. Probiotics, live microorganisms that when administered in adequate amounts provide many beneficial effects on the human health, have been attracting growing interest for their health-promoting effects, and have often been administered in fermented milk products. In particular, lactic acid bacteria (LAB are known to conferre physiologic benefits. Many studies have indicated the antioxidative activity of LAB. Here we review that the effects of lactic acid bacteria to respond to oxidative stress, is connected to oxidative-stress related disease and aging.

  13. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Kim, Young-Il; Furuzono, Tomoya [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Ohue, Ryuji [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Nomura, Wataru [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Sugawara, Tatsuya [Laboratory of Marine Bioproducts Technology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Yu, Rina [Department of Food Science and Nutrition, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Kitamura, Nahoko [Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  14. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    International Nuclear Information System (INIS)

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko

    2015-01-01

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis

  15. Antagonism Between Osmophilic Lactic Acid Bacteria and Yeasts in Brine Fermentation of Soy Sauce

    OpenAIRE

    Noda, Fumio; Hayashi, Kazuya; Mizunuma, Takeji

    1980-01-01

    Brine fermentation by osmophilic lactic acid bacteria and yeasts for long periods of time is essential to produce a good quality of shoyu (Japanese fermented soy sauce). It is well known that lactic acid fermentation by osmophilic lactic acid bacteria results in the depression of alcoholic fermentation by osmophilic yeasts, but the nature of the interaction between osmophilic lactic acid bacteria and yeasts in brine fermentation of shoyu has not been revealed. The inhibitory effect of osmophi...

  16. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids

    Directory of Open Access Journals (Sweden)

    Richardson Anthony J

    2013-01-01

    Full Text Available Abstract Background The products of protein breakdown in the human colon are considered to be detrimental to gut health. Amino acid catabolism leads to the formation of sulfides, phenolic compounds and amines, which are inflammatory and/or precursors to the formation of carcinogens, including N-nitroso compounds. The aim of this study was to investigate the kinetics of protein breakdown and the bacterial species involved. Results Casein, pancreatic casein hydrolysate (mainly short-chain peptides or amino acids were incubated in vitro with suspensions of faecal bacteria from 3 omnivorous and 3 vegetarian human donors. Results from the two donor groups were similar. Ammonia production was highest from peptides, followed by casein and amino acids, which were similar. The amino acids metabolized most extensively were Asp, Ser, Lys and Glu. Monensin inhibited the rate of ammonia production from amino acids by 60% (P = 0.001, indicating the involvement of Gram-positive bacteria. Enrichment cultures were carried out to investigate if, by analogy with the rumen, there was a significant population of asaccharolytic, obligately amino acid-fermenting bacteria (‘hyper-ammonia-producing’ bacteria; HAP in the colon. Numbers of bacteria capable of growth on peptides or amino acids alone averaged 3.5% of the total viable count, somewhat higher than the rumen. None of these were HAP, however. The species enriched included Clostridium spp., one of which was C. perfringens, Enterococcus, Shigella and Escherichia coli. Conclusions Protein fermentation by human faecal bacteria in the absence of sugars not only leads to the formation of hazardous metabolic products, but also to the possible proliferation of harmful bacteria. The kinetics of protein metabolism were similar to the rumen, but HAP bacteria were not found.

  17. Identification of exopolysaccharides-producing lactic acid bacteria ...

    African Journals Online (AJOL)

    Spacer region between 16S and 23 S rRNA genes of thirteen lactic acid bacteria strains from Burkina Faso fermented milk samples were amplified by the polymerase chain reaction (PCR). Lactobacillus delbrueckii, Lactobacillus acidophilus, Lactobacillus fermentum, Streptococcus thermophilus, Pediococcus spp, ...

  18. The proteolytic systems of lactic acid bacteria

    NARCIS (Netherlands)

    Kunji, Edmund R.S.; Mierau, Igor; Hagting, Anja; Poolman, Bert; Konings, Wil N.

    1996-01-01

    Proteolysis in dairy lactic acid bacteria has been studied in great detail by genetic, biochemical and ultrastructural methods. From these studies the picture emerges that the proteolytic systems of lactococci and lactobacilli are remarkably similar in their components and mode of action. The

  19. Characterization And Identification Of Lactic Acid Bacteria From ...

    African Journals Online (AJOL)

    $hr3k

    2013-06-05

    , Pakistan. Accepted ... stands next to whole milk especially during summer. Dahi ... natural preservation. ... LAB is more varying and inconsistent as compared to ..... Interaction between probiotic lactic acid bacteria and canine.

  20. Effects of supplementing lactic acid bacteria on fecal microbiota ...

    African Journals Online (AJOL)

    Results: The results indicated that Lactobacillus plantarum strain L.p X3-2B increased fecal lactic acid bacteria(LAB) and Bifidobacterium while resisting the growth of harmful bacteria. Viable counts of LAB and Bifidobacterium reached 8 log cfu/mL after feeding for 14 days. Fecal pH in the control group was high in ...

  1. Probiotic lactic acid bacteria – the fledgling cuckoos of the gut?

    Directory of Open Access Journals (Sweden)

    Arnold Berstad

    2016-05-01

    Full Text Available It is tempting to look at bacteria from our human egocentric point of view and label them as either ‘good’ or ‘bad’. However, a microbial society has its own system of government – ‘microcracy’ – and its own rules of play. Lactic acid bacteria are often referred to as representatives of the good ones, and there is little doubt that those belonging to the normal intestinal flora are beneficial for human health. But we should stop thinking of lactic acid bacteria as always being ‘friendly’ – they may instead behave like fledgling cuckoos.

  2. Taurocholate Deconjugation and Cholesterol Binding by Indigenous Dadih Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    USMAN PATO

    2005-09-01

    Full Text Available High serum cholesterol levels have been associated with an increased risk for human coronary heart disease. Lowering of serum cholesterol has been suggested to prevent the heart disease. To reduce serum cholesterol levels one may consumed diet supplementat of fermented dairy product such as dadih. Lactic acid bacteria present in dadih may alter serum cholesterol by directly bind to dietary cholesterol and/or deconjugation of bile salts. Acid and bile tolerance, deconjugation of sodium taurocholate, and the cholesterol-binding ability of lactic acid bacteria from dadih were examined. Among ten dadih lactic acid bacteria tested, six strains namely I-11, I-2775, K-5, I-6257, IS-7257, and B-4 could bind cholesterol and deconjugate sodium taurocholate. However, the last four strains were very sensitive to bile. Therefore, Lactobacillus fermentum I-11 and Leuconostoc lactis subsp. lactis I-2775 those were tolerant to acid and oxgall (bile and deconjugated sodium taurocholate and bound cholesterol could be recommended as probiotic to prevent coronary heart disease.

  3. Acid and bile tolerance of spore-forming lactic acid bacteria.

    Science.gov (United States)

    Hyronimus, B; Le Marrec, C; Sassi, A H; Deschamps, A

    2000-11-01

    Criteria for screening probiotics such as bile tolerance and resistance to acids were studied with 13 spore-forming lactic acid producing bacteria. Different strains of Sporolactobacillus, Bacillus laevolacticus, Bacillus racemilacticus and Bacillus coagulans grown in MRS broth were subjected to low pH conditions (2, 2.5 and 3) and increasing bile concentrations. Among these microorganisms, Bacillus laevolacticus DSM 6475 and all Sporolactobacillus strains tested except Sporolactobacillus racemicus IAM 12395, were resistant to pH 3. Only Bacillus racemilacticus and Bacillus coagulans strains were tolerant to bile concentrations over 0.3% (w/v).

  4. Characterization of the spoilage lactic acid bacteria in “sliced vacuum-packed cooked ham”

    Science.gov (United States)

    Kalschne, Daneysa Lahis; Womer, Rute; Mattana, Ademir; Sarmento, Cleonice Mendes Pereira; Colla, Luciane Maria; Colla, Eliane

    2015-01-01

    The lactic acid bacteria are involved with food fermentation and in such cases with food spoilage. Considering the need to reduce the lactic acid bacteria growth in meat products, the aim of this work was to enumerated and investigated the lactic acid bacteria present on sliced vacuum-packed cooked ham stored at 4 °C and 8 °C for 45 days by phenotypic and molecular techniques. The quantification showed that the lactic acid bacteria were present from the first day with mean count of 1.98 log cfu/g for the four batches analyzed. The lactic acid bacteria grew rapidly on the samples, and plate counts around 7.59 log cfu/g and 8.25 log cfu/g were detected after 45 days of storage at 4 °C and 8 °C, respectively; storage temperatures studied showed significant influence on the microorganism in study growth. The predominant lactic acid bacteria associated with the spoilage samples at one day of storage includes Lactobacillus sp., the phenotypic overlap Leuconostoc / Weissella sp. and Enterococcus sp. At 45 days of storage at 4 and 8 °C the mainly specie was Lactobacillus curvatus , following by Lactobacillus sakei and Leuconostoc mesentereoides ; the Enterococcus sp. was not present in the samples. PMID:26221105

  5. Unsaturated fatty acids show clear elicitation responses in a modified local lymph node assay with an elicitation phase, and test positive in the direct peptide reactivity assay.

    Science.gov (United States)

    Yamashita, Kunihiko; Shinoda, Shinsuke; Hagiwara, Saori; Miyazaki, Hiroshi; Itagaki, Hiroshi

    2015-12-01

    The Organisation for Economic Co-operation and Development (OECD) Test Guidelines (TG) adopted the murine local lymph node assay (LLNA) and guinea pig maximization test (GPMT) as stand-alone skin sensitization test methods. However, unsaturated carbon-carbon double-bond and/or lipid acids afforded false-positive results more frequently in the LLNA compared to those in the GPMT and/or in human subjects. In the current study, oleic, linoleic, linolenic, undecylenic, fumaric, maleic, and succinic acid and squalene were tested in a modified LLNA with an elicitation phase (LLNA:DAE), and in a direct peptide reactivity assay (DPRA) to evaluate their skin-sensitizing potential. Oleic, linoleic, linolenic, undecylenic and maleic acid were positive in the LLNA:DAE, of which three, linoleic, linolenic, and maleic acid were positive in the DPRA. Furthermore, the results of the cross-sensitizing tests using four LLNA:DAE-positive chemicals were negative, indicating a chemical-specific elicitation response. In a previous report, the estimated concentration needed to produce a stimulation index of 3 (EC3) of linolenic acid, squalene, and maleic acid in the LLNA was LLNA. However, the skin-sensitizing potential of all LLNA:DAE-positive chemicals was estimated as weak. These results suggested that oleic, linoleic, linolenic, undecylenic, and maleic acid had skin-sensitizing potential, and that the LLNA overestimated the skin-sensitizing potential compared to that estimated by the LLNA:DAE.

  6. Genetics of Lactic Acid Bacteria

    Science.gov (United States)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  7. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    Science.gov (United States)

    Xia, Kai; Liang, Xin-le; Li, Yu-dong

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria.

  8. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    Science.gov (United States)

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  9. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    Science.gov (United States)

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  10. Antibacterial Activity of Some Lactic Acid Bacteria Isolated from an Algerian Dairy Product

    International Nuclear Information System (INIS)

    Mezaini, A.; Bouras, A.D.; Mezaini, A.; Chihib, N.; Nedjar-Arroume, N.; Hornez, J.P.

    2010-01-01

    In the present study, the antibacterial effect of 20 lactic acid bacteria isolates from a traditional cheese was investigated. 6 isolates showed antibacterial effect against Gram positive bacteria. Streptococcus thermophilus T2 strain showed the wide inhibitory spectrum against the Gram positive bacteria. Growth and bacitracin production profiles showed that the maximal bacitracin production, by S. thermophilus T2 cells, was measured by the end of the late-log phase (90 AU ml -1 ) with a bacterio cine production rate of 9.3 (AU ml -1 ) h -1 . In addition, our findings showed that the bacitracin, produced by S. thermophilus T2, was stable over a wide ph range (4-8); this indicates that such bacitracin may be useful in acidic as well as non acidic food. This preliminarily work shows the potential application of autochthonous lactic acid bacteria to improve safety of traditional fermented food.

  11. Antimicrobial properties of lactic acid bacteria isolated from uruguayan artisan cheese

    Directory of Open Access Journals (Sweden)

    Martín Fraga Cotelo

    2013-12-01

    Full Text Available Uruguayan artisan cheese is elaborated with raw milk and non-commercial starters. The associated native microbiota may include lactic acid bacteria and also potentially pathogenic bacteria. Lactic acid bacteria were isolated from artisan cheese, raw milk, and non-commercial starter cultures, and their potential bacteriocin production was assessed. A culture collection of 509 isolates was obtained, and five isolates were bacteriocin-producers and were identified as Enterococcus durans,Lactobacillus casei, and Lactococcus lactis. No evidence of potential virulence factors were found in E. durans strains. These are promising results in terms of using these native strains for cheese manufacture and to obtain safe products.

  12. Phenotypic and genotypic characterization of lactic acid bacteria ...

    African Journals Online (AJOL)

    ... of lactic acid bacteria isolated from Azerbaijani traditional dairy products. ... yogurts were produced from bovine's milk and the Ganja yogurt from buffalo's milk. ... It was determined using biochemical tests and molecular methods that four ...

  13. Antimicrobial Activity – The Most Important Property of Probiotic and Starter Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Blaženka Kos

    2010-01-01

    Full Text Available The antimicrobial activity of industrially important lactic acid bacteria as starter cultures and probiotic bacteria is the main subject of this review. This activity has been attributed to the production of metabolites such as organic acids (lactic and acetic acid, hydrogen peroxide, ethanol, diacetyl, acetaldehyde, acetoine, carbon dioxide, reuterin, reutericyclin and bacteriocins. The potential of using bacteriocins of lactic acid bacteria, primarily used as biopreservatives, represents a perspective, alternative antimicrobial strategy for continuously increasing problem with antibiotic resistance. Another strategy in resolving this problem is an application of probiotics for different gastrointestinal and urogenital infection therapies.

  14. Antioxidant activity of probiotic lactic acid bacteria isolated from Mongolian airag

    Directory of Open Access Journals (Sweden)

    E Uugantsetseg

    2014-12-01

    Full Text Available This research aimed to determine the antioxidant activity of probiotic lactic acid bacteria isolated from airag. In this study, 42 lactic acid bacteria were isolated from Mongolian airag. All isolates were identified by using morphological, biochemical and physiological methods. The isolated bacteria were studied for antagonistic effects on Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, 22 strains showed antibacterial activity. When we examined their probiotic properties such as bile acid tolerance and gastric acid tolerance, it is shown that only 6 bacterial strains can survive up to 3  hours in a pH 3.0 acid environment  and up to 8 hours in  0.3% bile acid environment. Selected probiotic strains were further identified to species by API 50CHL system. Antioxidant activity of  probiotic  strains were determined by 1,1-diphenyl-2 picrylhydrazyl (DPPH assay. While the antioxidant activity in cell free supernatant fluctuated between the range of 26.1-38.4%,  the antioxidant activity after 72 hours of fermentation in the whey fraction was between 17.23-55.12%. DOI: http://doi.dx.org/10.5564/mjc.v15i0.327 Mongolian Journal of Chemistry 15 (41, 2014, p73-78

  15. Characterization of anti-listerial lactic acid bacteria isolated from Thai fermented fish products

    DEFF Research Database (Denmark)

    Østergaard, Anya; Embarek, Peter Karim Ben; Wedell-Neergaard, C.

    1998-01-01

    Thai fermented fish products were screened for lactic acid bacteria capable of inhibiting Listeria sp. (Listeria innocua). Of 4150 assumed lactic acid bacteria colonies from MRS agar plates that were screened by an agar-overlay method 58 (1.4%) were positive. Forty four of these strains were...

  16. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    Directory of Open Access Journals (Sweden)

    Takuya Yamane

    2018-03-01

    Full Text Available The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  17. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts

    Science.gov (United States)

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but sp...

  18. THE SEARCH AND PROPERTIES OF LACTIC ACID BACTERIA PERSPECTIVE FOR BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Naumenko О. V.

    2014-10-01

    Full Text Available Search of biologically active Lactobacillus strains prospective for functional milk food production was the aim of the research. The study involved the lactic acid bacteria isolated from biological material of healthy humen and non- dairy lactic products. Using modern methodological approaches, the strains of lactic acid bacteria such as Lactobacillus casei 302, Lactobacillus acidophilus 35 and Streptococcus thermophilus 21 having high level of biological activity were selected. High biological potential of selected cultures of lactic acid bacteria, which could provide stability for the technological process of production and essential characteristics of bacterial preparations and fermented their products, was set. In vitro the experiments demonstrated that selected strains had valuable production properties, namely the ability to reduce level of cholesterol and lactose during development in milk, were resistant to virulent bacteriophages and aggressive compounds of the gastrointestinal tract, and high adhesive and antagonistic activities as well.

  19. Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.

    Science.gov (United States)

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria; Di Cagno, Raffaella

    2014-12-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD(+)/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD(+)/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Impact of lactic acid bacteria on conjugated linoleic acid content and atherogenic index of butter

    Directory of Open Access Journals (Sweden)

    L Roufegari-Nejad

    2012-11-01

    Full Text Available This is a study aimed to investigate the effect of lactic acid bacteria including Lactobacillus acidophilus and Sterptococcus thermophilus (as thermophilic culture, Lactococcus lactis subsp. lactis, cremoris and diacetylactis, Leuconostoc citrovorum (as mesophilic culture, Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium lactis and a mixed culture of L.acidophilus, L. casei and B. lactis on fatty acid profile, conjugated linoleic acid (CLA and atherogenic index (AI of butter. Fatty acid analysis with gas chromatography indicated that application of thermophilic and mixed culture decreased the ratio of saturated to unsaturated fatty acid; whereas, the butters made with L. acidophilus had the highest content of CLA. Moreover, AI in the samples prepared with thermophilic cultures was the least. Sensory evaluation of the treatments revealed no significant differences (p> 0/05 in appearance and color. However, the butters prepared with thermophilic and mesophilic cultures had more desirable taste in comparison with the samples made with L. acidophilus, L. casei and B. lactis. From the nutritional point of view, the adverse effect of butter could be diminished via the application of selected lactic acid bacteria.

  1. Controlled overproduction of proteins by lactic acid bacteria

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Ruyter, Pascalle G.G.A. de; Kleerebezem, Michiel; Vos, Willem M. de

    1997-01-01

    Lactic acid bacteria are widely used in industrial food fermentations, contributing to flavour, texture and preservation of the fermented products. Here we describe recent advances in the development of controlled gene expression systems, which allow the regulated overproduction of any desirable

  2. Continuous Cultivation of Photosynthetic Bacteria for Fatty Acids Production

    DEFF Research Database (Denmark)

    Kim, Dong-Hoon; Lee, Ji-Hye; Hwang, Yuhoon

    2013-01-01

    In the present work, we introduced a novel approach for microbial fatty acids (FA) production. Photosynthetic bacteria, Rhodobacter sphaeroides KD131, were cultivated in a continuous-flow, stirred-tank reactor (CFSTR) at various substrate (lactate) concentrations.At hydraulic retention time (HRT)....... sphaeroides was around 35% of dry cell weight, mainly composed of vaccenic acid (C18:1, omega-7)....

  3. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; Park, Si-Bum; Kishino, Shigenobu; Ogawa, Jun; Kawada, Teruo

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Lactic acid bacteria in a changing legislative environment

    NARCIS (Netherlands)

    Feord, J.

    2002-01-01

    The benefits of using lactic acid bacteria in the food chain, both through direct consumption and production of ingredients, are increasingly recognised by the food industry and consumers alike. The regulatory environment surrounding these products is diverse, covering foods and food ingredients,

  5. Antimicrobial activities of lactic acid bacteria isolated from akamu ...

    African Journals Online (AJOL)

    The partially purified inhibitory compounds were screened by agar spot assay method for antagonistic ... The partially purified compounds exhibited strong activity against ... Keywords: Bacteriocins, lactic acid bacteria (LAB), target organisms, ...

  6. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments

    Science.gov (United States)

    Cui, Yanhua; Hu, Tong; Qu, Xiaojun; Zhang, Lanwei; Ding, Zhongqing; Dong, Aijun

    2015-01-01

    Plasmids are widely distributed in different sources of lactic acid bacteria (LAB) as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research. PMID:26068451

  7. Antibacterial Activity of Some Lactic Acid Bacteria Isolated from an Algerian Dairy Product

    Directory of Open Access Journals (Sweden)

    Abdelkader Mezaini

    2009-01-01

    Full Text Available In the present study, the antibacterial effect of 20 lactic acid bacteria isolates from a traditional cheese was investigated. 6 isolates showed antibacterial effect against Gram positive bacteria. Streptococcus thermophilus T2 strain showed the wide inhibitory spectrum against the Gram positive bacteria. Growth and bacteriocin production profiles showed that the maximal bacteriocin production, by S. thermophilus T2 cells, was measured by the end of the late-log phase (90 AU ml−1 with a bacteriocine production rate of 9.3 (AU ml−1 h−1. In addition, our findings showed that the bacteriocin, produced by S. thermophilus T2, was stable over a wide pH range (4–8; this indicates that such bacteriocin may be useful in acidic as well as nonacidic food. This preliminarily work shows the potential application of autochthonous lactic acid bacteria to improve safety of traditional fermented food.

  8. Metabolism of Oxo-Bile Acids and Characterization of Recombinant 12α-Hydroxysteroid Dehydrogenases from Bile Acid 7α-Dehydroxylating Human Gut Bacteria.

    Science.gov (United States)

    Doden, Heidi; Sallam, Lina A; Devendran, Saravanan; Ly, Lindsey; Doden, Greta; Daniel, Steven L; Alves, João M P; Ridlon, Jason M

    2018-05-15

    Bile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacterium Clostridium leptum ; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such as Clostridium scindens , Clostridium hylemonae , and Clostridium hiranonis Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread among Firmicutes , Actinobacteria in the Coriobacteriaceae family, and human gut Archaea IMPORTANCE 12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteria C. scindens , C. hiranonis , and C. hylemonae Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In

  9. Differentiation studies of predominant lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    Twelve isolates known as weakly amylolytic lactic acid bacteria were isolated from different time during growol fermentation, a cassava based product from Indonesia. Differentiation tests of these strains were performed using molecular and phenotypic characterization. 16S subunit of the ribosomal RNA and phenylalanyl ...

  10. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments

    Directory of Open Access Journals (Sweden)

    Yanhua Cui

    2015-06-01

    Full Text Available Plasmids are widely distributed in different sources of lactic acid bacteria (LAB as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research.

  11. Metabolism of Fructophilic Lactic Acid Bacteria Isolated from the Apis mellifera L. Bee Gut: Phenolic Acids as External Electron Acceptors

    Science.gov (United States)

    Filannino, Pasquale; Addante, Rocco; Pontonio, Erica; Gobbetti, Marco

    2016-01-01

    ABSTRACT Fructophilic lactic acid bacteria (FLAB) are strongly associated with the gastrointestinal tracts (GITs) of Apis mellifera L. worker bees due to the consumption of fructose as a major carbohydrate. Seventy-seven presumptive lactic acid bacteria (LAB) were isolated from GITs of healthy A. mellifera L. adults, which were collected from 5 different geographical locations of the Apulia region of Italy. Almost all of the isolates showed fructophilic tendencies: these isolates were identified as Lactobacillus kunkeei (69%) or Fructobacillus fructosus (31%). A high-throughput phenotypic microarray targeting 190 carbon sources was used to determine that 83 compounds were differentially consumed. Phenotyping grouped the strains into two clusters, reflecting growth performance. The utilization of phenolic acids, such as p-coumaric, caffeic, syringic, or gallic acids, as electron acceptors was investigated in fructose-based medium. Almost all FLAB strains showed tolerance to high phenolic acid concentrations. p-Coumaric acid and caffeic acid were consumed by all FLAB strains through reductases or decarboxylases. Syringic and gallic acids were partially metabolized. The data collected suggest that FLAB require external electron acceptors to regenerate NADH. The use of phenolic acids as external electron acceptors by the 4 FLAB showing the highest phenolic acid reductase activity was investigated in glucose-based medium supplemented with p-coumaric acid. Metabolic responses observed through a phenotypic microarray suggested that FLAB may use p-coumaric acid as an external electron acceptor, enhancing glucose dissimilation but less efficiently than other external acceptors such as fructose or pyruvic acid. IMPORTANCE Fructophilic lactic acid bacteria (FLAB) remain to be fully explored. This study intends to link unique biochemical features of FLAB with their habitat. The quite unique FLAB phenome within the group lactic acid bacteria (LAB) may have practical relevance

  12. Composition of lactic acid bacteria in dairy products and their effect on tourism development of inner Mongolia

    Directory of Open Access Journals (Sweden)

    Min Liu

    2016-08-01

    Full Text Available In recent years, the development of dairy industry in Inner Mongolia has accelerated its economic growth, and its grassland culture has become appealing to the public. As an important support industry for the economic development in tourism area of Inner Mongolia, dairy industry can create economic value for the development of tourism. In view of the importance of dairy products-the habitat of lactic acid bacteria, this study aims to reveal the composition of lactic acid bacteria in dairy products and isolate lactic acid bacteria resources. Firstly, we selected 60 traditional dairy product samples (from the pasture in scenic area of Inner Mongolia as the research objects. Based on the 16S rRNA gene sequence analysis, lactic acid bacteria in the samples were isolated and identified; Real-time quantitative polymerase chain reaction (q-PCR technology was applied to the comparative analysis on the population of dominant bacteria in samples. It was found that there were significant differences in the numbers of dominant bacteria in different dairy products. With the advantages of improving nutritional value and extending storage time of dairy products, lactic acid bacteria is contributive to the development of dairy industry, which further promotes the prosperity of economy and tourism. Therefore, it is of great importance to study the composition of lactic acid bacteria in dairy products.

  13. Characterization of airag collected in Ulaanbaatar, Mongolia with emphasis on isolated lactic acid bacteria.

    Science.gov (United States)

    Choi, Suk-Ho

    2016-01-01

    Airag, alcoholic sour-tasting beverage, has been traditionally prepared by Mongolian nomads who naturally ferment fresh mares' milk. Biochemical and microbiological compositions of airag samples collected in Ulaanbaatar, Mongolia and physiological characteristics of isolated lactic acid bacteria were investigated. Protein composition and biochemical composition were determined using sodium dodecyl sulfate-gel electrophoresis and high performance liquid chromatography, respectively. Lactic acid bacteria were identified based on nucleotide sequence of 16S rRNA gene. Carbohydrate fermentation, acid survival, bile resistance and acid production in skim milk culture were determined. Equine whey proteins were present in airag samples more than caseins. The airag samples contained 0.10-3.36 % lactose, 1.44-2.33 % ethyl alcohol, 1.08-1.62 % lactic acid and 0.12-0.22 % acetic acid. Lactobacillus (L.) helveticus were major lactic acid bacteria consisting of 9 isolates among total 18 isolates of lactic acid bacteria. L. helveticus survived strongly in PBS, pH 3.0 but did not grow in MRS broth containing 0.1 % oxgall. A couple of L. helveticus isolates lowered pH of skim milk culture to less than 4.0 and produced acid up to more than 1.0 %. Highly variable biochemical compositions of the airag samples indicated inconsistent quality due to natural fermentation. Airag with low lactose content should be favorable for nutrition, considering that mares' milk with high lactose content has strong laxative effect. The isolates of L. helveticus which produced acid actively in skim milk culture might have a major role in production of airag.

  14. Relation between chemotaxis and consumption of amino acids in bacteria

    Science.gov (United States)

    Yang, Yiling; M. Pollard, Abiola; Höfler, Carolin; Poschet, Gernot; Wirtz, Markus; Hell, Rüdiger

    2015-01-01

    Summary Chemotaxis enables bacteria to navigate chemical gradients in their environment, accumulating toward high concentrations of attractants and avoiding high concentrations of repellents. Although finding nutrients is likely to be an important function of bacterial chemotaxis, not all characterized attractants are nutrients. Moreover, even for potential nutrients, the exact relation between the metabolic value of chemicals and their efficiency as chemoattractants has not been systematically explored. Here we compare the chemotactic response of amino acids with their use by bacteria for two well‐established models of chemotactic behavior, E scherichia coli and B acillus subtilis. We demonstrate that in E . coli chemotaxis toward amino acids indeed strongly correlates with their utilization. However, no such correlation is observed for B . subtilis, suggesting that in this case, the amino acids are not followed because of their nutritional value but rather as environmental cues. PMID:25807888

  15. PENAMBAHAN BAKTERI ASAM LAKTAT TERENKAPSULASI UNTUK MENEKAN PERTUMBUHAN BAKTERI PATOGEN PADA PROSES PRODUKSI TAPIOKA [Addition of Encapsulated Lactic Acid Bacteria to Suppress the Growth of Pathogenic Bacteria during Tapioca Production

    Directory of Open Access Journals (Sweden)

    Glisina Dwinoor Rembulan

    2015-07-01

    Full Text Available Lactic acid bacteria (LAB produce organic acids and active compounds which can inhibit the growth of pathogenic bacteria. Lactic acid bacteria potentially can be introduced to inhibit pathogenic bacteria in the tapioca production at the extraction stage, especially during the settling process since there is possibility of starch slurry to be contaminated by pathogenic bacteria from water. The objectives of this research were to design a solid starter of LAB through encapsulation by using modified starch includes sour cassava starch, lintnerized cassava starch and nanocrystalline starch, utilize the starter for suppressing the growth of pathogenic bacteria in the production process of tapioca and characterize the functional properties of tapioca. The encapsulation of lactic acid bacteria was conducted by freeze drying at a temperature of -50°C for 48 hours. The viability of LAB after freeze drying with sour cassava starch matrix was 92% of the liquid starter, with lintnerized cassava starch matrix was 93%, while that with nanocrystalline matrix was 96%. After application of the LAB culture during settling process for tapioca extraction and the tapioca was stored at room temperature for 6 months, it was shown that E. coli, Salmonella and Shigella were  detected in the native tapioca starch (without treatment while the starch added with lactic acid bacteria starter was not absent for the pathogenic bacteria. The addition of lactic acid bacteria in extraction process can suppress the growth of pathogenic bacteria in tapioca. The results showed that lintnerized cassava starch matrix is the best matrix because after 6 months it still contained lactic acid bacteria as compared to liquid starter and that encapsulated with other matrixes.

  16. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations.

    Science.gov (United States)

    Plengvidhya, Vethachai; Breidt, Fredrick; Lu, Zhongjing; Fleming, Henry P

    2007-12-01

    Previous studies using traditional biochemical identification methods to study the ecology of commercial sauerkraut fermentations revealed that four species of lactic acid bacteria, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis, were the primary microorganisms in these fermentations. In this study, 686 isolates were collected from four commercial fermentations and analyzed by DNA fingerprinting. The results indicate that the species of lactic acid bacteria present in sauerkraut fermentations are more diverse than previously reported and include Leuconostoc citreum, Leuconostoc argentinum, Lactobacillus paraplantarum, Lactobacillus coryniformis, and Weissella sp. The newly identified species Leuconostoc fallax was also found. Unexpectedly, only two isolates of P. pentosaceus and 15 isolates of L. brevis were recovered during this study. A better understanding of the microbiota may aid in the development of low-salt fermentations, which may have altered microflora and altered sensory characteristics.

  17. Antibacterial Activity of Lactic Acid Bacteria Isolated from Salad ...

    African Journals Online (AJOL)

    To determine the inhibitory capacity of lactic acid bacteria (LAB) due to the action of antagonistic substances, 8 members of the LAB group namely, Lactobacillus brevis, Lactobacillus casei, Lactobacillus cellebiosuis, Lactobacillus delbruesckii, Lactobacillus fermentum, Lactobacillus plantarum, Leuconostoc mesenteroides ...

  18. Characterization of lactic acid bacteria isolated from indigenous dahi ...

    African Journals Online (AJOL)

    Diversity and density of lactic acid bacteria from indigenous dahi were studied by the determination of morphological, cultural, physiological and biochemical characteristics. A total of 143 isolates were identified phenotypically and divided into three genera: Lactobacillus, Lactococcus and Streptococcus.

  19. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    Science.gov (United States)

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Antibacterial Activity of Lactic Acid Bacteria Isolated from Healthy ...

    African Journals Online (AJOL)

    Abstract. Lactic acid bacteria (LAB), namely, Lactobacillus acidophilus 1, Lactobacillus acidophilus 2, Lactobacillus brevis 1, Lactobacillus rhamnosus 1, Lactococcus lactis subsp. lactis 1, Lactococcus lactis subsp. lactis 2, Lactococcus raffinolactis 1, Pediococcus acidilactici 1, Pediococcus pentosaceus 1, and Pediococcus ...

  1. Lactic Acid Bacteria Inducing a Weak Interleukin-12 and Tumor Necrosis Alpha Response in Human Dendritic Cells Inhibit Strongly Stimulating Lactic Acid Bacteria but Act Synergistically with Gram-Negative Bacteria

    DEFF Research Database (Denmark)

    Zeuthen, Louise Hjerrild; Christensen, Hanne Risager; Frøkiær, Hanne

    2006-01-01

    The development and maintenance of immune homeostasis indispensably depend on signals from the gut flora. Lactic acid bacteria (LAB), which are gram-positive (G+) organisms, are plausible significant players and have received much attention. Gram-negative (G-) commensals, such as members...

  2. Amino acid catabolism and generation of volatiles by lactic acid bacteria.

    Science.gov (United States)

    Tavaria, F K; Dahl, S; Carballo, F J; Malcata, F X

    2002-10-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180-d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts were made in both situations to correlate the rates of free amino acid uptake with the numbers of viable cells. When incubated individually, leucine, valine, glycine, aspartic acid, serine, threonine, lysine, glutamic acid, and alanine were degraded by all strains considered; arginine tended to build up, probably because of transamination of other amino acids. When incubated together, the degradation of free amino acids by each strain was dependent on pH (with an optimum pH around 6.0). The volatiles detected in ripened Serra da Estrela cheese originated mainly from leucine, phenylalanine, alanine, and valine, whereas in vitro they originated mainly from valine, phenylalanine, serine, leucine, alanine, and threonine. The wild strains tested offer a great potential for flavor generation, which might justify their inclusion in a tentative starter/nonstarter culture for that and similar cheeses.

  3. Characterization of airag collected in Ulaanbaatar, Mongolia with emphasis on isolated lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Suk-Ho Choi

    2016-03-01

    Full Text Available Abstract Background Airag, alcoholic sour-tasting beverage, has been traditionally prepared by Mongolian nomads who naturally ferment fresh mares’ milk. Biochemical and microbiological compositions of airag samples collected in Ulaanbaatar, Mongolia and physiological characteristics of isolated lactic acid bacteria were investigated. Methods Protein composition and biochemical composition were determined using sodium dodecyl sulfate-gel electrophoresis and high performance liquid chromatography, respectively. Lactic acid bacteria were identified based on nucleotide sequence of 16S rRNA gene. Carbohydrate fermentation, acid survival, bile resistance and acid production in skim milk culture were determined. Results Equine whey proteins were present in airag samples more than caseins. The airag samples contained 0.10–3.36 % lactose, 1.44–2.33 % ethyl alcohol, 1.08–1.62 % lactic acid and 0.12–0.22 % acetic acid. Lactobacillus (L. helveticus were major lactic acid bacteria consisting of 9 isolates among total 18 isolates of lactic acid bacteria. L. helveticus survived strongly in PBS, pH 3.0 but did not grow in MRS broth containing 0.1 % oxgall. A couple of L. helveticus isolates lowered pH of skim milk culture to less than 4.0 and produced acid up to more than 1.0 %. Conclusion Highly variable biochemical compositions of the airag samples indicated inconsistent quality due to natural fermentation. Airag with low lactose content should be favorable for nutrition, considering that mares’ milk with high lactose content has strong laxative effect. The isolates of L. helveticus which produced acid actively in skim milk culture might have a major role in production of airag.

  4. Metabolic engineering of lactic acid bacteria for the production of nutraceuticals

    NARCIS (Netherlands)

    Hugenholtz, J.; Sybesma, W.; Groot, M.N.; Wisselink, W.; Ladero, V.; Burgess, K.; Sinderen, van D.; Piard, J.C.; Eggink, G.; Smid, E.J.; Savoy, G.; Sesma, F.; Jansen, T.; Hols, P.; Kleerebezem, M.

    2002-01-01

    Lactic acid bacteria display a relatively simple and well-described metabolism where the sugar source is converted mainly to lactic acid. Here we will shortly describe metabolic engineering strategies on the level of sugar metabolism, that lead to either the efficient re-routing of the lactococcal

  5. The influence of stress conditions on the growth of selected lactic acid bacteria

    International Nuclear Information System (INIS)

    Bok, H.E.

    1985-01-01

    A study was undertaken to determine the effects of certain stress conditions on selected lactic acid bacteria. Where recontamination occurred, lactic acid bacteria was already the dominant bacterial group, with counts of higher than 10 6 /g in vacuum-packaged 'shelf stable' meat products after 1 week storage at 25 and 37 degrees Celsius respectively. Some of the isolates were capable of growing at a pH of 3,9. The minimum pH for growth of a specific culture was dependant on the type of acid that was used to lower the pH. Lactic and acetic acid had the highest inhibitory action. Hydrochloric and citric acid showed similar inhibitory effects, while the effects when using ascorbic acid or gluconic acid for lowering the pH were also fairly similar. Increase in the activity of certain lactic acid bacteria was noticed where the ratio of undissociated to dissociated citric acid in the medium was increased. After exceeding a concentration of 0,048 moles/l undissosiated citric acid in the medium, the activity of the majority of cultures was progressively inhibited. This phenomenon was also found with acetic acid for certain cultures. Selected lactic acid bacteria were resistant to an water activity (a (sub w)) of 0,94 in MRS broth, where NaCl or glycerol was used as a humectant. The minimum a (sub w) for growth was dependent on the type of humectant used. Concentrations of sodium benzoate and potassium sorbate were necessary to inhibit the majority of strains. The % inhibition by sodium benzoate and methyl paraben did not significantly change with a lowering in the pH of the growth medium. Except in the case of lactic acid, the different acids used to lower the pH of the medium did not have a significant effect on the % inhibition by the chemical preservatives. For the cocci, gamma D 10 values of between 0,82 and 1,29 kGy were recorded, whereas the lactobacilli were less resistant to gamma rays, with D 10 values of between 0,21 and 0,54 kGy

  6. Effect of lactic acid bacteria on the textural properties of an edible ...

    African Journals Online (AJOL)

    This study was aimed to evaluate the effects of different components and the addition of probiotic bacteria of lactic acid bacteria (LAB, Lactobacillus casei) on the physicochemical and textural characteristics of edible films using a response surface Box-Behnken design. The edible films were made of the following ...

  7. Repressive efficacy of lactic acid bacteria against the human ...

    African Journals Online (AJOL)

    Different strains of lactic acid bacteria (LAB) namely Lactobacillus acidophilus NCIM 2287, Lactobacillus plantarum NCIM 2085, Lactobacillus helveticus NCIM 2126 and Lactococcus lactis NCIM 2114 were procured from the National Chemical Laboratory (NCL) Pune, India. These LAB cells were individually (107 cfu/ml) ...

  8. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation.

    Science.gov (United States)

    De Filippis, Francesca; Troise, Antonio Dario; Vitaglione, Paola; Ercolini, Danilo

    2018-08-01

    Kombucha is a traditional beverage produced by tea fermentation, carried out by a symbiotic consortium of bacteria and yeasts. Acetic Acid Bacteria (AAB) usually dominate the bacterial community of Kombucha, driving the fermentative process. The consumption of this beverage was often associated to beneficial effects for the health, due to its antioxidant and detoxifying properties. We characterized bacterial populations of Kombucha tea fermented at 20 or 30 °C by using culture-dependent and -independent methods and monitored the concentration of gluconic and glucuronic acids, as well as of total polyphenols. We found significant differences in the microbiota at the two temperatures. Moreover, different species of Gluconacetobacter were selected, leading to a differential abundance of gluconic and glucuronic acids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Hydrolytic breakdown of lactoferricin by lactic acid bacteria.

    Science.gov (United States)

    Paul, Moushumi; Somkuti, George A

    2010-02-01

    Lactoferricin is a 25-amino acid antimicrobial peptide fragment that is liberated by pepsin digestion of lactoferrin present in bovine milk. Along with its antibacterial properties, lactoferricin has also been reported to have immunostimulatory, antiviral, and anticarcinogenic effects. These attributes provide lactoferricin and other natural bioactive peptides with the potential to be functional food ingredients that can be used by the food industry in a variety of applications. At present, commercial uses of these types of compounds are limited by the scarcity of information on their ability to survive food processing environments. We have monitored the degradation of lactoferricin during its incubation with two types of lactic acid bacteria used in the yogurt-making industry, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, with the aim of assessing the stability of this milk protein-derived peptide under simulated yogurt-making conditions. Analysis of the hydrolysis products isolated from these experiments indicates degradation of this peptide near neutral pH by lactic acid bacteria-associated peptidases, the extent of which was influenced by the bacterial strain used. However, the data also showed that compared to other milk-derived bioactive peptides that undergo complete degradation under these conditions, the 25-amino acid lactoferricin is apparently more resistant, with approximately 50% of the starting material remaining after 4 h of incubation. These findings imply that lactoferricin, as a natural milk protein-derived peptide, has potential applications in the commercial production of yogurt-like fermented dairy products as a multi-functional food ingredient.

  10. Biodiversity and evolution of lactic acid bacteria in deferent periods ...

    African Journals Online (AJOL)

    f e c

    2013-04-03

    Apr 3, 2013 ... Key words: Lactic acid bacteria, identification, silage, sorghum, evolution, amylolytic, .... milk was checked which indicates the presence of LAB (Sengun et ..... pH, temperature and salinity cannot be used as reference.

  11. Lipoquinones of some spore-forming rods, lactic-acid bacteria and actinomycetes.

    Science.gov (United States)

    Hess, A; Holländer, R; Mannheim, W

    1979-11-01

    The respiratory quinones of 73 strains of Gram-positive bacteria including spore-forming rods, lactic-acid bacteria and actinomyctes were examined. Menaquinones with seven isoprenoid units (MK-7) were the main quinone type found in representatives of the genus Bacillus and in Sporolactobacillus inulinus. However, a strain of B. thuringiensis produced MK-8 in addition to MK-7, and strains of B. lentus and B. pantothenticus appeared to produce MK-9 and MK-8, respectively, with no MK-7. In the clostridia and lactic-acid bacteria, no quinones were found, except in Pediococcus cerevisiae NCTC 8066 and Lactobacillus casei subsp. rhamnosus ATCC 7469, which contained menaquinones, and Streptococcus faecalis NCTC 775 and HIM 478-1, which contained demethylmenaquinones, in relatively low concentrations. Menaquinones were also found in the actinomycetes (except Actinomyces odontolyticus and Bifidobacterium bifidum which did not produce any quinones) and in Protaminobacter alboflavus ATCC 8458, the so-called Actinobacillus actinoides ATCC 15900 and Noguchia granulosis NCTC 10559.

  12. Glucose and D-Allulose contained medium to support the growth of lactic acid bacteria

    Science.gov (United States)

    Al-Baarri, A. N.; Legowo, A. M.; Pramono, Y. B.; Sari, D. I.; Pangestika, W.

    2018-01-01

    Monosaccharide has been known as support agent for the growth of lactic acid bacteria. However the combination among monosaccharides for supporting the living of bacteria has not been understood well. This research was done for analyzing the combination glucose and D-allulose for the growth of Lactobacillus acidophilus and Streptococcus thermophillus. The NaCl medium containing glucose and D-allulose was used to analyse the growth of bacteria. The study showed that glucose and D-allulose have been detected as supportive agent to L. acidophilus and S. thermophillus specifically. As conclusion, glucose and D-allulose supported the growth of lactic acid bacteria equally. This finding might provide the beneficial information for industry to utilize D-allulose as well as glucose.

  13. Bacteriocin and cellulose production by lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    Sixteen colonies of lactic acid bacteria (LAB) were selected and screened for their ability to produce bacteriocin by agar well diffusion method using the supernatant of centrifuged test cultures. Four isolates inhibited the growth of Listeria monocytogenes and Escherichia coli. Lactobacillus plantarum (6) and Lactobacillus ...

  14. Mixed cultures of Kimchi lactic acid bacteria show increased cell ...

    African Journals Online (AJOL)

    ufuoma

    production and amino acid release among the tested bacteria. W. koreensis 521 ... production of fermented food products, such as yogurt, cheese, sauerkraut and ... habits, stress and excessive dieting (Kapka-Skrzypczak et al., 2012). Mixed ...

  15. Probiotic properties of endemic strains of lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Flora N. Tkhruni

    2013-01-01

    Full Text Available Strains of lactic acid bacteria (LAB isolated from various samples of matsun, yogurt and salted cheese from natural farms of Armenia were studied. They have high antimicrobial and probiotic activities, growth rate and differ by their resistance to enzymes. Supernatants of LAB retain bactericidal activity at рН 3.0-8.0 and inhibit growth of various microflora. The application of different methods of identification and LAB genotyping (API 50 CH, 16S rRNA sequencing, GS-PCR, RAPD PCR showed that isolated LAB evidenced a 99.9% similarity with L. rhamnosus, L. plantarum and L. pentosus species and coccoid forms of Streptococcus and Enterococcus species. It can be concluded, that some strains of lactic acid bacteria, isolated from dairy products from natural farms of Armenia, can be properly used for biopreservation of some foodstuffs. On the basis of experimental data, the LAB can be used as basis for obtaining the new products of functional nutrition.

  16. Naturally fermented Jijelian black olives: microbiological characteristics and isolation of lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Karam, Nour-Eddine

    2009-12-01

    Full Text Available A study of the microflora of traditionally fermented black olives in Eastern Algeria is presented. A count of the following microbial groups was carried out: mesophilic bacteria, enterobacteria, lactic acid bacteria (LAB, staphylococci and yeast. In a second phase, the identification and assessment of the technological traits of LAB was performed. Seventeen lactic acid bacteria were isolated and identified. These isolates were represented by two genera: Lactobacillus and Leuconostoc. The results showed that Lactobacillus plantarum was the predominant species in this traditional product.Un estudio sobre la microflora de aceitunas negras fermentada por métodos tradicionales en el Este de Argelia es presentado. Se realizo el siguiente recuento de grupos de microorganismos: bacterias mesófilas, enterobacterias, bacterias ácido lácticas (LAB, staphylococcus y levaduras. En una segunda fase, la identificación y evaluación de aspectos tecnológicos de LAB fue realizada. Setenta bacterias ácido lácticas fueron aisladas e identificadas. Estos aislados contenían principalmente dos géneros: Lactobacillus y Leuconostoc. Los resultados mostraron que Lactobacillus plantarum fue la especie predominante en este producto tradicional.

  17. Isolation and screening of lactic acid bacteria, Lactococcus lactis ...

    African Journals Online (AJOL)

    In aquaculture probiotic feeding could play a crucial role in developing microbial control strategies, since disease outbreaks are recognized as important constraints to aquaculture production and the fear of antibiotic resistance. In this study, lactic acid bacteria (LAB) strains from the intestinal tissue of African catfish Clarias ...

  18. Genome-wide Studies of Mycolic Acid Bacteria: Computational Identification and Analysis of a Minimal Genome

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-12-01

    The mycolic acid bacteria are a distinct suprageneric group of asporogenous Grampositive, high GC-content bacteria, distinguished by the presence of mycolic acids in their cell envelope. They exhibit great diversity in their cell and morphology; although primarily non-pathogens, this group contains three major pathogens Mycobacterium leprae, Mycobacterium tuberculosis complex, and Corynebacterium diphtheria. Although the mycolic acid bacteria are a clearly defined group of bacteria, the taxonomic relationships between its constituent genera and species are less well defined. Two approaches were tested for their suitability in describing the taxonomy of the group. First, a Multilocus Sequence Typing (MLST) experiment was assessed and found to be superior to monophyletic (16S small ribosomal subunit) in delineating a total of 52 mycolic acid bacterial species. Phylogenetic inference was performed using the neighbor-joining method. To further refine phylogenetic analysis and to take advantage of the widespread availability of bacterial genome data, a computational framework that simulates DNA-DNA hybridisation was developed and validated using multiscale bootstrap resampling. The tool classifies microbial genomes based on whole genome DNA, and was deployed as a web-application using PHP and Javascript. It is accessible online at http://cbrc.kaust.edu.sa/dna_hybridization/ A third study was a computational and statistical methods in the identification and analysis of a putative minimal mycolic acid bacterial genome so as to better understand (1) the genomic requirements to encode a mycolic acid bacterial cell and (2) the role and type of genes and genetic elements that lead to the massive increase in genome size in environmental mycolic acid bacteria. Using a reciprocal comparison approach, a total of 690 orthologous gene clusters forming a putative minimal genome were identified across 24 mycolic acid bacterial species. In order to identify new potential drug

  19. Viability of Lactic Acid Bacteria Isolated from Kombucha Tea Against Low pH and Bile Salt

    Directory of Open Access Journals (Sweden)

    Ni Nyoman Puspawati

    2016-03-01

    Full Text Available Kombucha tea is a functional drink fermented by various types of microbes. Kombucha tea is also a source of lactic acid bacteria that can maintain the balance of the microflora of the digestive tract which can improve the health of the human body. Lactic acid bacteria can act as a probiotic if it is able to survive to the human gastrointestinal tract, where in order to reach the digestive tract, lactic acid bacteria has to be resistant to the low pH in the stomach and bile salts. The purpose of this study was to determine the level of resistance of lactic acid bacteria in kombucha tea against low pH and bile salts. This study uses 20 isolates, each of these isolates were tested to the resistance of low pH 2.0 and 0.5 % bile salts with incubation time of 4 hours. The results indicated that from 20 isolates of lactic acid bacteria that were obtained from kombucha tea, 15 isolates were resistant to low pH and 13 isolates were resistant to bile salts. The isolates have a huge potential to be developed as a probiotic candidate that can contribute greatly to the health of the digestive tract.

  20. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    OpenAIRE

    Takuya Yamane; Tatsuji Sakamoto; Takenori Nakagaki; Yoshihisa Nakano

    2018-01-01

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cell...

  1. Biosynthesis of myristic acid in luminescent bacteria

    International Nuclear Information System (INIS)

    Byers, D.M.

    1987-01-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with [ 14 C] acetate in a nutrient-depleted medium accumulated substantial tree [ 14 C]fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with [ 14 C]acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition

  2. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    OpenAIRE

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria.

  3. ISOLATION AND IDENTIFICATION OF LACTIC ACID PRODUCING BACTERIA FROM CAMEL MILK

    Directory of Open Access Journals (Sweden)

    Toqeer Ahmad, Rashida Kanwal, Izhar Hussain Athar1, Najam Ayub

    2002-03-01

    Full Text Available Lactic acid bacteria (LAB were isolated from camel milk by culturing the camel milk on specific media and pure culture was obtained by sub culturing. Purification of culture was confirmed by Gram's staining and identified by different bio-chemical tests. Camel milk contains lactic acid producing bacteria including Strpptococci such as S. cremoris and S. lactis and Lactobacilli such as L. acidophilus L. acidophilus grows more rapidly in camel milk than others as its growth is supported by camel milk. A variety of food can be preserved by lactic acid fermentation, so starter culture was prepared from strains which were isolated from camel milk. Camel and buffalo's milk cheese was prepared by using starter culture. The strains isolated from camel milk were best for acid production and can coagulate the milk in less lime. Camel milk cheese was prepared and compared with buffalo's milk cheese. It is concluded that cheese can be prepared successfully from camel milk and better results can be obtained by coagulating milk with starter culture.

  4. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications

    OpenAIRE

    Perez, Rodney H; Zendo, Takeshi; Sonomoto, Kenji

    2014-01-01

    Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we...

  5. Characterization of Lactic Acid Bacteria Isolated from Sauce-type Kimchi.

    Science.gov (United States)

    Jung, Suk Hee; Park, Joung Whan; Cho, Il Jae; Lee, Nam Keun; Yeo, In-Cheol; Kim, Byung Yong; Kim, Hye Kyung; Hahm, Young Tae

    2012-09-01

    This study was carried out to investigate the isolation and characterization of lactic acid bacteria (LAB) from naturally fermented sauce-type kimchi. Sauce-type kimchi was prepared with fresh, chopped ingredients (Korean cabbage, radish, garlic, ginger, green onion, and red pepper). The two isolated bacteria from sauce-type kimchi were identified as Pediococcus pentosaceus and Lactobacillus brevis by 16S rDNA sequencing and tentatively named Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2, respectively. Pediococcus sp. IJ-K1 was isolated from the early and middle fermentation stages of sauce-type kimchi whereas Lactobacillus sp. IJ-K2 was isolated from the late fermentation stage. The resistance of Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2 to artificial gastric and bile acids led to bacterial survival rates that were 100% and 84.21%, respectively.

  6. Effect of lactic acid bacteria on the intestinal production of lactate and short-chain fatty acids, and the absorption of lactose

    DEFF Research Database (Denmark)

    Hove, H; Nordgaard-Andersen, I; Mortensen, P B

    1994-01-01

    (10) cells), but did not influence the concentrations and productions of DL-lactate and short-chain fatty acids in the ileostomic outputs and incubates. Large amounts of ingested lactic acid bacteria (4.2 x 10(10) cells) did not ameliorate lactose malabsorption measured by the breath-hydrogen test in 12...... lactose malabsorbers. This study shows that ingested lactic acid bacteria are indeed present in the colon, but it does not support the theory that they change the pattern of colonic fermentation or the degree of intestinal lactose malabsorption....

  7. Heterologous surface display on lactic acid bacteria: non-GMO alternative?

    Science.gov (United States)

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union.

  8. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.

    Science.gov (United States)

    Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2012-03-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.

  9. Evaluation of ginsenoside bioconversion of lactic acid bacteria isolated from kimchi

    Directory of Open Access Journals (Sweden)

    Boyeon Park

    2017-10-01

    Conclusion: Ginsenoside Rg5 concentration of five LABs have ranged from ∼2.6 μg/mL to 6.5 μg/mL and increased in accordance with the incubation periods. Our results indicate that the enzymatic activity along with acidic condition contribute to the production of minor ginsenoside from lactic acid bacteria.

  10. Lactic acid bacteria in dairy food: surface characterization and interactions with food matrix components.

    Science.gov (United States)

    Burgain, J; Scher, J; Francius, G; Borges, F; Corgneau, M; Revol-Junelles, A M; Cailliez-Grimal, C; Gaiani, C

    2014-11-01

    This review gives an overview of the importance of interactions occurring in dairy matrices between Lactic Acid Bacteria and milk components. Dairy products are important sources of biological active compounds of particular relevance to human health. These compounds include immunoglobulins, whey proteins and peptides, polar lipids, and lactic acid bacteria including probiotics. A better understanding of interactions between bioactive components and their delivery matrix may successfully improve their transport to their target site of action. Pioneering research on probiotic lactic acid bacteria has mainly focused on their host effects. However, very little is known about their interaction with dairy ingredients. Such knowledge could contribute to designing new and more efficient dairy food, and to better understand relationships between milk constituents. The purpose of this review is first to provide an overview of the current knowledge about the biomolecules produced on bacterial surface and the composition of the dairy matter. In order to understand how bacteria interact with dairy molecules, adhesion mechanisms are subsequently reviewed with a special focus on the environmental conditions affecting bacterial adhesion. Methods dedicated to investigate the bacterial surface and to decipher interactions between bacteria and abiotic dairy components are also detailed. Finally, relevant industrial implications of these interactions are presented and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Antagonistic effect of chosen lactic acid bacteria strains on Salmonella species in meat and fermented sausages.

    Science.gov (United States)

    Gomółka-Pawlicka, M; Uradziński, J

    2003-01-01

    The aim of this study was to determine of influence of 15 strains of lactic acid bacteria on the growth of 7 Salmonella spp. strains in model set-ups, and in meat and ripened fermented sausages. The investigations were performed within the framework of three alternate stages which differed in respect to the products studied, the number of Lactobacillus spp. strains and, partly, methodological approach. The ratio between lactic acid bacteria and Salmonella strains studied was, depending on the alternate, 1:1, 1:2 and 2:1, respectively. The investigations also covered the water activity (a(w)) and pH of the tested products. The results obtained are shown in 12 figures and suggest that all the lactic acid bacteria strains used within the framework of the model set-ups showed antagonistic effect on all the Salmonella spp. strains. However, these abilities were not observed with respect to some lactic acid bacteria strains in meat and fermented sausage. The temperature and length of the incubation period of sausages, but not a(w) and pH, were found to have a distinct influence on the antagonistic interaction between the bacteria.

  12. Recent Developments for Remediating Acidic Mine Waters Using Sulfidogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Ivan Nancucheo

    2017-01-01

    Full Text Available Acidic mine drainage (AMD is regarded as a pollutant and considered as potential source of valuable metals. With diminishing metal resources and ever-increasing demand on industry, recovering AMD metals is a sustainable initiative, despite facing major challenges. AMD refers to effluents draining from abandoned mines and mine wastes usually highly acidic that contain a variety of dissolved metals (Fe, Mn, Cu, Ni, and Zn in much greater concentration than what is found in natural water bodies. There are numerous remediation treatments including chemical (lime treatment or biological methods (aerobic wetlands and compost bioreactors used for metal precipitation and removal from AMD. However, controlled biomineralization and selective recovering of metals using sulfidogenic bacteria are advantageous, reducing costs and environmental risks of sludge disposal. The increased understanding of the microbiology of acid-tolerant sulfidogenic bacteria will lead to the development of novel approaches to AMD treatment. We present and discuss several important recent approaches using low sulfidogenic bioreactors to both remediate and selectively recover metal sulfides from AMD. This work also highlights the efficiency and drawbacks of these types of treatments for metal recovery and points to future research for enhancing the use of novel acidophilic and acid-tolerant sulfidogenic microorganisms in AMD treatment.

  13. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    Science.gov (United States)

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria. PMID:16346347

  14. Probiotic potential of noni juice fermented with lactic acid bacteria and bifidobacteria.

    Science.gov (United States)

    Wang, Chung-Yi; Ng, Chang-Chai; Su, Hsuan; Tzeng, Wen-Sheng; Shyu, Yuan-Tay

    2009-01-01

    The present study assesses the feasibility of noni as a raw substrate for the production of probiotic noni juice by lactic acid bacteria (Lactobacilluscasei and Lactobacillus plantarum) and bifidobacteria (Bifidobacteriumlongum). Changes in pH, acidity, sugar content, cell survival and antioxidant properties during fermentation were monitored. All tested strains grew well on noni juice, reaching nearly 10⁹ colony-forming units/ml after 48 h fermentation. L.casei produced less lactic acid than B.longum and L. plantarum. After 4 weeks of cold storage at 4°C, B.longum and L. plantarum survived under low-pH conditions in fermented noni juice. In contrast, L.casei exhibited no cell viability after 3 weeks. Moreover, noni juice fermented with B.longum had a high antioxidant capacity that did not differ significantly (P <0.05) from that of lactic acid bacteria. Finally, we found that B.longum and L. plantarum are optimal probiotics for fermentation with noni juice.

  15. Inhibition of aflatoxin-producing aspergilli by lactic acid bacteria ...

    African Journals Online (AJOL)

    A total of six lactic acid bacteria (LAB) isolates were selected from five indigenously fermented cereal gruels and identified as Lactobacillus fermentum OYB, Lb. fermentum RS2, Lb. plantarum MW, Lb. plantarum YO, Lb. brevis WS3, and Lactococcus spp. RS3. Six aflatoxin-producing aspergilli were also selected from the ...

  16. Isolation and identification of lactic acid bacteria from abalone (Haliotis asinina as a potential candidate of probiotic

    Directory of Open Access Journals (Sweden)

    YAYAN SOFYAN

    2010-01-01

    Full Text Available Sarkono, Faturrahman, Sofyan Y. 2010. Isolation and identification of lactic acid bacteria from abalone (Haliotis asinina as a potential candidate of probiotic. Nusantara Bioscience 2: 38-42. The purpose of this study was to isolate, select and characterize lactic acid bacteria (LAB from abalone as a potential candidate probiotic in abalone cultivation system. Selective isolation of LAB performed using de Man Rogosa Sharpe medium. LAB isolate that potential as probiotics was screened. Selection was based on its ability to suppress the growth of pathogenic bacteria, bacterial resistance to acidic conditions and bacterial resistance to bile salts (bile. Further characterization and identification conducted to determine the species. The results showed that two of the ten isolates potential to be developed as probiotic bacteria that have the ability to inhibit several pathogenic bacteria such as Eschericia coli, Bacillus cereus dan Staphylococus aureus, able to grow at acidic condition and bile tolerance during the incubation for 24 hour. Based on the API test kit, the both of isolate identified as members of the species Lactobacillus paracasei ssp. paracasei.

  17. Characterization of probiotic bacteria involved in fermented milk processing enriched with folic acid.

    Science.gov (United States)

    Wu, Zhen; Wu, Jing; Cao, Pei; Jin, Yifeng; Pan, Daodong; Zeng, Xiaoqun; Guo, Yuxing

    2017-06-01

    Yogurt products fermented with probiotic bacteria are a consumer trend and a challenge for functional food development. So far, limited research has focused on the behavior of the various probiotic strains used in milk fermentation. In the present study, we characterized folic acid production and the sensory and textural characteristics of yogurt products fermented with probiotic bacteria. Yogurt fermented with Lactobacillus plantarum had improved nutrient content and sensory and textural characteristics, but the presence of L. plantarum significantly impaired the growth and survival of Lactobacillus delbrueckii ssp. bulgaricus during refrigerated storage. Overall, L. plantarum was a good candidate for probiotic yogurt fermentation; further studies are needed to understand the major metabolite path of lactic acid bacteria in complex fermentation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Antifungal Capacity of Lactic Acid Bacteria Isolated From Salad ...

    African Journals Online (AJOL)

    This study explores the use of lactic acid bacteria from fresh salad vegetables to inhibit fungal growth. The antifungal assay was done using the agar well diffusion method as reported by Schillinger and Lucke (1989). The largest zone of inhibition (25mm) was recorded by the antagonistic activity of the isolate identified to ...

  19. Analysis of some functional properties of acetic acid bacteria ...

    African Journals Online (AJOL)

    SARAH

    2014-03-31

    Mar 31, 2014 ... Acetic acid bacteria in Côte d'Ivoire cocoa fermentation ... Six day heap fermentation on banana leaves was conducted at farm level ... reactions responsible for the final quality of the ... harvested from Agboville (geographic coordinates 5°59' .... Figure 1: Evolution of temperature (A) and pH (B) during cocoa ...

  20. Current taxonomy of phages infecting lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Jennifer eMahony

    2014-01-01

    Full Text Available Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp. and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species.

  1. Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits.

    Science.gov (United States)

    Lynch, Kieran M; Zannini, Emanuele; Coffey, Aidan; Arendt, Elke K

    2018-03-25

    Exopolysaccharides produced by lactic acid bacteria are a diverse group of polysaccharides produced by many species. They vary widely in their molecular, compositional, and structural characteristics, including mechanisms of synthesis. The physiochemical properties of these polymers mean that they can be exploited for the sensorial and textural enhancement of a variety of food and beverage products. Traditionally, lactic acid bacteria exopolysaccharides have an important role in fermented dairy products and more recently are being applied for the improvement of bakery products. The health benefits that are continually being associated with these polysaccharides enable the development of dual function, added-value, and clean-label products. To fully exploit and understand the functionality of these exopolysaccharides, their isolation, purification, and thorough characterization are of great importance. This review considers each of the above factors and presents the current knowledge on the importance of lactic acid bacteria exopolysaccharides in the food and beverage industry.

  2. Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Lechtenfeld, O.J.; Benner, R.

    2014-01-01

    production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of combined neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining...... degradation are not strongly influenced by the initial substrate or bacterial community. The molecular composition of neutral sugars released by bacteria was characterized by a high glucose content (47 mol %) and heterogeneous contributions from other neutral sugars (3–14 mol %). DOM remaining after bacterial...... degradation was characterized by a high galactose content (33 mol %), followed by glucose (22 mol %) and the remaining neutral sugars (7–11 mol %). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days, the D/L ratios of aspartic...

  3. Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation.

    Science.gov (United States)

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-12-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a selection of strains was made out of a pool of strains of these LAB and AAB species, obtained from previous studies, based on their fermentation kinetics in PSM. Also, various concentrations of citric acid in the presence of glucose and/or fructose (PSM-LAB) and of lactic acid in the presence of ethanol (PSM-AAB) were tested. These data could explain the competitiveness of particular cocoa-specific strains, namely, L. plantarum 80 (homolactic and acid tolerant), L. fermentum 222 (heterolactic, citric acid fermenting, mannitol producing, and less acid tolerant), and A. pasteurianus 386B (ethanol and lactic acid oxidizing, acetic acid overoxidizing, acid tolerant, and moderately heat tolerant), during the natural cocoa bean fermentation process. For instance, it turned out that the capacity to use citric acid, which was exhibited by L. fermentum 222, is of the utmost importance. Also, the formation of mannitol was dependent not only on the LAB strain but also on environmental conditions. A mixture of L. plantarum 80, L. fermentum 222, and A. pasteurianus 386B can now be considered a mixed-strain starter culture for better controlled and more reliable cocoa bean fermentation processes.

  4. Isolation and identification of lactic acid bacteria from traditional dairy products of Kleibar, Heris and Varzaghan

    Directory of Open Access Journals (Sweden)

    T Narimani

    2013-11-01

    Full Text Available Probiotics are dietary supplements of live microorganisms which when consumed in adequate amounts, can have a beneficial effect on the host. Among all bacteria, lactic acid bacteria are the most common type that has been introduced as probiotics. These bacteria are present in dairy products and produce lactic acid during the fermentation process. The aim of this study was to isolate and identify the probiotics from microbial flora of milk and traditional yogurt in Kaleibar, Heris and Varzaghan areas. In this study, lactic acid bacteria were isolated by culture and identified based on biochemical properties and resistant to stomach acid and bile salts were evaluated. Then, for more accurate identification of the isolates, the 16S rRNA genes of Lactobacilli were amplified with specific primers and the purified PCR product was sent for sequencing. According to our results, 17 strains of Lactobacilli and 6 strains of Enterococci were reported in Kaleibar, Heris and Varzaghan areas which could be a good candidate for further investigation as probiotic.

  5. Bacteriocins produced by lactic acid bacteria: A review

    Directory of Open Access Journals (Sweden)

    Vesković-Moračanin Slavica M.

    2014-01-01

    Full Text Available Lactic acid bacteria (LAB have an essential role in the production of fermented products. With their metabolic activity, they influence the ripening processes - leading to desired sensory qualities while at the same time inhibiting the growth of undesired microorganisms. Because of their dominant role during fermentation and because of a long tradition of utilization, Lhave been designated as “safe microbiota”. Biological protection of LAB, as a naturally present and/or selected and intentionally added microflora, is realized through the production of non-specific (lactic acid, acetic acid and other volatile organic acids, hydrogen peroxide, diacetyl, etc and specific metabolites, bacteriocins. Bacteriocins are extracellularly released proteins or peptides which possess certain antibacterial activity towards certain types of microorganisms, usually related to the producing bacteria. Today, bacteriocins represent a very interesting potential for their application in the food industry. Their application can reduce the use of synthetic preservatives and/or the intensity of thermal treatment during food production consumer’s need for safe, fresh and minimally-processed food. With the intention of realizing this potential to the fullest, it is necessary to understand the nature of bacteriocins, their production mechanisms, regulations and actions, as well as the influence of external factors on the their antimicrobial activity. The composition of food, i.e. its characteristics (pH, temperature, ingredients and additives, types and quantities of epiphytic microbiota and the actual technological process used in production, can all influence the stability and activity of the added bacteriocins. The future research in this field should also aim to clarify this unknown aspect of the application of bacteriocins, to provide the necessary knowledge about the optimization of the external conditions and open up the possibility of discovering their new

  6. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    Science.gov (United States)

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-04

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 °C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product.

  7. Isolation and identification of indigenous lactic acid bacteria from North Sumatra river buffalo milk

    OpenAIRE

    Heni Rizqiati; Cece Sumantr; Ronny Rachman Noor; E. Damayanthi; E. I. Rianti

    2015-01-01

    Buffalo milk is a source of various lactic acid bacteria (LAB) which is potential as culture starter as well as the probiotic. This study was conducted to isolate and identify LAB from indigenous North Sumatra river buffalo milk. Lactic acid bacteria was isolated and grown in medium De Man Rogosa Sharpe Agar (MRSA). The isolation was conducted to obtain pure isolate. The identification of LAB was studied in terms of morphology, physiology, biochemistry and survival on low pH. Morphology test...

  8. Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Mduduzi Paul Mokoena

    2017-07-01

    Full Text Available Several lactic acid bacteria (LAB isolates from the Lactobacillus genera have been applied in food preservation, partly due to their antimicrobial properties. Their application in the control of human pathogens holds promise provided appropriate strains are scientifically chosen and a suitable mode of delivery is utilized. Urinary tract infection (UTI is a global problem, affecting mainly diabetic patients and women. Many uropathogens are developing resistance to commonly used antibiotics. There is a need for more research on the ability of LAB to inhibit uropathogens, with a view to apply them in clinical settings, while adhering to strict selection guidelines in the choice of candidate LAB. While several studies have indicated the ability of LAB to elicit inhibitory activities against uropathogens in vitro, more in vivo and clinical trials are essential to validate the efficacy of LAB in the treatment and prevention of UTI. The emerging applications of LAB such as in adjuvant therapy, oral vaccine development, and as purveyors of bioprotective agents, are relevant in infection prevention and amelioration. Therefore, this review explores the potential of LAB isolates and their bacteriocins to control uropathogens, with a view to limit clinical use of antibiotics.

  9. Systems solutions by lactic acid bacteria: from paradigms to practice

    NARCIS (Netherlands)

    Vos, de W.M.

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which

  10. Selection of bacteriocin producer strains of lactic acid bacteria from a dairy environment.

    Science.gov (United States)

    Lasagno, M; Beoleito, V; Sesma, F; Raya, R; Font de Valdez, G; Eraso, A

    2002-01-01

    Two strains showing bacteriocin production were selected from a total of 206 lactic acid bacteria isolated from samples of milk, milk serum, whey and homemade cheeses in Southern Cordoba, Argentina. This property was detected by means of well diffusion assays. The strains were identified as Enterococcus hirae and Enterococcus durans. The protein nature of those substances was proved by showing their sensitivity to type IV and XXV proteases, papaine, trypsin, pepsin and K proteinase. The bacteriocins inhibited the growth of Listeria monocytogenes, Bacillus cereus, Clostridium perfringes and two strains of Staphylococcus aureus, an A-enterotoxin and a B-enterotoxin producers. All of these bacteria are common pathogens usually associated with food borne diseases (ETA). These lactic acid bacteria or their bacteriocins could be suitable candidates for food preservation and specially useful in the our regional dairy industry.

  11. Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products.

    Science.gov (United States)

    Vinderola, C G; Mocchiutti, P; Reinheimer, J A

    2002-04-01

    Interactions among lactic acid starter and probiotic bacteria were investigated to establish adequate combinations of strains to manufacture probiotic dairy products. For this aim, a total of 48 strains of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis, Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium spp. (eight of each) were used. The detection of bacterial interactions was carried out using the well-diffusion agar assay, and the interactions found were further characterized by growth kinetics. A variety of interactions was demonstrated. Lb. delbrueckii subsp. bulgaricus was found to be able to inhibit S. thermophilus strains. Among probiotic cultures, Lb. acidophilus was the sole species that was inhibited by the others (Lb. casei and Bifidobacterium). In general, probiotic bacteria proved to be more inhibitory towards lactic acid bacteria than vice versa since the latter did not exert any effect on the growth of the former, with some exceptions. The study of interactions by growth kinetics allowed the setting of four different kinds of behaviors between species of lactic acid starter and probiotic bacteria (stimulation, delay, complete inhibition of growth, and no effects among them). The possible interactions among the strains selected to manufacture a probiotic fermented dairy product should be taken into account when choosing the best combination/s to optimize their performance in the process and their survival in the products during cold storage.

  12. The use of lactic acid bacteria to reduce mercury bioaccessibility.

    Science.gov (United States)

    Jadán-Piedra, C; Alcántara, C; Monedero, V; Zúñiga, M; Vélez, D; Devesa, V

    2017-08-01

    Mercury in food is present in either inorganic [Hg(II)] or methylmercury (CH 3 Hg) form. Intestinal absorption of mercury is influenced by interactions with other food components. The use of dietary components to reduce mercury bioavailability has been previously proposed. The aim of this work is to explore the use of lactic acid bacteria to reduce the amount of mercury solubilized after gastrointestinal digestion and available for absorption (bioaccessibility). Ten strains were tested by addition to aqueous solutions containing Hg(II) or CH 3 Hg, or to food samples, and submission of the mixtures to gastrointestinal digestion. All of the strains assayed reduce the soluble fraction from standards of mercury species under gastrointestinal digestion conditions (72-98%). However their effectiveness is lower in food, and reductions in bioaccessibility are only observed with mushrooms (⩽68%). It is hypothesized that bioaccessible mercury in seafood forms part of complexes that do not interact with lactic acid bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Characterization of Lactic Acid Bacteria (LAB) isolated from Indonesian shrimp paste (terasi)

    Science.gov (United States)

    Amalia, U.; Sumardianto; Agustini, T. W.

    2018-02-01

    Shrimp paste was one of fermented products, popular as a taste enhancer in many dishes. The processing of shrimp paste was natural fermentation, depends on shrimp it self and the presence of salt. The salt inhibits the growth of undesirable microorganism and allows the salt-tolerant lactic acid bacteria (LAB) to ferment the protein source to lactic acids. The objectives of this study were to characterize LAB isolated from Indonesian shrimp paste or "Terasi" with different times of fermentation (30, 60 and 90 days). Vitech analysis showed that there were four strains of the microorganism referred to as lactic acid bacteria (named: LABS1, LABS2, LABS3 and LABS4) with 95% sequence similarity. On the basis of biochemical, four isolates represented Lactobacillus, which the name Lactobacillus plantarum is proposed. L.plantarum was play role in resulting secondary metabolites, which gave umami flavor in shrimp paste.

  14. Surface display for metabolic engineering of industrially important acetic acid bacteria

    Directory of Open Access Journals (Sweden)

    Marshal Blank

    2018-04-01

    Full Text Available Acetic acid bacteria have unique metabolic characteristics that suit them for a variety of biotechnological applications. They possess an arsenal of membrane-bound dehydrogenases in the periplasmic space that are capable of regiospecific and enantioselective partial oxidations of sugars, alcohols, and polyols. The resulting products are deposited directly into the medium where they are easily recovered for use as pharmaceutical precursors, industrial chemicals, food additives, and consumer products. Expression of extracytoplasmic enzymes to augment the oxidative capabilities of acetic acid bacteria is desired but is challenging due to the already crowded inner membrane. To this end, an original surface display system was developed to express recombinant enzymes at the outer membrane of the model acetic acid bacterium Gluconobacter oxydans. Outer membrane porin F (OprF was used to deliver alkaline phosphatase (PhoA to the cell surface. Constitutive high-strength p264 and moderate-strength p452 promoters were used to direct expression of the surface display system. This system was demonstrated for biocatalysis in whole-cell assays with the p264 promoter having a twofold increase in PhoA activity compared to the p452 promoter. Proteolytic cleavage of PhoA from the cell surface confirmed proper delivery to the outer membrane. Furthermore, a linker library was constructed to optimize surface display. A rigid (EAAAK1 linker led to the greatest improvement, increasing PhoA activity by 69%. This surface display system could be used both to extend the capabilities of acetic acid bacteria in current biotechnological processes, and to broaden the potential of these microbes in the production of value-added products.

  15. Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    DEFF Research Database (Denmark)

    Hansen, K.W.; Ahring, Birgitte Kiær; Raskin, L.

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-beta-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYE, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S, wolfei LYE was closely related...... fatty acid-beta-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria-and methanogens were compared to specific methanogenic activities...

  16. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper.

    Science.gov (United States)

    Lee, Boyoung; Lee, Soohyun; Ryu, Choong-Min

    2012-07-01

    Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent pathogen attacks.

  17. Antagonistic activity of isolated lactic acid bacteria from Pliek U against gram-negative bacteria Escherichia coli ATCC 25922

    Science.gov (United States)

    Kiti, A. A.; Jamilah, I.; Rusmarilin, H.

    2017-09-01

    Lactic acid bacteria (LAB) is one group of microbes that has many benefits, notably in food and health industries sector. LAB plays an important role in food fermentation and it has bacteriostatic effect against the growth of pathogenic microorganisms. The research related LAB continued to be done to increase the diversity of potential isolates derived from nature which is indigenous bacteria for biotechnological purposes. This study was aimed to isolate and characterize LAB derived from pliek u sample and to examine the potency to inhibits Escherichia coli ATCC 25922 bacteria growth. A total of 5 isolates were isolated and based on morphological and physiological characteristics of the fifth bacteria, they are allegedly belonging to the genus Bacillus. Result of antagonistic test showed that the five isolates could inhibits the growth of E. coli ATCC 25922. The highest inhibition zone is 8.5 mm was shown by isolates NQ2, while the lowest inhibition is 1.5 mm was shown by isolates NQ3.

  18. Kinetic Analysis of Strains of Lactic Acid Bacteria and Acetic Acid Bacteria in Cocoa Pulp Simulation Media toward Development of a Starter Culture for Cocoa Bean Fermentation ▿

    Science.gov (United States)

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-01-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a selection of strains was made out of a pool of strains of these LAB and AAB species, obtained from previous studies, based on their fermentation kinetics in PSM. Also, various concentrations of citric acid in the presence of glucose and/or fructose (PSM-LAB) and of lactic acid in the presence of ethanol (PSM-AAB) were tested. These data could explain the competitiveness of particular cocoa-specific strains, namely, L. plantarum 80 (homolactic and acid tolerant), L. fermentum 222 (heterolactic, citric acid fermenting, mannitol producing, and less acid tolerant), and A. pasteurianus 386B (ethanol and lactic acid oxidizing, acetic acid overoxidizing, acid tolerant, and moderately heat tolerant), during the natural cocoa bean fermentation process. For instance, it turned out that the capacity to use citric acid, which was exhibited by L. fermentum 222, is of the utmost importance. Also, the formation of mannitol was dependent not only on the LAB strain but also on environmental conditions. A mixture of L. plantarum 80, L. fermentum 222, and A. pasteurianus 386B can now be considered a mixed-strain starter culture for better controlled and more reliable cocoa bean fermentation processes. PMID:20889778

  19. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Antibacterial Activity of Lactic Acid Bacteria Isolated from Gastrointestinal Tract of “Ayam Kampung” Chicken Against Food Pathogens

    Science.gov (United States)

    Nur Jannah, Siti; Rini Saraswati, Tyas; Handayani, Dwi; Pujiyanto, Sri

    2018-05-01

    Food borne disease results from ingestion of water and wide variety of food contaminated with pathogenic organisms. The main causes of food borne diseases are bacteria, such as Escherichia coli and Staphylococcus aureus. The objective of this study was to determine antimicrobial activity of lactic acid bacteria (LAB) isolated from local chicken gastrointestinal tract with an emphasis on their probiotic properties. The colonies of bacteria that producing clear zone on MRSA plus 0.5% CaCO3, Gram-positive and catalase-negative were isolated as lactic acid bacteria. Some of the strains (10 isolates) were tested for their ability to inhibit growth of Escherichia coli and Staphylococcus aureus, and for acid pH and bile salt tolerance. The results showed that the all selected isolates producing antimicrobial compounds inhibits the growth of Escherichia coli and Staphylococcus aureus, both in the supernatant and supernatant plus 2M NaOH, and still growing in medium condition with pH 2.0 and 0.1% bile salt. It revealing the potential use of the lactic acid bacteria from chicken gastrointestinal tract for probiotics in food.

  1. Evaluation of Petrifilm Lactic Acid Bacteria Plates for Counting Lactic Acid Bacteria in Food.

    Science.gov (United States)

    Kanagawa, Satomi; Ohshima, Chihiro; Takahashi, Hajime; Burenqiqige; Kikuchi, Misato; Sato, Fumina; Nakamura, Ayaka; Mohamed, Shimaa M; Kuda, Takashi; Kimura, Bon

    2018-06-01

    Although lactic acid bacteria (LAB) are used widely as starter cultures in the production of fermented foods, they are also responsible for food decay and deterioration. The undesirable growth of LAB in food causes spoilage, discoloration, and slime formation. Because of these adverse effects, food companies test for the presence of LAB in production areas and processed foods and consistently monitor the behavior of these bacteria. The 3M Petrifilm LAB Count Plates have recently been launched as a time-saving and simple-to-use plate designed for detecting and quantifying LAB. This study compares the abilities of Petrifilm LAB Count Plates and the de Man Rogosa Sharpe (MRS) agar medium to determine the LAB count in a variety of foods and swab samples collected from a food production area. Bacterial strains isolated from Petrifilm LAB Count Plates were identified by 16S rDNA sequence analysis to confirm the specificity of these plates for LAB. The results showed no significant difference in bacterial counts measured by using Petrifilm LAB Count Plates and MRS medium. Furthermore, all colonies growing on Petrifilm LAB Count Plates were confirmed to be LAB, while yeast colonies also formed in MRS medium. Petrifilm LAB Count Plates eliminated the plate preparation and plate inoculation steps, and the cultures could be started as soon as a diluted food sample was available. Food companies are required to establish quality controls and perform tests to check the quality of food products; the use of Petrifilm LAB Count Plates can simplify this testing process for food companies.

  2. Disinfectant properties of acid mine drainage: its effects on enteric bacteria in a sewage-contaminated stream

    Energy Technology Data Exchange (ETDEWEB)

    Keating, S.T.; Celements, C.M.; Ostrowski, D.; Hanlon, T. [St. Francis College, Loretto, PA (United States). Dept. of Biology

    1996-09-01

    Studies conducted in a Cambria County, Pennsylvania, acid mine drainage stream suggest that mine drainage rapidly reduces in situ populations of fecal bacteria associated with inputs of untreated sewage. The density of lactose-fermenting bacteria, mostly coliform species from sewage, declined 1000-fold over a distance of less than 100 m following the input of high acid (pH 3.5 to 4.0), high ferrous iron (45 mg/l) acid mine drainage. Enterobacteriaceae were isolated from the stream, identified, and tested for tolerance to acid mine drainage by exposing cells to drainage for 10 minutes at 0 or 37{degree}C. Populations of all tested isolates were reduced by this treatment, but some isolates were significantly less affected than others. Thus, while mine drainage may act as a disinfectant, it may not reduce all populations of disease-causing intestinal bacteria at an equal, rapid rate.

  3. Analyses of Dynamics in Dairy Products and Identification of Lactic Acid Bacteria Population by Molecular Methods

    Directory of Open Access Journals (Sweden)

    Aytül Sofu

    2017-01-01

    Full Text Available Lactic acid bacteria (LAB with different ecological niches are widely seen in fermented meat, vegetables, dairy products and cereals as well as in fermented beverages. Lactic acid bacteria are the most important group of bacteria in dairy industry due to their probiotic characteristics and fermentation agents as starter culture. In the taxonomy of the lactic acid bacteria; by means of rep-PCR, which is the analysis of repetitive sequences that are based on 16S ribosomal RNA (rRNA gene sequence, it is possible to conduct structural microbial community analyses such as Restriction Fragment Length Polymorphism (RFLP analysis of DNA fragments of different sizes cut with enzymes, Random Amplified Polymorphic DNA (RAPD polymorphic DNA amplified randomly at low temperatures and Amplified Fragment-Length Polymorphism (AFLP-PCR of cut genomic DNA. Besides, in the recent years, non-culture-based molecular methods such as Pulse Field Gel Electrophoresis (PFGE, Denaturing Gradient Gel Electrophoresis (DGGE, Thermal Gradient Gel Electrophoresis (TGGE, and Fluorescence In-situ Hybridization (FISH have replaced classical methods once used for the identification of LAB. Identification of lactic acid bacteria culture independent regardless of the method will be one of the most important methods used in the future pyrosequencing as a Next Generation Sequencing (NGS techniques. This paper reviews molecular-method based studies conducted on the identification of LAB species in dairy products.

  4. Phenotypic and genotypic characterization of lactic acid bacteria isolated from raw goat milk and effect of farming practices on the dominant species of lactic acid bacteria.

    Science.gov (United States)

    Tormo, Hélène; Ali Haimoud Lekhal, Djamila; Roques, C

    2015-10-01

    Lactic acid bacteria, in particular Lactococcus lactis, play a decisive role in the cheese making process and more particularly in lactic cheeses which are primarily produced on goat dairy farms. The objective of this study was therefore to identify the main lactic acid bacteria found in raw goats' milk from three different regions in France and evaluate if certain farming practices have an effect on the distribution of species of lactic acid bacteria in the various milk samples. Identification at genus or species level was carried out using phenotypic tests and genotypic methods including repetitive element REP-PCR, species-specific PCR and 16S rRNA gene sequencing. The distribution of the main bacterial species in the milk samples varied depending on farms and their characteristics. Out of the 146 strains identified, L. lactis was the dominant species (60% of strains), followed by Enterococcus (38%) of which Enterococcus faecalis and Enterococcus faecium. Within the species L. lactis, L. lactis subsp lactis was detected more frequently than L. lactis subsp cremoris (74% vs. 26%). The predominance of L. lactis subsp cremoris was linked to geographical area studied. It appears that the animals' environment plays a role in the balance between the dominance of L. lactis and enterococci in raw goats' milk. The separation between the milking parlor and the goat shed (vs no separation) and only straw in the bedding (vs straw and hay) seems to promote L. lactis in the milk (vs enterococci). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effects of cultivation conditions on folate production by lactic acid bacteria

    NARCIS (Netherlands)

    Sybesma, W.; Starrenburg, M.; Tijsseling, L.; Hoefnagel, M.H.N.; Hugenholtz, J.

    2003-01-01

    A variety of lactic acid bacteria were screened for their ability to produce folate intracellularly and/or extracellularly. Lactococcus lactis, Streptococcus thermophilus, and Leuconostoc spp. all produced folate, while most Lactobacillus spp., with the exception of Lactobacillus plantarum, were not

  6. Lactic Acid Bacteria Producing Inhibitor of Alpha Glucosidase Isolated from Ganyong (Canna Edulis) and Kimpul (Xanthosoma sagittifolium)

    Science.gov (United States)

    Nurhayati, Rifa; Miftakhussolikhah; Frediansyah, Andri; Lailatul Rachmah, Desy

    2017-12-01

    Type 2 diabetes is a disease that caused by the failure of insulin secretion by the beta cells of the pancreas and insulin resistance in peripheral levels. One therapy for diabetics is by inhibiting the activity of α-glucosidase. Lactic acid bacteria have the ability to inhibit of α-glucosidase activity. The aims of this research was to isolation and screening of lactic acid bacteria from ganyong tuber (Canna Edulis) and kimpul tuber (Xanthosoma sagittifolium), which has the ability to inhibit the activity of α-glucosidase. Eightteen isolates were identified as lactic acid bacteria and all of them could inhibit the activity of α-glukosidase. The GN 8 isolate was perform the highest inhibition acivity.

  7. Enhanced daidzin production from jasmonic and acetyl salicylic acid elicited hairy root cultures of Psoralea corylifolia L. (Fabaceae).

    Science.gov (United States)

    Zaheer, Mohd; Reddy, Vudem Dashavantha; Giri, Charu Chandra

    2016-07-01

    Daidzin (7-O-glucoside of daidzein) has several pharmacological benefits in herbal remedy, as antioxidant and shown antidipsotropic activity. Hairy root culture of Psoralea corylifolia L. was developed for biomass and enhanced daidzin production using signalling compounds such as jasmonic acid (JA) and acetyl salicylic acid (ASA). Best response of 2.8-fold daidzin (5.09% DW) with 1 μM JA treatment after second week and 7.3-fold (3.43% DW) with 10 μM JA elicitation after 10th week was obtained from hairy roots compared to untreated control. ASA at 10 μM promoted 1.7-fold increase in daidzin (1.49% DW) content after seventh week compared to control (0.83% DW). Addition of 25 μM ASA resulted in 1.44% DW daidzin (1.5-fold increase) with 0.91% DW in control after fifth week and 1.44% DW daidzin (2.3-fold increase) after eighth week when compared to untreated control (0.62% DW). Reduced biomass with increased daidzin content was facilitated by elicited hairy root cultures.

  8. Evaluation of the probiotic potential of lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    The probiotic-related characteristics of 55 strains of lactic acid bacteria isolated from the faeces of 3 - 6 months old breast-fed infants were determined. The API 50 CH and SDS-PAGE techniques were employed to ascertain the identity of the isolated strains. The predominant species among the isolated strains were ...

  9. Effect of Supplementation of Branched Chain Fatty Acid on Colony of Ruminal Bacteria and Cell of Protozoa

    Directory of Open Access Journals (Sweden)

    W Suryapratama

    2009-05-01

    Full Text Available A study was conducted to evaluate the potential of branched-chain volatile fatty acids (isobutyric, α-methylbutyric and β-methylbutiric that supplemented into the diet on the colony of ruminal bacteria and the cell of protozoa population. Five progeny Friesian Holstein males with initial weight 348±29 kg were used in a 5x5 Latin square design (30-d periods. The basal diet composed of 55% forage and 45% concentrate containing 10.5 MJ ME/kg and 15% crude protein (CP. There were five dietary treatments where A: basal diet, B: A+139 mg urea/kg W0.75, C: B+28 mg CaSO4/kg W0.75, D: C+0.05 mM isobutyric acid+0.05 mM β-methylbutyric acid, and E: D+0.05 mM α-methylbutyric acid. Rearing period was 30 days, consists of feed adaptation period 20 days, then growth observation was done within the last 10 days. Collection of ruminal fluid was done within the last day of observation period, and took 3-4 h after the feeding. The results showed that supplementation branched chain volatile fatty acids did not significant affect on the number of colonies of bacteria and protozoa population, but the significant effect (P<0.05 on the concentration of branched chain volatile fatty acids in the rumen fluid. The supplementation of α-methylbutyric (P <0.05 decreased of concentration of isobutyric and isovaleric in rumen fluid than the other treatments. It is concluded that supplementation of branched chain volatile fatty acids not used by rumen bacteria for their growth but for the elongation of fatty acid synthesis. The supplementation of branched chain volatile fatty acids was 0.05 mM not enough strong influence on the growth of colony of rumen bacteria. (Animal Production 11(2: 129-134 (2009 Key Words: rumen fermentation, branched-chain fatty acid, ruminal bacteria, protozoa

  10. Nanosized Minicells Generated by Lactic Acid Bacteria for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huu Ngoc Nguyen

    2017-01-01

    Full Text Available Nanotechnology has the ability to target specific areas of the body, controlling the drug release and significantly increasing the bioavailability of active compounds. Organic and inorganic nanoparticles have been developed for drug delivery systems. Many delivery systems are through clinical stages for development and market. Minicell, a nanosized cell generated by bacteria, is a potential particle for drug delivery because of its size, safety, and biodegradability. Minicells produced by bacteria could drive therapeutic agents against cancer, microbial infection, and other diseases by targeting. In addition, minicells generated by lactic acid bacteria being probiotics are more interesting than others because of their benefits like safety, immunological improvement, and biodegradation. This review aims to highlight the stages of development of nanoparticle for drug delivery and discuss their advantages and limitations to clarify minicells as a new opportunity for the development of potential nanoparticle for drug delivery.

  11. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation.

    Science.gov (United States)

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-08-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.

  12. A Consistent Methodology Based Parameter Estimation for a Lactic Acid Bacteria Fermentation Model

    DEFF Research Database (Denmark)

    Spann, Robert; Roca, Christophe; Kold, David

    2017-01-01

    Lactic acid bacteria are used in many industrial applications, e.g. as starter cultures in the dairy industry or as probiotics, and research on their cell production is highly required. A first principles kinetic model was developed to describe and understand the biological, physical, and chemical...... mechanisms in a lactic acid bacteria fermentation. We present here a consistent approach for a methodology based parameter estimation for a lactic acid fermentation. In the beginning, just an initial knowledge based guess of parameters was available and an initial parameter estimation of the complete set...... of parameters was performed in order to get a good model fit to the data. However, not all parameters are identifiable with the given data set and model structure. Sensitivity, identifiability, and uncertainty analysis were completed and a relevant identifiable subset of parameters was determined for a new...

  13. Inhibitory effect of bacteriocin-producing lactic acid bacteria against histamine-forming bacteria isolated from Myeolchi-jeot

    Directory of Open Access Journals (Sweden)

    Eun-Seo Lim

    2016-12-01

    Full Text Available Abstract The objectives of this study were to identify the histamine-forming bacteria and bacteriocin- producing lactic acid bacteria (LAB isolated from Myeolchi-jeot according to sequence analysis of the 16S rRNA gene, to evaluate the inhibitory effects of the bacteriocin on the growth and histamine accumulation of histamine-forming bacteria, and to assess the physico-chemical properties of the bacteriocin. Based on 16S rRNA gene sequences, histamine-forming bacteria were identified as Bacillus licheniformis MCH01, Serratia marcescens MCH02, Staphylococcus xylosus MCH03, Aeromonas hydrophila MCH04, and Morganella morganii MCH05. The five LAB strains identified as Pediococcus acidilactici MCL11, Leuconostoc mesenteroides MCL12, Enterococcus faecium MCL13, Lactobacillus sakei MCL14, and Lactobacillus acidophilus MCL15 were found to produce an antibacterial compound with inhibitory activity against the tested histamine-producing bacteria. The inhibitory activity of these bacteriocins obtained from the five LAB remained stable after incubation at pH 4.0–8.0 and heating for 10 min at 80 °C; however, the bacteriocin activity was destroyed after treatment with papain, pepsin, proteinase K, α-chymotrypsin, or trypsin. Meanwhile, these bacteriocins produced by the tested LAB strains also exhibited histamine-degradation ability. Therefore, these antimicrobial substances may play a role in inhibiting histamine formation in the fermented fish products and preventing seafood-related food-borne disease caused by bacterially generated histamine.

  14. Current status and emerging role of glutathione in food grade lactic acid bacteria

    OpenAIRE

    Pophaly Sarang; Singh Rameshwar; Pophaly Saurabh; Kaushik Jai K; Tomar Sudhir

    2012-01-01

    Abstract Lactic acid bacteria (LAB) have taken centre stage in perspectives of modern fermented food industry and probiotic based therapeutics. These bacteria encounter various stress conditions during industrial processing or in the gastrointestinal environment. Such conditions are overcome by complex molecular assemblies capable of synthesizing and/or metabolizing molecules that play a specific role in stress adaptation. Thiols are important class of molecules which contribute towards stres...

  15. BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA.

    Science.gov (United States)

    SIGAL, N; SENEZ, J C; LEGALL, J; SEBALD, M

    1963-06-01

    Sigal, Nicole (Laboratoire de Chimie Bactérienne du CNRS, Marseille, France), Jacques C. Senez, Jean Le Gall, and Madeleine Sebald. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bacteriol. 85:1315-1318. 1963-The deoxyribonucleic acid constitution of several strains of sulfate-reducing bacteria has been analytically determined. The results of these studies show that this group of microorganisms includes at least four subgroups characterized by significantly different values of the adenine plus thymine to guanine plus cytosine ratio. The nonsporulated forms with polar flagellation, containing both cytochrome c(3) and desulfoviridin, are divided into two subgroups. One includes the fresh-water, nonhalophilic strains with base ratio from 0.54 to 0.59, and the other includes the halophilic or halotolerant strains with base ratio from 0.74 to 0.77. The sporulated, peritrichous strains without cytochrome and desulfoviridin ("nigrificans" and "orientis") are distinct from the above two types and differ from each other, having base ratios of 1.20 and 1.43, respectively.

  16. CHARACTERIZATION OF LACTIC ACID BACTERIA ISOLATED FROM SUMBAWA MARE MILK

    Directory of Open Access Journals (Sweden)

    Nengah Sujaya

    2008-06-01

    Full Text Available A study was carried out to isolate and characterize lactic acid bacteria (LAB from the Sumbawa mares milk The Isolation of LAB was conducted in Man Rogosa Sharpe (MRS agar. The isolates were characterized by standard methods, such as Gram staining, cell morphology study and fermentation activities. The ability of the isolates to inhibit some pathogenic bacteria was studied by dual culture assay. Isolates showing the widest spectrum of inhibiting pathogenic bacteria were further identified using API 50 CHL. The results showed that Sumbawa mare milk was dominated by lactobacilli and weisella/leuconostoc. As many as 26 out 36 isolates belong to homofermentative lactobacilli and another 10 isolates belong to both heterofermentative lactobacilli and weissella or leuconostoc. Twenty four isolates inhibited the growth of Escherichia coli 25922, Shigela flexneri, Salmonella typhimurium, and Staphylococcus aureus 29213. Two promising isolates with the widest spectrum of inhibiting pathogenic bacteria, Lactobacillus sp. SKG34 and Lactobacillus sp. SKG49, were identified respectively as Lactobacillus rhamnosus SKG34 and Lactobacillus ramnosus SKG49. These two isolates were specific strains of the sumbawa mare milk and are very potential to be developed as probiotic for human.

  17. Determination of lactic acid bacteria in Kaºar cheese and ...

    African Journals Online (AJOL)

    Lactic acid bacteria (LAB) arise in Kaşar cheese, an artisanal pasta filata cheese produced in Turkey from raw milk without starter addition or pasteurized milk with starter culture. In this study, 13 samples of Kaşar cheese that were produced from raw milk were used as reference materials. LAB were characterized by using ...

  18. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere.

    Science.gov (United States)

    Liu, Jinguang; Wang, Xingxiang; Zhang, Taolin; Li, Xiaogang

    2017-12-01

    Phenolic acids can enhance the mycotoxin production and activities of hydrolytic enzymes related to pathogenicity of soilborne fungus Fusarium oxysporum. However, characteristics of phenolic acid-degrading bacteria have not been investigated. The objectives of this study were to isolate and characterize bacteria capable of growth on benzoic and vanillic acids as the sole carbon source in the peanut rhizosphere. Twenty-four bacteria were isolated, and the identification based on 16S rRNA gene sequencing revealed that pre-exposure to phenolic acids before sowing shifted the dominant culturable bacterial degraders from Arthrobacter to Burkholderia stabilis-like isolates. Both Arthrobacter and B. stabilis-like isolates catalysed the aromatic ring cleavage via the ortho pathway, and Arthrobacter isolates did not exhibit higher C12O enzyme activity than B. stabilis-like isolates. The culture filtrate of Fusarium sp. ACCC36194 caused a strong inhibition of Arthrobacter growth but not B. stabilis-like isolates. Additionally, Arthrobacter isolates responded differently to the culture filtrates of B. stabilis-like isolates. The Arthrobacter isolates produced higher indole acetic acid (IAA) levels than B. stabilis-like isolates, but B. stabilis-like isolates were also able to produce siderophores, solubilize mineral phosphate, and exert an antagonistic activity against peanut root rot pathogen Fusarium sp. ACCC36194. Results indicate that phenolic acids can shift their dominant culturable bacterial degraders from Arthrobacter to Burkholderia species in the peanut rhizosphere, and microbial interactions might lead to the reduction of culturable Arthrobacter. Furthermore, increasing bacterial populations metabolizing phenolic acids in monoculture fields might be a control strategy for soilborne diseases caused by Fusarium spp. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Acid-regulated proteins induced by Streptococcus mutans and other oral bacteria during acid shock.

    Science.gov (United States)

    Hamilton, I R; Svensäter, G

    1998-10-01

    Our previous research has demonstrated that with the more aciduric oral bacteria, an acid shock to sub-lethal pH values results in the induction of an acid tolerance response that protects the cells at extremely low pH (pH 3.0-4.0) that kills unadapted control cells maintained at pH 7.5 (Oral Microbiol Immunol 1997: 12: 266-273). In this study, we were interested in comparing the protein profiles of acid-shocked and control cells of nine organisms from three acid-ogenic genera that could be categorized as strong, weak and non-acid responders in an attempt to identify proteins that could be classified as acid-regulated proteins and which may be important in the process of survival at very low pH. For this, log-phase cultures were rapidly acidified from pH 7.5 to 5.5 in the presence of [14C]-amino acids for varying periods up to 2 h, the period previously shown to be required for maximum induction of the acid response. The cells were extracted for total protein and subjected to one-dimensional sodium dodecyl sulfate-polyacrylamide chromatography with comparable control and acid-shocked protein profiles compared by scanning and computer analysis. Of particular interest were the proteins in the acid-shocked cells that showed enhanced labeling (i.e., synthesis) over the control cells, since these were considered acid-regulated proteins of importance in pH homeostasis. Streptococcus mutans LT11 generated the most rapid and complex pattern: a total of 36 acid-regulated proteins showing enhanced synthesis, with 25 appearing within the first 30 min of acid shock. The enhanced synthesis was transient with all proteins, with the exception of two with molecular weights of 50/49 and 33/32 kDa. Within the acid-regulated proteins were proteins having molecular weights comparable to the heat shock proteins and the various subunits of the membrane H+/ATPase. By comparison, the strong responder, Lactobacillus casei 151, showed the enhanced formation of only nine proteins within the

  20. TECHNOLOGICAL AND FUNCTIONAL PROPERTIES OF LACTIC ACID BACTERIA: THE IMPORTANCE OF THESE MICROORGANISMS FOR FOOD

    Directory of Open Access Journals (Sweden)

    Amanda de Souza Motta

    2015-12-01

    Full Text Available Eacters of coccus or rods Gram-positive, catalase negative, non-sporulating, which produce lactic acid as the major end product during the fermentation of carbohydrates. When applied on food, provides beneficial effects to consumers through its functional and technological properties. With this the present review article, explore the potential application of lactic acid bacteria in food. The following genera are considered the principal lactic acid bacteria: Aerococcus, Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella. These cultures have been used as starter or adjunct cultures for the fermentation of foods and beverages due to their contributions to the sensorial characteristics of these products and by microbiological stability. Their probiotic properties have also been investigated. More recent studies by indigenous cultures have received increased attention in light of the search for isolated cultures of a given raw material and a certain region. These microorganisms are being investigated for its functional and technological potential that may be applied in product development with its own characteristics and designation of origin. Those properties will be discussed in the present review in order to highlight the performance of these bacteria and the high degree of control over the fermentation process and standardization of the final product. The use of autochthonous cultures will be considered due the increase of studies of new cultures of lactic acid bacteria isolated of milk and meat of distinct products.

  1. Chitin elicitation of natural product production in marine bacteria

    DEFF Research Database (Denmark)

    Månsson, Maria; Wietz, Matthias; Larsen, Thomas Ostenfeld

    -negative bacteria (mainly Pseudoalteromonas and Vibrio), we found that some strains were capable of producing antibacterial compounds when grown on chitin, an N-acetyl-D-glucosamine polymer found in the exoskeleton of zooplankton.2 A strain of Vibrio coralliilyticus solely produced the antibiotic andrimid,3...

  2. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria.

    Science.gov (United States)

    Le Lay, Céline; Coton, Emmanuel; Le Blay, Gwenaëlle; Chobert, Jean-Marc; Haertlé, Thomas; Choiset, Yvan; Van Long, Nicolas Nguyen; Meslet-Cladière, Laurence; Mounier, Jérôme

    2016-12-19

    Fungal growth in bakery products represents the most frequent cause of spoilage and leads to economic losses for industrials and consumers. Bacteria, such as lactic acid bacteria and propionibacteria, are commonly known to play an active role in preservation of fermented food, producing a large range of antifungal metabolites. In a previous study (Le Lay et al., 2016), an extensive screening performed both in vitro and in situ allowed for the selection of bacteria exhibiting an antifungal activity. In the present study, active supernatants against Penicillium corylophilum and Aspergillus niger were analyzed to identify and quantify the antifungal compounds associated with the observed activity. Supernatant treatments (pH neutralization, heating and addition of proteinase K) suggested that organic acids played the most important role in the antifungal activity of each tested supernatant. Different methods (HPLC, mass spectrometry, colorimetric and enzymatic assays) were then applied to analyze the supernatants and it was shown that the main antifungal compounds corresponded to lactic, acetic and propionic acids, ethanol and hydrogen peroxide, as well as other compounds present at low levels such as phenyllactic, hydroxyphenyllactic, azelaic and caproic acids. Based on these results, various combinations of the identified compounds were used to evaluate their effect on conidial germination and fungal growth of P. corylophilum and Eurotium repens. Some combinations presented the same activity than the bacterial culture supernatant thus confirming the involvement of the identified molecules in the antifungal activity. The obtained results suggested that acetic acid was mainly responsible for the antifungal activity against P. corylophilum and played an important role in E. repens inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Infection-derived lipids elicit a novel immune deficiency circuitry in arthropods

    Science.gov (United States)

    The insect Immune Deficiency (IMD) pathway resembles the tumor necrosis factor receptor network in mammals and senses diaminopimelic-type peptidoglycans present in Gram-negative bacteria. Whether unidentified chemical moieties elicit the IMD signaling cascade remains unknown. Here, we disclose thoug...

  4. Isolation, enumeration, molecular identification and probiotic potential evaluation of lactic acid bacteria isolated from sheep milk

    OpenAIRE

    Acurcio, L.B.; Souza, M.R.; Nunes, A.C.; Oliveira, D.L.S.; Sandes, S.H.C.; Alvim, L.B.

    2014-01-01

    Lactic acid bacteria species were molecularly identified in milk from Lacaune, Santa Inês and crossbred sheep breeds and their in vitro probiotic potential was evaluated. The species identified were Enterococcus faecium (56.25%), E. durans (31.25%) and E. casseliflavus (12.5%). No other lactic acid bacteria species, such as lactobacilli, was identified. Most of the isolated enterococci were resistant to gastric pH (2.0) and to 0.3% oxgall. All tested enterococci were resistant to ceftazidime,...

  5. Antibacterial efficacy of triple-layered poly(lactic-co-glycolic acid)/nanoapatite/lauric acid guided bone regeneration membrane on periodontal bacteria.

    Science.gov (United States)

    Saarani, Nur Najiha; Jamuna-Thevi, Kalitheerta; Shahab, Neelam; Hermawan, Hendra; Saidin, Syafiqah

    2017-05-31

    A guided bone regeneration (GBR) membrane has been extensively used in the repair and regeneration of damaged periodontal tissues. One of the main challenges of GBR restoration is bacterial colonization on the membrane, constitutes to premature membrane degradation. Therefore, the purpose of this study was to investigate the antibacterial efficacy of triple-layered GBR membrane composed of poly(lactic-co-glycolic acid) (PLGA), nanoapatite (NAp) and lauric acid (LA) with two types of Gram-negative periodontal bacteria, Fusobacterium nucleatum and Porphyromonas gingivalis through a disc diffusion and bacterial count tests. The membranes exhibited a pattern of growth inhibition and killing effect against both bacteria. The increase in LA concentration tended to increase the bactericidal activities which indicated by higher diameter of inhibition zone and higher antibacterial percentage. It is shown that the incorporation of LA into the GBR membrane has retarded the growth and proliferation of Gram-negative periodontal bacteria for the treatment of periodontal disease.

  6. Lactic acid bacteria and yeasts associated with spontaneous fermentations during the production of sour cassava starch in Brazil.

    Science.gov (United States)

    Lacerda, Inayara C A; Miranda, Rose L; Borelli, Beatriz M; Nunes, Alvaro C; Nardi, Regina M D; Lachance, Marc-André; Rosa, Carlos A

    2005-11-25

    Sour cassava starch is a traditional fermented food used in the preparation of fried foods and baked goods such as traditional cheese breads in Brazil. Thirty samples of sour cassava starch were collected from two factories in the state of Minas Gerais. The samples were examined for the presence of lactic acid bacteria, yeasts, mesophilic microorganisms, Bacillus cereus and faecal coliforms. Lactic acid bacteria and yeasts isolates were identified by biochemical tests, and the identities were confirmed by molecular methods. Lactobacillus plantarum and Lactobacillus fermentum were the prevalent lactic acid bacteria in product from both factories, at numbers between 6.0 and 9.0 log cfu g(-)(1). Lactobacillus perolans and Lactobacillus brevis were minor fractions of the population. Galactomyces geothricum and Issatchenkia sp. were the prevalent yeasts at numbers of 5.0 log cfu g(-)(1). A species similar to Candida ethanolica was frequently isolated from one factory. Mesophilic bacteria and amylolytic microorganisms were recovered in high numbers at all stages of the fermentation. B. cereus was found at low numbers in product at both factories. The spontaneous fermentations associated with the production of sour cassava starch involve a few species of lactic acid bacteria at high numbers and a variety of yeasts at relatively low numbers.

  7. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-04

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  8. Analysis of short-chain acids from anaerobic bacteria by high-performance liquid chromatography.

    OpenAIRE

    Guerrant, G O; Lambert, M A; Moss, C W

    1982-01-01

    A standard mixture of 25 short-chain fatty acids was resolved by high-performance liquid chromatography, using an Aminex HPX-87 column. The acids produced in culture media by anaerobic bacteria were analyzed by high-performance liquid chromatography after extraction with ether and reextraction into a small volume of 0.1 N NaOH. The presence of fumaric acid in culture extracts of Peptostreptococcus anaerobius was confirmed by gas chromatography-mass spectrometry analysis of the trapped eluent ...

  9. Isolation and identification of indigenous lactic acid bacteria from North Sumatra river buffalo milk

    Directory of Open Access Journals (Sweden)

    Heni Rizqiati

    2015-06-01

    Full Text Available Buffalo milk is a source of various lactic acid bacteria (LAB which is potential as culture starter as well as the probiotic. This study was conducted to isolate and identify LAB from indigenous North Sumatra river buffalo milk. Lactic acid bacteria was isolated and grown in medium De Man Rogosa Sharpe Agar (MRSA. The isolation was conducted to obtain pure isolate. The identification of LAB was studied in terms of morphology, physiology, biochemistry and survival on low pH. Morphology tests were conducted by Gram staining and cell forming; physiology tests were conducted for growing viability at pH 4.5 and temperature at 45oC; whereas biochemistry tests were conducted for CO2, dextran and NH3 productions. Determination of LAB species was conducted using Analytical Profile Index (API test CHL 50. Results of identification showed that 41 isolates were identified as LAB with Gram-positive, catalase-negative, rod and round shaped characteristics. Resistance test done to low pH (pH 2 for the lactic acid bacteria showed decrease of bacteria viability up to1.24±0.68 log cfu/ml. The resistant isolates at low pH were L12, L16, L17, L19, L20, M10, P8, S3, S19 and S20. Identification with API test CHL 50 for 10 isolates showed that four isolates were identified as Lactobacillus plantarum, L. brevis, L. pentosus and Lactococuslactis.

  10. Bacteria and Archaea in acidic environments and a key to morphological identification

    Science.gov (United States)

    Robbins, E.I.

    2000-01-01

    Natural and anthropogenic acidic environments are dominated by bacteria and Archaea. As many as 86 genera or species have been identified or isolated from pH morphological characteristics, habitat information and a key for light microscope identification for the non-microbiologist.

  11. Regulation of the activity of lactate dehydrogenases from four lactic acid bacteria

    NARCIS (Netherlands)

    Feldman-Salit, A.; Hering, S.; Messiha, H.L.; Veith, N.; Cojocaru, V.; Sieg, A.; Westerhoff, H.V.; Kreikemeyer, B.; Wade, R.C.; Fiedler, T.

    2013-01-01

    Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the

  12. Use of Lactic Acid Bacteria as Probiotic for Promoting Growth and ...

    African Journals Online (AJOL)

    The Lactic acid bacteria strains isolated from O. niloticus were evaluated for their probiotic activity. The strain which showed the greatest promise as probiotics was selected for growth study. Oreochromis niloticus (mean weight 18.11±0.12g) were randomly distributed to five treatments representing probiotic inclusion level at ...

  13. Screening and identification of lactic acid bacteria strains with high acid-producing from traditional fermented yak yogurt

    Directory of Open Access Journals (Sweden)

    Chen Xiaoyong

    2017-01-01

    Full Text Available A total of 57 strains of lactic acid bacteria (LAB were isolated and purified from traditional fermented Yak Yogurt in Hongyuan-Sichuan and Yangbajing-Tibet. The strains with high acid-produced were screened by soluble calcium circle and titratable acidity determination. The five strains, 7-1, 22-1, 28-1, 34-1 and 62-1, possessed the high acid-producing and the value of titratable acidity is 196.2, 191.1, 192.2, 194.8 and 200.2 T respectively. Based on 16S rDNA sequence analysis, 22-1 was identified as Lactococcus lactis subsp. lactis, 28-1 as Lactobacillus casei, 34-1 as Lactobacillus fermentium, 7-1 and 62-1 as Enterococcus durans. This study could provide the evidence for researching fermentation strains to improve yogurt quality.

  14. Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria.

    Science.gov (United States)

    Hillyer, Julián F; Schmidt, Shelley L; Christensen, Bruce M

    2003-07-01

    Mosquitoes are important vectors of disease. These insects respond to invading organisms with strong cellular and humoral immune responses that share many similarities with vertebrate immune systems. The strength and specificity of these responses are directly correlated to a mosquito's ability to transmit disease. In the current study, we characterized the hemocytes (blood cells) of Armigeres subalbatus by morphology (ultrastructure), lectin binding, enzyme activity, immunocytochemistry, and function. We found four hemocyte types: granulocytes, oenocytoids, adipohemocytes, and thrombocytoids. Granulocytes contained acid phosphatase activity and bound the exogenous lectins Helix pomatia agglutinin, Galanthus nivalis lectin, and wheat germ agglutinin. Following bacteria inoculation, granulocytes mounted a strong phagocytic response as early as 5 min postexposure. Bacteria also elicited a hemocyte-mediated melanization response. Phenoloxidase, the rate-limiting enzyme in the melanization pathway, was present exclusively in oenocytoids and in many of the melanotic capsules enveloping bacteria. The immune responses mounted against different bacteria were not identical; gram(-) Escherichia coli were predominantly phagocytosed and gram(+) Micrococcus luteus were melanized. These studies implicate hemocytes as the primary line of defense against bacteria.

  15. Microbial Transformation of Dicarboxylic Acids by Airborne Bacteria

    Science.gov (United States)

    Cote, V.; Ariya, P.

    2004-05-01

    Organic aerosols are assumed to be key players in driving climatic changes and can cause health problems for human. Dicarboxylic acids (DCA) include a large fraction of identified important class of organic aerosols. In addition to direct sources, DCA are partly formed as the result of ozonolysis of terpenes and cyclic alkenes. Previous works in our laboratory show that airborne fungi collected from urban and suburban air play an important role in the transformation of severals organic aerosols such as DCA. Our present study focuses on understanding the potential chemical transformation induced by airborne bacteria and on identification of the transformation products. Airborne bacteria have been collected using a biosampler and cultivated on a solid media. Each bacterial colony is being tested by HPLC for their ability to transform DCA in liquid cultures. Also, GC-MS, SPME and NMR are being used to identify the metabolites generated from the transformation. We will present our preliminary results and we will discuss the application of bacterial activities on the chemical transformation of organics in atmosphere.

  16. Lactic acid bacteria population dynamics during spontaneous fermentation of radish (Raphanus sativus L.) roots in brine.

    Science.gov (United States)

    Pardali, Eleni; Paramithiotis, Spiros; Papadelli, Marina; Mataragas, Marios; Drosinos, Eleftherios H

    2017-06-01

    The aim of the present study was to assess the microecosystem development and the dynamics of the lactic acid bacteria population during spontaneous fermentation of radish (Raphanus sativus L.) roots in brine at 20 and 30 °C. In both temperatures, lactic acid bacteria prevailed the fermentation; as a result, the pH value was reduced to ca. 3.6 and total titrable acidity increased to ca. 0.4% lactic acid. Enterococci population increased and formed a secondary microbiota while pseudomonads, Enterobacteriaceae and yeasts/molds populations were below enumeration limit already before the middle of fermentation. Pediococcus pentosaceus dominated during the first days, followed by Lactobacillus plantarum that prevailed the fermentation until the end. Lactobacillus brevis was also detected during the final days of fermentation. A succession at sub-species level was revealed by the combination of RAPD-PCR and rep-PCR analyses. Glucose and fructose were the main carbohydrates detected in brine and were metabolized into lactic acid, acetic acid and ethanol.

  17. Identification and characterization of probiotic lactic acid bacteria isolated from traditional persian pickled vegetables

    Directory of Open Access Journals (Sweden)

    Soltan Dallal, M.M.

    2017-09-01

    Full Text Available Background: The pickle, a traditional fermented product, is popular among Iranians. Much research has been conducted worldwide on this food group. Due to a lack of related data in Iran, this study was conducted to isolate and identify dominant lactic acid bacteria (LAB in pickles and salted pickles.Materials and methods: Seventy samples were collected from different regions of Iran. The isolated bacteria were identified as LAB by Gram staining and catalase by using MRS agar. Then, those strains were identified at the species level by physiological tests (e.g., gas production from glucose, arginine hydrolysis, CO production from glucose in MRS broth, carbohydrate fermentation and growth at temperatures of 15°C, 30°C, and 45°C in MRS broth for 3 days. The probiotic characteristics of these bacteria were studied using acid and bile tolerance. The corresponding results were verified using PCR analyses of the 16S rDNA region. Results: 114 presumptive lactic acid bacteria (LAB with Gram-positive and catalase-negative properties were obtained from the samples. The results revealed that all isolated bacteria were identfied as ,, , , and. The predominant LAB in these pickles was which was isolated from most of the samples. Among the 114 LAB, 7 isolated species have probiotic potential. Six out of seven were recognized as and one remained unidentifiable by biochemical testing. PCR analysis and sequencing of the 16S rDNA region using 27f and 1522r primers showed that all of the probiotic strains were .Conclusion: The results of this study showed that the dominant LAB in traditional Persian pickled vegetables are , , , and . Moreover, was recognized as a probiotic species in pickled vegetables. The raw data obtained from this study can be used in the pickling industry to improve the nutritional value of products.

  18. Towards lactic acid bacteria-based biorefineries.

    Science.gov (United States)

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Plasmids replicatable in Bacillus subtilis, E. coli and lactic acid streptococcus bacteria

    NARCIS (Netherlands)

    Kok, Jan; Maat, Jan; van der Vossen, Josephus Mauritius; Venema, Gerard

    1997-01-01

    The claimed invention is drawn to a recombinant plasmid which can replicate in Bacillus subtilis, Escherichia coli, and lactic acid Streptococcus bacteria comprising the replication of origin from Streptococcus cremoris plasmid pWV01 as its origin of replication, in addition to coding marker genes

  20. Survival and growth of probiotic lactic acid bacteria in refrigerated pickle products

    Science.gov (United States)

    We examined 10 lactic acid bacteria that have been previously characterized for commercial use as probiotic cultures, mostly for dairy products, including 1 Pediococcus and 9 Lactobacilli. Our objectives were to develop a rapid procedure for determining the long-term survivability of these cultures ...

  1. Total lactic acid bacteria, antioxidant activity, and acceptance of synbiotic yoghurt with red ginger extract (Zingiberofficinale var. rubrum)

    Science.gov (United States)

    Larasati, B. A.; Panunggal, B.; Afifah, D. N.; Anjani, G.; Rustanti, N.

    2018-02-01

    Antioxidant related to oxidative stress can caused the metabolic disorders. A functional food that high in antioxidant can be use as the alternative prevention. The addition of red ginger extract in yoghurt could form a functional food, that high in antioxidant, synbiotic and fiber. The influence of red ginger extract on yoghurt synbiotic against lactic acid bacteria, antioxidant activity and acceptance were analyzed. This was an experimental research with one factor complete randomized design, specifically the addition of red ginger extract 0%; 0,1%; 0,3% and 0,5% into synbiotic yoghurt. Total plate count method used to analyze the lactic acid bacteria, 1-1-diphenyl-2-picrylhydrazyl (DPPH) method for antioxidant activity, and acceptance analyzed with hedonic test. The higher the dose of extract added to synbiotic yoghurt, the antioxidant activity got significantly increased (ρ=0,0001), while the lactic acid bacteria got insignificantly decreased (ρ=0,085). The addition of 0,5% red ginger extract obtained the antioxidant activity of 71% and 4,86 × 1013 CFU/ml on lactic acid bacteria, which the requirement for probiotic on National Standard of Indonesia is >107 CFU/ml. The addition of extract had a significant effect on acceptance (ρ=0,0001) in flavor, color, and texture, but not aroma (ρ=0,266). The optimal product in this research was the yoghurt synbiotic with addition of 0,1% red ginger extract. To summarize, the addition of red ginger extract in synbiotic yoghurt had significant effect on antioxidant activity, flavor, color, and texture, but no significant effect on lactic acid bacteria and aroma.

  2. [Genetic stability of probiotic lactic acid bacteria--a review].

    Science.gov (United States)

    Zhang, Wenyi; Bai, Mei; Zhang, Heping

    2014-04-04

    Growing attention has been focused on probiotic lactic acid bacteria because of their important health-promoting effects. Nowadays, probiotic-based products have become fashionable nutraceuticals of choice. Before a newly developed probiotic-based product is to be introduced into the industry, it is important to ensure not only the desirable properties of the probiotic strain but also a good genetic stability. This article firstly introduces the research methods for investigating genetic stability, followed by summarizing the latest research progress in China and overseas.

  3. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions

    Science.gov (United States)

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik

    2014-01-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present. PMID:24837393

  4. Influence of starter culture of lactic acid bacteria on the shelf life of ...

    African Journals Online (AJOL)

    A total of eight lactic acid bacteria were isolated from various fermented cereal gruels (ogi). They were identified as Lactobacillus plantarum, Lactobacillus casei, Leuconostoc mesenteroides, Lactobacillus brevis, Lactobacillus fermentum, Lactobacillus delbrueckii, Lactobacillus acidophilus and Pediococcus acidilactici.

  5. Volatile Compounds and Lactic Acid Bacteria in Spontaneous Fermented Sourdough

    International Nuclear Information System (INIS)

    Kam, W.Y.; Aida, W.M.W.; Sahilah, A.M.; Maskat, M.Y.

    2011-01-01

    The aim of this study is to identify the predominating lactic acid bacteria (LAB) in a spontaneous fermented wheat sourdough. At the same time, an investigation towards volatile compounds that were produced was also carried out. Lactobacillus plantarum has been identified as the dominant species of lactobacilli with characters of a facultative heterofermentative strain. The generated volatile compounds that were produced during spontaneous fermentation were isolated by solvent extraction method, analysed by gas chromatography (GC), and identified by mass spectrophotometer (MS). Butyric acid has been found to be the main volatile compound with relative abundance of 6.75 % and acetic acid at relative abundance of 3.60 %. Esters that were formed at relatively low amount were butyl formate (1.23 %) and cis 3 hexenyl propionate (0.05 %). Butanol was also found at low amount with relative abundance of 0.60 %. The carbohydrate metabolism of Lactobacillus plantarum may contributed to the production of acetic acid in this study via further catabolism activity on lactic acid that was produced. However, butyric acid was not the major product via fermentation by LAB but mostly carried out by the genus Clostridium via carbohydrate metabolism which needs further investigation. (author)

  6. Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria.

    OpenAIRE

    Chen, W; Supanwong, K; Ohmiya, K; Shimizu, S; Kawakami, H

    1985-01-01

    Veratrylglycerol-beta-guaiacyl ether (0.2 g/liter), a lignin model compound, was found to be degraded by mixed rumen bacteria in a yeast extract medium under strictly anaerobic conditions to the extent of 19% within 24 h. Guaiacoxyacetic acid, 2-(o-methoxyphenoxy)ethanol, vanillic acid, and vanillin were detected as degradation products of veratrylglycerol-beta-guaiacyl ether by thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry. Guaiacoxyacetic acid (0.25...

  7. Bioconversion Using Lactic Acid Bacteria: Ginsenosides, GABA, and Phenolic Compounds.

    Science.gov (United States)

    Lee, Na-Kyoung; Paik, Hyun-Dong

    2017-05-28

    Lactic acid bacteria (LAB) are used as fermentation starters in vegetable and dairy products and influence the pH and flavors of foods. For many centuries, LAB have been used to manufacture fermented foods; therefore, they are generally regarded as safe. LAB produce various substances, such as lactic acid, β-glucosidase, and β-galactosidase, making them useful as fermentation starters. Existing functional substances have been assessed as fermentation substrates for better component bioavailability or other functions. Representative materials that were bioconverted using LAB have been reported and include minor ginsenosides, γ-aminobutyric acid, equol, aglycones, bioactive isoflavones, genistein, and daidzein, among others. Fermentation mainly involves polyphenol and polysaccharide substrates and is conducted using bacterial strains such as Streptococcus thermophilus, Lactobacillus plantarum, and Bifidobacterium sp. In this review, we summarize recent studies of bioconversion using LAB and discuss future directions for this field.

  8. Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation

    NARCIS (Netherlands)

    Sieuwerts, Sander; Bron, Peter A.; Smid, Eddy J.

    2018-01-01

    Interactions between microorganisms are key to their performance in food habitats. Improved understanding of these interactions supports rational improvement of food fermentations. This study aimed at identifying interactions between lactic acid bacteria and yeast during sourdough fermentation.

  9. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    Science.gov (United States)

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  10. Antagonistic effect of chosen lactic acid bacteria strains on Yersinia enterocolitica species in model set-ups, meat and fermented sausages.

    Science.gov (United States)

    Gomółka-Pawlicka, M; Uradziński, J

    2003-01-01

    The present study was aimed at determining the influence of 15 strains of lactic acid bacteria on the growth of 8 Yersinia enterocolitica strains in model set-ups, and in meat and ageing fermented sausages. The investigations were performed within the framework of three alternate stages which differed in respect to the products studied, the number of Lactobacillus sp. strains and, partly, methodological approach. The ratio between lactic acid bacteria and Yersinia enterocolitica strains studied was, depending on the variant of experiment, 1:1, 1:2 and 2:1, respectively. The study also considered water activity (aw) and pH of the products investigated. The results suggest that all the lactic acid bacteria strains used within the framework of the model set-ups had antagonistic effect on all the Salmonella sp. strains. However, this ability was not observed with respect to of tested lactic acid bacteria strains in meat and fermented sausage. This ability was possessed by one of the strains investigated--Lactobacillus helveticus T 78. The temperature and time of the incubation of sausages, but not aw and pH, were found to have a distinct influence on the antagonistic interaction between the bacteria tested.

  11. Application of Lactic Acid Bacteria (LAB) in freshness keeping of tilapia fillets as sashimi

    Science.gov (United States)

    Cao, Rong; Liu, Qi; Chen, Shengjun; Yang, Xianqing; Li, Laihao

    2015-08-01

    Aquatic products are extremely perishable food commodities. Developing methods to keep the freshness of fish represents a major task of the fishery processing industry. Application of Lactic Acid Bacteria (LAB) as food preservative is a novel approach. In the present study, the possibility of using lactic acid bacteria in freshness keeping of tilapia fillets as sashimi was examined. Fish fillets were dipped in Lactobacillus plantarum 1.19 (obtained from China General Microbiological Culture Collection Center) suspension as LAB-treated group. Changes in K-value, APC, sensory properties and microbial flora were analyzed. Results showed that LAB treatment slowed the increase of K-value and APC in the earlier storage, and caused a smooth decrease in sensory score. Gram-negative bacteria dominated during refrigerated storage, with Pseudomonas and Aeromonas being relatively abundant. Lactobacillus plantarum 1.19 had no obvious inhibitory effect against these Gram-negatives. However, Lactobacillus plantarum 1.19 changed the composition of Gram-positive bacteria. No Micrococcus were detected and the proportion of Staphylococcus decreased in the spoiled LAB-treated samples. The period that tilapia fillets could be used as sashimi material extended from 24 h to 48 h after LAB treatment. The potential of using LAB in sashimi processing was confirmed.

  12. Biosynthesis of myristic acid in luminescent bacteria. [Vibrio harveyi

    Energy Technology Data Exchange (ETDEWEB)

    Byers, D.M.

    1987-05-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with (/sup 14/C) acetate in a nutrient-depleted medium accumulated substantial tree (/sup 14/C)fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with (/sup 14/C)acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition.

  13. Screening, Isolation and Identification of Lactic Acid Bacteria From a Traditional Dairy Product of Sabzevar, Iran

    Directory of Open Access Journals (Sweden)

    Sara Rashid

    2014-11-01

    Full Text Available Background: Lactic acid bacteria (LAB are a major group of probiotics. Isolation of these bacteria is difficult, because they have a complex ecosystem in fermented dairy products. Objectives: The aim of this study was to detect Lactobacillus and Lactococcus in a conventional dairy product (Khameh and study their probiotic characteristics. Materials and Methods: To isolateLAB, samples were collected from four different villages. Afterwards, screening was performed in pH = 2.5. The selected strains were examined for their tolerance to acidic pH (3 and 0.3% bile salt. Moreover, the antimicrobial activity of the isolated strains against two pathogenic bacteria, Salmonella typhimurium and Staphylococcus aureus, was assessed using the disc plate method. Finally, the selected strains were identified by polymerase chain reaction (PCR screening and sequencing. Results: Among the isolated samples, two strains (Lactobacillus and Lactococcus were highly resistant to unfavorable conditions and the L1 strain showed the highest antimicrobial activity. Conclusions: This study showed that the conventional dairy product (Khameh contained probiotic bacteria, which are capable of fighting against pathogenic bacteria and living in the digestive tract.

  14. Amino acid composition of rumen bacteria and protozoa in cattle.

    Science.gov (United States)

    Sok, M; Ouellet, D R; Firkins, J L; Pellerin, D; Lapierre, H

    2017-07-01

    Because microbial crude protein (MCP) constitutes more than 50% of the protein digested in cattle, its AA composition is needed to adequately estimate AA supply. Our objective was to update the AA contributions of the rumen microbial AA flowing to the duodenum using only studies from cattle, differentiating between fluid-associated bacteria (FAB), particle-associated bacteria (PAB), and protozoa, based on published literature (53, 16, and 18 treatment means were used for each type of microorganism, respectively). In addition, Cys and Met reported concentrations were retained only when an adequate protection of the sulfur groups was performed before the acid hydrolysis. The total AA (or true protein) fraction represented 82.4% of CP in bacteria. For 10 AA, including 4 essential AA, the AA composition differed between protozoa and bacteria. The most noticeable differences were a 45% lower Lys concentration and 40% higher Ala concentration in bacteria than in protozoa. Differences between FAB and PAB were less pronounced than differences between bacteria and protozoa. Assuming 33% FAB, 50% PAB, and 17% of protozoa in MCP duodenal flow, the updated concentrations of AA would decrease supply estimates of Met, Thr, and Val originating from MCP and increase those of Lys and Phe by 5 to 10% compared with those calculated using the FAB composition reported previously. Therefore, inclusion of the contribution of PAB and protozoa to the duodenal MCP flow is needed to adequately estimate AA supply from microbial origin when a factorial method is used to estimate duodenal AA flow. Furthermore, acknowledging the fact that hydrolysis of 1 kg of true microbial protein yields 1.16 kg of free AA substantially increases the estimates of AA supply from MCP. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. [Design of primers to DNA of lactic acid bacteria].

    Science.gov (United States)

    Lashchevskiĭ, V V; Kovalenko, N K

    2003-01-01

    Primers LP1-LP2 to the gene 16S rRNA have been developed, which permit to differentiate lactic acid bacteria: Lactobacillus plantarum, L. delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus. The strain-specific and species-specific differentiations are possible under different annealing temperature. Additional fragments, which are synthesized outside the framework of gene 16S rRNA reading, provide for the strain-specific type of differentiation, and the fragment F864 read in the gene 16S rRNA permits identifying L. plantarum.

  16. Bacteriocins from lactic acid bacteria as an alternative to antibiotics

    Directory of Open Access Journals (Sweden)

    Aleksandra Ołdak

    2017-05-01

    Full Text Available Bacteriocins are ribosomally synthesized, proteinaceous substances that inhibit the growth of closely related species through numerous mechanisms. The classification system used in this review divided bacteriocins into four sub-groups based on their size. Currently, there is extensive research focused on bacteriocins and their usage as a food preservative.The increasing incidence of multidrug resistant bacterial pathogens is one of the most pressing medical problems in recent years. Recently, the potential clinical application of LAB (Lactic Acid Bacteria bacteriocin has been the subject of investigations by many scientists.Bacteriocins can be considered in a sense as antibiotic, although they differ from conventional antibiotics in numerous aspects. The gene-encoded nature of bacteriocins makes them easily amenable through bioengineering to either increase their activity or specify target microorganism. Owing to this feature of bacteriocins, antibiotic therapy would become less damaging to the natural gut microflora, which is a common drawback of conventional antibiotic use. Bacteriocins from lactic acid bacteria represent one of the most studied microbial defense systems and the idea of subjecting them to bioengineering to either increase antimicrobial activity or further specify their target microorganism is now a rapidly expanding field. This review aimed to present bacteriocins as a possible alternative to conventional antibiotics basic on latest scientific data.

  17. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena; Chouaia, Bessem; Alma, Alberto; Favia, Guido; Bandi, Claudio; Bourtzis, Kostas; Daffonchio, Daniele

    2016-01-01

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  18. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena

    2016-06-14

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  19. The cell membrane and the struggle for life of lactic acid bacteria

    NARCIS (Netherlands)

    Konings, WN

    The major life-threatening event for lactic acid bacteria (LAB) in their natural environment is the depletion of their energy sources and LAB can survive such conditions only for a short period of time. During periods of starvation LAB can exploit optimally the potential energy sources in their

  20. Rapid quantification of live/dead lactic acid bacteria in probiotic products using high-sensitivity flow cytometry

    Science.gov (United States)

    He, Shengbin; Hong, Xinyi; Huang, Tianxun; Zhang, Wenqiang; Zhou, Yingxing; Wu, Lina; Yan, Xiaomei

    2017-06-01

    A laboratory-built high-sensitivity flow cytometer (HSFCM) was employed for the rapid and accurate detection of lactic acid bacteria (LAB) and their viability in probiotic products. LAB were stained with both the cell membrane-permeable SYTO 9 green-fluorescent nucleic acid stain and the red-fluorescent nucleic acid stain, propidium iodide, which penetrates only bacteria with compromised membranes. The side scatter and dual-color fluorescence signals of single bacteria were detected simultaneously by the HSFCM. Ultra-high temperature processing milk and skim milk spiked with Lactobacillus casei were used as the model systems for the optimization of sample pretreatment and staining. The viable LAB counts measured by the HSFCM were in good agreement with those of the plate count method, and the measured ratios between the live and dead LAB matched well with the theoretical ratios. The established method was successfully applied to the rapid quantification of live/dead LAB in yogurts and fermented milk beverages of different brands. Moreover, the concentration and viability status of LAB in ambient yogurt, a relatively new yet popular milk product in China, are also reported.

  1. REVIEW. BACTERIAS ACIDO LÁCTICAS: PAPEL FUNCIONAL EN LOS ALIMENTOS BACTÉRIAS ÁCIDO LÁCTICAS: PAPEL FUNCIONAL NOS ALIMENTOS REVIEW LACTIC ACID BACTERIA: FUNCTIONAL ROLE IN THE FOODS

    Directory of Open Access Journals (Sweden)

    RICARDO ADOLFO PARRA HUERTAS

    2010-06-01

    Full Text Available Las bacterias ácido lácticas han sido importantes en los alimentos por siglos por su considerable contribución al valor de los productos. Debido a varias de sus propiedades metabólicas, las bacterias ácido lácticas desempeñan un papel importante en la industria alimentaria, por su contribución significante al sabor, olor, textura, características sensoriales, propiedades terapéuticas y valor nutricional de los productos alimentarios. Este grupo está compuesto de un número de géneros incluyendo Lactococcus, Lactobacillus, Enterococcus, Streptococcus, Leuconostoc y Pediococcus. Algunos de los metabolitos producidos por las este tipo de bacterias son ácidos orgánicos, sustancias preservantes, polisacáridos, vitaminas, endulzantes, olores y sabores entre otros. Esta revisión se enfoca en estudiar la importancia de las bacterias acido lácticas en los alimentos.As bacterias ácido lácticas têm sido importantes nos alimentos por séculos pela sua considerável contribuição ao valor dos produtos. Devido a varias das suas propriedades metabóllcas, as bacterias ácido lácticas desempenham um papel importante na industria alimentar, pela sua contribulção significante ao sabor, cheiro, textura, características sensoriais, propriedades terapêuticas e valor nutrlcional dos produtos alimentar. Este grupo está constituido de um número de gêneros incluindo Lactococcus, Lactobaclllus, Enterococcus, Etreptococcus, Leuconostoc e Pediococcus. Alguns dos metabolltos produzidos por este tipo de bacterias são ácidos orgãnicos, sustãncias preservadoras, poli-sacáridos, vitaminas, adoçantes, cheiros e sabores entre outros. Esta revisão se enfoca em estudar a importãncia das bacterias ácido lácticas nos alimentos.Lactic acid bacteria have been important in food for centuries for their significant contribution to product value. Because several of its metabolic properties, lactic acid bacteria play an important role in the food

  2. Insights into the evolution of sialic acid catabolism among bacteria

    Directory of Open Access Journals (Sweden)

    Almagro-Moreno Salvador

    2009-05-01

    Full Text Available Abstract Background Sialic acids comprise a family of nine-carbon amino sugars that are prevalent in mucus rich environments. Sialic acids from the human host are used by a number of pathogens as an energy source. Here we explore the evolution of the genes involved in the catabolism of sialic acid. Results The cluster of genes encoding the enzymes N-acetylneuraminate lyase (NanA, epimerase (NanE, and kinase (NanK, necessary for the catabolism of sialic acid (the Nan cluster, are confined 46 bacterial species, 42 of which colonize mammals, 33 as pathogens and 9 as gut commensals. We found a putative sialic acid transporter associated with the Nan cluster in most species. We reconstructed the phylogenetic history of the NanA, NanE, and NanK proteins from the 46 species and compared them to the species tree based on 16S rRNA. Within the NanA phylogeny, Gram-negative and Gram-positive bacteria do not form distinct clades. NanA from Yersinia and Vibrio species was most closely related to the NanA clade from eukaryotes. To examine this further, we reconstructed the phylogeny of all NanA homologues in the databases. In this analysis of 83 NanA sequences, Bacteroidetes, a human commensal group formed a distinct clade with Verrucomicrobia, and branched with the Eukaryotes and the Yersinia/Vibrio clades. We speculate that pathogens such as V. cholerae may have acquired NanA from a commensal aiding their colonization of the human gut. Both the NanE and NanK phylogenies more closely represented the species tree but numerous incidences of incongruence are noted. We confirmed the predicted function of the sialic acid catabolism cluster in members the major intestinal pathogens Salmonella enterica, Vibrio cholerae, V. vulnificus, Yersinia enterocolitica and Y. pestis. Conclusion The Nan cluster among bacteria is confined to human pathogens and commensals conferring them the ability to utilize a ubiquitous carbon source in mucus rich surfaces of the human body

  3. Preparation of lactic acid bacteria fermented wheat-yoghurt mixtures.

    Science.gov (United States)

    Magala, Michal; Kohajdová, Zlatica; Karovičová, Jolana

    2013-01-01

    Tarhana, a wheat-yoghurt fermented mixture, is considered as a good source of saccharides, proteins, some vitamins and minerals. Moreover, their preparation is inexpensive and lactic acid fermentation offers benefits like product preservation, enhancement of nutritive value and sensory properties improvement. The aim of this work was to evaluate changes of some chemical parameters during fermentation of tarhana, when the level of salt and amount of yoghurt used were varied. Some functional and sensory characteristics of the fi nal product were also determined. Chemical analysis included determination of pH, titrable acidity, content of reducing saccharides, lactic, acetic and citric acid. Measured functional properties of tarhana powder were foaming capacity, foam stability, water absorption capacity, oil absorption capacity and emulsifying activity. Tarhana soups samples were evaluated for their sensory characteristics (colour, odor, taste, consistency and overall acceptability). Fermentation of tarhana by lactic acid bacteria and yeasts led to decrease in pH, content of reducing saccharides and citric acid, while titrable acidity and concentration of lactic and acetic acid increased. Determination of functional properties of tarhana powder showed, that salt absence and increased amount of yoghurt in tarhana recipe reduced foaming capacity and oil absorption capacity, whereas foam stability and water absorption capacity were improved. Sensory evaluation of tarhana soups showed that variations in tarhana recipe adversly affected sensory parameters of fi nal products. Variations in tarhana recipe (salt absence, increased proportion of yoghurt) led to changes in some chemical parameters (pH, titrable acidity, reducing saccharides, content of lactic, acetic and citric acid). Functional properties were also affected with changed tarhana recipe. Sensory characteristics determination showed, that standard tarhana fermented for 144 h had the highest overall acceptability.

  4. Direct quantitation of fatty acids present in bacteria and fungi: stability of the cyclopropane ring to chlorotrimethylsilane.

    Science.gov (United States)

    Eras, Jordi; Oró, Robert; Torres, Mercè; Canela, Ramon

    2008-07-09

    The stability of the cyclopropane ring and the fatty acid composition of microbial cells were determined using chlorotrimethylsilane as reagent with three different conditions 80 degrees C for 1 h, 60 degrees C for 1 h, and 60 degrees C for 2 h. Chlorotrimethylsilane permits a simultaneous extraction and derivatization of fatty acids. A basic method was used as reference. The bacteria, Escherichia coli, Burkholderia cepacia, and Lactobacillus brevis, and fungi Aspergillus niger and Gibberella fujikuroi were used. The stability of the cyclopropane ring on acidic conditions was tested using the cyclopropanecarboxylic acid and a commercial mixture of bacteria fatty acid methyl esters (BAME). Fisher's least significant difference test showed significant differences among the methods. The method using chlorotrimethylsilane and 1-pentanol for 1 h at 80 degrees C gave the best results in cyclopropane, hydroxyl, and total fatty acid recoveries. This procedure allows the fast and easy one-step direct extraction derivatization.

  5. UJI SIFAT PROBIOTIK BAKTERI ASAM LAKTAT SEBAGAI KANDIDAT BAHAN PANGAN FUNGSIONAL [Probiotic Characteristics of laactic acid Bacteria as Candidate for Functional Food

    Directory of Open Access Journals (Sweden)

    Ida Susanti

    2007-12-01

    Full Text Available Lactic acid bacteria have been reported to be useful as a healt adjunct and are commonly added to food as delivery mechanism. As a probiotic, lactic acid bacteria should have the ability to survive in the digestion process such as resistance towards acidic pH, varieties of bile salt concentrations and enteric pathogan. In this study, lactic acid bacteria were isolated from various sources. Twenty isolated of lactic acid bacteria selected for their resistancy toeards acidic pH (pH 2.5, 0.3% bile salt and their antagonistic activity against enteric pathogan (Esherichia coli, Staphylococcus aureus and Bacillus cereus. The result showed that most of all strauns had good resistance to acidic pH and there were no significant difference among theme (p>0.05. More over, all strains showed tolerance to 0,3% bile salt concentration (varietis among isolates were significant p>0.05. All strains showed inhibition activity against enteric pathogan bacteria, this was estimated from the size of the diameter of the inhibition zones. (The inhibition were significantly different among them (p>0,05. The best five stains that fulfilled these properties L casei FNCC262, L. acidophilus FNCC116, KL-3 isolate, Da-1 isolate, and Db-2 isolate. These strains could be used as probiotics in further and applications.

  6. Phenotypic and genotypic characterization of some lactic Acid bacteria isolated from bee pollen: a preliminary study.

    Science.gov (United States)

    Belhadj, Hani; Harzallah, Daoud; Bouamra, Dalila; Khennouf, Seddik; Dahamna, Saliha; Ghadbane, Mouloud

    2014-01-01

    In the present work, five hundred and sixty-seven isolates of lactic acid bacteria were recovered from raw bee pollen grains. All isolates were screened for their antagonistic activity against both Gram-positive and Gram-negative pathogenic bacteria. Neutralized supernatants of 54 lactic acid bacteria (LAB) cultures from 216 active isolates inhibited the growth of indicator bacteria. They were phenotypically characterized, based on the fermentation of 39 carbohydrates. Using the simple matching coefficient and unweighted pair group algorithm with arithmetic averages (UPGMA), seven clusters with other two members were defined at the 79% similarity level. The following species were characterized: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Pediococcus acidilactici, Pediococcus pentosaceus, and unidentified lactobacilli. Phenotypic characteristics of major and minor clusters were also identified. Partial sequencing of the 16S rRNA gene of representative isolates from each cluster was performed, and ten strains were assigned to seven species: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Lactobacillus ingluviei, Pediococcus pentosaceus, Lactobacillus acidipiscis and Weissella cibaria. The molecular method used failed to determine the exact taxonomic status of BH0900 and AH3133.

  7. Production of freeze-dried lactic acid bacteria starter culture for cassava fermentation into gari

    CSIR Research Space (South Africa)

    Yao, AA

    2009-10-01

    Full Text Available Sixteen lactic acid bacteria, eight Lactobacillus plantarum, three L. pentosus, two Weissella paramesenteroides, two L. fermemtum and one Leuconostoc mesenteroides ssp. mesenteroides were previously isolated from cassava fermentation and selected...

  8. Vanillin production from simple phenols by wine-associated lactic acid bacteria.

    Science.gov (United States)

    Bloem, A; Bertrand, A; Lonvaud-Funel, A; de Revel, G

    2007-01-01

    The ability of lactic acid bacteria (LAB) to metabolize certain phenolic precursors to vanillin was investigated. Gas chromatography-mass spectrometry (GC-MS) or HPLC was used to evaluate the biosynthesis of vanillin from simple phenolic precursors. LAB were not able to form vanillin from eugenol, isoeugenol or vanillic acid. However Oenococcus oeni or Lactobacillus sp. could convert ferulic acid to vanillin, but in low yield. Only Lactobacillus sp. or Pediococcus sp. strains were able to produce significant quantities of 4-vinylguaiacol from ferulic acid. Moreover, LAB reduced vanillin to the corresponding vanillyl alcohol. The transformation of phenolic compounds tested by LAB could not explain the concentrations of vanillin observed during LAB growth in contact with wood. Important details of the role of LAB in the conversion of phenolic compounds to vanillin have been elucidated. These findings contribute to the understanding of malolactic fermentation in the production of aroma compounds.

  9. Competitive selection of lactic acid bacteria that persist in the human oral cavity

    NARCIS (Netherlands)

    Snel, J.; Marco, M.L.; Kingma, F.; Noordman, W.M.; Rademaker, J.; Kleerebezem, M.

    2011-01-01

    Lactic acid bacteria (LAB) might offer opportunities as oral probiotics provided candidate strains persist in the mouth. After intake of a mixture of 69 LAB, strains of Lactobacillus fermentum and Lactobacillus salivarius were especially recovered. Coaggregation with other microbes is likely not a

  10. Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods

    NARCIS (Netherlands)

    Flahaut, N.A.L.; Vos, de W.M.

    2014-01-01

    Lactic acid bacteria have long been used in industrial dairy and other food fermentations that make use of their metabolic activities leading to products with specific organoleptic properties. Metabolic engineering is a rational approach to steer fermentations toward the production of desired

  11. Gram-negative, but not Gram-positive, bacteria elicit strong PGE2 production in human monocytes.

    Science.gov (United States)

    Hessle, Christina C; Andersson, Bengt; Wold, Agnes E

    2003-12-01

    Gram-positive and Gram-negative bacteria induce different cytokine patterns in human mononuclear cells. We have seen that Gram-positives preferentially induce IL-12 and TNF-alpha, whereas Gram-negatives induce more IL-10, IL-6, and IL-8. In this study, we compared the capacity of these two groups of bacteria to induce PGE2. Monocytes stimulated with Gram-negative bacterial species induced much more PGE2 than did Gram-positive bacteria (5600 +/- 330 vs. 1700 +/- 670 pg/mL, p Gram-positive and Gram-negative bacteria. We suggest that Gram-positive and Gram-negative bacteria may stimulate different innate effector functions; Gram-positive bacteria promoting cell-mediated effector functions whereas Gram-negative bacteria inducing mediators inhibiting the same.

  12. Population dynamics of mixed cultures of yeast and lactic acid bacteria in cider conditions

    Directory of Open Access Journals (Sweden)

    Leila Roseli Dierings

    2013-10-01

    Full Text Available The objective of this work was to study the malolactic bioconversion in low acidity cider, according Brazilian conditions. The apple must was inoculated with Saccharomyces cerevisiae or S. cerevisiae with Oenococcus oeni. The control contained the indigenous microorganisms. Fermentation assays were carried out with clarified apple must from the Gala variety. At the beginning of fermentation, there was a fast growth of the non-Saccharomyces yeast population. Competitive inhibition occurred in all the assays, either with inoculated or indigenous populations of the yeast. The lactic acid bacteria count was ca. 1.41·10²CFU/mL at the beginning and 10(6CFU/mL after yeast cells autolysis. The lactic bacteria O. oeni reached the highest population (10(7CFU/mL when added to the apple must after the decline of the yeast. The malic acid was totally consumed during the alcoholic fermentation period (80.0 to 95.5 % and lactic acid was still synthesized during the 35 days of malolactic fermentation. These results could be important in order to achieve a high quality brut, or sec cider obtained from the dessert apple must.

  13. Compositional characteristics of commercial yoghurt based on quantitative determination of viable lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Niketić Gordana B.

    2009-01-01

    Full Text Available Yoghurt quality is particularly difficult to standardize because of the many forms, varieties, manufacturing methods, ingredients and consumer preferences that exist. Since these factors will always play an important role, it is unlikely that a uniform yoghurt quality concept will ever emerge, such as has been developed for other dairy products. There are a number of common denominators, however that have bearing on yoghurt quality. Since a number of producers are recognized within the broad category entitled yoghurt. This situation makes yoghurt an interesting, challenging, but also a confusing area to work in. The present investigation was undertaken to isolate from commercial yoghurt the strains involved in its manufacture and determine the characteristics of Streptococcus thermophilus and Lactobacillus delbrueckii subsp.bulgaricus. This study is concerned with the lactic acid bacteria (L.delbrueckii subsp. bulgaricus and S. thermophilus growth in yoghurt from involving different procedures and with the determination of the number of lactic acid bacteria in dependence of the temperature and acidity in the period of storage. Predominant samples of yoghurt were with 11-107/ml lactic acid lactococci (44.28%.

  14. Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from enterobacteriaceae.

    Science.gov (United States)

    Mullaney, Jane A; Kelly, William J; McGhie, Tony K; Ansell, Juliet; Heyes, Julian A

    2013-03-27

    Glucosinolates from the genus Brassica can be converted into bioactive compounds known to induce phase II enzymes, which may decrease the risk of cancers. Conversion via hydrolysis is usually by the brassica enzyme myrosinase, which can be inactivated by cooking or storage. We examined the potential of three beneficial bacteria, Lactobacillus plantarum KW30, Lactococcus lactis subsp. lactis KF147, and Escherichia coli Nissle 1917, and known myrosinase-producer Enterobacter cloacae to catalyze the conversion of glucosinolates in broccoli extract. Enterobacteriaceae consumed on average 65% glucoiberin and 78% glucoraphanin, transforming them into glucoiberverin and glucoerucin, respectively, and small amounts of iberverin nitrile and erucin nitrile. The lactic acid bacteria did not accumulate reduced glucosinolates, consuming all at 30-33% and transforming these into iberverin nitrile, erucin nitrile, sulforaphane nitrile, and further unidentified metabolites. Adding beneficial bacteria to a glucosinolate-rich diet may increase glucosinolate transformation, thereby increasing host exposure to bioactives.

  15. Characterization of sulfur-oxidizing bacteria isolated from acid mine drainage and black shale samples

    International Nuclear Information System (INIS)

    Sajjad, W.; Bhatti, T. M.; Hasan, F.; Khan, S.; Badshah, M.

    2016-01-01

    Acid mine drainage (AMD) and black shale (BS) are the main habitats of sulfur-oxidizing bacteria. The aim of this study was to isolate and characterize sulfur-oxidizing bacteria from extreme acidic habitats (AMD and BS). Concentration of metals in samples from AMD and BS varied significantly from the reference samples and exceeded the acceptable limits set by the Environmental Protection Agency (EPA) and the World Health Organization (WHO). A total of 24 bacteria were isolated from these samples that were characterized both morphologically as well as through biochemical tests. All the bacteria were gram-negative rods that could efficiently oxidize sulfur into sulfate ions (SO/sub 4/-2), resulted into decrease in pH up to 1.0 when grown in thiosulfate medium with initial pH 4.0. Out of 24, only 06 isolates were selected for phylogenetic analysis through 16S rRNA sequencing, on the basis of maximum sulfur-oxidizing efficiency. The isolates were identified as the species from different genera such as Alcaligenes, Pseudomonas, Bordetella, and Stenotrophomonas on the basis of maximum similarity index. The concentration of sulfate ions produced was estimated in the range of 179-272 mg/L. These acidophiles might have various potential applications such as biological leaching of metals from low-grade ores, alkali soil reclamation and to minimize the use of chemical S-fertilizers and minimize environmental pollution. (author)

  16. Modelling of the acid base properties of two thermophilic bacteria at different growth times

    Science.gov (United States)

    Heinrich, Hannah T. M.; Bremer, Phil J.; McQuillan, A. James; Daughney, Christopher J.

    2008-09-01

    Acid-base titrations and electrophoretic mobility measurements were conducted on the thermophilic bacteria Anoxybacillus flavithermus and Geobacillus stearothermophilus at two different growth times corresponding to exponential and stationary/death phase. The data showed significant differences between the two investigated growth times for both bacterial species. In stationary/death phase samples, cells were disrupted and their buffering capacity was lower than that of exponential phase cells. For G. stearothermophilus the electrophoretic mobility profiles changed dramatically. Chemical equilibrium models were developed to simultaneously describe the data from the titrations and the electrophoretic mobility measurements. A simple approach was developed to determine confidence intervals for the overall variance between the model and the experimental data, in order to identify statistically significant changes in model fit and thereby select the simplest model that was able to adequately describe each data set. Exponential phase cells of the investigated thermophiles had a higher total site concentration than the average found for mesophilic bacteria (based on a previously published generalised model for the acid-base behaviour of mesophiles), whereas the opposite was true for cells in stationary/death phase. The results of this study indicate that growth phase is an important parameter that can affect ion binding by bacteria, that growth phase should be considered when developing or employing chemical models for bacteria-bearing systems.

  17. Application of electrochemical optical waveguide lightmode spectroscopy for studying the effect of different stress factors on lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Adanyi, Nora [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary)]. E-mail: n.adanyi@cfri.hu; Nemeth, Edina [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary); Halasz, Anna [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary); Szendro, Istvan [MicroVacuum Ltd., H-1147 Budapest, Kerekgyarto u. 10 (Hungary); Varadi, Maria [Central Food Research Institute, H-1537 Budapest, P.O. Box 393 (Hungary)

    2006-07-28

    Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS) has been developed to combine evanescent-field optical sensing with electrochemical control of surface adsorption processes. For bioanalytical sensing, a layer of indium tin oxide (ITO) served as both a high-refractive index waveguide and a conductive electrode. In addition, an electrochemical flow-through fluid cuvette was applied, which incorporated working, reference, and counter electrodes, and was compatible with the constraints of optical sensing. The subject of our study was to monitor how the different stress factors (lactic acid, acetic acid and hydrogen peroxide) influence the survival of lactic acid bacteria. The advantage of EC-OWLS technique is that we could carry out kinetic studies on the behaviour of bacteria under stress conditions, and after exposure of lactobacilli to acid and oxidative stress we get faster results about the status of bacteria compared to the traditional quantitative methods. After optimization of the polarization potential used, calibration curve was determined and the sensor response of different rate of living and damaged cells was studied. The bacterial cells were adsorbed in native form on the surface of the sensor by ensuring polarizing potential (1 V) and were exposed to different concentration of acetic acid and hydrogen peroxide solution to 1 h, respectively and the behaviour of bacteria was monitored. Results were compared to traditional micro-assay method.

  18. Application of electrochemical optical waveguide lightmode spectroscopy for studying the effect of different stress factors on lactic acid bacteria

    International Nuclear Information System (INIS)

    Adanyi, Nora; Nemeth, Edina; Halasz, Anna; Szendro, Istvan; Varadi, Maria

    2006-01-01

    Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS) has been developed to combine evanescent-field optical sensing with electrochemical control of surface adsorption processes. For bioanalytical sensing, a layer of indium tin oxide (ITO) served as both a high-refractive index waveguide and a conductive electrode. In addition, an electrochemical flow-through fluid cuvette was applied, which incorporated working, reference, and counter electrodes, and was compatible with the constraints of optical sensing. The subject of our study was to monitor how the different stress factors (lactic acid, acetic acid and hydrogen peroxide) influence the survival of lactic acid bacteria. The advantage of EC-OWLS technique is that we could carry out kinetic studies on the behaviour of bacteria under stress conditions, and after exposure of lactobacilli to acid and oxidative stress we get faster results about the status of bacteria compared to the traditional quantitative methods. After optimization of the polarization potential used, calibration curve was determined and the sensor response of different rate of living and damaged cells was studied. The bacterial cells were adsorbed in native form on the surface of the sensor by ensuring polarizing potential (1 V) and were exposed to different concentration of acetic acid and hydrogen peroxide solution to 1 h, respectively and the behaviour of bacteria was monitored. Results were compared to traditional micro-assay method

  19. Detection of Sialic Acid-Utilising Bacteria in a Caecal Community Batch Culture Using RNA-Based Stable Isotope Probing

    Directory of Open Access Journals (Sweden)

    Wayne Young

    2015-03-01

    Full Text Available Sialic acids are monosaccharides typically found on cell surfaces and attached to soluble proteins, or as essential components of ganglioside structures that play a critical role in brain development and neural transmission. Human milk also contains sialic acid conjugated to oligosaccharides, glycolipids, and glycoproteins. These nutrients can reach the large bowel where they may be metabolised by the microbiota. However, little is known about the members of the microbiota involved in this function. To identify intestinal bacteria that utilise sialic acid within a complex intestinal community, we cultured the caecal microbiota from piglets in the presence of 13C-labelled sialic acid. Using RNA-based stable isotope probing, we identified bacteria that consumed 13C-sialic acid by fractionating total RNA in isopycnic buoyant density gradients followed by 16S rRNA gene analysis. Addition of sialic acid caused significant microbial community changes. A relative rise in Prevotella and Lactobacillus species was accompanied by a corresponding reduction in the genera Escherichia/Shigella, Ruminococcus and Eubacterium. Inspection of isotopically labelled RNA sequences suggests that the labelled sialic acid was consumed by a wide range of bacteria. However, species affiliated with the genus Prevotella were clearly identified as the most prolific users, as solely their RNA showed significantly higher relative shares among the most labelled RNA species. Given the relevance of sialic acid in nutrition, this study contributes to a better understanding of their microbial transformation in the intestinal tract with potential implications for human health.

  20. Heterologous protein display on the cell surface of lactic acid bacteria mediated by the s-layer protein

    Directory of Open Access Journals (Sweden)

    Han Lanlan

    2011-10-01

    Full Text Available Abstract Background Previous studies have revealed that the C-terminal region of the S-layer protein from Lactobacillus is responsible for the cell wall anchoring, which provide an approach for targeting heterologous proteins to the cell wall of lactic acid bacteria (LAB. In this study, we developed a new surface display system in lactic acid bacteria with the C-terminal region of S-layer protein SlpB of Lactobacillus crispatus K2-4-3 isolated from chicken intestine. Results Multiple sequence alignment revealed that the C-terminal region (LcsB of Lb. crispatus K2-4-3 SlpB had a high similarity with the cell wall binding domains SA and CbsA of Lactobacillus acidophilus and Lb. crispatus. To evaluate the potential application as an anchoring protein, the green fluorescent protein (GFP or beta-galactosidase (Gal was fused to the N-terminus of the LcsB region, and the fused proteins were successfully produced in Escherichia coli, respectively. After mixing them with the non-genetically modified lactic acid bacteria cells, the fused GFP-LcsB and Gal-LcsB were functionally associated with the cell surface of various lactic acid bacteria tested. In addition, the binding capacity could be improved by SDS pretreatment. Moreover, both of the fused proteins could simultaneously bind to the surface of a single cell. Furthermore, when the fused DNA fragment of gfp:lcsB was inserted into the Lactococcus lactis expression vector pSec:Leiss:Nuc, the GFP could not be secreted into the medium under the control of the nisA promoter. Western blot, in-gel fluorescence assay, immunofluorescence microscopy and SDS sensitivity analysis confirmed that the GFP was successfully expressed onto the cell surface of L. lactis with the aid of the LcsB anchor. Conclusion The LcsB region can be used as a functional scaffold to target the heterologous proteins to the cell surfaces of lactic acid bacteria in vitro and in vivo, and has also the potential for biotechnological

  1. Stress Physiology of Lactic Acid Bacteria

    Science.gov (United States)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A.; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A.; Linares, Daniel M.; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie

    2016-01-01

    SUMMARY Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the “stressome” of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  2. Acetic acid bacteria in fermented foods and beverages.

    Science.gov (United States)

    De Roos, Jonas; De Vuyst, Luc

    2018-02-01

    Although acetic acid bacteria (AAB) are commonly found in spontaneous or backslopped fermented foods and beverages, rather limited knowledge about their occurrence and functional role in natural food fermentation ecosystems is available. Not only is their cultivation, isolation, and identification difficult, their cells are often present in a viable but not culturable state. Yet, they are promising starter cultures either to better control known food fermentation processes or to produce novel fermented foods and beverages. This review summarizes the most recent findings on the occurrence and functional role of AAB in natural food fermentation processes such as lambic beer, water kefir, kombucha, and cocoa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Enrichment of conjugated linoleic acid (CLA) in hen eggs and broiler chickens meat by lactic acid bacteria.

    Science.gov (United States)

    Herzallah, Saqer

    2013-01-01

    1. The aim of this work was to compare conjugated linoleic acid (CLA) concentrations in chickens supplemented with 4 American Tissue Culture Collection (ATCC) bacterial strains, Lactobacillus plantarum, Lactobacillus lactis, Lactobacillus casei and Lactobacillus fermentum, and 4 isolates of Lactobacillus reuteri from camel, cattle, sheep and goat rumen extracts. 2. Micro-organisms were grown anaerobically in MRS broth, and 10(6) CFU/ml of bacteria were administered orally to mixed-sex, 1-d-old broiler chickens weekly for 4 weeks and to 23-week-old layer hens weekly for 6 weeks. 3. The 4 strains were evaluated for their effects on synthesis of CLA in hen eggs and broiler meat cuts. 4. Administration of pure Lactobacillus and isolated L. reuteri strains from camel, cattle, goat and sheep led to significantly increased CLA concentrations of 0.2-1.2 mg/g of fat in eggs and 0.3-1.88 mg/g of fat in broiler chicken flesh homogenates of leg, thigh and breast. 5. These data demonstrate that lactic acid bacteria of animal origin (L. reuteri) significantly enhanced CLA synthesis in both eggs and broiler meat cuts.

  4. Isolation and identification of lactic acid bacteria from fermented red dragon fruit juices.

    Science.gov (United States)

    Ong, Yien Yien; Tan, Wen Siang; Rosfarizan, Mohamad; Chan, Eng Seng; Tey, Beng Ti

    2012-10-01

    Red dragon fruit or red pitaya is rich in potassium, fiber, and antioxidants. Its nutritional properties and unique flesh color have made it an attractive raw material of various types of food products and beverages including fermented beverages or enzyme drinks. In this study, phenotypic and genotypic methods were used to confirm the identity of lactic acid bacteria (LAB) appeared in fermented red dragon fruit (Hylocereus polyrhizus) beverages. A total of 21 isolates of LAB were isolated and characterized. They belonged to the genus of Enterococcus based on their biochemical characteristics. The isolates can be clustered into two groups by using the randomly amplified polymorphic DNA method. Nucleotide sequencing and restriction fragment length polymorphism of the 16S rRNA region suggested that they were either Enterococcus faecalis or Enterococcus durans. Current research revealed the use of biochemical analyses and molecular approaches to identify the microbial population particularly lactic acid bacteria from fermented red dragon fruit juices. © 2012 Institute of Food Technologists®

  5. Exploitation of grape marc as functional substrate for lactic acid bacteria and bifidobacteria growth and enhanced antioxidant activity.

    Science.gov (United States)

    Campanella, Daniela; Rizzello, Carlo Giuseppe; Fasciano, Cristina; Gambacorta, Giuseppe; Pinto, Daniela; Marzani, Barbara; Scarano, Nicola; De Angelis, Maria; Gobbetti, Marco

    2017-08-01

    This study aimed at using grape marc for the growth of lactic acid bacteria and bifidobacteria with the perspective of producing a functional ingredient having antioxidant activity. Lactobacillus plantarum 12A and PU1, Lactobacillus paracasei 14A, and Bifidobacterium breve 15A showed the ability to grow on grape marc (GM) based media. The highest bacterial cell density (>9.0 CFU/g) was found in GM added of 1% of glucose (GMG). Compared to un-inoculated and incubated control fermented GMG showed a decrease of carbohydrates and citric acid together with an increase of lactic acid. The content of several free amino acids and phenol compounds differed between samples. Based on the survival under simulated gastro-intestinal conditions, GMG was a suitable carrier of lactic acid bacteria and bifidobacteria strains. Compared to the control, cell-free supernatant (CFS) of fermented GMG exhibited a marked antioxidant activity in vitro. The increased antioxidant activity was confirmed using Caco-2 cell line after inducing oxidative stress, and determining cell viability and radical scavenging activity through MTT and DCFH-DA assays, respectively. Supporting these founding, the SOD-2 gene expression of Caco-2 cells also showed a lowest pro-oxidant effect induced by the four CFS of GMG fermented by lactic acid bacteria and bifidobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives

    OpenAIRE

    Parada,José Luis; Caron,Carolina Ricoy; Medeiros,Adriane Bianchi P.; Soccol,Carlos Ricardo

    2007-01-01

    Biopreservation systems in foods are of increasing interest for industry and consumers. Bacteriocinogenic lactic acid bacteria and/or their isolated bacteriocins are considered safe additives (GRAS), useful to control the frequent development of pathogens and spoiling microorganisms in foods and feed. The spreading of bacterial antibiotic resistance and the demand for products with fewer chemicals create the necessity of exploring new alternatives, in order to reduce the abusive use of therap...

  7. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  8. Phytase-active lactic acid bacteria from sourdoughs

    DEFF Research Database (Denmark)

    Nuobariene, Lina; Cizeikiene, Dalia; Gradzeviciute, Egle

    2015-01-01

    Whole-grain foods play an important role in human diet as they are relatively rich in minerals, however, the absorption of those minerals in human gut can be very low due to high content of the mineral binding phytate. Therefore, the object of this study was to identify phytase-active lactic acid...... bacteria (LAB) which could be used as a starter to increase mineral bioavailability in whole-meal bread. Hence, LAB isolates were isolated from Lithuanian sourdoughs, tested for phytase activity, and phytase active isolates were identified. Studies of phytase activity of the isolates were carried out...... at conditions optimal for leavening of bread dough (pH 5.5 and 30°C). The phytase active isolates belonged to the species Lactobacillus panis, Lactobacillus reuteri, Lactobacillus fermentum, and Pediococcus pentosaceus. Phytase activities of the tested LAB isolates were both extra- and intra...

  9. Quantification of syntrophic fatty acid-{beta}-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K.H.; Ahring, B.K.; Raskin, L.

    1999-11-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-{beta}-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S.wolfei LYB was closely related to S.wolfei subsp. solfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-{beta}-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-{beta}-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, or which the majority was accounted for by the genus Syntrophomonas.

  10. Molecular diversity of lactic acid bacteria on ileum broiler chicken fed by bran and bran fermentation

    Science.gov (United States)

    Baniyah, Laelatul; Nur Jannah, Siti; Rukmi, Isworo; Sugiharto

    2018-05-01

    Lactic Acid Bacteria (LAB) is a digestive tract microflora that have a positive role in poultry health. The number and diversity of LAB in the digestive tract affected by several factors, among them was the kind of feed. The purpose of this research was to know diversity of Lactic Acid Bacteria (LAB) ileum broiler’s after feeding with prebiotic bran and Rhizopus oryzae fermented bran which was added to commercial feed. As much as 15 broilers were used to determine the diversity of LAB. All broilers were fed using commercial feed. The control used commercial feed no addition of bran or fermented bran, and commercial feed with fermented bran and nonfermented bran were as a treatment. To determine the diversity of LAB, T-RFLP method was applied. The Hae III and Msp I were used as restriction enzymes. The number of phylotype, relative abundance, Shannon diversity index (H '), evenness (E), and Dominance (D) were examined. The results indicated that the addition of prebiotic bran on commercial feed showed a higher diversity of lactic acid bacteria on broiler’s ileum, compared with control and addition of Rhizopus oryzae fermented bran. LAB group that dominates in the ileum is Lactobacillus sp. and L. delbruecii subs bulgaricus.

  11. THE STUDY OF DIRECTED FERMENTATION PROCESS USING STRAINS OF LACTIC ACID BACTERIA FOR OBTAINING VEGETABLE PRODUCTS OF STABLE QUALITY

    Directory of Open Access Journals (Sweden)

    V. V. Kondratenko

    2016-01-01

    Full Text Available The objective of the research was to study the process of directed fermentation of whitehead cabbage variety ‘Slava’, using strains of lactic acid bacteria and their consortium with the degree of their mutual influence. As strains of lactic acid bacteria, we have chosen the following: VCR 536 Lactobacillus casei, Lactobacillus plantarum VKM V-578. To obtain comparable results, all experiments were performed on model mediums. For the first time we studied the dynamics of changes in quality indicators at the process of directed fermentation using strains of lactic acid bacteria (LAB including their consortiums. The mathematical model developed adequately describes the degree of destruction of glucose and fructose in the fermentation process. The raw material was undergone to homogenization and sterilization with the aim to create optimal conditionsfor the development of the target microorganisms and to detect the degree of  restruction of fructose and glucose by different strains of microorganisms. The mathematical model developed adequately described the degree of destruction of fructose and glucose in the treatment process. The use of a consortium of lactic acid bacteria (L. plantarum+L. casei to this culture medium is shown to be impractical. The addition of fructose in quantity 0.5% to weight of the model medium enabled to intensify significantly the process of white cabbage fermentation.

  12. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  13. Screening of lactic acid bacteria with high autolysis rate by N+-implantation

    International Nuclear Information System (INIS)

    Sun Jie; Lu Jiaping; Liu Lu; Zhang Shuwen

    2010-01-01

    In order to obtain lactic acid bacteria with high autolysis rate, Streptococcus salivarius ssp. thermophilus GS1 and Lactobacillus delbrueckii ssp. bulgaricus LD3 were mutated by 50 keV N + ions implantation. The results indicated that the survival rate curve took a saddle shape in the range of 1 x 2.6 x 10 13 ∼ 6 x 2.6 x 10 13 and the total mutation rate was 57% ∼ 74%. The survival rate were 25% ∼ 33% on the suitable dose 4 x 2.6 x 10 13 ion/cm 2 . Among the mutated strains with mutation rate in the range of 127.98% ∼-51.96%, the highest autolysis rate mutation strains were named LD3-A3 and GS1-B13. Compare with original strains, autolysis rates of LD3-A3 and GS1-B13 increased by 127.98% and 115.11% respectively. Fermentation properties of LD3-A3 and GS1-B13 were stable after 5 generation transfer inoculation. It indicates that the ion implantation technique is a feasible method in lactic acid bacteria breeding. (authors)

  14. Efficacy of microencapsulated lactic acid bacteria in Helicobater pylori eradication therapy

    Directory of Open Access Journals (Sweden)

    Maha A Khalil

    2015-01-01

    Full Text Available Background: Probiotic delivery systems are widely used nutraceutical products for the supplementation of natural intestinal flora. These delivery systems vary greatly in the effectiveness to exert health benefits for a patient. This study focuses on providing probiotic living cells with a physical barrier against adverse environmental conditions. Materials and Methods: Microencapsulation of the selected lactic acid bacteria (LAB using chitosan and alginate was performed. Physical examination of the formulated LAB microcapsules was observed using phase contrast inverted microscope and scanning electron microscope (SEM. Finally, the survival of microencapsulated and noncapsulated bacteria was cheeked in the simulated human gastric tract (GT. The potential antimicrobial activity of the most potent microencapsulated LAB strain was in vivo evaluated in rabbit models. Results: Microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 were loaded with 1.03 × 10 10 CFU viable bacteria/g, 1.9 × 10 10 CFU viable bacteria/g, and 5.5 × 10 9 CFU viable bacteria/g, respectively. The survival of microencapsulated cells was significantly higher than that of the free cells after exposure to simulated gastric juice (SGJ at pH 2. Additionally, in simulated small intestine juice (SSJ, larger amounts of the selected LAB cells were found, whereas in simulated colon juice (SCJ, the released LAB reached the maximum counts. In vivo results pointed out that an 8-week supplementation with a triple therapy of a microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 might be able to reduce H. pylori. Conclusion: Microencapsulated probiotics could possibly compete with and downregulate H. pylori infection in humans.

  15. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin

    Directory of Open Access Journals (Sweden)

    Keita Nishiyama

    2016-09-01

    Full Text Available Lactic acid bacteria (LAB are Gram-positive bacteria that are natural inhabitants of the gastrointestinal (GI tracts of mammals, including humans. Since Mechnikov first proposed that yogurt could prevent intestinal putrefaction and aging, the beneficial effects of LAB have been widely demonstrated. The region between the duodenum and the terminal of the ileum is the primary region colonized by LAB, particularly the Lactobacillus species, and this region is covered by a mucus layer composed mainly of mucin-type glycoproteins. The mucus layer plays a role in protecting the intestinal epithelial cells against damage, but is also considered to be critical for the adhesion of Lactobacillus in the GI tract. Consequently, the adhesion exhibited by lactobacilli on mucin has attracted attention as one of the critical factors contributing to the persistent beneficial effects of Lactobacillus in a constantly changing intestinal environment. Thus, understanding the interactions between Lactobacillus and mucin is crucial for elucidating the survival strategies of LAB in the GI tract. This review highlights the properties of the interactions between Lactobacillus and mucin, while concomitantly considering the structure of the GI tract from a histochemical perspective.

  16. Screening of probiotic lactic acid bacteria from Thai fermented foods for human.

    Directory of Open Access Journals (Sweden)

    Kantachote, D.

    2004-09-01

    Full Text Available Total of 327 strains of lactic acid bacteria were isolated from 179 samples of various Thai fermented foods. The strains were investigated for their probiotic properties based on stability in bile salt (0.15% and high acidity (pH 2, 3 and 4. Moreover, utilization of protein or fat or starch, growth in the absence of vitamin B12 and growth under both aerobic and anaerobic conditions with no significant difference were also considered. According to the above criteria, 67 strains were selected for antibiotics sensitivity test. The selected strains were susceptible to following antibiotics: ampicillin, cephalothin, cefoperazone, tetracycline andchloramphenicol; however the strains were resistant to vancomycin, kanamycin, streptomycin, norfloxacin and polymyxin B. Using agar spot method, only 5 strains were able to inhibit 13 strains of manifest by a bacteria indicator as clear zone greater than 10 mm. A further investigation using co-culture technique showed inhibition of the tested organisms was between 80 and 100 percent. The strains grew under media of MRS and SPY2 (no materials from animal over 36 hours with no significant difference. The strains were investigated for survival in condition of high acidity within 3 hours. It was found that at pH 4 almost 100% were maintained but at pH 2 and 3 the survival reduced approximately 1 log cycle. The strain LA71 which showed the highest survival was identified as Lactobacillus plantarum.

  17. Effects of levan-type fructan on growth performance, nutrient digestibility, diarrhoea scores, faecal shedding of total lactic acid bacteria and coliform bacteria, and faecal gas emission in weaning pigs.

    Science.gov (United States)

    Lei, Xin Jian; Kim, Yong Min; Park, Jae Hong; Baek, Dong Heon; Nyachoti, Charles Martin; Kim, In Ho

    2018-03-01

    The use of antibiotics as growth promoters in feed has been fully or partially banned in several countries. The objective of this study was to evaluate effects of levan-type fructan on growth performance, nutrient digestibility, faecal shedding of lactic acid bacteria and coliform bacteria, diarrhoea scores, and faecal gas emission in weaning pigs. A total of 144 weaning pigs [(Yorkshire × Landrace) × Duroc] were randomly allocated to four diets: corn-soybean meal-based diets supplemented with 0, 0.1, 0.5, or 1.0 g kg -1 levan-type fructan during this 42-day experiment. During days 0 to 21 and 0 to 42, average daily gain and average daily feed intake were linearly increased (P bacteria counts were linearly increased (P = 0.001). The results indicate that dietary supplementation with increasing levan-type fructan enhanced growth performance, improved nutrient digestibility, and increased faecal lactic acid bacteria counts in weaning pigs linearly. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Inferring Phytoplankton, Terrestrial Plant and Bacteria Bulk δ¹³C Values from Compound Specific Analyses of Lipids and Fatty Acids

    Science.gov (United States)

    Taipale, Sami J.; Peltomaa, Elina; Hiltunen, Minna; Jones, Roger I.; Hahn, Martin W.; Biasi, Christina; Brett, Michael T.

    2015-01-01

    Stable isotope mixing models in aquatic ecology require δ13C values for food web end members such as phytoplankton and bacteria, however it is rarely possible to measure these directly. Hence there is a critical need for improved methods for estimating the δ13C ratios of phytoplankton, bacteria and terrestrial detritus from within mixed seston. We determined the δ13C values of lipids, phospholipids and biomarker fatty acids and used these to calculate isotopic differences compared to the whole-cell δ13C values for eight phytoplankton classes, five bacterial taxa, and three types of terrestrial organic matter (two trees and one grass). The lipid content was higher amongst the phytoplankton (9.5±4.0%) than bacteria (7.3±0.8%) or terrestrial matter (3.9±1.7%). Our measurements revealed that the δ13C values of lipids followed phylogenetic classification among phytoplankton (78.2% of variance was explained by class), bacteria and terrestrial matter, and there was a strong correlation between the δ13C values of total lipids, phospholipids and individual fatty acids. Amongst the phytoplankton, the isotopic difference between biomarker fatty acids and bulk biomass averaged -10.7±1.1‰ for Chlorophyceae and Cyanophyceae, and -6.1±1.7‰ for Cryptophyceae, Chrysophyceae and Diatomophyceae. For heterotrophic bacteria and for type I and type II methane-oxidizing bacteria our results showed a -1.3±1.3‰, -8.0±4.4‰, and -3.4±1.4‰ δ13C difference, respectively, between biomarker fatty acids and bulk biomass. For terrestrial matter the isotopic difference averaged -6.6±1.2‰. Based on these results, the δ13C values of total lipids and biomarker fatty acids can be used to determine the δ13C values of bulk phytoplankton, bacteria or terrestrial matter with ± 1.4‰ uncertainty (i.e., the pooled SD of the isotopic difference for all samples). We conclude that when compound-specific stable isotope analyses become more widely available, the determination of

  19. The antagonistic activity of lactic acid bacteria isolated from peda, an Indonesian traditional fermented fish

    Science.gov (United States)

    Putra, T. F.; Suprapto, H.; Tjahjaningsih, W.; Pramono, H.

    2018-04-01

    Peda is an Indonesian traditional fermented whole fish prepared by addition of salt prior to fermentation and drying process. Salt used to control the growth of the lactic acid bacteria for the fermentation process. The objectives of this study were isolating and characterize the potential lactic acid bacteria (LAB) from peda as culture starter candidate, particularly its activity against pathogenic bacteria. A total of five samples from five regions of East Java Province was collected and subjected to LAB isolation. Fifty-seven of 108 colonies that show clear zone in de Man, Rogosa and Sharpe (MRS) agar supplemented with 0.5% CaCO3 were identified as LAB. Twenty-seven of the LAB isolates were exhibit inhibition against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 27853. Isolate Aerococcus NJ-20 was exhibited strong inhibition against S. aureus ATCC 6538 (7.6 ± 1.35 mm inhibition zone) but was not produce bacteriocin. This finding suggests that the isolate Aerococcus NJ-20 can be applied as biopreservative culture starter on peda production. Further analysis on technological properties of isolates will be needed prior to application.

  20. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.).

    Science.gov (United States)

    Złotek, Urszula; Michalak-Majewska, Monika; Szymanowska, Urszula

    2016-12-15

    The effect of elicitation with jasmonic acid (JA) on the plant yield, the production and composition of essential oils of lettuce leaf basil was evaluated. JA-elicitation slightly affected the yield of plants and significantly increased the amount of essential oils produced by basil - the highest oil yield (0.78±0.005mL/100gdw) was achieved in plants elicited with 100μM JA. The application of the tested elicitor also influenced the chemical composition of basil essential oils - 100μM JA increased the linalool, eugenol, and limonene levels, while 1μM JA caused the highest increase in the methyl eugenol content. Essential oils from JA-elicited basil (especially 1μM and 100μM) exhibited more effective antioxidant and anti-inflammatory potential; therefore, this inducer may be a very useful biochemical tool for improving production and composition of herbal essential oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Formation of Guaiacol by Spoilage Bacteria from Vanillic Acid, a Product of Rice Koji Cultivation, in Japanese Sake Brewing.

    Science.gov (United States)

    Ito, Toshihiko; Konno, Mahito; Shimura, Yoichiro; Watanabe, Seiei; Takahashi, Hitoshi; Hashizume, Katsumi

    2016-06-08

    The formation of guaiacol, a potent phenolic off-odor compound in the Japanese sake brewing process, was investigated. Eight rice koji samples were analyzed, and one contained guaiacol and 4-vinylguaiacol (4-VG) at extraordinarily high levels: 374 and 2433 μg/kg dry mass koji, respectively. All samples contained ferulic and vanillic acids at concentrations of mg/kg dry mass koji. Guaiacol forming microorganisms were isolated from four rice koji samples. They were identified as Bacillus subtilis, B. amyloliquefaciens/subtilis, and Staphylococcus gallinarum using 16S rRNA gene sequence. These spoilage bacteria convert vanillic acid to guaiacol and ferulic acid to 4-VG. However, they convert very little ferulic acid or 4-VG to guaiacol. Nine strains of koji fungi tested produced vanillic acid at the mg/kg dry mass koji level after cultivation. These results indicated that spoilage bacteria form guaiacol from vanillic acid, which is a product of koji cultivation in the sake brewing process.

  2. [Clinical usefulness of urine-formed elements' information obtained from bacteria detection by flow cytometry method that uses nucleic acid staining].

    Science.gov (United States)

    Nakagawa, Hiroko; Yuno, Tomoji; Itho, Kiichi

    2009-03-01

    Recently, specific detection method for Bacteria, by flow cytometry method using nucleic acid staining, was developed as a function of automated urine formed elements analyzer for routine urine testing. Here, we performed a basic study on this bacteria analysis method. In addition, we also have a comparison among urine sediment analysis, urine Gram staining and urine quantitative cultivation, the conventional methods performed up to now. As a result, the bacteria analysis with flow cytometry method that uses nucleic acid staining was excellent in reproducibility, and higher sensitivity compared with microscopic urinary sediment analysis. Based on the ROC curve analysis, which settled urine culture method as standard, cut-off level of 120/microL was defined and its sensitivity = 85.7%, specificity = 88.2%. In the analysis of scattergram, accompanied with urine culture method, among 90% of rod positive samples, 80% of dots were appeared in the area of 30 degrees from axis X. In addition, one case even indicated that analysis of bacteria by flow cytometry and scattergram of time series analysis might be helpful to trace the progress of causative bacteria therefore the information supposed to be clinically significant. Reporting bacteria information with nucleic acid staining flow cytometry method is expected to contribute to a rapid diagnostics and treatment of urinary tract infections. Besides, the contribution to screening examination of microbiology and clinical chemistry, will deliver a more efficient solution to urine analysis.

  3. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt.

    Science.gov (United States)

    Martin, F; Cachon, R; Pernin, K; De Coninck, J; Gervais, P; Guichard, E; Cayot, N

    2011-02-01

    The aim of this study was to investigate the effect of oxidoreduction potential (Eh) on the biosynthesis of aroma compounds by lactic acid bacteria in non-fat yogurt. The study was done with yogurts fermented by Lactobacillus bulgaricus and Streptococcus thermophilus. The Eh was modified by the application of different gaseous conditions (air, nitrogen, and nitrogen/hydrogen). Acetaldehyde, dimethyl sulfide, diacetyl, and pentane-2,3-dione, as the major endogenous odorant compounds of yogurt, were chosen as tracers for the biosynthesis of aroma compounds by lactic acid bacteria. Oxidative conditions favored the production of acetaldehyde, dimethyl sulfide, and diketones (diacetyl and pentane-2,3-dione). The Eh of the medium influences aroma production in yogurt by modifying the metabolic pathways of Lb. bulgaricus and Strep. thermophilus. The use of Eh as a control parameter during yogurt production could permit the control of aroma formation. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Development of growth rate measuring method for intracellular, parasitic acid-fast bacteria using radioisotopes

    International Nuclear Information System (INIS)

    Nakata, Noboru; Fukutomi, Yasuo

    1998-01-01

    To prevent and treat infections diseases caused by pathogenic acid-fast bacteria such as Mycobacterium leprae, Tubercle bacillus, it is important to elucidate the mechanisms of intracellular proliferations of these bacteria. This research project was started to make DNA library using a new constructed shuttle vector. Development of in vitro evaluation method for intracellular proliferation of mycobacterium and its transformed cells was attempted on the basis of Buddemeyer method. This method was able to precisely determine the metabolic activities as low as those in leprae and its modified method using 14 C-palmitic acid was highly sensitive and the results were obtainable in a shorter period. The generated CO 2 was satisfactorily absorbed into scintillator without using a filter paper. A new culture medium from which arginine, a NO-producing compound was eliminated was used to repress the sterilizing effects of NO, but the metabolic activities of leprae was not enhanced. (M.N.)

  5. Development of growth rate measuring method for intracellular, parasitic acid-fast bacteria using radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Noboru; Fukutomi, Yasuo [National Inst. of Infectious Deseases, Tokyo (Japan)

    1998-02-01

    To prevent and treat infections diseases caused by pathogenic acid-fast bacteria such as Mycobacterium leprae, Tubercle bacillus, it is important to elucidate the mechanisms of intracellular proliferations of these bacteria. This research project was started to make DNA library using a new constructed shuttle vector. Development of in vitro evaluation method for intracellular proliferation of mycobacterium and its transformed cells was attempted on the basis of Buddemeyer method. This method was able to precisely determine the metabolic activities as low as those in leprae and its modified method using {sup 14}C-palmitic acid was highly sensitive and the results were obtainable in a shorter period. The generated CO{sub 2} was satisfactorily absorbed into scintillator without using a filter paper. A new culture medium from which arginine, a NO-producing compound was eliminated was used to repress the sterilizing effects of NO, but the metabolic activities of leprae was not enhanced. (M.N.)

  6. [Comparative characteristics of the amino acid composition of the protein fractions of the hydrogen bacteria Hydrogenomonas eutropha in meat and wheat].

    Science.gov (United States)

    Barashkov, V A; Trubachev, I N; Gitel'zon, I I

    1976-01-01

    An attempt was made to compare the biological value of the biological mass of the hydrogen bacteria Tydrogenomas eutropha, of meat and wheat on the ground of the fractional and amino acids composition of their proteins. Substantial differences in the distribution of proteins and amino acids in all of the three objects examined were revealed. It is shown that more than one half of the entire protein contained in the biological mass of the hydrogen bacteria is made up of poorly soluble structural proteins difficultly amenable to the action of digestive enzymes. It is this fraction where the bulk of essential amino acids is concentrated. The data obtained imply that the biological value of the biological mass of hydrogen bacteria is higher than in wheat, but lower than in meat.

  7. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  8. Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products.

    Science.gov (United States)

    Erginkaya, Z; Turhan, E U; Tatlı, D

    2018-01-01

    In this study, the antibiotic resistance (AR) of lactic acid bacteria (LAB) isolated from traditional Turkish fermented dairy products was investigated. Yogurt, white cheese, tulum cheese, cokelek, camız cream and kefir as dairy products were collected from various supermarkets. Lactic acid bacteria such as Lactobacillus spp., Streptococcus spp., Bifidobacterium spp., and Enterecoccus spp. were isolated from these dairy products. Lactobacillus spp. were resistant to vancomycin (58%), erythromycin (10.8%), tetracycline (4.3%), gentamicin (28%), and ciprofloxacin (26%). Streptococcus spp. were resistant to vancomycin (40%), erythromycin (10%), chloramphenicol (10%), gentamicin (20%), and ciprofloxacin (30%). Bifidobacterium spp. were resistant to vancomycin (60%), E 15 (6.6%), gentamicin (20%), and ciprofloxacin (33%). Enterococcus spp. were resistant to vancomycin (100%), erythromycin (100%), rifampin (100%), and ciprofloxacin (100%). As a result, LAB islated from dairy products in this study showed mostly resistance to vancomycin.

  9. Effects of the Essential Oil from Origanum vulgare L. on Survival of Pathogenic Bacteria and Starter Lactic Acid Bacteria in Semihard Cheese Broth and Slurry.

    Science.gov (United States)

    de Souza, Geany Targino; de Carvalho, Rayssa Julliane; de Sousa, Jossana Pereira; Tavares, Josean Fechine; Schaffner, Donald; de Souza, Evandro Leite; Magnani, Marciane

    2016-02-01

    This study assessed the inhibitory effects of the essential oil from Origanum vulgare L. (OVEO) on Staphylococcus aureus, Listeria monocytogenes, and a mesophilic starter coculture composed of lactic acid bacteria (Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris) in Brazilian coalho cheese systems. The MIC of OVEO was 2.5 μl/ml against both S. aureus and L. monocytogenes and 0.6 μl/ml against the tested starter coculture. In cheese broth containing OVEO at 0.6 μl/ml, no decrease in viable cell counts (VCC) of both pathogenic bacteria was observed, whereas the initial VCC of the starter coculture decreased approximately 1.0 log CFU/ml after 24 h of exposure at 10°C. OVEO at 1.25 and 2.5 μl/ml caused reductions of up to 2.0 and 2.5 log CFU/ml in S. aureus and L. monocytogenes, respectively, after 24 h of exposure in cheese broth. At these same concentrations, OVEO caused a greater decrease of initial VCC of the starter coculture following 4 h of exposure. Higher concentrations of OVEO were required to decrease the VCC of all target bacteria in semisolid coalho cheese slurry compared with cheese broth. The VCC of Lactococcus spp. in coalho cheese slurry containing OVEO were always lower than those of pathogenic bacteria under the same conditions. These results suggest that the concentrations of OVEO used to control pathogenic bacteria in semihard cheese should be carefully evaluated because of its inhibitory effects on the growth of starter lactic acid cultures used during the production of the product.

  10. Survival and Growth of Probiotic Lactic Acid Bacteria in Refrigerated Pickle Products.

    Science.gov (United States)

    Fan, Sicun; Breidt, Fred; Price, Robert; Pérez-Díaz, Ilenys

    2017-01-01

    We examined 10 lactic acid bacteria that have been previously characterized for commercial use as probiotic cultures, mostly for dairy products, including 1 Pediococcus and 9 Lactobacilli. Our objectives were to develop a rapid procedure for determining the long-term survivability of these cultures in acidified vegetable products and to identify suitable cultures for probiotic brined vegetable products. We therefore developed assays to measure acid resistance of these cultures to lactic and acetic acids, which are present in pickled vegetable products. We used relatively high acid concentrations (compared to commercial products) of 360 mM lactic acid and 420 mM acetic acid to determine acid resistance with a 1 h treatment. Growth rates were measured in a cucumber juice medium at pH 5.3, 4.2, and 3.8, at 30 °C and 0% to 2% NaCl. Significant differences in acid resistance and growth rates were found among the 10 cultures. In general, the acid resistant strains had slower growth rates than the acid sensitive strains. Based on the acid resistance data, selected cultures were tested for long-term survival in a simulated acidified refrigerated cucumber product. We found that one of the most acid resistant strains (Lactobacillus casei) could survive for up to 63 d at 4 °C without significant loss of viability at 10 8 CFU/mL. These data may aid in the development of commercial probiotic refrigerated pickle products. © 2016 Institute of Food Technologists®.

  11. Prevention by lactic acid bacteria of the oxidation of human LDL.

    Science.gov (United States)

    Terahara, M; Kurama, S; Takemoto, N

    2001-08-01

    Ether extracts of lactic acid bacteria were analyzed for prevention of the oxidation of erythrocyte membrane and human low-density lipoprotein in vivo. Streptococcus thermophilus 1131 and Lactobacillus delbrueckii subsp. bulgaricus 2038, yogurt starters, were chosen as test-strains, and ether extracts of these cultures were used as samples. Both strain 1131 and strain 2038 produced radical scavengers and inhibited oxidation of erythrocyte membranes and low-density lipoproteins. The antioxidative activity of strain 2038 was higher than that of strain 1131.

  12. Characteristic of cow milk dadih using starter of probiotic of lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Sri Usmiati

    2011-06-01

    Full Text Available Dadih is an original dairy product from West Sumatera processed traditionally. It is a spontaneous fermentation of buffalo milk at room temperature for 48 hours in a bamboo tube, has no standard of processing and quality. Dadih is potentially to be develop into probiotic products (functional food that can be enjoyed by the public widely. Development of cow's milk dadih is necessary since buffalo milk is available only in certain area. Product and characteristic information of cow milk dadih using probiotic of lactic acid bacteria starter has not been known. The research objective was to determine the characteristics of cow milk dadih that used starter of probiotic lactic acid bacteria during storage at room temperature (27oC and cold temperature (4oC. The study was designed using a factorial randomized block design pattern 12x3 at room temperature and 12X4 at cold temperatures, with the number of repeatation of 3 times. Treatment consisted of: (i starter formula (A using a single bacterium or a combination of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum, and (ii storage time (B. Observed parameters included pH value, titrable acidity, the total plate count, and in-vitro probiotic testing (bacterial resistance to bile salts and low pH of cow milk dadih. The results showed that L. acidophilus early exponential phase was at the hour 3rd, L. casei at the hour 4th and B. longum on the 3rd of which is used as the optimum time of mixing two or more bacteria in the manufacture of cow milk dadih. The volume of starter used was 3% with time fermentation of 48 hours at room temperature (27-30oC. Cow milk dadih that was stored for 7 days at room temperature (27-30oC and for 21 days at cold temperatures (4-10oC was able to maintain viability of bacteria to bile salts and low pH at 1010-1012 cfu/ml with percentage resistance varied. The cow milk dadih using a combination starter of B. longum with other probiotics on the

  13. Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products.

    Science.gov (United States)

    Dewan, Sailendra; Tamang, Jyoti Prakash

    2007-10-01

    Ethnic people of the Himalayan regions of India, Nepal, Bhutan and China consume a variety of indigenous fermented milk products made from cows milk as well as yaks milk. These lesser-known ethnic fermented foods are dahi, mohi, chhurpi, somar, philu and shyow. The population of lactic acid bacteria (LAB) ranged from 10(7) to 10(8) cfu/g in these Himalayan milk products. A total of 128 isolates of LAB were isolated from 58 samples of ethnic fermented milk products collected from different places of India, Nepal and Bhutan. Based on phenotypic characterization including API sugar test, the dominant lactic acid bacteria were identified as Lactobacillus bifermentans, Lactobacillus paracasei subsp. pseudoplantarum, Lactobacillus kefir, Lactobacillus hilgardii, Lactobacillus alimentarius, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris and Enterococcus faecium. LAB produced a wide spectrum of enzymes and showed high galactosidase, leucine-arylamidase and phosphatase activities. They showed antagonistic properties against selected Gram-negative bacteria. None of the strains produced bacteriocin and biogenic amines under the test conditions used. Most strains of LAB coagulated skim milk with a moderate drop in pH. Some strains of LAB showed a high degree of hydrophobicity, suggesting these strains may have useful adhesive potential. This paper is the first report on functional lactic acid bacterial composition in some lesser-known ethnic fermented milk products of the Himalayas.

  14. Isolation and Partial Characterization of Bacteria in an Anaerobic Consortium That Mineralizes 3-Chlorobenzoic Acid

    OpenAIRE

    Shelton, Daniel R.; Tiedje, James M.

    1984-01-01

    A methanogenic consortium able to use 3-chlorobenzoic acid as its sole energy and carbon source was enriched from anaerobic sewage sludge. Seven bacteria were isolated from the consortium in mono- or coculture. They included: one dechlorinating bacterium (strain DCB-1), one benzoate-oxidizing bacterium (strain BZ-2), two butyrate-oxidizing bacteria (strains SF-1 and NSF-2), two H2-consuming methanogens (Methanospirillum hungatei PM-1 and Methanobacterium sp. strain PM-2), and a sulfate-reduci...

  15. Fatty acids and survival of bacteria in Hammam Pharaon springs, Egypt

    Directory of Open Access Journals (Sweden)

    Yehia A. Osman

    2018-06-01

    Full Text Available A great lack of knowledge of Hammam Pharaon's microbial community; the most famous hot spring in Sinai, Egypt, derived this work. Three different hyperthermophilic bacterial were isolated from vents in the area, where the temperature was above 80 °C. Response Surface Methodology algorithm such as Central Composite Design determined the optimum cultivation conditions for these isolates. Accordingly, the best growth conditions were at 70 °C and at neutral to slightly acidic pH values. The constructed phylogenetic tree built using the 16S rRNA gene sequences has shown that the isolated strains (HM101, HM102 and HM103 belong to Geobacillus, Rhodothermus and Thermus bacteria, respectively. The fatty acid profiles, an indicative of thermotolerance, dominated by the short chain Dodecanoic acid (Lauric acid; (12:0, which represented about 40% of the total fatty acid contents for each of the three isolates. The enzymatic capabilities of the three strains were determined and α-amylase was found to be the most prominent one. Our own data had led us to conclude that the length of the fatty acid chain and the degree of saturation could be species specific. Moreover, the biotechnological potentials of these local isolates could contribute to fighting viral diseases and/or improve their amylolytic activities for sugar industry; where thermotolerance is really an important factor.

  16. Conservation of the 2-keto-3-deoxymanno-octulosonic acid (Kdo) biosynthesis pathway between plants and bacteria.

    Science.gov (United States)

    Smyth, Kevin M; Marchant, Alan

    2013-10-18

    The increasing prevalence of multi-drug resistant bacteria is driving efforts in the development of new antibacterial agents. This includes a resurgence of interest in the Gram-negative bacteria lipopolysaccharide (LPS) biosynthesis enzymes as drug targets. The six carbon acidic sugar 2-keto-3-deoxymanno-octulosonic acid (Kdo) is a component of the lipid A moiety of the LPS in Gram-negative bacteria. In most cases the lipid A substituted by Kdo is the minimum requirement for cell growth, thus presenting the possibility of targeting either the synthesis or incorporation of Kdo for the development of antibacterial agents. Indeed, potent in vitro inhibitors of Kdo biosynthesis enzymes have been reported but have so far failed to show sufficient in vivo action against Gram-negative bacteria. As part of an effort to design more potent antibacterial agents targeting Kdo biosynthesis, the crystal structures of the key Kdo biosynthesis enzymes from Escherichia coli have been solved and their structure based mechanisms characterized. In eukaryotes, Kdo is found as a component of the pectic polysaccharide rhamnogalacturonan II in the plant primary cell wall. Interestingly, despite incorporating Kdo into very different macromolecules the Kdo biosynthesis and activation pathway is almost completely conserved between plants and bacteria. This raises the possibility for plant research to exploit the increasingly detailed knowledge and resources being generated by the microbiology community. Likewise, insights into Kdo biosynthesis in plants will be potentially useful in efforts to produce new antimicrobial compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. LACTIC ACID BACTERIA FLORA OF KONYA KUFLU CHEESE: A TRADITIONAL CHEESE FROM KONYA PROVINCE IN TURKEY

    Directory of Open Access Journals (Sweden)

    Ziba Guley

    2014-12-01

    Full Text Available The aim of this study was to characterize the lactic acid bacteria flora of mature Konya Kuflu cheese. Konya Kuflu cheese is a traditional blue cheese which is produced from raw milk without starter culture addition and mould growth occurs in uncontrolled conditions during its ripening. Lactic acid bacteria (LAB isolated from 9 mature Konya Kuflu cheese samples were investigated using a combination of conventional biochemical tests, API test kits, and molecular approaches. For some isolates, different results were obtained according to the identification technique. The overall LAB profile of Konya Kuflu cheese samples revealed that Lactobacillus brevis, Lactobacillus paracasei/Lactobacillus casei, Lactobacillus plantarum, Enterococcus faecium, and Enterococcus faecalis are the predominant species. In addition, 1 Pediococcus parvulus and 1 Enterococcus durans were also identified.

  18. Characterization of non-starter lactic acid bacteria in traditionally produced home-made Radan cheese during ripening

    Directory of Open Access Journals (Sweden)

    Jokovic Natasa

    2011-01-01

    Full Text Available Two hundred thirteen non-starter lactic acid bacteria isolated from Radan cheese during ripening were identified with both a classical biochemical test and rep-PCR with (GTG5 primer. For most isolates, which belong to the Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus paraplantarum and Enterococcus faecium, a phenotypic identification was in good agreement with rep-PCR identification. Lactococeus lactis subsp. lactis, Enterococcus faecium and subspecies from the Lenconostoc mesenteroides group were the dominant population of lactic acid bacteria in cheese until 10 days of ripening and only one Streptococcus thermophilus strain was isolated from the 5-day-old cheese sample. As ripening progressed, Lactobacillus plantarum became the predominant species together with the group of heterofermentative species of lactobacilli that could not be precisely identified with rep-PCR.

  19. Zinc Binding by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Jasna Mrvčić

    2009-01-01

    Full Text Available Zinc is an essential trace element in all organisms. A common method for the prevention of zinc deficiency is pharmacological supplementation, especially in a highly available form of a metalloprotein complex. The potential of different microbes to bind essential and toxic heavy metals has recently been recognized. In this work, biosorption of zinc by lactic acid bacteria (LAB has been investigated. Specific LAB were assessed for their ability to bind zinc from a water solution. Significant amount of zinc ions was bound, and this binding was found to be LAB species-specific. Differences among the species in binding performance at a concentration range between 10–90 mg/L were evaluated with Langmuir model for biosorption. Binding of zinc was a fast process, strongly influenced by ionic strength, pH, biomass concentration, and temperature. The most effective metal-binding LAB species was Leuconostoc mesenteroides (27.10 mg of Zn2+ per gram of dry mass bound at pH=5 and 32 °C, during 24 h. FT-IR spectroscopy analysis and electron microscopy demonstrated that passive adsorption and active uptake of the zinc ions were involved.

  20. Viability of lactic acid bacteria coated as synbiotic during storage and gastro-intestinal simulation

    Science.gov (United States)

    Jamilah, It; Priyani, Nunuk; Lusia Natalia, Santa

    2018-03-01

    Lactic acid bacteria (LAB) has been added to various food products as a probiotic agent because it has been known to provide beneficial health effects in humans. In the application of LAB, cell viability often decreased as influenced by environment stresses. Encapsulation technique is one of the cell protection techniques using a coating material. Effective coating material is required to produce maximum protection of LAB cells. In this study, candidate of probiotic LAB (isolate US7) was encapsulated with alginate-mung bean flour and alginate-gram flour with inulin prebiotic by extrusion technique. Viability of encapsulated LAB cells were able to survive by up to 108CFU g‑1 after 4 weeks of storage at 4 °C. Beads were incubated in simulated liquid gastric acid (pH=2) for 2 hrs and simulated intestinal fluid (pH=6) for 3 hrs at 37 °C. The results showed that encapsulated LAB cells maintained the survival rate of 97% with the number of cells at 9.07 Log CFU g‑1in the simulated liquid gastric acid and then followed by releasing cells in simulated intestinal fluid. In general, this study indicates that encapsulation with alginate-mung bean flour and alginategram flour with inulin successfullyprotect probiotic bacteria against simulated human gastrointestinal conditions.

  1. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications.

    Science.gov (United States)

    Perez, Rodney H; Zendo, Takeshi; Sonomoto, Kenji

    2014-08-29

    Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed.

  2. Key volatile aroma compounds of lactic acid fermented malt based beverages - impact of lactic acid bacteria strains.

    Science.gov (United States)

    Nsogning Dongmo, Sorelle; Sacher, Bertram; Kollmannsberger, Hubert; Becker, Thomas

    2017-08-15

    This study aims to define the aroma composition and key aroma compounds of barley malt wort beverages produced from fermentation using six lactic acid bacteria (LAB) strains. Gas chromatography mass spectrometry-olfactometry and flame ionization detection was employed; key aroma compounds were determined by means of aroma extract dilution analysis. Fifty-six detected volatile compounds were similar among beverages. However, significant differences were observed in the concentration of individual compounds. Key aroma compounds (flavor dilution (FD) factors ≥16) were β-damascenone, furaneol, phenylacetic acid, 2-phenylethanol, 4-vinylguaiacol, sotolon, methional, vanillin, acetic acid, nor-furaneol, guaiacol and ethyl 2-methylbutanoate. Furthermore, acetaldehyde had the greatest odor activity value of up to 4266. Sensory analyses revealed large differences in the flavor profile. Beverage from L. plantarum Lp. 758 showed the highest FD factors in key aroma compounds and was correlated to fruity flavors. Therefore, we suggest that suitable LAB strain selection may improve the flavor of malt based beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Use of X-ray and gamma-induced mutants of lactic acid bacteria in the manufacture of dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Dilanian, Z; Makarian, K; Chuprina, D [Erevan Zootechnical and Veterinary Inst. (USSR). Chair of Dairying

    1976-04-01

    With the aid of X-ray and gamma irradiation were got mutants of lactic acid bacteria, which steadily retain acquired properties. Use of proteolytically active mutant strains in the production of armianski and sovetski cheeses shortened the time of their ripening and increased their quality. Gamma-mutant strain L. lactis 1621/I-M with high phenolstability was received and antibiotic activity with respect to some representatives of pathogenic microflora of the bowels. Use of this mutant in starters for sour milk products will raise their therapeutic effect against intestinal diseases. Deep morphological changes are taking place in lactic acid bacteria under the influence of ionizing radiation.

  4. Use of X-ray and gamma-induced mutants of lactic acid bacteria in the manufacture of dairy products

    International Nuclear Information System (INIS)

    Dilanian, Z.; Makarian, K.; Chuprina, D.

    1976-01-01

    With the aid of X-ray and gamma irradiation were got mutants of lactic acid bacteria, which steadily retain acquired properties. Use of proteolytically active mutant strains in the production of armianski and sovetski cheeses shortened the time of their ripening and increased their quality. Gamma-mutant strain L. lactis 1621/I-M with high phenolstability was received and antibiotic activity with respect to some representatives of pathogenic microflora of the bowels. Use of this mutant in starters for sour milk products will raise their therapeutic effect against intestinal diseases. Deep morphological changes are taking place in lactic acid bacteria under the influence of ionizing radiation. (orig.) [de

  5. Typing some of lactic acid bacteria in Syria using PCR and FT-IR techniques

    International Nuclear Information System (INIS)

    Al-Mariri, A.; Sharabi, N. D.

    2010-01-01

    Lactic Acid Bacteria (LAB) are considered to be the most useful microorganisms. They are beneficial in flavoring foods, inhibiting pathogenic as well as spoilage bacteria in food products. The isolates of LAB were obtained from traditional Syrian dairy products (white cheese and curdled yogurt) obtained from different regions in Syria. The isolates were subjected to phenotypic characterization analyses. The PCR technique of bacterial DNA was evaluated as an advanced tool for the identification of LAB. It was found that strains: E. faecium, E. faecalis and S. thermophilus dominate in white cheese and in yogurt. Our results demonstrated that we could identify LAB using Fourier transform infrared spectroscopy (FT-IR) patterns. (author)

  6. Typing some of lactic acid bacteria in Syria using PCR and FT-IR techniques

    International Nuclear Information System (INIS)

    Al-Mariri, A.; Sharabi, N. D.

    2008-11-01

    Lactic Acid Bacteria (LAB) are considered to be the most useful microorganisms. They are beneficial in flavoring foods, inhibiting pathogenic as well as spoilage bacteria in food products. The isolates of LAB were obtained from traditional Syrian dairy products (white cheese and curdled yogurt) obtained from different regions in Syria. The isolates were subjected to phenotypic characterization analyses. The PCR technique of bacterial DNA was evaluated as an advanced tool for the identification of LAB. It was found that strains: E. faecium, E. faecalis and S. thermophilus dominate in white cheese and in yogurt. Our results demonstrated that we could identify LAB using Fourier transform infrared spectroscopy (FT-IR) patterns. (Authors)

  7. Typing some of lactic acid bacteria in Syria using PCR and FT-IR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mariri, A; Sharabi, N D [Atomic Energy Commission, Damascus (Syrian Arab Republic), Dept. of Molecular Biology and Biotechnology

    2008-11-15

    Lactic Acid Bacteria (LAB) are considered to be the most useful microorganisms. They are beneficial in flavoring foods, inhibiting pathogenic as well as spoilage bacteria in food products. The isolates of LAB were obtained from traditional Syrian dairy products (white cheese and curdled yogurt) obtained from different regions in Syria. The isolates were subjected to phenotypic characterization analyses. The PCR technique of bacterial DNA was evaluated as an advanced tool for the identification of LAB. It was found that strains: E. faecium, E. faecalis and S. thermophilus dominate in white cheese and in yogurt. Our results demonstrated that we could identify LAB using Fourier transform infrared spectroscopy (FT-IR) patterns. (Authors)

  8. Thermotolerance of meat spoilage lactic acid bacteria and their inactivation in vacuum-packaged vienna sausages.

    Science.gov (United States)

    Franz, C M; von Holy, A

    1996-02-01

    Heat resistance of three meat spoilage lactic acid bacteria was determined in vitro. D-values at 57, 60 and 63 degrees C were 52.9, 39.3 and 32.5 s for Lactobacillus sake, 34.9, 31.3 and 20.2 s for Leuconostoc mesenteroides and 22.5, 15.6 and 14.4 s for Lactobacillus curvatus, respectively. The three lactic acid bacteria were heat sensitive, as one log reductions in numbers were achieved at 57 degrees C in less than 60 s. Z-values could not be accurately determined as D-values did not change by a factor of 10 over the temperature range studied. In-package pasteurization processes were calculated using the highest in vitro D-value and applied to vacuum-packaged vienna sausages. Microbiological shelf life (time for lactic acid bacteria count to reach 5 x 10(6) CFU/g) increased from 7 days for non-pasteurized samples to 67, 99 and 119 days for samples of the three pasteurization treatments at 8 degrees C storage. Enterobacteriaceae were detected at levels of log 4.0 CFU/g in non-pasteurized samples, but were reduced to < log 1.0 CFU/g in pasteurized samples. The incidence of listeriae in non-pasteurized samples was low as only one Listeria innocua strain was isolated. No Listeria spp. were isolated from pasteurized samples. Numbers of Clostridium isolates increased from one in non-pasteurized samples to 25 in pasteurized samples. Increasing incidences of clostridia, and the presence of C. perfringens in pasteurized samples indicated that in-package pasteurization could compromise product safety.

  9. Biotechnological and in situ food production of polyols by lactic acid bacteria.

    Science.gov (United States)

    Ortiz, Maria Eugenia; Bleckwedel, Juliana; Raya, Raúl R; Mozzi, Fernanda

    2013-06-01

    Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation.

  10. Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria

    Science.gov (United States)

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

  11. Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches

    NARCIS (Netherlands)

    Vaughan, E.E.; Heilig, G.H.J.; Ben-Amor, K.; Vos, de W.M.

    2005-01-01

    While lactic acid bacteria and bifidobacteria have been scientifically important for over a century, many of these are marketed today as probiotics and have become a valuable and rapidly expanding sector of the food market that is leading functional foods in many countries. The human

  12. Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures

    DEFF Research Database (Denmark)

    Østergaard, Nina Bjerre; Christiansen, Lasse Engbo; Dalgaard, Paw

    2015-01-01

    . 2014. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. International Journal of Food Microbiology. 188, 15-25]. Growth of L. monocytogenes single cells, using lag time distributions corresponding to three different......A stochastic model was developed for simultaneous growth of low numbers of Listeria monocytogenes and populations of lactic acid bacteria from the aroma producing cultures applied in cottage cheese. During more than two years, different batches of cottage cheese with aroma culture were analysed...

  13. Phytase Activity of Lactic Acid Bacteria Isolated from Dairy and Pharmaceutical Probiotic Products

    Directory of Open Access Journals (Sweden)

    Zohreh Khodaii

    2013-01-01

    Full Text Available Phytate, the major storage form of phosphorus in plant seeds, can form insoluble complexes with minerals such as iron, zinc and calcium thus reducing their bioavailability. Phytase enzymes are often used to upgrade the nutritional quality of phytate-rich foods and feeds such as grains. The phytate-degrading activity of 43 lactic acid bacteria including isolates from commercial probiotic preparations, dairy products and type strains were measured. The phytate-degrading activity of bifidobacteria and lactobacillus isolates from pharmaceutical probiotics, dairy products and type strains were determined. The enzyme activity of probotic bacteria ranged between 1.1-5.4 mU and was strain not species specific. Phytase activity may thus be a useful additional attribute of probiotics to be used as food supplements.

  14. Antisera production to detect indoleacetic acid in cultures of plant-growth promoting bacteria

    International Nuclear Information System (INIS)

    Rojas, Marcia M; Hernandez, Annia; Rives, Narovis; Tejera, Berto; Acebo, Yanelis; Heydrich, Mayra

    2012-01-01

    Rabbit polyclonal antisera against indoleacetic acid (IAA) bound to nitrocellulose membrane were obtained, which exhibited a high titer and specificity. The dot immunobinding technique with colloidal gold was used to detect auxin production by several strains belonging to Gluconacetobacter, Herbaspirillum, Azospirillum, Pseudomonas, Burkholderia and Bacillus genera, using culture supernatants as antigens. Moreover, auxin production was quantified by the Salkowski's method to corroborate the previous results. It was found that that all the studied microorganisms produce IAA and the feasibility of using these antisera to detect the metabolite was confirmed. Taking into account the potentialities of plant growth promoting bacteria as biofertilizers, the use of these antisera for a rapid and easy detection of IAA in bacteria associated with important crops is thus recommended.

  15. Current status and emerging role of glutathione in food grade lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Pophaly Sarang

    2012-08-01

    Full Text Available Abstract Lactic acid bacteria (LAB have taken centre stage in perspectives of modern fermented food industry and probiotic based therapeutics. These bacteria encounter various stress conditions during industrial processing or in the gastrointestinal environment. Such conditions are overcome by complex molecular assemblies capable of synthesizing and/or metabolizing molecules that play a specific role in stress adaptation. Thiols are important class of molecules which contribute towards stress management in cell. Glutathione, a low molecular weight thiol antioxidant distributed widely in eukaryotes and Gram negative organisms, is present sporadically in Gram positive bacteria. However, new insights on its occurrence and role in the latter group are coming to light. Some LAB and closely related Gram positive organisms are proposed to possess glutathione synthesis and/or utilization machinery. Also, supplementation of glutathione in food grade LAB is gaining attention for its role in stress protection and as a nutrient and sulfur source. Owing to the immense benefits of glutathione, its release by probiotic bacteria could also find important applications in health improvement. This review presents our current understanding about the status of glutathione and its role as an exogenously added molecule in food grade LAB and closely related organisms.

  16. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages

    Directory of Open Access Journals (Sweden)

    Marie-Pierre eChapot-Chartier

    2014-05-01

    Full Text Available Lactic acid bacteria (LAB are Gram positive bacteria widely used in the production of fermented food in particular cheese and yoghurts. Bacteriophage infections during fermentation processes have been for many years a major industrial concern and have stimulated numerous research efforts. Better understanding of the molecular mechanisms of bacteriophage interactions with their host bacteria is required for the development of efficient strategies to fight against infections. The bacterial cell wall plays key roles in these interactions. First, bacteriophages must adsorb at the bacterial surface through specific interactions with receptors that are cell wall components. At next step, phages must overcome the barrier constituted by cell wall peptidoglycan to inject DNA inside bacterial cell. Also at the end of the infection cycle, phages synthesize endolysins able to hydrolyze peptidoglycan and lyse bacterial cells to release phage progeny. In the last decade, concomitant development of genomics and structural analysis of cell wall components allowed considerable advances in the knowledge of their structure and function in several model LAB. Here, we describe the present knowledge on the structure of the cell wall glycopolymers of the best characterized LAB emphasizing their structural variations and we present the available data regarding their role in bacteria-phage specific interactions at the different steps of the infection cycle.

  17. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    Science.gov (United States)

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions.

  18. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    Full Text Available A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia. The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c kg(-1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis. The isolated strains were capable of producing indoleacetic acid (IAA and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65% existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.

  19. Scarce Evidence of Yogurt Lactic Acid Bacteria in Human Feces after Daily Yogurt Consumption by Healthy Volunteers

    OpenAIRE

    del Campo, Rosa; Bravo, Daniel; Cantón, Rafael; Ruiz-Garbajosa, Patricia; García-Albiach, Raimundo; Montesi-Libois, Alejandra; Yuste, Francisco-Javier; Abraira, Victor; Baquero, Fernando

    2005-01-01

    In a double-blind prospective study including 114 healthy young volunteers, the presence in human feces of the yogurt organisms Lactobacillus delbrueckii and Streptococcus thermophilus after repeated yogurt consumption (15 days) was analyzed by culture, specific PCR, and DNA hybridization of total fecal DNA. Detection of yogurt lactic acid bacteria in total fecal DNA by bacterial culture and PCR assay was consistently negative. DNA compatible with yogurt bacteria was found by hybridization ex...

  20. [Identification of new conserved and variable regions in the 16S rRNA gene of acetic acid bacteria and acetobacteraceae family].

    Science.gov (United States)

    Chakravorty, S; Sarkar, S; Gachhui, R

    2015-01-01

    The Acetobacteraceae family of the class Alpha Proteobacteria is comprised of high sugar and acid tolerant bacteria. The Acetic Acid Bacteria are the economically most significant group of this family because of its association with food products like vinegar, wine etc. Acetobacteraceae are often hard to culture in laboratory conditions and they also maintain very low abundances in their natural habitats. Thus identification of the organisms in such environments is greatly dependent on modern tools of molecular biology which require a thorough knowledge of specific conserved gene sequences that may act as primers and or probes. Moreover unconserved domains in genes also become markers for differentiating closely related genera. In bacteria, the 16S rRNA gene is an ideal candidate for such conserved and variable domains. In order to study the conserved and variable domains of the 16S rRNA gene of Acetic Acid Bacteria and the Acetobacteraceae family, sequences from publicly available databases were aligned and compared. Near complete sequences of the gene were also obtained from Kombucha tea biofilm, a known Acetobacteraceae family habitat, in order to corroborate the domains obtained from the alignment studies. The study indicated that the degree of conservation in the gene is significantly higher among the Acetic Acid Bacteria than the whole Acetobacteraceae family. Moreover it was also observed that the previously described hypervariable regions V1, V3, V5, V6 and V7 were more or less conserved in the family and the spans of the variable regions are quite distinct as well.

  1. Fermentation of Prefermented and Extruded Rice Flour by Lactic Acid Bacteria from Sikhae

    DEFF Research Database (Denmark)

    Lee, C. H.; Min, K. C.; Souane, M.

    1992-01-01

    of prefermentation of rice flour in solid-state with Bacillus laevolacticus and Saccharomyces cerevisiae, extrusion cooking and addition of soymilk as the substrate of lactic acid fermentation were tested. Extrusion cooking and prefermentation of rice increased the soluble solid and sugar contents before malt......The acid- and flavor-forming properties of Lactobacillus plantarum and Leuconostoc mesenteroides isolated from Sikhae, a Korean traditional lactic acid fermented fish product, were examined and compared to those of Lactobacillus casei and Lactococcus lactis subsp. diacetylactis DRC3. The effects...... digestion. The amount of sugar consumption during lactic fermentation varied with the type of bacteria. Leuconostoc mesenteroides(sikhae) and Lactobacillus plantarum(sikhae) increased up to 6 times of original cell number by 24 hrs of fermentation in rice + soymilk substrate, but Lactococcus lactis...

  2. Isolation of Lactic Acid Bacteria with High Biological Activity from Local Fermented Dairy Products

    OpenAIRE

    B. Munkhtsetseg; M. Margad-Erdene; B. Batjargal

    2009-01-01

    The thirty-two strains of lactic acid bacteria were isolated from the Mongolian traditional fermented dairy products, among them 25 strains show antimicrobial activity against test microorganisms including Escherichia coli , Staphylococcus aureus , Enterococcus faecalis , Pseudom о nas aeruginosa . Protease sensitivity assay demonstrated that the antimicrobial substances produced by isolates А 23, Т 2 are bacterio...

  3. Use of the alr gene as a food-grade selection marker in lactic acid bacteria

    NARCIS (Netherlands)

    Bron, P.A.; Benchimol, M.G.; Lambert, J.; Palumbo, E.; Deghorain, M.; Delcour, J.; Vos, de W.M.; Kleerebezem, M.; Hols, P.

    2002-01-01

    Both Lactococcus lactis and Lactobacillus plantarum contain a single alr gene, encoding an alanine racemase (EC 5.1.1.1), which catalyzes the interconversion of D-alanine and L-alanine. The alr genes of these lactic acid bacteria were investigated for their application as food-grade selection

  4. Biodiversity of lactic acid bacteria in Moroccan soft white cheese (Jben).

    Science.gov (United States)

    Ouadghiri, Mouna; Amar, Mohamed; Vancanneyt, Marc; Swings, Jean

    2005-10-15

    The bacterial diversity occurring in traditional Moroccan soft white cheese, produced in eight different regions in Morocco, was studied. A total of 164 lactic acid bacteria were isolated, purified and identified by whole-cell protein fingerprinting and rep-PCR genomic fingerprinting. The majority of the strains belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Enterococcus. Sixteen species were identified: Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus brevis, Lactobacillus buchneri, Lactococcus lactis, Lactococcus garvieae, Lactococcus raffinolactis, Leuconostoc pseudomesenteroides, Leuconostoc mesenteroides, Leuconostoc citreum, Eterococcus durans, Enterococcus faecalis, Enterococcus faecium, Enterococcus saccharominimus and Streptococcus sp.

  5. Lactic-acid bacteria increase the survival of marine shrimp, Litopenaeus vannamei, after infection with Vibrio harveyi

    OpenAIRE

    Vieira, Felipe do Nascimento; Pedrotti, Fabiola Santiago; Buglione Neto, Celso Carlos; Mouriño, José Luiz Pedreira; Beltrame, Elpídio; Martins, Maurício Laterça; Ramirez, Cristina; Arana, Luis Alejandro Vinatea

    2007-01-01

    This study evaluated the survival, post-larvae quality, and the population of bacteria in Litopenaeus vannamei after the addition of two strains of lactic-acid bacteria (2 and B6) experimentally infected by Vibrio harveyi. Fifteen hundred nauplii were distributed in 20 L capacity tanks with four replicates. The survival of control animals was lower (21%) than that of animals fed with the strains B6 (50%) and 2 (44%). Total bacterial population in the water and larvae, as well as of the Vibrio...

  6. The Occurrence of Beer Spoilage Lactic Acid Bacteria in Craft Beer Production.

    Science.gov (United States)

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Aquilanti, Lucia; Clementi, Francesca

    2015-12-01

    Beer is one of the world's most ancient and widely consumed fermented alcoholic beverages produced with water, malted cereal grains (generally barley and wheat), hops, and yeast. Beer is considered an unfavorable substrate of growth for many microorganisms, however, there are a limited number of bacteria and yeasts, which are capable of growth and may spoil beer especially if it is not pasteurized or sterile-filtered as craft beer. The aim of this research study was to track beer spoilage lactic acid bacteria (LAB) inside a brewery and during the craft beer production process. To that end, indoor air and work surface samples, collected in the brewery under study, together with commercial active dry yeasts, exhausted yeasts, yeast pellet (obtained after mature beer centrifugation), and spoiled beers were analyzed through culture-dependent methods and PCR-DGGE in order to identify the contaminant LAB species and the source of contamination. Lactobacillus brevis was detected in a spoiled beer and in a commercial active dry yeast. Other LAB species and bacteria ascribed to Staphylococcus sp., Enterobaceriaceae, and Acetobacter sp. were found in the brewery. In conclusion, the PCR-DGGE technique coupled with the culture-dependent method was found to be a useful tool for identifying the beer spoilage bacteria and the source of contamination. The analyses carried out on raw materials, by-products, final products, and the brewery were useful for implementing a sanitization plan to be adopted in the production plant. © 2015 Institute of Food Technologists®

  7. [Lactic acid bacteria proteinase and quality of fermented dairy products--A review].

    Science.gov (United States)

    Zhang, Shuang; Zhang, Lanwei; Han, Xue

    2015-12-04

    Lactic acid bacteria (LAB) could synthesize cell envelope proteinase with weak activity, which primarily degrades casein. In addition to its crucial role in the rapid growth of LAB in milk, LAB proteinases are also of industrial importance due to their contribution to the formation of texture and flavor of many fermented dairy products. The proteolytic system, properties of proteinase, the degradation product of casein and its effect on the quality of fermented dairy products were reviewed in this manuscript.

  8. Comparative Characterization Of Endemic Lactic Acid Bacteria Of Enterococcus Genus

    Directory of Open Access Journals (Sweden)

    Kristina Karapetyan

    2017-07-01

    Full Text Available The diversity of multidrug-resistance MDR of pathogenic strains to antibiotics most widely used for treatment of human diseases in the Republics of Armenia and Nagorno Karabakh were examined. It was shown that difference of resistance of pathogens to antibiotics depends on their isolation sources. It was shown that bacteriocin containing partially purified preparations obtained from different strains of Enterococcus faecium and durans species isolated from various samples of matsun salted cheese and other acid milk products from milk of different domestic animals from rural households inhibited the growth of multidrug-resistant bacteria belonging to different taxonomic groups with different efficiency.

  9. Acid tolerance response and survival by oral bacteria.

    Science.gov (United States)

    Svensäter, G; Larsson, U B; Greif, E C; Cvitkovitch, D G; Hamilton, I R

    1997-10-01

    Using 21 species of oral bacteria, representing six acidogenic genera, we undertook to determine whether the pH-limiting exponential growth is related to the ability of the organisms to generate an acid-tolerance response that results in enhanced survival at low pH. The lower pH limit of exponential growth varied by more than two units with that of Neisseria A182 at pH 6.34; growth of Lactobacillus casei RB1014 stopped at pH 3.81, with species of Actinomyces, Enterococcus, Prevotella and Streptococcus falling between these limits. The working hypothesis was that the organisms with the higher pH limits for growth are unable to respond to acidic environments in order to survive, whereas the more aciduric organisms would possess or acquire acid tolerance. Adaptation to acid tolerance was tested by determining whether the prior exposure of exponential-phase cells to a low, sub-lethal pH would trigger the induction of a mechanism that would enhance survival at a pH killing pH 7.5 control cells. The killing pH varied from pH 4.5 for Prevotella intermedia ATCC 25611 to pH 2.3 for the three Lactobacillus casei strains in the study, with the three Streptococcus mutans strains killed at pH 3.0 for 3 h. The adaptation experiments revealed three groups of organisms: non-acid-responders, generally representing strains with the highest terminal pH values; weak acid-responders in the middle of the pH list, generating low numbers of survivors at one or two pH values, and the aciduric, strong responders generating a high number of survivors at pH values in the range 6.0 to 3.5, but not at pH 7.5. Predominant among the latter group were the S. mutans and Lactobacilli casei strains, with the most significant adaptive response exhibited by S. mutans LT11 and S. mutans Ingbritt, involving a process that required protein synthesis. Time course experiments with the latter organisms indicated that 90-120 min was required after exposure to the triggering pH before the acid response was

  10. Solid state fermentation with lactic acid bacteria to improve the nutritional quality of lupin and soya bean.

    Science.gov (United States)

    Bartkiene, Elena; Krungleviciute, Vita; Juodeikiene, Grazina; Vidmantiene, Daiva; Maknickiene, Zita

    2015-04-01

    The ability of bacteriocin-like inhibitory substance (BLIS)-producing lactic acid bacteria (LAB) to degrade biogenic amines as well as to produce L(+) and D(-)-lactic acid during solid state fermentation (SSF) of lupin and soya bean was investigated. In addition, the protein digestibility and formation of organic acids during SSF of legume were investigated. Protein digestibility of fermented lupin and soya bean was found higher on average by 18.3% and 15.9%, respectively, compared to untreated samples. Tested LAB produced mainly L-lactic acid in soya bean and lupin (D/L ratio 0.38-0.42 and 0.35-0.54, respectively), while spontaneous fermentation gave almost equal amounts of both lactic acid isomers (D/L ratio 0.82-0.98 and 0.92, respectively). Tested LAB strains were able to degrade phenylethylamine, spermine and spermidine, whereas they were able to produce putrescine, histamine and tyramine. SSF improved lupin and soya bean protein digestibility. BLIS-producing LAB in lupin and soya bean medium produced a mixture of D- and L-lactic acid with a major excess of the latter isomer. Most toxic histamine and tyramine in fermented lupin and soya bean were found at levels lower those causing adverse health effects. Selection of biogenic amines non-producing bacteria is essential in the food industry to avoid the risk of amine formation. © 2014 Society of Chemical Industry.

  11. The Cellulolytic Activity And Volatile Fatty Acid Product Of Rumen Bacteria Of Buffalo And Cattle On Rice Straw, Elephant Grass, and Sesbania Leaves Substrates

    Directory of Open Access Journals (Sweden)

    Caribu Hadi Prayitno

    1999-01-01

    Full Text Available Experiment on The Cellulolytic Activity and Volatile Fatty Acid Product of Rumen Bacteria of Buffalo and Cattle on Rice Straw, Elephant Grass, and Sesbania Leaves Substrates had been conducted at Feedstuff Laboratory of Animal Science Soedirman University. The basic design  that was used in this experiment was Completely Randomized Design (CRD with factorial pattern of 6 x 3, three replications. The bacteria isolate as the factors were cellulolytic rumen bacteria isolate of buffalo (A1, A2, and A3 and cattle (A4, A5 and A6 while the substrates (second factor  were NDF rice straw (S1, elephant grass (S2, and sesbania leaves (S3 Cell walls. The result of this experiment showed that the interaction between bacteria isolate and substrate  type were significant on pH, NDF digestibility, cellulase activity, pH was  6.28 until 6.43.  The NDF digestibility range was 12.27 until 55.61 percent. The lowers of cellulase activity was 5.11 IU/ml and the higher was 24.47 IU/ml. The range of acetic acid yield was 63.37 to 307.467 mg/100 ml. Range of  propionic production was 15.17 to 352.20 mg/ 100 ml. The production of butiric acid was 8.77 to 40.87 mg/ 100 ml. The cellulase activity  of cellulolytic rumen bacteria of buffalo was higher than cattle, and also their effect on NDF digestibility of rice straw, elephant grass, and sesbania leaves cell walls. The A3 of cellulolytic rumen bacteria isolate of  buffalo changed cell walls substrat to volatile fatty  acid was more effective than cattle, especially on cell elephant grass. Propionic and butiric  acid that was produced by cellulolytic rumen bacteria isolate of buffalo more higher than cattle (Animal Production 1 (1 : 1-9 (1999 Key Words: Cellulolytic, VFA, Rumen Bacteria, Buffalo, Cattle.

  12. Capillary isoelectric focusing-useful tool for detection and quantification of lactic acid bacteria in milk

    Czech Academy of Sciences Publication Activity Database

    Růžička, F.; Horká, Marie; Holá, V.; Mlynariková, K.; Dráb, V.

    2016-01-01

    Roč. 9, č. 12 (2016), s. 3251-3257 ISSN 1936-9751 R&D Projects: GA MZd(CZ) NV16-29916A Institutional support: RVO:68081715 Keywords : capillary isoelectric focusing * enterococcus * isoelectric point * lactic acid bacteria Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.038, year: 2016

  13. Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity

    DEFF Research Database (Denmark)

    Erbs, Gitte; Silipo, Alba; Aslam, Shazia

    2008-01-01

    Peptidoglycan (PGN) is a unique and essential structural part of the bacterial cell wall. PGNs from two contrasting Gram-negative plant pathogenic bacteria elicited components characteristic of the innate immune system in Arabidopsis thaliana, such as transcription of the defense gene PR1, oxidat...

  14. Growth of indigenous lactic acid bacteria Lactobacillus plantarum-pentosus T14 and Lactobacillus plantarum-pentosus T35 in kerandang (Canavalia virosa milk and changes of raffinose

    Directory of Open Access Journals (Sweden)

    Rahayu, E. S.

    2013-01-01

    Full Text Available Aims: Kerandang (Canavalia virosa beans are good source of protein, yet predominantly kerandang foods are not widely accepted mainly because of their beany flavour the belief that they cause flatulence. The objectives of this research were to evaluate of viability of lactic acid bacteria from Indonesia indigenous fermented food in kerandang milk and its ability to metabolize indigestible oligossacharide raffinose.Methodology and results: Two strains of Indonesia indigenous lactic acid bacteria (LAB, namely Lactobacillus plantarum-pentosus T14 and Lactobacillus plantarum-pentosus T35 were used for fermentation of kerandang milk. The results showed that all strains of lactic acid bacteria possess the ability to grow and produce of lactic acid in kerandang milk, indicated that total acid (TA increase, pH decrease and their counts of LAB increase during fermentation period (0-24 h. The two strains of lactic acid bacteria were also able to metabolize raffinose into simple sugar (sucrose, glucose, fructose and galactose during fermentation at 37 °C, however the raffinose transformation by L. plantarum-pentosus T14 more ability than L. plantarum-pentosus T35. The metabolism of raffinose during fermentation by L. plantarum-pentosus T14 and L. plantarum-pentosus T35 were 98.23% and 48.98%, respectively.Conclusion, significance and impact of study: Kerandang milk fermented by lactic acid bacteria can decrease of saccharide raffinose cause of flatulence. Thus, lactic fermented of kerandang milk be safer for consumption.

  15. Catabolism of lysine by mixed rumen bacteria

    International Nuclear Information System (INIS)

    Onodera, Ryoji; Kandatsu, Makoto.

    1975-01-01

    Metabolites arising from the catabolism of lysine by the mixed rumen bacteria were chromatographically examined by using radioactive lysine. After 6 hr incubation, 241 nmole/ml of lysine was decomposed to give ether-soluble substances and CO 2 by the bacteria and 90 nmole/ml of lysine was incorporated unchanged into the bacteria. delta-Aminovalerate, cadaverine or pipecolate did not seem to be produced from lysine even after incubation of the bacteria with addition of those three amino compounds to trap besides lysine and radioactive lysine. Most of the ether-soluble substances produced from radioactive lysine was volatile fatty acids (VFAs). Fractionation of VFAs revealed that the peaks of butyric and acetic acids coincided with the strong radioactive peaks. Small amounts of radioactivities were detected in propionic acid peak and a peak assumed to be caproic acid. The rumen bacteria appeared to decompose much larger amounts of lysine than the rumen ciliate protozoa did. (auth.)

  16. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.

    Science.gov (United States)

    Johanningsmeier, Suzanne D; Franco, Wendy; Perez-Diaz, Ilenys; McFeeters, Roger F

    2012-07-01

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial instability. Objectives of this study were to determine the combined effects of NaCl and pH on fermented cucumber spoilage and to determine the ability of lactic acid bacteria (LAB) spoilage isolates to initiate lactic acid degradation in fermented cucumbers. Cucumbers fermented with 0%, 2%, 4%, and 6% NaCl were blended into slurries (FCS) and adjusted to pH 3.2, 3.8, 4.3, and 5.0 prior to centrifugation, sterile-filtration, and inoculation with spoilage organisms. Organic acids and pH were measured initially and after 3 wk, 2, 6, 12, and 18 mo anaerobic incubation at 25 °C. Anaerobic lactic acid degradation occurred in FCS at pH 3.8, 4.3, and 5.0 regardless of NaCl concentration. At pH 3.2, reduced NaCl concentrations resulted in increased susceptibility to spoilage, indicating that the pH limit for lactic acid utilization in reduced NaCl fermented cucumbers is 3.2 or lower. Over 18 mo incubation, only cucumbers fermented with 6% NaCl to pH 3.2 prevented anaerobic lactic acid degradation by spoilage bacteria. Among several LAB species isolated from fermented cucumber spoilage, Lactobacillus buchneri was unique in its ability to metabolize lactic acid in FCS with concurrent increases in acetic acid and 1,2-propanediol. Therefore, L. buchneri may be one of multiple organisms that contribute to development of fermented cucumber spoilage. Microbial spoilage of fermented cucumbers during bulk storage causes economic losses for producers. Current knowledge is insufficient to predict or control these losses. This study demonstrated that in the absence of oxygen, cucumbers fermented with 6% sodium chloride to pH 3.2 were not subject to spoilage. However, lactic acid was degraded

  17. Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses.

    Science.gov (United States)

    Franciosi, Elena; Carafa, Ilaria; Nardin, Tiziana; Schiavon, Silvia; Poznanski, Elisa; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M

    2015-01-01

    "Nostrano-cheeses" are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of "Nostrano-cheeses" and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus.

  18. Improving farm management by modeling the contamination of farm tank milk with butyric acid bacteria

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, te M.C.; Jong, de P.; Lankveld, J.M.G.

    2006-01-01

    Control of contamination of farm tank milk (FTM) with the spore-forming butyric acid bacteria (BAB) is important to prevent the late-blowing defect in semi-hard cheeses. The risk of late blowing can be decreased via control of the contamination level of FTM with BAB. A modeling approach was applied

  19. Effect of methionine and lactic acid bacteria as aflatoxin binder on broiler performance

    Science.gov (United States)

    Istiqomah, Lusty; Damayanti, Ema; Julendra, Hardi; Suryani, Ade Erma; Sakti, Awistaros Angger; Anggraeni, Ayu Septi

    2017-06-01

    The use of aflatoxin binder product based amino acids, lacic acid bacteria, and natural product gived the opportunity to be an alternative biological decontamination of aflatoxins. A study was conducted to determine the efficacy of aflatoxin binder administration (amino acid methionine and lactic acid bacteria (Lactobacillus plantarum G7)) as feed additive on broiler performance. In this study, 75 Lohmann unsexed day old chicks were distributed randomly into 5 units of cages, each filled with 15 broilers. Five cages were assigned into 5 treatments groups and fed with feed contained aflatoxin. The treatments as follow: P1 (aflatoxin feed without aflatoxin binder), P3 (aflatoxin feed + 0.8% of methionine + 1% of LAB), P4 (aflatoxin feed + 1.2% of methionine + 1% of LAB), P5 (aflatoxin feed + 1% of LAB), and K0 (commercial feed). The measurement of aflatoxin content in feed was performed by Enzyme Linked Immunosorbent Assay method using AgraQuant® Total Aflatoxin Assay Romer Labs procedure. The experimental period was 35 days with feeding and drinking ad libitum. LAB was administered into drinking water, while methionine into feed. Vaccination program of Newcastle Disease (ND) was using active vaccine at 4 and 18 day old, while Infectious Bursal Disease (IBD) was given at 8 day old. Parameter of body weight was observed weekly, while feed consumption noted daily. The result showed that aflatoxin in feed for 35 days period did not significantly affect the body weight gain and feed conversion. The lowest percentage of organ damage at 21 day old was found in P5 treatment (55%), while at 35day old was found in P4 treatment (64%). It could be concluded that technological process of detoxifying aflatoxin could be applied in an attempt to reduce the effect on the toxicity of aflatoxin in poultry feed.

  20. Carrot Juice Fermentations as Man-Made Microbial Ecosystems Dominated by Lactic Acid Bacteria.

    Science.gov (United States)

    Wuyts, Sander; Van Beeck, Wannes; Oerlemans, Eline F M; Wittouck, Stijn; Claes, Ingmar J J; De Boeck, Ilke; Weckx, Stefan; Lievens, Bart; De Vuyst, Luc; Lebeer, Sarah

    2018-06-15

    Spontaneous vegetable fermentations, with their rich flavors and postulated health benefits, are regaining popularity. However, their microbiology is still poorly understood, therefore raising concerns about food safety. In addition, such spontaneous fermentations form interesting cases of man-made microbial ecosystems. Here, samples from 38 carrot juice fermentations were collected through a citizen science initiative, in addition to three laboratory fermentations. Culturing showed that Enterobacteriaceae were outcompeted by lactic acid bacteria (LAB) between 3 and 13 days of fermentation. Metabolite-target analysis showed that lactic acid and mannitol were highly produced, as well as the biogenic amine cadaverine. High-throughput 16S rRNA gene sequencing revealed that mainly species of Leuconostoc and Lactobacillus (as identified by 8 and 20 amplicon sequence variants [ASVs], respectively) mediated the fermentations in subsequent order. The analyses at the DNA level still detected a high number of Enterobacteriaceae , but their relative abundance was low when RNA-based sequencing was performed to detect presumptive metabolically active bacterial cells. In addition, this method greatly reduced host read contamination. Phylogenetic placement indicated a high LAB diversity, with ASVs from nine different phylogenetic groups of the Lactobacillus genus complex. However, fermentation experiments with isolates showed that only strains belonging to the most prevalent phylogenetic groups preserved the fermentation dynamics. The carrot juice fermentation thus forms a robust man-made microbial ecosystem suitable for studies on LAB diversity and niche specificity. IMPORTANCE The usage of fermented food products by professional chefs is steadily growing worldwide. Meanwhile, this interest has also increased at the household level. However, many of these artisanal food products remain understudied. Here, an extensive microbial analysis was performed of spontaneous fermented

  1. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria.

    Science.gov (United States)

    Rizzello, Carlo Giuseppe; Lorusso, Anna; Russo, Vito; Pinto, Daniela; Marzani, Barbara; Gobbetti, Marco

    2017-01-16

    Lactic acid bacteria strains, previously isolated from the same matrix, were used to ferment quinoa flour aiming at exploiting the antioxidant potential. As in vitro determined on DPPH and ABTS radicals, the scavenging activity of water/salt-soluble extracts (WSE) from fermented doughs was significantly (Pquinoa dough fermented with Lactobacillus plantarum T0A10. The corresponding WSE was subjected to Reverse Phase Fast Protein Liquid Chromatography, and 32 fractions were collected and subjected to in vitro assays. The most active fraction was resistant to further hydrolysis by digestive enzymes. Five peptides, having sizes from 5 to 9 amino acid residues, were identified by nano-Liquid Chromatography-Electrospray Ionisation-Mass Spectra/Mass Spectra. The sequences shared compositional features which are typical of antioxidant peptides. As shown by determining cell viability and radical scavenging activity (MTT and DCFH-DA assays, respectively), the purified fraction showed antioxidant activity on human keratinocytes NCTC 2544 artificially subjected to oxidative stress. This study demonstrated the capacity of autochthonous lactic acid bacteria to release peptides with antioxidant activity through proteolysis of native quinoa proteins. Fermentation of the quinoa flour with a selected starter might be considered suitable for novel applications as functional food ingredient, dietary supplement or pharmaceutical preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Characterization of airag collected in Ulaanbaatar, Mongolia with emphasis on isolated lactic acid bacteria

    OpenAIRE

    Suk-Ho Choi

    2016-01-01

    Abstract Background Airag, alcoholic sour-tasting beverage, has been traditionally prepared by Mongolian nomads who naturally ferment fresh mares’ milk. Biochemical and microbiological compositions of airag samples collected in Ulaanbaatar, Mongolia and physiological characteristics of isolated lactic acid bacteria were investigated. Methods Protein composition and biochemical composition were determined using sodium dodecyl sulfate-gel electrophoresis and high performance liquid chromatograp...

  3. Interactions between the microbiota and pathogenic bacteria in the gut

    OpenAIRE

    Bäumler, Andreas J.; Sperandio, Vanessa

    2016-01-01

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, thes...

  4. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria.

    Science.gov (United States)

    Sun, Mengjun; Zhou, Zichao; Dong, Jiachen; Zhang, Jichun; Xia, Yiru; Shu, Rong

    2016-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two major omega-3 polyunsaturated fatty acids (n-3 PUFAs) with antimicrobial properties. In this study, we evaluated the potential antibacterial and antibiofilm activities of DHA and EPA against two periodontal pathogens, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). MTT assay showed that DHA and EPA still exhibited no cytotoxicity to human oral tissue cells when the concentration came to 100 μM and 200 μM, respectively. Against P. gingivalis, DHA and EPA showed the same minimum inhibitory concentration (MIC) of 12.5 μM, and a respective minimum bactericidal concentration (MBC) of 12.5 μM and 25 μM. However, the MIC and MBC values of DHA or EPA against F. nucleatum were both greater than 100 μM. For early-stage bacteria, DHA or EPA displayed complete inhibition on the planktonic growth and biofilm formation of P. gingivalis from the lowest concentration of 12.5 μM. And the planktonic growth of F. nucleatum was slightly but not completely inhibited by DHA or EPA even at the concentration of 100 μM, however, the biofilm formation of F. nucleatum at 24 h was significantly restrained by 100 μM EPA. For exponential-phase bacteria, 100 μM DHA or EPA completely killed P. gingivalis and significantly decreased the viable counts of F. nucleatum. Meanwhile, the morphology of P. gingivalis was apparently damaged, and the virulence factor gene expression of P. gingivalis and F. nucleatum was strongly downregulated. Besides, the viability and the thickness of mature P. gingivalis biofilm, together with the viability of mature F. nucleatum biofilm were both significantly decreased in the presence of 100 μM DHA or EPA. In conclusion, DHA and EPA possessed antibacterial activities against planktonic and biofilm forms of periodontal pathogens, which suggested that DHA and EPA might be potentially supplementary therapeutic agents for prevention

  5. Influence of different yeast/lactic acid bacteria combinations on the aromatic profile of red Bordeaux wine.

    Science.gov (United States)

    Gammacurta, Marine; Marchand, Stéphanie; Moine, Virginie; de Revel, Gilles

    2017-09-01

    The typical fruity aroma of red Bordeaux wines depends on the grape variety but also on microbiological processes, such as alcoholic and malolactic fermentations. These transformations involve respectively the yeast Saccharomyces cerevisiae and the lactic acid bacterium Oenococcus oeni. Both species play a central role in red winemaking but their quantitative and qualitative contribution to the revelation of the organoleptic qualities of wine has not yet been fully described. The aim of this study was to elucidate the influence of sequential inoculation of different yeast and bacteria strains on the aromatic profile of red Bordeaux wine. All microorganisms completed fermentations and no significant difference was observed between tanks regarding the main oenological parameters until 3 months' aging. Regardless of the yeast strain, B28 bacteria required the shortest period to completely degrade the malic acid, compared to the other strain. Quantification of 73 major components highlighted a specific volatile profile corresponding to each microorganism combination. However, the yeast strain appeared to have a predominant effect on aromatic compound levels, as well as on fruity aroma perception. Yeasts had a greater impact on wine quality and have more influence on the aromatic style of red wine than bacteria. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Pathogenic mechanisms of intracellular bacteria.

    Science.gov (United States)

    Niller, Hans Helmut; Masa, Roland; Venkei, Annamária; Mészáros, Sándor; Minarovits, Janos

    2017-06-01

    We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.

  7. Bacteriocins from lactic acid bacteria: production, purification, and food applications.

    Science.gov (United States)

    De Vuyst, Luc; Leroy, Frédéric

    2007-01-01

    In fermented foods, lactic acid bacteria (LAB) display numerous antimicrobial activities. This is mainly due to the production of organic acids, but also of other compounds, such as bacteriocins and antifungal peptides. Several bacteriocins with industrial potential have been purified and characterized. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail through mathematical modeling and positive predictive microbiology. Application of bacteriocin-producing starter cultures in sourdough (to increase competitiveness), in fermented sausage (anti-listerial effect), and in cheese (anti-listerial and anti-clostridial effects), have been studied during in vitro laboratory fermentations as well as on pilot-scale level. The highly promising results of these studies underline the important role that functional, bacteriocinogenic LAB strains may play in the food industry as starter cultures, co-cultures, or bioprotective cultures, to improve food quality and safety. In addition, antimicrobial production by probiotic LAB might play a role during in vivo interactions occurring in the human gastrointestinal tract, hence contributing to gut health.

  8. Genomics of lactic acid bacteria: Current status and potential applications.

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2017-08-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of foods and feed raw materials where they contribute to flavor and texture of the fermented products. In addition, specific LAB strains are considered as probiotic due to their health-promoting effects in consumers. Recently, the genome sequencing of LAB is booming and the increased amount of published genomics data brings unprecedented opportunity for us to reveal the important traits of LAB. This review describes the recent progress on LAB genomics and special emphasis is placed on understanding the industry-related physiological features based on genomics analysis. Moreover, strategies to engineer metabolic capacity and stress tolerance of LAB with improved industrial performance are also discussed.

  9. Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid.

    OpenAIRE

    Mohn, W W

    1995-01-01

    Eleven isolates capable of growth on the resin acid dehydroabietic acid (DhA) were obtained from a sequencing batch reactor designed to treat a high-strength process stream from a paper mill. The isolates belonged to two groups, represented by strains DhA-33 and DhA-35, which were characterized. In the bioreactor, bacteria like DhA-35 were more abundant than those like DhA-33. The population in the bioreactor of organisms capable of growth on DhA was estimated to be 1.1 x 10(6) propagules per...

  10. Physicochemical Characteristic of Fermented Goat Milk Added with Different Starters Lactic Acid Bacteria

    OpenAIRE

    Anif Mukaromah Wati; Mei Jen Lin; Lilik Eka Radiati

    2018-01-01

    Development of traditional food including dadih to be commercial fermented milk was needed to achieve efficiency and effective of products. Dadih with natural starter needs to be changed with starters because starters can be produced commercially. This study aims to evaluate physicochemical characteristic of fermented goat milk that added with different starters Lactic Acid Bacteria (LAB) isolated from dadih. The materials used for this research were starters LAB that isolated from dadih. In ...

  11. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives.

    Science.gov (United States)

    Rokop, Z P; Horton, M A; Newton, I L G

    2015-10-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific "core" members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of "noncore" and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Modeling Bacteria Surface Acid-Base Properties: The Overprint Of Biology

    Science.gov (United States)

    Amores, D. R.; Smith, S.; Warren, L. A.

    2009-05-01

    Bacteria are ubiquitous in the environment and are important repositories for metals as well as nucleation templates for a myriad of secondary minerals due to an abundance of reactive surface binding sites. Model elucidation of whole cell surface reactivity simplifies bacteria as viable but static, i.e., no metabolic activity, to enable fits of microbial data sets from models derived from mineral surfaces. Here we investigate the surface proton charging behavior of live and dead whole cell cyanobacteria (Synechococcus sp.) harvested from a single parent culture by acid-base titration using a Fully Optimized ContinUouS (FOCUS) pKa spectrum method. Viability of live cells was verified by successful recultivation post experimentation, whereas dead cells were consistently non-recultivable. Surface site identities derived from binding constants determined for both the live and dead cells are consistent with molecular analogs for organic functional groups known to occur on microbial surfaces: carboxylic (pKa = 2.87-3.11), phosphoryl (pKa = 6.01-6.92) and amine/hydroxyl groups (pKa = 9.56-9.99). However, variability in total ligand concentration among the live cells is greater than those between the live and dead. The total ligand concentrations (LT, mol- mg-1 dry solid) derived from the live cell titrations (n=12) clustered into two sub-populations: high (LT = 24.4) and low (LT = 5.8), compared to the single concentration for the dead cell titrations (LT = 18.8; n=5). We infer from these results that metabolic activity can substantively impact surface reactivity of morphologically identical cells. These results and their modeling implications for bacteria surface reactivities will be discussed.

  13. Interactions between the microbiota and pathogenic bacteria in the gut.

    Science.gov (United States)

    Bäumler, Andreas J; Sperandio, Vanessa

    2016-07-07

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases.

  14. Interactions between the microbiota and pathogenic bacteria in the gut

    Science.gov (United States)

    Bäumler, Andreas J.; Sperandio, Vanessa

    2016-01-01

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases. PMID:27383983

  15. Composition of lactic acid bacteria during spontaneous curly kale (Brassica oleracea var. sabellica) fermentation.

    Science.gov (United States)

    Michalak, Magdalena; Gustaw, Klaudia; Waśko, Adam; Polak-Berecka, Magdalena

    2018-01-01

    The present work is the first report on spontaneous fermentation of curly kale and characteristics of autochthonous lactic acid bacteria (LAB). Our results indicate that curly kale fermentation is the new possibility of the technological use of this vegetable. Bacteria representing ten different species were isolated from three phases of curly kale fermentation and identified by MALDI-TOF mass spectrometry and 16S rRNA gene sequencing. Among them, four species were identified as Lactobacillus spp. (Lb. plantarum 332, Lb. paraplantarum G2114, Lb. brevis R413, Lb. curvatus 154), two as Weissella spp. (W. hellenica 152, W. cibaria G44), two as Pediococcus spp. (P. pentosaceus 45AN, P. acidilactici 2211), one as Leuconostoc mesenteroides 153, and one as Lactococcus lactis 37BN. The functional properties of isolates, i.e. acid, NaCl and bile salt tolerance, enzyme activities, adhesion to hydrocarbons, and antibiotic resistance, were examined. Among the tested strains, Lb. plantarum 332, Lb. paraplantarum G2114, P. pentosaceus 2211, and Lb. brevis R413 exhibited the best hydrophobicity value and high tolerance to bile salts, NaCl, and low pH. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Isolation, enumeration, molecular identification and probiotic potential evaluation of lactic acid bacteria isolated from sheep milk

    Directory of Open Access Journals (Sweden)

    L.B. Acurcio

    2014-06-01

    Full Text Available Lactic acid bacteria species were molecularly identified in milk from Lacaune, Santa Inês and crossbred sheep breeds and their in vitro probiotic potential was evaluated. The species identified were Enterococcus faecium (56.25%, E. durans (31.25% and E. casseliflavus (12.5%. No other lactic acid bacteria species, such as lactobacilli, was identified. Most of the isolated enterococci were resistant to gastric pH (2.0 and to 0.3% oxgall. All tested enterococci were resistant to ceftazidime, oxacillin and streptomycin and sensible to clindamycin, erythromycin and penicillin. The resistance to ciprofloxacin, gentamicin, tetracycline and vancomycin varied among tested species. All tested enterococci strongly inhibited (P<0.05 Escherichia coli and Listeria monocytogenes, moderately inhibited E. faecalis and Staphylococcus aureus and did not inhibit Pseudomonas aeruginosa, Salmonella enterica var. Typhimurium and also one E. durans sample isolated from sheep milk. Four samples of E. faecium, one of E. durans and one of E. casseliflavus presented the best probiotic potential.

  17. Lactic acid bacteria active during the fermentation of wheat silage in small scale silos

    Energy Technology Data Exchange (ETDEWEB)

    Moon, N.J.; Parker, J.A.; Moon, L.C.; Ely, L.O.

    1981-01-01

    Wheat was ensiled and periodically analyzed for lactic acid bacteria present. Initially Lactobacillus plantarum, Leuconostoc mesenteroides, Lactobacillus cellobiosus and Streptococcus lactis predominated. After two to four days enterococci including S. faecium and S. bovis were present in high populations as well as Lactobacillus plantarum. It was concluded that mixed populations of enterococci and L. plantarum are active in the successful fermentation of wheat silage.

  18. Lactic acid bacteria active during the fermentation of wheat silage in small scale silos

    Energy Technology Data Exchange (ETDEWEB)

    Moon, N.J.; Moon, L.C.; Ely, L.O.; Parker, J.A.

    1981-01-01

    Wheat was ensiled and periodically analyzed for lactic acid bacteria present. Initially Lactobacillus plantarum, Leuconostoc mesenteroides, Lactobacillus cellobiosus and Streptococcus lactis predominated. After two to four days enterococci including S. faecium and S. bovis were present in high populations as well as Lactobacillus plantarum. It was concluded that mixed populations of enterococci and L. plantarum are active in the successful fermentation of wheat silage. (Refs. 5).

  19. Effects Of pH, Temperature And Salinity In Growth And Organic Acid Production Of Lactic Acid Bacteria Isolated From Penaeid Shrimp Intestine

    Directory of Open Access Journals (Sweden)

    Subagiyo Subagiyo

    2015-12-01

    Full Text Available Bakteri asam laktat telah lama dikembangkan sebagai probiotik. Penentuan kondisi lingkungan yang optimum untuk pertumbuhan sel serta asam organik memberikan gambaran aktivitas optimum untuk kinerja probiotik baik dalam sistem fisiologi inang maupun dalam sistem bioproses untuk produksi sel dan metabolit. Penelitian ini bertujuan untuk mengetahui pengaruh faktor lingkungan (pH, suhu dan salinitas terhadap pertumbuhan dan produksi total asam organik tiga isolat bakteri asam laktat yang telah diseleksi dari intestinum udang penaeid. Eksperimen menggunakan  medium deMan, Rogosa and Sharpe (MRS cair. Perlakuan pH awal meliputi  nilai pH 4, 5 dan 6. Perlakuan suhu meliputi suhu 25, 30 dan 35OC serta perlakuan salinitas  meliputi salinitas 0,75 %, 1,5 % dan 3 %.  Setiap interval 6 jam dilakukan pengambilan sampel kultur bakteri dan penghitungan pertumbuhan berdasarkan perubahan optical density (pada panjang gelombang 600 nm sedangkan produksi asam laktat dianalisis dengan metode titrimetrik menggunakan NaOH 1 N sebagai larutan titrasinya. Berdasarkan hasil penelitian disimpulkan bahwa suhu, pH awal dan salinitas berpengaruh terhadap pertumbuhan dan produksi asam organik. Nilai kondisi lingkungan terbaik untuk pertumbuhan dapat berbeda dengan nilai terbaik untuk produksi asam organic. Hal ini ditunjukan oleh nilai laju pertumbuhan dan produksi asam laktat tertinggi dari tiga isolat uji terjadi pada suhu, pH awal dan salinitas yang berbeda.  Isolat L12 tumbuh optimum pada suhu 30oC, pH awal 6 dan salinitas 0,75%. Isolat L14 tumbuh optimum pada suhu 30oC, pH awal 6 dan salinitas 1.5%. Isolat L 21 tumbuh optimum pada suhu 30 oC, pH awal 6 dan salinitas 1.5%. Kata kunci: bakteri asam laktat, suhu, pH, salinitas, asamorganik, pertumbuhan, Lactic acid bacteria are widely distributed in intestinal tracts of various animals where they live as normal flora.Strains of lactic acid bacteria are the most common microbes employed as probiotics, The optimum

  20. Antimicrobial effect of selected lactic acid bacteria against microorganisms with decarboxylase activity

    Directory of Open Access Journals (Sweden)

    Khatantuul Purevdorj

    2017-01-01

    Full Text Available The main purpose of this study was to evaluate the antimicrobial activity of twenty-one bacteriocinogenic lactic acid bacteria (12 strains of Lactococcus lactis subsp. lactis, 4 strains of Lactobacillus gasseri, 3 strains of Lb. helveticus and 2 strains of Lb. acidophilus, LAB against 28 Staphylococcus and 33 Enterococcus strains able to produce tyramine, putrescine, 2-phenylethylamine and cadaverine. The antimicrobial activity of cell-free supernatants (CFS from tested LAB was examined by an agar-well diffusion assay. Nine out of twenty-one strains (33% showed the inhibitory effect on tested enterococci and staphylococci, namely 9 strains of Lactococcus lactis subsp. lactis. The diameters of inhibition zones ranged between 7 mm and 14 mm. The biggest diameter of 14 mm inhibition was obtained with the CFS's from strains CCDM 670 and CCDM 731 on Enterococcus sp. E16 and E28. The cell-free supernatants from Lactococcus lactis subsp. lactis CCDM 71 and from Lactococcus lactis subsp. lactis CCDM 731 displayed the broadest antibacterial activity (52% inhibition of all tested strains. On the other hand, the cell-free supernatants from the screened Lactobacillus strains did not show any inhibitory effect on the tested Staphylococcus and Enterococcus strains. Nowadays, the great attention is given to the antibacterial substances produced by lactic acid bacteria. With the ability to produce a variety of metabolites displaying inhibitory effect, the LAB have great potential in biopreservation of food.

  1. Lactic acid bacteria in Hamei and Marcha of North East India.

    Science.gov (United States)

    Tamang, J P; Dewan, S; Tamang, B; Rai, A; Schillinger, U; Holzapfel, W H

    2007-06-01

    Hamei and Marcha are mixed dough inocula used as starters for preparation of various indigenous alcoholic beverages in Manipur and Sikkim in India, respectively. These starters are traditionally prepared from rice with wild herbs and spices. Samples of Hamei and Marcha, collected from Manipur and Sikkim, respectively, were analysed for lactic acid bacterial composition. The population of lactic acid bacteria (LAB) was 6.9 and 7.1 Log cfu/g in Hamei and Marcha, respectively. On the basis of phenotypic and genotypic characters, LAB strains isolated from Hamei and Marcha were identified as Pediococcus pentosaceus, Lactobacillus plantarum and Lactobacillus brevis. Technological properties of LAB such as antimicrobial properties, effect on acidification, ability to produce biogenic amines and ethanol, degree of hydrophobicity and enzymatic activities were also performed. Pediococcus pentosaceus HS: B1, isolated from Hamei, was found to produce bacteriocin. None of the strains produced biogenic amines. LAB strains showed a strong acidifying ability and they also produced a wide spectrum of enzymes.

  2. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and

  3. Production of fermented probiotic beverages from milk permeate enriched with whey retentate and identification of present lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Jagoda Šušković

    2009-03-01

    Full Text Available In this research the application of bacterial strains Lactobacillus acidophilus M92, Lactobacillus plantarum L4 and Enterococcus faecium L3 in the production of fermented probiotic beverages from milk permeate enriched with 10 % (v/v whey retentate, was investigated. In the previous researches of probiotic concept, probiotic properties of these three strains of lactic acid bacteria have been defined. At the end of controlled fermentation, probiotic strains have produced 7.4 g/L lactic acid, pH was decreased to 4.7, and number of live cells was around 108 CFU/mL. Number of viable count of probiotic bacteria, which were identified with RAPD (Random Amplified Polymorphic DNAmethod, was maintained at around 107 CFU/mL during 28 days of the preservation at 4 °C. Furthermore, a spontaneous fermentation of milk permeate enriched with 10 % (v/v of whey retentate was carried out and lactic acid bacteria present in these substrates were isolated. All of these bacterial strains have rapidly acidified the growth media and have shown antibacterial activity against chosen test-microorganisms, what are important properties of potential starter cultures for the fermentation of dairy products. The results of biochemical API analysis have identified isolated strains as Lactococcus lactis subsp. lactis and Lactobacillus helveticus.

  4. Characterisation and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures

    CSIR Research Space (South Africa)

    Kostinek, M

    2007-03-01

    Full Text Available A total of 375 lactic acid bacteria were isolated from fermenting cassava in South Africa, Benin, Kenya and Germany, and were characterised by phenotypic and genotypic tests. These could be divided into five main groups comprising strains...

  5. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    Science.gov (United States)

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. An improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage.

    Science.gov (United States)

    Ding, W K; Shah, N P

    2009-03-01

    The purpose of this study was to develop a method for applying an extra coating of palm oil and poly-L-lysine (POPL) to alginate (ALG) microcapsules to enhance the survival of probiotic bacteria. Eight strains of probiotic bacteria including Lactobacillus rhamnosus, Bifidobacterium longum, L. salivarius, L. plantarum, L. acidophilus, L. paracasei, B. lactis type Bl-O4, and B. lactis type Bi-07 were encapsulated using alginate alone or alginate with POPL. Electron microscopy was used to measure the size of the microcapsules and to determine their surface texture. To assess if the addition of POPL improved the viability of probiotic bacteria in acidic conditions, both ALG and POPL microcapsules were inoculated into pH 2.0 MRS broths and their viability was assessed over a 2-h incubation period. Two bile salts including oxgall bile salt and taurocholic acid were used to test the bile tolerance of probiotic bacteria entrapped in ALG and POPL microcapsules. To assess the porosity and the ability of the microcapsule to hold small molecules in an aqueous environment a water-soluble fluorescent dye, 6-carboxyflourescin (6 FAM), was encapsulated and its release was monitored using a UV spectrophotometer. The results indicated that coating the microcapsules with POPL increased the overall size of the capsules by an average of 3 microm +/- 0.67. However, microcapsules with added POPL had a much smoother surface texture when examined under an electron microscope. The results also indicated that the addition of POPL to microcapsules improved the average viability of probiotic bacteria by > 1 log CFU/mL when compared to ALG microcapsules at 2 h of exposure to acidic conditions. However, similar plate counts were observed between ALG and POPL microcapsules when exposed to bile salts. This suggests that an extra coating of POPL could be readily broken down by bile salts that are commonly found in the lower gastrointestinal tract (GIT). Upon testing the porosity of the

  7. The Biodiversity of Lactic Acid Bacteria in Greek Traditional Wheat Sourdoughs Is Reflected in Both Composition and Metabolite Formation

    OpenAIRE

    De Vuyst, Luc; Schrijvers, Vincent; Paramithiotis, Spiros; Hoste, Bart; Vancanneyt, Marc; Swings, Jean; Kalantzopoulos, George; Tsakalidou, Effie; Messens, Winy

    2002-01-01

    Lactic acid bacteria (LAB) were isolated from Greek traditional wheat sourdoughs manufactured without the addition of baker's yeast. Application of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cell protein, randomly amplified polymorphic DNA-PCR, DNA-DNA hybridization, and 16S ribosomal DNA sequence analysis, in combination with physiological traits such as fructose fermentation and mannitol production, allowed us to classify the isolated bacteria into the species Lactob...

  8. Isolasi dan Identifikasi Bakteri Asam Laktat dari Cairan Rumen Sapi Bali sebagai Kandidat Biopreservatif ISOLATION AND IDENTIFICATION OF ACID LACTIC BACTERIA FROM BALI CATTLE’S GASTRIC FLUID AS A POTENTIAL CANDIDATE OF BIOPRESERVATIVE

    Directory of Open Access Journals (Sweden)

    I Wayan Suardana

    2007-12-01

    Full Text Available A study was conducted to isolate and identify of lactic acid bacteria originated from gastric fluid of bali cattle, and to determine their potential as the candidates of biopreservative. Lactic acid bacteria were isolated by culturing the gastric fluid of bali cattle in de Mann, Rogosa, Sharpe (MRS medium; screening the bacteria, and identification of bacteria species by Analytical Profile Index (API 50 CHL Kit. The results showed that, the new species of lactic acid bacteria were isolated and identified as Lactococcus lactis spp lactis 1 (SR21 isolate and Lactobacillus brevis 1 (SR54 isolate that have broad spectrum antimicrobial activities. It is clear from this study that a potential lactic acid bacteria producing antimicrobial agent can be isolated from the gastric fluid of bali cattle.

  9. Alteration of Rumen Bacteria and Protozoa Through Grazing Regime as a Tool to Enhance the Bioactive Fatty Acid Content of Bovine Milk.

    Science.gov (United States)

    Bainbridge, Melissa L; Saldinger, Laurel K; Barlow, John W; Alvez, Juan P; Roman, Joe; Kraft, Jana

    2018-01-01

    Rumen microorganisms are the origin of many bioactive fatty acids (FA) found in ruminant-derived food products. Differences in plant leaf anatomy and chemical composition between cool- and warm-season pastures may alter rumen microorganisms, potentially enhancing the quantity/profile of bioactive FA available for incorporation into milk. The objective of this study was to identify rumen bacteria and protozoa and their cellular FA when cows grazed a warm-season annual, pearl millet (PM), in comparison to a diverse cool-season pasture (CSP). Individual rumen digesta samples were obtained from five Holstein cows in a repeated measures design with 28-day periods. The treatment sequence was PM, CSP, then PM. Microbial DNA was extracted from rumen digesta and sequence reads were produced with Illumina MiSeq. Fatty acids (FA) were identified in rumen bacteria and protozoa using gas-liquid chromatography/mass spectroscopy. Microbial communities shifted in response to grazing regime. Bacteria of the phylum Bacteroidetes were more abundant during PM than CSP ( P rumenic acid, and α-linolenic acid in milk. In conclusion, grazing regime can potentially be used to alter microbial communities shifting the FA profile of microbial cells, and subsequently, alter the milk FA profile.

  10. Tetranychus urticae mites do not mount an induced immune response against bacteria.

    Science.gov (United States)

    Santos-Matos, Gonçalo; Wybouw, Nicky; Martins, Nelson E; Zélé, Flore; Riga, Maria; Leitão, Alexandre B; Vontas, John; Grbić, Miodrag; Van Leeuwen, Thomas; Magalhães, Sara; Sucena, Élio

    2017-06-14

    The genome of the spider mite Tetranychus urticae , a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae , infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei , a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response. © 2017 The Authors.

  11. High γ-aminobutyric acid production from lactic acid bacteria: Emphasis on Lactobacillus brevis as a functional dairy starter.

    Science.gov (United States)

    Wu, Qinglong; Shah, Nagendra P

    2017-11-22

    γ-Aminobutyric acid (GABA) and GABA-rich foods have shown anti-hypertensive and anti-depressant activities as the major functions in humans and animals. Hence, high GABA-producing lactic acid bacteria (LAB) could be used as functional starters for manufacturing novel fermented dairy foods. Glutamic acid decarboxylases (GADs) from LAB are highly conserved at the species level based on the phylogenetic tree of GADs from LAB. Moreover, two functionally distinct GADs and one intact gad operon were observed in all the completely sequenced Lactobacillus brevis strains suggesting its common capability to synthesize GABA. Difficulties and strategies for the manufacture of GABA-rich fermented dairy foods have been discussed and proposed, respectively. In addition, a genetic survey on the sequenced LAB strains demonstrated the absence of cell envelope proteinases in the majority of LAB including Lb. brevis, which diminishes their cell viabilities in milk environments due to their non-proteolytic nature. Thus, several strategies have been proposed to overcome the non-proteolytic nature of Lb. brevis in order to produce GABA-rich dairy foods.

  12. Modelling the influence of metabolite diffusion on non-starter lactic acid bacteria growth in ripening Cheddar cheese

    DEFF Research Database (Denmark)

    Czárán, Tamás; Rattray, Fergal P.; Møller, Cleide O.de A.

    2018-01-01

    The influence of metabolite diffusion within the cheese matrix on growth of non-starter lactic acid bacteria (NSLAB) during Cheddar cheese ripening was mathematically modelled. The model was calibrated at a realistic range of diffusion of metabolites and the decay and growth parameters...

  13. Role in Cheese Flavour Formation of Heterofermentative Lactic Acid Bacteria from Mesophilic Starter Cultures

    DEFF Research Database (Denmark)

    Pedersen, Thomas Bæk

    -starters including strains from our culture collection were used throughout the project. Initially selected strains were screened for enzyme activities involved in cheese flavour formation after growth in a cheese based medium (CBM) and in a nutrient rich growth medium (MRS). The Leuconostoc strains had low....... A cheese trial was performed with selected strains to investigate how the heterofermentative strains influenced the ripening in semi-hard cheese. The cheeses were made using a Lactococcus starter including citrate positive Lactoccus and with the addition of one strain of heterofermentative bacteria...... with plant isolates, the ability to ferment citrate and lacked several genes involved in the fermentation of complex carbohydrates. The presented research in this thesis has gained insight in to the role of heterofermentative lactic acid bacteria in cheese flavour formation. The traditional DL...

  14. Isolation of Lactic Acid Bacteria with High Biological Activity from Local Fermented Dairy Products

    Directory of Open Access Journals (Sweden)

    B. Munkhtsetseg

    2009-12-01

    Full Text Available The thirty-two strains of lactic acid bacteria were isolated from the Mongolian traditional fermented dairy products, among them 25 strains show antimicrobial activity against test microorganisms including Escherichia coli , Staphylococcus aureus , Enterococcus faecalis , Pseudom о nas aeruginosa . Protease sensitivity assay demonstrated that the antimicrobial substances produced by isolates А 23, Т 2 are bacteriocins as their antibacterial activities were eliminated completely after treatment with protease. Identi fi cation of bacteria is being carried out. Among the isolates 22 strains show protease enzyme producing activity. The selected strains isolated from mare’s fermented milk (airag or kumis and yoghurt (tarag show the speci fi c protease activity from 7.9 μ g/ml to 11.9 μ g/ml. The strain T2, isolated from yoghurt exhibited the highest proteolytic activity.

  15. Characterization of nitrate-reducing and amino acid-using bacteria prominent in nitrotoxin-enriched equine cecal populations

    Science.gov (United States)

    In the present study, populations of equine cecal microbes enriched for enhanced rates of 3-nitro-1-propionic acid (NPA) or nitrate metabolism were diluted and cultured for NPA-metabolizing bacteria on a basal enrichment medium (BEM) or tryptose soy agar (TSA) medium supplemented with either 5 mM NP...

  16. Current strategies for improving food bacteria

    NARCIS (Netherlands)

    Kuipers, O P; Buist, Girbe; Kok, Jan

    2000-01-01

    Novel concepts and methodologies are emerging that hold great promise for the directed improvement of food-related bacteria, specifically lactic acid bacteria. Also, the battle against food spoilage and pathogenic bacteria can now be fought more effectively. Here we describe recent advances in

  17. Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing.

    Science.gov (United States)

    Di Cagno, Raffaella; Cardinali, Gainluigi; Minervini, Giovanna; Antonielli, Livio; Rizzello, Carlo Giuseppe; Ricciuti, Patrizia; Gobbetti, Marco

    2010-05-01

    Pichia guilliermondii was the only identified yeast in pineapple fruits. Lactobacillus plantarum and Lactobacillus rossiae were the main identified species of lactic acid bacteria. Typing of lactic acid bacteria differentiated isolates depending on the layers. L. plantarum 1OR12 and L. rossiae 2MR10 were selected within the lactic acid bacteria isolates based on the kinetics of growth and acidification. Five technological options, including minimal processing, were considered for pineapple: heating at 72 degrees C for 15 s (HP); spontaneous fermentation without (FP) or followed by heating (FHP), and fermentation by selected autochthonous L. plantarum 1OR12 and L. rossiae 2MR10 without (SP) or preceded by heating (HSP). After 30 days of storage at 4 degrees C, HSP and SP had a number of lactic acid bacteria 1000 to 1,000,000 times higher than the other processed pineapples. The number of yeasts was the lowest in HSP and SP. The Community Level Catabolic Profiles of processed pineapples indirectly confirmed the capacity of autochthonous starters to dominate during fermentation. HSP and SP also showed the highest antioxidant activity and firmness, the better preservation of the natural colours and were preferred for odour and overall acceptability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  18. BIOCHEMICAL CHARACTERISTICS OF LACTIC ACID PRODUCING BACTERIA AND PREPARATION OF CAMEL MILK CHEESE BY USING STARTER CULTURE

    Directory of Open Access Journals (Sweden)

    T. Ahmed and R. Kanwal

    2004-04-01

    Full Text Available Lactic acid bacteria (LAB were isolated from camel milk by culturing the milk on specific media and pure culture was obtained by sub-culturing. Purification of culture was confirmed by Gram’s staining and identified by different biochemical tests. Camel milk contained lactic acid producing bacteria like Streptococci such as S. cremoris and S. lactis and Lactobacilli such as L. acidophilus. L. acidophilus grew more rapidly in camel milk than others as its growth was supported by camel milk. Ability of each strain was tested to convert lactose of milk into lactic acid. It was observed that 66% lactose was converted by S. lactis 20, whereas S. cremoris 22 and L. acidophilus 23 converted 56 and 74% lactose into lactic acid, respectively. Effect of freeze-drying was also recorded and the results showed that in all cases there was a slight decrease in the cell count before and after the freeze-drying. The decrease was approximately 0.47, 0.078 and 0.86% for S. lactis 20, S. cremoris 22 and L. acidophilus 23, respectively. Starter culture was prepared from strains isolated from camel milk. Camel and buffalo milk cheese was prepared by using starter culture. The strains isolated from camel milk were best for acid production and coagulated the milk in less time. It is concluded that cheese can be prepared successfully from camel milk and better results can be obtained by coagulating milk with starter culture.

  19. Culture-independent analysis of lactic acid bacteria diversity associated with mezcal fermentation.

    Science.gov (United States)

    Narváez-Zapata, J A; Rojas-Herrera, R A; Rodríguez-Luna, I C; Larralde-Corona, C P

    2010-11-01

    Mezcal is an alcoholic beverage obtained from the distillation of fermented juices of cooked Agave spp. plant stalks (agave must), and each region in Mexico with denomination of origin uses defined Agave species to prepare mezcal with unique organoleptic characteristics. During fermentation to produce mezcal in the state of Tamaulipas, not only alcohol-producing yeasts are involved, but also a lactic acid bacterial community that has not been characterized yet. In order to address this lack of knowledge on this traditional Mexican beverage, we performed a DGGE-16S rRNA analysis of the lactic acid bacterial diversity and metabolite accumulation during the fermentation of a typical agave must that is rustically produced in San Carlos County (Tamaulipas, Mexico). The analysis of metabolite production indicated a short but important malolactic fermentation stage not previously described for mezcal. The denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA genes showed a distinctive lactic acid bacterial community composed mainly of Pediococcus parvulus, Lactobacillus brevis, Lactobacillus composti, Lactobacillus parabuchneri, and Lactobacillus plantarum. Some atypical genera such as Weissella and Bacillus were also found in the residual must. Our results suggest that the lactic acid bacteria could strongly be implicated in the organoleptic attributes of this traditional Mexican distilled beverage.

  20. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria.

    Science.gov (United States)

    Kaktcham, Pierre Marie; Temgoua, Jules-Bocamdé; Ngoufack Zambou, François; Diaz-Ruiz, Gloria; Wacher, Carmen; Pérez-Chabela, María de Lourdes

    2017-02-01

    The present study aimed to evaluate the bacterial load of water, Nile Tilapia and common Carp intestines from earthen ponds, isolate lactic acid bacteria (LAB) and assess their antimicrobial activity against fish spoilage and pathogenic bacteria. Following enumeration and isolation of microorganisms the antimicrobial activity of the LAB isolates was evaluated. Taxonomic identification of selected antagonistic LAB strains was assessed, followed by partial characterisation of their antimicrobial metabolites. Results showed that high counts (>4 log c.f.u ml -1 or 8 log c.f.u g -1 ) of total aerobic bacteria were recorded in pond waters and fish intestines. The microbiota were also found to be dominated by Salmonella spp., Vibrio spp., Staphylococcus spp. and Escherichia coli. LAB isolates (5.60%) exhibited potent direct and extracellular antimicrobial activity against the host-derived and non host-derived spoilage and pathogenic bacteria. These antagonistic isolates were identified and Lactococcus lactis subsp. lactis was found as the predominant (42.85%) specie. The strains displayed the ability to produce lactic, acetic, butyric, propionic and valeric acids. Bacteriocin-like inhibitory substances with activity against Gram-positive and Gram-negative (Vibrio spp. and Pseudomonas aeruginosa) bacteria were produced by three L. lactis subsp. lactis strains. In this study, the LAB from the microbiota of fish and pond water showed potent antimicrobial activity against fish spoilage or pathogenic bacteria from the same host or ecological niche. The studied Cameroonian aquatic niche is an ideal source of antagonistic LAB that could be appropriate as new fish biopreservatives or disease control agents in aquaculture under tropical conditions in particular or worldwide in general.

  1. Development of a method to measure intracellular growth rate of parasitic acid-fast bacteria using radio-isotope and its improvement

    International Nuclear Information System (INIS)

    Nakata, Noboru; Fukutomi, Yasuo

    1999-01-01

    Development of measurement method for intracellular growth rate was attempted using gene-transfected acid-fast bacteria and Mycobacterium leprae. M. leprae was inoculated into a well, which was filled with fetus bovine serum containing a cover slip pasted with mouse monocyte-derived malignant cell lines, J774 and P388D1 and cultured for 3-4 hours. Then, the cells on the cover slip were mobilized with 0.1 N NaOH. The metabolic activity of M. leprae was assessed based on the β-oxidation activity of 14 C-palmitic acid. Then, it was investigated whether TNF is produced by the cell culture added with M. leprae or LPS. J774 cells abundantly produced TNF after sensitization with LPS and its production was depending on the amount of added bacteria, whereas TNF production after sensitization with LPS or M. leprae was little in P388D1 cells. Staining for acid-fast bacteria revealed that either of these cell lines has phagocytic activity for M. leprae. To identify the bacterial factor involved to the intracellular proliferation of acid-fast bacteria, transposon insertion mutagenesis was attempted to M. avium complex (MAC) and the degrees of drug-resistance in M. avium mino, M. intracellulare JATA-52 and 8 clinically isolated M. intracellulare strains were determined. M. intracellulare JATA-52 was resistant to kanamycin and plasmid pAL8 and pYT937 were both able to transform the strain with dose-dependency. Since M. intracellulare is pathogenic to human and the strain proliferates with a generation time shorter than that of M. tuberculosis, the former strain is thought suitable for the analysis of a mutated gene. Thus, it became possible to study transposition insertion mutagenesis in M. intracellulare. (M.N.)

  2. Development of a method to measure intracellular growth rate of parasitic acid-fast bacteria using radio-isotope and its improvement

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Noboru; Fukutomi, Yasuo [National Inst. of Infectious Diseases, Tokyo (Japan)

    1999-02-01

    Development of measurement method for intracellular growth rate was attempted using gene-transfected acid-fast bacteria and Mycobacterium leprae. M. leprae was inoculated into a well, which was filled with fetus bovine serum containing a cover slip pasted with mouse monocyte-derived malignant cell lines, J774 and P388D1 and cultured for 3-4 hours. Then, the cells on the cover slip were mobilized with 0.1 N NaOH. The metabolic activity of M. leprae was assessed based on the {beta}-oxidation activity of {sup 14}C-palmitic acid. Then, it was investigated whether TNF is produced by the cell culture added with M. leprae or LPS. J774 cells abundantly produced TNF after sensitization with LPS and its production was depending on the amount of added bacteria, whereas TNF production after sensitization with LPS or M. leprae was little in P388D1 cells. Staining for acid-fast bacteria revealed that either of these cell lines has phagocytic activity for M. leprae. To identify the bacterial factor involved to the intracellular proliferation of acid-fast bacteria, transposon insertion mutagenesis was attempted to M. avium complex (MAC) and the degrees of drug-resistance in M. avium mino, M. intracellulare JATA-52 and 8 clinically isolated M. intracellulare strains were determined. M. intracellulare JATA-52 was resistant to kanamycin and plasmid pAL8 and pYT937 were both able to transform the strain with dose-dependency. Since M. intracellulare is pathogenic to human and the strain proliferates with a generation time shorter than that of M. tuberculosis, the former strain is thought suitable for the analysis of a mutated gene. Thus, it became possible to study transposition insertion mutagenesis in M. intracellulare. (M.N.)

  3. AKTIVITAS ANTIKAPANG BAKTERI ASAM LAKTAT TERHADAP PERTUMBUHAN KAPANG KONTAMINAN KEJI [Antimycotic Activity of Lactic Acid Bacteria on the Growth of Cheese Contaminating Molds

    Directory of Open Access Journals (Sweden)

    S. Styahadi3

    2006-04-01

    Full Text Available Local cheese is frequently contaminated by toxigenic molds which is harmful for human health. Lactic acid bacteria have been proven to inhibit the growth of toxigenic mold in some food products. The research was aimed to study the activity of indigenous lactic acid bacteria to inhibit the growth of toxigenic molds in local cheese. The molds studied were isolated from local cheese production (Gouda type. The cheese contaminating molds were identified as Penicillium sp. and Aspergillus sp. Nine species of indigenous lactic acid bacteria (LAB were tested for antimycotic activities, i.e. Lactobacillus plantarum kik, Lactobacillus plantarum sa, Lactobacillus plantarum pi28a, Lactobacillus plantarum dd, Lactobacillus coryneformis, Lactobacillus brevis, Lactococcus piscium, Leuconostoc mesenteroides, and Leuconostoc paramesenteroides. The research revealed that the promising indigenous LAB which inhibited the contaminating molds was Lb plantarum pi28a. Application of Lb plantarum pi28a on local cheese production could inhibit the growth of Penicillium sp. and Aspergillus sp. up to 12 days.

  4. Lactic acid bacteria stress response to preservation processes in the beverage and juice industry.

    Science.gov (United States)

    Bucka-Kolendo, Joanna; Sokołowska, Barbara

    2017-01-01

    In this review we summarize stress factors that affect the lactic acid bacteria (LAB) and cause different molecular stress responses. LAB belong to a group of bacteria that is very widespread in food and beverages. They are present, and desired, in fermented products like yogurts, cheese, vegetables, meat or wine. In most of them, LAB are providing positive sensory and nutritive features. However, as harmless and desired microbes in one product, LAB can cause spoilage and a bad taste of others, especially in juices and beverages. LAB are resistant to many stress factors which allows them to survive in harsh environments. The most common stress factors they have to deal with are: heat, cold, acidity, NaCl and high hydrostatic pressure (HHP). Their ability to survive depends on their skills to cope with stress factors. Under stress conditions, LAB activate mechanisms that allow them to adjust to the new conditions, which can influence their viability and technological properties. This ability to adapt to different stress conditions may come from the cross-protection systems they have, as resistance to one factor may help them to deal with the other stress effectors. LAB are highly valuable for the food industry and that is why it is important to understand their stress response mechanisms.

  5. Assessment of the in vitro bioactive properties of lactic acid bacteria isolated from native ecological niches of Ecuador.

    Science.gov (United States)

    Benavides, Ana B; Ulcuango, Mario; Yépez, Lucía; Tenea, Gabriela N

    Lactic acid bacteria are known for their biotechnological potential. In various regions of Ecuador numerous indigenous biological resources are largely undocumented. In this study, we evaluated the potential probiotic characteristics and antagonistic in vitro properties of some lactic acid bacteria from native niches of the subtropical rain forests of Ecuador. These isolates were identified according to their morphological properties, standard API50CH fermentation profile and RAPD-DNA polymorphism pattern. The selected isolates were further evaluated for their probiotic potential. The isolates grew at 15°C and 45°C, survived at a pH ranging from 2.5 to 4.5 in the presence of 0.3% bile (>90%) and grew under sodium chloride conditions. All selected isolates were sensitive to ampicillin, amoxicillin and cefuroxime and some showed resistance to gentamicin, kanamycin and tetracycline. Moreover, the agar well diffusion assay showed that the supernatant of each strain at pH 3.0 and pH 4.0, but not at pH 7.0 exhibited increased antimicrobial activity (inhibition zone >15mm) against two foodborne pathogens, Escherichia coli and Salmonella spp. To our knowledge, this is the first report describing the antagonistic activity against two foodborne pathogens and the probiotic in vitro potential of lactic acid bacteria isolated from native biota of Ecuador. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Isolation and identification of lactid acid bacteria originated from king grass (Pennisetum purpureophoides as candidate of probiotic for livestock

    Directory of Open Access Journals (Sweden)

    Santoso B

    2013-06-01

    Full Text Available A study was conducted to isolate and identify strain of lactic acid bacteria (LAB isolated from king grass, and to determine their potential as candidate of probiotic for livestock. The LAB was isolated by culturing king grass extract in De Man, Rogosa and Sharpe (MRS medium. The pure culture LAB was used to identify strain of bacteria using Analytical Profile Index (API 50 CH kit. The result showed that the strain bacteria was identified as Lactobacillus plantarum. L. plantarum was able to survive in extreme condition at pH 2 and 0.3% bile salt. L. plantarum also survived against pathogenic bacteria i.e. Staphylococcus aureus, Escherechia coli and Salmonella thypi. It is concluded that L. plantarum isolated from king grass could potentially to be used as probiotic for livestock.

  7. Quantitative and qualitative determination of CLA produced by bifidobacterium and lactic acid bacteria by combining spectrophotometric and Ag+-HPLC techniques

    OpenAIRE

    Rodríguez-Alcalá, Luis M.; Braga, Teresa; Malcata, F. Xavier; Gomes, Ana; Fontecha, Javier

    2011-01-01

    Bifidobacterium and lactic acid bacteria (LAB), especially from the genera Lactobacillus and Lactococcus, are commonly used in the production of fermented dairy products due to their potential probiotic characteristics. Moreover, some strains of these microorganisms also have the ability to produce conjugated linoleic acid (CLA) from linoleic acid (LA), which has attracted much attention as a novel type of beneficial functional fermented milk. In the present work 22 probiotic bact...

  8. Antimicrobial properties of probiotic bacteria from various sources

    African Journals Online (AJOL)

    OKEREKE HOPE C

    2012-05-15

    May 15, 2012 ... The lactic acid bacteria (LAB), a component of several fermented foods including ... lactic acid bacteria grown in MRS broth for 20 to 24 h using centrifugation .... vacuum packed chill-stored meat has potential application for ...

  9. Biofilm-forming bacteria with varying tolerance to peracetic acid from a paper machine.

    Science.gov (United States)

    Rasimus, Stiina; Kolari, Marko; Rita, Hannu; Hoornstra, Douwe; Salkinoja-Salonen, Mirja

    2011-09-01

    Biofilms cause runnability problems in paper machines and are therefore controlled with biocides. Peracetic acid is usually effective in preventing bulky biofilms. This study investigated the microbiological status of a paper machine where low concentrations (≤ 15 ppm active ingredient) of peracetic acid had been used for several years. The paper machine contained a low amount of biofilms. Biofilm-forming bacteria from this environment were isolated and characterized by 16S rRNA gene sequencing, whole-cell fatty acid analysis, biochemical tests, and DNA fingerprinting. Seventy-five percent of the isolates were identified as members of the subclades Sphingomonas trueperi and S. aquatilis, and the others as species of the genera Burkholderia (B. cepacia complex), Methylobacterium, and Rhizobium. Although the isolation media were suitable for the common paper machine biofoulers Deinococcus, Meiothermus, and Pseudoxanthomonas, none of these were found, indicating that peracetic acid had prevented their growth. Spontaneous, irreversible loss of the ability to form biofilm was observed during subculturing of certain isolates of the subclade S. trueperi. The Sphingomonas isolates formed monoculture biofilms that tolerated peracetic acid at concentrations (10 ppm active ingredient) used for antifouling in paper machines. High pH and low conductivity of the process waters favored the peracetic acid tolerance of Sphingomonas sp. biofilms. This appears to be the first report on sphingomonads as biofilm formers in warm water using industries.

  10. [Cloning and gene expression in lactic acid bacteria].

    Science.gov (United States)

    Bondarenko, V M; Beliavskaia, V A

    2000-01-01

    The possibility of using the genera Lactobacillus and Lactococcus as vector representatives is widely discussed at present. The prospects of the construction of recombinant bacteria are closely connected with the solution of a number of problems: the level of the transcription of cloned genes, the effectiveness of the translation of heterologous mRNA, the stability of protein with respect to bacterial intracellular proteases, the method by protein molecules leave the cell (by secretion or as the result of lysis). To prevent segregation instability, the construction of vector molecules on the basis of stable cryptic plasmids found in wild strains of lactic acid bacteria was proposed. High copying plasmids with low molecular weight were detected in L. plantarum and L. pentosus strains. Several plasmids with molecular weights of 1.7, 1.8 and 2.3 kb were isolated from bacterial cells to be used as the basis for the construction of vector molecules. Genes of chloramphenicol- and erythromycin-resistance from Staphylococcus aureus plasmids were used as marker genes ensuring cell transformation. The vector plasmids thus constructed exhibited high transformation activity in the electroporation of different strains, including L. casei, L. plantarum, L. acidophilus, L. fermentum and L. brevis which could be classified with the replicons of a wide circle of hosts. But the use of these plasmids was limited due to the risk of the uncontrolled dissemination of recombinant plasmids. L. acidophilus were also found to have strictly specific plasmids with good prospects of being used as the basis for the creation of vectors, incapable of dissemination. In addition to the search of strain-specific plasmids, incapable of uncontrolled gene transmission, the use of chromosome-integrated heterologous genes is recommended in cloning to ensure the maximum safety.

  11. Exploring the Microbiota of Faba Bean: Functional Characterization of Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Michela Verni

    2017-12-01

    Full Text Available This study investigated the metabolic traits of 27 lactic acid bacteria (LAB strains belonging to different species, previously isolated from faba bean. The activities assayed, related to technological and nutritional improvement of fermented faba bean, included peptidases, β-glucosidase, phytase, as well as exopolysaccharides synthesis and antimicrobial properties. In addition, the bacteria performance as starter cultures during faba bean fermentation on proteolysis, antioxidant potential, and degradation of condensed tannins were assessed. Fermentative profiling showed that only 7 out of 27 strains were able to metabolize D-raffinose, particularly Leuc. mesenteroides I01 and I57. All strains of Pediococcus pentosaceus exerted high PepN activity and exhibited β-glucosidase activity higher than the median value of 0.015 U, while phytase activity was largely distributed among the different strains. All the weissellas, and in lower amount leuconostocs, showed ability to produce EPS from sucrose. None of the strains did not survive the simulated gastrointestinal tract with the exception of P. pentosaceus I56, I76, 147, I214, having a viability of 8–9 log CFU/ml at the end of the treatment. None of the strains showed antimicrobial activity toward Staphylococcus aureus, while eight strains of P. pentosaceus exhibited a strong inhibitory activity toward Escherichia coli and Listeria monocytogenes. Generally, the doughs fermented with pediococci exhibited high amount of total free amino acids, antioxidant activity, and condensed tannins degradation. These results allowed the identification of LAB biotypes as potential starter cultures for faba bean bioprocessing, aiming at the enhancement of faba bean use in novel food applications.

  12. Peptidoglycan Hydrolases of Local Lactic Acid Bacteria from Kazakh Traditional Food

    Directory of Open Access Journals (Sweden)

    Serik Shaikhin

    2014-01-01

    Full Text Available Introduction: Peptidoglycan (PG is a major component of the cell wall of Gram-positive bacteria and is essential for maintaining the integrity of the bacterial cell and its shape. The bacteria synthesize PG hydrolases, which are capable of cleaving the covalent bonds of PG. They also play an important role in modeling PG, which is required for bacterial growth and division. In an era of increasing antibiotic-resistant pathogens, PG hydrolases that destroy these important structures of the cell wall act as a potential source of new antimicrobials. The aim of this study is to identify the main PG hydrolases of local lactic acid bacteria isolated from traditional foods that enhance probiotic activity of a biological preparation. Methods. Lactococcus lactis 17А and Lactococcus garvieae 19А were isolated from the traditional sausage-like meat product called kazy. They were isolated according to standards methods of microbiology. Genetic identification of the isolates were tested by determining the nucleotide sequences of 16S rDNA. The Republican collection of microorganisms took strains of Lactobacillus casei subsp. Rhamnosus 13-P, L. delbrueckii subsp. lactis CG-1 B-RKM 0044 from cheese, Lactobacillus casei subsp. casei B-RKM 0202 from homemade butter. They used the standard technique of renaturating polyacrylamide gel electrophoresis to detect PG hydrolases activity. Results. According to the profiles of PG hydrolase activity on zymograms, the enzymes of Lactococci 17A and 19A in kazy are similar in electrophoretic mobility to major autolysin AcmA, while the lactobacilli of industrial and home-made dairy products have enzymes similar to extracellular proteins p40 and p75, which have probiotic activity. Conclusions. Use of peptidoglycan hydrolases seems to be an interesting approach in the fight against multi-drug resistant strains of bacteria and could be a valuable tool for the treatment of diseases caused by these microorganisms in Kazakhstan.

  13. Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo

    DEFF Research Database (Denmark)

    Fuglsang, Anders; Rattray, Fergal; Nilsson, Dan

    2003-01-01

    A total of 26 strains of wild-type lactic acid bacteria, mainly belonging to Lactococcus lactis and Lactobacillus helveticus , were assayed in vitro for their ability to produce a milk fermentate with inhibitory activity towards angiotensin converting enzyme (ACE). It was clear that the test stra...

  14. Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues.

    Science.gov (United States)

    Yang, Jinsong; Tan, Haisheng; Cai, Yimin

    2016-07-01

    The natural lactic acid bacteria (LAB) population, chemical composition, and silage fermentation of fruit residues were studied. Eighty-two strains of LAB were isolated from fruit residues such as banana leaf and stem, pineapple peel, and papaya peel. All strains were gram-positive and catalase-negative bacteria, and they were divided into 7 groups (A-G) according to morphological and biochemical characters. Strains in groups A to F were rods, and group G was cocci. Group F produced gas from glucose; other groups did not. Groups A to C and F formed dl-lactic acid, whereas groups D, E, and G formed l-lactic acid. Based on the 16S rRNA gene sequence and DNA-DNA hybridization analysis, groups A to G strains were identified as Lactobacillus plantarum (54.9% of the total isolates), Lactobacillus paraplantarum (3.6%), Lactobacillus nagelii (8.5%), Lactobacillus perolens (4.9%), Lactobacillus casei (11.0%), Lactobacillus fermentum (9.8%), and Enterococcus gallinarum (7.3%), respectively. Lactobacillus plantarum and Lactobacillus casei are the most frequently isolated from fruit residues as a dominant species, and they could grow at a lower pH conditions and produce more lactic acid than other isolates. Pineapple and papaya peels contained higher crude protein (11.5-13.8%) and water-soluble carbohydrate (16.8-22.4%), but lower acid detergent fiber contents (21.2 to 26.4%) than banana stems and leaves (8.2% crude protein, 42.8% acid detergent fiber, and 5.1% water-soluble carbohydrate). Compared with banana stem and leaf silages, the pineapple and papaya peel silages were well preserved with a lower pH and higher lactate content. The study suggests that the fruit residues contain excellent LAB species and abundant feed nutrients, and that they can be preserved as silage to be potential food resources for livestock. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria

    KAUST Repository

    Mazzetto, Fabio

    2016-03-24

    Some species of acetic acid bacteria (AAB) play relevant roles in the metabolism and physiology of Drosophila spp. and in some cases convey benefits to their hosts. The pest Drosophila suzukii harbors a set of AAB similar to those of other Drosophila species. Here, we investigate the potential to exploit the ability of AAB to produce volatile substances that attract female D. suzukii. Using a two-way olfactometer bioassay, we investigate the preference of D. suzukii for strains of AAB, and using solid-phase microextraction gas chromatography–mass spectrometry we specifically characterize their volatile profiles to identify attractive and non-attractive components produced by strains from the genera Acetobacter, Gluconobacter, and Komagataeibacter. Flies had a preference for one strain of Komagataeibacter and two strains of Gluconobacter. Analyses of the volatile profiles from the preferred Gluconobacter isolates found that acetic acid is distinctively emitted even after 2 days of bacterial growth, confirming the relevance of this volatile in the profile of this isolate for attracting flies. Analyses of the volatile profile from the preferred Komagataeibacter isolate showed that a different volatile in its profile could be responsible for attracting D. suzukii. Moreover, variation in the concentration of butyric acid derivatives found in some strains may influence the preference of D. suzukii. Our results indicate that Gluconobacter and Komagataeibacter strains isolated from D. suzukii have the potential to provide substances that could be exploited to develop sustainable mass-trapping-based control approaches. © 2016 Springer-Verlag Berlin Heidelberg

  16. Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria

    KAUST Repository

    Mazzetto, Fabio; Gonella, Elena; Crotti, Elena; Vacchini, Violetta; Syrpas, Michail; Pontini, Marianna; Mangelinckx, Sven; Daffonchio, Daniele; Alma, Alberto

    2016-01-01

    Some species of acetic acid bacteria (AAB) play relevant roles in the metabolism and physiology of Drosophila spp. and in some cases convey benefits to their hosts. The pest Drosophila suzukii harbors a set of AAB similar to those of other Drosophila species. Here, we investigate the potential to exploit the ability of AAB to produce volatile substances that attract female D. suzukii. Using a two-way olfactometer bioassay, we investigate the preference of D. suzukii for strains of AAB, and using solid-phase microextraction gas chromatography–mass spectrometry we specifically characterize their volatile profiles to identify attractive and non-attractive components produced by strains from the genera Acetobacter, Gluconobacter, and Komagataeibacter. Flies had a preference for one strain of Komagataeibacter and two strains of Gluconobacter. Analyses of the volatile profiles from the preferred Gluconobacter isolates found that acetic acid is distinctively emitted even after 2 days of bacterial growth, confirming the relevance of this volatile in the profile of this isolate for attracting flies. Analyses of the volatile profile from the preferred Komagataeibacter isolate showed that a different volatile in its profile could be responsible for attracting D. suzukii. Moreover, variation in the concentration of butyric acid derivatives found in some strains may influence the preference of D. suzukii. Our results indicate that Gluconobacter and Komagataeibacter strains isolated from D. suzukii have the potential to provide substances that could be exploited to develop sustainable mass-trapping-based control approaches. © 2016 Springer-Verlag Berlin Heidelberg

  17. Biotechnology and pasta-making: Lactic Acid Bacteria as a new driver of innovation

    Directory of Open Access Journals (Sweden)

    Vittorio eCapozzi

    2012-03-01

    Full Text Available Cereals-derived foods represent a key constituent in the diet of many populations. In particular, pasta is consumed in large quantities throughout the world in reason of its nutritive importance, containing significant amounts of complex carbohydrates, proteins, B-vitamins, and iron. Lactic acid bacteria (LAB are a heterogeneous group of bacteria that play a key role in the production of fermented foods and beverages with high relevance for human and animal health. A wide literature testifies the multifaceted importance of LAB biotechnological applications in cereal-based products. Several studies focused on LAB isolation and characterization in durum wheat environment, in some cases with preliminary experimental applications of LAB in pasta-making. In this paper, using sourdough as a model, we focus on the relevant state-of-art to introduce a LAB-based biotechnological step in industrial pasta-making, a potential world driver of innovation that might represent a cutting-edge advancement in pasta production.

  18. Natural Killer Cells Are Activated by Lactic Acid Bacteria-Matured Dendritic Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    of certain lactic acid bacteria has been shown to increase in vivo NK cytotoxicity. Here, we investigated how human gut flora-derived lactobacilli affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human NK cells upon bacterial stimulation. Human peripheral blood NK cells were....... In contrast, a Lactobacillus paracasei strain caused the NK cells to proliferate only in the presence of monocytes. These results demonstrate that various strains of lactobacilli have the capacity to activate NK cells in vitro, in a monocyte dependent or independent way. Hence, the encounter of NK cells...

  19. Antibiotic resistance of lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Bulajić Snežana

    2008-01-01

    Full Text Available Knowledge on the antibiotic resistance of lactic acid bacteria is still limited, possibly because of the large numbers of genera and species encountered in this group, as well as variances in their resistance spectra. The EFSA considers antibiotic resistances, especially transferable resistances, an important decision criterion for determining a strain's QPS status. There are no approved standards for the phenotypic or genotypic evaluation of antibiotic resistances in food isolates. Also, the choice of media is problematic, as well as the specification of MIC breakpoint values as a result of the large species variation and the possible resulting variation in MIC values between species and genera. The current investigations in this field showed that we might end up with a range of different species- or genus-specific breakpoint values that may further increase the current complexity. Another problem associated with safety determinations of starter strains is that once a resistance phenotype and an associated resistance determinant have been identified, it becomes difficult to show that this determinant is not transferable, especially if the resistance gene is not located on a plasmid and no standard protocols for showing genetic transfer are available. Encountering those problems, the QPS system should allow leeway for the interpretations of results, especially when these relate to the methodology for resistance phenotype determinations, determinations of MIC breakpoints for certain genera, species, or strains, the nondeterminability of a genetic basis of a resistance phenotype and the transferability of resistance genes.

  20. Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic and related bacteria

    International Nuclear Information System (INIS)

    Avissar, Y.J.; Beale, S.I.; Ormerod, J.G.

    1989-01-01

    Two biosynthetic pathways are known for the universal tetrapyrrole precursor, δ-aminolevulinic acid (ALA): condensation of glycine and succinyl-CoA to form ALA with the loss of C-1 of glycine as CO 2 , and conversion of the intact carbon skeleton of glutamate to ALA in a process requiring tRNA Glu , ATP, Mg 2+ , NADPH, and pyridoxal phosphate. The distribution of the two ALA biosynthetic pathways among various bacterial genera was determined, using cell-free extracts obtained from representative organisms. Evidence for the operation of the glutamate pathway was obtained by the measurement of RNase-sensitive label incorporation from glutamate into ALA using 3,4-[ 3 H]glutamate and 1-[ 14 C]glutamate as substrate. The glycine pathway was indicated by RNase-insensitive incorporation of level from 2-[ 14 C]glycine into ALA. The distribution of the two pathways among the bacteria tested was in general agreement with their previously phylogenetic relationships and clearly indicates that the glutamate pathway is the more ancient process, whereas the glycine pathway probably evolved much later. The glutamate pathway is the more widely utilized one among bacteria, while the glycine pathway is apparently limited to the α subgroup of purple bacteria (including Rhodobacter, Rhodospirillum, and Rhizobium). E. coli was found ALA via the glutamate pathway. The ALA-requiring hemA mutant of E. coli was determined to lack the dehydrogenase activity that utilizes glutamyl-tRNA as a substrate

  1. The Impact of the Antimicrobial Compounds Produced by Lactic Acid Bacteria on the Growth Performance of Mycobacterium avium subsp. paratuberculosis

    Directory of Open Access Journals (Sweden)

    Petr Kralik

    2018-04-01

    Full Text Available Cell-free supernatants (CFSs extracted from various lactic acid bacteria (LAB cultures were applied to Mycobacterium avium subsp. paratuberculosis (MAP cells to determine their effect on MAP viability. In addition, 5% lactic acid (LA; pH 3 and commercially synthetized nisin bacteriocin were also tested. This procedure was chosen in order to mimic the influence of LAB compounds during the production and storage of fermented milk products, which can be contaminated by MAP. Its presence in milk and milk products is of public concern due to the possible ingestion of MAP by consumers and the discussed role of MAP in Crohn’s disease. Propidium monoazide real-time PCR (PMA qPCR was used for viability determination. Although all CFS showed significant effects on MAP viability, two distinct groups of CFS – effective and less effective – could be distinguished. The effective CFSs were extracted from various lactobacilli cultures, their pH values were mostly lower than 4.5, and their application resulted in >2 log10 reductions in MAP viability. The group of less effective CFS were filtered from Lactococcus and enterococci cultures, their pH values were higher than 4.5, and their effect on MAP viability was <2 log10. LA elicited a reduction in MAP viability that was similar to that of the group of less effective CFS. Almost no effect was found when using commercially synthetized nisin at concentrations of 0.1–1000 μg/ml. A combination of the influence of the type of bacteriocin, the length of its action, bacteriocin production strain, and pH are all probably required for a successful reduction in MAP viability. However, certain bacteriocins and their respective LAB strains (Lactobacillus sp. appear to play a greater role in reducing the viability of MAP than pH.

  2. Biodiversity and γ-Aminobutyric Acid Production by Lactic Acid Bacteria Isolated from Traditional Alpine Raw Cow’s Milk Cheeses

    Directory of Open Access Journals (Sweden)

    Elena Franciosi

    2015-01-01

    Full Text Available “Nostrano-cheeses” are traditional alpine cheeses made from raw cow’s milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB developing during maturation of “Nostrano-cheeses” and evaluated their potential to produce γ-aminobutyric acid (GABA, an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months. A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR and differentiated into 583 clusters. LAB strains from dominant clusters (n=97 were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC. About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg was a Sc. thermophilus.

  3. Pretreatment of Parsley (Petroselinum crispum L.) Suspension Cultures with Methyl Jasmonate Enhances Elicitation of Activated Oxygen Species.

    Science.gov (United States)

    Kauss, H.; Jeblick, W.; Ziegler, J.; Krabler, W.

    1994-01-01

    Suspension-cultured cells of parsley (Petroselinum crispum L.) were used to demonstrate an influence of jasmonic acid methyl ester (JAME) on the elicitation of activated oxygen species. Preincubation of the cell cultures for 1 d with JAME greatly enhanced the subsequent induction by an elicitor preparation from cell walls of Phytophtora megasperma f. sp. glycinea (Pmg elicitor) and by the polycation chitosan. Shorter preincubation times with JAME were less efficient, and the effect was saturated at about 5 [mu]M JAME. Treatment of the crude Pmg elicitor with trypsin abolished induction of activated oxygen species, an effect similar to that seen with elicitation of coumarin secretion. These results suggest that JAME conditioned the parsley suspension cells in a time-dependent manner to become more responsive to elicitation, reminiscent of developmental effects caused by JAME in whole plants. It is interesting that pretreatment of the parsley cultures with 2,6-dichloroisonicotinic and 5-chlorosalicylic acid only slightly enhanced the elicitation of activated oxygen species, whereas these substances greatly enhanced the elicitation of coumarin secretion. Therefore, these presumed inducers of systemic acquired resistance exhibit a specificity different from JAME. PMID:12232189

  4. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    Science.gov (United States)

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  5. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    International Nuclear Information System (INIS)

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-01-01

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L -1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  6. Sensory evaluation and consumer acceptance of naturally and lactic acid bacteria-fermented pastes of soybeans and soybean–maize blends

    Science.gov (United States)

    Ng'ong'ola-Manani, Tinna A; Mwangwela, Agnes M; Schüller, Reidar B; Østlie, Hilde M; Wicklund, Trude

    2014-01-01

    Fermented pastes of soybeans and soybean–maize blends were evaluated to determine sensory properties driving consumer liking. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and lactic acid bacteria fermented (LFP). Lactic acid bacteria fermentation was achieved through backslopping using a fermented cereal gruel, thobwa. Ten trained panelists evaluated intensities of 34 descriptors, of which 27 were significantly different (P consumer (n = 150) heterogeneity in preference, external preference mapping showed that most consumers preferred NFP. Drivers of liking of NFP samples were softness, pH, fermented aroma, sweetness, fried egg aroma, fried egg-like appearance, raw soybean, and rancid odors. Optimization of the desirable properties of the pastes would increase utilization and acceptance of fermented soybeans. PMID:24804070

  7. MINERALIZATION OF THE HERBICIDE 2,3,6-TRICHLOROBENZOIC ACID BY A COCULTURE OF ANAEROBIC AND AEROBIC-BACTERIA

    NARCIS (Netherlands)

    GERRITSE, J; GOTTSCHAL, JC

    1992-01-01

    Bacteria from an anaerobic enrichment reductively removed chlorine from the ortho- position of 2,3,6-trichlorobenzoic acid (2,3,6-TBA) producing 2,5-dichlorobenzoate (2,5-DBA). The strictly aerobic bacterium Pseudomonas aeruginosa JB2 subsequently used 2,5-DBA as a growth substrate in the presence

  8. Identification of predominant lactic acid bacteria and yeasts of Turkish sourdoughs and selection of starter cultures for liquid sourdough production using different flours and dough yields

    OpenAIRE

    Francesca, N.; Settanni, L.; Moschetti, G.

    2016-01-01

    Eight samples of mature sourdough were collected from five provinces of Turkey. Lactic acid bacteria and yeasts were isolated and identified and used in different combinations to produce liquid sourdoughs. Microbiological and physicochemical characteristics of the experimental sourdoughs made with different flour types and dough yields were studied. The main lactic acid bacteria species identified were Lactobacillus (L.) sanfranciscensis, Pediococcus pentosaceus, L. plantarum, L. namurencis, ...

  9. Screening of Lactic Acid Bacteria from Rumen Liquor and King Grass Silage as well as Their Antibacterial Activities

    Directory of Open Access Journals (Sweden)

    A. Sofyan

    2013-12-01

    Full Text Available Probiotic is a live microbial culture which has positive effect on animal by improving the natural balance of microflora in the digestive tract. This experiment aimed to screen and identify indigenous lactic acid bacteria (LAB from rumen liquor and king grass (Pennisetum hybrid silage as a probiotic candidate and to evaluate their resistance in low pH, and inhibitory activities against pathogenic bacteria. The LAB isolate was characterized by a clear zone formed on MRSA medium + CaCO3 0.2% (w/v and further identified by morphological and biochemical assays. The selected isolates were evaluated for their viability in low pH, pathogenic bacterial inhibition, and lactic acid production. The experimental arrangement was a factorial block design (4 x 2 consisted of four isolates and two levels of pH value (pH 2 and 3, each treatment in 3 equal replicates. The result showed that four isolates (two isolates from the rumen liquor of fistulated cattle and two isolates from silage were identified as lactic acid bacteria. The four isolates showed inhibition activity against Escherichia coli, Bacillus subtilis, Staphylococcus aureus and performed viability at low pH during 2 h treatment. The highest lactic acid production was obtained from isolates Sil.3 (21.42% and followed by CR2 (19.88%, CR1 (15.40% and Sil.9 (15.08%. Biochemical identification by standard of analytical profile index (API 50 CHL kit showed that the selected isolates CR1 was Lactobacillus paracasei ssp. paracasei 3 (91.5%, L. paracasei ssp. paracasei 3 (76.5%, Sil.3 was Lactobacillus brevis (95.1%, and Sil.9 was Lactobacillus collinoides (92.5%. In conclusion, probiotic candidates isolated from rumen liquor are confirmed as L. paracasei ssp. paracasei (CR1 and CR2, while two other isolates from king grass silage are identified as L. brevis (Sil.3 and L. collinoides (Sil.9. L. brevis (Sil.3 and L. paracasei ssp. paracasei (CR1 has higher inhibition against pathogenic bacteria (E. coli, S

  10. Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation.

    Science.gov (United States)

    Conceição, Luis F R; Ferreres, Federico; Tavares, Rui M; Dias, Alberto C P

    2006-01-01

    Changes in phenolic metabolism after elicitation with Colletotrichum gloeosporioides (CG) has been studied in Hypericum perforatum L. (HP) cell suspension cultures. Soluble phenolics were analysed by HPLC-DAD and HPLC-DAD-MS/MS. HP cultures elicited with the CG elicitor showed a significant increase in xanthone accumulation. Xanthone accumulation increased twelve fold when the cells were primed with methyl-jasmonate (MeJ) or salicylic acid (SA), before elicitation. HP cultures exposed only to MeJ produced a set of flavonoids, the flavones which represent a substantial part (approx. 40%) of the total flavonoids accumulated in these cells. The possible importance of xanthones as a component of defence mechanism of HP against biotic stress is discussed.

  11. Metabolite changes during natural and lactic acid bacteria fermentations in pastes of soybeans and soybean–maize blends

    Science.gov (United States)

    Ng'ong'ola-Manani, Tinna Austen; Østlie, Hilde Marit; Mwangwela, Agnes Mbachi; Wicklund, Trude

    2014-01-01

    The effect of natural and lactic acid bacteria (LAB) fermentation processes on metabolite changes in pastes of soybeans and soybean–maize blends was studied. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and were fermented by lactic acid bacteria (LFP). LAB fermentation processes were facilitated through back-slopping using a traditional fermented gruel, thobwa as an inoculum. Naturally fermented pastes were designated 100S, 90S, and 75S, while LFP were designated 100SBS, 90SBS, and 75SBS. All samples, except 75SBS, showed highest increase in soluble protein content at 48 h and this was highest in 100S (49%) followed by 90SBS (15%), while increases in 100SBS, 90S, and 75S were about 12%. Significant (P acids throughout fermentation were attributed to cysteine in 100S and 90S; and methionine in 100S and 90SBS. A 3.2% increase in sum of total amino acids was observed in 75SBS at 72 h, while decreases up to 7.4% in 100SBS at 48 and 72 h, 6.8% in 100S at 48 h and 4.7% in 75S at 72 h were observed. Increases in free amino acids throughout fermentation were observed in glutamate (NFP and 75SBS), GABA and alanine (LFP). Lactic acid was 2.5- to 3.5-fold higher in LFP than in NFP, and other organic acids detected were acetate and succinate. Maltose levels were the highest among the reducing sugars and were two to four times higher in LFP than in NFP at the beginning of the fermentation, but at 72 h, only fructose levels were significantly (P acid solubility and degradation of phytic acid (85% in NFP and 49% in LFP by 72 h). PMID:25493196

  12. Synergistic Antibacterial Effects of Chitosan-Caffeic Acid Conjugate against Antibiotic-Resistant Acne-Related Bacteria.

    Science.gov (United States)

    Kim, Ji-Hoon; Yu, Daeung; Eom, Sung-Hwan; Kim, Song-Hee; Oh, Junghwan; Jung, Won-Kyo; Kim, Young-Mog

    2017-06-08

    The object of this study was to discover an alternative therapeutic agent with fewer side effects against acne vulgaris, one of the most common skin diseases. Acne vulgaris is often associated with acne-related bacteria such as Propionibacterium acnes , Staphylococcus epidermidis , Staphylococcus aureus , and Pseudomonas aeruginosa . Some of these bacteria exhibit a resistance against commercial antibiotics that have been used in the treatment of acne vulgaris (tetracycline, erythromycin, and lincomycin). In the current study, we tested in vitro antibacterial effect of chitosan-phytochemical conjugates on acne-related bacteria. Three chitosan-phytochemical conjugates used in this study exhibited stronger antibacterial activity than that of chitosan (unmodified control). Chitosan-caffeic acid conjugate (CCA) showed the highest antibacterial effect on acne-related bacteria along with minimum inhibitory concentration (MIC; 8 to 256 μg/mL). Additionally, the MIC values of antibiotics against antibiotic-resistant P. acnes and P. aeruginosa strains were dramatically reduced in combination with CCA, suggesting that CCA would restore the antibacterial activity of the antibiotics. The analysis of fractional inhibitory concentration (FIC) indices clearly revealed a synergistic antibacterial effect of CCA with antibiotics. Thus, the median sum of FIC (∑FIC) values against the antibiotic-resistant bacterial strains ranged from 0.375 to 0.533 in the combination mode of CCA and antibiotics. The results of the present study suggested a potential possibility of chitosan-phytochemical conjugates in the control of infections related to acne vulgaris.

  13. Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting.

    Science.gov (United States)

    Andrés-Barrao, Cristina; Benagli, Cinzia; Chappuis, Malou; Ortega Pérez, Ruben; Tonolla, Mauro; Barja, François

    2013-03-01

    Acetic acid bacteria (AAB) are widespread microorganisms characterized by their ability to transform alcohols and sugar-alcohols into their corresponding organic acids. The suitability of matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) for the identification of cultured AAB involved in the industrial production of vinegar was evaluated on 64 reference strains from the genera Acetobacter, Gluconacetobacter and Gluconobacter. Analysis of MS spectra obtained from single colonies of these strains confirmed their basic classification based on comparative 16S rRNA gene sequence analysis. MALDI-TOF analyses of isolates from vinegar cross-checked by comparative sequence analysis of 16S rRNA gene fragments allowed AAB to be identified, and it was possible to differentiate them from mixed cultures and non-AAB. The results showed that MALDI-TOF MS analysis was a rapid and reliable method for the clustering and identification of AAB species. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Beer-spoiling Ability of Lactic Acid Bacteria and its Relation with Genes horA, horC a hitA

    Czech Academy of Sciences Publication Activity Database

    Matoulková, D.; Kubizniaková, P.; Sigler, Karel

    2012-01-01

    Roč. 58, 11-12 (2012), s. 336-342 ISSN 0023-5830 R&D Projects: GA MŠk 1M0570 Institutional support: RVO:61388971 Keywords : beer spoilage * lactic acid bacteria Subject RIV: EE - Microbiology, Virology

  15. Communication among Oral Bacteria

    Science.gov (United States)

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S.; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities. PMID:12209001

  16. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content

    OpenAIRE

    Chung Myung; Shin Hea; Lee Kyung; Kim Mi; Baek Eun; Jang Seok; Lee Do; Kim Jin; Lee Kang; Ha Nam

    2009-01-01

    Abstract Background Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. Methods In vitro culture experiments were performed to ...

  17. Contribution of modern biotechnology of lactic acid bacteria to development of health-promoting foods

    Directory of Open Access Journals (Sweden)

    Airi Palva

    1998-01-01

    Full Text Available Lactic acid bacteria (LAB are extensively used in the manufacture of a wide variety of fermented dairy, meat, vegetable, bakery and wine products in the food and wine industry as well as in making silage for animal feed. Some LAB strains also have an increasingly important role as health-promoting probiotics. Molecular genetic research of LAB, focused mainly on the basic characterisation of traits essential for the industrial utilisation of these bacteria, forms a solid scientific basis for stabilisation, modification and improvement of these characteristics. The emphasis of this review is on the molecular genetic work done at the research laboratory of the author. Our research team is engaged on, two main projects: molecular genetic and biochemical characterisation of the proteolytic systems of industrial thermophilic lactobacilli and surface layer protein studies to develop protein production systems for food, feed, vaccine and diagnostic purposes.

  18. Scarce Evidence of Yogurt Lactic Acid Bacteria in Human Feces after Daily Yogurt Consumption by Healthy Volunteers

    Science.gov (United States)

    del Campo, Rosa; Bravo, Daniel; Cantón, Rafael; Ruiz-Garbajosa, Patricia; García-Albiach, Raimundo; Montesi-Libois, Alejandra; Yuste, Francisco-Javier; Abraira, Victor; Baquero, Fernando

    2005-01-01

    In a double-blind prospective study including 114 healthy young volunteers, the presence in human feces of the yogurt organisms Lactobacillus delbrueckii and Streptococcus thermophilus after repeated yogurt consumption (15 days) was analyzed by culture, specific PCR, and DNA hybridization of total fecal DNA. Detection of yogurt lactic acid bacteria in total fecal DNA by bacterial culture and PCR assay was consistently negative. DNA compatible with yogurt bacteria was found by hybridization experiments in only 10 (10.52%) of 96 individuals after consumption of fresh yogurt and in 2 (2.10%) of 96 individuals after consumption of pasteurized yogurt (P = 0.01). PMID:15640233

  19. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Elvert, M.; Boetius, A.; Knittel, K.

    2003-01-01

    Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon......-reducing bacteria (SRB) of the Desulfosarcina/Desulfococcus group, which are present in the aggregates of AOM consortia in extremely high numbers, these specific fatty acids appear to provide a phenotypic fingerprint indicative for SRB of this group. Correlating depth profiles of specific fatty acid content...

  20. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  1. A prebiotic role of Ecklonia cava improves the mortality of Edwardsiella tarda-infected zebrafish models via regulating the growth of lactic acid bacteria and pathogen bacteria.

    Science.gov (United States)

    Lee, WonWoo; Oh, Jae Young; Kim, Eun-A; Kang, Nalae; Kim, Kil-Nam; Ahn, Ginnae; Jeon, You-Jin

    2016-07-01

    In this study, the beneficial prebiotic roles of Ecklonia cava (E. cava, EC) were evaluated on the growth of lactic acid bacteria (LAB) and pathogen bacteria and the mortality of pathogen-bacteria infected zebrafish model. The result showed that the original E. cava (EC) led to the highest growth effects on three LABs (Lactobacillus brevis, L. brevis; Lactobacillus pentosus, L. pentosus; Lactobacillus plantarum; L. plantarum) and it was dose-dependent manners. Also, EC, its Celluclast enzymatic (ECC) and 100% ethanol extracts (ECE) showed the anti-bacterial activities on the fish pathogenic bacteria such as (Edwardsiella tarda; E. tarda, Streptococcus iniae; S. iniae, and Vibrio harveyi; V. harveyi). Interestingly, EC induced the higher production of the secondary metabolites from L. plantarum in MRS medium. The secondary metabolites produced by EC significantly inhibited the growth of pathogen bacteria. In further in vivo study, the co-treatment of EC and L. plantarum improved the growth and mortality of E. tarda-infected zebrafish as regulating the expression of inflammatory molecules such as iNOS and COX2. Taken together, our present study suggests that the EC plays an important role as a potential prebiotic and has a protective effect against the infection caused by E. tarda injection in zebrafish. Also, our conclusion from this evidence is that EC can be used and applied as a useful prebiotic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Yeasts and lactic acid bacteria microbiota from masau (Ziziphus mauritiana) fruits and their fermented fruit pulp in Zimbabwe

    NARCIS (Netherlands)

    Nyanga, L.K.; Nout, M.J.R.; Gadaga, T.H.; Theelen, R.M.C.; Boekhout, T.; Zwietering, M.H.

    2007-01-01

    Masau are Zimbabwean wild fruits, which are usually eaten raw and/ or processed into products such as porridge, traditional cakes, mahewu and jam. Yeasts, yeast-like fungi, and lactic acid bacteria present on the unripe, ripe and dried fruits, and in the fermented masau fruits collected from

  3. Effects of rare sugar D-allulose on acid production and probiotic activities of dairy lactic acid bacteria.

    Science.gov (United States)

    Kimoto-Nira, H; Moriya, N; Hayakawa, S; Kuramasu, K; Ohmori, H; Yamasaki, S; Ogawa, M

    2017-07-01

    It has recently been reported that the rare sugar d-allulose has beneficial effects, including the suppression of postprandial blood glucose elevation in humans, and can be substituted for sucrose as a low-calorie food ingredient. To examine the applications of d-allulose in the dairy industry, we investigated the effects of d-allulose on the acid production of 8 strains of yogurt starter (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) and 4 strains of lactococci, including potential probiotic candidates derived from dairy products. Acid production by 2 L. delbrueckii ssp. bulgaricus yogurt starter strains in milk was suppressed by d-allulose, but this phenomenon was also observed in some strains with another sugar (xylose), a sugar alcohol (sorbitol), or both. In contrast, among the dairy probiotic candidates, Lactococcus lactis H61, which has beneficial effects for human skin when drunk as part of fermented milk, was the only strain that showed suppression of acid production in the presence of d-allulose. Strain H61 did not metabolize d-allulose. We did not observe suppression of acid production by strain H61 with the addition of xylose or sorbitol, and xylose and sorbitol were not metabolized by strain H61. The acid production of strain H61 after culture in a constituted medium (tryptone-yeast extract-glucose broth) was also suppressed with the addition of d-allulose, but growth efficiency and sugar fermentation style were not altered. Probiotic activities-such as the angiotensin-converting enzyme inhibitory activity of H61-fermented milk and the superoxide dismutase activity of H61 cells grown in tryptone-yeast extract-glucose broth-were not affected by d-allulose. d-Allulose may suppress acid production in certain lactic acid bacteria without altering their probiotic activity. It may be useful for developing new probiotic dairy products from probiotic strains such as Lactococcus lactis H61. Copyright © 2017 American Dairy Science

  4. Modification of azo dyes by lactic acid bacteria.

    Science.gov (United States)

    Pérez-Díaz, I M; McFeeters, R F

    2009-08-01

    The ability of Lactobacillus casei and Lactobacillus paracasei to modify the azo dye, tartrazine, was recently documented as the result of the investigation on red coloured spoilage in acidified cucumbers. Fourteen other lactic acid bacteria (LAB) were screened for their capability to modify the food colouring tartrazine and other azo dyes of relevance for the textile industry. Most LAB modified tartrazine under anaerobic conditions, but not under aerobic conditions in modified chemically defined media. Microbial growth was not affected by the presence of the azo dyes in the culture medium. The product of the tartrazine modification by LAB was identified as a molecule 111 daltons larger than its precursor by liquid chromatography-mass spectrometry. This product had a purple colour under aerobic conditions and was colourless under anaerobic conditions. It absorbed light at 361 and 553 nm. LAB are capable of anabolizing azo dyes only under anaerobic conditions. IMPACT AND SIGNIFICANCE OF THE STUDY: Although micro-organisms capable of reducing the azo bond on multiple dyes have been known for decades, this is the first report of anabolism of azo dyes by food related micro-organisms, such as LAB.

  5. Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice.

    Science.gov (United States)

    Ewaschuk, Julia B; Walker, John W; Diaz, Hugo; Madsen, Karen L

    2006-06-01

    Probiotics have been shown to reduce the incidence of colon cancer in animal models. The mechanisms responsible for this activity are poorly defined. Conjugated linoleic acids (CLA) are a group of isomers of linoleic acid (LA) possessing anti-inflammatory and anticarcinogenic properties, which can be produced from LA by certain bacterial strains. In this study, the ability of probiotic bacteria to exert anticarcinogenic effects through the production of CLA was assessed. Incubation of probiotic bacteria (VSL3, Lactobacillus acidophilus, L. bulgaricus, L. casei, L. plantarum, Bifidobacterium breve, B. infantis, B. longum, and Streptococcus thermophilus) in the presence of LA yielded CLA production as measured by gas chromatography. Conditioned medium, containing probiotic-produced CLA, reduced viability and induced apoptosis of HT-29 and Caco-2 cells, as assessed by MTT assay and DNA laddering, respectively. Western blotting demonstrated an increased expression of PPARgamma in cells treated with conditioned medium compared with LA alone. Incubation of murine feces with LA after administering VSL3 yielded 100-fold more CLA than feces collected prior to VSL3 feeding. This study supports a role for supplemental probiotics as a strategy both for attenuating inflammation and for preventing colon cancer.

  6. Development and improvement of measuring method for growth rate of intracellular symbiotic acid-fast bacteria using radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Noboru; Fukutomi, Yasuo [National Inst. for Leprosy Research, Higashimurayama, Tokyo (Japan)

    1997-02-01

    The aim of this research group was to investigate the factors which might mediate the growth of mycobacterium lepra and relate to its affinity to the nerve tissue. In this year, constructions of a mycobacterium smegmatis mutant having a high transform ability and a shuttle vector between E. coli and acid-fast bacteria was attempted. From the wild type of m. smegmatis, a highly transformable mutant was obtained and the rate of transformation of the mutant was ca. 10{sup 5} times higher than the parent. And two shuttle vectors for E. coli/acid-fast bacteria; pALKMZErO (6.2 kb) and pHSGM59 (5.4 kb) were constructed. Since the former was unstable in M. smegmatis, the latter vector was used for the following experiments. Expression of `cat` gene cloned by pHSGM59 was identified in M. smegmatis. Further, DNA library of M. leprae was prepared by the use of the vector. Approximately, 1 x 10{sup 4} transformed clones were obtained. The analysis of the plasmids recovered from the clones is under way. (M.N.)

  7. Development and improvement of measuring method for growth rate of intracellular symbiotic acid-fast bacteria using radioisotopes

    International Nuclear Information System (INIS)

    Nakata, Noboru; Fukutomi, Yasuo

    1997-01-01

    The aim of this research group was to investigate the factors which might mediate the growth of mycobacterium lepra and relate to its affinity to the nerve tissue. In this year, constructions of a mycobacterium smegmatis mutant having a high transform ability and a shuttle vector between E. coli and acid-fast bacteria was attempted. From the wild type of m. smegmatis, a highly transformable mutant was obtained and the rate of transformation of the mutant was ca. 10 5 times higher than the parent. And two shuttle vectors for E. coli/acid-fast bacteria; pALKMZErO (6.2 kb) and pHSGM59 (5.4 kb) were constructed. Since the former was unstable in M. smegmatis, the latter vector was used for the following experiments. Expression of 'cat' gene cloned by pHSGM59 was identified in M. smegmatis. Further, DNA library of M. leprae was prepared by the use of the vector. Approximately, 1 x 10 4 transformed clones were obtained. The analysis of the plasmids recovered from the clones is under way. (M.N.)

  8. Attachment of 13 Types of Foodborne Bacteria to Jalapeño and Serrano Peppers and Antibacterial Effect of Roselle Calyx Extracts, Sodium Hypochlorite, Colloidal Silver, and Acetic Acid against These Foodborne Bacteria on Peppers.

    Science.gov (United States)

    Rangel-Vargas, Esmeralda; Gómez-Aldapa, Carlos A; Falfan-Cortes, Reyna N; Rodríguez-Marín, María L; Godínez-Oviedo, Angélica; Acevedo-Sandoval, Otilio A; Castro-Rosas, Javier

    2017-03-01

    Chili peppers are a very important crop in Mexico. However, these peppers have been associated with Salmonella infection outbreaks in the United States, and Salmonella and diarrheagenic Escherichia coli pathotypes have been isolated from jalapeño and serrano peppers in Mexico. To decrease microbial contamination of fruits and vegetables, chemical agents are commonly used; however, chemical agents used to eliminate pathogenic bacteria on vegetables have a limited antimicrobial effect. Roselle ( Hibiscus sabdariffa ) calyces have been reported to have an antimicrobial effect on pathogenic bacteria. In the present study, the antibacterial effect of four roselle calyx extracts (water, methanol, acetone, and ethyl acetate), sodium hypochlorite, colloidal silver, and acetic acid against foodborne bacteria was evaluated on contaminated jalapeño and serrano peppers. The 13 types of foodborne bacteria evaluated were Listeria monocytogenes , Shigella flexneri , Salmonella Typhimurium, Salmonella Typhi, Salmonella Montevideo, Staphylococcus aureus , E. coli O157:H7, five E. coli pathotypes (Shiga toxin producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative), and Vibrio cholerae O1. All 13 types attached to both pepper types, with no significant differences in attachment between jalapeño and serrano peppers. Roselle calyx extract treatment resulted in a greater reduction in levels of all foodborne bacteria than did treatment with sodium hypochlorite, colloidal silver, and acetic acid on both pepper types. Roselle calyx extracts may be a useful for disinfection of chili peppers in the field, processing plants, restaurants, and homes.

  9. Beer spoilage bacteria and hop resistance.

    Science.gov (United States)

    Sakamoto, Kanta; Konings, Wil N

    2003-12-31

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However

  10. High hydrostatic pressure inactivation of total aerobic bacteria, lactic acid bacteria, yeasts in sour Chinese cabbage.

    Science.gov (United States)

    Li, Lin; Feng, Lun; Yi, Junjie; Hua, Cheng; Chen, Fang; Liao, Xiaojun; Wang, Zhengfu; Hu, Xiaosong

    2010-08-15

    This study investigated the inactivation of total aerobic bacteria (TAB), lactic acid bacteria (LAB), yeasts in sour Chinese cabbage (SCC) treated by high hydrostatic pressure (HHP). The pressure level ranged from 200 to 600 MPa and the treatment time were 10-30 min. All samples were stored at 4, 27 and 37 degrees C for 90 days. The pressure level of 200 MPa had no significant impact on these microorganisms. The counts of TAB were significantly reduced by 2.7-4.0 log(10)CFU/g at 400 MPa and 4.2-4.5 log(10)CFU/g at 600 MPa from 6.2 log(10)CFU/g; the counts of LAB were also reduced by 2.4-4.3 log(10)CFU/g at 400 MPa from 7.0 log(10)CFU/g and LAB was completely inactivated at 600 MPa; the counts of yeasts were reduced by 1.5-2.0 log(10)CFU/g at 400 and 600 MPa from 4.2 log(10)CFU/g. Storage temperatures significantly influenced the microbial proliferation in HHP-treated SCC depending on the pressure levels. The surviving TAB and LAB at 400 MPa equaled initial counts after 15-day storage at 27 and 37 degrees C, whereas they were inhibited at 4 degrees C up to 60 days. The surviving TAB at 600 MPa did not grow. Yeasts at 400 and 600 MPa decreased below detectable level after 2 days at all the three storage temperatures. From the microbial safety point of view, the result indicated that HHP at 600 MPa could be used as an alternative preservation method for SCC. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Acid base activity of live bacteria: Implications for quantifying cell wall charge

    Science.gov (United States)

    Claessens, Jacqueline; van Lith, Yvonne; Laverman, Anniet M.; Van Cappellen, Philippe

    2006-01-01

    To distinguish the buffering capacity associated with functional groups in the cell wall from that resulting from metabolic processes, base or acid consumption by live and dead cells of the Gram-negative bacterium Shewanella putrefaciens was measured in a pH stat system. Live cells exhibited fast consumption of acid (pH 4) or base (pH 7, 8, 9, and 10) during the first few minutes of the experiments. At pH 5.5, no acid or base was required to maintain the initial pH constant. The initial amounts of acid or base consumed by the live cells at pH 4, 8, and 10 were of comparable magnitudes as those neutralized at the same pHs by intact cells killed by exposure to gamma radiation or ethanol. Cells disrupted in a French press required higher amounts of acid or base, due to additional buffering by intracellular constituents. At pH 4, acid neutralization by suspensions of live cells stopped after 50 min, because of loss of viability. In contrast, under neutral and alkaline conditions, base consumption continued for the entire duration of the experiments (5 h). This long-term base neutralization was, at least partly, due to active respiration by the cells, as indicated by the build-up of succinate in solution. Qualitatively, the acid-base activity of live cells of the Gram-positive bacterium Bacillus subtilis resembled that of S. putrefaciens. The pH-dependent charging of ionizable functional groups in the cell walls of the live bacteria was estimated from the initial amounts of acid or base consumed in the pH stat experiments. From pH 4 to 10, the cell wall charge increased from near-zero values to about -4 × 10 -16 mol cell -1 and -6.5 × 10 -16 mol cell -1 for S. putrefaciens and B. subtilis, respectively. The similar cell wall charging of the two bacterial strains is consistent with the inferred low contribution of lipopolysaccharides to the buffering capacity of the Gram-negative cell wall (of the order of 10%).

  12. Antimicrobial Activity of Chlorhexidine, Peracetic acid/ Peroxide hydrogen and Alcohol based compound on Isolated Bacteria in Madani Heart Hospital, Tabriz, Azerbaijan, Iran

    Science.gov (United States)

    Ghotaslou, Reza; Bahrami, Nashmil

    2012-01-01

    Purpose: The aim of present study was to investigate the effect of chemical agents on the clinical isolates in Madani Heart Hospital, Tabriz, Iran. Methods: The minimum bactericide concentration (MBC) of disinfectants including chlorhexidine (Fort), peracetic acid (Micro) and an alcohol based compound (Deconex) on selected bacteria at various dilutions were determined by the standard suspension technique. Results: MBC of Micro, Fort and Deconex were 2-128 mg/L, 2-64 mg/L and 4 - 32 mg/L, respectively. The Gram negative bacteria were more resistance to disinfectant relation to Gram positive bacteria. Conclusion: The results showed that these agents are able to eradicate the bacteria and they can be used lonely. PMID:24312771

  13. Antimicrobial Activity of Chlorhexidine, Peracetic acid/ Peroxide hydrogen and Alcohol based compound on Isolated Bacteria in Madani Heart Hospital, Tabriz, Azerbaijan, Iran

    Directory of Open Access Journals (Sweden)

    Reza Ghotaslou

    2012-06-01

    Full Text Available Purpose: The aim of present study was to investigate the effect of chemical agents on the clinical isolates in Madani Heart Hospital, Tabriz, Iran. Methods: The minimum bactericide concentration (MBC of disinfectants including chlorhexidine (Fort, peracetic acid (Micro and an alcohol based compound (Deconex on selected bacteria at various dilutions were determined by the standard suspension technique. Results: MBC of Micro, Fort and Deconex were 2-128 mg/L, 2-64 mg/L and 4 - 32 mg/L, respectively. The Gram negative bacteria were more resistance to disinfectant relation to Gram positive bacteria. Conclusion: The results showed that these agents are able to eradicate the bacteria and they can be used lonely.

  14. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    Science.gov (United States)

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  15. Bacteria recovered from whole-carcass rinsates of broiler carcasses washed in a spray cabinet with lauric acid-potassium hydroxide

    Science.gov (United States)

    The effect of spray washing carcasses with lauric acid (LA)-potassium hydroxide (KOH) on bacteria recovered from whole-carcass-rinsates (WCR) was examined. Skin of carcasses was inoculated with a cecal paste containing antibiotic resistant strains of Escherichia coli, Salmonella Typhimirum, and Camp...

  16. Diversity and functional properties of acid-tolerant bacteria isolated from tea plantation soil of Assam.

    Science.gov (United States)

    Goswami, Gunajit; Deka, Priyadarshini; Das, Pompi; Bora, Sudipta Sankar; Samanta, Ramkrishna; Boro, Robin Chandra; Barooah, Madhumita

    2017-07-01

    In this study, we report on the bacterial diversity and their functional properties prevalent in tea garden soils of Assam that have low pH (3.8-5.5). Culture-dependent studies and phospholipid fatty acid analysis revealed a high abundance of Gram-positive bacteria. Further, 70 acid-tolerant bacterial isolates characterized using a polyphasic taxonomy approach could be grouped to the genus Bacillus, Lysinibacillus, Staphylococcus, Brevundimonas, Alcaligenes, Enterobacter, Klebsiella, Escherichia, and Aeromonas. Among the 70 isolates, 47 most promising isolates were tested for their plant growth promoting activity based on the production of Indole Acetic Acid (IAA), siderophore, and HCN as well as solubilization of phosphate, zinc, and potassium. Out of the 47 isolates, 10 isolates tested positive for the entire aforesaid plant growth promoting tests and further tested for quantitative analyses for production of IAA, siderophore, and phosphate solubilization at the acidic and neutral condition. Results indicated that IAA and siderophore production, as well as phosphate solubilization efficiency of the isolates decreased significantly (P ≤ 0.05) in the acidic environment. This study revealed that low soil pH influences bacterial community structure and their functional properties.

  17. Isolation of Lactic Acid Bacteria That Produce Protease and Bacteriocin-Like Substance From Mud Crab (Scylla sp. Digestive Tract (Isolasi Bakteri Asam Laktat yang Menghasilkan Protease dan Senyawa Bacteriocin-Like dari Saluran Pencernaan Kepiting

    Directory of Open Access Journals (Sweden)

    Heru Pramono

    2015-03-01

    Kata kunci: Bakteri Asam Laktat, Bakteriosin-like substance, Protease, Scylla  sp. Digestive tract is complex environment consist of large amount of bacteria’s species. Fish intestine bacteria consist of aerobic or facultative anaerob bacteria which can produce antibacterial and enzym. The objectives of this research were to isolated lactic acid bacteria that produce bacteriocin-like and protease from mud crab digestive tract. Isolation and characterization of isolates were conducted employing media MRS.  Neutralized cell free supernatant of isolates were tested using disc diffusion agar of against pathogenic and spoilage bacteria to indicate bacteriocin-like-producing lactic acid bacteria. Protease-producing isolate was tested using disc diffusion method in casein agar. Among a hundred isolates, 96 isolates were showed clear zone in MRS+CaCO3,, catalase negative, and Gram positive bacteria. Thirty four isolates produced protease and only four isolates (i.e. IKP29, IKP30, IKP52, and IKP94 showed strong inhibition against pathogenic and spoilage bacteria. There were three patterns of inhibition among three isolates against Bacillus subtilis, Staphylococcus aureus, Eschericia coli, and Salmonella sp. All three isolates showed potential uses for produce starter culture for fishery product fermentation purpose. This is the first report of isolation lactic acid bacteria that produced protease and bacteriocin-like from digestive tract of mud crab. Keywords: Lactic acid bacteria, Bacteriocin-like substance, Protease, Scylla  sp.

  18. Mannitol production by lactic acid bacteria grown in supplemented carob syrup.

    Science.gov (United States)

    Carvalheiro, Florbela; Moniz, Patrícia; Duarte, Luís C; Esteves, M Paula; Gírio, Francisco M

    2011-01-01

    Detailed kinetic and physiological characterisation of eight mannitol-producing lactic acid bacteria, Leuconostoc citreum ATCC 49370, L. mesenteroides subsp. cremoris ATCC19254, L. mesenteroides subsp. dextranicum ATCC 19255, L. ficulneum NRRL B-23447, L. fructosum NRRL B-2041, L. lactis ATCC 19256, Lactobacillus intermedius NRRL 3692 and Lb. reuteri DSM 20016, was performed using a carob-based culture medium, to evaluate their different metabolic capabilities. Cultures were thoroughly followed for 30 h to evaluate consumption of sugars, as well as production of biomass and metabolites. All strains produced mannitol at high yields (>0.70 g mannitol/g fructose) and volumetric productivities (>1.31 g/l h), and consumed fructose and glucose simultaneously, but fructose assimilation rate was always higher. The results obtained enable the studied strains to be divided mainly into two groups: one for which glucose assimilation rates were below 0.78 g/l h (strains ATCC 49370, ATCC 19256 and ATCC 19254) and the other for which they ranged between 1.41 and 1.89 g/l h (strains NRRL B-3692, NRRL B-2041, NRRL B-23447 and DSM 20016). These groups also exhibited different mannitol production rates and yields, being higher for the strains with faster glucose assimilation. Besides mannitol, all strains also produced lactic acid and acetic acid. The best performance was obtained for L. fructosum NRRL B-2041, with maximum volumetric productivity of 2.36 g/l h and the highest yield, stoichiometric conversion of fructose to mannitol.

  19. Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages.

    Science.gov (United States)

    Rubio, Raquel; Jofré, Anna; Martín, Belén; Aymerich, Teresa; Garriga, Margarita

    2014-04-01

    A total of 109 lactic acid bacteria isolated from infant faeces were identified by partial 16S rRNA, cpn60 and/or pheS sequencing. Lactobacillus was the most prevalent genus, representing 48% of the isolates followed by Enterococcus (38%). Lactobacillus gasseri (21%) and Enterococcus faecalis (38%) were the main species detected. A further selection of potential probiotic starter cultures for fermented sausages focused on Lactobacillus as the most technologically relevant genus in this type of product. Lactobacilli strains were evaluated for their ability to grow in vitro in the processing conditions of fermented sausages and for their functional and safety properties, including antagonistic activity against foodborne pathogens, survival from gastrointestinal tract conditions (acidity, bile and pancreatin), tyramine production, antibiotic susceptibility and aggregation capacity. The best strains according to the results obtained were Lactobacillus casei/paracasei CTC1677, L. casei/paracasei CTC1678, Lactobacillus rhamnosus CTC1679, L. gasseri CTC1700, L. gasseri CTC1704, Lactobacillus fermentum CTC1693. Those strains were further assayed as starter cultures in model sausages. L. casei/paracasei CTC1677, L. casei/paracasei CTC1678 and L. rhamnosus CTC1679 were able to lead the fermentation and dominate (levels ca. 10(8) CFU/g) the endogenous lactic acid bacteria, confirming their suitability as probiotic starter cultures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Effect of kaolin silver complex on the control of populations of Brettanomyces and acetic acid bacteria in wine.

    Science.gov (United States)

    Izquierdo-Cañas, P M; López-Martín, R; García-Romero, E; González-Arenzana, L; Mínguez-Sanz, S; Chatonnet, P; Palacios-García, A; Puig-Pujol, A

    2018-05-01

    In this work, the effects of kaolin silver complex (KAgC) have been evaluated to replace the use of SO 2 for the control of spoilage microorganisms in the winemaking process. The results showed that KAgC at a dose of 1 g/L provided effective control against the development of B. bruxellensis and acetic acid bacteria. In wines artificially contaminated with an initial population of B. bruxellensis at 10 4 CFU/mL, a concentration proven to produce off flavors in wine, only residual populations of the contaminating yeast remained after 24 days of contact with the additive. Populations of acetic bacteria inoculated into wine at concentrations of 10 2 and 10 4  CFU/mL were reduced to negligible levels after 72 h of treatment with KAgC. The antimicrobial effect of KAgC against B. bruxellensis and acetic bacteria was also demonstrated in a wine naturally contaminated by these microorganisms, decreasing their population in a similar way to a chitosan treatment. Related to this effect, wines with KAgC showed lower concentrations of acetic acid and 4-ethyl phenol than wines without KAgC. The silver concentration from KAgC that remained in the finished wines was below the legal limits. These results demonstrated the effectiveness of KAgC to reduce spoilage microorganisms in winemaking.

  1. Probiotic bacteria: selective enumeration and survival in dairy foods.

    Science.gov (United States)

    Shah, N P

    2000-04-01

    A number of health benefits have been claimed for probiotic bacteria such as Lactobacillus acidophilus, Bifidobacterium spp., and Lactobacillus casei. Because of the potential health benefits, these organisms are increasingly incorporated into dairy foods. However, studies have shown low viability of probiotics in market preparations. In order to assess viability of probiotic bacteria, it is important to have a working method for selective enumeration of these probiotic bacteria. Viability of probiotic bacteria is important in order to provide health benefits. Viability of probiotic bacteria can be improved by appropriate selection of acid and bile resistant strains, use of oxygen impermeable containers, two-step fermentation, micro-encapsulation, stress adaptation, incorporation of micronutrients such as peptides and amino acids and by sonication of yogurt bacteria. This review will cover selective enumeration and survival of probiotic bacteria in dairy foods.

  2. Improvement of Folate Biosynthesis by Lactic Acid Bacteria Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Norfarina Muhamad Nor

    2010-01-01

    Full Text Available Lactic acid bacteria (Lactococcus lactis NZ9000, Lactococcus lactis MG1363, Lactobacillus plantarum I-UL4 and Lactobacillus johnsonii DSM 20553 have been screened for their ability to produce folate intracellularly and/or extracellularly. L. plantarum I-UL4 was shown to be superior producer of folate compared to other strains. Statistically based experimental designs were used to optimize the medium formulation for the growth of L. plantarum I-UL4 and folate biosynthesis. The optimal values of important factors were determined by response surface methodology (RSM. The effects of carbon sources, nitrogen sources and para-aminobenzoic acid (PABA concentrations on folate biosynthesis were determined prior to RSM study. The biosynthesis of folate by L. plantarum I-UL4 increased from 36.36 to 60.39 µg/L using the optimized medium formulation compared to the selective Man de Rogosa Sharpe (MRS medium. Conditions for the optimal growth of L. plantarum I-UL4 and folate biosynthesis as suggested by RSM were as follows: lactose 20 g/L, meat extract 16.57 g/L and PABA 10 µM.

  3. The role of lactic acid bacteria (Lactobacillus sp yel133) from beef in inhibiting of microbial contaminants on various fillers of starter culture

    Science.gov (United States)

    Yunilas; Mirwandhono, E.

    2018-02-01

    The role of Lactic Acid Bacteria (LAB) on the starter culture can be seen from the ability to grow and suppress the growth of microbial contaminants (fungi). The research aimed to investigate the role of LAB (Lactobacillus sp YEL133) in inhibiting microbial contaminants (fungi) on starter cultures of various fillers. The materials used in this research was Lactobacillus sp YEL133 from beef and various fillers (rice flour, corn starch and wheat flour). The research methods used completely randomized design (CRD) with 3 treatments and 4 replications. The treatments of this research was P1(rice flour), P2 (corn starch) and P3 (wheat flour) that inoculated with Lactobacillus sp YEL133. Parameters which is observed such as: growth of lactic acid bacteria, total microbes and total fungi as microbial contaminants. The results showed that the starter culture with a filler material of rice flour produce lactic acid bacteria and microbes were highly significant (P wheat flour, as well as able to suppress the growth of microbial contaminants (fungi). The conclusion of the research is the use Lactobacillus sp YEL133 can suppress the growth of fungi on the starter culture using rice flour.

  4. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Weak Organic Acids Decrease Borrelia burgdorferi Cytoplasmic pH, Eliciting an Acid Stress Response and Impacting RpoN- and RpoS-Dependent Gene Expression

    Directory of Open Access Journals (Sweden)

    Daniel P. Dulebohn

    2017-09-01

    Full Text Available The spirochete Borrelia burgdorferi survives in its tick vector, Ixodes scapularis, or within various hosts. To transition between and survive in these distinct niches, B. burgdorferi changes its gene expression in response to environmental cues, both biochemical and physiological. Exposure of B. burgdorferi to weak monocarboxylic organic acids, including those detected in the blood meal of fed ticks, decreased the cytoplasmic pH of B. burgdorferi in vitro. A decrease in the cytoplasmic pH induced the expression of genes encoding enzymes that have been shown to restore pH homeostasis in other bacteria. These include putative coupled proton/cation exchangers, a putative Na+/H+ antiporter, a neutralizing buffer transporter, an amino acid deaminase and a proton exporting vacuolar-type VoV1 ATPase. Data presented in this report suggested that the acid stress response triggered the expression of RpoN- and RpoS-dependent genes including important virulence factors such as outer surface protein C (OspC, BBA66, and some BosR (Borreliaoxidative stress regulator-dependent genes. Because the expression of virulence factors, like OspC, are so tightly connected by RpoS to general cellular stress responses and cell physiology, it is difficult to separate transmission-promoting conditions in what is clearly a multifactorial and complex regulatory web.

  6. Glutamic acid and folic acid production in aerobic and anaerobic probiotics

    Directory of Open Access Journals (Sweden)

    Zohre Taghi Abadi

    2018-03-01

    Full Text Available Introduction:From an industrial application or commercial point of view, glutamic acid is one of the most important amino acids and its microbial production has been reported from some bacteria. Regarding the role of probiotics to modulate human health and the ever-increasing demand of prebiotics in the food industry, in the current study, production of glutamic acid and folic acid from three probiotic bacteria (Bifidobacterium, Bifidobacterium bifidum, Sporolactobacillus was evaluated for the first time. Materials and methods: MRS broth and exclusive media was used for probiotic culture. The glutamic acid was identified using thin-layer chromatography and folic acid production was measured by folate kit. Each bacterium in terms of quality and quantity were measured by high pressure liquid chromatography. Results: Production of glutamic acid confirmed is based on the thin layer chromatography analysis and high pressure liquid chromatography results. In addition, it was observed that all three probiotics produce folic acid. The prevalence of folate in Bifidobacterium was measured as 315 mg/ml that was more than two other bacteria. Discussion and conclusion: To the best of our knowledge, this is the first report of microbial production of glutamic acid and folate from the probiotic bacteria. These beneficial bacteria can be used as a good source for mass production of these valuable compounds.

  7. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria.

    Science.gov (United States)

    LeBlanc, Jean Guy; Chain, Florian; Martín, Rebeca; Bermúdez-Humarán, Luis G; Courau, Stéphanie; Langella, Philippe

    2017-05-08

    The aim of this review is to summarize the effect in host energy metabolism of the production of B group vitamins and short chain fatty acids (SCFA) by commensal, food-grade and probiotic bacteria, which are also actors of the mammalian nutrition. The mechanisms of how these microbial end products, produced by these bacterial strains, act on energy metabolism will be discussed. We will show that these vitamins and SCFA producing bacteria could be used as tools to recover energy intakes by either optimizing ATP production from foods or by the fermentation of certain fibers in the gastrointestinal tract (GIT). Original data are also presented in this work where SCFA (acetate, butyrate and propionate) and B group vitamins (riboflavin, folate and thiamine) production was determined for selected probiotic bacteria.

  8. Optimization of β-galactosidase production from lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Carević Milica

    2015-01-01

    Full Text Available β-galactosidase, commonly known as lactase, represents commercially important enzyme that is prevalently used for lactose hydrolysis in milk and whey. To the date, it has been isolated from various sources. In this study different strains of lactic acid bacteria were assessed for their β-galactosidase productivity, and Lactobacillus acidophilus ATCC 4356 resulted with the highest production potential. Thereafter, optimal conditions for accomplishing high yields of β-galactosidase activity were determined. Maximal specific activity (1.01 IU mL-1 was accomplished after 2 days shake flask culture fermentation (150 rpm at 37ºC, with modified Man Rogosa Sharpe culture broth using lactose (2.5% as sole carbon source. Finally, in order to intensify release of intracellular β-galactosidase different mechanical and chemical methods were conducted. Nevertheless, vortexing with quartz sand (150 μm as abrasive was proven to be the most efficient method of cell disruption. The optimum temperature of obtained β-galactosidase was 45°C and the optimum range pH 6.5-7.5.

  9. Separation of viable lactic acid bacteria from fermented milk

    Directory of Open Access Journals (Sweden)

    Tomohiko Nishino

    2018-04-01

    Full Text Available Probiotics are live microorganisms that provide health benefits to humans. Some lactic acid bacteria (LAB are probiotic organisms used in the production of fermented foods, such as yogurt, cheese, and pickles. Given their widespread consumption, it is important to understand the physiological state of LAB in foods such as yogurt. However, this analysis is complicated, as it is difficult to separate the LAB from milk components such as solid curds, which prevent cell separation by dilution or centrifugation. In this study, we successfully separated viable LAB from yogurt by density gradient centrifugation. The recovery rate was >90 %, and separation was performed until the stationary phase. Recovered cells were observable by microscopy, meaning that morphological changes and cell viability could be directly detected at the single-cell level. The results indicate that viable LAB can be easily purified from fermented milk. We expect that this method will be a useful tool for the analysis of various aspects of probiotic cells, including their enzyme activity and protein expression. Keywords: Food analysis, Microbiology

  10. Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two different Weissella confusa strains from soya

    NARCIS (Netherlands)

    Malik, Amarila; Radji, Maksum; Kralj, Slavko; Dijkhuizen, Lubbert

    2009-01-01

    Homopolysaccharide (glucan and fructan) synthesis from sucrose by sucrase enzymes in lactic acid bacteria (LAB) has been well studied in the genera Leuconostoc, Streptococcus and Lactobacillus. This study aimed to identify and characterize genes encoding glucansucrase/glucosyltransferase (GTF) and

  11. Investigating on the fermentation behavior of six lactic acid bacteria strains in barley malt wort reveals limitation in key amino acids and buffer capacity.

    Science.gov (United States)

    Nsogning, Sorelle Dongmo; Fischer, Susann; Becker, Thomas

    2018-08-01

    Understanding lactic acid bacteria (LAB) fermentation behavior in malt wort is a milestone towards flavor improvement of lactic acid fermented malt beverages. Therefore, this study aims to outline deficiencies that may exist in malt wort fermentation. First, based on six LAB strains, cell viability and vitality were evaluated. Second, sugars, organic acids, amino acids, pH value and buffering capacity (BC) were monitored. Finally, the implication of key amino acids, fructose and wort BC on LAB growth was determined. Short growth phase coupled with prompt cell death and a decrease in metabolic activity was observed. Low wort BC caused rapid pH drop with lactic acid accumulation, which conversely increased the BC leading to less pH change at late-stage fermentation. Lactic acid content (≤3.9 g/L) was higher than the reported inhibitory concentration (1.8 g/L). Furthermore, sugars were still available but fructose and key amino acids lysine, arginine and glutamic acid were considerably exhausted (≤98%). Wort supplementations improved cell growth and viability leading to conclude that key amino acid depletion coupled with low BC limits LAB growth in malt wort. Then, a further increase in organic acid reduces LAB viability. This knowledge opens doors for LAB fermentation process optimization in malt wort. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Bile Salt and Acid Tolerant of Lactic Acid Bacteria Isolated from Proventriculus of Broiler Chicken

    Directory of Open Access Journals (Sweden)

    E. Damayanti

    2014-08-01

    Full Text Available The aim of this research was to obtain the lactic acid bacteria (LAB as probiotic candidates which have resistance to bile salt and acid condition. LAB was obtained using isolation method from proventriculus of broiler chicken. Selective MRS media with 0.2% CaCO3 addition were used for LAB isolation using pour plate sampling method under anaerobic condition. The result showed that four selected isolates had morphological and biochemical characteristics as LAB. The selected LAB was characterized as follow: antibacterial activities, antibiotic sensitivity, resistance on bile salt, gastric juice and acid condition, and biochemical identification. Antibacterial activities assay of cell free supernatant was confirmed using disc paper diffusion method which was arranged on factorial design and each treatment consisted of three replications. The cell free supernatant of LAB isolates had antibacterial activities against Escherichia coli, Pseudomonas aerugenosa, and Salmonella pullorum. Molecular identification procedure using 16S rRNA sequence analysis showed that R01 and R02 as Pediococcus acidilactici. The viability of the two isolates were tested by acid pH (pH 1, 2, and 3, gastric juice pH 2, and bile salt condition for digestives tract simulation. The result showed that R01 and R02 had a high viability percentages at pH 1, 2, and 3 (95.45%, 99.49%, 104.01%, and 67.17%, 120.74%, 103.4%, respectively and at bile salt simulation for 1-2 hours (100.35%-102.71% and 100.02%-102.65%, respectively, but at gastric juice simulation for 1-2 hours, the P. acidilactici R01 had higher viability than P. acidilactici R02 (59.69%-76.53% versus 43.57%-40.69%, respectively. In the antibiotic sensitivity test for three antibiotics (i.e. erythromicin 15 µg, penicillin G 10 µg, and streptomycin 10 µg, the P. acidilactici R02 showed resistance to Streptomycin and Penicillin. It is concluded that P. acidilactici R01 and P. acidilactici R02 isolated from proventriculus

  13. Labelled Thioamino Acids to Indicate the Synthetic Activity of the Rumen Bacteria in In-Vitro Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Panic, B.; Jovanovic, M.; Cuperlovic, M.; Djordjevic, D. [Institute for the Application of Nuclear Energy in Agriculture, Veterinary Medicine and Forestry, Belgrade, Yugoslavia (Serbia)

    1968-07-01

    The synthetic activity of rumen bacteria has been studied in vitro through the investigation of cystine and methionine concentration and their specific activity. {sup 35}S-sulphate has been used as a radioactive tracer. Two diets, different in the level of nutrients - energy and protein - were added to the artificial tumen. The incubation with bacteria from the rumen content of the cows, fed for four weeks with the same diet, lasted 19 h. The diet with the higher level of protein and energy increased the cystine content (per 100 mg of N{sub 2}) by 23.3% and the methionine content by 39.4%. The concentration of radioactive cystine was increased at the same percentage rate by 25%, but radioactive methionine was much lower and increased only 6.4%. The difference between the specific activities of the investigated amino acids can be explained by the different catabolism rate and utilization of dietary cystine, and methionine by the rumen bacterial flora. Since the dietary methionine is catabolized slowly, it can, especially by the use of the diets with a high protein level, significantly decrease the specific activity of the radioactive methionine synthesized by rumen bacteria. Therefore, the incorporation of {sup 35}S into the cystine represents a more reliable indicator of the synthetic activity of the rumen bacteria. (author)

  14. AKTIVITAS PROTEOLITIK BAKTERI ASAM LAKTAT DALAM FERMENTASI SUSU KEDELAI [Proteolytic Activities of Lactic Acid Bacteria in Fermentation of Soymilk

    OpenAIRE

    Yusmarini1,2)*; R. Indrati1); T. Utami1); Y. Marsono1)

    2010-01-01

    Some lactic acid bacteria (LAB) strains had been isolated from spontaneously fermented soymilk which have proteolytic system. The purpose of this research was to study ability of isolates in fermentation of soymilk. The changes in bacterial growth, pH, titrable acidity, and proteolytic activities during fermentation were examined. Isolates of Lactobacillus plantarum 1 R.1.3.2; L. plantarum 1 R.11.1.2 and L. acidophilus FNCC 0051 (as a control) were capable growing in soymilk. The results indi...

  15. Isolation of oxalotrophic bacteria associated with Varroa destructor mites.

    Science.gov (United States)

    Maddaloni, M; Pascual, D W

    2015-11-01

    Bacteria associated with varroa mites were cultivated and genotyped by 16S RNA. Under our experimental conditions, the cultivable bacteria were few in number, and most of them proved to be fastidious to grow. Cultivation with seven different media under O2 /CO2 conditions and selection for colony morphology yielded a panel of species belonging to 13 different genera grouped in two different phyla, proteobacteria and actinobacteria. This study identified one species of actinobacteria that is a known commensal of the honey bee. Some isolates are oxalotrophic, a finding that may carry ramifications into the use of oxalic acid to control the number of phoretic mites in the managed colonies of honey bees. Oxalic acid, legally or brevi manu, is widely used to control phoretic Varroa destructor mites, a major drive of current honey bees' colony losses. Unsubstantiated by sanctioned research are rumours that in certain instances oxalic acid is losing efficacy, forcing beekeepers to increase the frequency of treatments. This investigation fathoms the hypothesis that V. destructor associates with bacteria capable of degrading oxalic acid. The data show that indeed oxalotrophy, a rare trait among bacteria, is common in bacteria that we isolated from V. destructor mites. This finding may have ramifications in the use of oxalic acid as a control agent. © 2015 The Society for Applied Microbiology.

  16. Vibrio elicits targeted transcriptional responses from copepod hosts.

    Science.gov (United States)

    Almada, Amalia A; Tarrant, Ann M

    2016-06-01

    Copepods are abundant crustaceans that harbor diverse bacterial communities, yet the nature of their interactions with microbiota are poorly understood. Here, we report that Vibrio elicits targeted transcriptional responses in the estuarine copepod Eurytemora affinis We pre-treated E. affinis with an antibiotic cocktail and exposed them to either a zooplankton specialist (Vibrio sp. F10 9ZB36) or a free-living species (Vibrio ordalii 12B09) for 24 h. We then identified via RNA-Seq a total of 78 genes that were differentially expressed following Vibrio exposure, including homologs of C-type lectins, chitin-binding proteins and saposins. The response differed between the two Vibrio treatments, with the greatest changes elicited upon inoculation with V. sp. F10 We suggest that these differentially regulated genes play important roles in cuticle integrity, the innate immune response, and general stress response, and that their expression may enable E. affinis to recognize and regulate symbiotic vibrios. We further report that V. sp. F10 culturability is specifically altered upon colonization of E. affinis These findings suggest that rather than acting as passive environmental vectors, copepods discriminately interact with vibrios, which may ultimately impact the abundance and activity of copepod-associated bacteria. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Aquaculture in Cameroon and potential of lactic acid bacteria to be used as diseases controlling agents. A Review

    Directory of Open Access Journals (Sweden)

    Kaktchan, Pierre Marie

    2015-08-01

    Full Text Available Aquaculture is the world’s fastest growing food production sector and can be a great solution to the massive demand for protein of animal due to increase in the Cameroonian population. This review summarizes the past and present status of fish aquaculture in Cameroon, the new challenges for intensifying fish production and evaluates the possibility of using lactic acid bacteria as disease control agents in order to overcome these challenges. Fish farming started in Cameroon in the late 1940s, and has seen little progress since the last ten years, but the production is still insufficient to meet the demand of the population estimated at 400 000 tons in 2015. In order to reduce massive fish imports, Cameroon plans to produce 100 000 tons of fish by commercial aquaculture. Achieving this task needs quality and quantity of fingerlings, and probiotic lactic acid bacteria instead of antibiotics could be used as disease control agents in young fish hatching and ponds in order to boost and ensure quality and quantity production.

  18. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    Science.gov (United States)

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF.

  19. Identification of lactic acid bacteria isolated from Tarhana, a traditional Turkish fermented food

    DEFF Research Database (Denmark)

    Sengun, Ilkin Yucel; Nielsen, Dennis Sandris; Karapinar, Mehmet

    2009-01-01

    Tarhana is a traditional fermented product produced from a mixture of spontaneously fermented yogurt and wheat flour in Turkey. The aims of the present study were to enumerate and identify for the first time by molecular biology-based methods predominant lactic acid bacteria (LAB) isolated during...... processing of Tarhana. Samples were collected from eight different regions of Turkey. In order to explore the relationship between raw material and the microbiology of Tarhana, yogurt and wheat flour were also analyzed. A total of 226 Gram-positive and catalase-negative isolates were obtained from MRS, M17...... and S. thermophilus was found to be the yogurt....

  20. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Choi, Jae Im; Yoon, Kyoung-Hye; Subbammal Kalichamy, Saraswathi; Yoon, Sung-Sik; Il Lee, Jin

    2016-03-01

    Animal predators can track prey using their keen sense of smell. The bacteriovorous nematode Caenorhabditis elegans employs sensitive olfactory sensory neurons that express vertebrate-like odor receptors to locate bacteria. C. elegans displays odor-related behaviors such as attraction, aversion and adaptation, but the ecological significance of these behaviors is not known. Using a combination of food microbiology and genetics, we elucidate a possible predator-prey relationship between C. elegans and lactic acid bacteria (LAB) in rotting citrus fruit. LAB produces the volatile odor diacetyl as an oxidized by-product of fermentation in the presence of citrate. We show that C. elegans is attracted to LAB when grown on citrate media or Citrus medica L, commonly known as yuzu, a citrus fruit native to East Asia, and this attraction is mediated by the diacetyl odor receptor, ODR-10. We isolated a wild LAB strain and a wild C. elegans-related nematode from rotten yuzu, and demonstrate that the wild nematode was attracted to the diacetyl produced by LAB. These results not only identify an ecological function for a C. elegans olfactory behavior, but contribute to the growing understanding of ecological relationships between the microbial and metazoan worlds.

  1. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans

    Science.gov (United States)

    Choi, Jae Im; Yoon, Kyoung-hye; Subbammal Kalichamy, Saraswathi; Yoon, Sung-Sik; Il Lee, Jin

    2016-01-01

    Animal predators can track prey using their keen sense of smell. The bacteriovorous nematode Caenorhabditis elegans employs sensitive olfactory sensory neurons that express vertebrate-like odor receptors to locate bacteria. C. elegans displays odor-related behaviors such as attraction, aversion and adaptation, but the ecological significance of these behaviors is not known. Using a combination of food microbiology and genetics, we elucidate a possible predator–prey relationship between C. elegans and lactic acid bacteria (LAB) in rotting citrus fruit. LAB produces the volatile odor diacetyl as an oxidized by-product of fermentation in the presence of citrate. We show that C. elegans is attracted to LAB when grown on citrate media or Citrus medica L, commonly known as yuzu, a citrus fruit native to East Asia, and this attraction is mediated by the diacetyl odor receptor, ODR-10. We isolated a wild LAB strain and a wild C. elegans-related nematode from rotten yuzu, and demonstrate that the wild nematode was attracted to the diacetyl produced by LAB. These results not only identify an ecological function for a C. elegans olfactory behavior, but contribute to the growing understanding of ecological relationships between the microbial and metazoan worlds. PMID:26241504

  2. The evolution of lactic acid bacteria community during the development of mature sourdough

    Directory of Open Access Journals (Sweden)

    Savić Dragiša S.

    2009-01-01

    Full Text Available In order to follow the composition and changes in lactic acid bacteria (LAB population of rye flour sourdough that was continuously propagated by a repeated inoculation, sixty-two strains of LAB were isolated and characterized. The LAB were the only bacteria detected, both at the end of the second propagation step and in the stage of mature sourdough (after two weeks of continuous daily refreshment. The stable ecological system in rye sourdough could be established from the second propagation step onward. The predominant genera of LAB during the development of sourdough were lactobacilli, which were grouped in eight clusters. Heterofermentative lactobacilli were in majority in both propagation step two and a mature sourdough participating 56% and 70% of total bacterial count, respectively. The identification based on a phenotypic characterization that was carried out by using a set of 36 tests, showed that the lactobacilli contained in the two sourdough steps did not clearly belong to any known species of the genus Lactobacillus. In addition, the structure of the bacterial population were monitored by two statistical techniques (Hierachical Cluster Analysis and Principal Component Analysis, being applied to phenotypical characteristics of the isolates.

  3. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid.

    Science.gov (United States)

    O'Shea, Eileen F; Cotter, Paul D; Stanton, Catherine; Ross, R Paul; Hill, Colin

    2012-01-16

    The mechanisms by which intestinal bacteria achieve their associated health benefits can be complex and multifaceted. In this respect, the diverse microbial composition of the human gastrointestinal tract (GIT) provides an almost unlimited potential source of bioactive substances (pharmabiotics) which can directly or indirectly affect human health. Bacteriocins and fatty acids are just two examples of pharmabiotic substances which may contribute to probiotic functionality within the mammalian GIT. Bacteriocin production is believed to confer producing strains with a competitive advantage within complex microbial environments as a consequence of their associated antimicrobial activity. This has the potential to enable the establishment and prevalence of producing strains as well as directly inhibiting pathogens within the GIT. Consequently, these antimicrobial peptides and the associated intestinal producing strains may be exploited to beneficially influence microbial populations. Intestinal bacteria are also known to produce a diverse array of health-promoting fatty acids. Indeed, certain strains of intestinal bifidobacteria have been shown to produce conjugated linoleic acid (CLA), a fatty acid which has been associated with a variety of systemic health-promoting effects. Recently, the ability to modulate the fatty acid composition of the liver and adipose tissue of the host upon oral administration of CLA-producing bifidobacteria and lactobacilli was demonstrated in a murine model. Importantly, this implies a potential therapeutic role for probiotics in the treatment of certain metabolic and immunoinflammatory disorders. Such examples serve to highlight the potential contribution of pharmabiotic production to probiotic functionality in relation to human health maintenance. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Photochemical Production and Behavior of Hydroperoxyacids in Heterotrophic Bacteria Attached to Senescent Phytoplanktonic Cells

    Directory of Open Access Journals (Sweden)

    Frédéric Vaultier

    2013-06-01

    Full Text Available The photooxidation of cellular monounsaturated fatty acids was investigated in senescent phytoplanktonic cells (Emiliania huxleyi and in their attached bacteria under laboratory controlled conditions. Our results indicated that UV-visible irradiation of phytodetritus induced the photooxidation of oleic (produced by phytoplankton and bacteria and cis-vaccenic (specifically produced by bacteria acids. These experiments confirmed the involvement of a substantial singlet oxygen transfer from senescent phytoplanktonic cells to attached bacteria, and revealed a significant correlation between the concentration of chlorophyll, a photosensitizer, in the phytodetritus and the photodegradation state of bacteria. Hydroperoxyacids (fatty acid photoproducts appeared to be quickly degraded to ketoacids and hydroxyacids in bacteria and in phytoplanktonic cells. This degradation involves homolytic cleavage (most likely induced by UV and/or transition metal ions and peroxygenase activity (yielding epoxy acids.

  5. Diversity and Stability of Lactic Acid Bacteria in Rye Sourdoughs of Four Bakeries with Different Propagation Parameters

    OpenAIRE

    Viiard, Ene; Bessmeltseva, Marianna; Simm, Jaak; Talve, Tiina; Aasp?llu, Anu; Paalme, Toomas; Sarand, Inga

    2016-01-01

    We identified the lactic acid bacteria within rye sourdoughs and starters from four bakeries with different propagation parameters and tracked their dynamics for between 5-28 months after renewal. Evaluation of bacterial communities was performed using plating, denaturing gradient gel electrophoresis, and pyrosequencing of 16S rRNA gene amplicons. Lactobacillus amylovorus and Lactobacillus frumenti or Lactobacillus helveticus, Lactobacillus pontis and Lactobacillus panis prevailed in sourdoug...

  6. Medical and Personal Care Applications of Bacteriocins Produced by Lactic Acid Bacteria

    Science.gov (United States)

    Dicks, L. M. T.; Heunis, T. D. J.; van Staden, D. A.; Brand, A.; Noll, K. Sutyak; Chikindas, M. L.

    The frequent use of antibiotics has led to a crisis in the antibiotic ­resistance of pathogens associated with humans and animals. Antibiotic resistance and the emergence of multiresistant bacterial pathogens have led to the investigation of alternative antimicrobial agents to treat and prevent infections in both humans and animals. Research on antimicrobial peptides, with a special interest on bacteriocins of lactic acid bacteria, is entering a new era with novel applications other than food preservation. Many scientists are now focusing on the application of these peptides in medicinal and personal care products. However, it is difficult to assess the success of such ventures due to the dearth of information that has been published and the lack of clinical trials.

  7. The influences of fish infusion broth on the biogenic amines formation by lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Esmeray Küley

    2013-01-01

    Full Text Available The influences of fish infusion decarboxylase broth (IDB on biogenic amines (BA formation by lactic acid bacteria (LAB were investigated. BA productions by single LAB strains were tested in five different fish (anchovy, mackerel, white shark, sardine and gilthead seabream IDB. The result of the study showed that significant differences in ammonia (AMN and BA production were observed among the LAB strains in fish IDB (p < 0.05. The highest AMN and TMA production by LAB strains were observed for white shark IDB. The all tested bacteria had decarboxylation activity in fish IDB. The uppermost accumulated amines by LAB strains were tyramine (TYM, dopamine, serotonin and spermidine. The maximum histamine production was observed in sardine (101.69 mg/L and mackerel (100.84 mg/L IDB by Leuconostoc mesenteroides subsp. cremoris and Pediococcus acidophilus, respectively. Lactobacillus delbrueckii subsp. lactis and Pediococcus acidophilus had a high TYM producing capability (2943 mg/L and 1157 mg/L in sardine IDB.

  8. An in vitro study on the effect of free amino acids alone or in combination with nisin on biofilms as well as on planktonic bacteria of Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Zhongchun Tong

    Full Text Available Free D-amino acids (D-AAs are one of the most striking features of the peptidoglycan composition in bacteria and play a key role in regulating and disassembling bacterial biofilms. Previous studies have indicated that the antimicrobial peptide nisin can inhibit the growth of the cariogenic bacteria Streptococcus mutans. The present study investigated the effect of free amino acids either alone or in combination with nisin on biofilm and on planktonic S. mutans bacteria. The results of the MIC and MBC analyses showed that D-cysteine (Cys, D- or L-aspartic acid (Asp, and D- or L-glutamic acid (Glu significantly improve the antibacterial activity of nisin against S. mutans and that the mixture of D-Cys, D-Asp, and D-Glu (3D-AAs and the mixture of L-Cys, L-Asp, and L-Glu (3L-AAs at a concentration of 40 mM can prevent S. mutans growth. Crystal violet staining showed that the D- or L-enantiomers of Cys, Asp, and Glu at a concentration of 40 mM can inhibit the formation of S. mutans biofilms, and their mixture generated a stronger inhibition than the components alone. Furthermore, the mixture of the three D-AAs or L-AAs may improve the antibacterial activity of nisin against S. mutans biofilms. This study underscores the potential of free amino acids for the enhancement of the antibacterial activity of nisin and the inhibition of the cariogenic bacteria S. mutans and biofilms.

  9. Probiotic lactic acid bacteria for applications in vegetarian food products

    Directory of Open Access Journals (Sweden)

    Charernjiratrakul, W.

    2007-07-01

    Full Text Available Total of 225 isolates of lactic acid bacteria were isolated from 152 samples of various fermented foods. The strains were investigated for their probiotic properties based on stability in bile salt (0.30% and high acidity (pH 3, growth under both aerobic and anaerobic conditions, ability to grow without vitamin B12. According to the above criteria, 40 isolates were selected. Using an agar spot method, 16 isolates were able to inhibit Salmonella typhimurium, S. typhi, S. enteritidis, S. paratyphi and 4 strains of E. coli O157 : H7 as clear zone greater than 10 mm. Moreover, utilization of protein or fat or starch was also considered. Only 5 isolates were able to utilize protein and further selected for antibiotics sensitivity test. The selected isolates were susceptible to following antibiotics: ampicillin, chloramphenicol, erythromycin , kanamycin, tetracycline and vancomycin; however they were resistant to ceptazidime and norfloxacin. They all showed better growth in vegetarian medium (coconut juice medium than MRS medium both under static and shaking conditions. Five active isolates were identified as Lactobacillus plantarum LL13, LN18, LP11, LS35 and Pediococcus pentosaceus LT02 by API 50 CH system. All cultures grew well in carrot juice by reducing pH from 6.4 to below 4.0 after 24 h of fermentation at 35oC. The lactic cultures in fermented carrot juice lost their viability about 2 log cycles after 15 days of cold storage at 4oC.

  10. Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives

    Energy Technology Data Exchange (ETDEWEB)

    Ghabbour, N.; Lamzira, Z.; Thonart, P.; Cidalia, P.; Markaouid, M.; Asehraoua, A.

    2011-07-01

    A total of 177 strains of lactic acid bacteria (LAB) were isolated from early-stage Moroccan Picholine green olive fermentation, including Lactobacillus plantarum (44.63%), Lactobacillus pentosus (25.99%), Lactobacillus brevis (9.61%) and Pediococcus pentosaceus (19.77%). All the isolates were screened for their tolerance to olive leaf extract and oleuropein. Most of the isolates (85.3%) were found able to degrade oleuropein, when evaluated by either oleuropein or 5-Bromo-4-chloro-3-indolyl {beta}-D-glucuronide (X-Gluc) as substrates. The biodegradation capacity of the selected strains of each species was confirmed by HPLC analysis. (Author).

  11. Antibacterial activity and optimisation of bacteriocin producing lactic acid bacteria isolated from beef (red meat) samples

    International Nuclear Information System (INIS)

    Ali, N.M.; Mazhar, B.; Khadija, I.; Kalim, B.

    2016-01-01

    Bacteriocin producing bacteria are commonly found in meat products to enhance their shelf-life. In the present study, bacterial species were isolated from meat samples (beef) from different localities of Lahore, Pakistan. MRS agar medium was used to isolate lactic acid bacteria (LAB) through spread and streak methods (incubated for 72 h at 37 degree C). Identification of bacteriocinogenic LAB strains was done by using staining techniques, morphology based characteristics and biochemical tests. These strains were BSH 1b, BSH 3a, BIP 4a, BIP 3a, BIP 1b and BRR 3a. Antibacterial activity of LAB was performed against food borne pathogens viz., Escherichia coli and Staphylococcus aureus through paper disc diffusion method. Three bacterial strains showed maximum inhibition and characterised by ribotyping viz., BIP 4a was identified as Lactobacillus curvatures, BIP 3a was Staphylococcus warneri and BIP 1b was Lactobacillus graminis . Optimum pH 5-6.5 and 30-37 degree C temperature for isolated bacterial strains was recorded. Protein concentration measured was 0.07 mg/mL for BSH 1b, 0.065 mg/mL for BSH 3a, 0.057 mg/mL for BIP 4a, 0.062 mg/mL for BIP 1b, 0.065 mg/mL for BIP 3a and for BRR 3a 0.078 mg/mL, respectively. Bacteriocin of all isolates except BIP 3a was found to be sensitive towards pepsin and resistant towards Rnase. Bacteriocin production was stable at between pH 5.0 and 6.0 and resistant temperature was 40 degree C. It was concluded that lactic acid bacteria (LAB) from meat can be helpful as antibacterial agents against food-borne bacterial pathogens because of thermostable producing bacteriocin. (author)

  12. Natural exopolysaccharides enhance survival of lactic acid bacteria in frozen dairy desserts.

    Science.gov (United States)

    Hong, S H; Marshall, R T

    2001-06-01

    Viable lactic acid-producing bacteria in frozen dairy desserts can be a source of beta-galactosidase for persons who absorb lactose insufficiently. However, freezing kills many of the cells, causing loss of enzymatic activity. Cultures selected for high beta-galactosidase activities and high survival rates in the presence of bile were examined for survivability during freezing in reduced-fat ice cream. Encapsulated S. thermophilus strains survived better than their nonencapsulated mutants in reduced-fat ice cream after freezing and frozen storage at -29 degrees C for 16 d (28 vs. 19%). However, a small nonencapsulated strain of Lactobacillus delbrueckii sp. bulgaricus survived better than the large encapsulated strain in reduced-fat ice cream. Factors that improved survival of encapsulated S. thermophilus 1068 in ice cream were 1) harvest of cells in the late-log phase of growth at 37 degrees C rather than at 40, 42.5, or 45 degrees C; 2) overrun at 50% rather than 100%; and 3) storage at -17 degrees C rather than -23 or -29 degrees C. Survival of strain ST1068 was unaffected by 1) neutralization of acid during growth or 2) substitution of nitrogen for air in building overrun.

  13. In vitro growth inhibition of mastitis causing bacteria by phenolics and metal chelators

    Energy Technology Data Exchange (ETDEWEB)

    Chew, B.P.; Tjoelker, L.W.; Tanaka, T.S.

    1985-11-01

    Antimicrobial activities of three phenolic compounds and four metal chelators were tested at 0, 250, 500, and 1000 ppm in vitro against four major mastitis-causing bacteria, Streptococcus agalactiae, Staphylococcus aureus, Klebsiella pnuemoniae, and Escherichia coli. Overall, butylated hydroxyanisole and tert-butylhydroquinone showed the greatest antimicrobial activity. These phenolics were bactericidal at 250 to 500 ppm against all four bacteria tested. The butylated hydroxytoluene was bactericidal against the gram-positive bacteria but was ineffective against the coliforms. At 250 ppm, disodium ethylenediaminetetraacetic acid was bactericidal against the gram-positive bacteria but much less effective against the gram-negatives. However, diethylene-triaminepentaacetic acid was more growth inhibitory than ethylenediaminetetraacetic acid against the gram-negative bacteria and especially against Escherichia coli. All other compounds were generally much less effective or ineffective against all four microorganisms. Therefore, butylated hydroxyanisole, butylated hydroxytoluene, tert-butylhydroquinone, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid may have practical implications in the prevention or treatment of bovine mastitis.

  14. Phagostimulants for the Asian citrus psyllid also elicit volatile release from citrus leaves

    Science.gov (United States)

    Chemical cues that elicit orientation by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), are of great interest because it is the primary vector of the causal pathogen of citrus greening disease. We identified an optimal blend ratio of formic and acetic acids that stimulate...

  15. Bacteria heap leaching test of a uranium ore

    International Nuclear Information System (INIS)

    Liu Hui; Liu Jinhui; Wu Weirong; Han Wei

    2008-01-01

    Column bioleaching test of a uranium ore was carried out. The optimum acidity, spraying intensity, spray-pause time ratio were determined. The potential, Fe and U concentrations in the leaching process were investigated. The effect of bacteria column leaching was compared with that of acid column leaching. The results show that bacteria column leaching can shorten leaching cycle, and the leaching rate of uranium increases by 9.7%. (authors)

  16. [Analysis on the antimicrobial resistance of lactic acid bacteria isolated from the yogurt sold in China].

    Science.gov (United States)

    Fan, Qin; Liu, Shuliang; Li, Juan; Huang, Tingting

    2012-05-01

    To analyze the antimicrobial susceptibility of lactic acid bacteria (LAB) from yogurt, and to provide references for evaluating the safety of LAB and screening safe strains. The sensitivity of 43 LAB strains, including 14 strains of Streptococcus thermophilus, 12 strains of Lactobacillus acidophilus, 9 strains of Lactobacillus bulgaricus and 8 strains of Bifidobacterium, to 22 antibiotics were tested by agar plate dilution method. All 43 LAB strains were resistant to trimethoprim, nalidixic acid, ciprofloxacin, lomefloxacin, danofloxacin and polymyxin E. Their resistances to kanamycin, tetracycline, clindamycin, doxycycline and cephalothin were varied. The sensitivity to other antibiotics were sensitive or moderate. All isolates were multidrug-resistant. The antimicrobial resistance of tested LAB strains was comparatively serious, and continuously monitoring their antimicrobial resistance and evaluating their safety should be strengthened.

  17. Transformation of gram positive bacteria by sonoporation

    Science.gov (United States)

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  18. Immunomodulatory properties of probiotic bacteria

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen

    2007-01-01

    Certain lactic acid bacteria (LAB) are part of the commensal intestinal flora and considered beneficial for health, as they compete with pathogens for adhesion sites in the intestine and ferment otherwise indigestible compounds. Another important property of these so-called probiotic bacteria...... with bacteria, and the cytokine pattern induced by specific bacteria resembled the pattern induced in MoDC, except for TNF-alpha and IL-6, which were induced in response to different bacteria in blood DC/monocytes and monocyte-derived DC. Autologous NK cells produced IFN-gamma when cultured with blood DC......, monocytes and monocyte-derived DC and IL-12-inducing bacteria, whereas only DC induced IFN-gamma production in allogeneic T cells. In vitro-generated DC is a commonly used model of tissue DC, but they differ in certain aspects from intestinal DC, which are in direct contact with the intestinal microbiota...

  19. Classification of bacteria by simultaneous methylation-solid phase microextraction and gas chromatography/mass spectrometry analysis of fatty acid methyl esters.

    Science.gov (United States)

    Lu, Yao; Harrington, Peter B

    2010-08-01

    Direct methylation and solid-phase microextraction (SPME) were used as a sample preparation technique for classification of bacteria based on fatty acid methyl ester (FAME) profiles. Methanolic tetramethylammonium hydroxide was applied as a dual-function reagent to saponify and derivatize whole-cell bacterial fatty acids into FAMEs in one step, and SPME was used to extract the bacterial FAMEs from the headspace. Compared with traditional alkaline saponification and sample preparation using liquid-liquid extraction, the method presented in this work avoids using comparatively large amounts of inorganic and organic solvents and greatly decreases the sample preparation time as well. Characteristic gas chromatography/mass spectrometry (GC/MS) of FAME profiles was achieved for six bacterial species. The difference between Gram-positive and Gram-negative bacteria was clearly visualized with the application of principal component analysis of the GC/MS data of bacterial FAMEs. A cross-validation study using ten bootstrap Latin partitions and the fuzzy rule building expert system demonstrated 87 +/- 3% correct classification efficiency.

  20. Identification of lactic acid bacteria from chili bo, a Malaysian food ingredient.

    Science.gov (United States)

    Leisner, J J; Pot, B; Christensen, H; Rusul, G; Olsen, J E; Wee, B W; Muhamad, K; Ghazali, H M

    1999-02-01

    Ninety-two strains of lactic acid bacteria (LAB) were isolated from a Malaysian food ingredient, chili bo, stored for up to 25 days at 28 degreesC with no benzoic acid (product A) or with 7,000 mg of benzoic acid kg-1 (product B). The strains were divided into eight groups by traditional phenotypic tests. A total of 43 strains were selected for comparison of their sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) whole-cell protein patterns with a SDS-PAGE database of LAB. Isolates from product A were identified as Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus farciminis, Pediococcus acidilactici, Enterococcus faecalis, and Weissella confusa. Five strains belonging to clusters which could not be allocated to existing species by SDS-PAGE were further identified by 16S rRNA sequence comparison. One strain was distantly related to the Lactobacillus casei/Pediococcus group. Two strains were related to Weissella at the genus or species level. Two other strains did not belong to any previously described 16S rRNA group of LAB and occupied an intermediate position between the L. casei/Pediococcus group and the Weissella group and species of Carnobacterium. The latter two strains belong to the cluster of LAB that predominated in product B. The incidence of new species and subspecies of LAB in chili bo indicate the high probability of isolation of new LAB from certain Southeast Asian foods. None of the isolates exhibited bacteriocin activity against L. plantarum ATCC 14917 and LMG 17682.

  1. Analysis of the lactic acid bacteria microflora in traditional Caucasus cow's milk cheeses

    Directory of Open Access Journals (Sweden)

    Terzić-Vidojević Amarela

    2009-01-01

    Full Text Available A total of 157 lactic acid bacteria (LAB were isolated from three hand-made cheeses taken from different households in the region of the Caucasus Mountains. The cheeses were manufactured from cow's milk without the addition of a starter culture. The isolates of LAB were characterized by subjecting them to phenotypic and genotypic tests. The results of identification of LAB indicate that the examined cheeses contained 10 species, viz., Lactobacillus plantarum, Lactobacillus paraplantarum, Lactobacillus arizonensis, Lactobacillus farciminis, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides subsp. mesenteroides, Leuconostoc pseudomesenteroides, Enterococcus faecium, and Enterococcus faecalis. The strains within the species L. plantarum, L. arizonensis, L. paraplantarum, L. farciminis, and L. pseudomesenteroides showed good proteolytic activity.

  2. New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures.

    Science.gov (United States)

    Elkhtab, Ebrahim; El-Alfy, Mohamed; Shenana, Mohamed; Mohamed, Abdelaty; Yousef, Ahmed E

    2017-12-01

    Compounds with the ability to inhibit angiotensin-converting enzyme (ACE) are used medically to treat human hypertension. The presence of such compounds naturally in food is potentially useful for treating the disease state. The goal of this study was to screen lactic acid bacteria, including species commonly used as dairy starter cultures, for the ability to produce new potent ACE-inhibiting peptides during milk fermentation. Strains of Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus helveticus, Lactobacillus paracasei, Lactococcus lactis, Leuconostoc mesenteroides, and Pediococcus acidilactici were tested in this study. Additionally, a symbiotic consortium of yeast and bacteria, used commercially to produce kombucha tea, was tested. Commercially sterile milk was inoculated with lactic acid bacteria strains and kombucha culture and incubated at 37°C for up to 72 h, and the liberation of ACE-inhibiting compounds during fermentation was monitored. Fermented milk was centrifuged and the supernatant (crude extract) was subjected to ultrafiltration using 3- and 10-kDa cut-off filters. Crude and ultrafiltered extracts were tested for ACE-inhibitory activity. The 10-kDa filtrate resulting from L. casei ATCC 7469 and kombucha culture fermentations (72 h) showed the highest ACE-inhibitory activity. Two-step purification of these filtrates was done using HPLC equipped with a reverse-phase column. Analysis of HPLC-purified fractions by liquid chromatography-mass spectrometry/mass spectrometry identified several new peptides with potent ACE-inhibitory activities. Some of these peptides were synthesized, and their ACE-inhibitory activities were confirmed. Use of organisms producing these unique peptides in food fermentations could contribute positively to human health. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. OBTAINING OF PROTEIC BIOMASS BY CULTIVATION OF LACTIC ACID BACTERIA ON GRAPE MARC DIFFUSION SOLUTION

    Directory of Open Access Journals (Sweden)

    Marian BUTU

    2013-08-01

    Full Text Available In this article are presented the researches made in order to obtain protein biomass with the aid of lactic bacteria grown on an economically medium, achieved by using secondary products from the winery: marc and wine yeast. Therefore, there were cultivated two strains of Lactobacillus sp. on five different growth medium. The protein biosynthesis and evolution of lactic fermentation were monitored by determining the optical density (OD of the culture at a wavelength λ = 600 nm and by counting the colony forming units (CFU by serial dilutions and seeding on plates and by determination of lactic acid obtained. The results showed that the fermentation medium represented by diffusion solution of the marc, enriched with peptone is economically profitable compared to other culture media containing peptone, yeast extract, glucose, minerals, amino acids and vitamins presented in the literature.

  4. THE EFFECTS OF INOCULANT LACTIC ACID BACTERIA ON THE FERMENTATION AND AEROBIC STABILITY OF SUNFLOWER SILAGE

    Directory of Open Access Journals (Sweden)

    Fisun Koc

    2009-12-01

    Full Text Available This study was carried out to determine the effects of actic acid bacterial inoculant on the fermentation and aerobic stability of sunflower silages. Sunflower was harvested at the milk stage. Inoculant-1174 (Pioneer®,USA was used as homofermentative lactic acid bacterial inoculant. Inoculant was applied 6.00 log10 cfu/g silage levels. Silages with no additive served as controls. After treatment, the chopped sunflower was ensiled in the PVC type laboratory silos. Three silos for each group were sampled for chemical and microbiological analysis on days 2, 4, 7, 14, 21, 28 and 56 after ensiling. At the end of the ensiling period, all silages were subjected to an aerobic stability test for 14 days. Neither inoculant improved the fermentation parameters of sunflower silages. At the end of the ensiling period, inoculant increased lactic acid bacteria (LAB and decreased yeast and mould numbers of silages. Inoculant treatment did not affect aerobic stability of silages.

  5. A comparison of five elicitation techniques for elicitation of attributes of low involvement products

    DEFF Research Database (Denmark)

    Bech-Larsen, Tino; Nielsen, Niels Asger

    1999-01-01

    of dimensions directed from theories of consumer buying behaviour. Although a number of differences between the techniques are identified in the study, the main findings are that the robustness of the different techniques for attribute elicitation is considerable Udgivelsesdato: JUN......The critical first step for most instruments used in analysing consumer choice and motivation is the identification of product attributes which are important to the consumer and for which there are differences among the available product alternatives. A number of techniques, ranging from...... the complex elicitation of idiosyncratic attributes or simpler picking procedures, has been developed to elicitate such attributes. The purpose of the study presented here is to com-pare attributes of a low involvement product, viz. vegetable oil, elicited by five different techniques on a number...

  6. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives

    Directory of Open Access Journals (Sweden)

    José Luis Parada

    2007-05-01

    Full Text Available Biopreservation systems in foods are of increasing interest for industry and consumers. Bacteriocinogenic lactic acid bacteria and/or their isolated bacteriocins are considered safe additives (GRAS, useful to control the frequent development of pathogens and spoiling microorganisms in foods and feed. The spreading of bacterial antibiotic resistance and the demand for products with fewer chemicals create the necessity of exploring new alternatives, in order to reduce the abusive use of therapeutic antibiotics. In this context, bacteriocins are indicated to prevent the growth of undesirable bacteria in a food-grade and more natural way, which is convenient for health and accepted by the community. According to their properties, structure, molecular weight (MW, and antimicrobial spectrum, bacteriocins are classified in three different groups: lantibiotics and non-lantibiotics of low MW, and those of higher MW. Several strategies for isolation and purification of bacteriocins from complex cultivation broths to final products were described. Biotechnological procedures including salting-out, solvent extraction, ultrafiltration, adsorption-desortion, ion-exchange, and size exclusion chromatography are among the most usual methods. Peptide structure-function studies of bacteriocins and bacterial genetic advances will help to understand the molecular basis of their specificity and mode of action. Nisin is a good example of commercial success, and a good perspective is open to continue the study and development of new bacteriocins and their biotechnological applications. These substances in appropriate concentrations may be used in veterinary medicine and as animal growth promoter instead usual antibiotics, as well as an additional hurdle factor for increasing the shelf life of minimal processed foods.

  7. Physicochemical and microbiological study of “shmen”, a traditional butter made from camel milk in the Sahara (Algeria: isolation and identification of lactic acid bacteria and yeasts

    Directory of Open Access Journals (Sweden)

    Mourad, Kacem

    2006-06-01

    Full Text Available Microorganisms (aerobic bacteria, coliforms, lactic acid bacteria, psychrotrophs, lipolytic bacteria and yeasts were isolated from 20 samples of shmen, a traditional clarified butter made from sour camel milk in the Algerian Sahara. The values of pH, titratable acidity, NaCl, total solid, moisture, and fat content ranged from : 3.11-4.97, 0.19-0.36%, 1.04-2.15%, 64.03-65.11%, 34.40-34.99%, and 49.90-56% respectively. A total of 181 isolates of lactic acid bacteria were identified as Lactobacillus plantarum (40 strains, Lactobacillus delbrueckii ssp. bulgaricus (35 strains, Lactococcus lactis ssp. lactis biovar diacetylacti (22 strains, Lactococcus lactis ssp. cremoris (18 strains, Lactobacillus paracasei ssp. paracasei (10 strains, Leuconostoc pseudomesenteroides (9 strains and Leuconostoc gelidum (12 strains Enterococcus faecium (35 strains. Yeasts were isolated from all samples (55 isolates. Of these, 40 were identified as Saccharomyces cerevisiae and 15 isolates were identified as Saccharomyces sp.Se aislaron los microorganismos (bacterias aeróbicas, coliformes, bacterias acido lácticas, bacterias lipolíticas y levaduras de 20 muestras de “shmen”, una matequilla tradicional del Sahara argelino hecha a partir de leche de camella. Los valores de pH, acidez, libre, Nacl, solidos totales, humedad y grasa oscilaron entre 3,11-4,97, 0,19-0,36%, 1.04-2,15%, 64,03-65,11%, 34,40-34,99% y 49,90-56,00%, respectivamente. Entre los 181 cultivos puros de bacterias lácticas se identificaron Lactobacillus plantarum (40 cepas, Lactobacillus delbrueckii ssp. bulgaricus (35 cepas, Lactococcus lactis ssp. lactis biovar diacetylacti (22 cepas, Lactococcus lactis ssp. cremoris (18 cepas, Lactobacillus paracasei ssp. paracasei (10 cepas, Leuconostoc pseudomesenteroides (9 cepas and Leuconostoc gelidum (12cepas Enterococcus faecium (35 cepas. Asimismo, se detectaron levaduras en todas las muestras (55 cultivos puros. De estos, 40 se identificaron como

  8. Heterologous expression of enterocin AS-48 in several strains of lactic acid bacteria.

    Science.gov (United States)

    Fernández, M; Martínez-Bueno, M; Martín, M C; Valdivia, E; Maqueda, M

    2007-05-01

    Enterococcus faecalis produces a cationic and circular enterocin, AS-48, of 7149 Da, the genetic determinants of which are located within the pMB2 plasmid. We have compared enterocin AS-48 production by different enterococci species with that of other 'safe' lactic acid bacteris (LAB) (GRAS status) and looked into the subsequent application of this enterocin in food production. In an effort to exploit this system for the heterologous expression of enterocin AS-48, a number of vectors containing the as-48 cluster were constructed and used to transform several LAB strains (genera Enterococcus, Lactococcus and Lactobacillus) Heterologous production of enterocin AS-48 failed when bacteria other than those belonging to the genus Enterococcus were used as hosts, although expression of a partial level of resistance against AS-48 were always detected, ruling out the possibility of a lack of recognition of the enterococcal promoters. Our results reveal the special capacity of species from the genus Enterococcus to produce AS-48, an enterocin that requires a post-transcriptional modification to generate a circular peptide with a wide range of inhibitory activity against pathogenic and spoilage bacteria. Preliminary experiments in foodstuffs using nonvirulent enterococci with interesting functional properties reveal the possibility of a biotechnological application of these transformants.

  9. Evaluation of culture media for selective enumeration of bifidobacteria and lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Judit Süle

    2014-09-01

    Full Text Available The purpose of this study was to test the suitability of Transgalactosylated oligosaccharides-mupirocin lithium salt (TOS-MUP and MRS-clindamycin-ciprofloxacin (MRS-CC agars, along with several other culture media, for selectively enumerating bifidobacteria and lactic acid bacteria (LAB species commonly used to make fermented milks. Pure culture suspensions of a total of 13 dairy bacteria strains, belonging to eight species and five genera, were tested for growth capability under various incubation conditions. TOS-MUP agar was successfully used for the selective enumeration of both Bifidobacterium animalis subsp. lactis BB-12 and B. breve M-16 V. MRS-CC agar showed relatively good selectivity for Lactobacillus acidophilus, however, it also promoted the growth of Lb. casei strains. For this reason, MRS-CC agar can only be used as a selective medium for the enumeration of Lb. acidophilus if Lb. casei is not present in a product at levels similar to or exceeding those of Lb. acidophilus. Unlike bifidobacteria and coccus-shaped LAB, all the lactobacilli strains involved in this work were found to grow well in MRS pH 5.4 agar incubated under anaerobiosis at 37 °C for 72 h. Therefore, this method proved to be particularly suitable for the selective enumeration of Lactobacillus spp.

  10. Diversity of acetic acid bacteria present in healthy grapes from the Canary Islands.

    Science.gov (United States)

    Valera, Maria José; Laich, Federico; González, Sara S; Torija, Maria Jesús; Mateo, Estibaliz; Mas, Albert

    2011-11-15

    The identification of acetic acid bacteria (AAB) from sound grapes from the Canary Islands is reported in the present study. No direct recovery of bacteria was possible in the most commonly used medium, so microvinifications were performed on grapes from Tenerife, La Palma and Lanzarote islands. Up to 396 AAB were isolated from those microvinifications and identified by 16S rRNA gene sequencing and phylogenetic analysis. With this method, Acetobacter pasteurianus, Acetobacter tropicalis, Gluconobacter japonicus and Gluconacetobacter saccharivorans were identified. However, no discrimination between the closely related species Acetobacter malorum and Acetobacter cerevisiae was possible. As previously described, 16S-23S rRNA gene internal transcribed spacer (ITS) region phylogenetic analysis was required to classify isolates as one of those species. These two species were the most frequently occurring, accounting for more than 60% of the isolates. For typing the AAB isolates, both the Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR and (GTG)5-PCR techniques gave similar resolution. A total of 60 profiles were identified. Thirteen of these profiles were found in more than one vineyard, and only one profile was found on two different islands (Tenerife and La Palma). Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Consequences of bile salt biotransformations by intestinal bacteria

    Science.gov (United States)

    Ridlon, Jason M.; Harris, Spencer C.; Bhowmik, Shiva; Kang, Dae-Joong; Hylemon, Phillip B.

    2016-01-01

    ABSTRACT Emerging evidence strongly suggest that the human “microbiome” plays an important role in both health and disease. Bile acids function both as detergents molecules promoting nutrient absorption in the intestines and as hormones regulating nutrient metabolism. Bile acids regulate metabolism via activation of specific nuclear receptors (NR) and G-protein coupled receptors (GPCRs). The circulating bile acid pool composition consists of primary bile acids produced from cholesterol in the liver, and secondary bile acids formed by specific gut bacteria. The various biotransformation of bile acids carried out by gut bacteria appear to regulate the structure of the gut microbiome and host physiology. Increased levels of secondary bile acids are associated with specific diseases of the GI system. Elucidating methods to control the gut microbiome and bile acid pool composition in humans may lead to a reduction in some of the major diseases of the liver, gall bladder and colon. PMID:26939849

  12. Determination Amylolitic Characteristic of Predominant Lactic Acid Bacteria Isolated during Growol Fermentation, in a Different Starch Medium Composition

    Directory of Open Access Journals (Sweden)

    Widya Dwi Rukmi Putri

    2018-04-01

    Full Text Available In order to achieve efficient lactic acid production from starch, fermentation of avarious composition starch medium by lactic acid bacteriawas examined in this study. Many strains of Lactobacillus plantarum isolated from growol fermentation, Lactobacillus plantarumsubsp. plantarum NBRC 15891 and Lactobacillus amylophyllus NBRC 15881 were used as starter cultures in starch basis medium, i.e, basal, basal-starch, enriched basal-starch with polypeptone and yeast extract. Lactobacillus plantarum UA3, AA2, AA11 showed the highest cells growth compare to both reference strains, but Lactobacillus amylophyllus NBRC 15881 showed a greater ability to degrade starch indicated by decreasing of pH and starch content of the fermented substrate. Enriched medium with peptone and yeast extract could generate the growth and starch degradation capabilities for all types of lactic acid bacteria were used.

  13. Identification of lactic acid bacteria from spoilage associations of cooked and brined shrimps stored under modified atmosphere between 0 degrees C and 25 degrees C

    DEFF Research Database (Denmark)

    Dalgaard, Paw; Vancanneyt, M.; Vilalta, N.E.

    2003-01-01

    MAP shrimps were characterized by phenotypic tests and identified as lactic acid bacteria (78 isolates), other Gram-positive bacteria (13 isolates) and Gram-negative bacteria (11 isolates). A selection of 48 LAB isolates were further characterized and identified by phenotypic tests and SDS-PAGE...... the dominant parts of spoilage associations of cooked and brined MAP shrimps stored at high and low temperatures, respectively. Significance and Impact of the Study: The SDS-PAGE technique and simple biochemical keys allowed the majority of LAB isolates from spoilage associations of cooked and brined MAP...

  14. Production of extracellular nucleic acids by genetically altered bacteria in aquatic-environment microcosms

    International Nuclear Information System (INIS)

    Paul, J.H.; David, A.W.

    1989-01-01

    The factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. Cellular nucleic acids were labeled in vivo by incubation with [ 3 H]thymidine or [ 3 H]adenine, and production of extracellular DNA in marine waters, artificial seawater, or minimal salts media was determined by detecting radiolabeled macromolecules in incubation filtrates. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Three of four organisms produced the greatest amounts of extracellular nucleic acids when incubated in low-salinity media (2% artificial seawater) rather than high-salinity media (10 to 50% artificial seawater). The greatest production of extracellular nucleic acids by P. cepacia occurred at pH 7 and 37 degree C, suggesting that extracellular-DNA production may be a normal physiologic function of the cell. Incubation of labeled P. cepacia cells in water from Bimini Harbor, Bahamas, resulted in labeling of macromolecules of the ambient microbial population. Collectively these results indicate that (i) extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physicochemical factors than biotic factors, (ii) extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments, and (iii) ambient microbial populations can readily utilize materials released by these organisms

  15. Isolation of cultivable thermophilic lactic acid bacteria from cheeses made with mesophilic starter and molecular comparison with dairy-related Lactobacillus helveticus strains

    DEFF Research Database (Denmark)

    Jensen, Marie Elisabeth Penderup; Ardö, Ylva Margareta; Vogensen, Finn Kvist

    2009-01-01

    -related Lact. helveticus strains indicated that one isolate was a Lact. helveticus. Partial sequencing of 16S rRNA confirmed this, and the remaining four strains were identified as Lactobacillus delbrueckii, Lactobacillus fermentum and Enterococcus faecium. The rep-PCR profile of the isolated Lact. helveticus......Aims: To isolate cultivable thermophilic lactic acid bacteria from cheeses made with mesophilic starter and compare them with dairy-related Lactobacillus helveticus strains using molecular typing methods. Methods and Results: The number of thermophilic bacteria in seven commercial cheeses...

  16. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria.

    Science.gov (United States)

    Kaškonienė, Vilma; Stankevičius, Mantas; Bimbiraitė-Survilienė, Kristina; Naujokaitytė, Gintarė; Šernienė, Loreta; Mulkytė, Kristina; Malakauskas, Mindaugas; Maruška, Audrius

    2017-02-01

    The scientific interest for the search of natural means of microbial inhibitors has not faded for several years. A search of natural antibiotics, so-called bacteriocins which are produced by lactic acid bacteria (LAB), gains a huge attention of the scientists in the last century, in order to reduce the usage of synthetic food additives. Pure bacteriocins with wide spectra of antibacterial activity are promising among the natural biopreservatives. The usage of bacteriocin(s) producing LAB as starter culture for the fermentation of some food products, in order to increase their shelf-life, when synthetic preservatives are not allowable, is also possible. There are a lot of studies focusing on the isolation of new bacteriocins from traditional fermented food, dairy products and other foods or sometimes even from unusual non-food matrices. Bacteriocins producing bacteria have been isolated from different sources with the different antibacterial activity against food-borne microorganisms. This review covers the classification of bacteriocins, diversity of sources of bacteriocin(s) producing LAB, antibacterial spectra of isolated bacteriocins and analytical methods for the bacteriocin purification and analysis within the last 15 years.

  17. Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag.

    Science.gov (United States)

    Batdorj, B; Dalgalarrondo, M; Choiset, Y; Pedroche, J; Métro, F; Prévost, H; Chobert, J-M; Haertlé, T

    2006-10-01

    The aim of this study was to isolate and identify bacteriocin-producing lactic acid bacteria (LAB) issued from Mongolian airag (traditional fermented mare's milk), and to purify and characterize bacteriocins produced by these LAB. Identification of the bacteria (Enterococcus durans) was carried out on the basis of its morphological, biochemical characteristics and carbohydrate fermentation profile and by API50CH kit and 16S rDNA analyses. The pH-neutral cell-free supernatant of this bacterium inhibited the growth of several Lactobacillus spp. and food-borne pathogens including Escherichia coli, Staphylococcus aureus and Listeria innocua. The antimicrobial agent (enterocin A5-11) was heat stable and was not sensitive to acid and alkaline conditions (pH 2-10), but was sensitive to several proteolytic enzymes. Its inhibitory activity was completely eliminated after treatment with proteinase K and alpha-chymotrypsin. The activity was however not completely inactivated by other proteases including trypsin and pepsin. Three-step purification procedure with high recovery yields was developed to separate two bacteriocins. The applied procedure allowed the recovery of 16% and 64% of enterocins A5-11A and A5-11B, respectively, present in the culture supernatant with purity higher than 99%. SDS-PAGE analyses revealed that enterocin A5-11 has a molecular mass of 5000 Da and mass spectrometry analyses demonstrates molecular masses of 5206 and 5218 Da for fractions A and B, respectively. Amino acid analyses of both enterocins indicated significant quantitative difference in their contents in threonine, alanine, isoleucine and leucine. Their N-termini were blocked hampering straightforward Edman degradation. Bacteriocins A5-11A and B from Ent. durans belong to the class II of bacteriocins. Judging from molecular masses, amino acid composition and spectrum of activities, bacteriocins A5-11A and B from Ent. durans show high degree of similarity with enterocins L50A and L50B

  18. 9-methoxycanthin-6-one production in elicited hairy roots culture of Eurycoma longifolia

    Science.gov (United States)

    Abdullah, Nazirah; Ismail, Ismanizan; Hassan, Nor Hasnida; Basherudin, Norlia

    2016-11-01

    Eurycoma longifolia (Tongkat Ali) is a highly sought after medicinal plant in Malaysia. Propagation of E. longifolia through tissue culture has been reported in order to cater the industry demands for planting and raw materials as well as for conservation purposes. E. longifolia hairy roots culture has been developed using Agrobacterium rhizogenes for the production of Tongkat Ali phytochemicals. Effects of three elicitors; methyl jasmonate, salicylic acid, and yeast extract at different concentrations were evaluated on the production of 9-methoxycanthin-6-one in E. longifolia hairy roots. The cultures were elicited at early exponential growth phase, followed by extraction of 9-methoxycanthin-6-one using methanol and HPLC analysis. Elicitation with methyl jasmonate at all concentrations increased 9-methoxycanthin-6-one up to 1-3 fold and treatment with (0.1 mM) was most efficient in enhancing 9-methoxycanthin-6-one production up to 3.902 mg/g dry weight after 7 days (168 hours) elicitation.

  19. The use of lactic acid bacteria isolated from intestinal tract of Nile tilapia (Oreochromis niloticus, as growth promoters in fish fed low protein diets

    Directory of Open Access Journals (Sweden)

    Maurilio Lara-Flores

    2013-07-01

    Full Text Available In this study, the effect as growth promoter of five lactic acid strains (Enterococcus faecium, E. durans, Leuconostoc sp., Streptococcus sp. I and Streptococcus sp. II, isolated from intestinal tract of Nile tilapia (Oreochromis niloticus, was evaluated. Eight isocaloric diets were formulated: one containing 40% of protein as positive control, and seven with 27% protein. Five diets with 27% protein were supplemented with one of the isolated lactic acid bacteria in a concentration of 2.5x10(6 cfu g-1 of diet. A commercial probiotic based on S. faecium and Lactobacillus acidophilus was added at the same concentration to one 27% protein diet as a comparative diet, and the last diet was not supplemented with bacteria (negative control. Tilapia fry (280 mg basal weight stocked in 15 L aquaria at a density of two per liter were fed for 12 weeks with experimental diets. Results showed that fry fed with native bacteria supplemented diets presented significantly higher growth and feeding performance than those fed with control diet. Treatment with Streptococcus sp. I isolated from the intestine of Tilapia produced the best growth and feeding efficiency, suggesting that this bacteria is an appropriate native growth promoter.

  20. Requirements Elicitation Problems: A Literature Analysis

    Directory of Open Access Journals (Sweden)

    Bill Davey

    2015-06-01

    Full Text Available Requirements elicitation is the process through which analysts determine the software requirements of stakeholders. Requirements elicitation is seldom well done, and an inaccurate or incomplete understanding of user requirements has led to the downfall of many software projects. This paper proposes a classification of problem types that occur in requirements elicitation. The classification has been derived from a literature analysis. Papers reporting on techniques for improving requirements elicitation practice were examined for the problem the technique was designed to address. In each classification the most recent or prominent techniques for ameliorating the problems are presented. The classification allows the requirements engineer to be sensitive to problems as they arise and the educator to structure delivery of requirements elicitation training.