WorldWideScience

Sample records for acid ascorbyl palmitate

  1. Scientific Opinion on the safety and efficacy of vitamin C (ascorbic acid, sodium ascorbate, calcium ascorbate, ascorbyl palmitate, sodium calcium ascorbyl phosphate and sodium ascorbyl phosphate) as a feed additive for all animal species based on a dossier submitted by DSM Nutritional Products Ltd

    OpenAIRE

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)

    2013-01-01

    Vitamin C is essential for primates, guinea pigs and fish. Vitamin C, in the form of ascorbic acid and its calcium and sodium salts, ascorbyl palmitate, sodium calcium ascorbyl phosphate and sodium ascorbyl phosphate, is safe for all animal species. Setting a maximum content in feed and water for drinking is not considered necessary. Data on the vitamin C consumption of consumers are based on the levels of vitamin C in foodstuffs, including food of animal origin, produced in accordance with c...

  2. Additions of caffeic acid, ascorbyl palmitate or gamma-tocopherol to fish oil-enriched energy bars affect lipid oxidation differently

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    2009-01-01

    The objectives of the study were to investigate the effects of caffeic acid, ascorbyl palmitate and gamma-tocopherol on protection of fish oil-enriched energy bars against lipid oxidation during storage for 10 weeks at room temperature. The lipophilic gamma-tocopherol reduced lipid oxidation during...

  3. 21 CFR 182.3149 - Ascorbyl palmitate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ascorbyl palmitate. 182.3149 Section 182.3149 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives §...

  4. 21 CFR 582.3149 - Ascorbyl palmitate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ascorbyl palmitate. 582.3149 Section 582.3149 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives §...

  5. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate.

    Science.gov (United States)

    Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition to the side effects mentioned above by different channel blockers, these drugs can cause arterial wall damage, thereby contributing to vascular wall structure destabilization and promoting events facilitating rupture of plaques. Collagen synthesis is regulated by ascorbic acid, which is also essential for its optimum structure as a cofactor in lysine and proline hydroxylation, a precondition for optimum crosslinking of collagen and elastin. Therefore, the main objective in this study was to evaluate effects of various types of channel blockers on intracellular accumulation and cellular functions of ascorbate, specifically in relation to formation and extracellular deposition of major collagen types relevant for vascular function. Effects of select Na- and Ca- channel blockers on collagen synthesis and deposition were evaluated in cultured human dermal fibroblasts and aortic smooth muscle cells by immunoassay. All channel blockers tested demonstrated inhibitory effects on collagen type I deposition to the ECM by fibroblasts, each to a different degree. Ascorbic acid significantly increased collagen I ECM deposition. Nifedipine (50 µM), a representative of channel blockers tested, significantly reduced ascorbic acid and ascorbyl palmitate-dependent ECM deposition of collagen type l and collagen type lV by cultured aortic smooth muscle cells. In addition, nifedipine (50 µM) significantly reduced ascorbate-dependent collagen type l and type lV synthesis by cultured aortic smooth

  6. Scientific Opinion on the safety and efficacy of vitamin C (ascorbic acid, sodium ascorbate, calcium ascorbate, ascorbyl palmitate, sodium calcium ascorbyl phosphate and sodium ascorbyl phosphate as a feed additive for all animal species based on a dossier submitted by DSM Nutritional Products Ltd

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-02-01

    Full Text Available Vitamin C is essential for primates, guinea pigs and fish. Vitamin C, in the form of ascorbic acid and its calcium and sodium salts, ascorbyl palmitate, sodium calcium ascorbyl phosphate and sodium ascorbyl phosphate, is safe for all animal species. Setting a maximum content in feed and water for drinking is not considered necessary. Data on the vitamin C consumption of consumers are based on the levels of vitamin C in foodstuffs, including food of animal origin, produced in accordance with current EU legislation on the supplementation of feed with vitamin C. The exposure is far below the guidance level. Any potential contribution of the use of vitamin C in feed is therefore already considered in the above data. Consequently, the use of vitamin C in animal nutrition is not of concern for consumer safety. In the absence of inhalation toxicity studies it would be prudent to assume that inhalation of dust from the additives presents a health hazard to workers. Sodium calcium ascorbyl phosphate is not an irritant to skin and eyes and is unlikely to be a skin sensitiser. This conclusion is extrapolated to sodium ascorbyl phosphate. In the absence of data, ascorbic acid, sodium ascorbate, calcium ascorbate and ascorbyl palmitate should be considered as irritant to skin and eyes and as dermal sensitisers. The supplementation of feed with vitamin C does not pose a risk to the environment. Ascorbic acid, sodium calcium ascorbyl phosphate and sodium ascorbyl phosphate are regarded as effective sources of vitamin C when added to feed or water for drinking. Since ascorbic acid, sodium ascorbate, calcium ascorbate and ascorbyl palmitate are authorised for use as antioxidants in food and their function in feed is essentially the same as that in food, no further demonstration of efficacy is considered necessary.

  7. Optimization of α-tocopherol and ascorbyl palmitate addition for the stabilization of sardine oil

    OpenAIRE

    Morales-Medina, R.; García-Moreno, P. J.; Muñío, M. M.; Guadix, A.; Guadix, E. M.

    2015-01-01

    The purpose of the present work was to optimize the addition of natural antioxidants (α- tocopherol and ascorbyl palmitate) for the stabilization of sardine oil rich in omega-3 PUFA. The optimal values for peroxide value (PV), which minimizes primary oxidation products, were obtained at low concentrations of α-tocopherol (50–207 ppm), high content of ascorbyl palmitate (450 ppm) and 50 ppm citric acid. On the other hand, optimal values for p-anisidine value (AV), which minimizes secondary oxi...

  8. Effect of ascorbyl palmitate on oxidative stability of chemically interesterified cottonseed and olive oils

    OpenAIRE

    Javidipour, Issa; Tüfenk, Remzi; Baştürk, Ayhan

    2013-01-01

    The effects of 400 ppm ascorbyl palmitate (AP) on fatty acids composition, tocopherol, peroxide value (PV) and malonaldehyde (MAD) contents of refined cottonseed oil (CO) and virgin olive oil (OO) during chemical interesterification (CI), and storage at 60 °C for 28 days were investigated. CI significantly decreased (p 

  9. Lecithin based lamellar liquid crystals as a physiologically acceptable dermal delivery system for ascorbyl palmitate

    OpenAIRE

    GAŠPERLIN, MIRJANA; Gosenca, Mirjam; Bešter-Rogač, Marija

    2015-01-01

    Liquid crystalline systems with a lamellar structure have been extensively studied as dermal delivery systems. Ascorbyl palmitate (AP) is one of the most studied and used ascorbic acid derivatives and is employed as an antioxidant to prevent skin aging. The aim of this study was to develop and characterize skin-compliant dermal delivery systems with a liquid crystalline structure for AP. First, a pseudoternary phase diagram was constructed using Tween 80/lecithin/isopropyl myristate/water at ...

  10. Ascorbyl palmitate interaction with phospholipid monolayers: electrostatic and rheological preponderancy.

    Science.gov (United States)

    Mottola, Milagro; Wilke, Natalia; Benedini, Luciano; Oliveira, Rafael Gustavo; Fanani, Maria Laura

    2013-11-01

    Ascorbyl palmitate (ASC16) is an anionic amphiphilic molecule of pharmacological interest due to its antioxidant properties. We found that ASC16 strongly interacted with model membranes. ASC16 penetrated phospholipid monolayers, with a cutoff near the theoretical surface pressure limit. The presence of a lipid film at the interface favored ASC16 insertion compared with a bare air/water surface. The adsorption and penetration time curves showed a biphasic behavior: the first rapid peak evidenced a fast adsorption of charged ASC16 molecules to the interface that promoted a lowering of surface pH, thus partially neutralizing and compacting the film. The second rise represented an approach to the equilibrium between the ASC16 molecules in the subphase and the surface monolayer, whose kinetics depended on the ionization state of the film. Based on the Langmuir dimiristoylphosphatidylcholine+ASC16 monolayer data, we estimated an ASC16 partition coefficient to dimiristoylphosphatidylcholine monolayers of 1.5×10(5) and a ΔGp=-6.7kcal·mol(-1). The rheological properties of the host membrane were determinant for ASC16 penetration kinetics: a fluid membrane, as provided by cholesterol, disrupted the liquid-condensed ASC16-enriched domains and favored ASC16 penetration. Subphase pH conditions affected ASC16 aggregation in bulk: the smaller structures at acidic pHs showed a faster equilibrium with the surface film than large lamellar ones. Our results revealed that the ASC16 interaction with model membranes has a highly complex regulation. The polymorphism in the ASC16 bulk aggregation added complexity to the equilibrium between the surface and subphase form of ASC16, whose understanding may shed light on the pharmacological function of this drug. PMID:23806650

  11. Ascorbyl palmitate-loaded chitosan nanoparticles: characteristic and polyphenol oxidase inhibitory activity.

    Science.gov (United States)

    Kim, Mi Kyung; Lee, Ji-Soo; Kim, Kwang Yup; Lee, Hyeon Gyu

    2013-03-01

    The aim of this study was to produce ascorbyl palmitate (AP)-loaded nanoparticles in order to inhibit polyphenol oxidase (PPO) in bananas. AP-loaded chitosan nanoparticles were prepared using acetic acid and citric acid (denoted as CS/AA and CS/CA nanoparticles, respectively). As the initial AP concentration increases, the particle size significantly decreases, and the zeta potential, entrapment and loading efficiency significantly increases. The PPO inhibitory activity of AP was effectively improved when AP was nano-encapsulated by chitosan compared to no encapsulation. These results suggest that chitosan nano-encapsulation can be used to enhance the PPO inhibitory activity of AP. PMID:23247266

  12. Electrochemical assay of the antioxidant ascorbyl palmitate in mixed medium.

    Science.gov (United States)

    Teneva, Olga; Dimcheva, Nina

    2016-07-15

    Electrooxidation of ascorbyl palmitate (AP) over gold screen-printed electrode (AuSPE) and gold nanoparticles modified graphite (AuNPs/gr) was examined in mixed water-alcohol medium. Voltammetric and amperometric studies showed that: (i) AP oxidation on the AuSPE proceeds at higher potential than on AuNPs/gr; (ii) the current density on AuNPs/gr was 2.4 times higher than on AuSPE; (iii) the linear dynamic range for AuNPs/gr doubled that for AuSPE. At the optimal for AuNPs/gr operating potential (250 mV) the following operational parameters were determined: sensitivity 1.627 ± 0.138 μA mM(-1) mm(-2); linearity up to 500 μM; LOD=5.8 μM. Quantification of the AP content in a real sample - stabilised flaxseed oil, was performed. PMID:26948586

  13. Ascorbyl palmitate/DSPE-PEG nanocarriers for oral iron delivery: preparation, characterisation and in vitro evaluation.

    Science.gov (United States)

    Zariwala, M Gulrez; Farnaud, Sebastien; Merchant, Zahra; Somavarapu, Satyanarayana; Renshaw, Derek

    2014-03-01

    The objective of this study was to encapsulate iron in nanocarriers formulated with ascorbyl palmitate and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine polyethylene glycol (DSPE-PEG) for oral delivery. Blank and iron (Fe) loaded nanocarriers were prepared by a modified thin film method using ascorbyl palmitate and DSPE-PEG. Surface charge of the nanocarriers was modified by the inclusion of chitosan (CHI) during the formulation process. Blank and iron loaded ascorbyl palmitate/DSPE nanocarriers were visualised by transmission electron microscopy (TEM) and physiochemical characterisations of the nanocarriers carried out to determine the mean particle size and zeta potential. Inclusion of chitosan imparted a net positive charge on the nanocarrier surface and also led to an increase in mean particle size. Iron entrapment in ascorbyl palmitate-Fe and ascorbyl palmitate-CHI-Fe nanocarriers was 67% and 76% respectively, suggesting a beneficial effect of chitosan on nanocarrier Fe entrapment. Iron absorption was estimated by measuring Caco-2 cell ferritin formation using ferrous sulphate as a reference standard. Iron absorption from ascorbyl palmitate-Fe (592.17±21.12 ng/mg cell protein) and ascorbyl palmitate-CHI-Fe (800.12±47.6 ng/mg, cell protein) nanocarriers was 1.35-fold and 1.5-fold higher than that from free ferrous sulphate, respectively (505.74±23.73 ng/mg cell protein) (n=6, p<0.05). This study demonstrates for the first time preparation and characterisation of iron loaded ascorbyl palmitate/DSPE PEG nanocarriers, and that engineering of the nanocarriers with chitosan leads to a significant augmentation of iron absorption. PMID:24333557

  14. Optimization of α-tocopherol and ascorbyl palmitate addition for the stabilization of sardine oil

    Directory of Open Access Journals (Sweden)

    Morales-Medina, R.

    2015-06-01

    Full Text Available The purpose of the present work was to optimize the addition of natural antioxidants (α- tocopherol and ascorbyl palmitate for the stabilization of sardine oil rich in omega-3 PUFA. The optimal values for peroxide value (PV, which minimizes primary oxidation products, were obtained at low concentrations of α-tocopherol (50–207 ppm, high content of ascorbyl palmitate (450 ppm and 50 ppm citric acid. On the other hand, optimal values for p-anisidine value (AV, which minimizes secondary oxidation products, were found at medium concentrations of α-tocopherol (478–493 ppm, high contents of ascorbyl palmitate (390–450 ppm and 50 ppm citric acid. The conflicting effect of α-tocopherol on the individual optimization of PV and AV motivated the generation of a Pareto front (set of non inferior solutions employing the weighted-sum multi-objective optimization technique.El objetivo de este trabajo fue optimizar la adición de antioxidantes naturales (α-tocoferol y palmitato de ascorbilo para la estabilización de aceite de sardina rico en omega-3 PUFA. Bajas concentraciones de α-tocoferol (50–207 ppm combinadas con la adicción de antioxidantes secundarios como palmitato de ascorbilo (450 ppm y ácido cítrico (50 ppm, minimizaron la formación de hidroperóxidos en el aceite de sardina estudiado. Sin embargo, los productos secundarios de oxidación se redujeron para concentraciones medias de α-tocoferol (478–493 ppm, altas de palmitato de ascorbilo (390–450 ppm y 50 ppm de ácido cítrico. El efecto contradictorio de la concentración de α-tocoferol en la optimización individual del índice de peróxidos e índice de p-anisidina motivó la realización de una optimización simultánea que permite satisfacer la optimización de cada una de las variables individuales en el grado deseado.

  15. A New Approach for Increasing Ascorbyl Palmitate Stability by Addition of Non-irritant Co-antioxidant

    OpenAIRE

    Obreza, Aleš; Pečar, Slavko; Gosenca, Mirjam; GAŠPERLIN, MIRJANA

    2010-01-01

    The aim of this work was to test innovative approach for enhancing ascorbyl palmitate stability in microemulsions for topical application by addition of newly synthesized co-antioxidant 4-(tridecyloxy)benzaldehyde oxime (TDBO) and to investigate its antioxidant activity and finally to evaluate cytotoxicity of TDBO-loaded microemulsions on keratinocyte cells. TDBO significantly increased ascorbyl palmitate stability in oil-dispersed-in-water (o/w) microemulsions, most presumably due to reducti...

  16. Stability of potato chip fried in vegetable oils with different degree of unsaturation. Effect of ascorbyl palmitate during storage

    OpenAIRE

    TORRES R.; Salam, M.; Pérez, P.; Goicoechea, E.; Ortiz, J; Romero, N; Urra, C.; Dobarganes, M. C.; Robert, P.; Masson, L

    2002-01-01

    Four vegetable oils with different polyunsaturated/saturated fatty acid ratio (P/S): 5.2 for sunflower oil, 3.,4 for canola rapeseed oil, 0.4 for a blend of palm oleic and canola rapeseed oil (80:20), and 0.3 for palm olein were assayed for stability of crisps fried in these oils during storage at 60º C. The action of ascorbyl palmitate with special attention to its synergistic effect on the natural antioxidants was also tested. by addition to the fried potatoes. The evolution of ...

  17. Dermal delivery of ascorbyl palmitate: the potential of colloidal delivery systems

    OpenAIRE

    Gosenca, Mirjam; GAŠPERLIN, MIRJANA

    2015-01-01

    This study examined the suitability of various colloidal systems for ascorbyl palmitate (AP) skin delivery. First, a pseudoternary phase diagram for Tween 80/lecithin/butanol, isopropyl myristate (IPM), and water was constructed and regions of lipophilic (w/o) or hydrophilic (o/w) microemulsions (MEs), and emulsions (EMs) were identified. Afterwards, various phase transition systems on the selected dilution line, as well as liquid crystal (LC) as a delivery system on the same dilution line (b...

  18. Effect of ascorbyl palmitate on oxidative stability of chemically interesterified cottonseed and olive oils.

    Science.gov (United States)

    Javidipour, Issa; Tüfenk, Remzi; Baştürk, Ayhan

    2015-02-01

    The effects of 400 ppm ascorbyl palmitate (AP) on fatty acids composition, tocopherol, peroxide value (PV) and malonaldehyde (MAD) contents of refined cottonseed oil (CO) and virgin olive oil (OO) during chemical interesterification (CI), and storage at 60 °C for 28 days were investigated. CI significantly decreased (p < 0.05) the tocopherol contents of CO and OO. PVs and MAD contents of oil samples considerably increased up to 20 min of CI, followed by a reduction at 30 min. The unsaturated fatty acids/saturated fatty acids (UFA/SFA) ratios of the samples showed slight but significant (p < 0.05) reduction during accelerated oxidation process. Oils with added 400 ppm AP had higher tocopherol, and lower PVs and MAD contents than their counterparts without AP during CI, and storage at 60 °C. AP increased the oxidative stability of interesterified and non-interesterified CO and OO. PMID:25694696

  19. 抗坏血酸及抗坏血酸棕榈酸酯的稳定性研究%Study on stability of ascorbic acid and ascorbyl palmitate

    Institute of Scientific and Technical Information of China (English)

    刘奕博; 任国谱

    2012-01-01

    The effects of light, temperature, pH, oxidant, antioxidant, metal ions, saccharides on stabilities of ascorbic acid(AA) and ascorbyl palmitate(AP) were studied.Results showed that they were destroyed by sunlight, high temperature, oxidant in different extent and sensitive in neutral and alkaline conditions and AP was more stable than AA.Vitamin E (VE) could protect AP effectively.Cu^2 + , Fe^3+ and Mn^2 + could lead to large loss of AA, Mn^2+ had obvious effect on AP.They were stable when glucose and sucrose existed.%研究了光照、温度、pH、氧化剂、抗氧化剂、金属离子、糖类对抗坏血酸(AA)及抗坏血酸棕榈酸酯(AP)稳定性的影响。结果表明:目光、高温、氧化剂、中性及碱性环境都会不同程度地对两者造成损失,其中抗坏血酸棕榈酸酯的稳定性要强于抗坏血酸。维生素E可以有效保护AP。铜离子、铁离子、锰离子会引起AA较大的损失,锰离子对AP稳定性有显著影响。糖类对两者稳定性基本没有影响。

  20. Lecithin based lamellar liquid crystals as a physiologically acceptable dermal delivery system for ascorbyl palmitate.

    Science.gov (United States)

    Gosenca, Mirjam; Bešter-Rogač, Marija; Gašperlin, Mirjana

    2013-09-27

    Liquid crystalline systems with a lamellar structure have been extensively studied as dermal delivery systems. Ascorbyl palmitate (AP) is one of the most studied and used ascorbic acid derivatives and is employed as an antioxidant to prevent skin aging. The aim of this study was to develop and characterize skin-compliant dermal delivery systems with a liquid crystalline structure for AP. First, a pseudoternary phase diagram was constructed using Tween 80/lecithin/isopropyl myristate/water at a Tween 80/lecithin mass ratio of 1/1, and the region of lamellar liquid crystals was identified. Second, selected unloaded and AP-loaded lamellar liquid crystal systems were physicochemically characterized with polarizing optical microscopy, small-angle X-ray scattering, differential scanning calorimetry, and rheology techniques. The interlayer spacing and rheological parameters differ regarding quantitative composition, whereas the microstructure of the lamellar phase was affected by the AP incorporation, resulting either in additional micellar structures (at 25 and 32 °C) or being completely destroyed at higher temperature (37°C). After this, the study was oriented towards in vitro cytotoxicity evaluation of lamellar liquid crystal systems on a keratinocyte cell line. The results suggest that the lamellar liquid crystals that were developed could be used as a physiologically acceptable dermal delivery system. PMID:23643736

  1. Ascorbyl palmitate, gamma-tocopherol, and EDTA affect lipid oxidation in fish oil enriched salad dressing differently

    DEFF Research Database (Denmark)

    Let, M.B.; Jacobsen, Charlotte; Meyer, Anne S.

    2007-01-01

    The aim of the study was to investigate the ability of γ-tocopherol, ethylenediaminetetraacetate (EDTA), and ascorbyl palmitate to protect fish oil enriched salad dressing against oxidation during a 6 week storage period at room temperature. The lipid-soluble γ-tocopherol (220 and 880 µg g-1 of...... antioxidant, and overall peroxide values and volatiles were reduced by approximately 70 and 77-86%, respectively. Conversely, prooxidant effects were observed with a high concentration of ascorbyl palmitate (300 µg g-1 of fish oil), whereas a low concentration was slightly antioxidative (50 µg/g of fish oil......). Finally, a combination of all three antioxidants completely inhibited oxidation during storage, indicating that the prooxidant effects of ascorbyl palmitate were reverted or overshadowed by EDTA and γ-tocopherol....

  2. Palmitato de ascorbil e acetato de tocoferol como antioxidantes metabólicos em larvas de dourado Ascorbyl palmitate and tocopherol acetate as metabolic antioxidants in dourado larvae

    Directory of Open Access Journals (Sweden)

    Daniel Okamura

    2008-08-01

    palmitate, ascorbic acid and dehydroascorbic acid, total length, weight and height of the head. Ascorbyl palmitate provided an increase in the total length and in the weight of the larvae after 15 days of feeding. For head height, differences were observed among the three doses of tested ascorbyl palmitate. The supplementation of ascorbyl palmitate increased the vitamin C concentrations. Although vitamin E has not influenced the development sizes, it acted as a metabolic pro-oxidant, which increased the dehydroascorbic acid.

  3. Molecular encapsulation of ascorbyl palmitate in preformed V-type starch and amylose.

    Science.gov (United States)

    Kong, Lingyan; Ziegler, Gregory R

    2014-10-13

    In the present study, we introduce a simple method to prepare inclusion complexes by "inserting" guest molecules into preformed "empty" V-type amylose helices. Ascorbyl palmitate (AscP) was used as a model guest material to investigate the effect of solvent environment, complexation temperature, annealing and guest concentration on inclusion complex formation. High complexation temperature was not necessary for encapsulating guest molecules in amylose helices, avoiding thermal degradation of guest compounds. This method would also avoid the wasting of guest materials because uncomplexed guest can be reused. It was found in the study that intermediate ethanol and acetone concentrations (generally 40-60%, v/v) at room temperature were appropriate for the complexation between V-amylose and AscP. Annealing, i.e. heat treatment in ethanol solutions at elevated temperatures (45-70 °C), was able to significantly increase the crystallinity of V-amylose and V-starch to as high as 65% and facilitate greater complexation evidenced from higher enthalpies, probably due to more regularly arranged helical cavities in larger crystalline phase. The complexation between V-amylose and AscP was also found to be enhanced with AscP concentration, while the dissociation temperature experienced a slight decrease. PMID:25037350

  4. Study of the influence of ascorbyl palmitate and amiodarone in the stability of unilamellar liposomes.

    Science.gov (United States)

    Benedini, Luciano; Antollini, Silvia; Fanani, Maria Laura; Palma, Santiago; Messina, Paula; Schulz, Pablo

    2014-01-01

    Amiodarone (AMI) is a low water-solubility drug, which is very useful in the treatment of severe cardiac disease. Its adverse effects are associated with toxicity in different tissues. Several antioxidants have been shown to reduce, and prevent AMI toxicity. The aim of this work was to develop and characterize Dimyristoylphosphatidylcholine (DMPC) liposomal carriers doped with ascorbyl palmitate (Asc16) as antioxidant, in order to either minimize or avoid the adverse effects produced by AMI. The employment of liposomes would avoid the use of cosolvents in AMI formulations, and Asc16 could minimize the adverse effects of AMI. To evaluate the partition and integration of AMI and Asc16 in lipid membranes, penetration studies into DMPC monolayers were carried out. The disturbance of the liposomes membranes was studied by generalized polarization (GP). The stability of liposomes was evaluated experimentally and by means of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The size particle and zeta potential (ζ) values of the liposomes were used for application in calculations for attractive and repulsive forces in DLVO theory. In experimental conditions all of these vesicles showed stability at time 0, but only DMPC + Asc16 10% + AMI 10% liposomes kept their size stable and ζ during 28 days. These results are encouraging and suggest that such systems could be suitable for AMI delivery formulations. PMID:24650150

  5. Nanocarrier with self-antioxidative property for stabilizing and delivering ascorbyl palmitate into skin.

    Science.gov (United States)

    Janesirisakule, Sirinapa; Sinthusake, Tarit; Wanichwecharungruang, Supason

    2013-08-01

    The concept of a nanocarrier with a self-antioxidative property to deliver and stabilize a labile drug while at the same time providing a free radical scavenging activity is demonstrated. Curcumin was grafted onto a poly(vinyl alcohol) [PV(OH)] chain, and the nanocarriers fabricated from the obtained curcumin-grafted PV(OH) polymer [CUR-PV(OH)] showed a good free radical scavenging activity. Ascorbyl palmitate (AP) could be effectively loaded into the CUR-PV(OH) at 29% by weight. The CUR-PV(OH)-encapsulated AP was 77% more stable than the free (unencapsulated) AP, and 47% more stable than AP encapsulated in the control nanocarrier with no antioxidative property [cinnamoyl-grafted PV(OH); CIN-PV(OH)]. Although coencapsulation of curcumin and AP into CIN-PV(OH) showed some improvement on the AP stability, AP was more stable when encapsulated in CUR-PV(OH). Compared with the free AP, encapsulated AP within the CUR-PV(OH) nanocarriers showed not only a better penetration into pig skin dermis via hair follicle pathway followed by the release and diffusion of the AP, but also a greater AP stability after skin application. Although a proof of principle is shown for CUR-PV(OH) and AP, it is likely that other carriers of the same principal could be designed and applied to different oxidation-sensitive drugs. PMID:23775704

  6. Nanocarrier with self-antioxidative property for stabilizing and delivering ascorbyl palmitate into skin.

    Science.gov (United States)

    Janesirisakule, Sirinapa; Sinthusake, Tarit; Wanichwecharungruang, Supason

    2013-08-01

    The concept of a nanocarrier with a self-antioxidative property to deliver and stabilize a labile drug while at the same time providing a free radical scavenging activity is demonstrated. Curcumin was grafted onto a poly(vinyl alcohol) [PV(OH)] chain, and the nanocarriers fabricated from the obtained curcumin-grafted PV(OH) polymer [CUR-PV(OH)] showed a good free radical scavenging activity. Ascorbyl palmitate (AP) could be effectively loaded into the CUR-PV(OH) at 29% by weight. The CUR-PV(OH)-encapsulated AP was 77% more stable than the free (unencapsulated) AP, and 47% more stable than AP encapsulated in the control nanocarrier with no antioxidative property [cinnamoyl-grafted PV(OH); CIN-PV(OH)]. Although coencapsulation of curcumin and AP into CIN-PV(OH) showed some improvement on the AP stability, AP was more stable when encapsulated in CUR-PV(OH). Compared with the free AP, encapsulated AP within the CUR-PV(OH) nanocarriers showed not only a better penetration into pig skin dermis via hair follicle pathway followed by the release and diffusion of the AP, but also a greater AP stability after skin application. Although a proof of principle is shown for CUR-PV(OH) and AP, it is likely that other carriers of the same principal could be designed and applied to different oxidation-sensitive drugs.

  7. Multivariate optimization of a synergistic blend of oleoresin sage (Salvia officinalis L.) and ascorbyl palmitate to stabilize sunflower oil.

    Science.gov (United States)

    Upadhyay, Rohit; Mishra, Hari Niwas

    2016-04-01

    The simultaneous optimization of a synergistic blend of oleoresin sage (SAG) and ascorbyl palmitate (AP) in sunflower oil (SO) was performed using central composite and rotatable design coupled with principal component analysis (PCA) and response surface methodology (RSM). The physicochemical parameters viz., peroxide value, anisidine value, free fatty acids, induction period, total polar matter, antioxidant capacity and conjugated diene value were considered as response variables. PCA reduced the original set of correlated responses to few uncorrelated principal components (PC). The PC1 (eigen value, 5.78; data variance explained, 82.53 %) was selected for optimization using RSM. The quadratic model adequately described the data (R (2) = 0. 91, p  0.05). The contour plot of PC 1 score indicated the optimal synergistic combination of 1289.19 and 218.06 ppm for SAG and AP, respectively. This combination of SAG and AP resulted in shelf life of 320 days at 25 °C estimated using linear shelf life prediction model. In conclusion, the versatility of PCA-RSM approach has resulted in an easy interpretation in multiple response optimizations. This approach can be considered as a useful guide to develop new oil blends stabilized with food additives from natural sources.

  8. Multivariate optimization of a synergistic blend of oleoresin sage (Salvia officinalis L.) and ascorbyl palmitate to stabilize sunflower oil.

    Science.gov (United States)

    Upadhyay, Rohit; Mishra, Hari Niwas

    2016-04-01

    The simultaneous optimization of a synergistic blend of oleoresin sage (SAG) and ascorbyl palmitate (AP) in sunflower oil (SO) was performed using central composite and rotatable design coupled with principal component analysis (PCA) and response surface methodology (RSM). The physicochemical parameters viz., peroxide value, anisidine value, free fatty acids, induction period, total polar matter, antioxidant capacity and conjugated diene value were considered as response variables. PCA reduced the original set of correlated responses to few uncorrelated principal components (PC). The PC1 (eigen value, 5.78; data variance explained, 82.53 %) was selected for optimization using RSM. The quadratic model adequately described the data (R (2) = 0. 91, p  0.05). The contour plot of PC 1 score indicated the optimal synergistic combination of 1289.19 and 218.06 ppm for SAG and AP, respectively. This combination of SAG and AP resulted in shelf life of 320 days at 25 °C estimated using linear shelf life prediction model. In conclusion, the versatility of PCA-RSM approach has resulted in an easy interpretation in multiple response optimizations. This approach can be considered as a useful guide to develop new oil blends stabilized with food additives from natural sources. PMID:27413218

  9. L-抗坏血酸棕榈酸酯的酶法合成%Synthesis of L-ascorbyl palmitate catalyzed by lipase

    Institute of Scientific and Technical Information of China (English)

    李红; 陶静; 李颖

    2011-01-01

    The synthesis of L-ascorbyl palmitate catalyzed by lipase in organic phase was studied.The optimized process conditions,such as enzyme,solvent,temperature,reactants and additive were determined.In the presence of 0.05g Novozyme435 as catalyst,0.3g of 4A molecular sieve and 0.3g of n-Bu4NBr as additive in 3mL tert-amyl alcohol at 50℃,16.6mg/mL of L-ascorbyl palmitate was obtained in the reaction of palmitic acid and VC with the molar ratio of 3:1 after 72h.%详细研究了脂肪酶在有机溶剂中催化合成L-抗坏血酸棕榈酸酯的反应,并且对影响产物浓度的几种主要因素进行讨论(如脂肪酶、溶剂、温度、底物比、添加剂),首次通过加入相转移剂提高反应产物浓度,确定了合成L-抗坏血酸棕榈酸酯的最适反应条件:3mL叔戊醇为溶剂,催化剂为Novozyme435,其最佳用量为0.05g,底物棕榈酸与抗坏血酸摩尔比3:1,0.3g4A分子筛作为吸水剂,0.3g四丁基溴化铵作为相转移剂,反应温度50℃,反应时间72h,得到产物浓度为16.6mg/mL。

  10. HPLC法快速测定乳粉中VC棕榈酸酯的含量%Rapid Determination of Content of Ascorbyl Palmitate in Milk Powder by HPLC

    Institute of Scientific and Technical Information of China (English)

    杜淑霞; 徐丽; 廖延智; 司徒满泉; 李文清

    2015-01-01

    建立了利用高效液相色谱仪快速测定乳粉中Vc棕榈酸酯含量的方法。以含0.1%草酸的乙醇溶液为提取剂,以甲醇和0.15%草酸(体积比为90∶10)为流动相,经Inertsil ODS-SP色谱柱分离,采用二极管阵列检测器,在245 nm波长下进行测定。VC棕榈酸酯的质量浓度在0.5μg/mL~100μg/mL浓度范围内与峰面积呈良好的线性关系。以3倍基线噪声所对应的浓度计算VC棕榈酸酯的检出限为2μg/g。加标回收率在92.01%~105.84%之间,相对标准偏差(n=6)在1.02%~2.70%之间。%The method for rapid determination of the content of ascorbyl palmitate in milk powder by high performance liquid chromatograph (HPLC) was established. It was separated through Inertsil ODS-SP chromatographic column with ethanol containing 0.1%oxalic acid as extraction agent and with methanol and 0.15%oxalic acid ( vol/vol=90∶10) as mobile phase, and then was measured under 245 nm wavelength with a diode array detector. There was a good linear relationship between mass concentration of ascorbyl palmitate and peak area when the mass concentration was from 0.5 μg/mL to 100 μg/mL. Detection limit of ascorbyl palmitate was calculated as 2μg/g by the concentration which corresponded to 3 times baseline noise. Standard addition recovery was 92.01%-105.84%, and relative standard deviation (n=6) was 1.02%-2.70%.

  11. Palmitic Acid and Health: Introduction.

    Science.gov (United States)

    Agostoni, Carlo; Moreno, Luis; Shamir, Raanan

    2016-09-01

    Interest in the dietary role and metabolic effect of saturated fatty acids has been recently renewed on the basis of epidemiologic observations and economical approach to health and well-being. Saturated fats may favorably increase blood HDL-Cholesterol levels without significant changes of the total cholesterol/HDL-Cholesterol ratio. Also, the negative effect of saturated fat on cardiovascular diseases risk has recently been challenged. Palmitic acid, among all, may have special structural and functional roles in utero and in infancy, and indeed is it is being delivered in a unique form in human milk. Future research should include objective cost-benefit analyses when disentangling the role of saturated fats in dietary recommendations. PMID:25764181

  12. 棕榈酸维生素C酯的酶催化合成%Enzymatic Synthesis of Ascorbyl Palmitate by Transesterification in Non-Aqueous Medium

    Institute of Scientific and Technical Information of China (English)

    安庆大; 董晓丽; 王少君; 马金辉

    2001-01-01

    The synthesis of ascorbyl palmitate from methyl palmitate and ascorbic acid was studied. The reaction was carried out in non-aqueous medium with an immobilized Lipase-LIPOZYM IM as biocatalyst. The influence of the initial molar ratio of substrates, the amount of Lipase, reaction temperature and time was investigated, the optimum of reaction conditions were established. The reaction product has perfectly regioselective.%以棕榈酸甲酯和维生素C为原料,以脂肪酶(LIPOZYM IM)为催化剂,催化合成了棕榈酸维生素C酯.详细研究了几种因素(维生素C与棕榈酸甲酯的摩尔比,反应温度,反应时间及脂肪酶用量)对合成反应的影响,确立了棕榈酸维生素C酯的较佳合成条件:底物摩尔比为3:1,反应温度55℃,反应时间8h,脂肪酶用量为反应体系的3%(重量),产品一次收率为68.2%.

  13. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate.

    Science.gov (United States)

    Alemán, Mercedes; Bou, Ricard; Tres, Alba; Polo, Javier; Codony, Rafael; Guardiola, Francesc

    2016-04-01

    Fortification of food products with iron is a common strategy to prevent or overcome iron deficiency. However, any form of iron is a pro-oxidant and its addition will cause off-flavours and reduce a product's shelf life. A highly bioavailable heme iron ingredient was selected to fortify a chocolate cream used to fill sandwich-type cookies. Two different strategies were assessed for avoiding the heme iron catalytic effect on lipid oxidation: ascorbyl palmitate addition and co-spray-drying of heme iron with calcium caseinate. Oxidation development and sensory acceptability were monitored in the cookies over one-year of storage at room temperature in the dark. The addition of ascorbyl palmitate provided protection against oxidation and loss of tocopherols and tocotrienols during the preparation of cookies. In general, ascorbyl palmitate, either alone or in combination with the co-spray-dried heme iron, prevented primary oxidation and hexanal formation during storage. The combination of both strategies resulted in cookies that were acceptable from a sensory point of view after 1year of storage. PMID:26593529

  14. Enzymatic synthesis and application of fatty acid ascorbyl esters

    OpenAIRE

    Stojanović Marija M.; Carević Milica B.; Mihailović Mladen D.; Knežević-Jugović Zorica D.; Petrović Slobodan D.; Bezbradica Dejan I.

    2013-01-01

    Fatty acid ascorbyl esters are liposoluble substances that possess good antioxidative properties. These compounds could be synthesized by using various acyl donors for acylation of vitamin C in reaction catalyzed by chemical means or lipases. Enzymatic process is preferred since it is regioselective, performed under mild reaction conditions, with the obtained product being environmentally friendly. Polar organic solvents, ionic liquids, and supercritical fluids has been successfully use...

  15. Stability of potato chip fried in vegetable oils with different degree of unsaturation. Effect of ascorbyl palmitate during storage

    Directory of Open Access Journals (Sweden)

    Torres, R.

    2002-06-01

    Full Text Available Four vegetable oils with different polyunsaturated/saturated fatty acid ratio (P/S: 5.2 for sunflower oil, 3.,4 for canola rapeseed oil, 0.4 for a blend of palm oleic and canola rapeseed oil (80:20, and 0.3 for palm olein were assayed for stability of crisps fried in these oils during storage at 60º C. The action of ascorbyl palmitate with special attention to its synergistic effect on the natural antioxidants was also tested. by addition to the fried potatoes. The evolution of the oxidative stability was measured through peroxide value, quantitation of tocopherols and tocotrienols, and induction time (IT by means of Rancimat. Oil degradation during frying was very low as both polar compound percentages and natural antioxidant had similar levels to those present in refined oils. Evolution of analytical parameters during storage results indicated that oil unsaturation degree or P/S had a much more importance on stability of the product than had the content and type of natural antioxidants and the addition of AP. Nevertheless, addition of AP to the fried potatoes had a significant effect resulting in higher retention of natural antioxidants, higher IT and lower PV at any storage timeSe estudia la evolución de la oxidación a 60º C en patatas fritas con cuatro aceites vegetales de distinta relación ácidos grasos poliinsaturados/saturados (P/S: 5,4 para el aceite de girasol, 3,4 para el aceite de canola, 0,4 para una mezcla de oleína de palma (80 % y aceite de canola (20 % y 0,3 para la oleína de palma. Se estudia igualmente la influencia de la adición de palmitato de ascorbilo (AP durante la conservación del producto frito con especial atención a su efecto sinergista sobre los antioxidantes naturales. La evolución de la oxidación en lotes de patatas, con y sin adición de AP, se determinó mediante las siguientes determinaciones analíticas: índice de peróxidos (PV, cuantificación de tocoferoles y tocotrienoles, y periodos de

  16. 1-丁基-3-甲基咪唑三氟甲磺酸盐催化合成L-抗坏血酸棕榈酸酯%Chemical synthesis of L-ascorbyl palmitate in [ BMIM] OTF

    Institute of Scientific and Technical Information of China (English)

    刘瑞瑾; 纪俊敏

    2011-01-01

    L-抗坏血酸棕榈酸酯是一种高效安全的脂溶性抗氧化剂,是近几年被国际上认可的一种新型食品添加剂,广泛地用于粮油、食品、医药、保健品化妆品等领域.1 -丁基-3-甲基咪唑三氟甲磺酸盐( [BMIM] OTF)是一种常用的室温离子液体催化剂,可有效催化乙酰化反应,具有高效、底物普适性好和对水稳定的特点,本文研究了 [BMIM] OTF催化棕榈酸与L-抗坏血酸合成L-抗坏血酸棕榈酸酯,考察了[BMIM] OTF的用量、反应物摩尔比、反应温度、反应时间、对反应转化率的影响.采用正交设计实验法优化工艺条件,得到较佳工艺条件,离子液体用量为反应物质量的3%,棕榈酸∶维生素C为1∶1.2,反应温度为30℃,反应时间为24h,产率达到66.44%.产品质量符合GB16314 - 1996标准.%L - ascorbyl palmitate is a safe and highly efficient lipophilic antioxidant. It is an widely accepted new food antioxidant in recent years and can be used in oil, food, medicine, health protection and cosmetics. 1 - butyl - 3 -methylimidazolium trifluoromethanesulfonate ( [ BMIM] OTF) is a versatile ionic liquid promoter in the room temperature. It can effectively improve acetylization and has the advantage on substrate universality and water soluble stability. In this paper we use [ BMIM ] OTF as a promoter to synthesise L - ascorbyl palmitate. We discussed the impact of dosage of ionic liquid, mole ratio of reaction, temperature and time on the conversion rate. The optimized conditions by orthogonal experiment was: the amount of ionic liquids for the quality of reactant was 3% , the ratio of palmitic acid : VC was 1 : 1. 2, the reaction temperature was 30℃ , and the reaction time was 24h. Under the above condition, L - ascorbyl palmitate conversion rate was 66. 44% . The product was met the requirement of GB16314 - 1996.

  17. Adsorption and inhibition effect of Ascorbyl palmitate on corrosion of carbon steel in ethanol blended gasoline containing water as a contaminant

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •Inhibition performance was studied using weight loss and EIS methods. •The addition of ethanol and water to gasoline increase the corrosion rate of C-steel. •Ascorbyl palmitate has good inhibition efficiency for C-steel in blend fuel. •Efficiency more than 96% was obtained with 120 mg l−1 AP at 298 K. •The adsorption of AP on C-steel surface obeys Langmuir adsorption isotherm. -- Abstract: The adsorption and inhibition effect of Ascorbyl palmitate (AP) on carbon steel in ethanol blended gasoline containing water as a contaminant (GE10 + 1%water) was studied by weight loss and electrochemical impedance spectroscopic (EIS) techniques. The results showed that the addition of ethanol and water to gasoline increase the corrosion rate of carbon steel. AP inhibits the corrosion of carbon steel in (GE10 + 1% water) solution to a remarkable extent. The adsorption of AP on the carbon steel surface was found to obey the Langmuir adsorption isotherm model. The values of activation energy (Ea) and various thermodynamic parameters were calculated and discussed

  18. Enzymatic synthesis and application of fatty acid ascorbyl esters

    Directory of Open Access Journals (Sweden)

    Stojanović Marija M.

    2013-01-01

    Full Text Available Fatty acid ascorbyl esters are liposoluble substances that possess good antioxidative properties. These compounds could be synthesized by using various acyl donors for acylation of vitamin C in reaction catalyzed by chemical means or lipases. Enzymatic process is preferred since it is regioselective, performed under mild reaction conditions, with the obtained product being environmentally friendly. Polar organic solvents, ionic liquids, and supercritical fluids has been successfully used as a reaction medium, since commonly used solvents with high Log P values are inapplicable due to ascorbic acid high polarity. Acylation of vitamin C using fatty acids, their methyl-, ethyl-, and vinyl esters, as well as triglycerides has been performed, whereas application of the activated acyl donors enabled higher molar conversions. In each case, majority of authors reported that using excessive amount of the acyl donor had positive effect on yield of product. Furthermore, several strategies have been employed for shifting the equilibrium towards the product by water content control. These include adjusting the initial water activity by pre-equilibration of reaction mixture, enzyme preparation with water vapor of saturated salt solutions, and the removal of formed water by the addition of molecular sieves or salt hydrate pairs. The aim of this article is to provide a brief overview of the procedures described so far for the lipase-catalyzed synthesis of fatty acid ascorbyl esters with emphasis on the potential application in food, cosmetics, and pharmaceutics. Furthermore, it has been pointed out that the main obstacles for process commercialization are long reaction times, lack of adequate purification methods, and high costs of lipases. Thus, future challenges in this area are testing new catalysts, developing continuous processes for esters production, finding cheaper acyl donors and reaction mediums, as well as identifying standard procedures for

  19. Final report of the safety assessment of L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate as used in cosmetics.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate function in cosmetic formulations primarily as antioxidants. Ascorbic Acid is commonly called Vitamin C. Ascorbic Acid is used as an antioxidant and pH adjuster in a large variety of cosmetic formulations, over 3/4 of which were hair dyes and colors at concentrations between 0.3% and 0.6%. For other uses, the reported concentrations were either very low (Sodium Ascorbyl Phosphate functions as an antioxidant in cosmetic products and is used at concentrations ranging from 0.01% to 3%. Magnesium Ascorbyl Phosphate functions as an antioxidant in cosmetics and was reported being used at concentrations from 0.001% to 3%. Sodium Ascorbate also functions as an antioxidant in cosmetics at concentrations from 0.0003% to 0.3%. Related ingredients (Ascorbyl Palmitate, Ascorbyl Dipalmitate, Ascorbyl Stearate, Erythorbic Acid, and Sodium Erythorbate) have been previously reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel and found "to be safe for use as cosmetic ingredients in the present practices of good use." Ascorbic Acid is a generally recognized as safe (GRAS) substance for use as a chemical preservative in foods and as a nutrient and/or dietary supplement. Calcium Ascorbate and Sodium Ascorbate are listed as GRAS substances for use as chemical preservatives. L-Ascorbic Acid is readily and reversibly oxidized to L-dehydroascorbic acid and both forms exist in equilibrium in the body. Permeation rates of Ascorbic Acid through whole and stripped mouse skin were 3.43 +/- 0.74 microg/cm(2)/h and 33.2 +/- 5.2 microg/cm(2)/h. Acute oral and parenteral studies in mice, rats, rabbits, guinea pigs, dogs, and cats demonstrated little toxicity. Ascorbic Acid and Sodium Ascorbate acted as a nitrosation inhibitor in several food and cosmetic product studies. No compound-related clinical signs or gross or microscopic pathological effects were

  20. L-抗坏血酸脂肪酸酯抗氧化活性%Study on the Antioxidant Activities of L-ascorbyl Fatty Acid Esters

    Institute of Scientific and Technical Information of China (English)

    刘建伟; 赵海珍; 吕凤霞; 别小妹; 张充; 陆兆新; 彭杨

    2011-01-01

    In vitro antioxidant activities of L-ascorbyl fatty acid esters were studied by the items of hydroxyl radical system, superoxide anion free radical system, system of DPPH · , and reducing power.Its antioxidant effects was further evaluated by adding into the lard and bead oil.The results indicated that L-ascorbyl fatty acid esters within the given concentration range in doseeffect relationship showed good antioxidant activities on both the clearance of hydroxyl radical,superoxide anion free radical and DPPH · and the reducing power.Furthermore, the antioxidant activities of L-ascorbyl fatty acid esters were comparable with that of L-ascorbyl palmitate.When 0.2% (w/w) of L-ascorbyl fatty acid esters were added in the lard for a 20 h forced oxidation at 100 ℃, the POV of lard was 42.8 meq/kg, which illustrated L-ascorbyl fatty acid esters had significant antioxidant activities.When 0.2% (w/w) of L-ascorbyl fatty acid esters were added in the soybean oil for a 14 h forced oxidation at 100 ℃, the POV of soybean oil was 11.9 meq/ kg.The antioxidant ability of L-ascorbyl fatty acid esters for soybean oil was higher than that of TBHQ, but was close with that of L-ascorbyl palmitate.Thus, L-ascorbyl fatty acid esters were demonstrated to be potential food antioxidants.%从羟基自由基体系、超氧阴离子自由基体系、二苯苦味肼基自由基体系及还原力测试等方面研究L-抗坏血酸脂肪酸酯(VC脂肪酸酯)体外抗氧化活性,并将其添加到猪油和大豆油当中,评价其抗氧化效果.结果表明,在一定的质量浓度范围内,VC脂肪酸酯对羟自由基、超氧阴离子自由基、DPPH自由基均有较好的清除效果,还原能力也较强,并呈一定量效关系,其抗氧化活性与L-抗坏血酸棕榈酸酯相当.VC脂肪酸酯在猪油中的添加质量分数为0.2%,100℃下强制氧化20h时,猪油的过氧化值为42.8 meq/kg,具有明显的抗氧化活性;在大豆油中添加质量分数0.2%,

  1. Enzymatic Synthesis of l-Ascorbyl Fatty Acid Esters Under Ultrasonic Irradiation and Comparison of Their Antioxidant Activity and Stability.

    Science.gov (United States)

    Jiang, Chen; Lu, Yuyun; Li, Zhuo; Li, Cunzhi; Yan, Rian

    2016-06-01

    A series of novel l-ascorbyl fatty acid esters were synthesized by catalization of Novozym(®) 435 under ultrasonic irradiation and characterized by infrared spectroscopy, electrospray ionization mass spectra, and nuclear magnetic resonance. Their properties especially antioxidant activity and stability were investigated. The results showed that the reducing power, the scavenging activity of hydroxyl radical and 2,2-diphenyl-1-picrylhydrazyl radical were decreased with the increase of the number of carbon atoms in fatty acid. The hydroxyl radical scavenging activity and reducing power of l-ascorbyl saturated fatty acid esters were better than that of tert-butylhydroquinone. The induction period in lipid oxidation of l-ascorbyl saturated fatty acid esters and tert-butylhydroquinone were longer than that of l-ascorbyl unsaturated fatty acid esters and l-ascorbic acid both in soybean oil and lard. Besides, the l-ascorbyl fatty acid esters showed different stabilities in different conditions by comparing with l-ascorbic acid, and the l-ascorbyl saturated fatty acid esters were more stable than l-ascorbyl unsaturated fatty acid esters in ethanol solution. PMID:27100741

  2. Uptake of palmitic acid by rabbit alveolar type II cells

    International Nuclear Information System (INIS)

    Alveolar type II cells require a source of palmitic acid for synthesis of dipalmitoyl phosphatidylcholine (DPPC), a major constituent of pulmonary surfactant. Previous studies indicated that maximal rates of DPPC synthesis are achieved only if exogenous palmitate is available to the type II cell. Little is known of the mechanisms by which fatty acids enter type II cells. To determine if uptake is mediated by a membrane carrier system, as described in other cell types, we examined the kinetics of palmitate uptake. Using freshly isolated rabbit type II cells, we demonstrated that radiolabeled palmitate uptake was maximal and linear for 45 s; after 1 min the apparent rate of uptake declined. The initial uptake phase was taken as a measure of cellular fatty acid influx because intracellular radiolabeled palmitate remained 80% nonesterified at this time but was 55% esterified by 2 min. Cellular influx of palmitate showed saturation kinetics with increasing concentration of nonalbumin bound palmitate. Michaelis constant was 52.6 nM, and maximum velocity was 152 pmol.10(6) cells-1.min-1. The hypothesis that saturable cellular influx of palmitate is likely linked to the previously identified membrane fatty acid binding protein (MFABP) was supported by Western-blot analysis of rat lung tissue with an antibody to MFABP that demonstrated the presence of this carrier protein in lung tissue. These data suggest that palmitate uptake by type II cells is saturable and may be mediated by a membrane-associated carrier as described in other cell types

  3. Palmitic Acid in Early Human Development.

    Science.gov (United States)

    Innis, Sheila M

    2016-09-01

    Palmitic acid (16:0) is a saturated fatty acid present in the diet and synthesized endogenously. Although often considered to have adverse effects on chronic disease in adults, 16:0 is an essential component of membrane, secretory, and transport lipids, with crucial roles in protein palmitoylation and signal molecules. At birth, the term infant is 13-15% body fat, with 45-50% 16:0, much of which is derived from endogenous synthesis in the fetus. After birth, the infant accumulates adipose tissue at high rates, reaching 25% body weight as fat by 4-5 months age. Over this time, human milk provides 10% dietary energy as 16:0, but in unusual triglycerides with 16:0 on the glycerol center carbon. This paper reviews the synthesis and oxidation of 16:0 and possible reasons why the infant is endowed with large amounts of fat and 16:0. The marked deviations in tissues with displacement of 16:0 that can occur in infants fed vegetable oil formulas is introduced. Assuming fetal fatty acid synthesis and the unusual delivery of 16:0 in human milk evolved to afford survival advantage to the neonate, it is timely to question if 16:0 is an essential component of tissue lipids whereby both deficiency and excess are detrimental. PMID:25764297

  4. Application of l-ascorbic acid and its derivatives (sodium ascorbyl phosphate and magnesium ascorbyl phosphate) in topical cosmetic formulations: stability studies

    International Nuclear Information System (INIS)

    The present study aimed to formulate and subsequently evaluate a topical skin-care cream (o/w emulsion) from l-ascorbic acid and its derivatives (sodium ascorbyl phosphate and magnesium ascorbyl phosphate) at 2% versus its vehicle (Control). Formulations were developed by entrapping it in the oily phase of o/w emulsion and were stored at 8 degree C, 25 degree C and 40 degree C (in incubator) for a period of four weeks to investigate their stability. In the physical analysis, the evaluation parameters consisted of color, smell, phase separation, centrifugation, and liquefaction. Chemical stability of both derivatives was established by HPLC analysis. In the chemical analysis, the formulation with sodium ascorbyl phosphate was more stable than those with magnesium ascorbyl phosphate and l-ascorbic acid. The microbiological stability of the formulations was also evaluated. The findings indicated that the formulations with l-ascorbic acid and its derivatives were efficient against the proliferation of various spoilage microorganisms, including aerobic plate counts as well as Pseudomonas aeruginosa, Staphylococcus aureus, and yeast and mold counts. The results presented in this work showed good stability throughout the experimental period. Newly formulated emulsion proved to exhibit a number of promising properties and attributes that might open new opportunities for the construction of more efficient, safe, and cost-effective skin-care, cosmetic, and pharmaceutical products. (author)

  5. Protective effects of equimolar mixtures of monomer and dimer of dehydrozingerone with α-tocopherol and/or ascorbyl palmitate during bulk lipid autoxidation.

    Science.gov (United States)

    Kancheva, Vessela; Slavova-Kazakova, Adriana; Fabbri, Davide; Dettori, Maria Antonietta; Delogu, Giovanna; Janiak, Michał; Amarowicz, Ryszard

    2014-08-15

    Protective effects of recently synthesised dehydrozingerone, M1OH (which is one half of the molecule of curcumin) and dimer of dehydrozingerone, D1(OH)2, as individual compounds (1 mM) and as equimolar binary (1:1) and ternary (1:1:1) mixtures with α-tocopherol (TOH) and/or ascorbyl palmitate (AscPH), were studied during bulk lipid autoxidation at 80 °C. The highest oxidation stability of lipid substrate, in the presence of individual compounds, was found for TOH, followed by D1(OH)2 and M1OH, determined from the main kinetic parameters (antioxidant efficiency, reactivity and capacity). AscPH did not show any protective effect. Synergism was obtained for the binary mixtures of (TOH+AscPH) [42.4%], (M1OH+TOH) [32.4%] and (M1OH+AscPH) [35.6%] and for the ternary mixture of (M1OH+TOH+AscPH) [28.7%]. Different protective effects observed were explained on the basis (of results) of TOH regeneration and its content determined by HPLC. These antioxidant binary and ternary mixtures can be used as functional components of foods with health-promoting effects. PMID:24679780

  6. Defective [U-14 C] palmitic acid oxidation in Duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Compared with normal skeletal muscle, muscle from patients with Duchenne dystrophy had decreased [U-14 C] palmitic acid oxidation. [1-14 C] palmitic acid oxidation was normal. These results may indicate a defect in intramitochondrial fatty acid oxidation

  7. Drug Nanoparticle Formulation Using Ascorbic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Kunikazu Moribe

    2011-01-01

    Full Text Available Drug nanoparticle formulation using ascorbic acid derivatives and its therapeutic uses have recently been introduced. Hydrophilic ascorbic acid derivatives such as ascorbyl glycoside have been used not only as antioxidants but also as food and pharmaceutical excipients. In addition to drug solubilization, drug nanoparticle formation was observed using ascorbyl glycoside. Hydrophobic ascorbic acid derivatives such as ascorbyl mono- and di-n-alkyl fatty acid derivatives are used either as drugs or carrier components. Ascorbyl n-alkyl fatty acid derivatives have been formulated as antioxidants or anticancer drugs for nanoparticle formulations such as micelles, microemulsions, and liposomes. ASC-P vesicles called aspasomes are submicron-sized particles that can encapsulate hydrophilic drugs. Several transdermal and injectable formulations of ascorbyl n-alkyl fatty acid derivatives were used, including ascorbyl palmitate.

  8. Highly efficient enzymatic synthesis of an ascorbyl unstaturated fatty acid ester with ecofriendly biomass-derived 2-methyltetrahydrofuran as cosolvent.

    Science.gov (United States)

    Hu, Ying-Dan; Qin, Ye-Zhi; Li, Ning; Zong, Min-Hua

    2014-01-01

    Enzymatic synthesis of ascorbyl undecylenate, an unsaturated fatty acid ester of ascorbic acid, was reported with biomass-derived 2-methyltetrahydrofuran (MeTHF) as the cosolvent. Of the immobilized lipases tested, Candida antarctica lipase B (CAL-B) showed the highest activity for enzymatic synthesis of ascorbyl undecylenate. Effect of reaction media on the enzymatic reaction was studied. The cosolvent mixture, t-butanol-MeTHF (1:4, v/v) proved to be the optimal medium, in which not only ascorbic acid had moderate solubility, but also CAL-B showed a high activity, thus addressing the major problem of the solvent conflict for dissolving substrate and keeping satisfactory enzyme activity. In addition, the enzyme was much more stable in MeTHF and t-butanol-MeTHF (1:4) than in previously widely used organic solvents, t-butanol, 2-methyl-2-butanol, and acetone. The much higher initial reaction rate in this cosolvent mixture may be rationalized by the much lower apparent activation energy of this enzymatic reaction (26.6 vs. 38.1-39.1 kJ/mol) and higher enzyme catalytic efficiency (Vmax /Km , 8.4 vs. 1.3-1.4 h(-1) ). Ascorbyl undecylenate was obtained with the yields of 84-89% and 6-regioselectivity of >99% in t-butanol-MeTHF (1:4) at supersaturated substrate concentrations (60 and 100 mM) after 5-8 h. PMID:24891225

  9. Synthesis of ascorbyl oleate by transesterification of olive oil with ascorbic acid in polar organic media catalyzed by immobilized lipases.

    Science.gov (United States)

    Moreno-Perez, Sonia; Filice, Marco; Guisan, Jose M; Fernandez-Lorente, Gloria

    2013-09-01

    The reaction of transesterification between oils (e.g., olive oil) and ascorbic acid in polar anhydrous media (e.g., tert-amyl alcohol) catalyzed by immobilized lipases for the preparation of natural liposoluble antioxidants (e.g., ascorbyl oleate) was studied. Three commercial lipases were tested: Candida antarctica B lipase (CALB), Thermomyces lanuginosus lipase (TLL) and Rhizomucor miehei lipase (RML). Each lipase was immobilized by three different protocols: hydrophobic adsorption, anionic exchange and multipoint covalent attachment. The highest synthetic yields were obtained with CALB adsorbed on hydrophobic supports (e.g., the commercial derivative Novozym 435). The rates and yields of the synthesis of ascorbyl oleate were higher when using the solvent dried with molecular sieves, at high temperatures (e.g. 45°C) and with a small excess of oil (2 mol of oil per mol of ascorbic acid). The coating of CALB derivatives with polyethyleneimine (PEI) improved its catalytic behavior and allowed the achievement of yields of up to 80% of ascorbyl oleate in less than 24h. CALB adsorbed on a hydrophobic support and coated with PEI was 2-fold more stable than a non-coated derivative and one hundred-fold more stable than the best TLL derivative. The best CALB derivative exhibited a half-life of 3 days at 75°C in fully anhydrous media, and this derivative maintained full activity after 28 days at 45°C in dried tert-amyl alcohol. PMID:23891831

  10. Studies on Lipase-catalyzed Synthesis of L-ascorbyl Palmitate in Non-aqueous Phase%非水相脂肪酶催化合成L-抗坏血酸棕榈酸酯的研究Ⅰ

    Institute of Scientific and Technical Information of China (English)

    汤鲁宏; 张浩

    2000-01-01

    The investigation on the reaction media and lipases (NOVO435、MML、LIPOLASE、PPL) for enzymatic synthesis of L-ascorbyl palmitate as well as the factors effecting initial rate of synthesis reaction (rotation speed, temperature, water content,enzyme concentration,and substrate concentration) is presented. Among these investigated solvents and lipases, amyl alcohol and NOVO435 is the optimum pair. The reaction conditions have been optimized:200r/min, 55℃ , water content = 0, the amount of enzyme= 12.5 % of the substrate' s quantity.%对催化合成L-抗坏血酸棕榈酸酯反应的脂肪酶(NOVO435、MML、LIPOLASE、PPL)和反应介质进行比较,得出最佳酶种为NOVO435,最佳介质为叔戊醇;同时对影响合成L-抗坏血酸棕榈酸酯反应的初速度的因素(转速、温度、水分含量、酶浓度和底物浓度)进行了探讨,确定了最适反应条件:转速为200r/min,温度为55℃,水分含量为0,酶浓度为12.5%。

  11. System Development from Organic Solvents to Ionic Liquids for Synthesiz-ing Ascorbyl Esters with Conjugated Linoleic Acids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Schultz, Lise; Guo, Zheng;

    2012-01-01

    -ferred to an ionic liquid system for the purpose of improving solubility of the polar substrate and avoiding the application of organic solvents. From screening experiments, it was evident that only methyltrioctylammonium triflouroacetate (tO-MA·TFA) could provide a proper reaction environment for production...... of ascorbyl-CLA ester when using Novozym® 435 as biocatalyst. It was possible to significantly increase the productivity (150 g/l) through the increase of ascorbic acid sol-ubility in ionic liquids by super saturation together with the increase of reaction temperature to 70°C, far beyond than that in organic...

  12. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health

    Directory of Open Access Journals (Sweden)

    Annamaria Mancini

    2015-09-01

    Full Text Available A growing body of evidence highlights the close association between nutrition and human health. Fat is an essential macronutrient, and vegetable oils, such as palm oil, are widely used in the food industry and highly represented in the human diet. Palmitic acid, a saturated fatty acid, is the principal constituent of refined palm oil. In the last few decades, controversial studies have reported potential unhealthy effects of palm oil due to the high palmitic acid content. In this review we provide a concise and comprehensive update on the functional role of palm oil and palmitic acid in the development of obesity, type 2 diabetes mellitus, cardiovascular diseases and cancer. The atherogenic potential of palmitic acid and its stereospecific position in triacylglycerols are also discussed.

  13. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health.

    Science.gov (United States)

    Mancini, Annamaria; Imperlini, Esther; Nigro, Ersilia; Montagnese, Concetta; Daniele, Aurora; Orrù, Stefania; Buono, Pasqualina

    2015-01-01

    A growing body of evidence highlights the close association between nutrition and human health. Fat is an essential macronutrient, and vegetable oils, such as palm oil, are widely used in the food industry and highly represented in the human diet. Palmitic acid, a saturated fatty acid, is the principal constituent of refined palm oil. In the last few decades, controversial studies have reported potential unhealthy effects of palm oil due to the high palmitic acid content. In this review we provide a concise and comprehensive update on the functional role of palm oil and palmitic acid in the development of obesity, type 2 diabetes mellitus, cardiovascular diseases and cancer. The atherogenic potential of palmitic acid and its stereospecific position in triacylglycerols are also discussed.

  14. Influence of fatty acid on lipase-catalyzed synthesis of ascorbyl esters and their free radical scavenging capacity.

    Science.gov (United States)

    Stojanović, Marija; Carević, Milica; Mihailović, Mladen; Veličković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Bezbradica, Dejan

    2015-01-01

    Fatty acid (FA) ascorbyl esters are recently emerging food, cosmetic, and pharmaceutical additives, which can be prepared in an eco-friendly way by using lipases as catalysts. Because they are amphiphilic molecules, which possess high free radical scavenging capacity, they can be applied as liposoluble antioxidants as well as emulsifiers and biosurfactants. In this study, the influence of a wide range of acyl donors on ester yield in lipase-catalyzed synthesis and ester antioxidant activity was examined. Among saturated acyl donors, higher yields and antioxidant activities of esters were achieved when short-chain FAs were used. Oleic acid gave the highest yield overall and its ester exhibited a high antioxidant activity. Optimization of experimental factors showed that the highest conversion (60.5%) in acetone was achieved with 5 g L(-1) of lipase, 50 mM of vitamin C, 10-fold molar excess of oleic acid, and 0.7 mL L(-1) of initial water. Obtained results showed that even short- and medium-chain ascorbyl esters could be synthesized with high yields and retained (or even exceeded) free radical scavenging capacity of l-ascorbic acid, indicating prospects of broadening their application in emulsions and liposomes. PMID:25224149

  15. A liquid crystal of ascorbyl palmitate, used as vaccine platform, provides sustained release of antigen and has intrinsic pro-inflammatory and adjuvant activities which are dependent on MyD88 adaptor protein.

    Science.gov (United States)

    Sánchez Vallecillo, María F; Minguito de la Escalera, María M; Aguirre, María V; Ullio Gamboa, Gabriela V; Palma, Santiago D; González-Cintado, Leticia; Chiodetti, Ana L; Soldano, Germán; Morón, Gabriel; Allemandi, Daniel A; Ardavín, Carlos; Pistoresi-Palencia, María C; Maletto, Belkys A

    2015-09-28

    Modern subunit vaccines require the development of new adjuvant strategies. Recently, we showed that CpG-ODN formulated with a liquid crystal nanostructure formed by self-assembly of 6-O-ascorbyl palmitate (Coa-ASC16) is an attractive system for promoting an antigen-specific immune response to weak antigens. Here, we showed that after subcutaneous injection of mice with near-infrared fluorescent dye-labeled OVA antigen formulated with Coa-ASC16, the dye-OVA was retained at the injection site for a longer period than when soluble dye-OVA was administered. Coa-ASC16 alone elicited a local inflammation, but how this material triggers this response has not been described yet. Although it is known that some materials used as a platform are not immunologically inert, very few studies have directly focused on this topic. In this study, we explored the underlying mechanisms concerning the interaction between Coa-ASC16 and the immune system and we found that the whole inflammatory response elicited by Coa-ASC16 (leukocyte recruitment and IL-1β, IL-6 and IL-12 production) was dependent on the MyD88 protein. TLR2, TLR4, TLR7 and NLRP3-inflammasome signaling were not required for induction of this inflammatory response. Coa-ASC16 induced local release of self-DNA, and in TLR9-deficient mice IL-6 production was absent. In addition, Coa-ASC16 revealed an intrinsic adjuvant activity which was affected by MyD88 and IL-6 absence. Taken together these results indicate that Coa-ASC16 used as a vaccine platform is effective due to the combination of the controlled release of antigen and its intrinsic pro-inflammatory activity. Understanding how Coa-ASC16 works might have significant implications for rational vaccine design. PMID:26188153

  16. The mechanism of downregulation of apolipoprotein M mediated by palmitic acid

    Institute of Scientific and Technical Information of China (English)

    施媛萍

    2014-01-01

    Objective To examine whether palmitic acid downregulates ApoM expression and further to investigate its mechanism.Methods Human hepatoma cell line,HepG2 cells were treated with the media containing palmitic acid(1 mmol/L)and/or PI-3K inhibitor LY294002(10μmol/L),protein kinase C inhibitor GF109203X(GFX,2μmol/L)and/or PARβ/δantagonist GSK3787

  17. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    Science.gov (United States)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  18. Palmitic acid analogs exhibit nanomolar binding affinity for the HIV-1 CD4 receptor and nanomolar inhibition of gp120-to-CD4 fusion.

    Directory of Open Access Journals (Sweden)

    Elena E Paskaleva

    Full Text Available BACKGROUND: We recently reported that palmitic acid (PA is a novel and efficient CD4 fusion inhibitor to HIV-1 entry and infection. In the present report, based on in silico modeling of the novel CD4 pocket that binds PA, we describe discovery of highly potent PA analogs with increased CD4 receptor binding affinities (K(d and gp120-to-CD4 inhibition constants (K(i. The PA analogs were selected to satisfy Lipinski's rule of drug-likeness, increased solubility, and to avoid potential cytotoxicity. PRINCIPAL FINDINGS: PA analog 2-bromopalmitate (2-BP was most efficacious with K(d approximately 74 nM and K(i approximately 122 nM, ascorbyl palmitate (6-AP exhibited slightly higher K(d approximately 140 nM and K(i approximately 354 nM, and sucrose palmitate (SP was least efficacious binding to CD4 with K(d approximately 364 nM and inhibiting gp120-to-CD4 binding with K(i approximately 1486 nM. Importantly, PA and its analogs specifically bound to the CD4 receptor with the one to one stoichiometry. SIGNIFICANCE: Considering observed differences between K(i and K(d values indicates clear and rational direction for improving inhibition efficacy to HIV-1 entry and infection. Taken together this report introduces a novel class of natural small molecules fusion inhibitors with nanomolar efficacy of CD4 receptor binding and inhibition of HIV-1 entry.

  19. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  20. Interaction of Palmitic Acid with Metoprolol Succinate at the Binding Sites of Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Mashiur Rahman

    2014-12-01

    Full Text Available Purpose: The aim of this study was to characterize the binding profile as well as to notify the interaction of palmitic acid with metoprolol succinate at its binding site on albumin. Methods: The binding of metoprolol succinate to bovine serum albumin (BSA was studied by equilibrium dialysis method (ED at 27°C and pH 7.4, in order to have an insight in the binding chemistry of the drug to BSA in presence and absence of palmitic acid. The study was carried out using ranitidine as site-1 and diazepam as site-2 specific probe. Results: Different analysis of binding of metoprolol succinate to bovine serum albumin suggested two sets of association constants: high affinity association constant (k1 = 11.0 x 105 M-1 with low capacity (n1 = 2 and low affinity association (k2 = 4.0×105 M-1 constant with high capacity (n2 = 8 at pH 7.4 and 27°C. During concurrent administration of palmitic acid and metoprolol succinate in presence or absence of ranitidine or diazepam, it was found that palmitic acid displaced metoprolol succinate from its binding site on BSA resulting reduced binding of metoprolol succinate to BSA. The increment in free fraction of metoprolol succinate was from 26.27% to 55.08% upon the addition of increased concentration of palmitic acid at a concentration of 0×10-5 M to 16×10-5 M. In presence of ranitidine and diazepam, palmitic acid further increases the free fraction of metoprolol succinate from 33.05% to 66.95% and 40.68% to 72.88%, respectively. Conclusion: This data provided the evidence of interaction at higher concentration of palmitic acid at the binding sites on BSA, which might change the pharmacokinetic properties of metoprolol succinate.

  1. Free fatty acid palmitate impairs the vitality and function of cultured human bladder smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Andreas Oberbach

    Full Text Available BACKGROUND: Incidence of urinary tract infections is elevated in patients with diabetes mellitus. Those patients show increased levels of the saturated free fatty acid palmitate. As recently shown metabolic alterations induced by palmitate include production and secretion of the pro-inflammatory cytokine interleukine-6 (IL-6 in cultured human bladder smooth muscle cells (hBSMC. Here we studied the influence of palmitate on vital cell properties, for example, regulation of cell proliferation, mitochondrial enzyme activity and antioxidant capacity in hBSMC, and analyzed the involvement of major cytokine signaling pathways. METHODOLOGY/PRINCIPAL FINDINGS: HBSMC cultures were set up from bladder tissue of patients undergoing cystectomy and stimulated with palmitate. We analyzed cell proliferation, mitochondrial enzyme activity, and antioxidant capacity by ELISA and confocal immunofluorescence. In signal transduction inhibition experiments we evaluated the involvement of NF-κB, JAK/STAT, MEK1, PI3K, and JNK in major cytokine signaling pathway regulation. We found: (i palmitate decreased cell proliferation, increased mitochondrial enzyme activity and antioxidant capacity; (ii direct inhibition of cytokine receptor by AG490 even more strongly suppressed cell proliferation in palmitate-stimulated cells, while counteracting palmitate-induced increase of antioxidant capacity; (iii in contrast knockdown of the STAT3 inhibitor SOCS3 increased cell proliferation and antioxidant capacity; (iv further downstream JAK/STAT3 signaling cascade the inhibition of PI3K or JNK enhanced palmitate induced suppression of cell proliferation; (v increase of mitochondrial enzyme activity by palmitate was enhanced by inhibition of PI3K but counteracted by inhibition of MEK1. CONCLUSIONS/SIGNIFICANCE: Saturated free fatty acids (e.g., palmitate cause massive alterations in vital cell functions of cultured hBSMC involving distinct major cytokine signaling pathways. Thereby

  2. Comparison of palmitic acid kinetics during glucose or ketone body infusions

    Energy Technology Data Exchange (ETDEWEB)

    Birkhahn, R.H.; Block, D.J.; Birkhahn, G.C.; Thomford, N.R.

    1986-03-05

    Ketone body interactions can be observed for extended ketosis by infusion by monoacetoacetin (the monoglyceride of acetoacetic acid). Palmitic acid kinetics were compared on the 5th day of glucose or ketone body-glucose infusions. 20 rats were fed complete diets intravenously at the rate of 50 ml/day. All diets contained vitamins, trace minerals, electrolytes, amino acids and 1 kcal/ml of non-protein energy. Rats were divided by energy source: Group A (n = 10) received energy from glucose and Group B (n = 10) from 72% monoacetoacetin plus 28% glucose. Diets were given at 1/2 and 3/4 rats on days 1 and 2, respectively and at full rate for days 3-5. Urinary nitrogen losses, body weight and dietary intake were measured daily. Palmitate kinetics was measured on day 5 using a continuous infusion of (1-/sup 14/C) palmitate and measuring C-14 in breath and plasma and plasma palmitate by GC. The two groups had similar body weight changes and urinary nitrogen losses over the 3 days of full intake Group A had lower plasma palmitate (88 +/- 7 vs 105 +/- 6 micromol/l) but similar turnover (17.1 +/- 2.4 vs 15.0 +/- 1.9 mmol/hr) and oxidation 2.3 +/- 0.3 vs 2.2 +/- 0.05 mmol/hr) compared to Group B. These data show that feeding monoacetoacetin intravenously does not stimulate fatty acid metabolism in the well nourished rat.

  3. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  4. Blood contact properties of ascorbyl chitosan.

    Science.gov (United States)

    Yalinca, Z; Yilmaz, E; Taneri, B; Bullici, F; Tuzmen, S

    2013-01-01

    Ascorbyl chitosan was synthesized by heating chitosan with ascorbic acid in isopropanol. The products were characterized by FTIR and C-13 NMR spectroscopies, SEM, and elemental analysis. Blood contact properties of ascorbyl chitosans were evaluated. The ascorbyl chitosans demonstrated to have increased lipid-lowering activity in comparison to chitosan alone upon contact with human blood serum in in vitro conditions. Furthermore, the total cholesterol/HDL ratio was improved towards the desirable ideal values after three hours contact with ascorbyl chitosan samples. The lipid-lowering activity increased with ascorbyl substitution. The inherent nonspecific adsorption capability of chitosan due to its chelating power with several different functional groups was exhibited by ascorbyl chitosans as well. This behavior was exemplified in a simultaneous decrease in the total iron values of the volunteers together with lower lipid levels. Furthermore, ascorbyl chitosans were observed to have less hemocompatibility but increased anticoagulant activity when compared to chitosan alone. Additional in vivo studies are necessary to support these results and to investigate further the advantages and disadvantages of these materials to prove their safety prior to clinical applications. PMID:23862665

  5. Incorporation of Palmitic Acid or Stearic Acid into Soybean Oils Using Enzymatic Interesterification.

    Science.gov (United States)

    Teh, Soek Sin; Voon, Phooi Tee; Hock Ong, Augustine Soon; Choo, Yuen May

    2016-09-01

    Incorporations of nature fatty acids which were palmitic acid and stearic acid into the end positions of soybean oils were done using sn-1,3 specific immobilised lipase from Rhizomucor miehei at different ratios in order to produce symmetrical triglycerides without changing the fatty acids at sn-2 position. The optimum ratio for the process was 25:75 w/w. There were 19.2% increase of SFA for P25 and 16% increase for S25 at the sn-1,3 positions. The research findings indicated that the structured lipids produced from enzymatic interesterification possessed a higher oxidative stability than soybean oil. The newly formed structured lipids (SUS type) could be good sources for various applications in food industry. PMID:27477075

  6. Esterification of Palmitic Acid with Methanol in the Presence of Macroporous Ion Exchange Resin as Catalyst

    Directory of Open Access Journals (Sweden)

    Amelia Qarina Yaakob and Subhash Bhatia

    2012-10-01

    Full Text Available The esterification of palmitic acid with methanol was studied in a batch reactor using macro porous ion exchange resin Amberlyst 15 as a catalyst. Methyl palmitate was produced from the reaction between palmitic acid and methanol in the presence of catalyst. The effects of processing parameters, molar ratio of alcohol to acid M, (4-10, catalyst loading (0-10 g cat/liter, water inhibition (0-2 mol/liter, agitator speed (200-800 rpm and reaction temperature (343-373K were studied. The experimental kinetic data were correlated using homogenous as well as heterogeneous models (based on single as well as dual site mechanisms. The activation energy of the reaction was 11.552 kJ/mol for forward reaction whilst 5.464 kJ/mol for backward reaction. The experimental data fitted well with the simulated data obtained from the kinetic models. Keywords: Palmitic Acid, Methanol, Esterification, Ion Exchange Resin, Kinetics.

  7. Fatty acid acylation of proteins: specific roles for palmitic, myristic and caprylic acids

    Directory of Open Access Journals (Sweden)

    Rioux Vincent

    2016-05-01

    Full Text Available Fatty acid acylation of proteins corresponds to the co- or post-translational covalent linkage of an acyl-CoA, derived from a fatty acid, to an amino-acid residue of the substrate protein. The cellular fatty acids which are involved in protein acylation are mainly saturated fatty acids. Palmitoylation (S-acylation corresponds to the reversible attachment of palmitic acid (C16:0 via a thioester bond to the side chain of a cysteine residue. N-terminal myristoylation refers to the covalent attachment of myristic acid (C14:0 by an amide bond to the N-terminal glycine of many eukaryotic and viral proteins. Octanoylation (O-acylation typically concerns the formation of an ester bond between octanoic acid (caprylic acid, C8:0 and the side chain of a serine residue of the stomach peptide ghrelin. An increasing number of proteins (enzymes, hormones, receptors, oncogenes, tumor suppressors, proteins involved in signal transduction, eukaryotic and viral structural proteins have been shown to undergo fatty acid acylation. The addition of the acyl moiety is required for the protein function and usually mediates protein subcellular localization, protein-protein interaction or protein-membrane interaction. Therefore, through the covalent modification of proteins, these saturated fatty acids exhibit emerging specific and important roles in modulating protein functions. This review provides an overview of the recent findings on the various classes of protein acylation leading to the biological ability of saturated fatty acids to regulate many pathways. Finally, the nutritional links between these elucidated biochemical mechanisms and the physiological roles of dietary saturated fatty acids are discussed.

  8. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate

    OpenAIRE

    Ivanov, Vadim; Ivanova, Svetlana; KALINOVSKY, TATIANA; NIEDZWIECKI, ALEKSANDRA; RATH, MATTHIAS

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition...

  9. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid

    OpenAIRE

    Mingyue Zhao; Lihui Lu; Song Lei; Hua Chai; Siyuan Wu; Xiaoju Tang; Qinxue Bao; Li Chen; Wenchao Wu; Xiaojing Liu

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardi...

  10. The kinetics of the solidification of highly supersaturated solutions of palmitic acid in oleic acid: a comparison between two models

    OpenAIRE

    RAMIRO RICO-MARTINEZ; JOSE ALBERTO GALLEGOS-INFANTE

    1999-01-01

    The crystallization of fatty acids is very important in industrial applications and biological systems. A comparison between theoretical models and experimental data helps in clarifying mechanistic aspects of these systems. In this contribution, we compare the performance of two models in fitting data from the crystallization of supersaturated solutions of palmitic acid in oleic acid. One of the models was developed by Avrami and the other is based on considering diffusion as limiting (the D-...

  11. Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPARβ/δ in HepG2 cells

    International Nuclear Information System (INIS)

    Highlights: • Palmitic acid significantly inhibited APOM gene expression in HepG2 cells. • Palmitic acid could obviously increase PPARB/D mRNA levels in HepG2 cells. • PPARβ/δ antagonist, GSK3787, had no effect on APOM expression. • GSK3787 could reverse the palmitic acid-induced down-regulation of APOM expression. • Palmitic acid induced suppression of APOM expression is mediated via the PPARβ/δ pathway. - Abstract: It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important for further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPARβ/δ pathway

  12. Brain region-specificity of palmitic acid-induced abnormalities associated with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Melrose Joseph

    2008-06-01

    Full Text Available Abstract Background Alzheimer's disease (AD is a progressive, neurodegenerative disease mostly affecting the basal forebrain, cortex and hippocampus whereas the cerebellum is relatively spared. The reason behind this region-specific brain damage in AD is not well understood. Here, we report our data suggesting "differential free fatty acid metabolism in the different brain areas" as a potentially important factor in causing the region-specific damage observed in AD brain. Findings The astroglia from two different rat brain regions, cortex (region affected in AD and cerebellum (unaffected region, were treated with 0.2 mM of palmitic acid. The conditioned media were then transferred to the cortical neurons to study the possible effects on the two main, AD-associated protein abnormalities, viz. BACE1 upregulation and hyperphosphorylation of tau. The conditioned media from palmitic-acid treated cortical astroglia, but not the cerebellar astroglia, significantly elevated levels of phosphorylated tau and BACE1 in cortical neurons as compared to controls (47 ± 7% and 45 ± 4%, respectively. Conclusion The present data provide an experimental explanation for the region-specific damage observed in AD brain; higher fatty acid-metabolizing capacity of cortical astroglia as compared to cerebellar astroglia, may play a causal role in increasing vulnerability of cortex in AD, while sparing cerebellum.

  13. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Kadir Tuncbilek; Ahmet Sari [Gaziosmanpasa University, Tokat (Turkey). Dept. of Chemistry; Sefa Tarhan; Gazanfer Ergunes [Gaziosmanpasa University, Tokat (Turkey). Dept. of Agricultural Machinery; Kamil Kaygusuz [Karadeniz University, Trabzon (Turkey). Dept. of Chemistry

    2005-04-01

    Palmitic acid (PA, 59.8{sup o}C) and lauric acid (LA, 42.6{sup o}C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 {sup o}C and the latent heat of fusion of 166.3 J g{sup -1}. This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics. (author)

  14. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Tuncbilek, K.; Sari, A. [Gaziosmanpasa Univ., Tokat (Turkey). Dept. of Chemistry; Tarhan, S.; Erguenes, G. [Gaziosmanpasa Univ., Tokat (Turkey). Dept. of Agricultural Machinery; Kaygusuz, K. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Chemistry

    2005-04-01

    Palmitic acid (PA, 59.8 {sup o}C) and lauric acid (LA, 42.6 {sup o}C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 {sup o}C and the latent heat of fusion of 166.3 J g{sup -1}. This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics. (author)

  15. Digestibility of Fatty Acids in the Gastrointestinal Tract of Dairy Cows Fed with Tallow or Saturated Fats Rich in Stearic Acid or Palmitic Acid

    DEFF Research Database (Denmark)

    Weisbjerg, Martin Riis; Hvelplund, Torben; Børsting, Christian Friis

    1992-01-01

    Fatty acid digestibility was studied with five lactating cows fed three different fat sources in a 5 × 5 latin square experiment. The treatments were 500 g of tallow, 500 or 1000 g of saturated fat rich in stearic acid (C18:0) (SARF) or 500 or 1000 g of saturated fat rich in palmitic acid (C16:0)...

  16. Lipid characterization of seed oils from high-palmitic, low-palmitoleic, and very high-stearic acid sunflower lines.

    Science.gov (United States)

    Serrano-Vega, María J; Martínez-Force, Enrique; Garcés, Rafael

    2005-04-01

    Information obtained in recent years regarding the enzymes involved in FA synthesis can now be applied to develop novel sunflower lines by incorporating enzymes with specific characteristics into lines with a defined background. We have generated three highly saturated mutant lines in this way and characterized their FA content. The new high-palmitic, low-palmitoleic lines CAS-18 and CAS-25, the latter on a high-oleic background, have been selected from the high-stearic mutant CAS-3 by introducing a deficient stearic acid desaturase in a high-palmitic background from the previously developed mutant lines CAS-5 and CAS-12, respectively. As such, the desaturation of palmitic acid and the synthesis of palmitoleic acid and its derivatives (asclepic and palmitolinoleic acids) were reduced in these high-palmitic lines, increasing the stearic acid content. Likewise, introducing a FA thioesterase from a high-palmitic line (e.g., CAS-5) into the high-stearic CAS-3 increased the stearic acid content from 27 to 32% in the new high-stearic line CAS-31. As previously described in high-palmitic lines, high growth temperatures did not reduce the linoleic acid content of the oil. Furthermore, the FA composition of TAG, DAG, and phospholipids was modified in these lines. Besides a high degree of saturation, the TAG from these new vegetable oils have a low content of saturated FA in the sn-2 position. The alpha asymmetric coefficient obtained also indicates that the saturated FA are asymmetrically distributed within the TAG molecules. Indeed, the disaturated TAG content rose from 31.8 to 48.2%. These values of disaturated TAG are the highest to date in a temperate oilseed.

  17. The kinetics of the solidification of highly supersaturated solutions of palmitic acid in oleic acid: a comparison between two models

    Directory of Open Access Journals (Sweden)

    RAMIRO RICO-MARTINEZ

    1999-08-01

    Full Text Available The crystallization of fatty acids is very important in industrial applications and biological systems. A comparison between theoretical models and experimental data helps in clarifying mechanistic aspects of these systems. In this contribution, we compare the performance of two models in fitting data from the crystallization of supersaturated solutions of palmitic acid in oleic acid. One of the models was developed by Avrami and the other is based on considering diffusion as limiting (the D-model. The D-model fitted the data better than the Avrami model in all cases. The D-model has a low value of the regression coefficient (r2, lower than 0.9 in only three cases. For these points, the thermodynamic force was smaller. Differences in the parameter n (an index of dimensionality were observed; these differences indicate that clusters were present previous to the crystallization process. Furthermore, there appears to be a difference in the mechanism of crystallization of pure solutions of palmitic acid and solutions with a small fraction of oleic acid. Thus, one is lead to the conclusion that the rate of crystallization of fatty acids at high concentrations is limited by diffusion.

  18. Phase equilibria of oleic, palmitic, stearic, linoleic and linolenic acids in supercritical CO2

    Directory of Open Access Journals (Sweden)

    P. L. Penedo

    2009-03-01

    Full Text Available The knowledge of the phase equilibrium is one of the most important factors to study the design of separation processes controlled by the equilibrium. Fatty acids are present in high concentration as by-products in vegetable oils but the equilibrium data involving these components is scarce. The objective of this work is the experimental determination of the liquid-vapor equilibrium of five binary different systems formed by carbon dioxide and palmitic acid (C16:0, stearic acid (C18:0, oleic acid (C18:1, linoleic acid (C18:2 and linolenic acid (C18:3. The equilibrium experimental data was collected at 40, 60 and 80ºC at 60, 90 and 120 bar, at the extract and raffinate phases, using an experimental apparatus containing an extractor, a gas cylinder and pressure and temperature controllers. The data was modeled using the cubic equation of state of Peng-Robinson with the mixing rule of van der Waals with binary interaction parameters. The model was adequate to treat the experimental data at each temperature and at all the temperatures together. The best model that includes the van der Waals mixing rule with two parameters has maximum deviation of 17%. The distribution coefficients were also analyzed and it was concluded that the fractionation of the fatty acids is possible using supercritical carbon dioxide.

  19. PALMITIC AND OLEIC ACIDS AND THEIR ROLE IN PATHOGENESIS OF ATHEROSCLEROSIS

    Directory of Open Access Journals (Sweden)

    V. N. Titov

    2014-01-01

    Full Text Available On the basis of phylogenetic theory of general pathology, the cause of a noninfectious disease whose occurrence in a population is more than 5–7% is an impaired biological function or reaction to the environment. From the general biology viewpoint, high mortality rate related to cardio-vascular diseases and atherosclerosis (intercellular deficiency of polyenic fatty acids (PFA is just extinction of the Homo sapiens population upon adaptation to new environmental factors. The biological function of throphology (feeding and biological reaction of exotrophy (external feeding are impaired in several aspects, the major of which is nonphysiologically high dietary content of saturated fatty acids, primarily, of palmitic fatty acid (FA. The lipoprotein system formed at early stages of phylogenesis cannot transport and provide physiological deposition of great amounts of palmitic FA, which leads to the development of an adaption (compensatory and accumulation disease. This results in hypermipidemia, impaired bioavailability of PFA to cells, compesatory production of humoral mediators from ω-9 eicosatrienoic mead FA, disorders in physiological parameters of cell plasma membrane and integral proteins, nonphysiological conformation of apoВ-100 in lipoproteins, formation of ligandless lipoproteins (biological litter and impairments in the biological function of endoecology, utilization of ligandless lipoproteins in arterial intima by phylogenetically early macrophages that do not hydrolyze polyenic cholesterol esters, increase in the intensity of the biological reaction of inflammation, and destructive and inflammatory lesions in arterial intima of an atheromatosis or atherothrombosis type. Atheromatous masses are catabolites of PFA which were not internalized by phylogenetically late cells via receptor-mediated pathway.

  20. Palmitic acid induces interleukin-1β secretion via NLRP3 inflammasomes and inflammatory responses through ROS production in human placental cells.

    Science.gov (United States)

    Shirasuna, Koumei; Takano, Hiroki; Seno, Kotomi; Ohtsu, Ayaka; Karasawa, Tadayoshi; Takahashi, Masafumi; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Iwata, Hisataka; Kuwayama, Takehito

    2016-08-01

    Maternal obesity, a major risk factor for adverse pregnancy complications, results in inflammatory cytokine release in the placenta. Levels of free fatty acids are elevated in the plasma of obese human. These fatty acids include obesity-related palmitic acids, which is a major saturated fatty acid, that promotes inflammatory responses. Increasing evidence indicates that nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasomes mediate inflammatory responses induced by endogenous danger signals. We hypothesized that inflammatory responses associated with gestational obesity cause inflammation. To test this hypothesis, we investigated the effect of palmitic acid on the activation of NLRP3 inflammasomes and inflammatory responses in a human Sw.71 trophoblast cell line. Palmitic acid stimulated caspase-1 activation and markedly increased interleukin (IL)-1β secretion in Sw.71 cells. Treatment with a caspase-1 inhibitor diminished palmitic acid-induced IL-1β release. In addition, NLRP3 and caspase-1 genome editing using a CRISPR/Cas9 system in Sw.71 cells suppressed IL-1β secretion, which was stimulated by palmitic acid. Moreover, palmitic acid stimulated caspase-3 activation and inflammatory cytokine secretion (e.g., IL-6 and IL-8). Palmitic acid-induced cytokine secretion were dependent on caspase-3 activation. In addition, palmitic acid-induced IL-1β, IL-6, and IL-8 secretion was depended on reactive oxygen species (ROS) generation. In conclusion, palmitic acid caused activation of NLRP3 inflammasomes and inflammatory responses, inducing IL-1β, IL-6, and IL-8 secretion, which is associated with ROS generation, in human Sw.71 placental cells. We suggest that obesity-related palmitic acid induces placental inflammation, resulting in association with pregnancy complications. PMID:27300134

  1. Research progress of lipase-catalyzed synthesis of L-ascorbyl organic acid ester%脂肪酶催化合成L-抗坏血酸有机酸酯的研究进展

    Institute of Scientific and Technical Information of China (English)

    蒋相军; 胡燚; 刘维明; 黄和

    2011-01-01

    To broaden the applications of L-ascorbic acid, it is an economical and feasible way to convert L-aseorbic acid into L-ascorbyl organic acid ester. The recent research progress of enzymatic synthesis of L-ascorbyl organic acid ester is summarized, by focusing on enzymatic synthesis of L-ascorbyl saturated fatty acid ester, unsaturated fatty acid ester and mixed fatty acid ester in organic solvents. The types of lipase, organic solvents and methods of separation and purification in the synthesis are discussed. Furthermore, the prospect of enzymatic synthesis of L-ascorbyl organic acid ester is also presented.%为了拓宽L-抗坏血酸酯在维护人体健康中的应用,将L-抗坏血酸转化成L-抗坏血酸酯是经济可行的手段。综述了近年来酶催化L-抗坏血酸有机酸酯的研究进展,重点介绍了有机相中L-抗坏血酸饱和脂肪酸酯、不饱和脂肪酸酯、脂肪酸混合酯的酶促合成,对于酶的种类、有机溶剂的选择及分离纯化方法进行了探讨,并对酶催化L-抗坏血酸有机酸酯合成前景进行了展望。

  2. Interfacial properties of air/water interfaces stabilized by oligofructose palmitic acid esters in the presence of whey protein isolate

    NARCIS (Netherlands)

    Kempen, van S.E.H.J.; Maas, K.; Schols, H.A.; Linden, van der E.; Sagis, L.M.C.

    2013-01-01

    To study the applicability of oligofructose palmitic acid esters (OF-C16) as novel surfactants in food systems, the functional properties of OF-C16 were studied in the presence of whey protein isolate (WPI). Surface tension measurements, surface dilatational rheology, foam stability tests and Brewst

  3. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q.; Chen, S.Y.; Deng, L.D.; Feng, L.P.; Huang, L.Z.; Yu, R.R. [Department of Pharmacy, Guilin Medical University, Guilin (China)

    2013-11-18

    Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cultured in medium containing 0.75 mM palmitic acid, mimicking oxidative stress. The effects of 1 mM mogrosides were determined with the dichlorodihydrofluorescein diacetate assay for intracellular reactive oxygen species (ROS) and FITC-Annexin V/PI assay for cell apoptosis. Expression of glucose transporter-2 (GLUT2) and pyruvate kinase was determined by semi-quantitative reverse-transcription polymerase chain reaction. Palmitic acid significantly increased intracellular ROS concentration 2-fold (P<0.05), and decreased expression of GLUT2 (by 60%, P<0.05) and pyruvate kinase (by 80%, P<0.05) mRNAs in NIT-1 cells. Compared with palmitic acid, co-treatment with 1 mM mogrosides for 48 h significantly reduced intracellular ROS concentration and restored mRNA expression levels of GLUT2 and pyruvate kinase. However, mogrosides did not reverse palmitic acid-induced apoptosis in NIT-1 cells. Our results indicate that mogrosides might exert their antioxidant effect by reducing intracellular ROS and regulating expression of genes involved in glucose metabolism. Further research is needed to achieve a better understanding of the signaling pathway involved in the antioxidant effect of mogrosides.

  4. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation

    OpenAIRE

    Kalaivani Batumalaie; Muhammad Arif Amin; Dharmani Devi Murugan; Munavvar Zubaid Abdul Sattar; Nor Azizan Abdullah

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein e...

  5. Scientific Opinion on the safety and efficacy of vitamin C (ascorbic acid and sodium calcium ascorbyl phosphate) as a feed additive for all animal species based on a dossier submitted by VITAC EEIG

    OpenAIRE

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)

    2013-01-01

    Vitamin C (formerly known as antiscorbutic vitamin) is essential for primates, guinea pigs and fish. Vitamin C, in the form of ascorbic acid and sodium calcium ascorbyl phosphate, is safe for all animal species. Setting a maximum content in feed and water for drinking is not considered necessary. Data on the vitamin C consumption of consumers are based on the levels of vitamin C in foodstuffs, including food of animal origin, produced in accordance with current EU legislation on the supplemen...

  6. Role of orexin A signaling in dietary palmitic acid-activated microglial cells.

    Science.gov (United States)

    Duffy, Cayla M; Yuan, Ce; Wisdorf, Lauren E; Billington, Charles J; Kotz, Catherine M; Nixon, Joshua P; Butterick, Tammy A

    2015-10-01

    Excess dietary saturated fatty acids such as palmitic acid (PA) induce peripheral and hypothalamic inflammation. Hypothalamic inflammation, mediated in part by microglial activation, contributes to metabolic dysregulation. In rodents, high fat diet-induced microglial activation results in nuclear translocation of nuclear factor-kappa B (NFκB), and increased central pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). The hypothalamic neuropeptide orexin A (OXA, hypocretin 1) is neuroprotective in brain. In cortex, OXA can also reduce inflammation and neurodegeneration through a microglial-mediated pathway. Whether hypothalamic orexin neuroprotection mechanisms depend upon microglia is unknown. To address this issue, we evaluated effects of OXA and PA on inflammatory response in immortalized murine microglial and hypothalamic neuronal cell lines. We demonstrate for the first time in microglial cells that exposure to PA increases gene expression of orexin-1 receptor but not orexin-2 receptor. Pro-inflammatory markers IL-6, TNF-α, and inducible nitric oxide synthase in microglial cells are increased following PA exposure, but are reduced by pretreatment with OXA. The anti-inflammatory marker arginase-1 is increased by OXA. Finally, we show hypothalamic neurons exposed to conditioned media from PA-challenged microglia have increased cell survival only when microglia were pretreated with OXA. These data support the concept that OXA may act as an immunomodulatory regulator of microglia, reducing pro-inflammatory cytokines and increasing anti-inflammatory factors to promote a favorable neuronal microenvironment. PMID:26306651

  7. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and products identification

    Directory of Open Access Journals (Sweden)

    M. Mendez

    2013-06-01

    Full Text Available The heterogeneous reaction of Cl. radicals with sub-micron palmitic acid (PA particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapors and introduced in the reactor where chlorine atoms are produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ has been determined from the rate loss of PA measured by GC/MS analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analyses have shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although, the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2 which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids are identified by GC/MS. Formation of alcohols and monocarboxylic acids are also suspected. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface, but also in bulk by mechanisms which are still unclear. Furthermore the identified reaction products are explained by a chemical mechanism showing the pathway of the formation of more functionalized products. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  8. Scientific Opinion on the safety and efficacy of vitamin C (ascorbic acid and sodium calcium ascorbyl phosphate as a feed additive for all animal species based on a dossier submitted by VITAC EEIG

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-02-01

    Full Text Available Vitamin C (formerly known as antiscorbutic vitamin is essential for primates, guinea pigs and fish. Vitamin C, in the form of ascorbic acid and sodium calcium ascorbyl phosphate, is safe for all animal species. Setting a maximum content in feed and water for drinking is not considered necessary. Data on the vitamin C consumption of consumers are based on the levels of vitamin C in foodstuffs, including food of animal origin, produced in accordance with current EU legislation on the supplementation of feed with vitamin C. The exposure is far below the guidance level. Any potential contribution of the use of vitamin C in feed is therefore already considered in the above data. Consequently, the use of vitamin C in animal nutrition is not of concern for consumer safety. In the absence of inhalation toxicity studies it would be prudent to assume that inhalation of dust from the additives presents a health hazard to workers and measures should be taken to minimise inhalation exposure. In the absence of data, ascorbic acid and sodium calcium ascorbyl phosphate should be considered as irritant to skin and eyes and as dermal sensitisers. The supplementation of feed with vitamin C does not pose a risk to the environment. Ascorbic acid and sodium calcium ascorbyl phosphate are regarded as effective sources of vitamin C when added to feed or water for drinking.

  9. Palmitic Acid on Salt Subphases and in Mixed Monolayers of Cerebrosides: Application to Atmospheric Aerosol Chemistry

    Directory of Open Access Journals (Sweden)

    Ellen M. Adams

    2013-10-01

    Full Text Available Palmitic acid (PA has been found to be a major constituent in marine aerosols, and is commonly used to investigate organic containing atmospheric aerosols, and is therefore used here as a proxy system. Surface pressure-area isotherms (π-A, Brewster angle microscopy (BAM, and vibrational sum frequency generation (VSFG were used to observe a PA monolayer during film compression on subphases of ultrapure water, CaCl2 and MgCl2 aqueous solutions, and artificial seawater (ASW. π-A isotherms indicate that salt subphases alter the phase behavior of PA, and BAM further reveals that a condensation of the monolayer occurs when compared to pure water. VSFG spectra and BAM images show that Mg2+ and Ca2+ induce ordering of the PA acyl chains, and it was determined that the interaction of Mg2+ with the monolayer is weaker than Ca2+. π-A isotherms and BAM were also used to monitor mixed monolayers of PA and cerebroside, a simple glycolipid. Results reveal that PA also has a condensing effect on the cerebroside monolayer. Thermodynamic analysis indicates that attractive interactions between the two components exist; this may be due to hydrogen bonding of the galactose and carbonyl headgroups. BAM images of the collapse structures show that mixed monolayers of PA and cerebroside are miscible at all surface pressures. These results suggest that the surface morphology of organic-coated aerosols is influenced by the chemical composition of the aqueous core and the organic film itself.

  10. Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability.

    OpenAIRE

    Ding, J; Takamoto, D Y; von Nahmen, A; Lipp, M M; Lee, K Y; Waring, A J; Zasadzinski, J A

    2001-01-01

    Langmuir isotherms and fluorescence and atomic force microscopy images of synthetic model lung surfactants were used to determine the influence of palmitic acid and synthetic peptides based on the surfactant-specific proteins SP-B and SP-C on the morphology and function of surfactant monolayers. Lung surfactant-specific protein SP-C and peptides based on SP-C eliminate the loss to the subphase of unsaturated lipids necessary for good adsorption and respreading by inducing a transition between...

  11. Molecular dynamics simulations of Palmitic acid adsorbed on NaCl

    Science.gov (United States)

    Lovrić, Josip; Brizquez, Stéphane; Duflot, Denis; Monnerville, Maurice; Pouilly, Brigitte; Toubin, Céline

    2015-04-01

    The aerosol and gases effects in the atmosphere play an important role on health, air quality and climate, affecting both political decisions and economic activities around the world [1]. Among the several approaches of studying the origin of these effects, computational modeling is of fundamental importance, providing insights on the elementary chemical processes. Sea salts are the most important aerosol in the troposphere (109T/year) [2]. Our theoretical work consists in modeling a (100) NaCl surface coated with palmitic acid (PA) molecules. Molecular dynamics simulations are carried out with the GROMACS package [3], in the NPT ensemble at different temperatures, different PA coverages and various humidity. We focus on two aspects of the PA organization at the salt surface: the first one is related to transition in molecular orientation of the adsorbate as a function of PA coverage. The second one implies the effect of humidity, by adding water molecules, on the organization of the fatty acid at the salt surface, and especially on the occurrence of PA isolated islands as observed in the experiments [4]. For high humidity conditions, PA are removed from the salt surface and form islands on top of the water. This effect is enhanced when temperature increases. Acknowledgments: this research has been supported by the CaPPA project (Chemical and Physical Properties of the Atmosphere), funded by the French National Research Agency (ANR) through the PIA (Programme d'Investissement d'Avenir) under contract ANR-10-LABX-005. [1] O. Boucher et al, 5th Assessment Report IPCC, (2013) [2] B. J. Finlayson-Pitts, Chem. Rev.103, 4801-4822 (2003) [3] http://www.gromacs.org/ [4] S. Sobanska et al, private communication

  12. Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPAR{sub β/δ} in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Guanghua; Shi, Yuanping; Zhang, Jun; Mu, Qinfeng; Qin, Li; Zheng, Lu; Feng, Yuehua [Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003 (China); Berggren-Söderlund, Maria; Nilsson-Ehle, Peter [Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85 Lund (Sweden); Zhang, Xiaoying, E-mail: zhangxy6689996@163.com [Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003 (China); Xu, Ning, E-mail: ning.xu@med.lu.se [Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85 Lund (Sweden)

    2014-02-28

    Highlights: • Palmitic acid significantly inhibited APOM gene expression in HepG2 cells. • Palmitic acid could obviously increase PPARB/D mRNA levels in HepG2 cells. • PPAR{sub β/δ} antagonist, GSK3787, had no effect on APOM expression. • GSK3787 could reverse the palmitic acid-induced down-regulation of APOM expression. • Palmitic acid induced suppression of APOM expression is mediated via the PPAR{sub β/δ} pathway. - Abstract: It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important for further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPAR{sub β/δ}) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPAR{sub β/δ} pathway.

  13. AKTIVITAS DAN STABILITAS RADICAL SCAVENGING L-ASKORBIL PALMITAT HASIL SINTESIS SECARA ENZIMATIK [Activity and Stability of Radical Scavenging of L- Palmitate Synthesized Enzymatically

    Directory of Open Access Journals (Sweden)

    Tri Agus Siswoyo1*

    2009-12-01

    Full Text Available L-ascorbyl palmitate (AsA-Pal-Enz was synthesized by using an immobilized lipase from Aspergillus niger. A comparison of antioxidative effects between L-ascorbic acid (AsA and AsA-Pal-Enz was determined in terms of 1,1-diphenyl-2-picrylhydrazyl (DPPH radical–scavenging. The results indicate that the AsA-Pal-Enz was effective in preventing lipid oxidation, while the antioxidative activity in authentic AsA-Pal was lower. The activity of AsA-Pal-Enz was very stable than AsA-Pal standard during heating.

  14. AKTIVITAS DAN STABILITAS RADICAL SCAVENGING L-ASKORBIL PALMITAT HASIL SINTESIS SECARA ENZIMATIK [Activity and Stability of Radical Scavenging of L- Palmitate Synthesized Enzymatically

    OpenAIRE

    Tri Agus Siswoyo; Tri Ardiyati 2)

    2009-01-01

    L-ascorbyl palmitate (AsA-Pal-Enz) was synthesized by using an immobilized lipase from Aspergillus niger. A comparison of antioxidative effects between L-ascorbic acid (AsA) and AsA-Pal-Enz was determined in terms of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical–scavenging. The results indicate that the AsA-Pal-Enz was effective in preventing lipid oxidation, while the antioxidative activity in authentic AsA-Pal was lower. The activity of AsA-Pal-Enz was very stable than AsA-Pal standard duri...

  15. Phase change material: Optimizing the thermal properties and thermal conductivity of myristic acid/palmitic acid eutectic mixture with acid-based surfactants

    International Nuclear Information System (INIS)

    In this study the addition of surfactant to fatty acids as phase change materials (PCMs) for solar thermal applications is proposed. The incorporation of surfactant additives into a eutectic mixture of fatty acids can significantly increase the value of latent heat storage and can suppress undercooling. We report the preparation of myristic acid/palmitic acid (MA/PA) eutectic mixture as Phase Change Material (PCM) with addition of 0, 5, 10, 15, and 20% sodium myristate (SM), sodium palmitate (SP), and sodium stearate (SS), the influence of surfactant additives on thermal properties and thermal conductivity of eutectic mixtures. It was found that the addition of 5% SM, 5% SP, and 5% SS to MA/PA eutectic mixture is very effective in depressing the liquid/solid phase change temperature, reducing the undercooling and increasing the amount of latent heat of fusion as well as thermal conductivity of eutectic PCM compared to eutectic PCM without surfactants. Furthermore MA/PA + 5%SS has the highest latent heat of fusion of 191.85 J g−1, while MA/PA + 5%SM showed the least undercooling of 0.34 °C and the highest thermal conductivity of 0.242 W m−1 K−1. -- Highlights: • Myristic acid (MA) and palmitic acid (PA) are fatty acids component. • The eutectic composition ratio of MA/PA obtained at 70/30, wt.%. • 5% each acid-based surfactants were reduces the melting and undercooling temperature of MA/PA (70/30, wt.%). • Thermal conductivity and ΔHf of MA/PA (70/30, wt.%) were increased by adding 5% surfactants. • MA/PA + 5% acid-based surfactants have a great potential to apply in LHTES applications

  16. Eicosapentaenoic Acid Protects against Palmitic Acid-Induced Endothelial Dysfunction via Activation of the AMPK/eNOS Pathway

    Directory of Open Access Journals (Sweden)

    Che-Hsin Lee

    2014-06-01

    Full Text Available Recent studies have shown that free fatty acids are associated with chronic inflammation, which may be involved in vascular injury. The intake of eicosapentaenoic acid (EPA can decrease cardiovascular disease risks, but the protective mechanisms of EPA on endothelial cells remain unclear. In this study, primary human umbilical vein endothelial cells (HUVECs treated with palmitic acid (PA were used to explore the protective effects of EPA. The results revealed that EPA attenuated PA-induced cell death and activation of apoptosis-related proteins, such as caspase-3, p53 and Bax. Additionally, EPA reduced the PA-induced increase in the generation of reactive oxygen species, the activation of NADPH oxidase, and the upregulation of inducible nitric oxide synthase (iNOS. EPA also restored the PA-mediated reduction of endothelial nitric oxide synthase (eNOS and AMP-activated protein kinase (AMPK phosphorylation. Using AMPK siRNA and the specific inhibitor compound C, we found that EPA restored the PA-mediated inhibitions of eNOS and AKT activities via activation of AMPK. Furthermore, the NF-κB signals that are mediated by p38 mitogen-activated protein kinase (MAPK were involved in protective effects of EPA. In summary, these results provide new insight into the possible molecular mechanisms by which EPA protects against atherogenesis via the AMPK/eNOS-related pathway.

  17. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis.

    Science.gov (United States)

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C; García-Ruiz, Carmen

    2015-12-01

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy.

  18. Dietary interesterified fat enriched with palmitic acid induces atherosclerosis by impairing macrophage cholesterol efflux and eliciting inflammation.

    Science.gov (United States)

    Afonso, Milessa Silva; Lavrador, Maria Silvia Ferrari; Koike, Marcia Kiyomi; Cintra, Dennys Esper; Ferreira, Fabiana Dias; Nunes, Valeria Sutti; Castilho, Gabriela; Gioielli, Luiz Antonio; Paula Bombo, Renata; Catanozi, Sergio; Caldini, Elia Garcia; Damaceno-Rodrigues, Nilsa Regina; Passarelli, Marisa; Nakandakare, Edna Regina; Lottenberg, Ana Maria

    2016-06-01

    Interesterified fats are currently being used to replace trans fatty acids. However, their impact on biological pathways involved in the atherosclerosis development was not investigated. Weaning male LDLr-KO mice were fed for 16weeks on a high-fat diet (40% energy as fat) containing polyunsaturated (PUFA), TRANS, palmitic (PALM), palmitic interesterified (PALM INTER), stearic (STEAR) or stearic interesterified (STEAR INTER). Plasma lipids, lipoprotein profile, arterial lesion area, macrophage infiltration, collagen content and inflammatory response modulation were determined. Macrophage cholesterol efflux and the arterial expression of cholesterol uptake and efflux receptors were also performed. The interesterification process did not alter plasma lipid concentrations. Although PALM INTER did not increase plasma cholesterol concentration as much as TRANS, the cholesterol enrichment in the LDL particle was similar in both groups. Moreover, PALM INTER induced the highest IL-1β, MCP-1 and IL-6 secretion from peritoneal macrophages as compared to others. This inflammatory response elicited by PALM INTER was confirmed in arterial wall, as compared to PALM. These deleterious effects of PALM INTER culminate in higher atherosclerotic lesion, macrophage infiltration and collagen content than PALM, STEAR, STEAR INTER and PUFA. These events can partially be attributed to a macrophage cholesterol accumulation, promoted by apoAI and HDL2-mediated cholesterol efflux impairment and increased Olr-1 and decreased Abca1 and Nr1h3 expressions in the arterial wall. Interesterified fats containing palmitic acid induce atherosclerosis development by promoting cholesterol accumulation in LDL particles and macrophagic cells, activating the inflammatory process in LDLr-KO mice.

  19. Saturated free fatty acids and apoptosis in microvascular mesangial cells: palmitate activates pro-apoptotic signaling involving caspase 9 and mitochondrial release of endonuclease G

    Directory of Open Access Journals (Sweden)

    Simonson Michael S

    2005-01-01

    Full Text Available Abstract Background In type 2 diabetes, free fatty acids (FFA accumulate in microvascular cells, but the phenotypic consequences of FFA accumulation in the microvasculature are incompletely understood. Here we investigated whether saturated FFA induce apoptosis in human microvascular mesangial cells and analyzed the signaling pathways involved. Methods Saturated and unsaturated FFA-albumin complexes were added to cultured human mesangial cells, after which the number of apoptotic cells were quantified and the signal transduction pathways involved were delineated. Results The saturated FFA palmitate and stearate were apoptotic unlike equivalent concentrations of the unsaturated FFA oleate and linoleate. Palmitate-induced apoptosis was potentiated by etomoxir, an inhibitor of mitochondrial β-oxidation, but was prevented by an activator of AMP-kinase, which increases fatty acid β-oxidation. Palmitate stimulated an intrinsic pathway of pro-apoptotic signaling as evidenced by increased mitochondrial release of cytochrome-c and activation of caspase 9. A caspase 9-selective inhibitor blocked caspase 3 activation but incompletely blocked apoptosis in response to palmitate, suggesting an additional caspase 9-independent pathway. Palmitate stimulated mitochondrial release of endonuclease G by a caspase 9-independent mechanism, thereby implicating endonuclease G in caspase 9-indpendent regulation of apoptosis by saturated FFA. We also observed that the unsaturated FFA oleate and linoleate prevented palmitate-induced mitochondrial release of both cytochrome-c and endonuclease G, which resulted in complete protection from palmitate-induced apoptosis. Conclusions Taken together, these results demonstrate that palmitate stimulates apoptosis by evoking an intrinsic pathway of proapoptotic signaling and identify mitochondrial release of endonuclease G as a key step in proapoptotic signaling by saturated FFA and in the anti-apoptotic actions of unsaturated FFA.

  20. Combining high-performance liquid chromatography with on-line microdialysis sampling for the simultaneous determination of ascorbyl glucoside, kojic acid, and niacinamide in bleaching cosmetics.

    Science.gov (United States)

    Lin, Cheng-Hui; Wu, Hsin-Lung; Huang, Yeou-Lih

    2007-01-01

    We have used on-line microdialysis sampling coupled with high-performance liquid chromatography and UV-vis detection to simultaneously determine the contents of ascorbyl glucoside (AA-2G), kojic acid (KA), and niacinamide (VitB(3)) in commercial bleaching cosmetics. Our results indicate that AA-2G, KA, and VitB(3) separated well within 4.5 min on a reverse-phase Hypersil Fluophase PFP column when eluting with 0.020 M phosphate buffer solution in 40% (v/v) methanol at pH 5.5. The calibration curves were linear over the ranges 0.068-304, 0.071-284, and 0.024-488 microg mL(-1) for AA-2G, KA, and VitB(3), respectively, with correlation coefficients for the linear regression analyses falling within the range 0.9982-0.9999. The detection limits for AA-2G, KA, and VitB(3) were 0.01, 0.01, and 0.007 microg mL(-1), respectively. The detection wavelength was robust when the levels of the analytes in the samples were high (0.1-2%). The analytes were all detected using ultraviolet light (254 nm). The compounds diffuse through the membrane more readily when KA and VitB(3) are in their molecular forms and AA-2G is ionized. The recoveries were in the range 92-106% with good reproducibility (R.S.D.=3.9-8.7%). We used this procedure to assay six commercially available bleaching cosmetics; our results confirmed not only the precision of the method but also the claims made on the labels of the cosmetics. This approach provides a very simple means to determine the contents of AA-2G, KA, and VitB(3) in various dosages in bleaching cosmetics.

  1. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  2. Dietary ascorbic acid requirements during the hatchery production of turbot larvae

    OpenAIRE

    Merchie, G.; Lavens, P.; Dhert, Ph.; Garcia Ulloa Gómez, M.; Nelis, H.; De leenheer, A P; Sorgeloos, P.

    1996-01-01

    The effect of the high ascorbic acid (AA) levels transferred through enriched live food was evaluated for turbot Scophthalmus maximus larvae in two consecutive feeding experiments. The same feeding strategy was applied to all treatments, except for the AA content in the live food which was manipulated through bioencapsulation with ascorbyl palmitate. This resulted finally in a low, medium and high-AA treatment. The AA incorporation levels in the turbot larvae (up to 1400 µg AA g DW-1) were co...

  3. Endoplasmic reticulum stress involved in high-fat diet and palmitic acid-induced vascular damages and fenofibrate intervention

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yunxia, E-mail: wwwdluyx@sina.com [Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032 (China); The Comprehensive Laboratory, Anhui Medical University, Hefei, Anhui 230032 (China); Cheng, Jingjing [Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032 (China); Chen, Li [Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032 (China); Department of Medical Laboratory, Anhui Provincial Hospital, Hefei, Anhui 230001 (China); Li, Chaofei; Chen, Guanjun [Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032 (China); Gui, Li [The Comprehensive Laboratory, Anhui Medical University, Hefei, Anhui 230032 (China); Shen, Bing [Department of Physiology, Anhui Medical University, Hefei, Anhui 230032 (China); Zhang, Qiu [Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022 (China)

    2015-02-27

    Fenofibrate (FF) is widely used to lower blood lipids in clinical practice, but whether its protective effect on endothelium-dependent vasodilatation (EDV) in thoracic aorta is related with endoplasmic reticulum (ER) stress remains unknown. In this study, female Sprauge Dawley rats were divided into standard chow diets (SCD), high-fat diets (HFD) and HFD plus FF treatment group (HFD + FF) randomly. The rats of latter two groups were given HFD feeding for 5 months, then HFD + FF rats were treated with FF (30 mg/kg, once daily) via gavage for another 2 months. The pathological and tensional changes, protein expression of eNOS, and ER stress related genes in thoracic aorta were measured. Then impacts of palmitic acid (PA) and FF on EDV of thoracic aorta from normal female SD rats were observed. Ultimately the expression of ER stress related genes were assessed in primary mouse aortic endothelial cells (MAEC) treated by fenofibric acid (FA) and PA. We found that FF treatment improved serum lipid levels and pathological changes in thoracic aorta, accompanied with decreased ER stress and increased phosphorylation of eNOS. FF pretreatment also improved EDV impaired by different concentrations of PA treatment. The dose- and time-dependent inhibition of cell proliferation by PA were inverted by FA pretreatment. Phosphorylation of eNOS and expression of ER stress related genes were all inverted by FA pretreatment in PA-treated MAEC. Our findings show that fenofibrate recovers damaged EDV by chronic HFD feeding and acute stimulation of PA, this effect is related with decreased ER stress and increased phosphorylation of eNOS. - Highlights: • Fenofibrate treatment improved pathological changes in thoracic aorta by chronic high-fat-diet feeding. • Fenofibrate pretreatment improved endothelium-dependent vasodilation impaired by different concentrations of palmitic acid. • The inhibition of proliferation in endothelial cells by palmitic acid were inverted by fenofibric

  4. Endoplasmic reticulum stress involved in high-fat diet and palmitic acid-induced vascular damages and fenofibrate intervention

    International Nuclear Information System (INIS)

    Fenofibrate (FF) is widely used to lower blood lipids in clinical practice, but whether its protective effect on endothelium-dependent vasodilatation (EDV) in thoracic aorta is related with endoplasmic reticulum (ER) stress remains unknown. In this study, female Sprauge Dawley rats were divided into standard chow diets (SCD), high-fat diets (HFD) and HFD plus FF treatment group (HFD + FF) randomly. The rats of latter two groups were given HFD feeding for 5 months, then HFD + FF rats were treated with FF (30 mg/kg, once daily) via gavage for another 2 months. The pathological and tensional changes, protein expression of eNOS, and ER stress related genes in thoracic aorta were measured. Then impacts of palmitic acid (PA) and FF on EDV of thoracic aorta from normal female SD rats were observed. Ultimately the expression of ER stress related genes were assessed in primary mouse aortic endothelial cells (MAEC) treated by fenofibric acid (FA) and PA. We found that FF treatment improved serum lipid levels and pathological changes in thoracic aorta, accompanied with decreased ER stress and increased phosphorylation of eNOS. FF pretreatment also improved EDV impaired by different concentrations of PA treatment. The dose- and time-dependent inhibition of cell proliferation by PA were inverted by FA pretreatment. Phosphorylation of eNOS and expression of ER stress related genes were all inverted by FA pretreatment in PA-treated MAEC. Our findings show that fenofibrate recovers damaged EDV by chronic HFD feeding and acute stimulation of PA, this effect is related with decreased ER stress and increased phosphorylation of eNOS. - Highlights: • Fenofibrate treatment improved pathological changes in thoracic aorta by chronic high-fat-diet feeding. • Fenofibrate pretreatment improved endothelium-dependent vasodilation impaired by different concentrations of palmitic acid. • The inhibition of proliferation in endothelial cells by palmitic acid were inverted by fenofibric

  5. Formulation and evaluation of hydrous and anhydrous skin whitening products containing sodium ascorbyl phosphate and kojic acid dipalmitate / Marike Ganz

    OpenAIRE

    Ganz, Marike

    2006-01-01

    In Asia skin lightening products have grown to be the best selling skin care products, whereas in the Western hemisphere, including Europe and North America, the main demand is for the treatment of age spots and skin even toning. For African and Asian women, skin lightening is part of their culture, as lighter skin signifies increased wealth and social status. It is believed that blending vitamin C, or its derivates, with kojic acid, or its esters, could synergistically inhibit...

  6. Increase in radioactivity of the trichloroacetic acid-insoluble fraction of the vitamin A-deficient rat retina and its reversal by retinyl palmitate and retinoic acid

    International Nuclear Information System (INIS)

    The effect of vitamin A deficiency on body weight of rats, protein content of their retinas and the in vitro incorporation of [3H]leucine, [14C]glucosamine and [3H]fucose into the TCA-insoluble material of these retinas were studied. The results showed that: (1) rats maintained on a vitamin A-deficient diet stopped growing after about 4 weeks on the diet. They maintained a more or less constant weight for about 4 more weeks and then lost weight precipitously. Rats that had been on the vitamin A-deficient diet for 7 weeks resumed growth 2 to 3 weeks after intraperitoneal injection of retinyl palmitate or retinoic acid. (2) Neither vitamin A-deficiency nor its reversal by either retinyl palmitate or retinoic acid had any effect on the protein content of the retinas. (3) The incorporation of [3H]leucine, [14C]glucosamine and [3H]fucose into the TCA-insoluble fraction of the incubated retina was significantly higher in the deficient retina than in the vitamin A-supplemented control. (4) One week after the intraperitoneal injection of deficient rats with retinyl palmitate the incorporation of [14C]glucosamine and [3H]fucose was returned to a level that was not significantly different from that observed in the control. (5) Intraperitoneal injection of deficient rats with retinoic acid decreased the incorporation of [14C]glucosamine into the TCA-insoluble fraction of the retina to a level which was not significantly different from that observed in the control. (author)

  7. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation.

    Science.gov (United States)

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  8. Diacylglycerol kinase δ phosphorylates phosphatidylcholine-specific phospholipase C-dependent, palmitic acid-containing diacylglycerol species in response to high glucose levels.

    Science.gov (United States)

    Sakai, Hiromichi; Kado, Sayaka; Taketomi, Akinobu; Sakane, Fumio

    2014-09-19

    Decreased expression of diacylglycerol (DG) kinase (DGK) δ in skeletal muscles is closely related to the pathogenesis of type 2 diabetes. To identify DG species that are phosphorylated by DGKδ in response to high glucose stimulation, we investigated high glucose-dependent changes in phosphatidic acid (PA) molecular species in mouse C2C12 myoblasts using a newly established liquid chromatography/MS method. We found that the suppression of DGKδ2 expression by DGKδ-specific siRNAs significantly inhibited glucose-dependent increases in 30:0-, 32:0-, and 34:0-PA and moderately attenuated 30:1-, 32:1-, and 34:1-PA. Moreover, overexpression of DGKδ2 also enhanced the production of these PA species. MS/MS analysis revealed that these PA species commonly contain palmitic acid (16:0). D609, an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), significantly inhibited the glucose-stimulated production of the palmitic acid-containing PA species. Moreover, PC-PLC was co-immunoprecipitated with DGKδ2. These results strongly suggest that DGKδ preferably metabolizes palmitic acid-containing DG species supplied from the PC-PLC pathway, but not arachidonic acid (20:4)-containing DG species derived from the phosphatidylinositol turnover, in response to high glucose levels. PMID:25112873

  9. Diacylglycerol kinase δ phosphorylates phosphatidylcholine-specific phospholipase C-dependent, palmitic acid-containing diacylglycerol species in response to high glucose levels.

    Science.gov (United States)

    Sakai, Hiromichi; Kado, Sayaka; Taketomi, Akinobu; Sakane, Fumio

    2014-09-19

    Decreased expression of diacylglycerol (DG) kinase (DGK) δ in skeletal muscles is closely related to the pathogenesis of type 2 diabetes. To identify DG species that are phosphorylated by DGKδ in response to high glucose stimulation, we investigated high glucose-dependent changes in phosphatidic acid (PA) molecular species in mouse C2C12 myoblasts using a newly established liquid chromatography/MS method. We found that the suppression of DGKδ2 expression by DGKδ-specific siRNAs significantly inhibited glucose-dependent increases in 30:0-, 32:0-, and 34:0-PA and moderately attenuated 30:1-, 32:1-, and 34:1-PA. Moreover, overexpression of DGKδ2 also enhanced the production of these PA species. MS/MS analysis revealed that these PA species commonly contain palmitic acid (16:0). D609, an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), significantly inhibited the glucose-stimulated production of the palmitic acid-containing PA species. Moreover, PC-PLC was co-immunoprecipitated with DGKδ2. These results strongly suggest that DGKδ preferably metabolizes palmitic acid-containing DG species supplied from the PC-PLC pathway, but not arachidonic acid (20:4)-containing DG species derived from the phosphatidylinositol turnover, in response to high glucose levels.

  10. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Chandan [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Ito, Takashi [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Kawahara, Ko-ichi [Department of Biomedical Engineering, Osaka Institute of Technology, Osaka (Japan); Shrestha, Binita; Yamakuchi, Munekazu; Hashiguchi, Teruto [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Maruyama, Ikuro, E-mail: rinken@m3.kufm.kagoshima-u.ac.jp [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan)

    2013-08-09

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis.

  11. [Effects of palmitic acid on activity of uncoupling proteins and proton leak in in vitro cerebral mitochondria from the rats exposed to simulated high altitude hypoxia].

    Science.gov (United States)

    Xu, Yu; Liu, Jun-Ze; Xia, Chen

    2008-02-25

    To reveal the roles of uncoupling proteins (UCPs) in disorder of mitochondrial oxidative phosphorylation induced by free fatty acid during hypoxic exposure, the effects of palmitic acid on activity of UCPs, proton leak and mitochondrial membrane potential in hypoxia-exposed rat brain mitochondria were observed in vitro. Adult Sprague-Dawley (SD) rats were set randomly into control, acute hypoxia and chronic hypoxia groups (n=8 in each group). The acute and chronic hypoxic rats were exposed to simulated 5000 m high altitude in a hypobaric chamber 23 h/d for 3 d and 30 d, respectively. The brain mitochondria were isolated by centrifugation. UCP content and activity were detected by [(3)H]-GTP binding method. The proton leak was measured by TPMP(+) electrode and oxygen electrode. The membrane potential of mitochondria was calculated by detecting the fluorescence from Rodamine 123. Hypoxic exposure resulted in an increase in UCP activity and content as well as proton leak, but a decrease in the membrane potential of rat brain mitochondria. Palmitic acid resulted in further increases in UCP activity and content as well as proton leak, and further decrease in membrane potential of brain mitochondria in vitro from hypoxia-exposed rats, but hypoxic exposure decreased the reactivity of cerebral mitochondria to palmitic acid, especially in the acute hypoxia group. There was a negative correlation between mitochondrial proton leak and K(d) value (representing derivative of UCP activity, PB(max) (representing the maximal content of UCPs in mitochondrial inner membrane, P<0.01, r = 0.856). Cerebral mitochondrial membrane potential was negatively correlated with proton leak (P<0.01, r = -0.880). It is suggested that hypoxia-induced proton leak enhancement and membrane potential decrease are correlated with the increased activity of UCPs. Hypoxia can also decrease the sensitivity of cerebral mitochondria to palmitic acid, which may be a self-protective mechanism in high altitude

  12. Study of Enzymatic Synthesis of L-ascorbyl Fatty Acid Esters in Tert-amyl Alcohol%叔戊醇体系中酶法合成L-抗坏血酸脂肪酸酯的研究

    Institute of Scientific and Technical Information of China (English)

    张洪勇; 钱俊青

    2011-01-01

    研究以棕榈油为酰基供体和L-抗坏血酸在有机相中利用脂肪酶催化酯交换反应合成L-抗坏血酸脂肪酸酯.对催化合成L-抗坏血酸脂肪酸酯的反应介质进行了比较,系统考察了底物浓度、溶剂用量、底物摩尔比、温度、水活度、分子筛加入时间和加入量对酶催化反应的影响,确定了最适反应条件:在20 mL用分子筛充分除水的叔戊醇中,0.352g·L-1抗坏血酸和4.535 g棕榈油(L-抗坏血酸和脂肪酸的底物摩尔比为1∶8)在14.2%(w/w,酶/L-抗坏血酸)的脂肪酶Novo435催化作用下,反应初始加入50 g·L-1的分子筛,温度55℃,摇床转速200 r ·min-1,反应24 h后底物转化率可达65%,产物浓度可达22 g·L-1.%The synthesis of L-ascorbyl fatty acid esters through transesterification of ascorbic acid and palm oil in tert-amy\\ alcohol catalyzed by immobilized lipase was studied. A series of solvents used for the reaction were investigated, among them the tert-amyl alcohol was found to be the most suitable reaction media for the enzymatic synthesis of L-ascorbyl fatty acid esters. The addition of the molecular sieves was found to be helpful for reaction system to keep the water activity and to make the equilibrium go to the product. The factors affecting catalytic leaction, such as the substrate concentration, amount of solvent, substrate molar ratio, temperature, water activity and the addition of molecular sieve, were investigated. The results show that, when 0.352 g ascorbic acid and 4.535 g palm oil (the molar ratio of ascorbic acid to fatty acid is 1:8) are catalyzed by 14.2% Novo435 (weight % of ascorbic acid) in 20 mL terf-amyl alcohol with 50 g·L-1 molecular sieve added and rotation speed of 200 r·min-1, the conversion of ascorbic acid can reach 65% and the concentration of L-ascorbyl fatty acid esters is 22 g·L-1 after 24 h reaction at 55℃.

  13. Characterisation of Fecal Soap Fatty Acids, Calcium Contents, Bacterial Community and Short-Chain Fatty Acids in Sprague Dawley Rats Fed with Different sn-2 Palmitic Triacylglycerols Diets

    Science.gov (United States)

    Wan, Jianchun; Hu, Songyou; Ni, Kefeng; Chang, Guifang; Sun, Xiangjun; Yu, Liangli

    2016-01-01

    The structure of dietary triacylglycerols is thought to influence fatty acid and calcium absorption, as well as intestinal microbiota population of the host. In the present study, we investigated the impact of palmitic acid (PA) esterified at the sn-2 position on absorption of fatty acid and calcium and composition of intestinal microorganisms in rats fed high-fat diets containing either low sn-2 PA (12.1%), medium sn-2 PA (40.4%) or high sn-2 PA (56.3%), respectively. Fecal fatty acid profiles in the soaps were measured by gas chromatography (GC), while fecal calcium concentration was detected by ICP-MS. The fecal microbial composition was assessed using a 16S rRNA high-throughput sequencing technology and fecal short-chain fatty acids were detected by ion chromatograph. Dietary supplementation with a high sn-2 PA fat significantly reduced total fecal contents of fatty acids soap and calcium compared with the medium or low sn-2 PA fat groups. Diet supplementation with sn-2 PA fat did not change the entire profile of the gut microbiota community at phylum level and the difference at genera level also were minimal in the three treatment groups. However, high sn-2 PA fat diet could potentially improve total short-chain fatty acids content in the feces, suggesting that high dietary sn-2 PA fat might have a beneficial effect on host intestinal health. PMID:27783700

  14. Induction of Gnrh mRNA expression by the ω-3 polyunsaturated fatty acid docosahexaenoic acid and the saturated fatty acid palmitate in a GnRH-synthesizing neuronal cell model, mHypoA-GnRH/GFP.

    Science.gov (United States)

    Tran, Dean Q; Ramos, Ernesto H; Belsham, Denise D

    2016-05-01

    Gonadotropin-releasing hormone (GnRH) neurons coordinate reproduction. However, whether GnRH neurons directly sense free fatty acids (FFAs) is unknown. We investigated the individual effects of the FFAs docosahexaenoic acid (DHA), palmitate, palmitoleate, and oleate (100 μM each) on Gnrh mRNA expression in the mHypoA-GnRH/GFP neuronal cell model. We report that 2 h exposure to palmitate or DHA increases Gnrh transcription. Using the inhibitors AH7614, K252c, U0126, wortmannin, and LY294002, we demonstrate that the effect of DHA is mediated through GPR120 to downstream PKC/MAPK and PI3K signaling. Our results indicate that the effect of palmitate may depend on palmitoyl-coA synthesis and PI3K signaling. Finally, we demonstrate that both DHA and palmitate increase Gnrh enhancer-derived RNA levels. Overall, these studies provide evidence that GnRH neurons directly sense FFAs. This will advance our understanding of the mechanisms underlying FFA sensing in the brain and provides insight into the links between nutrition and reproductive function. PMID:26923440

  15. Brain region-specificity of palmitic acid-induced abnormalities associated with Alzheimer's disease

    OpenAIRE

    Melrose Joseph; Balu Deebika; Patil Sachin; Chan Christina

    2008-01-01

    Abstract Background Alzheimer's disease (AD) is a progressive, neurodegenerative disease mostly affecting the basal forebrain, cortex and hippocampus whereas the cerebellum is relatively spared. The reason behind this region-specific brain damage in AD is not well understood. Here, we report our data suggesting "differential free fatty acid metabolism in the different brain areas" as a potentially important factor in causing the region-specific damage observed in AD brain. Findings The astrog...

  16. CPT1α over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    International Nuclear Information System (INIS)

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1α (CPT1α). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1α transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1α over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1α over-expressing cells in a concentration-dependent manner. Both, PA and CPT1α over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1α, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo

  17. Testing the D / H ratio of alkenones and palmitic acid as salinity proxies in the Amazon Plume

    Science.gov (United States)

    Häggi, C.; Chiessi, C. M.; Schefuß, E.

    2015-12-01

    The stable hydrogen isotope composition of lipid biomarkers, such as alkenones, is a promising new tool for the improvement of palaeosalinity reconstructions. Laboratory studies confirmed the correlation between lipid biomarker δD composition (δDLipid), water δD composition (δDH2O) and salinity; yet there is limited insight into the applicability of this proxy in oceanic environments. To fill this gap, we test the use of the δD composition of alkenones (δDC37) and palmitic acid (δDPA) as salinity proxies using samples of surface suspended material along the distinct salinity gradient induced by the Amazon Plume. Our results indicate a positive correlation between salinity and δDH2O, while the relationship between δDH2O and δDLipid is more complex: δDPAM correlates strongly with δDH2O (r2 = 0.81) and shows a salinity-dependent isotopic fractionation factor. δDC37 only correlates with δDH2O in a small number (n = 8) of samples with alkenone concentrations > 10 ng L-1, while there is no correlation if all samples are taken into account. These findings are mirrored by alkenone-based temperature reconstructions, which are inaccurate for samples with low alkenone concentrations. Deviations in δDC37 and temperature are likely to be caused by limited haptophyte algae growth due to low salinity and light limitation imposed by the Amazon Plume. Our study confirms the applicability of δDLipid as a salinity proxy in oceanic environments. But it raises a note of caution concerning regions where low alkenone production can be expected due to low salinity and light limitation, for instance, under strong riverine discharge.

  18. Testing the D/H ratio of alkenones and palmitic acid as salinity proxies in the Amazon Plume

    Directory of Open Access Journals (Sweden)

    C. Häggi

    2015-08-01

    Full Text Available The stable hydrogen isotope composition of lipid biomarkers, such as alkenones, is a promising new tool for the improvement of paleosalinity reconstructions. Laboratory studies confirmed the correlation between lipid biomarker δD composition (δDLipid, water δD composition (δDH2O and salinity. Yet, there is limited insight into the applicability of this proxy in oceanic environments. To fill this gap, we test the use of the δD composition of alkenones (δDC37 and palmitic acid (δDPA as salinity proxies using samples of surface suspended material along the distinct salinity gradient induced by the Amazon Plume. Our results indicate a positive correlation between salinity and δDH2O, while the relationship between δDH2O and δDLipid is more complex: δDPA correlates strongly with δDH2O (r2 = 0.81 and shows a salinity dependent isotopic fractionation factor. δDC37 only correlates with δDH2O in samples with alkenone concentrations > 10 ng L−1 (r2 = 0.51. These findings are mirrored by alkenone based temperature reconstructions, which are inaccurate for samples with alkenone concentrations −1. Deviations in δDC37 and temperature are likely to be caused by limited haptophyte algae growth due to low salinity and light limitation imposed by the Amazon Plume. Our study confirms the applicability of δDLipid as a salinity proxy in oceanic environments. But it raises a note of caution concerning regions where low alkenone production can be expected due to very low salinity conditions. To circumvent these limitations, we suggest the complementary use of δDC37 and δDPA.

  19. Soyasaponins Protect Against Palmitic Acid-Induced Oxidative Stress in Primary Mouse Hepatocytes:Structure-Activity Relationship

    Institute of Scientific and Technical Information of China (English)

    Guang-zhi HE; Jia-ding CHEN; Yan-hong HU; Jin-bin CHEN; Jian-lin LV; Long-ying ZHA

    2014-01-01

    Objective To investigate the relationship between the structure and activity in protection of soyasaponins against palmitic acid (PA)-induced oxidative stress in primary mouse hepatocytes.Methods The primary mouse hepatocytes were treated with 0.05 mmol/L PA in the presence or absence of soyasaponins (10μg/ml) for 16h. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), the contents of malondialdehyde (MDA), triglyceride (TG) and reactive oxygen species (ROS) were determined.Results PA treatment significantly lowered cellular SOD and GSH-Px activities (P<0.05), increased the contents of MDA and TG (P<0.05) and the production of ROS in mitochondria was elevated (P<0.05). When compared to the treatment of PA alone, the combined treatment of soyasaponins and PA significantly increased the activities of SOD and GSH-Px (P<0.05) and decreased the contents of MDA, TG and ROS (P<0.05). It was found that soyasaponin-A1 or A2 significantly increased the cellular activities of SOD and GSH-Px (P<0.05) and decreased the contents of MDA and ROS as compared with soyasapogenol-A (P<0.05). Similarly, soyasaponin-I significantly increased activities of cellular SOD and GSH-Px (P<0.05) and decreased the content of ROS as compared with soyasapogenol-B (P<0.05).Conclusion Soyasaponins possess antioxidant activity against PA-induced oxidative stress in primary mouse hepatocytes. Soyasaponin-A1, A2 and I are stronger than their corresponding soyasapogenols (soyasapogenol-A and B) in antioxidant activity, probably due to the sugar moieties presented in their chemical structures.

  20. Chemo-enzymatic synthesis of vinyl and l-ascorbyl phenolates and their inhibitory effects on advanced glycation end products.

    Science.gov (United States)

    Hwang, Seung Hwan; Wang, Zhiqiang; Lim, Soon Sung

    2017-01-01

    This study successfully established the feasibility of a two-step chemo-enzymatic synthesis of l-ascorbyl phenolates. Intermediate vinyl phenolates were first chemically produced and then underwent trans-esterification with l-ascorbic acid in the presence of Novozyme 435® (Candida Antarctica lipase B) as a catalyst. Twenty vinyl phenolates and 11 ascorbyl phenolates were subjected to in vitro bioassays to investigate their inhibitory activity against advanced glycation end products (AGEs). Among them, vinyl 4-hydroxycinnamate (17VP), vinyl 4-hydroxy-3-methoxycinnamate (18VP), vinyl 4-hydroxy-3,5-dimethoxycinnamate (20VP), ascorbyl 4-hydroxy-3-methoxycinnamate (18AP) and ascorbyl 3,4-dimethoxycinnamate (19AP) showed 2-10 times stronger inhibitory activities than positive control (aminoguanidine and its precursors). These results indicated that chemo-enzymatically synthesized compounds have AGE inhibitory effect and thus are effective in either preventing or retarding glycation protein formation. PMID:27507531

  1. Determination of Fatty Acid Metabolism with Dynamic 11C-Palmitate Positron Emission Tomography of Mouse Heart In Vivo

    Science.gov (United States)

    Li, Yinlin; Huang, Tao; Zhang, Xinyue; Zhong, Min; Walker, Natalie N.; He, Jiang; Berr, Stuart S.; Keller, Susanna R.; Kundu, Bijoy K.

    2015-01-01

    The goal of this study was to establish a quantitative method for measuring FA metabolism with partial volume (PV) and spill-over (SP) corrections using dynamic 11C-palmitate PET images of mouse heart in vivo. Methods Twenty-minute dynamic 11C-palmitate PET scans of four 18–20 week old male C57BL/6 mice under isoflurane anesthesia were performed using a Focus 120 PET scanner. A model corrected blood input function (MCIF), by which the input function with SP and PV corrections and the metabolic rate constants (k1−k5) are simultaneously estimated from the dynamic 11C-palmitate PET images of mouse hearts in a 4-compartment tracer kinetic model, was used to determine rates of myocardial FA oxidation (MFAO), myocardial FA esterification (MFAE), myocardial FA utilization (MFAU) and myocardial FA uptake (MFAUp). Results The MFAO thus measured in C57BL/6 mice was 375.03±43.83 nmoles/min/g. This compares well with the MFAO measured in perfused working C57BL/6 mouse hearts ex vivo of about 350 nmoles/g/min and 400 nmoles/min/g. Conclusions FA metabolism was measured for the first time in mouse heart in vivo using dynamic 11C-palmitate PET in a 4-compartment tracer kinetic model. MFAO obtained with this model were validated by results previously obtained with mouse hearts ex vivo. PMID:26462138

  2. Palmitic acid exerts pro-inflammatory effects on vascular smooth muscle cells by inducing the expression of C-reactive protein, inducible nitric oxide synthase and tumor necrosis factor-α.

    Science.gov (United States)

    Wu, Di; Liu, Juntian; Pang, Xiaoming; Wang, Shuyue; Zhao, Jingjing; Zhang, Xiaolu; Feng, Liuxin

    2014-12-01

    Atherosclerosis is a chronic inflammatory disease in the vessel, and inflammatory cytokines play an important role in the inflammatory process of atherosclerosis. A high level of free fatty acids (FFAs) produced in lipid metabolism disorders are known to participate in the formation of atherosclerosis through multiple bioactivities. As the main saturated fatty acid in FFAs, palmitic acid stimulates the expression of inflammatory cytokines in macrophages. However, it is unclear whether palmitic acid exerts a pro-inflammatory effect on vascular smooth muscle cells (VSMCs). The purpose of the present study was to observe the effect of palmitic acid on the expression of C-reactive protein (CRP), tumor necrosis factor α (TNF-α) and inducible nitric oxide synthase (iNOS) in VSMCs. Rat VSMCs were cultured, and palmitic acid was used as a stimulant for CRP, TNF-α and iNOS expression. mRNA expression was assayed with reverse transcription-polymerase chain reaction, and protein expression was detected with western blot analysis and immunocytochemistry. The results showed that palmitic acid significantly stimulated mRNA and protein expression of CRP, TNF-α and iNOS in VSMCs in time- and concentration-dependent manners, and therefore, palmitic acid is able to exert a pro-inflammatory effect on VSMCs via stimulating CRP, TNF-α and iNOS expression. The findings provide a novel explanation for the direct pro-inflammatory and atherogenic effects of palmitic acid, and for the association with metabolic syndrome, such as type 2 diabetes mellitus, obesity and atherosclerosis. Therefore, the intervention with anti-inflammatory agents may effectively delay the formation and progression of atherosclerosis in patients with metabolic syndrome.

  3. Manganese accumulation in membrane fractions of primary astrocytes is associated with decreased γ-aminobutyric acid (GABA) uptake, and is exacerbated by oleic acid and palmitate.

    Science.gov (United States)

    Fordahl, Steve C; Erikson, Keith M

    2014-05-01

    Manganese (Mn) exposure interferes with GABA uptake; however, the effects of Mn on GABA transport proteins (GATs) have not been identified. We sought to characterize how Mn impairs GAT function in primary rat astrocytes. Astrocytes exposed to Mn (500 μM) had significantly reduced (3)H-GABA uptake despite no change in membrane or cytosolic GAT3 protein levels. Co-treatment with 100 μM oleic or palmitic acids (both known to be elevated in Mn neurotoxicity), exacerbated the Mn-induced decline in (3)H-GABA uptake. Mn accumulation in the membrane fraction of astrocytes was enhanced with fatty acid administration, and was negatively correlated with (3)H-GABA uptake. Furthermore, control cells exposed to Mn only during the experimental uptake had significantly reduced (3)H-GABA uptake, and the addition of GABA (50 μM) blunted cytosolic Mn accumulation. These data indicate that reduced GAT function in astrocytes is influenced by Mn and fatty acids accumulating at or interacting with the plasma membrane.

  4. Stearic acids at sn-1, 3 positions of TAG are more efficient at limiting fat deposition than palmitic and oleic acids in C57BL/6 mice.

    Science.gov (United States)

    Gouk, Shiou-Wah; Cheng, Sit-Foon; Ong, Augustine Soon-Hock; Chuah, Cheng-Hock

    2014-04-14

    In the present study, we investigated the effect of long-acyl chain SFA, namely palmitic acid (16:0) and stearic acid (18:0), at sn-1, 3 positions of TAG on obesity. Throughout the 15 weeks of the experimental period, C57BL/6 mice were fed diets fortified with cocoa butter, sal stearin (SAL), palm mid fraction (PMF) and high-oleic sunflower oil (HOS). The sn-1, 3 positions were varied by 16:0, 18:0 and 18:1, whilst the sn-2 position was preserved with 18:1. The HOS-enriched diet was found to lead to the highest fat deposition. This was in accordance with our previous postulation. Upon normalisation of total fat deposited with food intake to obtain the fat:feed ratio, interestingly, mice fed the SAL-enriched diet exhibited significantly lower visceral fat/feed and total fat/feed compared with those fed the PMF-enriched diet, despite their similarity in SFA-unsaturated fatty acid-SFA profile. That long-chain SFA at sn-1, 3 positions concomitantly with an unsaturated FA at the sn-2 position exert an obesity-reducing effect was further validated. The present study is the first of its kind to demonstrate that SFA of different chain lengths at sn-1, 3 positions exert profound effects on fat accretion.

  5. Palmitic Acid Induces Production of Proinflammatory Cytokines Interleukin-6, Interleukin-1β, and Tumor Necrosis Factor-α via a NF-κB-Dependent Mechanism in HaCaT Keratinocytes

    Directory of Open Access Journals (Sweden)

    Bing-rong Zhou

    2013-01-01

    Full Text Available To investigate whether palmitic acid can be responsible for the induction of inflammatory processes, HaCaT keratinocytes were treated with palmitic acid at pathophysiologically relevant concentrations. Secretion levels of interleukin-6 (IL-6, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, NF-κB nuclear translocation, NF-κB activation, Stat3 phosphorylation, and peroxisome proliferator-activated receptor alpha (PPARα mRNA and protein levels, as well as the cell proliferation ability were measured at the end of the treatment and after 24 hours of recovery. Pyrrolidine dithiocarbamate (PDTC, a selective chemical inhibitor of NF-κB and goat anti-human IL-6 polyclonal neutralizing antibody were used to inhibit NF-κB activation and IL-6 production, respectively. Our results showed that palmitic acid induced an upregulation of IL-6, TNF-α, IL-1β secretions, accompanied by NF-κB nuclear translocation and activation. Moreover, the effect of palmitic acid was accompanied by PPARα activation and Stat3 phosphorylation. Palmitic acid-induced IL-6, TNF-α, IL-1β productions were attenuated by NF-κB inhibitor PDTC. Palmitic acid was administered in amounts able to elicit significant hyperproliferation and can be attenuated by IL-6 blockage. These data demonstrate for the first time that palmitic acid can stimulate IL-6, TNF-α, IL-1β productions in HaCaT keratinocytes and cell proliferation, thereby potentially contributing to acne inflammation and pilosebaceous duct hyperkeratinization.

  6. Countercurrent Chromatographic Separation of Lipophilic Ascorbic Acid Derivatives and Extract from Kadsura Coccinea Using Hydrophobic Organic-Aqueous Two-Phase Solvent Systems

    OpenAIRE

    Shinomiya, Kazufusa; Li, Heran; Kitanaka, Susumu; Ito, Yoichiro

    2009-01-01

    Countercurrent chromatographic (CCC) separation of lipophilic ascorbic acid derivatives and the crude extract from Kadsura Coccinea was performed using the type-J multilayer coil planet centrifuge with a hydrophobic organic-aqueous two-phase solvent system composed of n-hexane/ethyl acetate/ethanol/aqueous 0.1% trifluoroacetic acid at the volume ratio of (5 : 5 : 6 : 2). The lipophilic ascorbic acid derivatives were separated in the order of L-ascrobyl 2,6-dibutyrate, L-ascorbyl 6-palmitate a...

  7. Lipidomic-based investigation into the regulatory effect of Schisandrin B on palmitic acid level in non-alcoholic steatotic livers

    Science.gov (United States)

    Kwan, Hiu Yee; Niu, Xuyan; Dai, Wenlin; Tong, Tiejun; Chao, Xiaojuan; Su, Tao; Chan, Chi Leung; Lee, Kim Chung; Fu, Xiuqiong; Yi, Hua; Yu, Hua; Li, Ting; Tse, Anfernee Kai Wing; Fong, Wang Fun; Pan, Si-Yuan; Lu, Aiping; Yu, Zhi-Ling

    2015-01-01

    Schisandrin B (SchB) is one of the most abundant bioactive dibenzocyclooctadiene derivatives found in the fruit of Schisandra chinensis. Here, we investigated the potential therapeutic effects of SchB on non-alcoholic fatty-liver disease (NAFLD). In lipidomic study, ingenuity pathway analysis highlighted palmitate biosynthesis metabolic pathway in the liver samples of SchB-treated high-fat-diet-fed mice. Further experiments showed that the SchB treatment reduced expression and activity of fatty acid synthase, expressions of hepatic mature sterol regulatory element binding protein-1 and tumor necrosis factor-α, and hepatic level of palmitic acid which is known to promote progression of steatosis to steatohepatitis. Furthermore, the treatment also reduced hepatic fibrosis, activated nuclear factor-erythroid-2-related factor-2 which is known to attenuate the progression of NASH-related fibrosis. Interestingly, in fasting mice, a single high-dose SchB induced transient lipolysis and increased the expressions of adipose triglyceride lipase and phospho-hormone sensitive lipase. The treatment also increased plasma cholesterol levels and 3-hydroxy-3-methylglutaryl-CoA reductase activity, reduced the hepatic low-density-lipoprotein receptor expression in these mice. Our data not only suggest SchB is a potential therapeutic agent for NAFLD, but also provided important information for a safe consumption of SchB because SchB overdosed under fasting condition will have adverse effects on lipid metabolism. PMID:25766252

  8. Effects of Artemia enriched with unsaturated fatty acids and vitamin C on growth, survival and resistance Salmo trutta caspius larvae

    OpenAIRE

    Javaheri baboli, Mehran

    2006-01-01

    This experiment was conducted to investigate the effect of using n-3 HUFA and Vitamin C enriched Artemia urmiana Nauplii Five difference treament were tested: for Caspian salmon (Salmo trutta caspius) larvae compare with artificial food in five treatment: (1) Artificial food, (2) Newly hatched Artemia (3) n-3 HUFA enriched Artemia (4) n-3 HUFA + 10% Ascorbyl Palmitate enriched Artemia (5) n-3 HUFA+20% Ascorbyl palmitate enriched Artemia during 15 days then all treatment were fe...

  9. Inhibition of protein kinase B by Palmitate in the insulin signaling of HepG2 cells and the preventive effect of Arachidonic acid on insulin resistance

    Institute of Scientific and Technical Information of China (English)

    XIA Yanzhi; WAN Xuedong; DUAN Qiuhong; HE Shansu; WANG Ximing

    2007-01-01

    Elevated plasma levels of free fatty acids(FFAs)may contribute to insulin resistance (IR)that is characteristic of type 2 diabetes mellitus.In this study,we investigated the effects of two fatty acids,palmitate(PA)and arachidonic acid (AA)on glycogenesis under insulin signaling in HepG2cells,a transformed hepatic carcinoma cell line.In the presence of 200 μmol of palmitate,insulin(10-7 mol/L)stimulation of glycogenesis was inhibited,as evidenced by increased glucose in the medium and decreased intracellular glycogen.Wortmannin(WM),a specific inhibitor of PI3K,dramatically decreased the amount of intracellular glycogen in cells without PA incubation.However,glycogen in PA treated cells was not significantly changed by WM,indicating that PA may also act on PI3K.Interestingly,AA restored the effects of WM inhibition on glycogenesis in PA cells.Western blot analysis demonstrated that PA in the absence of WM increased phosphorylated glycogen synthase(inactive form of GS)and decreased phosphorylated protein kinase B(active form of PKB),causing a reduction of intracellular glycogen.AA,however,reversed the effects of PA on GS and PKB.Furthermore,inhibition of protein kinase C(PKC)by a specific inhibitor chelerythrine chloride (CC)abolished the inhibitory efrect of PA on glycogen synthesis by decreasing phosphorylated GS and increasing phosphorylated PKB.However,the effect of CC in the presence of PA disappeared when AA was also present.Our results suggest that there is a disruption of the insulin signaling pathway between PKB and GS when the cells were exposed to PA,contributing to IR.PA may also interrupt the PKC signaling pathway.In contrast,AA could rescue glycogenesis impaired by PA.

  10. Evaluation of the antiaggregant activity of ascorbyl phenolic esters with antioxidant properties.

    Science.gov (United States)

    Lopez, Esther; del Carmen Ortega-Liébana, María; Salido, Sofía; Salido, Ginés M; Altarejos, Joaquín; Rosado, Juan A; Redondo, Pedro C

    2015-09-01

    Beneficial effects of the antioxidant L-ascorbic acid (Asc) in human health are well known. Its particular role in hemostasis deserves further consideration, since it has been described a dose-dependent effect of Asc in platelet activity. Contrary, it has been demonstrated that phenolic compounds have inhibitory effects on platelet aggregation stimulated by the physiological agonist thrombin (Thr). Here, we have evaluated the actions of three synthetic phenolic esters of Asc: L-ascorbyl 6-protocatechuate (Prot Asc), L-ascorbyl 6-gallate (Gal Asc), and L-ascorbyl 6-caffeate (Caf Asc). All these Asc derivatives exhibited greater radical scavenging activity than Asc, and in experiments using human platelets from healthy subjects, they do not evoke changes in platelet viability upon their administration. Nevertheless, these compounds altered platelet calcium homeostasis in response to Thr, although Prot Asc induced a smaller effect than Gal Asc, Caf Asc, and Asc. As a consequence, platelet aggregation was also impaired by these compounds, reporting Prot Asc and Caf Asc a weaker antiaggregant action than Gal Asc and Asc. Treatments with Gal Asc and Caf Asc altered in larger extent the phosphorylation pattern of pp60(Src) and mammalian target of rapamycin (mTOR) evoked by stimulating human platelets with Thr. Summarizing, Prot Asc is the ascorbyl phenolic ester with the strongest antioxidant properties and weakest antiaggregant actions, and its use as antioxidant may be safer than the rest of derivatives in order to prevent thrombotic alteration in patients that need treatment with antioxidant therapies. PMID:26081024

  11. Ternary Liquid-Liquid Equilibrium for Systems of Fatty Acid Methyl Ester(Methyl Palmitate/Methyl Stearate)+Ethanol+Glycerol at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    夏淑倩; 罗慧娟; 马沛生

    2015-01-01

    Liquid-liquid equilibrium data of two ternary systems methyl palmitate+ethanol+glycerol and methyl stearate+ethanol+glycerol at(318.2 and 333.2)K and atmospheric pressure were measured. The values of distri-bution coefficient and selectivity were calculated, which indicates that glycerol can be separated from fatty acid ester by using ethanol as an extraction solvent. The consistency of the isothermal tie-line data were checked by the Othmer-Tobias equation. The correlation coefficients R2 are higher than 0.993,9 for all the fitted curves. The NRTL activity coefficient model was applied to the correlation of the measured tie-line data. The root mean square devia-tion(RMSD)values are less than 0.007 for all the systems, which shows a good predictive capability of this model for such systems.

  12. Monocyte adhesion induced by multi-walled carbon nanotubes and palmitic acid in endothelial cells and alveolar-endothelial co-cultures

    DEFF Research Database (Denmark)

    Cao, Yi; Roursgaard, Martin; Jacobsen, Nicklas Raun;

    2016-01-01

    Free palmitic acid (PA) is a potential pro-atherogenic stimulus that may aggravate particle-mediated cardiovascular health effects. We hypothesized that the presence of PA can aggravate oxidative stress and endothelial activation induced by multi-walled carbon nanotube (MWCNT) exposure in vitro. We...... investigated the interaction between direct exposure to MWCNTs and PA on THP-1 monocyte adhesion to human umbilical vein endothelial cells (HUVECs), as well as on indirect exposure in an alveolar-endothelial co-culture model with A549 cells and THP-1-derived macrophages exposed in inserts and the effect...... monocultures. Both effects were found to be independent of the presence of PA. MWCNT exposure significantly increased THP-1 monocyte adhesion to HUVECs, and co-exposure to PA aggravated the NM400-mediated adhesion but decreased the NM402-mediated adhesion. For the co-cultures, the exposure of A549 cells did...

  13. 酶催化合成维生素C脂肪酸酯的反应条件优化%Optimization of the enzymatic synthesis of L-ascorbyl fatty acid esters

    Institute of Scientific and Technical Information of China (English)

    宋秋红; 王熙; 田平芳

    2009-01-01

    以维生素C(Vc)和若干种脂肪酸为底物,采用自制假丝酵母Candida sp. 99-125固定化脂肪酶,催化合成维生素C脂肪酸酯.结果表明,在该酯化反应中,油酸为最佳脂肪酸底物,丙酮为最佳反应介质.同时研究了各反应因素对Vc转化率的影响,优化后的反应条件为:当Vc浓度为0.06mol/L时,温度40*#℃,固定化酶量1.5*#g,油酸与Vc物质的量比为5∶1,反应时间48*#h,分子筛添加量0.5*#g,底物Vc分4次流加,Vc转化率可达91%,批次实验表明该固定化酶在重复使用10次后仍具较高活力.%The enzymatic synthesis of L-ascorbyl fatty acid esters (AFAE) has been studied using a self-made immobilized lipase generated by Candida sp. 99 - 125 as the biocatalyst. Oleic acid was found to be the best source of a fatty acid acyl group in the synthesis of AFAEs. Through screening of different reaction media, ace-tone was found to be the most suitable solvent for the esterification. The effects of various other factors on the synthesis of AFAEs were also investigated. Under the following optimized reaction conditions: initial ascorbic acid (vitamin C) concentration (Vc) of 0.06mol/L at 40℃, 1.5g of immobilized enzyme, substrate molar ratio of 5:1, reaction time of 48 h, content of molecular sieve of 0.5 g and four times fed-batch addition of the sub-strate, an esterification ratio of 91 % was obtained. Furthermore, repeated batch reactions revealed the durabili-ty of the immobilized lipase, which retained high activity after sequential reaction for 10 rounds.

  14. Vapour liquid equilibria of monocaprylin plus palmitic acid or methyl stearate at P=(1.20 and 2.50) kPa by using DSC technique

    DEFF Research Database (Denmark)

    Cunico, Larissa P.; Damaceno, Daniela S.; Matricarde Falleiro, Rafael M.;

    2015-01-01

    The Differential Scanning Calorimetry (DSC) technique is used for measuring isobaric (vapour+liquid) equilibria for two binary mixtures: {monocaprylin+palmitic acid (system 1) or methyl stearate (system 2)} at two different pressures P=(1.20 and 2.50) kPa. The obtained PTx data are correlated by ...

  15. The effect of chronic exposure to high palmitic acid concentrations on the aerobic metabolism of human endothelial EA.hy926 cells.

    Science.gov (United States)

    Broniarek, Izabela; Koziel, Agnieszka; Jarmuszkiewicz, Wieslawa

    2016-09-01

    A chronic elevation of circulating free fatty acids (FFAs) is associated with diseases like obesity or diabetes and can lead to lipotoxicity. The goals of this study were to assess the influence of chronic exposure to high palmitic acid (PAL) levels on mitochondrial respiratory functions in endothelial cells and isolated mitochondria. Human umbilical vein endothelial cells (EA.hy926 line) were grown for 6 days in a medium containing either 100 or 150 μM PAL. Growth at high PAL concentrations induced a considerable increase in fatty acid-supplied respiration and a reduction of mitochondrial respiration during carbohydrate and glutamine oxidation. High PAL levels elevated intracellular and mitochondrial superoxide generation; increased inflammation marker, acyl-coenzyme A (CoA) dehydrogenase, uncoupling protein 2 (UCP2), and superoxide dismutase 2 expression; and decreased hexokinase I and pyruvate dehydrogenase expression. No change in aerobic respiration capacity was observed, while fermentation was decreased. In mitochondria isolated from high PAL-treated cells, an increase in the oxidation of palmitoylcarnitine, a decrease in the oxidation of pyruvate, and an increase in UCP2 activity were observed. Our results demonstrate that exposure to high PAL levels induces a shift in endothelial aerobic metabolism toward the oxidation of fatty acids. Increased levels of PAL caused impairment and uncoupling of the mitochondrial oxidative phosphorylation system. Our data indicate that FFAs significantly affect endothelial oxidative metabolism, reactive oxygen species (ROS) formation, and cell viability and, thus, might contribute to endothelial and vascular dysfunction. PMID:27417103

  16. Palmitic acid increase levels of pancreatic duodenal homeobox-1 and p38/stress-activated protein kinase in islets from rats maintained on a low protein diet.

    Science.gov (United States)

    Arantes, Vanessa C; Reis, Marise A B; Latorraca, Márcia Q; Ferreira, Fabiano; Stoppiglia, Luiz Fabrízio; Carneiro, Everardo M; Boschero, Antonio C

    2006-12-01

    A severe reduction in insulin release in response to glucose is consistently noticed in protein-deprived rats and is attributed partly to the chronic exposure to elevated levels of NEFA. Since the pancreatic and duodenal transcription factor homeobox 1 (PDX-1) is important for the maintenance of beta-cell physiology, and since PDX-1 expression is altered in the islets of rats fed a low protein (LP) diet and that rats show high NEFA levels, we assessed PDX-1 and insulin mRNA expression, as well as PDX-1 and p38/stress activated protein kinase 2 (SAPK2) protein expression, in islets from young rats fed low (6%) or normal (17%; control) protein diets and maintained for 48 h in culture medium containing 5.6 mmol/l glucose, with or without 0.6 mmol/l palmitic acid. We also measured glucose-induced insulin secretion and glucose metabolism. Insulin secretion by isolated islets in response to 16.7 mmol/l glucose was reduced in LP compared with control rats. In the presence of NEFA, there was an increase in insulin secretion in both groups. At 2.8 mmol/l glucose, the metabolism of this sugar was reduced in LP islets, regardless of the presence of this fatty acid. However, when challenged with 16.7 mmol/l glucose, LP and control islets showed a severe reduction in glucose oxidation in the presence of NEFA. The PDX-1 and insulin mRNA were significantly higher when NEFA was added to the culture medium in both groups of islets. The effect of palmitic acid on PDX-1 and p38/SAPK2 protein levels was similar in LP and control islets, but the increase was much more evident in LP islets. These results demonstrate the complex interrelationship between nutrients in the control of insulin release and support the view that fatty acids play an important role in glucose homeostasis by affecting molecular mechanisms and stimulus/secretion coupling pathways. PMID:17181874

  17. Drug Nanoparticle Formulation Using Ascorbic Acid Derivatives

    OpenAIRE

    Kunikazu Moribe; Waree Limwikrant; Kenjirou Higashi; Keiji Yamamoto

    2011-01-01

    Drug nanoparticle formulation using ascorbic acid derivatives and its therapeutic uses have recently been introduced. Hydrophilic ascorbic acid derivatives such as ascorbyl glycoside have been used not only as antioxidants but also as food and pharmaceutical excipients. In addition to drug solubilization, drug nanoparticle formation was observed using ascorbyl glycoside. Hydrophobic ascorbic acid derivatives such as ascorbyl mono- and di-n-alkyl fatty acid derivatives are used either as drugs...

  18. Palmitic Acid-Induced Neuron Cell Cycle G2/M Arrest and Endoplasmic Reticular Stress through Protein Palmitoylation in SH-SY5Y Human Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Yung-Hsuan Hsiao

    2014-11-01

    Full Text Available Obesity-related neurodegenerative diseases are associated with elevated saturated fatty acids (SFAs in the brain. An increase in SFAs, especially palmitic acid (PA, triggers neuron cell apoptosis, causing cognitive function to deteriorate. In the present study, we focused on the specific mechanism by which PA triggers SH-SY5Y neuron cell apoptosis. We found that PA induces significant neuron cell cycle arrest in the G2/M phase in SH-SY5Y cells. Our data further showed that G2/M arrest is involved in elevation of endoplasmic reticular (ER stress according to an increase in p-eukaryotic translation inhibition factor 2α, an ER stress marker. Chronic exposure to PA also accelerates beta-amyloid accumulation, a pathological characteristic of Alzheimer’s disease. Interestingly, SFA-induced ER stress, G2/M arrest and cell apoptosis were reversed by treatment with 2-bromopalmitate, a protein palmitoylation inhibitor. These findings suggest that protein palmitoylation plays a crucial role in SFA-induced neuron cell cycle G2/M arrest, ER stress and apoptosis; this provides a novel strategy for preventing SFA-induced neuron cell dysfunction.

  19. Preparation of CLA ascorbyl ester with improved volumetric productivity by an ionic liquid-based reaction system

    DEFF Research Database (Denmark)

    Chen, B.L.; Guo, Zheng; Let, M.B.;

    2008-01-01

    A new approach to the enzymatic production Of conjugated linoleic acid (CLA) ascorbyl ester with a remarkably high volumetric productivity (120-200 g L-1) has been developed, in which strong solvation by tOMA-TFA (methyltrioctylammonium trifluoroacetate) enables a high concentration of ascorbic...

  20. Lipase-catalyzed synthesis of L-ascorbyl fatty acid esters and D-isoascorbyl fatty acid esters%脂肪酶催化合成L-抗坏血酸脂肪酸酯和D-异抗坏血酸脂肪酸酯

    Institute of Scientific and Technical Information of China (English)

    郑大贵; 祝显虹; 余泗莲; 彭化南; 张小兰

    2012-01-01

    The lipase-catalyzed synthesis of L.-ascorbyl fatty acid esters and D-isoascorbyl fatty acid esters were studied by direct es-terification and transesterification,respectively. The structures of products were confirmed by IR,1H NMR,13C NMR and MS. It was found that the yield of the direct esterification were higher than that of the corresponding transesterification under the similar synthetic conditions. The raw material fatty acids and fatty acid methyl esters could be recycled and reused.%用固定化脂肪酶Lipozyme 435作催化剂,分别用直接酯化法和酯交换法合成L-抗坏血酸脂肪酸酯和D-异抗坏血酸脂肪酸酯.产物结构经IR、1HNMR、13CNMR和MS表征.结果表明,对于同一目标化合物,相似条件下,直接酯化法的效果优于酯交换法,原料脂肪酸和脂肪酸甲酯均可回收循环使用.

  1. Synthesis of lipase-catalyzed L-ascorbyl decanoate in ultrasonic field and determination of its antioxidant activity%超声波强化酶法合成L-抗坏血酸癸酸酯及其抗氧化性研究

    Institute of Scientific and Technical Information of China (English)

    李卓; 晏日安; 曾永青

    2013-01-01

    The esterification of decanoic acid with L-ascorbic acid in the presence of tert-butanol acid as the solvent and immobilized lipase (Novozym(R) 435) as the catalyst by means of ultrasonic irradiation to obtain L-ascorbyl decanoate (L-AD) was studied. By using ultrasound the dissolution rate of the reactants could be accelerated greatly,the reaction time of esterification could be reduced from 48 to 4h. The optimal actual yield was 78.48%.The purity of target product was above 98.6% after recrystallized. The immobilized lipase could be reused 4 times in ultrasonic field. In antioxidant activities of L-ascorbyl decanoate were studied by the items of hydroxyl radical system, system of DPPH· ,and reducing power. Its antioxidant effect were further evaluated by adding into the soybean and sunflower oil. The result indicated that L-ascorbyl decanoate within the given concentration range in dose-effect relationship showed good antioxidant activities on the clearance of hydroxyl radical,superoxide anion free radical and the reducing power of DPPh·.Furthermore,antioxidant activities of L-ascorbyl decanoate were comparable with that of L-ascorbyl palmitate,and the first two indexes were higher than that of TBHQ. Thus,L-ascorbyl decanoate was demonstrated to be a potential food antioxidant.%研究了在超声波场中以固定化脂肪酶(Novozvm(R)435)为催化剂,在叔丁醇中合成L-抗坏血酸癸酸酯.超声波可以显著加速底物的溶解,并使反应时间由48h缩短到4h.产率可达到78.48%,产物纯度为98.6%,超声波处理下固定化脂肪酶可重复利用的次数为4次.抗氧化实验结果表明在一定质量浓度范围内,L-抗坏血酸癸酸酯具有很强的还原力、清除羟自由基、DPPH自由基能力能力,在等质量浓度下与L-抗坏血酸棕榈酸酯相当,且前两个指标优于TBHQ;将L-抗坏血酸癸酸酯添加到油脂中,其抗氧化能力也较优,说明L-抗坏血酸癸酸酯是一种很有潜力的抗氧化剂.

  2. Inhibition of HIV-1 infection in ex vivo cervical tissue model of human vagina by palmitic acid; implications for a microbicide development.

    Directory of Open Access Journals (Sweden)

    Xudong Lin

    Full Text Available BACKGROUND: Approximately 80% of all new HIV-1 infections are acquired through sexual contact. Currently, there is no clinically approved microbicide, indicating a clear and urgent therapeutic need. We recently reported that palmitic acid (PA is a novel and specific inhibitor of HIV-1 fusion and entry. Mechanistically, PA inhibits HIV-1 infection by binding to a novel pocket on the CD4 receptor and blocks efficient gp120-to-CD4 attachment. Here, we wanted to assess the ability of PA to inhibit HIV-1 infection in cervical tissue ex vivo model of human vagina, and determine its effect on Lactobacillus (L species of probiotic vaginal flora. PRINCIPAL FINDINGS: Our results show that treatment with 100-200 µM PA inhibited HIV-1 infection in cervical tissue by up to 50%, and this treatment was not toxic to the tissue or to L. crispatus and jensenii species of vaginal flora. In vitro, in a cell free system that is independent of in vivo cell associated CD4 receptor; we determined inhibition constant (Ki to be ∼2.53 µM. SIGNIFICANCE: These results demonstrate utility of PA as a model molecule for further preclinical development of a safe and potent HIV-1 entry microbicide inhibitor.

  3. Glycation of bovine serum albumin by ascorbate in vitro: Possible contribution of the ascorbyl radical?

    Science.gov (United States)

    Sadowska-Bartosz, Izabela; Stefaniuk, Ireneusz; Galiniak, Sabina; Bartosz, Grzegorz

    2015-12-01

    Ascorbic acid (AA) has been reported to be both pro-and antiglycating agent. In vitro, mainly proglycating effects of AA have been observed. We studied the glycation of bovine serum albumin (BSA) induced by AA in vitro. BSA glycation was accompanied by oxidative modifications, in agreement with the idea of glycoxidation. Glycation was inhibited by antioxidants including polyphenols and accelerated by 2,​2'-​azobis-​2-​methyl-​propanimidamide and superoxide dismutase. Nitroxides, known to oxidize AA, did not inhibit BSA glycation. A good correlation was observed between the steady-state level of the ascorbyl radical in BSA samples incubated with AA and additives and the extent of glycation. On this basis we propose that ascorbyl radical, in addition to further products of AA oxidation, may initiate protein glycation. PMID:26202868

  4. Effects of Ghrelin on Triglyceride Accumulation and Glucose Uptake in Primary Cultured Rat Myoblasts under Palmitic Acid-Induced High Fat Conditions

    Directory of Open Access Journals (Sweden)

    Lingling Han

    2015-01-01

    Full Text Available This study aimed to study the effects of acylated ghrelin on glucose and triglyceride metabolism in rat myoblasts under palmitic acid- (PA- induced high fat conditions. Rat myoblasts were treated with 0, 10−11, 10−9, or 10−7 M acylated ghrelin and 0.3 mM PA for 12 h. Triglyceride accumulation was determined by Oil-Red-O staining and the glycerol phosphate dehydrogenase-peroxidase enzymatic method, and glucose uptake was determined by isotope tracer. The glucose transporter 4 (GLUT4, AMP-activated protein kinase (AMPK, acetyl-CoA carboxylase (ACC, and uncoupling protein 3 (UCP3 were assessed by RT-PCR and western blot. Compared to 0.3 mM PA, ghrelin at 10−9 and 10−7 M reduced triglyceride content (5.855 ± 0.352 versus 5.030 ± 0.129 and 4.158 ± 0.254 mM, P<0.05 and prevented PA-induced reduction of glucose uptake (1.717 ± 0.264 versus 2.233 ± 0.333 and 2.333 ± 0.273 10−2 pmol/g/min, P<0.05. The relative protein expression of p-AMPKα/AMPKα, UCP3, and p-ACC under 0.3 mM PA was significantly reduced compared to controls (all P<0.05, but those in the 10−9 and 10−7 M ghrelin groups were significantly protected from 0.3 mM PA (all P<0.05. In conclusion, acylated ghrelin reduced PA-induced triglyceride accumulation and prevented the PA-induced decrease in glucose uptake in rat myoblasts. These effects may involve fatty acid oxidation.

  5. Acidolysis of terebinth fruit oil with palmitic and caprylic acids in a recirculating packed bed reactor: optimization using response surface methodology

    Directory of Open Access Journals (Sweden)

    Koçak Yanık, D.

    2016-06-01

    Full Text Available The acidolysis reaction of terebinth fruit oil with caprylic and palmitic acid has been investigated. The reaction was catalyzed by lipase (Lipozyme IM from Rhizomucormiehei and carried out in recirculating packed bed reactor. The effects of reaction parameters have been analyzed using response surface methodology. Reaction time (3.5–6.5 h, enzyme load (10–20%, substrate flow rate (4–8 mL·min-1 and substrate mole ratios (Terebinth oil : Palmitic acid : Caprylic acid, 1:1.83:1.22–1:3.07:2.05 were evaluated. The optimum reaction conditions were 5.9 h reaction time, 10% enzyme load, 4 mL·min-1 substrate flow rate and 1:3.10:2.07 substrate mole ratio. The structured lipid obtained at these optimum conditions had 52.23% desired triacylglycerols and a lower caloric value than that of terebinth fruit oil. The melting characteristics and microstructure of the structured lipid were similar to those of commercial margarine fat extracts. The results showed that the structured lipid had the highest oxidative stability among the studied fats.Se ha investigado la reacción de acidolisis del aceite de pistacho con los ácidoscaprílico y palmítico. La reacción fue catalizada por la lipasa Lipozyme IM de Rhizomucormiehei y realizada mediante recirculación del reactor de lecho compacto. Los efectos de los parámetros de la reacción han sido analizados mediante el uso de la metodología de superficie de respuesta. El tiempo de reacción (3.5 hasta 6.5 h, la carga de enzima (10–20%, el caudal de sustrato (4–8 mL·min-1 relaciones molares de los sustrato (aceite de pistacho: ácido palmítico: ácido caprílico, 1: 1,83: 1,22–1: 3,07: 2,05 fueron evaluados. Las condiciones óptimas de reacción fueron 5,9 h de tiempo de reacción, el 10% de carga de la enzima, 4 mL·min-1 de caudal de sustrato y 1: 3,10: 2,07 de relación molar de sustratos. Los lípidos estructurados obtenidos en las condiciones óptimas tenías 52,23% de triacilgliceroles

  6. Palmitate impairs cytokinesis associated with RhoA inhibition

    Institute of Scientific and Technical Information of China (English)

    Jianhua Zhang; Ying Yang; Jiarui Wu

    2010-01-01

    @@ Dear Editor, Excess fatty acid accumulation in non-adipose tissues results in lipotoxicity, which has been implicated in the pathogenesis of metabolic diseases such as obesity and diabetes [1]. A number of tissue culture systems have been used to study lipotoxicity by supplementation of culture media with palmitate, which is a major saturated free fatty acid in human plasma and has been reported to induce apoptosis in various cell types [2]. Here we report that palmitate causes formation of binucleate cells as a consequence of cytokinetic impairment. Our results reveal a novel toxic effect of palmitate on cell division and extend the implication of lipotoxicity to cytokinetic failure.

  7. Monocyte adhesion induced by multi-walled carbon nanotubes and palmitic acid in endothelial cells and alveolar-endothelial co-cultures.

    Science.gov (United States)

    Cao, Yi; Roursgaard, Martin; Jacobsen, Nicklas Raun; Møller, Peter; Loft, Steffen

    2016-01-01

    Free palmitic acid (PA) is a potential pro-atherogenic stimulus that may aggravate particle-mediated cardiovascular health effects. We hypothesized that the presence of PA can aggravate oxidative stress and endothelial activation induced by multi-walled carbon nanotube (MWCNT) exposure in vitro. We investigated the interaction between direct exposure to MWCNTs and PA on THP-1 monocyte adhesion to human umbilical vein endothelial cells (HUVECs), as well as on indirect exposure in an alveolar-endothelial co-culture model with A549 cells and THP-1-derived macrophages exposed in inserts and the effect measured in the lower chamber on HUVECs and THP-1 cells. The exposure to MWCNTs, including a short (NM400) and long (NM402) type of entangled fibers, was associated with elevated levels of reactive oxygen species as well as a decrease in the intracellular glutathione concentration in HUVEC and A549 monocultures. Both effects were found to be independent of the presence of PA. MWCNT exposure significantly increased THP-1 monocyte adhesion to HUVECs, and co-exposure to PA aggravated the NM400-mediated adhesion but decreased the NM402-mediated adhesion. For the co-cultures, the exposure of A549 cells did not promote THP-1 adhesion to HUVECs in the lower chamber. When THP-1 macrophages were present on the cell culture inserts, there was a modest increase in the adhesion and an increase in interleukin-6 and interleukin-8 levels in the lower chamber whereas no tumor necrosis factor was detected. Overall, this study showed that direct exposure of HUVECs to MWCNTs was associated with oxidative stress and monocyte adhesion and the presence of PA increased the adhesion when exposed to NM400. PMID:26067756

  8. Enzymatic Synthesis of Ascorbyl Palmitate%酶促反应合成棕榈酸Vc酯

    Institute of Scientific and Technical Information of China (English)

    孙燕; 夏木西 卡玛尔; 吾满江·艾力; 贾殿增

    2006-01-01

    讨论了以黑曲霉脂肪酶为催化剂,以抗坏血酸和棕榈酸甲酯为底物的酯交换反应及其影响因素.考察了在摇床速度为200r/min,叔丁醇为溶剂下,底物的摩尔比、温度、脂肪酶浓度、时间、含水量对转化率的影响.结果表明,底物棕榈酸甲酯与Vc的摩尔比为1.3:1.0、反应温度为36℃、反应时间为24h、脂肪酶浓度为15%、含水量为1%时,Vc的转化率为23%.合成的棕榈酸Vc酯,无需和底物分离,可以直接作为油脂食品的添加剂.

  9. Oxidative stability of structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall;

    2003-01-01

    a commercial antioxidant blend Grindox 117 (propyl gallate/citric acid/ascorbyl palmitate) or gallic acid to the SL was investigated. The lipid type affected the oxidative stability: SL was less stable than SO and RL. The reduced stability was most likely caused by both the structure of the lipid......Traditional sunflower oil (SO), randomized lipid (RL) and specific structured lipid (SL), both produced from SO and tricaprylin/caprylic acid, respectively, were stored for up to 12 wk to compare their oxidative stabilities by chemical and sensory analyses. Furthermore, the effect of adding...... and differences in production/purification, which caused lower tocopherol content and higher initial levels of primary and secondary oxidation products in SL compared with RL and SO. Grindox 117 and gallic acid did not exert a distinct antioxidative effect in the SL oil samples during storage...

  10. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lee-Chuan C.; Ford, Jeffery J. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); Lee, John C. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States); Adamo, Martin L., E-mail: adamo@biochem.uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States)

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  11. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    International Nuclear Information System (INIS)

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects

  12. Hydrophobic interactions between polymeric carrier and palmitic acid-conjugated siRNA improve PEGylated polyplex stability and enhance in vivo pharmacokinetics and tumor gene silencing.

    Science.gov (United States)

    Sarett, Samantha M; Werfel, Thomas A; Chandra, Irene; Jackson, Meredith A; Kavanaugh, Taylor E; Hattaway, Madison E; Giorgio, Todd D; Duvall, Craig L

    2016-08-01

    Formation of stable, long-circulating siRNA polyplexes is a significant challenge in translation of intravenously-delivered, polymeric RNAi cancer therapies. Here, we report that siRNA hydrophobization through conjugation to palmitic acid (siPA) improves stability, in vivo pharmacokinetics, and tumor gene silencing of PEGylated nanopolyplexes (siPA-NPs) with balanced cationic and hydrophobic content in the core relative to the analogous polyplexes formed with unmodified siRNA, si-NPs. Hydrophobized siPA loaded into the NPs at a lower charge ratio (N(+):P(-)) relative to unmodified siRNA, and siPA-NPs had superior resistance to siRNA cargo unpackaging in comparison to si-NPs upon exposure to the competing polyanion heparin and serum. In vitro, siPA-NPs increased uptake in MDA-MB-231 breast cancer cells (100% positive cells vs. 60% positive cells) but exhibited equivalent silencing of the model gene luciferase relative to si-NPs. In vivo in a murine model, the circulation half-life of intravenously-injected siPA-NPs was double that of si-NPs, resulting in a >2-fold increase in siRNA biodistribution to orthotopic MDA-MB-231 mammary tumors. The increased circulation half-life of siPA-NPs was dependent upon the hydrophobic interactions of the siRNA and the NP core component and not just siRNA hydrophobization, as siPA did not contribute to improved circulation time relative to unmodified siRNA when delivered using polyplexes with a fully cationic core. Intravenous delivery of siPA-NPs also achieved significant silencing of the model gene luciferase in vivo (∼40% at 24 h after one treatment and ∼60% at 48 h after two treatments) in the murine MDA-MB-231 tumor model, while si-NPs only produced a significant silencing effect after two treatments. These data suggest that stabilization of PEGylated siRNA polyplexes through a combination of hydrophobic and electrostatic interactions between siRNA cargo and the polymeric carrier improves in vivo pharmacokinetics and

  13. An investigation of the likely role of (O-acyl) ω-hydroxy fatty acids in meibomian lipid films using (O-oleyl) ω-hydroxy palmitic acid as a model.

    Science.gov (United States)

    Schuett, Burkhardt S; Millar, Thomas J

    2013-10-01

    (O-acyl) ω-hydroxy fatty acids (OAHFAs) are a recently found group of polar lipids in meibum. Since these lipids can potentially serve as a surfactant in the tear film lipid layer, the surface properties of a molecule of this lipid class was investigated and compared with a structurally related wax ester and a fatty acid. (O-oleyl) ω-hydroxy palmitic acid was synthesized and used as the model OAHFA. It was spread either alone or mixed with human meibum on an artificial tear buffer in a Langmuir trough, and pressure-area isocycle profiles were recorded at different temperatures and compared with those of palmityl oleate and oleic acid. These measurements were accompanied by fluorescence microscopy of meibum mixed films during pressure-area isocycles. The pressure area curves indicated that pure films of the model OAHFA are as surface active as oleic acid films, cover a much larger surface area than either palmityl oleate or oleic acid and show a distinct biphasic pressure-area isocycle profile. The OAHFAs appeared to remain on the aqueous surface and show only a minor re-arrangement into multi-layered structures during repetitive pressure area isocycles. All these properties can be explained by OAHFAs binding weakly to the aqueous surface via an ester group and strongly via a carboxyl group. By contrast, the pressure area profiles of palmityl oleate films indicate that they form multi-layers and oleic acid presumably forms micelles and desorbs into the subphase. When mixed with meibum, similar features as for pure films were observed. In addition, meibum-OAHFA films appeared very homogeneous; a feature not seen with other mixtures. In conclusion these data support the notion that the tested OAHFA is a very potent surfactant which is important in spreading and stabilising meibomian lipid films. PMID:23792170

  14. Lipidomic-based investigation into the regulatory effect of Schisandrin B on palmitic acid level in non-alcoholic steatotic livers

    OpenAIRE

    Kwan, Hiu Yee; Niu, Xuyan; Dai, Wenlin; Tong, Tiejun; Chao, Xiaojuan; Su, Tao; Chan, Chi Leung; Lee, Kim Chung; Fu, Xiuqiong; Yi, Hua; Yu, Hua; Li, Ting; Tse, Anfernee Kai Wing; Fong, Wang Fun; Pan, Si-Yuan

    2015-01-01

    Schisandrin B (SchB) is one of the most abundant bioactive dibenzocyclooctadiene derivatives found in the fruit of Schisandra chinensis. Here, we investigated the potential therapeutic effects of SchB on non-alcoholic fatty-liver disease (NAFLD). In lipidomic study, ingenuity pathway analysis highlighted palmitate biosynthesis metabolic pathway in the liver samples of SchB-treated high-fat-diet-fed mice. Further experiments showed that the SchB treatment reduced expression and activity of fat...

  15. Preparation of Solid Phase Microextraction (SPME) Probes through Polyaniline Multiwalled Carbon Nanotubes (PANI/MWCNTs) Coating for the Extraction of Palmitic Acid and Oleic Acid in Organic Solvents

    OpenAIRE

    Khajeamiri, Alireza

    2012-01-01

    A fiber coating from polyaniline (PANI) was electrochemically prepared and employed for Solid phase micreoextraction (SPME). The PANI film was directly electrodeposited on the platinum wire surface using cyclic voltametry (CV) technique. The same method was applied for the preparation of SPME fiber coated by polyaniline multiwalled carbon nanotubes (PANI/MWCNTs) composite. The concentration of sulfuric acid for electropolymerization was 0.1 M in the presence of 0.045 M aniline in aqueous solu...

  16. Activation of PPARδ up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic β-cells

    International Nuclear Information System (INIS)

    Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor δ (PPARδ) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic β-cells. After HIT-T15 cells (a β-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPARδ), we found that administration of GW increased the expression of PPARδ mRNA. GW-induced activation of PPARδ up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4 (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPARδ plays an important role in protecting pancreatic β-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.

  17. Activation of PPAR{delta} up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Jun; Jiang, Li; Lue, Qingguo; Ke, Linqiu [Department of Endocrinology, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041 (China); Tong, Nanwei, E-mail: buddyjun@hotmail.com [Department of Endocrinology, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041 (China)

    2010-01-15

    Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor {delta} (PPAR{delta}) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic {beta}-cells. After HIT-T15 cells (a {beta}-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPAR{delta}), we found that administration of GW increased the expression of PPAR{delta} mRNA. GW-induced activation of PPAR{delta} up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4 (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPAR{delta} plays an important role in protecting pancreatic {beta}-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.

  18. Palmitic acid interferes with energy metabolism balance by adversely switching the SIRT1-CD36-fatty acid pathway to the PKC zeta-GLUT4-glucose pathway in cardiomyoblasts.

    Science.gov (United States)

    Chen, Yeh-Peng; Tsai, Chia-Wen; Shen, Chia-Yao; Day, Cecilia-Hsuan; Yeh, Yu-Lan; Chen, Ray-Jade; Ho, Tsung-Jung; Padma, V Vijaya; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-05-01

    Metabolic regulation is inextricably linked with cardiac function. Fatty acid metabolism is a significant mechanism for creating energy for the heart. However, cardiomyocytes are able to switch the fatty acids or glucose, depending on different situations, such as ischemia or anoxia. Lipotoxicity in obesity causes impairments in energy metabolism and apoptosis in cardiomyocytes. We utilized the treatment of H9c2 cardiomyoblast cells palmitic acid (PA) as a model for hyperlipidemia to investigate the signaling mechanisms involved in these processes. Our results show PA induces time- and dose-dependent lipotoxicity in H9c2 cells. Moreover, PA enhances cluster of differentiation 36 (CD36) and reduces glucose transporter type 4 (GLUT4) pathway protein levels following a short period of treatment, but cells switch from CD36 back to the GLUT4 pathway after during long-term exposure to PA. As sirtuin 1 (SIRT1) and protein kinase Cζ (PKCζ) play important roles in CD36 and GLUT4 translocation, we used the SIRT1 activator resveratrol and si-PKCζ to identify the switches in metabolism. Although PA reduced CD36 and increased GLUT4 metabolic pathway proteins, when we pretreated cells with resveratrol to activate SIRT1 or transfected si-PKCζ, both were able to significantly increase CD36 metabolic pathway proteins and reduce GLUT4 pathway proteins. High-fat diets affect energy metabolism pathways in both normal and aging rats and involve switching the energy source from the CD36 pathway to GLUT4. In conclusion, PA and high-fat diets cause lipotoxicity in vivo and in vitro and adversely switch the energy source from the CD36 pathway to the GLUT4 pathway. PMID:27133433

  19. Investigation of the Interaction of Naringin Palmitate with Bovine Serum Albumin: Spectroscopic Analysis and Molecular Docking

    OpenAIRE

    Zhang, Xia; Li, Lin; Xu, Zhenbo; Liang, Zhili; Su, Jianyu; Huang, Jianrong; Li, Bing

    2013-01-01

    Background Bovine serum albumin (BSA) contains high affinity binding sites for several endogenous and exogenous compounds and has been used to replace human serum albumin (HSA), as these two compounds share a similar structure. Naringin palmitate is a modified product of naringin that is produced by an acylation reaction with palmitic acid, which is considered to be an effective substance for enhancing naringin lipophilicity. In this study, the interaction of naringin palmitate with BSA was c...

  20. Possible Involvement of Palmitate in Pathogenesis of Periodontitis.

    Science.gov (United States)

    Shikama, Yosuke; Kudo, Yasusei; Ishimaru, Naozumi; Funaki, Makoto

    2015-12-01

    Type 2 diabetes (T2D) is characterized by decreased insulin sensitivity and higher concentrations of free fatty acids (FFAs) in plasma. Among FFAs, saturated fatty acids (SFAs), such as palmitate, have been suggested to promote inflammatory responses. Although many epidemiological studies have shown a link between periodontitis and T2D, little is known about the clinical significance of SFAs in periodontitis. In this study, we showed that gingival fibroblasts have cell-surface expression of CD36, which is also known as FAT/fatty acid translocase. Moreover, CD36 expression was increased in gingival fibroblasts of high-fat diet-induced T2D model mice, compared with gingival fibroblasts of mice fed a normal diet. DNA microarray analysis revealed that palmitate increased mRNA expression of pro-inflammatory cytokines and chemokines in human gingival fibroblasts (HGF). Consistent with these results, we confirmed that palmitate-induced interleukin (IL)-6, IL-8, and CXCL1 secretion in HGF, using a cytokine array and ELISA. SFAs, but not an unsaturated fatty acid, oleate, induced IL-8 production. Docosahexaenoic acid (DHA), which is one of the omega-3 polyunsaturated fatty acids, significantly suppressed palmitate-induced IL-6 and IL-8 production. Treatment of HGF with a CD36 inhibitor also inhibited palmitate-induced pro-inflammatory responses. Finally, we demonstrated that Porphyromonas gingivalis (P.g.) lipopolysaccharide and heat-killed P.g. augmented palmitate-induced chemokine secretion in HGF. These results suggest a potential link between SFAs in plasma and the pathogenesis of periodontitis.

  1. Possible Involvement of Palmitate in Pathogenesis of Periodontitis.

    Science.gov (United States)

    Shikama, Yosuke; Kudo, Yasusei; Ishimaru, Naozumi; Funaki, Makoto

    2015-12-01

    Type 2 diabetes (T2D) is characterized by decreased insulin sensitivity and higher concentrations of free fatty acids (FFAs) in plasma. Among FFAs, saturated fatty acids (SFAs), such as palmitate, have been suggested to promote inflammatory responses. Although many epidemiological studies have shown a link between periodontitis and T2D, little is known about the clinical significance of SFAs in periodontitis. In this study, we showed that gingival fibroblasts have cell-surface expression of CD36, which is also known as FAT/fatty acid translocase. Moreover, CD36 expression was increased in gingival fibroblasts of high-fat diet-induced T2D model mice, compared with gingival fibroblasts of mice fed a normal diet. DNA microarray analysis revealed that palmitate increased mRNA expression of pro-inflammatory cytokines and chemokines in human gingival fibroblasts (HGF). Consistent with these results, we confirmed that palmitate-induced interleukin (IL)-6, IL-8, and CXCL1 secretion in HGF, using a cytokine array and ELISA. SFAs, but not an unsaturated fatty acid, oleate, induced IL-8 production. Docosahexaenoic acid (DHA), which is one of the omega-3 polyunsaturated fatty acids, significantly suppressed palmitate-induced IL-6 and IL-8 production. Treatment of HGF with a CD36 inhibitor also inhibited palmitate-induced pro-inflammatory responses. Finally, we demonstrated that Porphyromonas gingivalis (P.g.) lipopolysaccharide and heat-killed P.g. augmented palmitate-induced chemokine secretion in HGF. These results suggest a potential link between SFAs in plasma and the pathogenesis of periodontitis. PMID:25921577

  2. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress.

    Science.gov (United States)

    Xu, S; Nam, S M; Kim, J-H; Das, R; Choi, S-K; Nguyen, T T; Quan, X; Choi, S J; Chung, C H; Lee, E Y; Lee, I-K; Wiederkehr, A; Wollheim, C B; Cha, S-K; Park, K-S

    2015-01-01

    Pathologic alterations in podocytes lead to failure of an essential component of the glomerular filtration barrier and proteinuria in chronic kidney diseases. Elevated levels of saturated free fatty acid (FFA) are harmful to various tissues, implemented in the progression of diabetes and its complications such as proteinuria in diabetic nephropathy. Here, we investigated the molecular mechanism of palmitate cytotoxicity in cultured mouse podocytes. Incubation with palmitate dose-dependently increased cytosolic and mitochondrial reactive oxygen species, depolarized the mitochondrial membrane potential, impaired ATP synthesis and elicited apoptotic cell death. Palmitate not only evoked mitochondrial fragmentation but also caused marked dilation of the endoplasmic reticulum (ER). Consistently, palmitate upregulated ER stress proteins, oligomerized stromal interaction molecule 1 (STIM1) in the subplasmalemmal ER membrane, abolished the cyclopiazonic acid-induced cytosolic Ca(2+) increase due to depletion of luminal ER Ca(2+). Palmitate-induced ER Ca(2+) depletion and cytotoxicity were blocked by a selective inhibitor of the fatty-acid transporter FAT/CD36. Loss of the ER Ca(2+) pool induced by palmitate was reverted by the phospholipase C (PLC) inhibitor edelfosine. Palmitate-dependent activation of PLC was further demonstrated by following cytosolic translocation of the pleckstrin homology domain of PLC in palmitate-treated podocytes. An inhibitor of diacylglycerol (DAG) kinase, which elevates cytosolic DAG, strongly promoted ER Ca(2+) depletion by low-dose palmitate. GF109203X, a PKC inhibitor, partially prevented palmitate-induced ER Ca(2+) loss. Remarkably, the mitochondrial antioxidant mitoTEMPO inhibited palmitate-induced PLC activation, ER Ca(2+) depletion and cytotoxicity. Palmitate elicited cytoskeletal changes in podocytes and increased albumin permeability, which was also blocked by mitoTEMPO. These data suggest that oxidative stress caused by saturated FFA

  3. Beta-palmitate - a natural component of human milk in supplemental milk formulas.

    Science.gov (United States)

    Havlicekova, Zuzana; Jesenak, Milos; Banovcin, Peter; Kuchta, Milan

    2016-01-01

    The composition and function of human milk is unique and gives a basis for the development of modern artificial milk formulas that can provide an appropriate substitute for non-breastfed infants. Although human milk is not fully substitutable, modern milk formulas are attempting to mimic human milk and partially substitute its complex biological positive effects on infants. Besides the immunomodulatory factors from human milk, research has been focused on the composition and structure of human milk fat with a high content of β-palmitic acid (sn-2 palmitic acid, β-palmitate). According to the available studies, increasing the content of β-palmitate added to milk formulas promotes several beneficial physiological functions. β-palmitate positively influences fatty acid metabolism, increases calcium absorption, improves bone matrix quality and the stool consistency, and has a positive effect on the development of the intestinal microbiome.

  4. Uptake of palmitate by hepatocyte suspensions: facilitation by albumin?

    Science.gov (United States)

    Pond, S M; Davis, C K; Bogoyevitch, M A; Gordon, R A; Weisiger, R A; Bass, L

    1992-05-01

    Albumin-dependent uptake of unbound [3H]palmitic acid by hepatocytes isolated from female rat livers was studied and the experimental results compared with the predictions of a noncompartmental diffusion-reaction theory for the cellular uptake of protein-bound ligands. The outright theoretical predictions involve values for the parameters of the system, some newly measured (hepatocyte radii and the rate constant for the dissociation of palmitate-albumin complex) and some taken from the literature (diffusion coefficients and the equilibrium association constant for the palmitate-albumin complex). The measured unbound clearance of [3H]palmitic acid, defined as the initial uptake velocity divided by the unbound [3H]palmitic acid concentration in the medium, was enhanced 6.6-fold as the concentration of human serum albumin was increased from approximately 5 to 480 microM. This enhancement factor was predicted by the theory, according to which the enhancement reflects codiffusion of bound ligand across the unstirred layer adjacent to the cell membrane and, therefore, an increased delivery of unbound ligand to the cell surface. In contrast, the absolute magnitude of the unbound clearance was consistent with the theory only for the lowest published value for the equilibrium association constant, 15 microM-1. For higher published values (62 and 94 microM-1), the magnitude of the unbound clearance observed experimentally was severalfold higher than that predicted by the theory. If in fact the association constant exceeds 30 microM-1, the data would imply that an albumin-dependent facilitation mechanism exists which enhances the availability of palmitate to the cell over and above the enhancement predicted by the diffusion-reaction theory. PMID:1590397

  5. Biosysthesis of Corn Starch Palmitate by Lipase Novozym 435

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2012-06-01

    Full Text Available Esterification of starch was carried out to expand the usefulness of starch for a myriad of industrial applications. Lipase B from Candida antarctica, immobilized on macroporous acrylic resin (Novozym 435, was used for starch esterification in two reaction systems: micro-solvent system and solvent-free system. The esterification of corn starch with palmitic acid in the solvent-free system and micro-solvent system gave a degree of substitution (DS of 1.04 and 0.0072 respectively. Esterification of corn starch with palmitic acid was confirmed by UV spectroscopy and IR spectroscopy. The results of emulsifying property analysis showed that the starch palmitate with higher DS contributes to the higher emulsifying property (67.6% and emulsion stability (79.6% than the native starch (5.3% and 3.9%. Modified starch obtained by esterification that possesses emulsifying properties and has long chain fatty acids, like palmitic acid, has been widely used in the food, pharmaceutical and biomedical applications industries.

  6. Effect of dl-ethionine on the intestinal absorption and transport of palmitic acid-1-14C and tripalmitin-14C. Role of intramucosal factors in the uptake of luminal lipids

    Science.gov (United States)

    Kessler, Jacques I.; Mishkin, S.; Stein, J.

    1969-01-01

    The effect of DL-ethionine on the uptake and transport of lipid by the rat small intestine was investigated. A cottonseed oil emulsion containing 14C-labeled tripalmitin or palmitic acid was administered intragastrically to rats pretreated with DL-ethionine, DL-ethionine plus methionine, or saline, and the rats were sacrificed 2, 4, and 6 hr later. Lipids from the plasma, the stomach, the colon, the luminal contents of the small intestine, and the wall of the small intestine were extracted, fractionated, and their radioactivity assayed. Ethionine markedly inhibited the uptake of lipids by the small intestine. This inhibition was not related to impairment of intraluminal lipolysis since analagous inhibitions were observed when palmitic acid or predigested triglyceride (TG), obtained through a jejunal fistula from normal animals, was administered instead of tripalmitin. Ethionine also inhibited the transport of lipid from the wall of the small intestine. A significant fraction of the administered lipid remained in the wall of the small intestine, and only a small fraction was transported to the blood stream. Although most of the wall radioactivity was in the form of TG, significant proportions were also found in the free fatty acid (FFA) and partial glyceride fractions, indicating a marked inhibition of mucosal reesterification to TG. The degree of inhibition of mucosal reesterification and the degree of inhibition of transport of wall lipids were directly related to the degree of inhibition of uptake of luminal radioactivity. This relationship suggests that the rate of reesterification, the level of mucosal FFA, and the rate of transport of intramucosal TG may be of importance in determining the extent of uptake of intraluminal lipid by the mucosal cells. Since a significant fraction of the wall radioactivity was in the form of TG, the decreased transport of wall lipids was attributed to an impairment of chylomicron completion due to inhibition of either the

  7. Improved production of postlarval white shrimp through supplementation of L-ascorbyl-2-polyphosphate in their diet

    OpenAIRE

    Kontara, E.K.M.; Merchie, G.; Lavens, P.; Robles, R; Nelis, H.; De leenheer, A P; Sorgeloos, P.

    1997-01-01

    L-ascorbyl-2-polyphosphate (ApP) was used as a vitamin C source to study the ascorbic acid (AA) requirements for the early postlarval stages of white shrimp (Penaeus vannamei). First the stability of ApP in the diets was determined: ApP losses after pelletizing and 10 min immersion in seawater were 25-35% and 30%, respectively. Semipurified diets with five levels of ApP (0, 20, 40, 100 and 200 mg kg-1 expressed as active AA were fed ad libitum to P. vannamei (PL-14 stage, mean dry weight 0.73...

  8. Enhanced In Vitro Skin Deposition Properties of Retinyl Palmitate through Its Stabilization by Pectin.

    Science.gov (United States)

    Suh, Dong-Churl; Kim, Yeongseok; Kim, Hyeongmin; Ro, Jieun; Cho, Seong-Wan; Yun, Gyiae; Choi, Sung-Up; Lee, Jaehwi

    2014-01-01

    The purpose of this study was to examine the effect of stabilization of retinyl palmitate (RP) on its skin permeation and distribution profiles. Skin permeation and distribution study were performed using Franz diffusion cells along with rat dorsal skin, and the effect of drug concentration and the addition of pectin on skin deposition profiles of RP was observed. The skin distribution of RP increased in a concentration dependent manner and the formulations containing 0.5 and 1 mg of pectin demonstrated significantly increased RP distributions in the epidermis. Furthermore, it was found that skin distribution of RP could be further improved by combined use of pectin and ascorbyl palmitate (AP), due largely to their anti-oxidative effect. These results clearly demonstrate that the skin deposition properties of RP can be improved by stabilizing RP with pectin. Therefore, it is strongly suggested that pectin could be used in the pharmaceutical and cosmetic formulations as an efficient stabilizing agent and as skin penetration modulator. PMID:24596625

  9. Ascorbyl coumarates as multifunctional cosmeceutical agents that inhibit melanogenesis and enhance collagen synthesis.

    Science.gov (United States)

    Kwak, Jun Yup; Park, Soojin; Seok, Jin Kyung; Liu, Kwang-Hyeon; Boo, Yong Chool

    2015-09-01

    L-Ascorbic acid (AA) and p-coumaric acid (p-CA) are naturally occurring antioxidants that are known to enhance collagen synthesis and inhibit melanin synthesis, respectively. The purpose of this study was to examine hybrid compounds between AA and p-CA as multifunctional cosmeceutical agents. Ascorbyl 3-p-coumarate (A-3-p-C), ascorbyl 2-p-coumarate (A-2-p-C), and their parent compounds were tested for their effects on cellular melanin synthesis and collagen synthesis. At 100 μM, A-3-p-C and A-2-p-C decreased melanin content of human dermal melanocytes stimulated by L-tyrosine, by 65 and 59%, respectively, compared to 11% inhibition of AA and 70% inhibition of p-CA. A-3-p-C and A-2-p-C were less effective than p-CA but more effective than AA at inhibiting tyrosinase activity. A-3-p-C and A-2-p-C were more effective than p-CA at inhibiting the autoxidation of L-3,4-dihydroxyphenylalanine. At 100-300 μM, A-3-p-C and A-2-p-C augmented collagen release from human dermal fibroblasts by 120-144% and 125-191%, respectively, compared to 126-133% increase of AA and 120-146% increase of p-CA. They increased procollagen type I C-peptide release (A-3-p-C, and A-2-p-C) like AA, and decreased matrix metalloproteinase 1 level (A-2-p-C) like p-CA, implicating that they might regulate collagen metabolism by multiple mechanisms. This study suggests that A-3-p-C and A-2-p-C could be used as multifunctional cosmeceutical agents for the attenuation of certain aspects of skin aging. PMID:26078014

  10. Surfactantlipid biosynthesis: Regulation of transmembrane transport of palmitate

    OpenAIRE

    Guthmann, Florian

    2010-01-01

    Considering the mechanisms by which antenatal maturation of lung can be induced, the role of long chain fatty acids as precursors of surfactant lipid synthesis has not been thoroughly investigated. To specifically increase surfactant synthesis during the fetal and/or neonatal period we studied the regulation of de novo phosphatidyl synthesis in type II pneumocytes. First, we characterised the transmembrane transport of palmitate, a long chain fatty acid prevalent in surfactant lipids, with...

  11. Sequence-specific {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments for intestinal fatty-acid-binding protein complexed with palmitate (15.4 kDA)

    Energy Technology Data Exchange (ETDEWEB)

    Hodsdon, M.E.; Toner, J.J.; Cistola, D.P. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1994-12-01

    Intestinal fatty-acid-binding protein (I-FABP) belongs to a family of soluble, cytoplasmic proteins that are thought to function in the intracellular transport and trafficking of polar lipids. Individual members of this protein family have distinct specificities and affinities for fatty acids, cholesterol, bile salts, and retinoids. We are comparing several retinol- and fatty-acid-binding proteins from intestine in order to define the factors that control molecular recognition in this family of proteins. We have established sequential resonance assignments for uniformly {sup 13}C/{sup 15}N-enriched I-FABP complexed with perdeuterated palmitate at pH7.2 and 37{degrees}C. The assignment strategy was similar to that introduced for calmodulin. We employed seven three-dimensional NMR experiments to establish scalar couplings between backbone and sidechain atoms. Backbone atoms were correlated using triple-resonance HNCO, HNCA, TOCSY-HMQC, HCACO, and HCA(CO)N experiments. Sidechain atoms were correlated using CC-TOCSY, HCCH-TOCSY, and TOCSY-HMQC. The correlations of peaks between three-dimensional spectra were established in a computer-assisted manner using NMR COMPASS (Molecular Simulations, Inc.) Using this approach, {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments have been established for 120 of the 131 residues of I-FABP. For 18 residues, amide {sup 1}H and {sup 15}N resonances were unobservable, apparently because of the rapid exchange of amide protons with bulk water at pH 7.2. The missing amide protons correspond to distinct amino acid patterns in the protein sequence, which will be discussed. During the assignment process, several sources of ambiguity in spin correlations were observed. To overcome this ambiguity, the additional inter-residue correlations often observed in the HNCA experiment were used as cross-checks for the sequential backbone assignments.

  12. Study on the antioxidation activity of D-isoascorbyl camellia oil fatty acid esters%异VC山茶油脂肪酸酯的抗氧化性能研究

    Institute of Scientific and Technical Information of China (English)

    余泗莲; 余彬; 祝显虹; 毛刘量; 郑大贵

    2012-01-01

    新鲜猪油中添加异VC山茶油脂肪酸酯和对照的抗氧化剂,按照GB/T5009.37-2003的方法,进行强氧化试验,测定过氧化值(POV);二苯代苦味肼基自由基(DPPH.)无水乙醇溶液中添加异VC山茶油脂肪酸酯和对照的抗氧化剂,用分光光度法测定DPPH.清除率(SA).POV数据表明,参照中国规定的最高允许浓度往猪油中分别添加抗氧化剂,异VC山茶油脂肪酸酯抗氧化能力与异VC棕榈酸酯和TBHQ相当,但比维生素C棕榈酸酯强.SA数据表明,在受试物浓度高于1.666710-4mol·L-1,并且浓度相同时,异VC山茶油脂肪酸酯表现出比异VC棕榈酸酯、VC棕榈酸酯和TBHQ更强的清除能力.%D - isoascorbyl camellia oil fatty acid esters was added in lard and peroxide value ( POV) in lard sample was tested according to GB/T5009. 37-2003. The scavenging activity (SA) of D - isoascorbyl camellia oil fatty acid esters on DPPH free - radical was tested by spectrophotometry. The POV data showed that the antioxidation activity of D - isoascorbyl camellia oil fatty acid esters was better than that of L - ascorbyl palmitate, and was almost the same as that of D - isoascorbyl palmitate and TBHQ at the highest permitted amount by China food additives regulation. The SA data showed that when the concentration of samples was higher than 1. 666710 -4mol · L-1, the activity of scavenging DPPH of D - isoascorbyl camellia oil fatty acid esters was higher than that of D - isoascorbyl palmitate, L - ascorbyl palmitate and TBHQ.

  13. 非酒精性脂肪性肝病患者血清棕榈酸水平%Level of serum palmitic acid in patients with non-alcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    彭克楠; 唐志鹏; 刘波; 赵海利; 柴国静; 赵晓云

    2014-01-01

    Objective To analyze the serum levels of medium-and long-chain free fatty acids (FFAs)in patients with hyperlipidemic non-alcoholic fatty liver disease (NAFLD) in order to shed some light on prevention and treatment of NAFLD.Methods The clinical data of 125 patients with high triglyceride (TG)levels who were treated in Hebei General Hospital from January 2011 to May 2011 were analyzed in this study.They were further divided into HF group (n =64) and H group (n =61) based on the presence of NAFLD or not.In addition,63 healthy individuals were recruited from the Central Hospital of Handan during the same period as the control group (N group).Serum medium-and long-chain FFAs were detected by gas chromatography.The body mass index (BMI),abdominal circumference,blood pressure,fasting blood glucose (FBG),and serum lipids including TG,total cholesterol (TC),high-density lipoprotein cholesterol (HDL-C),and low-density lipoprotein cholesterol (LDL-C) were measured.Results Compared with the N group,the H group had significantly higher BMI [(25.24 ± 1.41) kg/m2 vs.(24.32 ± 1.12) kg/m2,P =0.004],abdominal circumference [(84.72 ± 1.34) cm vs.(77.33 ±0.89) cm,P =0.010],and diastolic blood pressure [(77.35±1.21) mmHgvs.(75.21 ±1.61) mmHg,P=0.014]; also,the serum TG [(2.86±0.55) mmol/Lvs.(0.93±0.27) mmol/L,P=0.000] andTC levels [(4.56±0.66) mmol/Lvs.(4.36±0.47) mmol/L,P=0.000],serum myristic acid (C14∶0) [(0.49±0.04)% vs.(0.36±0.01)%,P=0.011],palmitic acid (C16 ∶ 0) [(18.36 ± 0.47) % vs.(15.97 ± 0.30) %,P =0.000],palmitoleic acid (C16∶ 1) [(1.00±0.12)% vs.(0.58±0.02)%,P=0.001],and oleic acid (C18 ∶ 1) [(18.20±0.70) % vs.(12.23 ± 0.37) %,P =0.000] all significantly increased,while stearic acid (C18 ∶ 0) [(7.52 ±0.22)% vs.(8.15 ±0.28)%,P=0.012],eicosadienoic acid (C20 ∶ 2) [(0.61 ±0.07)% vs.(1.03 ±0.17) %,P =0.000],eicosatrienoic acid (C20 ∶ 3) [(1.77 ± 0.15) % vs.(2.49 ± 0.18) %,P =0.002],and docosahexenoic acid (C22

  14. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    Directory of Open Access Journals (Sweden)

    Richard Ventura

    2015-08-01

    Research in context: Fatty acid synthase (FASN is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for selecting tumors highly sensitive to FASN inhibition are identified. These preclinical data provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers.

  15. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models

    International Nuclear Information System (INIS)

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). MP and EP decreased NF-κB expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. -- Highlights: ► Efficacy of MP and EP in combating inflammation was displayed in several models. ► MP and EP reduced carrageenan-induced rat paw edema and prostaglandin E2 level. ► MP and EP decreased TNF-α and IL-6 levels in experimental endotoxemia. ► MP and EP reduced NF-κB expression and histological changes in rat liver and lung. ► MP and EP reduced croton oil-induced ear edema and neutrophil infiltration.

  16. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models.

    Science.gov (United States)

    Saeed, Noha M; El-Demerdash, Ebtehal; Abdel-Rahman, Hanaa M; Algandaby, Mardi M; Al-Abbasi, Fahad A; Abdel-Naim, Ashraf B

    2012-10-01

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). MP and EP decreased NF-κB expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. PMID:22842335

  17. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, Noha M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo (Egypt); El-Demerdash, Ebtehal [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); Abdel-Rahman, Hanaa M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo (Egypt); Algandaby, Mardi M. [Department of Biology (Botany), Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al-Abbasi, Fahad A. [Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Abdel-Naim, Ashraf B., E-mail: abnaim@pharma.asu.edu.eg [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2012-10-01

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). MP and EP decreased NF-κB expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. -- Highlights: ► Efficacy of MP and EP in combating inflammation was displayed in several models. ► MP and EP reduced carrageenan-induced rat paw edema and prostaglandin E2 level. ► MP and EP decreased TNF-α and IL-6 levels in experimental endotoxemia. ► MP and EP reduced NF-κB expression and histological changes in rat liver and lung. ► MP and EP reduced croton oil-induced ear edema and neutrophil infiltration.

  18. Short Term Palmitate Supply Impairs Intestinal Insulin Signaling via Ceramide Production.

    Science.gov (United States)

    Tran, Thi Thu Trang; Postal, Bárbara Graziela; Demignot, Sylvie; Ribeiro, Agnès; Osinski, Céline; Pais de Barros, Jean-Paul; Blachnio-Zabielska, Agnieszka; Leturque, Armelle; Rousset, Monique; Ferré, Pascal; Hajduch, Eric; Carrière, Véronique

    2016-07-29

    The worldwide prevalence of metabolic diseases is increasing, and there are global recommendations to limit consumption of certain nutrients, especially saturated lipids. Insulin resistance, a common trait occurring in obesity and type 2 diabetes, is associated with intestinal lipoprotein overproduction. However, the mechanisms by which the intestine develops insulin resistance in response to lipid overload remain unknown. Here, we show that insulin inhibits triglyceride secretion and intestinal microsomal triglyceride transfer protein expression in vivo in healthy mice force-fed monounsaturated fatty acid-rich olive oil but not in mice force-fed saturated fatty acid-rich palm oil. Moreover, when mouse intestine and human Caco-2/TC7 enterocytes were treated with the saturated fatty acid, palmitic acid, the insulin-signaling pathway was impaired. We show that palmitic acid or palm oil increases ceramide production in intestinal cells and that treatment with a ceramide analogue partially reproduces the effects of palmitic acid on insulin signaling. In Caco-2/TC7 enterocytes, ceramide effects on insulin-dependent AKT phosphorylation are mediated by protein kinase C but not by protein phosphatase 2A. Finally, inhibiting de novo ceramide synthesis improves the response of palmitic acid-treated Caco-2/TC7 enterocytes to insulin. These results demonstrate that a palmitic acid-ceramide pathway accounts for impaired intestinal insulin sensitivity, which occurs within several hours following initial lipid exposure. PMID:27255710

  19. 生物法合成维生素C棕榈酸酯%Biological Synthesis of L-ascorbyl Palmitate

    Institute of Scientific and Technical Information of China (English)

    徐凤杰; 谭天伟

    2005-01-01

    研究了不同的脂肪酶在有机溶剂体系中催化合成L-维生素C棕榈酸酯的反应.针对维生素C在有机溶剂中溶解度较低这一问题,对催化合成维生素C棕榈酸酯反应的脂肪酶和反应介质进行比较,同时对影响合成维生素C棕榈酸酯反应的因素(温度、底物浓度、底物摩尔比、反应时间和酶量等)进行探讨,优化了反应条件:在10mL的丙酮中,1.094g棕榈酸与0.107g维生素C在酶量为20%(W/W,固定化酶/维生素C)的固定化脂肪酶催化下,初始含0.4nm分子筛20%,温度为60℃,转速为200r/min,反应48h转化率可以达到80%,产物维生素C棕榈酸酯的浓度可达20g/L.

  20. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress

    OpenAIRE

    Xu, S; Nam, S M; Kim, J-H; Das, R.; Choi, S-K; T.T. Nguyen; Quan, X.; Choi, S. J.; Chung, C H; Lee, E Y; Lee, I-K; Wiederkehr, A; Wollheim, C. B.; Cha, S-K; Park, K-S.

    2015-01-01

    Pathologic alterations in podocytes lead to failure of an essential component of the glomerular filtration barrier and proteinuria in chronic kidney diseases. Elevated levels of saturated free fatty acid (FFA) are harmful to various tissues, implemented in the progression of diabetes and its complications such as proteinuria in diabetic nephropathy. Here, we investigated the molecular mechanism of palmitate cytotoxicity in cultured mouse podocytes. Incubation with palmitate dose-dependently i...

  1. Electron Spin Resonance of Ascorbyl (Vitamin C) Radicals in Synthetic CaCO3 by UV Irradiation

    Science.gov (United States)

    Sato, Hideo; Tani, Atsushi; Ikeya, Motoji

    2003-02-01

    Free radicals ascribed to ascorbic acid (AscH2), vitamin C, in the solid matrix of synthetic calcium carbonate have been studied using electron spin resonance (ESR) after UV irradiation. A new ESR signal with g-factors of g\\|=2.0024 and g\\bot=2.0053 was found together with a broad singlet signal around g=2.005 and a doublet signal at g=2.0053 separated by 0.18 mT due to the ascorbyl radical (Asc•-). The molecular orbitals of Asc•- and two other types of ascorbyl radical (AscH•-) were calculated using the semi-empirical PM3 unrestricted Hartree-Fock (UHF) method, which indicated that the hyperfine splitting due to hydrogen bonded to one of the carbons in the pentagonal ring was dominant. The axial signal was ascribed to AscH•-, while the doublet signal was ascribed to Asc•- in CaCO3. Possible pharmaceutical and nutritional applications of embedding unstable active molecules into the crystalline lattice of CaCO3 and a new nondestructive method for determination of vitamin C contents are discussed because the vitamin C has higher thermal stability in the carbonate than that in aqueous solution.

  2. Síntese, caracterização e análise térmica dos sais de lítio, sódio e potássio do ácido palmítico e do seu éster etílico Synthesis, characterization and thermal analysis of lithium, sodium and potassium salts of the palmitic acid and its ethyl ester

    Directory of Open Access Journals (Sweden)

    André Luis Castro de Sales

    2008-01-01

    Full Text Available Alkaline salts of the palmitic acid were synthesized and characterized from aqueous and ethanolic medium. The salts were characterized by elemental analysis (EA and infrared spectroscopy (IR. EA and IR, being its synthesis comproved, also characterized the ethyl palmitate. All the salts and the ester were submitted to thermal analysis using thermogravimetry (TG, and differential thermal analysis (DTA in the temperature ranging from room to 700 ºC under air dynamic atmosphere. Differential scanning calorimetry (DSC measurements were taken from -90 ºC up to temperatures close to the starting of the decomposition temperature, determined by thermogravimetry, using heating and cooling cycles.

  3. Electron spin resonance assay of ascorbyl radical generation in mouse hippocampal slices during and after kainate-induced seizures.

    Science.gov (United States)

    Masumizu, Toshiki; Noda, Yasuko; Mori, Akitane; Packer, Lester

    2005-12-01

    As an index of oxidative status, we analyzed ascorbyl radical generation during and after kainate-induced seizures in mouse hippocampus, using an ESR spectrometer equipped with a special tissue-type quartz cell. A specific doublet ESR spectrum was observed after seizures, and the g value and the hyperfine coupling constant (hfcc) of the spectrum were identical with those of ascorbyl radical itself. Antiepileptic zonisamide inhibited the generation of ascorbyl radical accompanying the seizures.

  4. Investigation of the interaction of naringin palmitate with bovine serum albumin: spectroscopic analysis and molecular docking.

    Directory of Open Access Journals (Sweden)

    Xia Zhang

    Full Text Available BACKGROUND: Bovine serum albumin (BSA contains high affinity binding sites for several endogenous and exogenous compounds and has been used to replace human serum albumin (HSA, as these two compounds share a similar structure. Naringin palmitate is a modified product of naringin that is produced by an acylation reaction with palmitic acid, which is considered to be an effective substance for enhancing naringin lipophilicity. In this study, the interaction of naringin palmitate with BSA was characterised by spectroscopic and molecular docking techniques. METHODOLOGY/PRINCIPAL FINDINGS: The goal of this study was to investigate the interactions between naringin palmitate and BSA under physiological conditions, and differences in naringin and naringin palmitate affinities for BSA were further compared and analysed. The formation of naringin palmitate-BSA was revealed by fluorescence quenching, and the Stern-Volmer quenching constant (KSV was found to decrease with increasing temperature, suggesting that a static quenching mechanism was involved. The changes in enthalpy (ΔH and entropy (ΔS for the interaction were detected at -4.11 ± 0.18 kJ·mol(-1 and -76.59 ± 0.32 J·mol(-1·K(-1, respectively, which indicated that the naringin palmitate-BSA interaction occurred mainly through van der Waals forces and hydrogen bond formation. The negative free energy change (ΔG values of naringin palmitate at different temperatures suggested a spontaneous interaction. Circular dichroism studies revealed that the α-helical content of BSA decreased after interacting with naringin palmitate. Displacement studies suggested that naringin palmitate was partially bound to site I (subdomain IIA of the BSA, which was also substantiated by the molecular docking studies. CONCLUSIONS/SIGNIFICANCE: In conclusion, naringin palmitate was transported by BSA and was easily removed afterwards. As a consequence, an extension of naringin applications for use in food, cosmetic

  5. GLP1 protects cardiomyocytes from palmitate-induced apoptosis via Akt/GSK3b/b-catenin pathway.

    Science.gov (United States)

    Ying, Ying; Zhu, Huazhang; Liang, Zhen; Ma, Xiaosong; Li, Shiwei

    2015-12-01

    Activation of apoptosis in cardiomyocytes by saturated palmitic acids contributes to cardiac dysfunction in diabetic cardiomyopathy. Beta-catenin (b-catenin) is a transcriptional regulator of several genes involved in survival/anti-apoptosis. However, its role in palmitate-induced cardiomyocyte apoptosis remains unclear. Glucagon-like peptide 1 (GLP1) has been shown to exhibit potential cardioprotective properties. This study was designed to evaluate the role of b-catenin signalling in palmitate-induced cardiomyocyte apoptosis and the molecular mechanism underlying the protective effects of GLP1 on palmitate-stressed cardiomyocytes. Exposure of neonatal rat cardiomyocytes to palmitate increased the fatty acid transporter CD36-mediated intracellular lipid accumulation and cardiomyocyte apoptosis, decreased accumulation and nuclear translocation of active b-catenin, and reduced expression of b-catenin target protein survivin and BCL2. These detrimental effects of palmitate were significantly attenuated by GLP1 co-treatment. However, the anti-apoptotic effects of GLP1 were markedly abolished when b-catenin was silenced with a specific short hairpin RNA. Furthermore, analysis of the upstream molecules and mechanisms responsible for GLP1-associated cardiac protection revealed that GLP1 restored the decreased phosphorylation of protein kinase B (Akt) and glycogen synthase kinase-3b (GSK3b) in palmitate-stimulated cardiomyocytes. In contrast, inhibition of Akt with an Akt-specific inhibitor MK2206 or blockade of GLP1 receptor (GLP1R) with a competitive antagonist exendin-(9-39) significantly abrogated the GLP1-mediated activation of GSK3b/b-catenin signalling, leading to increased apoptosis in palmitate-stressed cardiomyocytes. Collectively, our results demonstrated for the first time that the attenuated b-catenin signalling may contribute to palmitate-induced cardiomyocyte apoptosis, while GLP1 can protect cardiomyocytes from palmitate-induced apoptosis through

  6. Hypoxia Potentiates Palmitate-induced Pro-inflammatory Activation of Primary Human Macrophages.

    Science.gov (United States)

    Snodgrass, Ryan G; Boß, Marcel; Zezina, Ekaterina; Weigert, Andreas; Dehne, Nathalie; Fleming, Ingrid; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Pro-inflammatory cytokines secreted by adipose tissue macrophages (ATMs) contribute to chronic low-grade inflammation and obesity-induced insulin resistance. Recent studies have shown that adipose tissue hypoxia promotes an inflammatory phenotype in ATMs. However, our understanding of how hypoxia modulates the response of ATMs to free fatty acids within obese adipose tissue is limited. We examined the effects of hypoxia (1% O2) on the pro-inflammatory responses of human monocyte-derived macrophages to the saturated fatty acid palmitate. Compared with normoxia, hypoxia significantly increased palmitate-induced mRNA expression and protein secretion of IL-6 and IL-1β. Although palmitate-induced endoplasmic reticulum stress and nuclear factor κB pathway activation were not enhanced by hypoxia, hypoxia increased the activation of JNK and p38 mitogen-activated protein kinase signaling in palmitate-treated cells. Inhibition of JNK blocked the hypoxic induction of pro-inflammatory cytokine expression, whereas knockdown of hypoxia-induced transcription factors HIF-1α and HIF-2α alone or in combination failed to reduce IL-6 and only modestly reduced IL-1β gene expression in palmitate-treated hypoxic macrophages. Enhanced pro-inflammatory cytokine production and JNK activity under hypoxia were prevented by inhibiting reactive oxygen species generation. In addition, silencing of dual-specificity phosphatase 16 increased normoxic levels of IL-6 and IL-1β and reduced the hypoxic potentiation in palmitate-treated macrophages. The secretome of hypoxic palmitate-treated macrophages promoted IL-6 and macrophage chemoattractant protein 1 expression in primary human adipocytes, which was sensitive to macrophage JNK inhibition. Our results reveal that the coexistence of hypoxia along with free fatty acids exacerbates macrophage-mediated inflammation. PMID:26578520

  7. Stevioside counteracts the alpha-cell hypersecretion caused by long-term palmitate exposure

    DEFF Research Database (Denmark)

    Hong, J; Chen, L; Jeppesen, P B;

    2006-01-01

    Long-term exposure to fatty acids impairs beta-cell function in type 2 diabetes, but little is known about the chronic effects of fatty acids on alpha-cells. We therefore studied the prolonged impact of palmitate on alpha-cell function and on the expression of genes related to fuel metabolism. We...

  8. Isosteviol has beneficial effects on palmitate-induced α-cell dysfunction and gene expression.

    Directory of Open Access Journals (Sweden)

    Xiaoping Chen

    Full Text Available BACKGROUND: Long-term exposure to high levels of fatty acids impairs insulin secretion and exaggerates glucagon secretion. The aim of this study was to explore if the antihyperglycemic agent, Isosteviol (ISV, is able to counteract palmitate-induced α-cell dysfunction and to influence α-cell gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Long-term incubation studies with clonal α-TC1-6 cells were performed in the presence of 0.5 mM palmitate with or without ISV. We investigated effects on glucagon secretion, glucagon content, cellular triglyceride (TG content, cell proliferation, and expression of genes involved in controlling glucagon synthesis, fatty acid metabolism, and insulin signal transduction. Furthermore, we studied effects of ISV on palmitate-induced glucagon secretion from isolated mouse islets. Culturing α-cells for 72-h with 0.5 mM palmitate in the presence of 18 mM glucose resulted in a 56% (p<0.01 increase in glucagon secretion. Concomitantly, the TG content of α-cells increased by 78% (p<0.01 and cell proliferation decreased by 19% (p<0.05. At 18 mM glucose, ISV (10(-8 and 10(-6 M reduced palmitate-stimulated glucagon release by 27% (p<0.05 and 27% (p<0.05, respectively. ISV (10(-6 M also counteracted the palmitate-induced hypersecretion of glucagon in mouse islets. ISV (10(-6 M reduced α-TC1-6 cell proliferation rate by 25% (p<0.05, but ISV (10(-8 and 10(-6 M had no effect on TG content in the presence of palmitate. Palmitate (0.5 mM increased Pcsk2 (p<0.001, Irs2 (p<0.001, Fasn (p<0.001, Srebf2 (p<0.001, Acaca (p<0.01, Pax6 (p<0.05 and Gcg mRNA expression (p<0.05. ISV significantly (p<0.05 up-regulated Insr, Irs1, Irs2, Pik3r1 and Akt1 gene expression in the presence of palmitate. CONCLUSIONS/SIGNIFICANCE: ISV counteracts α-cell hypersecretion and apparently contributes to changes in expression of key genes resulting from long-term exposure to palmitate. ISV apparently acts as a glucagonostatic drug with potential as a

  9. Biosysthesis of Corn Starch Palmitate by Lipase Novozym 435

    OpenAIRE

    Kai Lin; Le Chang; Chun-Gu Xia; Yan Wang; Tie Liu; Jia-Ying Xin

    2012-01-01

    Esterification of starch was carried out to expand the usefulness of starch for a myriad of industrial applications. Lipase B from Candida antarctica, immobilized on macroporous acrylic resin (Novozym 435), was used for starch esterification in two reaction systems: micro-solvent system and solvent-free system. The esterification of corn starch with palmitic acid in the solvent-free system and micro-solvent system gave a degree of substitution (DS) of 1.04 and 0.0072 resp...

  10. Signaling dynamics of palmitate-induced ER stress responses mediated by ATF4 in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Cho Hyunju

    2013-01-01

    Full Text Available Abstract Background Palmitic acid, the most common saturated free fatty acid, has been implicated in ER (endoplasmic reticulum stress-mediated apoptosis. This lipoapotosis is dependent, in part, on the upregulation of the activating transcription factor-4 (ATF4. To better understand the mechanisms by which palmitate upregulates the expression level of ATF4, we integrated literature information on palmitate-induced ER stress signaling into a discrete dynamic model. The model provides an in silico framework that enables simulations and predictions. The model predictions were confirmed through further experiments in human hepatocellular carcinoma (HepG2 cells and the results were used to update the model and our current understanding of the signaling induced by palmitate. Results The three key things from the in silico simulation and experimental results are: 1 palmitate induces different signaling pathways (PKR (double-stranded RNA-activated protein kinase, PERK (PKR-like ER kinase, PKA (cyclic AMP (cAMP-dependent protein kinase A in a time dependent-manner, 2 both ATF4 and CREB1 (cAMP-responsive element-binding protein 1 interact with the Atf4 promoter to contribute to a prolonged accumulation of ATF4, and 3 CREB1 is involved in ER-stress induced apoptosis upon palmitate treatment, by regulating ATF4 expression and possibly Ca2+ dependent-CaM (calmodulin signaling pathway. Conclusion The in silico model helped to delineate the essential signaling pathways in palmitate-mediated apoptosis.

  11. Reaction kinetics of isopropyl palmitate synthesis

    Institute of Scientific and Technical Information of China (English)

    Lili Fu; Yinge Bai; Gaozhi L; Denggao Jiang

    2015-01-01

    In this study, the kinetics of isopropyl palmitate synthesis including the reaction mechanism was studied based on the two-step noncatalytic method. The liquid-phase diffusion effect on the reaction process was eliminated by adjusting the stirring rate. The results showed that the two-step reaction followed a tetrahedral mechanism and conformed to second-order reaction kinetics. Nucleophilic attack on the carbonyl carbon afforded an intermedi-ate, containing a tetrahedral carbon center. The intermediate ultimately decomposed by elimination of the leav-ing group, affording isopropyl palmitate. The experimental data were analyzed at different temperatures by the integral method. The kinetic equations of the each step were deduced, and the activation energy and frequency factor were obtained. Experiments were performed to verify the feasibility of kinetic equations, and the result showed that the kinetic equations were reliable. This study could be very significant to both industrial application and determining the continuous production of isopropyl palmitate.

  12. Defining the role of DAG, mitochondrial function, and lipid deposition in palmitate-induced proinflammatory signaling and its counter-modulation by palmitoleate.

    Science.gov (United States)

    Macrae, Katherine; Stretton, Clare; Lipina, Christopher; Blachnio-Zabielska, Agnieszka; Baranowski, Marcin; Gorski, Jan; Marley, Anna; Hundal, Harinder S

    2013-09-01

    Chronic exposure of skeletal muscle to saturated fatty acids, such as palmitate (C16:0), enhances proinflammatory IKK-NFκB signaling by a mechanism involving the MAP kinase (Raf-MEK-ERK) pathway. Raf activation can be induced by its dissociation from the Raf-kinase inhibitor protein (RKIP) by diacylglycerol (DAG)-sensitive protein kinase C (PKC). However, whether these molecules mediate the proinflammatory action of palmitate, an important precursor for DAG synthesis, is currently unknown. Here, involvement of DAG-sensitive PKCs, RKIP, and the structurally related monounsaturated fatty acid palmitoleate (C16:1) on proinflammatory signaling are investigated. Palmitate, but not palmitoleate, induced phosphorylation/activation of the MEK-ERK-IKK axis and proinflammatory cytokine (IL-6, CINC-1) expression. Palmitate increased intramyocellular DAG and invoked PKC-dependent RKIP(Ser153) phosphorylation, resulting in RKIP-Raf1 dissociation and MEK-ERK signaling. These responses were mimicked by PMA, a DAG mimetic and PKC activator. However, while pharmacological inhibition of PKC suppressed PMA-induced activation of MEK-ERK-IKK signaling, activation by palmitate was upheld, suggesting that DAG-sensitive PKC and RKIP were dispensable for palmitate's proinflammatory action. Strikingly, the proinflammatory effect of palmitate was potently repressed by palmitoleate. This repression was not due to reduced palmitate uptake but linked to increased neutral lipid storage and enhanced cellular oxidative capacity brought about by palmitoleate's ability to restrain palmitate-induced mitochondrial dysfunction.

  13. Chronic effects of palmitate overload on nutrient-induced insulin secretion and autocrine signalling in pancreatic MIN6 beta cells.

    Directory of Open Access Journals (Sweden)

    Maria L Watson

    Full Text Available BACKGROUND: Sustained exposure of pancreatic β cells to an increase in saturated fatty acids induces pleiotropic effects on β-cell function, including a reduction in stimulus-induced insulin secretion. The objective of this study was to investigate the effects of chronic over supply of palmitate upon glucose- and amino acid-stimulated insulin secretion (GSIS and AASIS, respectively and autocrine-dependent insulin signalling with particular focus on the importance of ceramide, ERK and CaMKII signalling. PRINCIPAL FINDINGS: GSIS and AASIS were both stimulated by >7-fold resulting in autocrine-dependent activation of protein kinase B (PKB, also known as Akt. Insulin release was dependent upon nutrient-induced activation of calcium/calmodulin-dependent protein kinase II (CaMKII and extracellular signal-regulated kinase (ERK as their pharmacological inhibition suppressed GSIS/AASIS significantly. Chronic (48 h, 0.4 mM palmitate treatment blunted glucose/AA-induced activation of CaMKII and ERK and caused a concomitant reduction (~75% in GSIS/AASIS and autocrine-dependent activation of PKB. This inhibition could not be attributed to enhanced mitochondrial fatty acid uptake/oxidation or ceramide synthesis, which were unaffected by palmitate. In contrast, diacylglycerol synthesis was elevated suggesting increased palmitate esterification rather than oxidation may contribute to impaired stimulus-secretion coupling. Consistent with this, 2-bromopalmitate, a non-oxidisable palmitate analogue, inhibited GSIS as effectively as palmitate. CONCLUSIONS: Our results exclude changes in ceramide content or mitochondrial fatty acid handling as factors initiating palmitate-induced defects in insulin release from MIN6 β cells, but suggest that reduced CaMKII and ERK activation associated with palmitate overload may contribute to impaired stimulus-induced insulin secretion.

  14. Efficacy and safety of disodium ascorbyl phytostanol phosphates in men with moderate dyslipidemia

    OpenAIRE

    Vissers, Maud N; Trip, Mieke D; Pritchard, P. Haydn; Tam, Patrick; Lukic, Tatjana; de Sain-van der Velden, Monique G.; de Barse, Martina; Kastelein, John J. P.

    2008-01-01

    Objective This study investigated the efficacy, safety, tolerability, and pharmacokinetics of a novel cholesterol absorption inhibitor, FM-VP4, comprising disodium ascorbyl sitostanol phosphate (DASP) and disodium ascorbyl campestanol phosphate (DACP). Methods In phase 1, 30 men received a single dose of 100, 200, 400, 800, 1,600, or 2,000 mg FM-VP4 or placebo. In phase 2, 100 men were treated with 100, 200, 400, or 800 mg/day of FM-VP4 or placebo for 4 weeks. Results The drug was well tolera...

  15. Surprisingly Long-Lived Ascorbyl Radicals in Acetonitrile: Concerted Proton-Electron Transfer Reactions and Thermochemistry

    OpenAIRE

    Warren, Jeffrey J.; Mayer, James M.

    2008-01-01

    Proton-coupled electron transfer (PCET) reactions and thermochemistry of 5,6-isopropylidene ascorbate (iAscH−) have been examined in acetonitrile solvent.iAscH− is oxidized by 2,4,6-tBu3C6H2O• and by excess TEMPO• to give the corresponding 5,6-isopropylidene ascorbyl radical anion (iAsc•−), which persists for hours at 298 K in dry MeCN solution. The stability of iAsc•− is surprising in light of the transience of the ascorbyl radical in aqueous solutions, and is due to the lack of the protons ...

  16. 21 CFR 582.5936 - Vitamin A palmitate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Vitamin A palmitate. 582.5936 Section 582.5936 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5936 Vitamin A palmitate. (a) Product. Vitamin A palmitate. (b) Conditions of use....

  17. Studies on the peroxisomal oxidation of palmitate and lignocerate in rat liver

    NARCIS (Netherlands)

    Wanders, R.J.A.; Roermund, C.W.T. van; Wijland, M.J.A. van; Schutgens, R.B.H.; Schram, A.W.; Bosch, H. van den; Tager, J.M.

    1987-01-01

    We have investigated the pathways involved in the peroxisomal oxidation of palmitate and lignocerate, measured as the cyanide-insensitive formation of acetyl units, in rat-liver homogenates. The peroxisomal β-oxidation of both fatty acids is dependent on the presence of ATP, coenzyme A, NAD+ and Mg2

  18. 维生素C衍生物的制备及其在化妆品中的应用%Preparation of L-ascorbic acid derivatives and their application in cosmetics

    Institute of Scientific and Technical Information of China (English)

    谷雪贤

    2011-01-01

    维生素C衍牛物克服了维生素C易被氧化不稳定的缺点,被广泛用于化妆品中.阐述了维生素C衍生物围内外的研究情况,主要对维生素C的磷酸酯盐、糖苷、棕榈酸酯、乙基醚、甲基硅基等衍生物的制备方法进行了总结.介绍了其在化妆品中的应用情况,指出了维生素C衍生物的发展趋势.%The L-ascorbic acid derivatives overcomes the shortcoming of L-ascorbic acid which is easy to be oxidized,and has been broadly applied in cosmetics.The recent development situation of L-ascorbic acid derivatives is reviewed,and the preparation methods and the application on cosmetics of the L-ascorbic acid derivatives such as L-ascorbic acid-2-phosphate, ascorbic acid glucoside, ascorbyl palmitate were summarized.The trendency of the L-ascorbic acid derivatives is proposed also.

  19. 棕榈酸在三酰甘油中的位置分布对大鼠营养吸收的影响%Effect of positional distribution of palmitic acid in triglycerides on the absorption of the nutrition in rats

    Institute of Scientific and Technical Information of China (English)

    宋秋; 刘亚东; 李晓敏; 杨丽杰

    2012-01-01

    The impacts of the position of palmitic acid in triglyceride on the absorption of fatty acids and mineral were studied. Feeding experiment was performed by using four groups of young male Wistar rats. Fat raw materials with different proportions of sn-2 position palmitic acid were added into fat-free diets which were the OPO ( 1,3- dioleoyl- 2- palmitoyl triglyceride ) structural fat, the vegetable oil mixture with imitating the composition of OPO,the infant formula containing OPO and the common infant formula. The proportions of the experimental fat in each groups were all 10% ,as for the sn-2 position palmitic acid in four groups were respectively 45.40% ,13.29% ,48.04% ,and 28.66%. After 2 weeks feeding,the contents of lipid,calcium and magnesium in the fecal were analyzed. The results showed that the fat absorption after intake of OPO and the infant formula containing OPO were higher than the other two groups significantly with much less calcium excreting. In conclusion,high content of sn-2 position palmitic acid could promote the absorption of fat in rats, reduce the formation of fatty acid soap and improve the calcium absorption.%研究了棕榈酸在三酰甘油中的不同位置分布对脂肪酸及矿质元素吸收的影响。以幼龄雄性Wistar大鼠为动物模型,将含不同比例sn-2位棕榈酸的脂肪原料添加到无脂饲料中,分别为:OPO(1,3-二油酸-2-棕榈酸甘油酯)结构脂肪,组成模拟OPO的混合植物油,含OPO的婴儿配方奶粉以及常规婴儿配方奶粉。饲料实验脂肪含量均为10%,各组sn-2位棕榈酸相对含量分别为45.40%、13.29%、48.04%、28.66%。喂养两周后,分析大鼠粪便中的脂质及钙、镁元素。结果显示,OPO组和OPO婴儿配方奶粉组的大鼠对脂肪的吸收显著高于另外两组,并且钙排泄较少。由此可得出结论:高含量的sn-2位棕榈酸可以促进大鼠对脂肪的吸收,减少脂肪酸皂的形成,并能改善对钙的吸收。

  20. Palmitate action to inhibit glycogen synthase and stimulate protein phosphatase 2A increases with risk factors for type 2 diabetes.

    Science.gov (United States)

    Mott, David M; Stone, Karen; Gessel, Mary C; Bunt, Joy C; Bogardus, Clifton

    2008-02-01

    Recent studies have suggested that abnormal regulation of protein phosphatase 2A (PP2A) is associated with Type 2 diabetes in rodent and human tissues. Results with cultured mouse myotubes support a mechanism for palmitate activation of PP2A, leading to activation of glycogen synthase kinase 3. Phosphorylation and inactivation of glycogen synthase by glycogen synthase kinase 3 could be the mechanism for long-chain fatty acid inhibition of insulin-mediated carbohydrate storage in insulin-resistant subjects. Here, we test the effects of palmitic acid on cultured muscle glycogen synthase and PP2A activities. Palmitate inhibition of glycogen synthase fractional activity is increased in subjects with high body mass index compared with subjects with lower body mass index (r = -0.43, P = 0.03). Palmitate action on PP2A varies from inhibition in subjects with decreased 2-h plasma glucose concentration to activation in subjects with increased 2-h plasma glucose concentration (r = 0.45, P < 0.03) during oral glucose tolerance tests. The results do not show an association between palmitate effects on PP2A and glycogen synthase fractional activity. We conclude that subjects at risk for Type 2 diabetes have intrinsic differences in palmitate regulation of at least two enzymes (PP2A and glycogen synthase), contributing to abnormal insulin regulation of glucose metabolism.

  1. High beta-palmitate fat controls the intestinal inflammatory response and limits intestinal damage in mucin Muc2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Peng Lu

    Full Text Available BACKGROUND: Palmitic-acid esterified to the sn-1,3 positions of the glycerol backbone (alpha, alpha'-palmitate, the predominant palmitate conformation in regular infant formula fat, is poorly absorbed and might cause abdominal discomfort. In contrast, palmitic-acid esterified to the sn-2 position (beta-palmitate, the main palmitate conformation in human milk fat, is well absorbed. The aim of the present study was to examine the influence of high alpha, alpha'-palmitate fat (HAPF diet and high beta-palmitate fat (HBPF diet on colitis development in Muc2 deficient (Muc2(-/- mice, a well-described animal model for spontaneous enterocolitis due to the lack of a protective mucus layer. METHODS: Muc2(-/- mice received AIN-93G reference diet, HAPF diet or HBPF diet for 5 weeks after weaning. Clinical symptoms, intestinal morphology and inflammation in the distal colon were analyzed. RESULTS: Both HBPF diet and AIN-93G diet limited the extent of intestinal erosions and morphological damage in Muc2(-/- mice compared with HAPF diet. In addition, the immunosuppressive regulatory T (Treg cell response as demonstrated by the up-regulation of Foxp3, Tgfb1 and Ebi3 gene expression levels was enhanced by HBPF diet compared with AIN-93G and HAPF diets. HBPF diet also increased the gene expression of Pparg and enzymatic antioxidants (Sod1, Sod3 and Gpx1, genes all reported to be involved in promoting an immunosuppressive Treg cell response and to protect against colitis. CONCLUSIONS: This study shows for the first time that HBPF diet limits the intestinal mucosal damage and controls the inflammatory response in Muc2(-/- mice by inducing an immunosuppressive Treg cell response.

  2. A single prior bout of exercise protects against palmitate-induced insulin resistance despite an increase in total ceramide content.

    Science.gov (United States)

    Thrush, A Brianne; Harasim, Ewa; Chabowski, Adrian; Gulli, Roberto; Stefanyk, Leslie; Dyck, David J

    2011-05-01

    Ceramide accumulation has been implicated in the impairment of insulin-stimulated glucose transport in skeletal muscle following saturated fatty acid (FA) exposure. Importantly, a single bout of exercise can protect against acute lipid-induced insulin resistance. The mechanism by which exercise protects against lipid-induced insulin resistance is not completely known but may occur through a redirection of FA toward triacylglycerol (TAG) and away from ceramide and diacylglycerol (DAG). Therefore, in the current study, an in vitro preparation was used to examine whether a prior bout of exercise could confer protection against palmitate-induced insulin resistance and whether the pharmacological [50 μM fumonisin B(1) (FB1)] inhibition of ceramide synthesis in the presence of palmitate could mimic the protective effect of exercise. Soleus muscle of sedentary (SED), exercised (EX), and SED in the presence of FB1 (SED+FB1) were incubated with or without 2 mM palmitate for 4 h. This 2-mM palmitate exposure impaired insulin-stimulated glucose transport (-28%, P TAG accumulation in the SED group (P TAG (P net increase in ceramide content in response to palmitate exposure in the EX group was not different compared with SED, despite the maintenance of insulin sensitivity. The incubation of soleus from SED rats with FB1 (SED+FB1) prevented the detrimental effects of palmitate and caused a redirection of FA toward TAG accumulation (P < 0.05). Therefore, this research suggests that although inhibiting ceramide accumulation can prevent the detrimental effects of palmitate, a single prior bout of exercise appears to protect against palmitate-induced insulin resistance, which may be independent of changes in ceramide content. PMID:21325642

  3. Palmitate activates mTOR/p70S6K through AMPK inhibition and hypophosphorylation of raptor in skeletal muscle cells: Reversal by oleate is similar to metformin.

    Science.gov (United States)

    Kwon, Bumsup; Querfurth, Henry W

    2015-11-01

    Excessive saturated free fatty acids (SFFAs; e.g. palmitate) in blood are a pathogenic factor in diabetes, obesity, cardiovascular disease and liver failure. In contrast, monounsaturated free fatty acids (e.g. oleate) prevent the toxic effect of SFFAs in various types of cells. The mechanism is poorly understood and involvement of the mTOR complex is untested. In the present study, we demonstrate that oleate preconditioning, as well as coincubation, completely prevented palmitate-induced markers of inflammatory signaling, insulin resistance and cytotoxicity in C2C12 myotubes. We then examined the effect of palmitate and/or oleate on the mammalian target of rapamycin (mTOR) signal path and whether their link is mediated by AMP-activated protein kinase (AMPK). Palmitate decreased the phosphorylation of raptor and 4E-BP1 while increasing the phosphorylation of p70S6K. Palmitate also inhibited phosphorylation of AMPK, but did not change the phosphorylated levels of mTOR or rictor. Oleate completely prevented the palmitate-induced dysregulation of mTOR components and restored pAMPK whereas alone it produced no signaling changes. To understand this more, we show activation of AMPK by metformin also prevented palmitate-induced changes in the phosphorylations of raptor and p70S6K, confirming that the mTORC1/p70S6K signaling pathway is responsive to AMPK activity. By contrast, inhibition of AMPK phosphorylation by Compound C worsened palmitate-induced changes and correspondingly blocked the protective effect of oleate. Finally, metformin modestly attenuated palmitate-induced insulin resistance and cytotoxicity, as did oleate. Our findings indicate that palmitate activates mTORC1/p70S6K signaling by AMPK inhibition and phosphorylation of raptor. Oleate reverses these effects through a metformin-like facilitation of AMPK. PMID:26344902

  4. Fenofibrate Reverses Palmitate Induced Impairment in Glucose Uptake in Skeletal Muscle Cells by Preventing Cytosolic Ceramide Accumulation

    Directory of Open Access Journals (Sweden)

    Sudarshan Bhattacharjee

    2015-10-01

    Full Text Available Backgrounds/Aims: The lipid induced insulin resistance is a major pathophysiologic mechanism underlying glucose intolerance of varying severity. PPARα-agonists are proven as effective hypolipidemic agents. The aim of this study was to see if impaired glucose uptake in palmitate treated myotubes is reversed by fenofibrate. Methods: Palmitate-treated myotubes were used as a model for insulin resistance, impaired glucose uptake, fatty acid oxidation and ceramide synthesis. mRNA levels of CPT1 and CPT2 were determined by PCR array and Q-PCR. Results: The incubation of myotubes with 750 uM palmitate not only reduced glucose uptake but also impaired fatty acid oxidation and cytosolic ceramide accumulation. Palmitate upregulated CPT1b expression in L6 myotubes, while CPT2 expression level remained unchanged. The altered stoichiometric ratio between the two CPT isoforms led to reduced fatty acid oxidation (FAO, ceramide accumulation and impaired glucose uptake, whereas administration of 200 µM fenofibrate signifcantly reversed the above abnormalities by increasing CPT2 mRNA levels and restoring CPT1b to CPT2 ratio. Conclusion: Palmitate-induced alteration in the stoichiometric ratio of mitochondrial CPT isoforms leads to incomplete FAO and enhanced cytosolic ceramide accumulation that lead to insulin resistance. Fenofibrate ameliorated insulin resistance by restoring the altered stoichiometry by upregulating CPT2 and preventing, cytoplasmic ceramide accumulation.

  5. Gas chromatography-mass spectrometry of ethyl palmitate calibration and resolution with ethyl oleate as biomarker ethanol sub acute in urine application study

    Science.gov (United States)

    Suaniti, Ni Made; Manurung, Manuntun

    2016-03-01

    Gas Chromatography-Mass Spectrometry is used to separate two and more compounds and identify fragment ion specific of biomarker ethanol such as palmitic acid ethyl ester (PAEE), as one of the fatty acid ethyl esters as early detection through conyugated reaction. This study aims to calibrate ethyl palmitate and develop analysis with oleate acid. This methode can be used analysis ethanol and its chemistry biomarker in ethanol sub-acute consumption as analytical forensic toxicology. The result show that ethanol level in urine rats Wistar were 9.21 and decreased 6.59 ppm after 48 hours consumption. Calibration curve of ethyl palmitate was y = 0.2035 x + 1.0465 and R2 = 0.9886. Resolution between ethyl palmitate and oleate were >1.5 as good separation with fragment ion specific was 88 and the retention time was 18 minutes.

  6. Inhibition of palmitate-induced GADD34 expression augments apoptosis in mouse insulinoma cells (MIN6).

    Science.gov (United States)

    Fransson, Liselotte; Sjöholm, Ake; Ortsäter, Henrik

    2014-07-01

    Saturated fatty acids like palmitate induce endoplasmic reticulum (ER) stress in pancreatic beta-cells, an event linked to apoptotic loss of β-cells in type 2 diabetes. Sustained activation of the ER stress response leads to expression of growth arrest and DNA damage-inducible protein 34 (GADD34), a regulatory subunit of protein phosphatase 1. In the present study, we have used small interfering RNA in order to knockdown GADD34 expression in insulin-producing MIN6 cells prior to induction of ER stress by palmitate and evaluated its consequences on RNA-activated protein kinase-like ER-localized eIF2alpha kinase (PERK) signalling and apoptosis. Salubrinal, a specific inhibitor of eukaryotic initiation factor 2α (eIF2α) dephosphorylation, was used as a comparison. Salubrinal treatment augmented palmitate-induced ER stress and increased GADD34 levels. Both GADD34 knockdown and salubrinal treatment potentiated the cytotoxic effects of palmitate as evidenced by increased DNA fragmentation and activation of caspase 3, with the fundamental difference that the former did not involve enhanced levels of GADD34. The data from this study suggest that sustained activation of PERK signalling and eIF2α phosphorylation sensitizes insulin-producing MIN6 cells to lipoapoptosis independently of GADD34 expression levels. PMID:24633916

  7. Retinyl Palmitate Supplementation Modulates T-bet and Interferon Gamma Gene Expression in Multiple Sclerosis Patients.

    Science.gov (United States)

    Mohammadzadeh Honarvar, Niyaz; Harirchian, Mohammad Hossein; Abdolahi, Mina; Abedi, Elahe; Bitarafan, Sama; Koohdani, Fariba; Siassi, Feridoun; Sahraian, Mohammad Ali; Chahardoli, Reza; Zareei, Mahnaz; Salehi, Eisa; Geranmehr, Maziyar; Saboor-Yaraghi, Ali Akbar

    2016-07-01

    Vitamin A derivatives such as retinoic acid may improve the impaired balance of CD4+ T cells in autoimmune and inflammatory diseases. This study is a double-blind randomized trial to evaluate the effect of vitamin A (as form of retinyl palmitate) supplementation on multiple sclerosis (MS) patients. Thirty-nine patients were enrolled and randomly assigned to two groups. Both groups were followed for 6 months. The experimental group received 25,000 IU of retinyl palmitate daily, while the control group received a placebo. Before and after the study, the expression of interferon gamma (IFN-γ) and T-bet genes was evaluated in peripheral blood mononuclear cells of patients by RT-PCR. The results showed that after 6 months of supplementation, expression of IFN-γ and T-bet was significantly decreased. These data suggest that retinyl palmitate supplementation can modulate the impaired balance of Th1 and Th2 cells and vitamin A products that may be involved in the therapeutic mechanism of vitamin A in MS patients. This study provides information regarding the decreased gene expression of IFN-γ and T-bet in MS by retinyl palmitate supplementation. PMID:27122150

  8. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    Science.gov (United States)

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  9. Differential Lipotoxic Effects of Palmitate and Oleate in Activated Human Hepatic Stellate Cells and Epithelial Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Alexandra M. Hetherington

    2016-09-01

    Full Text Available Background/Aims: Nonalcoholic fatty liver disease (NAFLD progression to fibrosis, cirrhosis and hepatocellular carcinoma, alters the cellular composition of this organ. During late-stage NAFLD, fibrotic and possibly cancerous cells can proliferate and, like normal hepatocytes, are exposed to high concentrations of fatty acids from both surrounding tissue and circulating lipid sources. We hypothesized that primary human activated hepatic stellate cells and epithelial hepatoma (HepG2 cells respond differently to lipotoxic conditions, and investigated the mechanisms involved. Methods: Primary activated hepatic stellate cells and HepG2 cells were exposed to pathophysiological concentrations of fatty acids and comparative studies of lipid metabolic and stress response pathways were performed. Results: Both cell types remained proliferative during exposure to a combination of palmitate plus oleate reflective of the general saturated versus unsaturated fatty acid composition of western diets. However, exposure to either high palmitate or high oleate alone induced cytotoxicity in activated stellate cells, while only palmitate caused cytotoxicity in HepG2 cells. mRNA microarray and biochemical comparisons revealed that stellate cells stored markedly less fatty acids as neutral lipids, and had reduced capacity for beta-oxidation. Similar to previous observations in HepG2 cells, palmitate, but not oleate, induced ER stress and actin stress fiber formation in activated stellate cells. In contrast, oleate, but not palmitate, induced the inflammatory signal TXNIP, decreased cytoskeleton proteins, and decreased cell polarity preceding cell death in activated stellate cells. Conclusions: Palmitate-induced lipotoxicity was associated with ER stress pathways in both primary activated hepatic stellate cells and epithelial hepatoma cells, whereas high oleate caused lipotoxicity only in activated stellate cells, possibly through a distinct mechanism involving

  10. Magnesium Ascorbyl Phosphate Regulates the Expression of Inflammatory Biomarkers in Cultured Sebocytes

    OpenAIRE

    Lee, Weon Ju; Kim, Sang Lim; Choe, Yoon Seok; Jang, Yong Hyun; Lee, Seok-Jong; Kim, Do Won

    2015-01-01

    Background Acne is an inflammatory skin disorder caused by inflammatory biomarkers. Magnesium ascorbyl phosphate (MAP) is a stable precursor of vitamin C. It achieves a constant delivery of vitamin C into the skin and has antioxidative effects. Objective We performed this study to evaluate the effect of MAP on the expression of inflammatory biomarkers in cultured sebocytes. Methods Reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay were performed fo...

  11. Mechanisms of Ascorbyl Radical Formation in Human Platelet-Rich Plasma

    OpenAIRE

    Kou-Gi Shyu; Chao-Chien Chang; Yu-Chieh Yeh; Joen-Rong Sheu; Duen-Suey Chou

    2014-01-01

    Recently, many clinical reports have suggested that the ascorbyl free radical (Asc∙) can be treated as a noninvasive, reliable, real-time marker of oxidative stress, but its generation mechanisms in human blood have rarely been discussed. In this study, we used upstream substances, enzyme inhibitors, and free radical scavengers to delineate the mechanisms of Asc∙ formation in human platelet-rich plasma (PRP). Our results show that the doublet signal was detected in PRP samples by using electr...

  12. 维生素C多聚磷酸酯合成工艺研究%Synthesis of Ascorbyl Polyphosphate

    Institute of Scientific and Technical Information of China (English)

    王敬臣; 崔凤霞; 曹琳青; 郑利宇; 曹晓伟

    2011-01-01

    采用单因素及正交试验研究了在敞开系统中,各种因素对以维生素C为原料在水溶液体系中直接酰化反应生成维生素C多聚磷酸酯的影响,结果表明,最佳反应条件:维生素C含量95%~100%,三偏磷酸钠含量70%,维生素C与三偏磷酸钠的质量比1∶1∶1,维生素C与氯化钙的摩尔比1∶0.075,反应温度40—50℃,反应溶液pH=10维生素C多聚磷酸酯的效价可达到36.87%,收率达96.84%.%Taking the ascorbic acid as raw material, through single factor and orthogonal experiment in the open systems, various factors is disscussed in aqueous solution of ascorbic acid directly acylation reaction of polyphosphate, the results show that the optimum reaction conditions: the ascorbic acid content is 95% ~100%, the sodium trimetaphosphat content is 70%, ascorbic acid and sodium trimetaphosphatin in the mass ratio of 1 : 1, ascorbic acid and calcium chloride in the molar ratio of 1 : 0. 075, the reaction temperature is 40~50 ℃ , the reaction solution pH of 10, the content of ascorbyl polyphosphate is up to 36. 87% and the yield is up to 96. 84%.

  13. Inhibition of uncoupling protein 2 with genipin exacerbates palmitate-induced hepatic steatosis

    OpenAIRE

    Ma Shuangtao; Yang Dachun; Li; Tan Yan; Tang Bing; Yang Yongjian

    2012-01-01

    Abstract Background Uncoupling protein 2 (UCP2) was reported to be involved in lipid metabolism through regulating the production of superoxide anion. However, the role of UCP2 in hepatocytes steatosis has not been determined. We hypothesized that UCP2 might regulate hepatic steatosis via suppressing oxidative stress. Results We tested this hypothesis in an in vitro model of hepatocytic steatosis in HepG2 cell lines induced by palmitic acid (PA). We found that treatment with PA induced an obv...

  14. Palmitate increases musclin gene expression through activation of PERK signaling pathway in C2C12 myotubes.

    Science.gov (United States)

    Gu, Ning; Guo, Qian; Mao, Ke; Hu, Hailong; Jin, Sanli; Zhou, Ying; He, Hongjuan; Oh, Yuri; Liu, Chuanpeng; Wu, Qiong

    2015-11-20

    Musclin is a type of muscle-secreted cytokine and its increased gene expression induces insulin resistance in type 2 diabetes. However, the mechanism underlying increased musclin gene expression is currently unclear. Excessive saturated fatty acids (SFA) can activate the secretion of several muscle-secreted cytokines as well as endoplasmic reticulum (ER) stress pathway, thereby contributing to the development of type 2 diabetes. The purpose of this study was to investigate the mechanisms responsible for the effect of palmitate, the most abundant SFA in the plasma, on the gene expression of musclin in C2C12 myotubes. Treatment of C2C12 myotubes with palmitate or tunicamycin significantly increased the expression of musclin as well as ER stress-related genes, but treatment with oleate did not. Pre-treatment of C2C12 myotubes with 4-phenyl butyrate suppressed the expression of ER stress-related genes, simultaneously, resulting in decreased expression of the musclin gene induced by palmitate or tunicamycin. These results indicate that ER stress is related to palmitate-induced musclin gene expression. Moreover, palmitate-induced musclin gene expression was significantly inhibited in C2C12 myotubes when PERK pathway signaling was suppressed by knockdown of the PERK gene or treatment with GSK2656157, a PERK autophosphorylation inhibitor. However, there was no difference in the palmitate-induced musclin gene expression when IRE1 and ATF6 signaling pathways were suppressed by knockdown of the IRE1 and ATF6 genes. These findings suggest that palmitate increases musclin gene expression via the activation of the PERK signaling pathway in C2C12 myotubes. PMID:26449458

  15. Determination of Palmitoleic, Vaccenic and Palmitic Acid Levels in Petroleum Ether Extracts of Hericium erinaceus Fruit Bodies Using High Performance Liquid Chromatography-Evaporative Light-Scattering Detector%猴头菌中三种脂肪酸含量HPLC-ELSD测定方法的建立

    Institute of Scientific and Technical Information of China (English)

    郑超群; 陈地灵; 柯志意; 陈康; 谢意珍; 胡惠萍

    2015-01-01

    建立猴头菌(Hericium erinaceus)子实体中棕榈油酸(palmitoleic acid)、异油酸(vaccenic acid)、软脂酸(palmitic acid)的高效液相色谱-蒸发光散射检测(high performance liquid chromatography-evaporative light-scattering detector,HPLC-ELSD)方法.采用Grace Prevail Organic Acid 5μm (250 mm×4.6 mm)色谱柱[流动相为乙腈-甲醇(80∶ 20),柱温30℃,流速1.0 mL/min]和ESA Chromachem(R)蒸发光散射检测器[雾化温度(TNeb)35℃,蒸发温度(TEvap)50℃,衰减值(Attenuation)为3,载气为N2,操作气压为21 psi],获得棕榈油酸、异油酸、软脂酸标准品的线性回归方程分别为Y=0.4982X+10.1120(r=0.9998)、Y=0.8270X+9.7457 (r =0.9998)、Y=1.1316X +10.3790 (r=0.9997);平均回收率分别为99.89%、100.68%和101.00%,RSD分别为1.26%、2.04%和1.72%.该方法可同时测定猴头菌中棕榈油酸、异油酸、软脂酸3种脂肪酸类化合物,且结果准确、重现性好、操作简便.

  16. Sheep erythrocyte membrane binding and transfer of long-chain fatty acids

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1999-01-01

    Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants......Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants...

  17. In Vitro Palmitate Treatment of Myotubes from Postmenopausal Women Leads to Ceramide Accumulation, Inflammation and Affected Insulin Signaling

    DEFF Research Database (Denmark)

    Abildgaard, Julie; Henstridge, Darren C; Pedersen, Anette Tønnes;

    2014-01-01

    Menopause is associated with an increased incidence of insulin resistance and metabolic diseases. In a chronic palmitate treatment model, we investigated the role of skeletal muscle fatty acid exposure in relation to the metabolic deterioration observed with menopause. Human skeletal muscle...... satellite cells were isolated from premenopausal (n = 6) and postmenopausal (n = 5) women. In an in vitro model, the myotubes were treated with palmitate (300 µM) for one-, two- or three days during differentiation. Effects on lipid accumulation, inflammation and insulin signaling were studied. Palmitate...... treatment led to a 108% (CI 95%: 50%; 267%) increase in intramyocellular ceramide in the myotubes from the postmenopausal women (post-myotubes) compared with a 26% (CI 95%: -57%; 96%) increase in myotubes from the premenopausal women (pre-myotubes), (p

  18. Determination of the antioxidant activity based on the content changes in fatty acid methyl esters in vegetable oils

    Institute of Scientific and Technical Information of China (English)

    Housam Haj Hamdo; Zaid Al-Assaf; Warid Khayata

    2014-01-01

    Free radicals,which are generated in several biochemical reactions in the body,have been implicated as mediators of many diseases,including cancer,atherosclerosis and heart diseases.Although the endogenous antioxidants can scavenge these free radicals,they are often insufficient to maintain the in vivo redox balance.The antioxidant activity (AOA) was examined by addition of each tested antioxidants [alpha-tocopherol (a-T),beta-tocopherol (β-T),gamma-tocopherol (γ-T),delta-tocopherol (δ-T),butylated hydroxyanisole (BHA),2,6-di-tert-butyl-4-methylphenol (BHT),and ascorbyle palmitate (AP)] to four types of different vegetable oils (sunflower oil,soybean oil,corn oil and olive oil).Moreover,content changes in fatty acids were then investigated every 3 months during the storage period.The results showed that the AOA was different among the tested antioxidants.The AOA for BHA was the most for different types of oil compared with other antioxidants,whereas the δ-T possessed the lowest AOA.

  19. Study on lipase-catalytic synthesis of ascorbyl palmitate%脂肪酶催化合成棕榈酸维生素C酯的研究

    Institute of Scientific and Technical Information of China (English)

    夏木西卡玛尔; 吾满江·艾力

    2007-01-01

    在溶剂相中,用固定化脂肪酶催化合成棕榈酸维生素C酯.研究了反应体系含水量、溶剂、反应温度、加酶量、加入分子筛等因素对反应的影响.结果表明,最佳反应条件为:Novo 435脂肪酶用量为反应物质量的4%,叔丁醇作溶剂,反应温度55℃,摇床转速200 r/min,反应时间36 h,转化率52%,产品纯度95%.

  20. 酰氯法合成L-抗坏血酸棕榈酸酯的研究%Synthesis of L-ascorbyl Palmitate with Acyl Chloride Method

    Institute of Scientific and Technical Information of China (English)

    许肇成; 何松; 陈永恒; 林富强

    2010-01-01

    本文对酰氯法反应制备L-抗坏血酸棕榈酸酯的反应介质、提取液和催化剂进行初步探讨,结果表明甲基乙酰胺和二氯甲烷为反应介质、以氯化亚砜或氯化氢作催化剂对产率有较大提高,氯仿为提取液可以提高产品纯度.

  1. Study on Antioxidation Effect of Ascorbyl Palmitate%L-抗坏血酸棕榈酸酯的抗氧化效果研究

    Institute of Scientific and Technical Information of China (English)

    高荫榆; 雷占兰; 谢何融; 郭磊

    2007-01-01

    L-抗坏血酸棕榈酸酯(AP)是具有功能性、营养性、无毒、高效的抗氧化剂,应用范围广泛.本实验以乌桕脂棕榈酸甲酯为原料,采用化学法将其与抗坏血酸合成AP,并将其应用到大豆油与菜籽油当中,与BHA、TBHQ、VE及AP/VE效果相比较,评价其抗氧化效率.结果表明,AP具有显著的抗氧化性,是一种安全、高效的抗氧化剂和增效剂.

  2. HPLC Determination of Ascorbyl Palmitate in Foods%高效液相色谱法测定食品中抗坏血酸棕榈酸酯

    Institute of Scientific and Technical Information of China (English)

    陆志芸; 张辉; 赵敏; 葛宇; 林毅侃; 周耀斌

    2010-01-01

    提出了快速测定油脂食品、焙烤食品和方便米面食品中抗坏血酸棕榈酸酯的高效液相色谱法.以柠檬酸和异抗坏血酸为稳定剂,甲醇为样品提取剂,以甲醇-乙腈(1+1)及磷酸(1+99)溶液为流动相,经反相C18色谱柱梯度洗脱,在243 nm波长处,用光电二极管阵列检测器进行测定.抗坏血酸棕榈酸酯的质量浓度在0.50~100.0 mg·L-1范围内与其峰面积呈线性关系,测定下限(10S/N)为0.005 g·kg-1.加标回收率在85%~104%之间,相对标准偏差(n=6)在1.1%~3.9%之间.

  3. Study on the antioxidation of L-ascorbyl palmitate%L-抗坏血酸棕榈酸酯的抗氧化性研究

    Institute of Scientific and Technical Information of China (English)

    雷琳

    2009-01-01

    目的:研究L-抗坏血酸棕榈酸酯(L-AP)的抗氧化性.方法:将L-AP应用到猪油、大豆油与菜籽油当中,与CMG、BHA、TSHQ、维生素E及AP/维生素E效果比较.评价其抗氧化效率.结果:L-AP的加入对油脂的各种品质有明显的改善作用.结论:L-AP具有显著的抗氧化性,是一种安全、高效的抗氧化剂和增效剂.

  4. L-抗坏血酸棕榈酸酯的合成及应用%Synthesis and application of L-ascorbyl palmitate

    Institute of Scientific and Technical Information of China (English)

    曹会兰; 杨建武

    2003-01-01

    研究了一种以L-抗坏血酸和棕榈酸为原料,合成出L-抗坏血酸棕榈酸酯(AP)的改进方法,产率为86%.并探讨了AP作为抗氧剂在棉籽油中的应用,结果表明AP的抗氧效果优于BHA和BHT.

  5. Advances in Research on Synthesis of L-Ascorbyl Palmitate%L-抗坏血酸棕榈酸酯的合成研究进展

    Institute of Scientific and Technical Information of China (English)

    刘长波; 高瑞昶

    2003-01-01

    L-抗坏血酸棕榈酸酯是优良的天然抗氧化剂.综述了L-抗坏血酸棕榈酸酯合成研究进展,归纳了L-抗坏血酸棕榈酸酯的几种合成方法,如化学合成法和酶催化法,为其合成研究提供一些线索.

  6. Palmitato de ascorbil e acetato de tocoferol como antioxidantes metabólicos em larvas de dourado Ascorbyl palmitate and tocopherol acetate as metabolic antioxidants in dourado larvae

    OpenAIRE

    Daniel Okamura; Felipe Guedes de Araújo; Priscila Viera Rosa Logato; Ulisses Simon da Silveira; Luis David Solis Murgas; Rilke Tadeu Fonseca de Freitas

    2008-01-01

    O objetivo deste trabalho foi avaliar o efeito e a interação entre a suplementação de palmitato de ascorbil e acetato de tocoferol, na alimentação de larvas de dourado (Salminus brasiliensis), durante o seu desenvolvimento inicial. Foi utilizado o delineamento experimental inteiramente ao acaso, com parcelas subdivididas: nas parcelas, em arranjo fatorial (2x3) com seis rações constituídas pela combinação de duas concentrações de acetato de tocoferol (0 e 250 mg kg-1) e três concentrações de ...

  7. Cystic fibrosis bronchial epithelial cells are lipointoxicated by membrane palmitate accumulation.

    Directory of Open Access Journals (Sweden)

    Laurie-Anne Payet

    Full Text Available The F508del-CFTR mutation, responsible for Cystic Fibrosis (CF, leads to the retention of the protein in the endoplasmic reticulum (ER. The mistrafficking of this mutant form can be corrected by pharmacological chaperones, but these molecules showed limitations in clinical trials. We therefore hypothesized that important factors in CF patients may have not been considered in the in vitro assays. CF has also been associated with an altered lipid homeostasis, i. e. a decrease in polyunsaturated fatty acid levels in plasma and tissues. However, the precise fatty acyl content of membrane phospholipids from human CF bronchial epithelial cells had not been studied to date. Since the saturation level of phospholipids can modulate crucial membrane properties, with potential impacts on membrane protein folding/trafficking, we analyzed this parameter for freshly isolated bronchial epithelial cells from CF patients. Interestingly, we could show that Palmitate, a saturated fatty acid, accumulates within Phosphatidylcholine (PC in CF freshly isolated cells, in a process that could result from hypoxia. The observed PC pattern can be recapitulated in the CFBE41o(- cell line by incubation with 100 µM Palmitate. At this concentration, Palmitate induces an ER stress, impacts calcium homeostasis and leads to a decrease in the activity of the corrected F508del-CFTR. Overall, these data suggest that bronchial epithelial cells are lipointoxicated by hypoxia-related Palmitate accumulation in CF patients. We propose that this phenomenon could be an important bottleneck for F508del-CFTR trafficking correction by pharmacological agents in clinical trials.

  8. Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals

    OpenAIRE

    Shinji Ito; Fuminori Hyodo

    2016-01-01

    Highly water-soluble ubiquinone-0 (CoQ0) reacts with ascorbate monoanion (Asc) to mediate the production of ascorbyl free radicals (AFR). Using aqueous reaction mixture of CoQ0 and Asc, we obtained positively enhanced dynamic nuclear polarization (DNP)-magnetic resonance (MR) images of the AFR at low frequency (ranging from 515 to 530 MHz) of electron spin resonance (ESR) irradiation. The shape of the determined DNP spectrum was similar to ESR absorption spectra with doublet spectral peaks. T...

  9. Associations between hepatic metabolism of propionate and palmitate in liver slices from transition dairy cows.

    Science.gov (United States)

    McCarthy, M M; Piepenbrink, M S; Overton, T R

    2015-10-01

    Multiparous Holstein cows (n=95) were used to evaluate changes in hepatic propionate and palmitate metabolism and liver composition over time during the transition period, along with the relationships of these variables with cumulative increases in nonesterified fatty acids and β-hydroxybutyrate during the periparturient period. Data from 3 previous experiments were used to address the study objectives, accounting for a total of 95 multiparous Holstein cows. Liver slices from biopsies on d -21, 1, and 21 relative to parturition were used to determine conversion of [1-(14)C]palmitate to CO2 and esterified products (EP) and the conversion of [1-(14)C]propionate to CO2 and glucose. Hepatic glycogen content was highest on d -21 and was 26.9 and 36.5% of prepartum values on d 1 and 21, respectively. Liver triglyceride content was lowest at d -21 and was 271 and 446% of prepartum values on d 1 and 21, respectively. We detected no difference in the capacity for the liver to oxidize [1-(14)C]palmitate to CO2 between d -21 and d 1; however, on d 21, oxidation was 84% of prepartum values. The capacity of the liver to convert [1-(14)C]palmitate to EP was 148 and 139% of prepartum values on d 1 and 21, respectively. The capacity of liver to convert [1-(14)C]propionate to CO2 was 127 and 83% of prepartum values on d 1 and 21, and the capacity of liver to convert [1-(14)C]propionate to glucose was 126 and 85% of prepartum values on d 1 and 21, respectively. Correlation relationships suggest that overall, cows with elevated prepartum liver triglyceride content had elevated triglycerides throughout the transition period along with increased [1-(14)C]palmitate oxidation and conversion to EP and a decreased propensity to convert [1-(14)C]propionate to glucose. Cows with increased [1-(14)C]propionate oxidation had increased conversion of [1-(14)C]propionate to glucose throughout the transition period. Overall, conditions that lead to impairments in fatty acid metabolism during the

  10. Lipase-catalyzed synthesis of ascorbyl oleate in acetone: optimization of reaction conditions and lipase reusability.

    Science.gov (United States)

    Stojanović, Marija; Velićković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Knežević-Jugović, Zorica; Bezbradica, Dejan

    2013-01-01

    Lipase-catalyzed ascorbyl oleate synthesis is eco-friendly and selective way of production of liposoluble biocompatible antioxidants, but still not present on an industrial level due to the high biocatalyst costs. In this study, response surface methodology was applied in order to estimate influence of individual experimental factors, identify interactions among them, and to determine optimum conditions for enzymatic synthesis of ascorbyl oleate in acetone, in terms of limiting substrate conversion, product yield, and yield per mass of consumed enzyme. As a biocatalyst, commercial immobilized preparation of lipase B from Candida antarctica, Novozym 435, was used. In order to develop cost-effective process, at reaction conditions at which maximum amount of product per mass of biocatalyst was produced (60°C, 0.018 % (v/v) of water, 0.135 M of vitamin C, substrates molar ratio 1:8, and 0.2 % (w/v) of lipase), possibilities for further increase of ester yield were investigated. Addition of molecular sieves at 4(th) hour of reaction enabled increase of yield from 16.7 mmol g⁻¹ to 19.3 mmol g⁻¹. Operational stability study revealed that after ten reaction cycles enzyme retained 48 % of its initial activity. Optimized synthesis with well-timed molecular sieves addition and repeated use of lipase provided production of 153 mmol per gram of enzyme. Further improvement of productivity was achieved using procedure for the enzyme reactivation. PMID:23985489

  11. Lipophilization of ascorbic acid: a monolayer study and biological and antileishmanial activities.

    Science.gov (United States)

    Kharrat, Nadia; Aissa, Imen; Sghaier, Manel; Bouaziz, Mohamed; Sellami, Mohamed; Laouini, Dhafer; Gargouri, Youssef

    2014-09-17

    Ascorbyl lipophilic derivatives (Asc-C2 to Asc-C(18:1)) were synthesized in a good yield using lipase from Staphylococcus xylosus produced in our laboratory and immobilized onto silica aerogel. Results showed that esterification had little effect on radical-scavenging capacity of purified ascorbyl esters using DPPH assay in ethanol. However, long chain fatty acid esters displayed higher protection of target lipids from oxidation. Moreover, compared to ascorbic acid, synthesized derivatives exhibited an antibacterial effect. Furthermore, ascorbyl derivatives were evaluated, for the first time, for their antileishmanial effects against visceral (Leishmania infantum) and cutaneous parasites (Leishmania major). Among all the tested compounds, only Asc-C10, Asc-C12, and Asc-C(18:1) exhibited antileishmanial activities. The interaction of ascorbyl esters with a phospholipid monolayer showed that only medium and unsaturated long chain (Asc-C10 to Asc-C(18:1)) derivative esters were found to interact efficiently with mimetic membrane of leishmania. These properties would make ascorbyl derivatives good candidates to be used in cosmetic and pharmaceutical lipophilic formulations. PMID:25148258

  12. Substrate overload: Glucose oxidation in human myotubes conquers palmitate oxidation through anaplerosis

    DEFF Research Database (Denmark)

    Gaster, Michael

    2009-01-01

    by increasing concentrations of the other in human myotubes established from healthy, lean subjects exposed to acute stepwise increases in glucose and PA levels. At high substrate levels; PA oxidation was reduced while release of acid soluble metabolites was increased and, both glucose oxidation and release...... of citrate was increased which could be abolished by phenylacetic acid (inhibitor of pyruvate carboxylase (PC)). The present data challenges above preconceptions. Although they operate at low-moderate substrate levels additional two principles determine substrate oxidation at higher substrate concentrations......To date, two cardinal principles govern oxidation of glucose and fatty acids in skeletal muscle; exogenous fatty acid reduces glucose oxidation and glucose reduces fatty acid oxidation. Both glucose and palmitate (PA) oxidation was increased by increasing their concentration and inhibited...

  13. Fatty acid induced remodeling within the human liver fatty acid-binding protein.

    Science.gov (United States)

    Sharma, Ashwani; Sharma, Amit

    2011-09-01

    We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against LFABP. PMID:21757748

  14. Fatty Acid Induced Remodeling within the Human Liver Fatty Acid-binding Protein*

    OpenAIRE

    Sharma, Ashwani; Sharma, Amit

    2011-01-01

    We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against ...

  15. Insulin Resistance Is Correlated with Palmitic Acid Uptake in Skeletal Muscle Cells%棕榈酸的组织吸收分布及对骨骼肌胰岛素抵抗的影响

    Institute of Scientific and Technical Information of China (English)

    彭恭; 刘延波; 李凌海; 刘平生

    2012-01-01

    Retinoids (vitamin A and its derivatives) play important roles in the maintenance of various tissues in the adult vertebrate and are essential for diverse embryological processes. As a member of retinoids (vitamin A and its derivatives), retinoic acid (RA) has been extensively investigated in embryopathology. However, the mechanisms by which RA influences these processes are not completely understood. In the present study, we found that embryonic RA exposure via maternal treatment with gavage-fed 3 successive doses of RA on day 8 of gestation led to a high incidence (96.77%, 30/31) of rachischisis with myeloschisis, I.e., spina bifida aperta, among the surviving day 18 fetuses. Using microarray technology, we identified 134 genes in the spinal cords of mice that exhibit at least a 1.5-fold change between mice with spina bifida and control samples. Several downstream genes of RA signaling involved in lipid metabolism were regulated at the transcriptional level after maternal RA exposure. Furthermore, a gene set enrichment analysis (GSEA) implicate many altered expression of genes, involved in pro- or anti-apoptosis, cell proliferation, migration, cytoskeleton components, and cell or focal adhesion, which are associated which the spina bifida induced by the maternal RA exposure. This indicates that defective functions of these cell components and biological processes preceded the abnormal development of neural tube. Our study provides a global analysis of gene expression patterns in spina bifida and will help the understanding of the etiology and pathology of neural tube defects.%脂肪酸代谢紊乱是Ⅱ型糖尿病的主要致病因素之一.棕榈酸是血液中含量最高的游离脂肪酸.我们建立了大鼠颈静脉置管输注棕榈酸的模型,发现血液中的大部分棕榈酸被骨骼肌组织所吸收.以棕榈酸处理的C2C12骨骼肌细胞为实验模型发现,棕榈酸进入骨骼肌细胞后的中间代谢产物(磷脂和甘油二酯)的累

  16. Palmitate-induced changes in energy demand cause reallocation of ATP supply in rat and human skeletal muscle cells.

    Science.gov (United States)

    Nisr, Raid B; Affourtit, Charles

    2016-09-01

    Mitochondrial dysfunction has been associated with obesity-related muscle insulin resistance, but the causality of this association is controversial. The notion that mitochondrial oxidative capacity may be insufficient to deal appropriately with excessive nutrient loads is for example disputed. Effective mitochondrial capacity is indirectly, but largely determined by ATP-consuming processes because skeletal muscle energy metabolism is mostly controlled by ATP demand. Probing the bioenergetics of rat and human myoblasts in real time we show here that the saturated fatty acid palmitate lowers the rate and coupling efficiency of oxidative phosphorylation under conditions it causes insulin resistance. Stearate affects the bioenergetic parameters similarly, whereas oleate and linoleate tend to decrease the rate but not the efficiency of ATP synthesis. Importantly, we reveal that palmitate influences how oxidative ATP supply is used to fuel ATP-consuming processes. Direct measurement of newly made protein demonstrates that palmitate lowers the rate of de novo protein synthesis by more than 30%. The anticipated decrease of energy demand linked to protein synthesis is confirmed by attenuated cycloheximide-sensitivity of mitochondrial respiratory activity used to make ATP. This indirect measure of ATP turnover indicates that palmitate lowers ATP supply reserved for protein synthesis by at least 40%. This decrease is also provoked by stearate, oleate and linoleate, albeit to a lesser extent. Moreover, palmitate lowers ATP supply for sodium pump activity by 60-70% and, in human cells, decreases ATP supply for DNA/RNA synthesis by almost three-quarters. These novel fatty acid effects on energy expenditure inform the 'mitochondrial insufficiency' debate.

  17. Palmitate-induced changes in energy demand cause reallocation of ATP supply in rat and human skeletal muscle cells.

    Science.gov (United States)

    Nisr, Raid B; Affourtit, Charles

    2016-09-01

    Mitochondrial dysfunction has been associated with obesity-related muscle insulin resistance, but the causality of this association is controversial. The notion that mitochondrial oxidative capacity may be insufficient to deal appropriately with excessive nutrient loads is for example disputed. Effective mitochondrial capacity is indirectly, but largely determined by ATP-consuming processes because skeletal muscle energy metabolism is mostly controlled by ATP demand. Probing the bioenergetics of rat and human myoblasts in real time we show here that the saturated fatty acid palmitate lowers the rate and coupling efficiency of oxidative phosphorylation under conditions it causes insulin resistance. Stearate affects the bioenergetic parameters similarly, whereas oleate and linoleate tend to decrease the rate but not the efficiency of ATP synthesis. Importantly, we reveal that palmitate influences how oxidative ATP supply is used to fuel ATP-consuming processes. Direct measurement of newly made protein demonstrates that palmitate lowers the rate of de novo protein synthesis by more than 30%. The anticipated decrease of energy demand linked to protein synthesis is confirmed by attenuated cycloheximide-sensitivity of mitochondrial respiratory activity used to make ATP. This indirect measure of ATP turnover indicates that palmitate lowers ATP supply reserved for protein synthesis by at least 40%. This decrease is also provoked by stearate, oleate and linoleate, albeit to a lesser extent. Moreover, palmitate lowers ATP supply for sodium pump activity by 60-70% and, in human cells, decreases ATP supply for DNA/RNA synthesis by almost three-quarters. These novel fatty acid effects on energy expenditure inform the 'mitochondrial insufficiency' debate. PMID:27154056

  18. VC复合脂肪酸酯的合成及抗氧化性能%SYNTHESIS AND ANTIOXIDANT EFFECTS OF ASCORBYL COMPOSITE ALIPHATIC ESTER

    Institute of Scientific and Technical Information of China (English)

    冯光炷; 谢文磊

    2001-01-01

    猪油与甲醇进行酯交换制备复合脂肪酸甲酯,得率97.2%.再以浓硫酸为溶剂和催化剂,VC和复合脂肪酸甲酯进行酯交换合成VC复合脂肪酸酯.考察了反应时间、反应物配比及浓硫酸用量对酯交换反应的影响,结果表明,最适宜的反应条件为:n(VC)∶n(复合脂肪酸酯)为1∶1.2,反应时间为26h,n(浓H2SO4)∶n(VC+复合脂肪酸酯)为1∶0.15,反应温度为25℃,产率达76%.产品的抗氧化性能测试表明VC复合脂肪酸酯是一种优良的无毒抗氧化剂.%Ascorbyl composite aliphatic ester was synyhesized by transesterificantion of L-ascorbic acid with methyl composite aliphatic ester which is synthesized from lard and methyl alcohol using concentrated sulfuric acid as sol ve nt and catalyst. The yield was up to 76%. The effects of reaction temperature, r atio of reactant, amount of concentrated sulfuric acid on transesterification ha ve been investigated. The optimum synthetic conditions are that the ratio of Vc to composite aliphatic ester is 1∶1.2,reaction time is 26 h, the ratio of conce ntrated H2SO4 to composite aliphatic ester is 1∶0.15,reaction temperatur e is 25 ℃ .The test of antioxidant shows that Ascorbyl composite aliphatic ester is a good oxidant without poison.

  19. Effect of the alkyl chains and of the headgroups on the thermal behavior of ascorbic acid surfactants mixtures.

    Science.gov (United States)

    Venturini, Chiara; Pomposi, Cristina; Ambrosi, Moira; Carretti, Emiliano; Fratini, Emiliano; Lo Nostro, Pierandrea; Baglioni, Piero

    2014-03-20

    The role of the alkyl chain length and of the headgroup on the thermal behavior of mixtures of ASC8 (ascorbyl octanoate) and ASC16 (ascorbyl hexadecanoate) was investigated through differential scanning calorimetry, small- and wide-angle X-ray scattering, and Fourier transform infrared spectroscopy experiments. The formation of two eutectics and of a peritectic point was found from the phase diagram, and their structural properties were studied. The results were compared by investigating the thermal behavior of mixtures of octanoic acid and hexadecanoic acid. The findings provide insights into the role of the ascorbyl headgroups on the intermolecular interactions that determine the phase behavior of the two ascorbic acid based surfactants in the solid state. PMID:24555769

  20. Levels of retinyl palmitate and retinol in the skin of SKH-1 mice topically treated with retinyl palmitate and concomitant exposure to simulated solar light for thirteen weeks.

    Science.gov (United States)

    Yan, J; Xia, Q; Wamer, W G; Boudreau, M D; Warbritton, A; Howard, P C; Fu, P P

    2007-11-01

    Retinyl esters account for more than 70% of the endogenous vitamin A found in human skin, and retinyl palmitate is one of the retinyl esters in this pool. Human skin is also exposed to retinyl palmitate exogenously through the topical application of cosmetic and skin care products that contain retinyl palmitate. To date, there is limited information on the penetration and distribution of retinyl palmitate and vitamin A within in the skin. In this study, the accumulation of retinyl palmitate and generation of retinol in the skin of male and female SKH-1 mice that received repeated topical applications of creams containing 0.0%, 0.1%, 0.5%, 1.0%, 5.0%, 10%, or 13% of retinyl palmitate 5 days a week for a period of 13 weeks were studied. Because products containing retinyl palmitate are frequently applied to sun-exposed skin, and because it is well established that exposure to sunlight and UV light can alter cutaneous levels of retinoids, mice in this study were additionally exposed 5 days a week to simulated solar light. The results showed that retinyl palmitate diffused into the skin and was partially hydrolyzed to retinol. The levels of retinyl palmitate in the skin of mice that were administered retinyl palmitate cream were higher than control values, and levels of both retinyl palmitate and retinol increased with the application of higher concentrations of retinyl palmitate in the cream. Our results indicate that topically applied retinyl palmitate may alter the normal physiological levels of retinyl palmitate and retinol in the skin of SKH-1 mice and may have a significant impact on vitamin A homeostasis in the skin. PMID:18717516

  1. Palmitate-induced Endoplasmic Reticulum stress and subsequent C/EBPα Homologous Protein activation attenuates leptin and Insulin-like growth factor 1 expression in the brain.

    Science.gov (United States)

    Marwarha, Gurdeep; Claycombe, Kate; Schommer, Jared; Collins, David; Ghribi, Othman

    2016-11-01

    The peptide hormones Insulin-like growth factor-1 (IGF1) and leptin mediate a myriad of biological effects - both in the peripheral and central nervous systems. The transcription of these two hormones is regulated by the transcription factor C/EBPα, which in turn is negatively regulated by the transcription factor C/EBP Homologous Protein (CHOP), a specific marker of endoplasmic reticulum (ER) stress. In the peripheral system, disturbances in leptin and IGF-1 levels are implicated in a variety of metabolic diseases including obesity, diabetes, atherosclerosis and cardiovascular diseases. Current research suggests a positive correlation between consumption of diets rich in saturated free fatty acids (sFFA) and metabolic diseases. Induction of ER stress and subsequent dysregulation in the expression levels of leptin and IGF-1 have been shown to mediate sFFA-induced metabolic diseases in the peripheral system. Palmitic acid (palmitate), the most commonly consumed sFFA, has been shown to be up-taken by the brain, where it may promote neurodegeneration. However, the extent to which palmitate induces ER stress in the brain and attenuates leptin and IGF1 expression has not been determined. We fed C57BL/6J mice a palmitate-enriched diet and determined effects on the expression levels of leptin and IGF1 in the hippocampus and cortex. We further determined the extent to which ER stress and subsequent CHOP activation mediate the palmitate effects on the transcription of leptin and IGF1. We demonstrate that palmitate induces ER stress and decreases leptin and IGF1 expression by inducing the expression of CHOP. The molecular chaperone 4-phenylbutyric acid (4-PBA), an inhibitor of ER stress, precludes the palmitate-evoked down-regulation of leptin and IGF1 expression. Furthermore, the activation of CHOP in response to ER stress is pivotal in the attenuation of leptin and IGF1 expression as knocking-down CHOP in mice or in SH-SY5Y and Neuro-2a (N2a) cells rescues the palmitate

  2. Application of antioxidants during short-path distillation of structured lipids

    DEFF Research Database (Denmark)

    Timm-Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall;

    2007-01-01

    A specific structured lipid was produced from sunflower oil and caprylic acid. The antioxidative effect of adding alpha-tocopherol, ascorbyl palmitate or citric acid (each in three different concentrations) was investigated before and after the purification process (short-path distillation......), and was compared with a control without addition of antioxidant. The oxidative status and stability were characterized by peroxide and anisidine values, secondary volatile oxidation products and induction period. The antioxidants affected the oxidative status compared with the control: citric acid was prooxidative...... at low concentrations, but antioxidative at high concentrations. Addition of ascorbyl palmitate had an antioxidative effect at all concentrations employed. alpha-Tocopherol showed less antioxidative activity compared with ascorbyl palmitate and citric acid, and its efficacy was slightly decreased...

  3. [{sup 11}C]palmitate kinetics across the splanchnic bed in arterial, portal and hepatic venous plasma during fasting and euglycemic hyperinsulinemia

    Energy Technology Data Exchange (ETDEWEB)

    Guiducci, Letizia [SSSUP Medical Sciences Branch, Pisa 56100 (Italy); Turku PET Centre, University of Turku, Turku 20520 (Finland); PET Centre, Institute of Clinical Physiology, CNR National Research Council, 56100 Pisa (Italy); Jaervisalo, Mikko [Turku PET Centre, University of Turku, Turku 20520 (Finland); Kiss, Jan [Turku PET Centre, University of Turku, Turku 20520 (Finland); Department of Surgery, University of Turku, Turku 20520 (Finland); Nagren, Kjell [Turku PET Centre, University of Turku, Turku 20520 (Finland); Viljanen, Antti [Turku PET Centre, University of Turku, Turku 20520 (Finland); Naum, Alexandru G. [Turku PET Centre, University of Turku, Turku 20520 (Finland); Gastaldelli, Amalia [PET Centre, Institute of Clinical Physiology, CNR National Research Council, 56100 Pisa (Italy); Savunen, Timo [Department of Surgery, University of Turku, Turku 20520 (Finland); Knuuti, Juhani [Turku PET Centre, University of Turku, Turku 20520 (Finland); Salvadori, Piero A. [PET Centre, Institute of Clinical Physiology, CNR National Research Council, 56100 Pisa (Italy); Ferrannini, Ele [PET Centre, Institute of Clinical Physiology, CNR National Research Council, 56100 Pisa (Italy); Department of Internal Medicine, University of Pisa School of Medicine, Pisa 56100 (Italy); Nuutila, Pirjo [Turku PET Centre, University of Turku, Turku 20520 (Finland); Department of Medicine, University of Turku, Turku 20520 (Finland); Iozzo, Patricia [Turku PET Centre, University of Turku, Turku 20520 (Finland) and PET Centre, Institute of Clinical Physiology, CNR National Research Council, 56100 Pisa (Italy)]. E-mail: patricia.iozzo@ifc.cnr.it

    2006-05-15

    Purpose: The liver is fundamental in regulating lipid metabolism, and it supplies fatty acids (FA) to the rest of the body in the form of triglycerides (TG); the time-related relevance of this process is incompletely defined. The aim of the study was to investigate the appearance of labeled TG in the hepatic vascular bed after [{sup 11}C]palmitate injection during fasting and insulin stimulation. Methods: Plasma [{sup 11}C]palmitate kinetics in arterial, portal and hepatic venous lipid fractions was studied in eight anesthetized pigs during fasting or euglycemic hyperinsulinemia. Plasma analyses were conducted at 10 and 40 min after tracer injection. Corresponding liver positron emission tomography (PET) images were acquired for the semiquantitative determination of hepatic FA uptake. Results: At 10 min, plasma levels of unchanged [{sup 11}C]palmitate were lower in hyperinsulinemic than in fasting experiments in the artery and in the portal vein (P{<=}.03), suggesting faster clearance. Levels of unmetabolized [{sup 11}C]palmitate did not differ between portal and arterial plasma. In the fasting state, a tendency to a positive arterial and portal vs. hepatic venous gradient was observed, indicative of net hepatic [{sup 11}C]palmitate extraction. Labeled TG were already detectable at 10 min (fasting vs. hyperinsulinemia, ns) and were higher in fasting than in hyperinsulinemic animals at 40 min (92{+-}1% and 82{+-}6% of arterial plasma radioactivity). Higher proportions of labeled TG were recovered in portal vein plasma, suggesting release by the gut. The portal and the arterial-portal vs. hepatic venous TG gradient tended to be positive. Accordingly, hepatic FA uptake was higher, but declined more rapidly during fasting than during hyperinsulinemia. Conclusion: The study indicates that the redistribution of [{sup 11}C]palmitate between different lipid pools occurs within the short time interval of most PET experiments and is strongly influenced by insulin. Labeled TG

  4. Ethanol diversely alters palmitate, stearate and oleate metabolism in the liver and pancreas of rats using the deuterium oxide single tracer

    Science.gov (United States)

    Boros, Laszlo G.; Deng, Qinggao; Pandol, Stephen J.; Tsukamoto, Hidekazu; Go, Vay Liang W.; Lee, Wai-Nang Paul

    2015-01-01

    Objective To determine tissue specific effects of alcohol on fatty acid synthesis and distribution as related to functional changes in triglyceride transport and membrane formation. Methods Tissue fatty acid profile, and de novo lipogenesis were determined in adult male Wistar rats after 5 weeks of ethanol feeding using deuterated water and GC/MS. Liver and pancreas fatty acid profiles and new synthesis fractions were compared with those from control rats on an isocaloric diet. Results Fatty acid ratios in the liver indicated that there was an over two-fold accumulation of stearate to that of palmitate, with an apparent decrease in oleate content. On the other hand, in the pancreas there was a 17% decrease in the stearate to palmitate ratio, while oleate to palmitate ratio was increased by 30%. The fractions of deuterium labeled palmitate and stearate were substantially reduced in the liver and pancreas of the alcohol treated animals. Deuterium labeling of oleate was reduced in the liver but not in the pancreas consistent with the oleate/stearate ratios in these tissues. Conclusions Long-term alcohol exposure results in opposite effects on the desaturase activity in the liver and pancreas limiting fatty acid transport in the liver but promoting the exocrine function of the pancreas. PMID:19248221

  5. Palmitate binding to serum albumin, measured by rate of dialysis

    DEFF Research Database (Denmark)

    Brodersen, R; Honoré, B; Andersen, S

    1988-01-01

    Dialysis experiments were performed with an acetylcellulose membrane between two identical sample solutions; a trace amount of radiolabelled palmitate was added on one side and the rate of dialytic equilibration of the label was measured. By comparison with rates measured in standard experiments...

  6. Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized, hypothalamic neurons.

    Science.gov (United States)

    Fick, Laura J; Fick, Gordon H; Belsham, Denise D

    2011-09-30

    The control of energy homeostasis within the hypothalamus is under the regulated control of homeostatic hormones, nutrients and the expression of neuropeptides that alter feeding behavior. Elevated levels of palmitate, a predominant saturated fatty acid in diet and fatty acid biosynthesis, alter cellular function. For instance, a key mechanism involved in the development of insulin resistance is lipotoxicity, through increased circulating saturated fatty acids. Although many studies have begun to determine the underlying mechanisms of lipotoxicity in peripheral tissues, little is known about the effects of excess lipids in the brain. To determine these mechanisms we used an immortalized, clonal, hypothalamic cell line, mHypoE-44, to demonstrate that palmitate directly alters the expression of molecular clock components, by increasing Bmal1 and Clock, or by decreasing Per2, and Rev-erbα, their mRNA levels and altering their rhythmic period within individual neurons. We found that these neurons endogenously express the orexigenic neuropeptides NPY and AgRP, thus we determined that palmitate administration alters the mRNA expression of these neuropeptides as well. Palmitate treatment causes a significant increase in NPY mRNA levels and significantly alters the phase of rhythmic expression. We explored the link between AMPK and the expression of neuropeptide Y using the AMPK inhibitor compound C and the AMP analog AICAR. AMPK inhibition decreased NPY mRNA. AICAR also elevated basal NPY, but prevented the palmitate-mediated increase in NPY mRNA levels. We postulate that this palmitate-mediated increase in NPY and AgRP synthesis may initiate a detrimental positive feedback loop leading to increased energy consumption.

  7. Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes

    Science.gov (United States)

    Starch-stabilized silver nanoparticles were prepared from amylose-sodium palmitate complexes by first converting sodium palmitate to silver palmitate by reaction with silver nitrate and then reducing the silver ion to metallic silver. This process produced water solutions that could be dried and the...

  8. The effect of chronic exposure to fatty acids

    DEFF Research Database (Denmark)

    Xiao, J.; Gregersen, S.; Kruhøffer, Mogens;

    2001-01-01

    . In conclusion, chronic exposure to low palmitate alters insulin secretion as well as gene expression. The number of genes that changed expression was palmitate dose and exposure time dependent. Randle's fatty acid-glucose cycle seems to be operative on the gene transcription level. A modification of expression...... found that basal insulin secretion increased in cells exposed to palmitate. The response to glucose stimulation declined on d 44 in cells cultured at 200 microM palmitate. In response to 50 and 200 microM palmitate exposure, expression was changed in 11 and 99 genes on d 2 and 134 and in 159 genes on d...

  9. Reduced levels of SCD1 accentuate palmitate-induced stress in insulin-producing β-cells

    Directory of Open Access Journals (Sweden)

    Hovsepyan Meri

    2010-09-01

    Full Text Available Abstract Background Stearoyl-CoA desaturase 1 (SCD1 is an ER resident enzyme introducing a double-bond in saturated fatty acids. Global knockout of SCD1 in mouse increases fatty acid oxidation and insulin sensitivity which makes the animal resistant to diet-induced obesity. Inhibition of SCD1 has therefore been proposed as a potential therapy of the metabolic syndrome. Much of the work has focused on insulin target tissue and very little is known about how reduced levels of SCD1 would affect the insulin-producing β-cell, however. The aim of the present study was therefore to investigate how reduced levels of SCD1 affect the β-cell. Results Insulin-secreting MIN6 cells with reduced levels of SCD1 were established by siRNA mediated knockdown. When fatty acid oxidation was measured, no difference between cells with reduced levels of SCD1 and mock-transfected cells were found. Also, reducing levels of SCD1 did not affect insulin secretion in response to glucose. To investigate how SCD1 knockdown affected cellular mechanisms, differentially regulated proteins were identified by a proteomic approach. Cells with reduced levels of SCD1 had higher levels of ER chaperones and components of the proteasome. The higher amounts did not protect the β-cell from palmitate-induced ER stress and apoptosis. Instead, rise in levels of p-eIF2α and CHOP after palmitate exposure was 2-fold higher in cells with reduced levels of SCD1 compared to mock-transfected cells. Accordingly, apoptosis rose to higher levels after exposure to palmitate in cells with reduced levels of SCD1 compared to mock-transfected cells. Conclusions In conclusion, reduced levels of SCD1 augment palmitate-induced ER stress and apoptosis in the β-cell, which is an important caveat when considering targeting this enzyme as a treatment of the metabolic syndrome.

  10. Study on stability of L-ascorbyl decanoate, L-ascorbyl laurate and L-ascorbyl palmitate%抗坏血酸癸酸酯、抗坏血酸月桂酸酯和抗坏血酸棕榈酸酯的稳定性研究

    Institute of Scientific and Technical Information of China (English)

    江晨; 刘柳; 黄才欢; 汪勇; 晏日安

    2015-01-01

    利用碘量法测定含量,探究了光照、温度、pH及金属离子对抗坏血酸癸酸酯、抗坏血酸月桂酸酯和抗坏血酸棕榈酸酯乙醇溶液稳定性的影响.结果表明:光照、高温和碱性条件都会不同程度地对三者的稳定性造成影响,而酸性、中性条件以及体系中添加的金属离子Mg2+、Ca2+、Na+、Fe2+对三者稳定性的影响均不大.除光照条件外,其他条件下三者稳定性差异并不大.

  11. Enzyme-controlled scavenging of ascorbyl and 2,6-dimethoxy-semiquinone free radicals in Ehrlich ascites tumor cells.

    OpenAIRE

    Pethig, R; Gascoyne, P R; McLaughlin, J. A.; Szent-Györgyi, A

    1985-01-01

    The rate of scavenging by Ehrlich ascites cells of anionic ascorbyl and 2,6-dimethoxy-p-semiquinone free radicals has been investigated by electron spin resonance spectroscopy both for viable cells and for subcellular fractions obtained by differential centrifugation. The scavenging activity is concluded to be associated with an NAD(P)H enzyme containing an active sulfhydryl group. Attempts to identify the enzyme with the reported properties of either semi-dehydro-ascorbate reductase or DT-di...

  12. Stability evaluation of tocopheryl acetate and ascorbyl tetraisopalmitate in isolation and incorporated in cosmetic formulations using thermal analysis

    OpenAIRE

    Mariana Mandelli de Almeida; Cibele Rosana Ribeiro de Castro Lima; Joyce Santos Quenca-Guillen; Elder Moscardini Filho; Lucildes Pita Mercuri; Maria Inês Rocha Miritello Santoro; Erika Rosa Maria Kedor-Hackmann

    2010-01-01

    In view of the increase in the number of cosmetic preparations containing antioxidant vitamins, chiefly, due to their action in preventing the process of skin aging, there is a need to develop pre-formulation studies and to validate analytical methods in order to obtain high quality products. Thus, the objective of this research was to evaluate and compare the thermal behavior of tocopheryl acetate and ascorbyl tetraisopalmitate as raw materials, and incorporated into a base cream. Thermograv...

  13. Enhancement of stress resistance of the guppy Poecilia reticulata through feeding with vitamin C supplement

    OpenAIRE

    Lim, L C; Dhert, P.; Chew, W.Y.; Dermaux, V.; Nelis, H.; Sorgeloos, P.

    2002-01-01

    This study investigated the use of vitamin C supplement in formulated diets and live Artemia juveniles to enhance the stress resistance of the guppy Poecilia reticulata. To evaluate the stress resistance, fish were subjected to osmotic shock in pre-aerated water containing 35 ppt sodium chloride. Ascorbyl acid-poly phosphate and ascorbyl palmitate were used as vitamin C sources for formulated diets and live Artemia juveniles, respectively. Results showed that guppies fed moist formulated diet...

  14. Radiolytical oxidation of ascorbic acid in aqueous solutions

    International Nuclear Information System (INIS)

    Complete text of publication follows. Ascorbic acid, AsA (vitamin c), has been widely studied as an antioxidant or as an initiator of some technological processes, for example polymerization or nanoparticles formation. AsA can be easily oxidized to ascorbyl radical, in the first stage, and to dehydroascorbic acid, DHA, in the second stage. It has been found that several different ascorbyl radicals are formed during AsA oxidation but the main radical exists as the anion with the unpaired electron delocalized on a highly conjugated tricarbonyl system. Absorption spectrum of ascorbyl radical shows two bands with maxima at 300 and 360 nm, however only that at 360 nm is proportional to the dose and thus this wavelength was chosen for observations. We studied the oxidation of AsA by the following oxidizing radicals generated by the pulse radiolysis method ·OH, (SCN)2-·, Cl2-·, N3· and NO2·. The observed dependence of the yield and the formation rate of the AsA radical on the reduction potential of the oxidizing radical is discussed. The results obtained in water are compared with those obtained with AsA enclosed in the water pools of reverse micelles formed by AOT in n-heptane or by Igepal CO-520 in c-hexane. Somewhat surprising observation of different ascorbyl radical in pulse irradiated reverse micelles containing DHA is also commented.

  15. 21 CFR 172.860 - Fatty acids.

    Science.gov (United States)

    2010-04-01

    ... acid, caprylic acid, lauric acid, myristic acid, oleic acid, palmitic acid, and stearic acid. (b) The... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fatty acids. 172.860 Section 172.860 Food and Drugs... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and...

  16. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate

    DEFF Research Database (Denmark)

    Green, C J; Bunprajun, T; Pedersen, B K;

    2013-01-01

    in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle......  The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture...... and correlated positively to JNK phosphorylation. In conclusion, muscle satellite cells retain metabolic differences associated with physical activity. Physical activity partially protects myocytes from fatty acid-induced insulin resistance and inactivity is associated with dysregulation of metabolism...

  17. A case of paliperidone-palmitate-induced tardive dyskinesia.

    LENUS (Irish Health Repository)

    Lally, John

    2012-06-13

    OBJECTIVES: This is one of the first cases reported in the literature of paliperidone-palmitate-induced prolonged dyskinesia. METHOD: Case report. RESULTS: We report the case of a 49-year-old woman with paranoid schizophrenia who developed orofacial dyskinesia some 4 months after the commencement of paliperidone long-acting injection. CONCLUSION: This case serves as a clinical reminder that dyskinesia can occur with all antipsychotic medications.

  18. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance.

    Science.gov (United States)

    Huang, Chien-Ning; Wang, Chau-Jong; Yang, Yi-Sun; Lin, Chih-Li; Peng, Chiung-Huei

    2016-01-01

    Diabetic nephropathy has a significant socioeconomic impact, but its mechanism is unclear and needs to be examined. Hibiscus sabdariffa polyphenols (HPE) inhibited high glucose-induced angiotensin II receptor-1 (AT-1), thus attenuating renal epithelial mesenchymal transition (EMT). Recently, we reported HPE inhibited dipeptidyl-peptidase-4 (DPP-4, the enzyme degrades type 1 glucagon-like peptide (GLP-1)), which mediated insulin resistance signals leading to EMT. Since free fatty acids can realistically bring about insulin resistance, using the palmitate-stimulated cell model in contrast with type 2 diabetic rats, in this study we examined if insulin resistance causes renal EMT, and the preventive effect of HPE. Our findings reveal that palmitate hindered 30% of glucose uptake. Treatment with 1 mg mL(-1) of HPE and the DPP-4 inhibitor linagliptin completely recovered insulin sensitivity and palmitate-induced signal cascades. HPE inhibited DPP-4 activity without altering the levels of DPP-4 and the GLP-1 receptor (GLP-1R). HPE decreased palmitate-induced phosphorylation of Ser307 of insulin receptor substrate-1 (pIRS-1 (S307)), AT-1 and vimentin, while increasing phosphorylation of phosphatidylinositol 3-kinase (pPI3K). IRS-1 knockdown revealed its essential role in mediating downstream AT-1 and EMT. In type 2 diabetic rats, it suggests that HPE concomitantly decreased the protein levels of DPP-4, AT-1, vimentin, and fibronectin, but reversed the in vivo compensation of GLP-1R. In conclusion, HPE improves insulin sensitivity by attenuating DPP-4 and the downstream signals, thus decreasing AT-1-mediated tubular-interstitial EMT. HPE could be an adjuvant to prevent diabetic nephropathy. PMID:26514092

  19. Mechanisms of ascorbyl radical formation in human platelet-rich plasma.

    Science.gov (United States)

    Shyu, Kou-Gi; Chang, Chao-Chien; Yeh, Yu-Chieh; Sheu, Joen-Rong; Chou, Duen-Suey

    2014-01-01

    Recently, many clinical reports have suggested that the ascorbyl free radical (Asc(∙)) can be treated as a noninvasive, reliable, real-time marker of oxidative stress, but its generation mechanisms in human blood have rarely been discussed. In this study, we used upstream substances, enzyme inhibitors, and free radical scavengers to delineate the mechanisms of Asc(∙) formation in human platelet-rich plasma (PRP). Our results show that the doublet signal was detected in PRP samples by using electron spin resonance, and the hyperfine splitting of the doublet signal was a(H) = 1.88 gauss and g-factor = 2.00627, which was determined to be the Asc(∙). We observed that the inhibitors of NADPH oxidase (NOX), cyclooxygenase (COX), lipoxygenase (LOX), cytochrome P450 (CYP450), mitochondria complex III, and nitric oxide synthase (NOS), but not xanthine oxidase, diminished the intensity of the Asc(∙) signal dose dependently. All enzyme inhibitors showed no obvious antioxidant activity during a Fenton reaction assay. In summary, the obtained data suggest that Asc(∙) formation is associated with NOX, COX, LOX, CYP450, eNOS, and mitochondria in human PRP. PMID:24696859

  20. Electronic paramagnetic resonance (EPR) for the study of ascorbyl radical and lipid radicals in marine organisms.

    Science.gov (United States)

    González, Paula Mariela; Aguiar, María Belén; Malanga, Gabriela; Puntarulo, Susana

    2013-08-01

    Electron paramagnetic resonance (EPR) spectroscopy detects the presence of radicals of biological interest, such as ascorbyl radical (A(•)) and lipid radicals. A(•) is easily detectable by EPR even in aqueous solution at room-temperature. Under oxidative conditions leading to changes in total ascorbate (AH(-)) content, the A(•)/AH(-) ratio could be used to estimate early oxidative stress in the hydrophilic milieu. This methodology was applied to a wide range of aquatic systems including algae, sea urchin, limpets, bivalves and fish, under physiological and oxidative stress conditions as well. The A(•)/AH(-) ratio reflected the state of one part of the oxidative defense system and provided an early and simple diagnosis of environmental stressing conditions. Oxidative damage to lipids was assessed by the EPR-sensitive adduct formation that correlates well with cell membrane damage with no interference from other biological compounds. Probe instability, tissue metabolism, and lack of spin specificity are drawback factors for employing EPR for in vivo determination of free radicals. However, the dependability of this technique, mostly by combining it with other biochemical strategies, enhances the value of these procedures as contributors to the knowledge of oxidative condition in aquatic organisms. PMID:23485428

  1. Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals

    Science.gov (United States)

    Ito, Shinji; Hyodo, Fuminori

    2016-02-01

    Highly water-soluble ubiquinone-0 (CoQ0) reacts with ascorbate monoanion (Asc) to mediate the production of ascorbyl free radicals (AFR). Using aqueous reaction mixture of CoQ0 and Asc, we obtained positively enhanced dynamic nuclear polarization (DNP)-magnetic resonance (MR) images of the AFR at low frequency (ranging from 515 to 530 MHz) of electron spin resonance (ESR) irradiation. The shape of the determined DNP spectrum was similar to ESR absorption spectra with doublet spectral peaks. The relative locational relationship of spectral peaks in the DNP spectra between the AFR (520 and 525 MHz), 14N-labeled carbamoyl-PROXYL (14N-CmP) (526.5 MHz), and Oxo63 (522 MHz) was different from that in the X-band ESR spectra, but were similar to that in the 300-MHz ESR spectra. The ratio of DNP enhancement to radical concentration for the AFR was higher than those for 14N-CmP, Oxo63, and flavin semiquinone radicals. The spectroscopic DNP properties observed for the AFR were essentially the same as those for AFR mediated by pyrroloquinoline quinone. Moreover, we made a success of in vivo DNP-MR imaging of the CoQ0-mediated AFR which was administered by the subcutaneous and oral injections as an imaging probe.

  2. Mechanisms of Ascorbyl Radical Formation in Human Platelet-Rich Plasma

    Directory of Open Access Journals (Sweden)

    Kou-Gi Shyu

    2014-01-01

    Full Text Available Recently, many clinical reports have suggested that the ascorbyl free radical (Asc∙ can be treated as a noninvasive, reliable, real-time marker of oxidative stress, but its generation mechanisms in human blood have rarely been discussed. In this study, we used upstream substances, enzyme inhibitors, and free radical scavengers to delineate the mechanisms of Asc∙ formation in human platelet-rich plasma (PRP. Our results show that the doublet signal was detected in PRP samples by using electron spin resonance, and the hyperfine splitting of the doublet signal was aH=1.88 gauss and g-factor = 2.00627, which was determined to be the Asc∙. We observed that the inhibitors of NADPH oxidase (NOX, cyclooxygenase (COX, lipoxygenase (LOX, cytochrome P450 (CYP450, mitochondria complex III, and nitric oxide synthase (NOS, but not xanthine oxidase, diminished the intensity of the Asc∙ signal dose dependently. All enzyme inhibitors showed no obvious antioxidant activity during a Fenton reaction assay. In summary, the obtained data suggest that Asc∙ formation is associated with NOX, COX, LOX, CYP450, eNOS, and mitochondria in human PRP.

  3. Assessment of penetration of Ascorbyl Tetraisopalmitate into biological membranes by molecular dynamics.

    Science.gov (United States)

    Machado, N C F; Dos Santos, L; Carvalho, B G; Singh, P; Téllez Soto, C A; Azoia, N G; Cavaco-Paulo, A; Martin, A A; Favero, P P

    2016-08-01

    The present work, involves the simulation of the transport of a vitamin C derivative, Ascorbyl Tetraisopalmitate (ATI), through human skin by molecular dynamics. Percutaneous absorption of the ATI molecule through the infundibulum, an important route of absorption into the hair follicle of the human skin, has been modeled and compared with the stratum corneum membrane. The comparative study was done using molecular dynamics with Martini force field. In infundibulum, a single ATI molecule require more time to penetrate, and the data obtained suggested that a high concentration of ATI molecule accelerated the process of penetration. In conclusion, the ATI molecule was found to have more affinity towards the stratum corneum as compared with the infundibulum, and it followed a straight pathway to penetrate (until 600ns of simulation). In the infundibulum, it showed less affinity, more mobility and followed a lateral pathway. Thus, this work contributes to a better understanding of the different molecular interactions during percutaneous absorption of active molecules in these two different types of biological membranes. PMID:27289538

  4. Lauroyl/palmitoyl glycol chitosan gels enhance skin delivery of magnesium ascorbyl phosphate.

    Science.gov (United States)

    Wang, Po-Chun; Huang, Yan-Ling; Hou, Sheng-Shu; Chou, Chen-Hsi; Tsai, Jui-Chen

    2013-01-01

    Palmitoyl glycol chitosan (GCP) hydrogel has been reported as erodible controlled-release systems for the delivery of both hydrophilic and hydrophobic molecules. In this study we prepared lauroyl/palmitoyl glycol chitosan (GCL/GCP) in gel form and evaluated their application for skin delivery of the hydrophilic compound, magnesium ascorbyl phosphate (MAP), which is widely used in cosmetic formulations. Release of MAP from the polymer gels was significantly decreased with increasing concentration of GCL/GCP in the formulations in comparison with glycol chitosan (GC). In both aqueous and 10% ethanol vehicles, MAP flux was increased 1.58- to 3.96-fold of 1% GC from 1% GCL/GCP. Increase in MAP flux was correlated to the increase in GCL/GCP concentration prepared in 10% ethanol vehicle. GCL/GCP, in either water or 10% ethanol vehicles, increased the skin penetration and skin deposition of MAP in comparison with GC, hydroxypropylmethylcellulose, and carbopol, while sustaining its release from the polymer gels. Both the enhancement in skin penetration/deposition and sustained release of MAP were depended on polymer concentration. Also, with increase in polymer concentration, epidermal to dermal drug deposition ratio tended to increase, which will be beneficial to its activity in the epidermis, such as inhibition of tyrosinase and protection from UV damage. These data suggested both GCL and GCP can be applied as delivery vehicles to improve percutaneous absorption of MAP. PMID:23931090

  5. Formulation and evaluation of sodium ascorbyl phosphate and kojic acid containing products / Anita van Rensburg

    OpenAIRE

    Van Rensburg, Anita

    2004-01-01

    The skin, our main defence against harmful substances such as wind, dirt, bacteria and ultraviolet radiation has also the important functions of preventing water loss, regulating temperature and receiving external stimuli. Skin colour varies depending on racial background, sex and the season of the year due to the exposure to sunlight. Skin colour is primarily determined by the amount of melanin produced by the melanocytes. For this reason, research for the development of white...

  6. Successful therapy of macrophage activation syndrome with dexamethasone palmitate.

    Science.gov (United States)

    Nakagishi, Yasuo; Shimizu, Masaki; Kasai, Kazuko; Miyoshi, Mari; Yachie, Akihiro

    2016-07-01

    Macrophage activation syndrome (MAS) is a severe and potential life-threatening complication of childhood systemic inflammatory disorders. Corticosteroids are commonly used as the first-line therapy for MAS. We report four patients with MAS who were successfully treated with dexamethasone palmitate (DexP), a liposome-incorporated dexamethasone, much more efficient than free corticosteroids. DexP effectively inhibited inflammation in MAS patients in whom the response to pulse methylprednisolone was not sufficient to manage their diseases. DexP was also effective as the first-line therapy for MAS. Based on these findings, DexP is an effective therapy in treating MAS patients. PMID:24754272

  7. Serotonin- and Dopamine-Related Gene Expression in db/db Mice Islets and in MIN6 β-Cells Treated with Palmitate and Oleate

    Science.gov (United States)

    Cataldo, L. R.; Olmos, P.; Galgani, J. E.; Valenzuela, R.; Aranda, E.; Cortés, V. A.; Santos, J. L.

    2016-01-01

    High circulating nonesterified fatty acids (NEFAs) concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS) through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependent β-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treated β-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob) seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets from db/db and wild-type (WT) mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6 β-cell was determined. Lower Maob expression was found in islets from db/db versus WT mice and in MIN6 β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (−25%; p < 0.0001) and oleate (−43%; p < 0.0001) were detected in MIN6 β-cells. In conclusion, known defects of GSIS in islets from db/db mice and MIN6 β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content. PMID:27366756

  8. Serotonin- and Dopamine-Related Gene Expression in db/db Mice Islets and in MIN6 β-Cells Treated with Palmitate and Oleate

    Directory of Open Access Journals (Sweden)

    L. R. Cataldo

    2016-01-01

    Full Text Available High circulating nonesterified fatty acids (NEFAs concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependent β-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treated β-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets from db/db and wild-type (WT mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6 β-cell was determined. Lower Maob expression was found in islets from db/db versus WT mice and in MIN6 β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (−25%; p<0.0001 and oleate (−43%; p<0.0001 were detected in MIN6 β-cells. In conclusion, known defects of GSIS in islets from db/db mice and MIN6 β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content.

  9. EPR characterization of ascorbyl and sulfur dioxide anion radicals trapped during the reaction of bovine Cytochrome c Oxidase with molecular oxygen

    Science.gov (United States)

    Yu, Michelle A.; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L.; Gerfen, Gary J.

    2010-04-01

    The reaction intermediates of reduced bovine Cytochrome c Oxidase (C cO) were trapped following its reaction with oxygen at 50 μs-6 ms by innovative freeze-quenching methods and studied by EPR. When the enzyme was reduced with either ascorbate or dithionite, distinct radicals were generated; X-band (9 GHz) and D-band (130 GHz) CW-EPR measurements support the assignments of these radicals to ascorbyl and sulfur dioxide anion radical ( SO2-rad ), respectively. The X-band spectra show a linewidth of 12 G for the ascorbyl radical and 11 G for the SO2-rad radical and an isotropic g-value of 2.005 for both species. The D-band spectra reveal clear distinctions in the g-tensors and powder patterns of the two species. The ascorbyl radical spectrum displays approximate axial symmetry with g-values of g x = 2.0068, g y = 2.0066, and g z = 2.0023. The SO2-rad radical has rhombic symmetry with g-values of g x = 2.0089, g y = 2.0052, and g z = 2.0017. When the contributions from the ascorbyl and SO2-rad radicals were removed, no protein-based radical on C cO could be identified in the EPR spectra.

  10. Protection from Palmitate-Induced Mitochondrial DNA Damage Prevents from Mitochondrial Oxidative Stress, Mitochondrial Dysfunction, Apoptosis, and Impaired Insulin Signaling in Rat L6 Skeletal Muscle Cells

    OpenAIRE

    Yuzefovych, Larysa V.; Solodushko, Viktoriya A.; Wilson, Glenn L.; Rachek, Lyudmila I.

    2011-01-01

    Saturated free fatty acids have been implicated in the increase of oxidative stress, mitochondrial dysfunction, apoptosis, and insulin resistance seen in type 2 diabetes. The purpose of this study was to determine whether palmitate-induced mitochondrial DNA (mtDNA) damage contributed to increased oxidative stress, mitochondrial dysfunction, apoptosis, impaired insulin signaling, and reduced glucose uptake in skeletal muscle cells. Adenoviral vectors were used to deliver the DNA repair enzyme ...

  11. Inhibition of uncoupling protein 2 with genipin exacerbates palmitate-induced hepatic steatosis

    Directory of Open Access Journals (Sweden)

    Ma Shuangtao

    2012-11-01

    Full Text Available Abstract Background Uncoupling protein 2 (UCP2 was reported to be involved in lipid metabolism through regulating the production of superoxide anion. However, the role of UCP2 in hepatocytes steatosis has not been determined. We hypothesized that UCP2 might regulate hepatic steatosis via suppressing oxidative stress. Results We tested this hypothesis in an in vitro model of hepatocytic steatosis in HepG2 cell lines induced by palmitic acid (PA. We found that treatment with PA induced an obvious lipid accumulation in HepG2 cells and a significant increase in intracellular triglyceride content. Moreover, the specific inhibition of UCP2 by genipin remarkably exacerbated PA-induced hepatocytes steatosis. Interestingly, the PA-induced superoxide overproduction can also be enhanced by incubation with genipin. In addition, administration with the antioxidant tempol abolished genipin-induced increase in intracellular lipid deposition. We further found that genipin significantly increased the protein expression of fatty acid translocase (FAT/CD36. Conclusions These findings suggest that UCP2 plays a protective role in PA-induced hepatocytic steatosis through ameliorating oxidative stress.

  12. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to beta-palmitate and increased calcium absorption pursuant to Article 14 of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    -palmitate and increased calcium absorption. The scope of the application was proposed to fall under a health claim referring to children’s development and health. The food constituent that is the subject of the health claim is beta-palmitate, a structured triglyceride with a high content of palmitic acid at the sn-2......Following an application from IDACE, submitted pursuant to Article 14 of Regulation (EC) No 1924/2006 via the Competent Authority of France, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver an opinion on the scientific substantiation of a health claim related to beta......, including healthy infants consuming follow-on formula, preterm infants and infants needing foods for particular nutritional uses including foods for special medical purposes. The Panel considers that an increase in calcium absorption might be a beneficial physiological effect. In weighing the evidence...

  13. Paliperidone palmitate injection for the acute and maintenance treatment of schizophrenia in adults

    Directory of Open Access Journals (Sweden)

    Kim S

    2012-07-01

    Full Text Available Shiyun Kim,1 Hugo Solari,2 Peter J Weiden,2 Jeffrey R Bishop11Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, 2Department of Psychiatry, University of Illinois at Chicago College of Medicine, Chicago, IL, USAPurpose: To review the use of paliperidone palmitate in treatment of patients with schizophrenia.Methods: Published clinical trial data for the development and utilization of paliperidone palmitate for the treatment of schizophrenia were assessed in this review. Four short-term, randomized, double-blind, placebo-controlled trials investigated the efficacy of paliperidone palmitate in acute exacerbation of schizophrenia. Paliperidone palmitate was also studied as a maintenance treatment to prevent or delay relapse in stable schizophrenia. In addition, paliperidone palmitate was compared to risperidone long-acting injection for noninferiority in three studies.Results: Paliperidone palmitate has been shown to be effective in reducing symptoms as measured by the Positive and Negative Syndrome Scale total scores in the four acute treatment studies. In the maintenance treatment studies, paliperidone palmitate was found to be more effective than placebo in preventing or delaying the time to first relapse in stable schizophrenia patients. In addition, paliperidone palmitate was shown to be noninferior to risperidone long-acting injection in two studies. It was shown to be reasonably well tolerated in all clinical trials. Acute treatment phase should be initiated with a dose of 234 mg on day one and 156 mg on day eight, followed by a recommended monthly maintenance dose of 39–234 mg based on efficacy and tolerability results from the clinical studies.Conclusion: Providing an optimal long-term treatment can be challenging. Paliperidone palmitate can be used as an acute treatment even in outpatient setting, and it has shown to be well tolerated by patients. Also, it does not require overlapping oral

  14. Anti-inflammatory and antifibrotic effects of methyl palmitate

    International Nuclear Information System (INIS)

    Methyl palmitate (MP) has been shown earlier to inhibit Kupffer cells and rat peritoneal macrophages. To evaluate the potential of MP to inhibit the activation of other macrophages, RAW cells (macrophages of alveolar origin) were treated with varying concentrations of MP (0.25, 0.5, 1 mM). Assessment of cytotoxicity using MTT assay revealed that 0.25 and 0.5 mM are not toxic to RAW cells. MP was able to inhibit the phagocytic function of RAW cells. Treatment of cells with MP 24 hours prior to LPS stimulation significantly decreased nitric oxide release and altered the pattern of cytokines release; there was a significant decrease in TNF-α and a significant increase in IL-10 compared to the controls. However, there is a non-significant change in IL-6 level. Furthermore, phosphorylation of inhibitory kappa B (IκBα) protein was significantly decreased in RAW cells treated with 0.5 mM MP after LPS stimulation. Based upon the in-vitro results, it was examined whether MP treatment will be effective in preventing bleomycin-induced lung inflammation and fibrosis in-vivo. Bleomycin given by itself caused destruction of the lung architecture characterized by pulmonary fibrosis with collapse of air alveoli and emphysematous. Bleomycin induced a significant increase in hydroxyproline level and activated NF-κB, p65 expression in the lung. MP co-treatment significantly ameliorated bleomycin effects. These results suggest that MP has a potential of inhibiting macrophages in general. The present study demonstrated for the first time that MP has anti-inflammatory and antifibrotic effect that could be through NF-kB inhibition. Thus MP like molecule could be a promising anti-inflammatory and antifibrotic drug. - Research highlights: →Methyl palmitate is a universal macrophage inhibitor. →It could be a promising nucleus of anti-inflammatory and antifibrotic drugs. →The underlying mechanism of these effects could be through NF-kB inhibition.

  15. Amelioration of palmitate-induced metabolic dysfunction in L6 muscle cells expressing low levels of receptor-interacting protein 140.

    Science.gov (United States)

    Constantinescu, Silvana; Turcotte, Lorraine P

    2015-11-01

    We have shown that reduced expression of receptor-interacting protein 140 (RIP140) alters the regulation of fatty-acid (FA) oxidation in muscle. To determine whether a high level of FA availability alters the effects of RIP140 on metabolic regulation, L6 myotubes were transfected with or without RNA interference oligonucleotide sequences to reduce RIP140 expression, and then incubated with high levels of palmitic acid, with or without insulin. High levels of palmitate reduced basal (53%-58%) and insulin-treated (24%-44%) FA uptake and oxidation, and increased basal glucose uptake (88%). In cells incubated with high levels of palmitate, low RIP140 increased basal FA uptake and insulin-treated FA oxidation and glucose uptake, and decreased basal glucose uptake and insulin-treated FA uptake. Under basal conditions, low RIP140 increased the mRNA content of FAT/CD36 (159%) and COX4 (61%), as well as the protein content of Nur77 (68%), whereas the mRNA expression of FGF21 (50%) was decreased, as was the protein content of CPT1b (35%) and FGF21 (44%). Under insulin-treated conditions, low RIP140 expression increased the mRNA content of MCAD (84%) and Nur77 (84%), as well as the protein content of Nur77 (23%). Thus, a low level of RIP140 restores the rates of FA uptake in the basal state, in part via a reduction in upstream insulin signaling. Our data also indicate that the protein expression of Nur77 may be modulated by RIP140 when muscle cells are metabolically challenged by high levels of palmitate. PMID:26406163

  16. Lipase-catalyzed synthesis of L-ascorbyl octanoate in non-aqueous phase and its structural characterization%非水相酶促合成L-抗坏血酸辛酸酯及其结构表征

    Institute of Scientific and Technical Information of China (English)

    张淑青; 潘丽军; 姜绍通; 操丽丽

    2015-01-01

    L-ascorbyl octanoate was synthesized through lipase-catalyzed esterification in organic sys-tem with mid-chain fatty acid n-octanoic acid as acyl donor. The reaction parameters that highly influ-enced the conversion rate of L-ascorbic acid were selected as main variables to design the response sur-face experiment on the basis of preliminary experiments, then a regression model was established and the optimal synthesis conditions were obtained. The results indicated that reaction time, reaction tempera-ture, interaction between reaction time and reaction temperature and interaction between reaction time and substrate concentration had significant effects on the conversion rate of L-ascorbic acid ( p<0 . 05 ) , and the regression model could be used to predict the conversion rate of L-ascorbic acid. The optimal enzymatic synthesis conditions of L-ascorbyl octanoate were obtained as follows:reaction time 11. 45 h, substrate(L-ascorbic acid) concentration 0. 24 mol/L, reaction temperature 55. 3℃, dosage of lipase ( based on the mass of L-ascorbic acid) 19. 18%. Under these conditions,the conversion rate of L-ascor-bic acid reached 83. 31%. In addition, the product was characterized by IR, MS, 1 H NMR and 13 C NMR, and the result showed that n-octanoic acid was introduced into the sixth hydroxyl of L-ascorbic acid.%以中链脂肪酸正辛酸为酰基供体,在有机相体系中利用脂肪酶催化酯化反应合成L-抗坏血酸辛酸酯。根据初步试验结果,选取对L-抗坏血酸酯化转化率影响显著的因素,进行响应面试验设计,建立回归模型,得到最优参数组合。结果表明:反应时间、反应温度、反应时间和反应温度的交互作用以及反应时间和底物浓度的交互作用对 L -抗坏血酸酯化转化率均有显著影响(p <0.05),回归模型可用。 L-抗坏血酸辛酸酯酶法合成最优工艺条件为反应时间11.45 h、底物(L-抗坏血酸)浓度0.24 mol/L、反应温度55.3℃、脂

  17. Fatty Acid Composition of Agaricus bisporus (Lange) Sing.

    OpenAIRE

    Aktümsek, Abdurrahman; ÖZTÜRK, Celâleddin; KAŞIK, Giyasettin

    1998-01-01

    Fatty acid compositions of fruit body, stem, lamellae and total of Agaricus bisporus were seperately analysed by GLC. In the all fatty acid compositions of A. bisporus, linoleic acid were predominant. Percentages of linoleic acid were varied between 53.45 - 68.78%. It was showed that the other major fatty acids were palmitic, oleic and stearic acid in the fatty acid compositions.

  18. High glucose and palmitate increases bone morphogenic protein 4 expression in human endothelial cells.

    Science.gov (United States)

    Hong, Oak-Kee; Yoo, Soon-Jib; Son, Jang-Won; Kim, Mee-Kyoung; Baek, Ki-Hyun; Song, Ki-Ho; Cha, Bong-Yun; Jo, Hanjoong; Kwon, Hyuk-Sang

    2016-03-01

    Here, we investigated whether hyperglycemia and/or free fatty acids (palmitate, PAL) aff ect the expression level of bone morphogenic protein 4 (BMP4), a proatherogenic marker, in endothelial cells and the potential role of BMP4 in diabetic vascular complications. To measure BMP4 expression, human umbilical vein endothelial cells (HUVECs) were exposed to high glucose concentrations and/or PAL for 24 or 72 h, and the effects of these treatments on the expression levels of adhesion molecules and reactive oxygen species (ROS) were examined. BMP4 loss-of-function status was achieved via transfection of a BMP4-specific siRNA. High glucose levels increased BMP4 expression in HUVECs in a dose-dependent manner. PAL potentiated such expression. The levels of adhesion molecules and ROS production increased upon treatment with high glucose and/or PAL, but this eff ect was negated when BMP4 was knocked down via siRNA. Signaling of BMP4, a proinflammatory and pro-atherogenic cytokine marker, was increased by hyperglycemia and PAL. BMP4 induced the expression of infl ammatory adhesion molecules and ROS production. Our work suggests that BMP4 plays a role in atherogenesis induced by high glucose levels and/or PAL. PMID:26937213

  19. Berberine treatment attenuates the palmitate-mediated inhibition of glucose uptake and consumption through increased 1,2,3-triacyl-sn-glycerol synthesis and accumulation in H9c2 cardiomyocytes.

    Science.gov (United States)

    Chang, Wenguang; Chen, Li; Hatch, Grant M

    2016-04-01

    Dysfunction of lipid metabolism and accumulation of 1,2-diacyl-sn-glycerol (DAG) may be a key factor in the development of insulin resistance in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid extract that has shown promise as a hypoglycemic agent in the management of diabetes in animal and human studies. However, its mechanism of action is not well understood. To determine the effect of BBR on lipid synthesis and its relationship to insulin resistance in H9c2 cardiomyocytes, we measured neutral lipid and phospholipid synthesis and their relationship to glucose uptake. Compared with controls, BBR treatment stimulated 2-[1,2-(3)H(N)]deoxy-D-glucose uptake and consumption in palmitate-mediated insulin resistant H9c2 cells. The mechanism was though an increase in protein kinase B (AKT) activity and GLUT-4 glucose transporter expression. DAG accumulated in palmitate-mediated insulin resistant H9c2 cells and treatment with BBR reduced this DAG accumulation and increased accumulation of 1,2,3-triacyl-sn-glycerol (TAG) compared to controls. Treatment of palmitate-mediated insulin resistant H9c2 cells with BBR increased [1,3-(3)H]glycerol and [1-(14)C]glucose incorporation into TAG and reduced their incorporation into DAG compared to control. In addition, BBR treatment of these cells increased [1-(14)C]palmitic acid incorporation into TAG and decreased its incorporation into DAG compared to controls. BBR treatment did not alter phosphatidylcholine or phosphatidylethanolamine synthesis. The mechanism for the BBR-mediated decreased precursor incorporation into DAG and increased incorporation into TAG in palmitate-incubated cells was an increase in DAG acyltransferase-2 activity and its expression and a decrease in TAG hydrolysis. Thus, BBR treatment attenuates palmitate-induced reduction in glucose uptake and consumption, in part, through reduction in cellular DAG levels and accumulation of TAG in H9c2 cells. PMID:26774040

  20. The Production of Nitric Oxide, IL-6, and TNF-Alpha in Palmitate-Stimulated PBMNCs Is Enhanced through Hyperglycemia in Diabetes

    Directory of Open Access Journals (Sweden)

    Caroline Maria Oliveira Volpe

    2014-01-01

    Full Text Available We examined nitric oxide (NO, IL-6, and TNF-α secretion from cultured palmitate-stimulated PBMNCs or in the plasma from type 2 diabetes mellitus (T2MD patients or nondiabetic (ND controls. Free fatty acids (FFA have been suggested to induce chronic low-grade inflammation, activate the innate immune system, and cause deleterious effects on vascular cells and other tissues through inflammatory processes. The levels of NO, IL-6, TNF-α, and MDA were higher in supernatant of palmitate stimulated blood cells (PBMNC or from plasma from patients. The results obtained in the present study demonstrated that hyperglycemia in diabetes exacerbates in vitro inflammatory responses in PBMNCs stimulated with high levels of SFA (palmitate. These results suggest that hyperglycemia primes PBMNCs for NO, IL-6, and TNF-alpha secretion under in vitro FFA stimulation are associated with the secretion of inflammatory biomarkers in diabetes. A combined therapy targeting signaling pathways activated by hyperglycemia in conjunction with simultaneous control of hyperglycemia and hypertriglyceridemia would be suggested for controlling the progress of diabetic complications.

  1. Effect of L-ascorbyl Palmitate on the Stability of Frying Oil%L-抗坏血酸棕榈酸酯在煎炸油中应用研究

    Institute of Scientific and Technical Information of China (English)

    何松; 林富强; 陈永恒

    2010-01-01

    油炸食品用油随着煎炸时间的延长,油脂的品质逐渐劣变,其对人体的健康存在危害.由L-抗坏血酸棕榈酸酯复配而成的复合稳定剂,能明显延长煎炸用油的使用寿命,效果好于其他单体抗氧化剂.

  2. 非水相中脂肪酶催化合成L-抗坏血酸棕榈酸酯%Lipase-catalyzed synthesis of L-ascorbyl palmitate in non-aqueous medium

    Institute of Scientific and Technical Information of China (English)

    姜新慧; 晏日安; 曾永青

    2010-01-01

    研究了洋葱伯克霍尔德菌脂肪酶在非水相中催化合成L-抗坏血酸棕榈酸酯(L-AP).酶用量固定为L-抗坏血酸质量的18.7%,底物L-抗坏血酸与棕榈酸的摩尔比限定在1:2,对影响酶催化合成的因素如溶剂、反应时间、温度、棕榈酸浓度、分子筛用量和摇床转速进行研究.L-AP的最佳合成条件:6.08 mmol L-抗坏血酸、12.19 mmol棕榈酸,0.20 g脂肪酶,40 mL叔丁醇,4A分子筛用量4 g,恒温55℃,摇床转速为150 r/min,反应时间48 h,L-AP产率达87.6%.电动搅拌下酶催化合成L-AP,酶重复使用10次,最高产率为89.5%.

  3. 非水相酶促L-抗坏血酸棕榈酸酯合成的动力学%Kinetic Study on Lipase Catalyzed Synthesis of L-ascorbyl Palmitate in 2-methyl-2-butanol

    Institute of Scientific and Technical Information of China (English)

    汤鲁宏; 张浩; 孙云飞

    2000-01-01

    对叔戊醇中酶法合成L-抗坏血酸棕榈酸酯(L-AP)的反应动力学进行了研究,对影响其反应动力学的因素(转速、温度、水分活度、酶质量分数和底物浓度)进行了探讨,确定了最有效的酶促反应环境.即转速为200 r/min,温度为55 ℃,水分活度为0,加酶量为20%.并对底物进行了比较,得到了对酶亲和力最大的底物--棕榈酸甲酯.

  4. 食用油中L-抗坏血酸棕榈酸酯含量测定方法研究%A Determination Method of Ascorbyl Palmitate in Edible Oil

    Institute of Scientific and Technical Information of China (English)

    黄少强; 刘志同

    2006-01-01

    研究了直接滴定法测定食用油中L-抗坏血酸棕榈酸酯的方法.用甲醇对油样中L-抗坏血酸棕榈酸酯进行提取,对提取物在酸性条件下水解,用水解产物对2,6-二氯酚靛酚钠溶液进行滴定.该方法灵敏性高、准确可靠.

  5. The Determination of L-ascorbyl Palmitate in Cosmetic by Thin Layer Chromatography Fluorometry%化妆品中L-抗坏血酸棕榈酸酯的薄层色谱分析

    Institute of Scientific and Technical Information of China (English)

    胡波年; 谢华林; 胡汉祥; 李爱阳

    2004-01-01

    应用荧光薄层扫描法测定了化妆品中L-抗坏血酸棕榈酸酯(AP)的含量.选用高效硅胶G薄层板,以三氯甲烷-甲醇-乙酸-水(体积比:80∶20∶8∶2)为展开剂,激发波长λ=365 nm,AP在1.0~16.0 μg范围内呈良好的线性关系,回收率为96.4%~105.0%,RSD(相对标准偏差)=1.31%,该法简单、灵敏、结果准确、重现性好,明显优于目前的其它各种分析方法,可用于化妆品的质量控制.

  6. Spectrophotometric Determination of L-Ascorbyl Palmitate with Silicamolybdenum Heteropoly Blue%硅钼兰分光光度法测定微量L-抗坏血酸棕榈酸酯

    Institute of Scientific and Technical Information of China (English)

    汤鲁宏; 张浩

    2000-01-01

    论证了硅钼杂多兰反应在有机介质中进行的可行性,研究了L-抗坏血酸棕榈酸酯(L-AP)在有机介质中对硅钼杂多兰形成的影响,优选了测定条件,建立了测定其含量的硅钼兰分光光度法.该法显色体系的最大吸收波长在720nm,检测范围为0.25-2.0mg/50ml,相对标准偏差为0.43%,回收率为99.4%~100.4%.

  7. L-抗坏血酸-6-榈酸脂的抗氧化性及其合成%Antioxidation and Preparation of L-ascorbyl 6-palmitate

    Institute of Scientific and Technical Information of China (English)

    孙涛; 赵红丽; 王大力; 琚行松

    2005-01-01

    L-抗坏血酸-6-棕榈酸脂是一种新型的脂溶性抗氧化剂,因其具有安全、高效、无毒的特点,所以受到普遍关注.本文对L-抗坏血酸-6-棕榈酸脂的功能、合成等方面进行了综述.

  8. Study on Synthesis Technology of L-ascorbyl-2-phosphate-6-palmitate%L-抗坏血酸-2-磷酸-6-棕榈酸酯的合成工艺研究

    Institute of Scientific and Technical Information of China (English)

    刘建平; 欧阳克氙; 罗晓燕; 蔡力创; 郭雄昌

    2013-01-01

    以L-抗坏血酸-2-磷酸酯和棕榈酰氯为原料,DMAP为催化剂,酰氯化法合成L、抗坏血酸-2-磷酸石-棕榈酸酯.研究了L-抗坏血酸-2-磷酸酯与棕榈酰氯的摩尔比、反应温度、反应时间等工艺条件对收率的影响.工艺条件优化后,收率达到85%.

  9. Selection of Suitable Reaction Media and Lipase:Synthesize of L-ascorbyl Palmitate Catalyzed by Lipase%催化合成L-抗坏血酸棕榈酸酯的反应媒体和脂肪酶

    Institute of Scientific and Technical Information of China (English)

    汤鲁宏; 张浩

    2000-01-01

    对水、庚烷和叔戊醇等几种反应媒体和NOVO435(Candida antartica), MML(Mucor miehei), LIPOLASE , PPL(Porcine pancreas)等数种脂肪酶对L-抗坏血酸棕榈酸酯合成反应的影响进行了系统的研究.结果表明,反应媒体及脂肪酶品种对反应影响极大.所研究的几种反应媒体中,叔戊醇是唯一适用于该反应的反应媒体.在所研究的几种脂肪酶中,NOVO 435表现出了良好的催化活性;MML也有一定活性,但不如NOVO 435,其相对活力只有NOVO 435的20%,其余酶种则无催化活性.

  10. Pharmacoeconomic analysis of paliperidone palmitate for treating schizophrenia in Greece

    Directory of Open Access Journals (Sweden)

    Einarson Thomas R

    2012-07-01

    Full Text Available Abstract Background Patients having chronic schizophrenia with frequent relapses and hospitalizations represent a great challenge, both clinically and financially. Risperidone long-acting injection (RIS-LAI has been the main LAI atypical antipsychotic treatment in Greece. Paliperidone palmitate (PP-LAI has recently been approved. It is dosed monthly, as opposed to biweekly for RIS-LAI, but such advantages have not yet been analysed in terms of economic evaluation. Purpose To compare costs and outcomes of PP-LAI versus RIS-LAI in Greece. Methods A cost-utility analysis was performed using a previously validated decision tree to model clinical pathways and costs over 1 year for stable patients started on either medication. Rates were taken from the literature. A local expert panel provided feedback on treatment patterns. All direct costs incurred by the national healthcare system were obtained from the literature and standard price lists; all were inflated to 2011 costs. Patient outcomes analyzed included average days with stable disease, numbers of hospitalizations, emergency room visits, and quality-adjusted life-years (QALYs. Results The total annual healthcare cost with PP-LAI was €3529; patients experienced 325 days in remission and 0.840 QALY; 28% were hospitalized and 15% received emergency room treatment. With RIS-LAI, the cost was €3695, patients experienced 318.6 days in remission and 0.815 QALY; 33% were hospitalized and 17% received emergency room treatment. Thus, PP-LAI dominated RIS-LAI. Results were generally robust in sensitivity analyses with PP-LAI dominating in 74.6% of simulations. Results were sensitive to the price of PP-LAI. Conclusions PP-LAI appears to be a cost-effective option for treating chronic schizophrenia in Greece compared with RIS-LAI since it results in savings to the health care system along with better patient outcomes.

  11. Comparative Evaluation of Diagnostic Tools for Oxidative Deterioration of Polyunsaturated Fatty Acid-Enriched Infant Formulas during Storage

    Directory of Open Access Journals (Sweden)

    Caroline Siefarth

    2013-12-01

    than achievable via conventional methods. In detail, oxidative variances between the formulations revealed that lipid oxidation was low when copper was administered in an encapsulated form and when antioxidants (vitamin E, ascorbyl palmitate were present.

  12. Tea Flavanols Block Advanced Glycation of Lens Crystallins Induced by Dehydroascorbic Acid.

    Science.gov (United States)

    Zhu, Yingdong; Zhao, Yantao; Wang, Pei; Ahmedna, Mohamed; Ho, Chi-Tang; Sang, Shengmin

    2015-01-20

    Growing evidence has shown that ascorbic acid (ASA) can contribute to protein glycation and the formation of advanced glycation end products (AGEs), especially in the lens. The mechanism by which ascorbic acid can cause protein glycation probably originates from its oxidized form, dehydroascorbic acid (DASA), which is a reactive dicarbonyl species. In the present study, we demonstrated for the first time that four tea flavanols, (-)-epigallocatechin 3-O-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin 3-O-gallate (ECG), and (-)-epicatechin (EC), could significantly trap DASA and consequently form 6C- or 8C-ascorbyl conjugates. Among these four flavanols, EGCG exerted the strongest trapping efficacy by capturing approximate 80% of DASA within 60 min. We successfully purified and identified seven 6C- or 8C-ascorbyl conjugates of flavanols from the chemical reaction between tea flavanols and DASA under slightly basic conditions. Of which, five ascorbyl conjugates, EGCGDASA-2, EGCDASA-2, ECGDASA-1, ECGDASA-2 and ECDASA-1, were recognized as novel compounds. The NMR data showed that positions 6 and 8 of the ring A of flavanols were the major active sites for trapping DASA. We further demonstrated that tea flavanols could effectively inhibit the formation of DASA-induced AGEs via trapping DASA in the bovine lens crystallin-DASA assay. In this assay, 8C-ascorbyl conjugates of flavanols were detected as the major adducts using LC-MS. This study suggests that daily consumption of beverages containing tea flavanols may prevent protein glycation in the lens induced by ascorbic acid and its oxidized products. PMID:25437149

  13. Efficacy of transdermal magnesium ascorbyl phosphate delivery after ultrasound treatment with microbubbles in gel-type surrounding medium in mice.

    Science.gov (United States)

    Liao, Ai-Ho; Lu, Ying-Jui; Hung, Chi-Ray; Yang, Meng-Yu

    2016-04-01

    Liquid microemulsions appropriate for topical application were obtained by increasing their viscosity through the addition of thickening agents. The present study first assessed the usefulness of ultrasound (US) plus US contrast agent, microbubbles (MBs), in agarose gel for enhancing transdermal drug delivery. The effect of US plus MBs in agarose gel on the penetration of the skin by magnesium ascorbyl phosphate (MAP) was explored both in vitro and in vivo. In the in vitro experiments, the stability of MBs was investigated by examining the penetration of MAP by the model drug, Evans blue, in two media: an agarose phantom and pig skin. The penetration depth in the agarose phantom and pig skin increased by 40% and 195%, respectively, when treated with US plus MBs in 0.1% agarose solution combined with MAP (UMB1), and by 48% and 206%, respectively, when treated with US plus MBs in 0.15% agarose solution and MAP (UMB2). The skin-whitening effects in C57BL/6J mice in the UMB1 and UMB2 groups over a 4-week experimental period were significantly increased by 63% and 70%, respectively, in the fourth week. The findings of this study suggest that the survival of MBs with US is affected by the viscosity of the surrounding medium, and that in mice, treatment with US plus MBs in a suitable agarose gel can increase skin permeability and enhance transdermal MAP delivery. PMID:26838887

  14. Insights antifibrotic mechanism of methyl palmitate: Impact on nuclear factor kappa B and proinflammatory cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Mantawy, Eman M.; Tadros, Mariane G. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); Awad, Azza S. [Department of Pharmacology and Toxicology, Faulty of Pharmacy, Al-Azhar University, Cairo (Egypt); Hassan, Dina A.A. [Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo (Egypt); El-Demerdash, Ebtehal, E-mail: ebtehal_dm@yahoo.com [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2012-01-01

    Fibrosis accompanies most chronic liver disorders and is a major factor contributing to hepatic failure. Therefore, the need for an effective treatment is evident. The present study was designed to assess the potential antifibrotic effect of MP and whether MP can attenuate the severity of oxidative stress and inflammatory response in chronic liver injury. Male albino rats were treated with either CCl{sub 4} (1 ml/kg, twice a week) and/or MP (300 mg/kg, three times a week) for six weeks. CCl{sub 4}-intoxication significantly increased liver weight, serum aminotransferases, total cholesterol and triglycerides while decreased albumin level and these effects were prevented by co-treatment with MP. As indicators of oxidative stress, CCl{sub 4}-intoxication caused significant glutathione depletion and lipid peroxidation while MP co-treatment preserved them within normal values. As markers of fibrosis, hydroxyproline content and α-SMA expression increased markedly in the CCl{sub 4} group and MP prevented these alterations. Histopathological examination by both light and electron microscope further confirmed the protective efficacy of MP. To elucidate the antifibrotic mechanisms of MP, the expression of NF-κB, iNOS and COX-2 and the tissue levels of TNF-α and nitric oxide were assessed; CCl{sub 4} increased the expression of NF-κB and all downstream inflammatory cascade while MP co-treatment inhibited them. Collectively these findings indicate that MP possesses a potent antifibrotic effect which may be partly a consequence of its antioxidant and anti-inflammatory properties. -- Highlights: ► Methyl palmitate is free fatty acid methyl ester. ► It possesses a strong antifibrotic effect. ► It inhibits NF-κB and the consequent proinflammatory and oxidative stress response.

  15. Alpha-synuclein gene deletion decreases brain palmitate uptake and alters the palmitate metabolism in the absence of alpha-synuclein palmitate binding

    DEFF Research Database (Denmark)

    Golovko, Mikhail Y; Færgeman, Nils J.; Cole, Nelson B;

    2005-01-01

    Alpha-synuclein is an abundant protein in the central nervous system that is associated with a number of neurodegenerative disorders, including Parkinson's disease. Its physiological function is poorly understood, although recently it was proposed to function as a fatty acid binding protein. To b....... Thus, alpha-synuclein has effects on 16:0 uptake and metabolism similar to those of an FABP, but unlike FABP, it does not directly bind 16:0; hence, the mechanism underlying these effects is different from that of a classical FABP....

  16. Interaction of the 2,6-dimethoxysemiquinone and ascorbyl free radicals with Ehrlich ascites cells: a probe of cell-surface charge.

    OpenAIRE

    Pethig, R; Gascoyne, P R; McLaughlin, J. A.; Szent-Györgyi, A

    1984-01-01

    The rate of quenching by Ehrlich ascites cells of anionic 2,6-dimethoxy-p-semiquinone and ascorbyl free radicals is investigated as a function of cell concentration, the blocking of cell-surface sulfhydryl groups by N-ethylmaleimide, and the reduction of cell-surface charge by neuraminidase. The rate of quenching is found to be proportional to cell viability and to the number of free cell-surface sulfhydryl groups. The enzymatic action of neuraminidase results in an increase of the free radic...

  17. l-Ascorbyl-2-phosphate attenuates NF-κB signaling in SZ95 sebocytes without affecting IL-6 and IL-8 secretion

    OpenAIRE

    Ikeno, Hiroshi; Apel, Mara; Zouboulis, Christos; Luger, Thomas A; Böhm, Markus

    2015-01-01

    Acne is the most common inflammatory skin disease. Interleukin-1 (IL-1) is at the beginning of the cytokine signaling cascade and may be involved in the pathogenesis of this disorder. It activates redox-sensitive transcription factors, which induce IL-6 and IL-8 expression. Interestingly, l-ascorbyl-2-phosphate (APS) was shown to have beneficial effects in patients with acne vulgaris. The mechanism of action of this agent remains unknown. Here, we investigated if APS attenuates IL-1β- or TNF-...

  18. Re-evaluation of the Optimum Dietary Vitamin C Requirement in Juvenile Eel, Anguilla japonica by Using L-ascorbyl-2-monophosphate

    OpenAIRE

    Bae, Jun-Young; Park, Gun-Hyun; Yoo, Kwang-Yeol; Lee, Jeong-Yeol; Kim, Dae-Jung; Bai, Sungchul C.

    2012-01-01

    This study was conducted to re-evaluate the dietary vitamin C requirement in juvenile eel, Anguilla japonica by using L-ascorbyl-2-monophosphate (AMP) as the vitamin C source. Five semi-purified experimental diets were formulated to contain 0 (AMP0), 30 (AMP24), 60 (AMP52), 120 (AMP108) and 1,200 (AMP1137) mg AMP kg-1 diet on a dry matter basis. Casein and defatted fish meal were used as the main protein sources in the semi-purified experimental diets. After a 4-week conditioning period, fish...

  19. Effects of antioxidants on the lipase-catalyzed acidolysis during production of structured lipids

    DEFF Research Database (Denmark)

    Xu, Xuebing; Timm Heinrich, Maike; Nielsen, Nina Skall;

    2005-01-01

    In the production process of structured lipids, the influence of the addition of antioxidants before enzymatic acidolysis was investigated. Eight different antioxidants were screened: butylated hydroxyanisole, butylated hydroxytoluene, propyl gallate, ascorbyl palmitate, citric acid, EDTA......, a tocopherol blend and lecithin. As substrates, oils with different degrees of unsaturation (rapeseed, safflower or fish oil) as well as caprylic and capric acids were used. Enzyme activity (measured as percent incorporation of caprylic/capric acid into the oils) was not significantly influenced...

  20. Aspects of the regulation of long-chain fatty acid oxidation in bovine liver

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-09-01

    Factors involved in regulation of bovine hepatic fatty acid oxidation were examined using liver slices. Fatty acid oxidation was measured as the conversion of l-(/sup 14/C) palmitate to /sup 14/CO/sub 2/ and total (/sup 14/C) acid-soluble metabolites. Extended (5 to 7 d) fasting of Holstein cows had relatively little effect on palmitate oxidation to acid-soluble metabolites by liver slices, although oxidation to CO/sup 2/ was decreased. Feeding a restricted roughage, high concentrate ration to lactating cows resulted in inhibition of palmitate oxidation. Insulin, glucose, and acetate inhibited palmitate oxidation by bovine liver slices. The authors suggest the regulation of bovine hepatic fatty acid oxidation may be less dependent on hormonally induced alterations in enzyme activity as observed in rat liver and more dependent upon action of rumen fermentation products or their metabolites on enzyme systems involved in fatty acid oxidation.

  1. Uncoupling effect of fatty acids on heart muscle mitochondria and submitochondrial particles.

    Science.gov (United States)

    Dedukhova, V I; Mokhova, E N; Skulachev, V P; Starkov, A A; Arrigoni-Martelli, E; Bobyleva, V A

    1991-12-16

    The effect of ATP/ADP-antiporter inhibitors on palmitate-induced uncoupling was studied in heart muscle mitochondria and inside-out submitochondrial particles. In both systems palmitate is found to decrease the respiration-generated membrane potential. In mitochondria, this effect is specifically abolished by carboxyatractylate (CAtr) a non-penetrating inhibitor of antiporter. In submitochondrial particles, CAtr does not abolish the palmitate-induced potential decrease. At the same time, bongkrekic acid, a penetrating inhibitor of the antiporter, suppresses the palmitate effect on the potential both in mitochondria and particles. Palmitoyl-CoA which is known to inhibit the antiporter in mitochondria as well as in particles decreases the palmitate uncoupling efficiency in both these systems. These data are in agreement with the hypothesis that the ATP/ADP-antiporter is involved in the action of free fatty acids as natural uncouplers of oxidative phosphorylation. PMID:1765167

  2. Palmitate and stearate binding to human serum albumin. Determination of relative binding constants

    DEFF Research Database (Denmark)

    Vorum, H; Fisker, K; Honoré, B

    1997-01-01

    Multiple binding equilibria of two apparently insoluble ligands, palmitate and stearate, to defatted human serum albumin were studied in a 66 mM sodium phosphate buffer (pH 7.4) at 37 degrees C, by determination of dialytic exchange rates of ligands among identical equilibrium solutions. The expe...

  3. Differential effects of the ascorbyl and tocopheryl derivative on the methamphetamine-induced toxic behavior and toxicity

    International Nuclear Information System (INIS)

    A previous study showed that high doses of methamphetamine induce self-injurious behavior (SIB) in rodents. Furthermore, the combination of methamphetamine and morphine increased lethality in mice. We recently surmised that the rise in SIB and mortality induced by methamphetamine and/or morphine may be related to oxidative stress. The present study was designed to determine whether an antioxidant could inhibit SIB or mortality directly induced by methamphetamine and/or morphine. The SIB induced by 20 mg/kg of methamphetamine was abolished by the administration of Na L-ascorbyl-2-phosphate (APS: 300 mg/kg), but not Na DL-α-tocopheryl phosphate (TPNa: 200 mg/kg). In contrast, APS (300 mg/kg) and TPNa (200 mg/kg) each significantly attenuated the lethality induced by methamphetamine and morphine. The present study showed that the signal intensity of superoxide adduct was increased by 20 mg/kg of methamphetamine in the heart and lungs, and methamphetamine plus morphine tended to increase superoxide adduct in all of the tissues measured by ESR spin trap methods. Adduct signal induced in brain by methamphetamine administration increased in significance, but in mouse administrated methamphetamine plus morphine. There are differential effects of administration of methamphetamine and coadministration of methamphetamine plus morphine on adduct signal. These results suggest that APS and TPNa are effective for reducing methamphetamine-induced toxicity and/or toxicological behavior. While APS and TPNa each affected methamphetamine- and/or morphine-induced toxicology and/or toxicological behavior, indicating that both drugs have antioxidative effects, their effects differed

  4. 酶法合成棕榈酸马铃薯淀粉酯%Synthesis of palmitate starch by using immobilized lipase

    Institute of Scientific and Technical Information of China (English)

    孙平; 陈健; 杨惠娟; 马二霞; 王雅琦

    2012-01-01

    以马铃薯原淀粉和棕榈酸为原料,在无溶剂体系下,以LipozymeTLIM为催化剂合成棕榈酸淀粉酯。考察了脂肪酶添加量、底物配比、反应时间、反应温度对淀粉酯合成的影响。确定了最适反应条件为脂肪酶添加量为6%(干淀粉),淀粉棕榈酸质量比为3:10,反应时间60h,反应温度65℃,产物取代度可达0.0351。对产品进行淀粉-碘复合物吸收光谱和红外光谱检测,证明合成了棕榈酸淀粉酯。%palmitate starch was synthesized by using immobilized lipase Lipozyme TL IM as the biocatalyst in the solvent-free system.Several factors,such as the dosage of lipase,ratio of substrates,time and temperature had been investigated.The results showed that the optimum reation conditions as follows:lipase Lipozyme TL IM of 6%(dry starch weight),the mass ratio of starch to palmitic acid was 3:10,and the optimal time and temperature for the esterfication were 60 h and 65 ℃,and the degree of substitution of 0.0351 wad obtained.The product was tested by absorption spectrum of starch-iodine complex and IR,and the result confirming that it was palmitate starch.

  5. Kinetic and thermodynamic investigation of enzymatic L-ascorbyl acetate synthesis.

    Science.gov (United States)

    Zhang, Dong-Hao; Li, Chao; Zhi, Gao-Ying

    2013-12-01

    Kinetics and thermodynamics of lipase-catalyzed esterification of l-ascorbic acid in acetone were investigated by using vinyl acetate as acyl donor. The results showed that l-ascorbic acid could generate inhibition effect on lipase activity. A suitable model, Ping-Pong Bi-Bi mechanism having substrate inhibition, was thus introduced to describe the enzymatic kinetics. Furthermore, the kinetic and thermodynamic parameters were calculated from a series of experimental data according to the kinetic model. The inhibition constant of L-ascorbic acid was also obtained, which seemed to imply that enhancing reaction temperature could depress the substrate inhibition. Besides, the activation energy values of the first-step and the second-step reaction were estimated to be 37.31 and 4.94 kJ/mol, respectively, demonstrating that the first-step reaction was the rate-limiting reaction and could be easily improved by enhancing temperature. PMID:24211407

  6. Effect of amino acids on the interaction between cobalamin(II) and dehydroascorbic acid

    Science.gov (United States)

    Dereven'kov, I. A.; Thi, Thu Thuy Bui; Salnikov, D. S.; Makarov, S. V.

    2016-03-01

    The kinetics of the reaction between one-electron-reduced cobalamin (cobalamin(II), Cb(II)) and the two-electron-oxidized form of vitamin C (dehydroascorbic acid, DHA) with amino acids in an acidic medium is studied by conventional UV-Vis spectroscopy. It is shown that the oxidation of Cbl(II) by dehydroascorbic acid proceeds only in the presence of sulfur-containing amino acids (cysteine, acetylcysteine). A proposed reaction mechanism includes the step of amino acid coordination on the Co(II)-center through the sulfur atom, along with that of the interaction between this complex and DHA molecules, which results in the formation of ascorbyl radical and the corresponding Co(III) thiolate complex.

  7. Glycation of bovine serum albumin by ascorbate in vitro: Possible contribution of the ascorbyl radical?

    OpenAIRE

    Sadowska-Bartosz, Izabela; Stefaniuk, Ireneusz; Galiniak, Sabina; Bartosz, Grzegorz

    2015-01-01

    Ascorbic acid (AA) has been reported to be both pro-and antiglycating agent. In vitro, mainly proglycating effects of AA have been observed. We studied the glycation of bovine serum albumin (BSA) induced by AA in vitro. BSA glycation was accompanied by oxidative modifications, in agreement with the idea of glycoxidation. Glycation was inhibited by antioxidants including polyphenols and accelerated by 2,​2′-​azobis-​2-​methyl-​propanimidamide and superoxide dismutase. Nitroxides, known to oxid...

  8. Stability evaluation of tocopheryl acetate and ascorbyl tetraisopalmitate in isolation and incorporated in cosmetic formulations using thermal analysis

    Directory of Open Access Journals (Sweden)

    Mariana Mandelli de Almeida

    2010-03-01

    Full Text Available In view of the increase in the number of cosmetic preparations containing antioxidant vitamins, chiefly, due to their action in preventing the process of skin aging, there is a need to develop pre-formulation studies and to validate analytical methods in order to obtain high quality products. Thus, the objective of this research was to evaluate and compare the thermal behavior of tocopheryl acetate and ascorbyl tetraisopalmitate as raw materials, and incorporated into a base cream. Thermogravimetry (TG / DTG and differential scanning calorimetry (DSC were used for this purpose. Both vitamins were found to be stable up to 250ºC. The base cream (placebo and the sample (base cream containing the vitamins presented different weight loss. Thermal analysis has shown itself to be an excellent tool for the characterization of these vitamins and can be used in routine analysis for quality control of this type of cosmetic formulation.Considerando o potencial antioxidante das vitaminas utilizadas em produtos cosméticos, seu uso na prevenção do processo de envelhecimento da pele e a necessidade de estudos de pré-formulação que garantam o desenvolvimento de cosméticos de qualidade, foi objetivo deste trabalho avaliar e comparar o comportamento térmico dos ativos acetato de tocoferila e tetraisopalmitato de ascorbila, matérias-primas, isoladamente e incorporados em creme base. As técnicas termogravimetria/termogravimetria derivada (TG/DTG e calorimetria exploratória diferencial (DSC foram utilizadas para tal finalidade. Verificou-se que as vitaminas mantiveram-se estáveis até a temperatura de, aproximadamente, 250 ºC, observando-se diferença na perda de massa entre o creme base e o creme base associado às vitaminas. Assim sendo, a análise térmica mostrou-se como excelente ferramenta para caracterização das vitaminas e do creme base, podendo ser empregada em análises de rotina no controle de qualidade deste tipo de formulação cosmética.

  9. Enhanced In Vitro Skin Deposition Properties of Retinyl Palmitate through Its Stabilization by Pectin

    OpenAIRE

    Suh, Dong-Churl; Kim, Yeongseok; Kim, Hyeongmin; Ro, Jieun; Cho, Seong-Wan; Yun, Gyiae; Choi, Sung-Up; Lee, Jaehwi

    2014-01-01

    The purpose of this study was to examine the effect of stabilization of retinyl palmitate (RP) on its skin permeation and distribution profiles. Skin permeation and distribution study were performed using Franz diffusion cells along with rat dorsal skin, and the effect of drug concentration and the addition of pectin on skin deposition profiles of RP was observed. The skin distribution of RP increased in a concentration dependent manner and the formulations containing 0.5 and 1 mg of pectin d...

  10. Apolipoprotein E polymorphism influences postprandial retinyl palmitate but not triglyceride concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Boerwinkle, E. (Univ. of Texas Health Science Center, Houston, TX (United States)); Brown, S.; Patsch, W. (Methodist Hospital and Baylor College of Medicine, Houston, TX (United States)); Sharrett, A.R. (National Heart, Lung, and Blood Institute, Bethesda, MD (United States)); Heiss, G. (Univ. of North Carolina, Chapel Hill, NC (United States))

    1994-02-01

    To quantify the effect of the apolipoprotein (apo) E polymorphism on the magnitude of postprandial lipemia, the authors have defined its role in determining the response to a single high-fat meal in a large sample of (N = 474) individuals taking part in the biethnic Atherosclerosis Risk in Communities Study. The profile of postprandial response in plasma was monitored over 8 h by triglyceride, triglyceride-rich lipoprotein (TGRL)-triglyceride, apo B-48/apo B-100 ratio, and retinyl palmitate concentrations, and the apo E polymorphism was determined by DNA amplification and digestion. The frequency of the apo E alleles and their effects on fasting lipid levels in this sample with vitamin A was significantly different among apo E genotypes, with delayed clearance in individuals with an [var epsilon]2 allele, compared with [var epsilon]3/3 and [var epsilon]3/4 individuals. In the sample of 397 Caucasians, average retinyl palmitate response was 1,489 [mu]g/dl in [var epsilon]2/3 individuals, compared with 1,037 [mu]g/dl in [var epsilon]3/3 individuals and 1,108 [mu]g/dl in [var epsilon]3/4 individuals. The apo E polymorphism accounted for 7.1% of the interindividual variation in postprandial retinyl palmitate response, a contribution proportionally greater than its well-known effect on fasting LDL-cholesterol. However, despite this effect on postprandial retinyl palmitate, the profile of postprandial triglyceride response was not significantly different among apo E genotypes. The profile of postprandial response was consistent between the sample of Caucasians and a smaller sample of black subjects. While these data indicate that the removal of remnant particles from circulation is delayed in subjects with the [var epsilon]2/3 genotype, there is no reported evidence that the [var epsilon]2 allele predisposes to coronary artery disease (CAD). 82 refs., 6 figs., 4 tabs.

  11. Molar extinction coefficients of some fatty acids

    DEFF Research Database (Denmark)

    Sandhu, G.K.; Singh, K.; Lark, B.S.;

    2002-01-01

    The attenuation of gamma rays in some fatty acids, viz. formic acid (CH2O2), acetic acid (C2H4O2), propionic acid (C3H6O2), butyric acid (C4H8O2), n-hexanoic acid (C6H12O2), n-caprylic acid (C8H16O2), lauric acid (C12H24O2), myristic acid (C14H28O2), palmitic acid (C16H32O2), oleic acid (C18H34O2...

  12. Identification of sitosteryl glucoside palmitate in a chloroform-derived fraction of Phyllanthus niruri with antiplasmodial and peripheral antinociceptive properties

    Institute of Scientific and Technical Information of China (English)

    Ezenyi; Ifeoma; Chinwude; Kulkarni; Roshan; Joshi; Swati; Salawu; Oluwakanyinsola; Adeola; Emeje; Martins

    2014-01-01

    Objective:To evaluate the antiplasmodial properties of fractions of chloroform portion of Phyllanthus niruri(P.niruri) methanol extract and identify a suitable chemical marker present therein.Methods:Chloroform portion of P.niruri methanol extract was separated from silica gel using gradient systems of hexane,ethylacetate and methanol.The fractions were screened for antiplasmodial activity against Plasmodium falciparum HB3 and FcM29.Fractions with IC50<10μg/ml.against parasites were further screened for peripheral analgesic activity,while cytotoxicity was evaluated using THP-1 cells.Results:Fractions 12-14 were very active(IC50<10 μg/mL) against Plasmodium falciparum and showed no significant cytotoxicity.Fractions 12 and 13 exhibited significant(P<0.01) reduction in acetic acid-induced writhing in mice,decreasing the number of writhes by 66.67% and 65.22% respectively and comparable with 100 mg/kg aspirin(65.22%).From fraction 12,a compound was isolated and identified as sitosteryl-6-β-D-glucoside-6’-palmitate by 1H,13C nuclear magnetic resonance and mass spectroscopies.Conclusions:Our findings illustrate antiplasmodial column fractions of P.niruri with analgesic activity and identify sitosteryl glucoside pahmitate as a chemical marker of activity.

  13. PINK1 alleviates palmitate induced insulin resistance in HepG2 cells by suppressing ROS mediated MAPK pathways.

    Science.gov (United States)

    Cang, Xiaomin; Wang, Xiaohua; Liu, Pingli; Wu, Xue; Yan, Jin; Chen, Jinfeng; Wu, Gang; Jin, Yan; Xu, Feng; Su, Jianbin; Wan, Chunhua; Wang, Xueqin

    2016-09-01

    Oxidative stress is an important pathogenesis of insulin resistance (IR) and Type 2 diabetes mellitus (T2DM). Studies have shown that knockdown of PTEN-induced putative kinase 1 (PINK1) causes oxidative stress and mitophagy. In db/db mice, PINK1 protein level is down-regulated. However, little is known regarding the mechanism by which PINK1 modulates IR in response to reactive oxygen species (ROS) induced stress. In our study, PINK1 expression decreased during palmitate (PA) induced IR in HepG2 cells and the hepatic tissues of high fat diet (HFD) fed mice. Additionally, free fatty acids (FFAs) could increase ROS and suppress insulin signaling pathway, which was indicated by reduced phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3β (GSK-3β). In addition, insulin induced glucose uptake decreased and the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), two key gluconeogenic enzymes, was up-regulated after PA treatment. Intriguingly, PINK1 overexpression could lead to opposite results. Moreover, PA induced hepatic IR through C-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways, which were rescued by PINK1 overexpression. In summary, our results demonstrate that PINK1 promoted hepatic IR via JNK and ERK pathway in PA treated HepG2 cells, implying a novel molecular target for the therapy of diabetes. PMID:27423393

  14. Macrophage polarisation by fatty acids is PPARgamma-dependent.

    Science.gov (United States)

    Pararasa, Chatyan; Bailey, Clifford; Griffiths, Helen

    2014-10-01

    Elevated plasma free fatty acids (FAs) are associated with increased risk of cardiovascular disease. We investigated the effects of the saturated FA palmitate and unsaturated FA oleate on monocyte phenotype and function. Palmitate increased cell surface expression of integrin CD11b and scavenger receptor CD36 in a concentration-dependent manner with some decrease in mitochondrial reducing capacity at high concentration (300µM). Monocytes incubated with palmitate, but not oleate, showed increased uptake of oxidized LDL and increased adhesion to rat aortic endothelium, particularly at bifurcations. The palmitate-induced increase in CD11b and CD36 expression was associated with increased cellular C16 ceramide and sphingomyelin, loss of reduced glutathione, and increased reactive oxygen species (ROS). Increased monocyte surface CD11b and CD36 was inhibited by fumonisin B1, an inhibitor of de novo ceramide synthesis, but not by the superoxide dismutase mimetic MnTBap. In contrast, MnTBap prevented the mitochondrial ROS increase and metabolic inhibition due to 300µM palmitate. This study demonstrates that in viable monocytes, palmitate but not oleate increases expression of surface CD11b and CD36. Palmitate increases monocyte adhesion to the aortic wall and promotes uptake of oxidized LDL and this involves de novo ceramide synthesis. We have also explored whether specific dietary fatty acids drive monocyte to macrophage polarisation via metabolic pathways. Here we show that monocytes pre-incubated with the saturated fatty acid palmitate increase production of inflammatory cytokines such as TNFa and IL-6 in response to a phorbol myristate differentiation trigger. This increases mitochondrial superoxide production, reduces dependency on oxidative phosphorylation through ceramide-dependent inhibition of PPARgamma activity and increases TNFa production, again via a mechanism that requires ceramide production. PMID:26461339

  15. Direct incorporation of fatty acids into microbial phospholipids in soils: Position-specific labeling tells the story

    Science.gov (United States)

    Dippold, Michaela A.; Kuzyakov, Yakov

    2016-02-01

    Fatty acids have been used as plant and microbial biomarkers, and knowledge about their transformation pathways in soils and sediments is crucial for interpreting fatty acid signatures, especially because the formation, recycling and decomposition processes are concurrent. We analyzed the incorporation of free fatty acids into microbial fatty acids in soil by coupling position-specific 13C labeling with compound-specific 13C analysis. Position-specifically and uniformly 13C labeled palmitate were applied in an agricultural Luvisol. Pathways of fatty acids were traced by analyzing microbial utilization of 13C from individual molecule positions of palmitate and their incorporation into phospholipid fatty acids (PLFA). The fate of palmitate 13C in the soil was characterized by the main pathways of microbial fatty acid metabolism: Odd positions (C-1) were preferentially oxidized to CO2 in the citric acid cycle, whereas even positions (C-2) were preferentially incorporated into microbial biomass. This pattern is a result of palmitate cleavage to acetyl-CoA and its further use in the main pathways of C metabolism. We observed a direct, intact incorporation of more than 4% of the added palmitate into the PLFA of microbial cell membranes, indicating the important role of palmitate as direct precursor for microbial fatty acids. Palmitate 13C was incorporated into PLFA as intact alkyl chain, i.e. the C backbone of palmitate was not cleaved, but palmitate was incorporated either intact or modified (e.g. desaturated, elongated or branched) according to the fatty acid demand of the microbial community. These modifications of the incorporated palmitate increased with time. Future PLFA studies must therefore consider the recycling of existing plant and microbial-derived fatty acids. This study demonstrates the intact uptake and recycling of free fatty acids such as palmitate in soils, as well as the high turnover and transformation of cellular PLFA. Knowledge about the intact

  16. Equilibrium spreading pressure and Langmuir–Blodgett film formation of omega-substituted palmitic acids

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Arthur W., E-mail: arthur.snow@nrl.navy.mil; Jernigan, Glenn G.; Ancona, Mario G.

    2014-04-01

    Langmuir–Blodgett isotherms and equilibrium spreading pressures were measured for compounds of the series X–(CH{sub 2}){sub 15}COOH, X = CH{sub 3}, SH, OH, F, Cl, Br. Only the CH{sub 3} and F terminated compounds formed monolayers with sufficient stability for accurate isotherm measurement, film transfer and X-ray photoelectron spectroscopic analysis. The presence of the terminal heteroatom substituents significantly diminished the stability of the L–B film and depressed the equilibrium spreading pressures (20 °C) from 15.4 mN/m for the CH{sub 3} terminated compound to a range of 0.95 to 0.08 mN/m for the other members of the series. These characteristics are attributed to the monolayer film being in a metastable state and the dipole moment of the heteroatom terminal group increasing the monolayer film kinetic instability by facilitating the formation of three-dimensional structures. - Highlights: • Compound series X–(CH{sub 2}){sub 15}COOH, X = CH{sub 3}, SH, OH, F, Cl, Br was analyzed. • Only-CH{sub 3} and-F terminated compounds form stable Langmuir–Blodgett films. • Heteroatom terminal groups promote kinetic instability in Langmuir–Blodgett films. • X-ray photoelectron spectra analyzed for molecular orientation and packing density.

  17. Protection provided by phytoestrogens against cardiac lipotoxicity induced by palmitic acid

    OpenAIRE

    Couto, Renata Lopes Familiar

    2014-01-01

    A menopausa é um processo biológico natural caracterizado pela redução dos níveis hormonais, nomeadamente, o estrogénio e progesterona. A perda de estrogénios parece desencadear uma cascata de eventos, levando ao aumento do risco para doenças cardiovasculares. A conjugação do processo de envelhecimento e perda de estrogénio durante a menopausa tem um impacto negativo no metabolismo dos lípidos no coração, o que resulta no aumento da lipotoxicidade e portanto do risco de doenças cardiovascular...

  18. 维生素C糖苷类衍生物的研究进展%Research progress of ascorbyl glucoside derivates

    Institute of Scientific and Technical Information of China (English)

    饶建华; 韩璐; 张自萍

    2012-01-01

    Vitamin C is listed in the essential nutrition elements of human beings or animals, and plays an important role in protecting human health and animal growth. The well-known susceptibility of vitamin C to oxida-tive degradation has led to great interest in its derivatives with increased stability in recent years. The vitamin C derivatives can be classified as salt, ester and saccharide derivatives. Ascorbyl glucoside derivates represent a kind of important vitamin C derivatives. Many domestic and overseas research papers have reported various saccharide derivatives of vitamin C. Therefore, in this review we summarized the latest research progress of ascorbyl glucoside derivates with chemical modification of hydroxyl group at the C2-, C5- and C6-position of vitamin C.%维生素C( vitamin C,VC)是人体的必需营养元素,在保护人类健康和动物生长过程中起到不可代替的重要作用.由于VC自身易被氧化降解,开发稳定的高附加值VC衍生物就成为人们研究的热点.目前,VC衍生物主要有VC盐、VC酯和VC糖苷3种形式,其中VC糖苷类衍生物稳定性高,生理活性与VC 最接近,近年来备受国内外学者的关注.因此,本文就VC上的C2-,C5-及C6-糖苷类衍生物的国内外研究进展进行了归纳总结.

  19. Fortification of fried potato chips with antioxidant vitamins to enhance their nutritional value and storage ability

    OpenAIRE

    Edress El-Sayed, Fyka; Mahmoud Allam, Samah Said

    2004-01-01

    The frying shelf life of commercial frying oil was increased by the addition of synthetic and natural antioxidants, e.g. TBHQ, retinyl palmitate and ascorbyl palmitate (antioxidant vitamins).The results revealed that TBHQ had the best effect in retarding the deteriorative effect of frying conditions throughout 24h of frying potato chips at 180±10 ºC followed by the effect of retinyl palmitate and the effect of ascorbyl palmitate compared to the control without any additives. Fried...

  20. Live food mediated vitamin C transfer to Dicentrarchus labraxand Clarias gariepinus

    OpenAIRE

    Merchie, G.; Lavens, P.; Dhert, Ph.; Pector, R.; Mai Soni, A.F.; Nelis, H.; Ollevier, F.P.; De leenheer, A P; Sorgeloos, P.

    1995-01-01

    Live food enrichment techniques, using formulated diets and emulsions for improving the nutritional quality of Brachionus and Artemia , were studied as a tool for transferring ascorbic acid (AA) to fish larvae. Artemia nauplii enriched for 24h with an experimental emulsion containing 20% HUFA and 0%, 10% and 20% ascorbyl palmitate (AP) were administered to catfish larvae in a 20-day feeding trial. Survival was not affected by the dietary AA, but from day 7 onwards a significantly positive eff...

  1. Effects of dietary vitamin C on fish and crustacean larvae

    OpenAIRE

    Merchie, G.; Lavens, P.; Sorgeloos, P.

    1995-01-01

    In order to assess the dietary needs for ascorbic acid (AA) at startfeeding, the AA content in the various live diets currently applied in aquaculture (algae, rotifers, Artemia ) was studied. Application of boosting techniques using ascorbyl palmitate (AP) as the vitamin C source enabled the transfer of elevated levels of bioactive vitamin C (up to 2500µg AA.g DW-1) via the live food chain into larvae of fish (Clarias gariepinus, Dicentrarchus labrax, Scophthalmus maximus), shrimp (Pennaeus v...

  2. Optimization of dietary vitamin C in fish and crustacean larvae: a review

    OpenAIRE

    Merchie, G.; Lavens, P.; Sorgeloos, P.

    1997-01-01

    HPLC techniques were adapted and standardized for quantification of ascorbic acid (AA) and its derivates in both diets and target organisms. To assess the dietary needs for AA at start of exogenous feeding, the AA content in the various live diets currently used in aquaculture (algae, rotifers, Artemia ) was analyzed. Application of techniques for boosting vitamin C using ascorbyl palmitate as the source enabled the transfer of elevated levels (up to 2,500 µg AA/g DW) of bioactive vitamin C. ...

  3. The effect of two novel cholesterol-lowering agents, disodium ascorbyl phytostanol phosphate (DAPP) and nanostructured aluminosilicate (NSAS) on the expression and activity of P-glycoprotein within Caco-2 cells

    OpenAIRE

    Sachs-Barrable, Kristina; Darlington, Jerald W; Wasan, Kishor M.

    2014-01-01

    Background Many drugs are substrates for P-glycoprotein (P-gp) and interactions involving P-gp may be relevant to clinical practice. Co-administration with P-gp inhibitors or inducers changes the absorption profile as well as the risk for drug toxicity, therefore it is important to evaluate possible P-gp alterations. The purpose of this study was to investigate the effect of two novel cholesterol-lowering agents, disodium ascorbyl phytostanol phosphate (DAPP) and nanostructured aluminium sili...

  4. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    International Nuclear Information System (INIS)

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promoting brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a mechanism

  5. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    Energy Technology Data Exchange (ETDEWEB)

    Hinoi, Eiichi; Iezaki, Takashi; Ozaki, Kakeru; Yoneda, Yukio, E-mail: yyoneda@p.kanazawa-u.ac.jp

    2014-10-03

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promoting brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a mechanism

  6. A Novel Liposomal Dexamethasone Palmitate Formulation and Anti-inflammatory Effects on Mice

    Institute of Scientific and Technical Information of China (English)

    LI, Ji; YANG, Jing; WANG, Wenxin; YU, Jichen; FU, Jingguo; WANG, Xiaolai

    2009-01-01

    A novel dexamethasone palmitate liposomal long-circulating (DPL long-circulating) drug delivery system was established. The DPL long-circulating and DPL (dexamethasone palmitate liposomal) systems were prepared by film-distributed extrusion with phospholipid and cholesterol. The formulation stability of DPL long-circulating and DPL were investigated. The anti-inflammatory activity and acute toxicity of DPL long-circulating, DPL and dexa- methasone sodium phosphate injection (DSP) were evaluated with mice. The DPL long-circulating systems were successfully prepared by film-distributed extrusion methods. The experimental results showed that the DPL long-circulating had uniform particle size and stable property. The DPL long-circulating and DPL showed stronger anti-inflammatory effect than DSP in an anti-inflammatory test. Acute toxicity tests showed that DSP injection had lower toxicity than the DPL long-circulating and DPL, which suggested that DPL long-circulating and DPL had higher bioavailability with passive targeting efficacy of liposomes. The DPL long-circulating formulation product can meet quality requirement. This formulation had stronger anti-inflammatory effect and higher acute toxicity.

  7. Tectorigenin Attenuates Palmitate-Induced Endothelial Insulin Resistance via Targeting ROS-Associated Inflammation and IRS-1 Pathway.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available Tectorigenin is a plant isoflavonoid originally isolated from the dried flower of Pueraria thomsonii Benth. Although its anti-inflammatory and anti-hyperglycosemia effects have been well documented, the effect of tectorigenin on endothelial dysfunction insulin resistance involved has not yet been reported. Herein, this study aims to investigate the action of tectorigenin on amelioration of insulin resistance in the endothelium. Palmitic acid (PA was chosen as a stimulant to induce ROS production in endothelial cells and successfully established insulin resistance evidenced by the specific impairment of insulin PI3K signaling. Tectorigenin effectively inhibited the ability of PA to induce the production of reactive oxygen species and collapse of mitochondrial membrane potential. Moreover, tectorigenin presented strong inhibition effect on ROS-associated inflammation, as TNF-α and IL-6 production in endothelial cells was greatly reduced with suppression of IKKβ/NF-κB phosphorylation and JNK activation. Tectorigenin also can inhibit inflammation-stimulated IRS-1 serine phosphorylation and restore the impaired insulin PI3K signaling, leading to a decreased NO production. These results demonstrated its positive regulation of insulin action in the endothelium. Meanwhile, tectorigenin down-regulated endothelin-1 and vascular cell adhesion molecule-1 overexpression, and restored the loss of insulin-mediated vasodilation in rat aorta. These findings suggested that tectorigenin could inhibit ROS-associated inflammation and ameliorated endothelial dysfunction implicated in insulin resistance through regulating IRS-1 function. Tectorigenin might have potential to be applied for the management of cardiovascular diseases involved in diabetes and insulin resistance.

  8. High-Fat Diet and Palmitate Alter the Rhythmic Secretion of Glucagon-Like Peptide-1 by the Rodent L-cell.

    Science.gov (United States)

    Gil-Lozano, Manuel; Wu, W Kelly; Martchenko, Alexandre; Brubaker, Patricia L

    2016-02-01

    Secretion of the incretin hormone, glucagon-like peptide-1 (GLP-1), by the intestinal L-cell is rhythmically regulated by an independent molecular clock. However, the impact of factors known to affect the activity of similar cell-autonomous clocks, such as circulating glucocorticoids and high-fat feeding, on GLP-1 secretory patterns remains to be elucidated. Herein the role of the endogenous corticosterone rhythm on the pattern of GLP-1 and insulin nutrient-induced responses was examined in corticosterone pellet-implanted rats. Moreover, the impact of nutrient excess on the time-dependent secretion of both hormones was assessed in rats fed a high-fat, high-sucrose diet. Finally, the effects of the saturated fatty acid, palmitate, on the L-cell molecular clock and GLP-1 secretion were investigated in vitro using murine GLUTag L-cells. Diurnal variations in GLP-1 and insulin nutrient-induced responses were maintained in animals lacking an endogenous corticosterone rhythm, suggesting that glucocorticoids are not the predominant entrainment factor for L-cell rhythmic activity. In addition to hyperglycemia, hyperinsulinemia, insulin resistance, and disorganization of feeding behavior, high-fat high-sucrose-fed rats showed a total abrogation of the diurnal variation in GLP-1 and insulin nutrient-induced responses, with comparable levels of both hormones at the normal peak (5:00 pm) and trough (5:00 am) of their daily pattern. Finally, palmitate incubation induced profound derangements in the rhythmic expression of circadian oscillators in GLUTag L-cells and severely impaired the secretory activity of these cells. Collectively our findings demonstrate that obesogenic diets disrupt the rhythmic activity of the L-cell, partially through a direct effect of specific nutritional components. PMID:26646204

  9. Fatty acids attached to all-trans-astaxanthin alter its cis-trans equilibrium, and consequently its stability, upon light-accelerated autoxidation

    NARCIS (Netherlands)

    Bruijn, De Wouter J.C.; Weesepoel, Y.; Vincken, J.P.; Gruppen, H.

    2016-01-01

    Fatty acid esterification, common in naturally occurring astaxanthin, has been suggested to influence both colour stability and degradation of all-trans-astaxanthin. Therefore, astaxanthin stability was studied as influenced by monoesterification and diesterification with palmitate. Increased est

  10. Synthesis and structural analysis of 13C-fatty acids

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The 13C-labeled fatty acids octanoic-1-13C acid and palmitic-l-13C acid were synthetically prepared from Ba 13CO3. The yield of the former was more than 90% and that of the latter was above 85%. MS, IR, 1H-NMR and 13NMR were performed to analyze the structures of the two 13C-fatty acids, compared with their unlabeled fatty acids.

  11. Enzymatic Hydrolysis of Magnesium Ascorbyl Phosphate and Kinetic Analysis%酶法水解VC磷酸酯镁及其动力学分析

    Institute of Scientific and Technical Information of China (English)

    郎爱花; 刘惠青; 车影; 闫果兰; 靳利娥

    2012-01-01

    In order to investigate the process of enzymatic hydrolysis of magnesium ascorbyl phosphate (MAP), the best hydrolysis condition was chosen and the kinetics was analyzed through the experiments. With phosphoesterase complex (PC) as catalyst, the effect on the degree of MAP hydrolysis by some influenced factors such as substrate concentration, reaction time, pH, temperature, enzyme content was investigated and the hydrolysis kinetics was studied. The results show that hydrolysis degree of MAP reached the largest, to (32. 64 + 0. 42) % under the conditions of 1. 72g/L substrate concentration by 5% enzyme, 37 °C , pH 5. 5,hydrolysis time 4h. The established kinetics followed the equation of Michealis-Menten, km and vmax of which were 25. 82 g/L and 126. 26 g/(L · h), respectively.%考察酶法水解Vc磷酸酯镁(Magnesium Ascorbyl Phosphate,MAP)过程,采用复合磷酸酯酶( Phosphoesterase Complex,PC)为催化剂,以水解产物Vc的含量(水解率)为指标考察底物浓度、反应时间、pH值、反应温度、酶用量等因素对MAP水解程度的影响,选择最佳水解条件并对其进行动力学分析.结果表明,在底物MAP的质量浓度为1.72 g/L、酶和底物的体积分数为5%、温度37℃、pH5.5条件下水解4h,水解率最大,可达(32.64 ±0.42)%.动力学分析表明:水解动力学符合米氏方程,其中km=25.82 g/L,vmax=126.26 g/(L·h).

  12. In Vitro Evaluation of the Antiviral Activity of the Synthetic Epigallocatechin Gallate Analog-Epigallocatechin Gallate (EGCG Palmitate against Porcine Reproductive and Respiratory Syndrome Virus

    Directory of Open Access Journals (Sweden)

    Chunjian Zhao

    2014-02-01

    Full Text Available In this study, epigallocatechin gallate (EGCG palmitate was synthesized and its anti-porcine reproductive and respiratory syndrome virus (PRRSV activity was studied. Specifically, EGCG palmitate was evaluated for its ability to inhibit PRRSV infection in MARC-145 cells when administered as pre-, post-, or co-treatment. EGCG and ribavirin were used as controls. The results showed that a 50% cytotoxic concentration (CC50 of EGCG, EGCG palmitate, and ribavirin was achieved at 2,359.71, 431.42, and 94.06 μM, respectively. All three drugs inhibited PRRSV in a dose-dependent manner regardless of the treatment protocol. EGCG palmitate exhibited higher cytotoxicity than EGCG, but lower cytotoxicity than ribavirin. EGCG palmitate anti-PRRSV activity was significantly higher than that of EGCG and ribavirin, both as pre-treatment and post-treatment. Under the former conditions and a tissue culture infectious dose of 10 and 100, the selectivity index (SI of EGCG palmitate in the inhibition of PRRSV was 3.8 and 2.9 times higher than that of ribavirin when administered as a pre-treatment, while the SI of EGCG palmitate in the inhibition of PRRSV was 3.0 and 1.9 times higher than ribavirin when administered as a post-treatment. Therefore, EGCG palmitate is potentially effective as an anti-PRRSV agent and thus of interest to the pharmaceutical industry.

  13. Fatty acids composition of fruits of selected Central European sedges (Carex L. Cyperaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Bogucka-Kocka, A.; Janyszek, M.

    2010-07-01

    Fatty acids in the fruits of 13 sedge species (Ca rex L., Cyperaceae) were analyzed. The oil contents in the fruits of the studied sedges ranged from 3.73 and 46.52%. In the studied fruit oils 14 different fatty acids were identified. The main unsaturated fatty acids were: linoleic, a-linolenic, oleic, oleo palmitic n-7; oleo palmitic n-9, octadecenic, and eicosenoic acids. The following acids were found in the greatest quantities: linoleic, oleic, a-linolenic and palmitic acids. Based on the fatty acid composition, studied taxa can be divided in two groups. The first group (C. flava, C. pseudocyperus, C. riparia, C. leporina) is a very good source of linoleic acid. The second group, including the remaining species, is a good source of a-linolenic acid. The highest oleic acid contents were observed in C. vulpina. The studied material has shown a low concentration of saturated fatty acids, among which palmitic acid was the main one.Results of the analyses allow for the inclusion of the studied species among plants whose fruits are characterized by a high content of unsaturated fatty acids. (Author)

  14. Vitamin C derivatives as new coreactants for tris(2,2'-bipyridine)ruthenium(II) electrochemiluminescence

    International Nuclear Information System (INIS)

    Highlights: → Ru(bpy)32+ electrochemiluminescence of vitamin C derivatives have been investigated. → Ascorbyl phosphate and ascorbyl palmitate show intense electrochemiluminescence. → Ascorbyl 2-phosphate was detected with high sensitivity. → This study provides a new way to detect vitamin C derivatives. - Abstract: Vitamin C derivatives (VCDs) have been widely used as the alternative and stable sources of vitamin C, and accordingly exhibit many new applications, such as anti-tumor and central nervous system drug delivery. In this study, their Ru(bpy)32+ electrochemiluminescence (ECL) properties have been investigated for the first time using well-known ascorbyl phosphate and ascorbyl palmitate as representative VCDs. Ascorbyl phosphate and ascorbyl palmitate are VCDs with different substituted positions. Both of them increase Ru(bpy)32+ ECL, indicating that other VCDs may also enhance Ru(bpy)32+ ECL signal. The calibration plot for ascorbyl phosphate is linear from 3 x 10-6 to 1.0 x 10-3 M with a detection limit of 1.4 x 10-6 M at a signal-to-noise ratio of 3. The relative standard deviation is 3.6% for six replicate measurements of 0.01 mM ascorbyl 2-phosphate solution. The proposed method is about one order of magnitude more sensitive than electrochemical and UV-vis methods for the determination of ascorbyl phosphate, and is used successfully for the determination of ascorbyl phosphate in whitening and moisturising body wash.

  15. Synergy analysis reveals association between insulin signaling and desmoplakin expression in palmitate treated HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Xuewei Wang

    Full Text Available The regulation of complex cellular activities in palmitate treated HepG2 cells, and the ensuing cytotoxic phenotype, involves cooperative interactions between genes. While previous approaches have largely focused on identifying individual target genes, elucidating interacting genes has thus far remained elusive. We applied the concept of information synergy to reconstruct a "gene-cooperativity" network for palmititate-induced cytotoxicity in liver cells. Our approach integrated gene expression data with metabolic profiles to select a subset of genes for network reconstruction. Subsequent analysis of the network revealed insulin signaling as the most significantly enriched pathway, and desmoplakin (DSP as its top neighbor. We determined that palmitate significantly reduces DSP expression, and treatment with insulin restores the lost expression of DSP. Insulin resistance is a common pathological feature of fatty liver and related ailments, whereas loss of DSP has been noted in liver carcinoma. Reduced DSP expression can lead to loss of cell-cell adhesion via desmosomes, and disrupt the keratin intermediate filament network. Our findings suggest that DSP expression may be perturbed by palmitate and, along with insulin resistance, may play a role in palmitate induced cytotoxicity, and serve as potential targets for further studies on non-alcoholic fatty liver disease (NAFLD.

  16. Quantitative analysis of retinol and retinol palmitate in vitamin tablets using {sup 1}H-nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Hae; Kim, Hye Kyong; Wilson, Erica G.; Erkelens, Cornelis; Trijzelaar, Ben; Verpoorte, Robert

    2004-06-04

    {sup 1}H-NMR spectrometry was applied to the quantitative analysis of Vitamin A in four different types of vitamin tablets without any chromatographic purification or saponification. The experiment was performed analysing the H-15 resonance, which appears at {delta} 4.32 for retinol and {delta} 4.69 for retinol palmitate, well separated from other resonances in the {sup 1}H-NMR spectrum. Compounds were quantified using the relative ratio of the integral of the H-15 signal to that of a known amount of internal standard (200 {mu}g/ml), anthracene. In order to evaluate the feasibility of avoiding the saponification of retinol palmitate in the preparation of samples, several solvents such as dimethylsulfoxide, n-hexane, methanol, water, and 0.1 M of HCl were tested as possible extraction solvents. Among these, dimethylsulfoxide showed the best yield of retinol palmitate. This method, using dimethylsulfoxide extraction and {sup 1}H-NMR, allows rapid and simple quantitation of retinol palmitate in tablets avoiding tedious saponification.

  17. A Method for Rapid Determination of Ethyl Palmitate in Baijiu(Liquor)%一种快速测量白酒中棕榈酸乙酯的方法

    Institute of Scientific and Technical Information of China (English)

    周海洋; 王士敏; 于金侠; 孙玉玲

    2014-01-01

    Ethyl palmitate is a pale yellow oily liquid, insoluble in water, soluble in alcohol, ether, acetone, and other organic solvents, and can be prepared by the reaction of palmitic acid and anhydrous ethanol. It has faint aroma of wax, fruit, and cream. In this study, we established a method for the determination of ethyl palmitate in Baijiu(liquor) by GC-MS, which is simple, rapid, with high extraction and recovery rate, strong anti-in-terference ability, good reproducibility, high qualitative and quantitative accuracy. This method can be used to guide production, to provide basis for quality control, and to help improving the quality of Baijiu(liquor).%棕榈酸乙酯为浅黄色油状液体,呈微弱蜡香、果香和奶油香气,不溶于水,溶于醇、醚、丙酮等有机溶剂,可由棕榈酸和无水乙醇反应制得。本研究建立了白酒中棕榈酸乙酯的GC-MS检测方法,此方法操作简便,快速,萃取率和回收率高,抗干扰能力强,重现性良好,定性定量准确,能够快速指导生产,为质量控制提供依据,有助于白酒品质的提高。

  18. Effect of Whole-Body X-Irradiation of the Synthesis of Individual Fatty Acids in Liver Slices from Normal and Fasted Rats

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Hansen, Lisbeth Grænge; Faber, M.

    1965-01-01

    (1) Using (2-14C) acetate and (1-14C) butyrate as precursors, rat-liver fatty acids were synthesized in vitro and assayed by paper chromatography. (2) Whole-body x-irradiation induced a change in the synthetic pattern of hepatic fatty acids towards a relatively enhanced synthesis of palmitic acid....... (3) X-irradiation and fasting seem to have opposite effects on fatty-acid synthesis. X-irradiation counteracts the drop in total synthesis and the relatively enhanced synthesis of palmitoleic acid induced by fasting. The relative enhancement of palmitic-acid synthesis mentioned under (2) stands...

  19. Palmitate-induced endothelial dysfunction is attenuated by cyanidin-3-O-glucoside through modulation of Nrf2/Bach1 and NF-κB pathways.

    Science.gov (United States)

    Fratantonio, D; Speciale, A; Ferrari, D; Cristani, M; Saija, A; Cimino, F

    2015-12-15

    Free fatty acids (FFA), commonly elevated in diabetes and obesity, have been shown to impair endothelial functions and cause oxidative stress, inflammation, and insulin resistance. Anthocyanins represent one of the most important and interesting classes of flavonoids and seem to play a role in preventing cardiovascular diseases. Herein, we investigated the in vitro protective effects of cyanidin-3-O-glucoside (C3G) on cell signaling pathways in human umbilical vein endothelial cells (HUVECs) exposed to palmitic acid (PA), the most prevalent saturated FFA in circulation. Our data reported a significant augmentation of free radicals and oxidative stress in HUVECs exposed to PA for 3h, while C3G pretreatment improved intracellular redox status altered by FFA. Moreover, C3G significantly inhibited NF-κB proinflammatory pathway and adhesion molecules induced by PA, and these effects were attributed to the activation of Nrf2/EpRE pathway. In fact, C3G induced Nrf2 nuclear localization and activation of cellular antioxidant and cytoprotective genes at baseline and after PA exposure in endothelial cells. Our data confirm the hypothesis that natural Nrf2 inducers, such as C3G, might be a potential therapeutic strategy to protect vascular system against various stressors preventing several pathological conditions. PMID:26422990

  20. The crystallization of metal soaps and fatty acids in oil paint model systems.

    Science.gov (United States)

    Hermans, Joen J; Keune, Katrien; van Loon, Annelies; Iedema, Piet D

    2016-04-28

    The formation and crystallization of metal soaps in oil paint layers is an important issue in the conservation of oil paintings. The chemical reactions and physical processes that are involved in releasing metal ions from pigments and fatty acids from the oil binder to form crystalline metal soap deposits have so far remained poorly understood. We have used a combination of differential scanning calorimetry (DSC) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) on model mixtures of palmitic acid, lead palmitate or zinc palmitate and linseed oil to study the transition from amorphous material to crystalline fatty acid or metal soap. This transition forms the final stage in the cascade of processes leading to metal soap-related oil paint degradation. Palmitic acid as well as the metal soaps showed nearly ideal solubility behavior. However, it was found that, near room temperature, both lead and zinc palmitate are practically insoluble in both liquid and partially polymerized linseed oil. Interestingly, the rate of metal soap and fatty acid crystallization decreased rapidly with the degree of linseed oil polymerization, possibly leading to systems where metal soaps are kinetically trapped in a semi-crystalline state. To explain the various morphologies of metal soap aggregates observed in oil paint layers, it is proposed that factors affecting the probability of crystal nucleation and the rate of crystal growth play a crucial role, like exposure to heat or cleaning solvents and the presence of microcracks. PMID:27039879

  1. The crystallization of metal soaps and fatty acids in oil paint model systems.

    Science.gov (United States)

    Hermans, Joen J; Keune, Katrien; van Loon, Annelies; Iedema, Piet D

    2016-04-28

    The formation and crystallization of metal soaps in oil paint layers is an important issue in the conservation of oil paintings. The chemical reactions and physical processes that are involved in releasing metal ions from pigments and fatty acids from the oil binder to form crystalline metal soap deposits have so far remained poorly understood. We have used a combination of differential scanning calorimetry (DSC) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) on model mixtures of palmitic acid, lead palmitate or zinc palmitate and linseed oil to study the transition from amorphous material to crystalline fatty acid or metal soap. This transition forms the final stage in the cascade of processes leading to metal soap-related oil paint degradation. Palmitic acid as well as the metal soaps showed nearly ideal solubility behavior. However, it was found that, near room temperature, both lead and zinc palmitate are practically insoluble in both liquid and partially polymerized linseed oil. Interestingly, the rate of metal soap and fatty acid crystallization decreased rapidly with the degree of linseed oil polymerization, possibly leading to systems where metal soaps are kinetically trapped in a semi-crystalline state. To explain the various morphologies of metal soap aggregates observed in oil paint layers, it is proposed that factors affecting the probability of crystal nucleation and the rate of crystal growth play a crucial role, like exposure to heat or cleaning solvents and the presence of microcracks.

  2. Effect of dietary fatty acid intake on prospective weight change in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition

    DEFF Research Database (Denmark)

    Nimptsch, Katharina; Berg-Beckhoff, Gabi; Linseisen, Jakob

    2010-01-01

    OBJECTIVE: To evaluate the association between fatty acid (alpha-linolenic acid (ALA), EPA, DHA, palmitic, stearic, oleic, linoleic and arachidonic acids) intake and prospective weight change in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition. DESIGN...... only. CONCLUSIONS: These results suggest differential effects of single dietary fatty acids on prospective weight gain in adults....

  3. Clean synthesis of biodiesel over solid acid catalysts of sulfonated mesopolymers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    FDU-15-SO3H,a solid acid material prepared from the sulfonation of FDU-15 mesoporous polymer,has been demonstrated to serve as an efficient catalyst in the esterification of palmitic acid with methanol as well as in the transesterification of fatty acid-edible oil mixture.FDU-15-SO3H achieved an acid conversion of 99.0% when the esterification was carried out at 343 K with a methanol/palmitic acid molar ratio of 6:1 and 5 wt% catalyst loading.It was capable of giving 99.0% yield of fatty acid methyl esters (FAME) when the transesterification of soybean oil was performed at 413 K and the methanol/oil weight ratio of 1:1.FDU-15-SO3H was further applied to the transesterification/esterification of the oil mixtures with a varying ratio of soybean oil to palmitic acid,which simulated the feedstock with a high content of free fatty acids.The yield of FAME reached 95% for the oil mixtures containing 30 wt% palmitic acid.This indicated the sulfonated mesopolymer was a potential catalyst for clean synthesis of fuel alternative of biodiesel from the waste oil without further purification.

  4. Cellular uptake of a dexamethasone palmitate-low density lipoprotein complex by macrophages and foam cells.

    Science.gov (United States)

    Tauchi, Yoshihiko; Chono, Sumio; Morimoto, Kazuhiro

    2003-04-01

    To evaluate the utility of a dexamethasone palmitate (DP)-low density lipoprotein (LDL) complex to transport drug into foam cells, the cellular uptake of DP-LDL complex by macrophages and foam cells was examined. The DP-LDL complex was prepared by incubation with DP and LDL, and the DP-LDL complex and murine macrophages were incubated. No cellular uptake of the DP-LDL complex by macrophages was found until 6 h after the start of incubation, but this gradually increased from 12 to 48 h. On the other hand, the cellular uptake of the oxidized DP-LDL complex was already apparent at 3 h after the start incubation, and then markedly increased until 48 h incubation along with that of the lipid emulsion (LE) containing DP (DP-LE). The cellular uptake of DP-LE by foam cells was significantly lower than that by macrophages. However, the cellular uptake of DP-LDL complex by foam cells was similar to that by macrophages. These findings suggest that the DP-LDL complex is oxidatively modified, and then incorporated into macrophages and foam cells through the scavenger receptor pathway. Since selective delivery of drugs into foam cells in the early stage of atherosclerosis is a useful protocol for antiatherosclerosis treatment, the DP-LDL complex appears to be a potentially useful drug-carrier complex for future antiatherosclerotic therapy.

  5. Paliperidone Palmitate Once-Monthly Injectable Treatment for Acute Exacerbations of Schizoaffective Disorder.

    Science.gov (United States)

    Fu, Dong-Jing; Turkoz, Ibrahim; Simonson, R Bruce; Walling, David; Schooler, Nina; Lindenmayer, Jean-Pierre; Canuso, Carla; Alphs, Larry

    2016-08-01

    The optimal treatment for schizoaffective disorder (SCA) is not well established. In this initial 6-month open-label treatment period of a large, multiphase, relapse-prevention study, the efficacy and safety of paliperidone palmitate once-monthly (PP1M) injectable were evaluated in subjects with symptomatic SCA. Subjects with acute exacerbation of SCA (ie, with psychotic and either depressive and/or manic symptoms) were enrolled and treated with PP1M either as monotherapy or in combination with antidepressants or mood stabilizers (combination therapy group). After flexible-dose treatment with PP1M for 13 weeks, stabilized subjects continued into a 12-week fixed-dose PP1M treatment period. A total of 667 subjects were enrolled; 320 received monotherapy and 347 received PP1M as combination therapy; 334 subjects completed the entire 25-week treatment. Statistically significant and clinically meaningful improvements from baseline were observed for all efficacy measures in psychosis (per Positive and Negative Syndrome Scale), mood symptoms (per Young Mania Rating Scale and Hamilton Depression Rating Scale-21 items), and functioning (per Personal and Social Performance Scale) from week 1 to all time points during the 25-week treatment period (P acute exacerbation of SCA provided rapid, broad, and persistent reduction in psychotic, depressive, and manic symptoms, as well as improved functioning. PMID:27322760

  6. Chemical composition and fatty acid contents in farmed freshwater prawns

    Directory of Open Access Journals (Sweden)

    Carolina de Gasperi Portella

    2013-08-01

    Full Text Available The objective of this work was to evaluate the chemical composition and fatty acid contents of Amazonian and giant river prawns. After four-month farming, with the same diet for both species, palmitic and stearic acids were the main saturated fatty acids. Oleic acid was the main monounsatured fatty acid, and the eicosapentaenoic and docosahexaenoic acids were the most abundant polyunsaturated acids. Amazonian prawn has higher levels of protein and polyunsaturated fatty acids than those of the giant river prawn, which shows its potential for aquaculture.

  7. Glucose and Palmitate Differentially Regulate PFKFB3/iPFK2 and Inflammatory Responses in Mouse Intestinal Epithelial Cells

    Science.gov (United States)

    Botchlett, Rachel; Li, Honggui; Guo, Xin; Qi, Ting; Zhao, JiaJia; Zheng, Juan; Woo, Shih-Lung; Pei, Ya; Liu, Mengyang; Hu, Xiang; Chen, Guang; Guo, Ting; Yang, Sijun; Li, Qifu; Xiao, Xiaoqiu; Huo, Yuqing; Wu, Chaodong

    2016-01-01

    The gene PFKFB3 encodes for inducible 6-phosphofructo-2-kinase, a glycolysis-regulatory enzyme that protects against diet-induced intestine inflammation. However, it is unclear how nutrient overload regulates PFKFB3 expression and inflammatory responses in intestinal epithelial cells (IECs). In the present study, primary IECs were isolated from small intestine of C57BL/6J mice fed a low-fat diet (LFD) or high-fat diet (HFD) for 12 weeks. Additionally, CMT-93 cells, a cell line for IECs, were cultured in low glucose (LG, 5.5 mmol/L) or high glucose (HG, 27.5 mmol/L) medium and treated with palmitate (50 μmol/L) or bovine serum albumin (BSA) for 24 hr. These cells were analyzed for PFKFB3 and inflammatory markers. Compared with LFD, HFD feeding decreased IEC PFKFB3 expression and increased IEC proinflammatory responses. In CMT-93 cells, HG significantly increased PFKFB3 expression and proinflammatory responses compared with LG. Interestingly, palmitate decreased PFKFB3 expression and increased proinflammatory responses compared with BSA, regardless of glucose concentrations. Furthermore, HG significantly increased PFKFB3 promoter transcription activity compared with LG. Upon PFKFB3 overexpression, proinflammatory responses in CMT-93 cells were decreased. Taken together, these results indicate that in IECs glucose stimulates PFKFB3 expression and palmitate contributes to increased proinflammatory responses. Therefore, PFKFB3 regulates IEC inflammatory status in response to macronutrients. PMID:27387960

  8. A comparison of retinyl palmitate and red palm oil β-carotene as strategies to address Vitamin A deficiency.

    Science.gov (United States)

    Souganidis, Ellie; Laillou, Arnaud; Leyvraz, Magali; Moench-Pfanner, Regina

    2013-08-15

    Vitamin A deficiency continues to be an international public health problem with several important health consequences including blindness and overall increased rates of morbidity and mortality. To address this widespread issue, a series of strategies have been put into place from dietary diversification to supplementation and fortification programs. Retinyl palmitate has been used successfully for decades as a supplement as well as a way to fortify numerous foods, including vegetable oil, rice, monosodium glutamate, cereal flours and sugar. Recently, there has been rising interest in using a natural source of carotenoids, β-carotene from red palm oil (RPO), for fortification. Although RPO interventions have also been shown to effectively prevent Vitamin A deficiency, there are numerous challenges in using beta-carotene from RPO as a fortification technique. β-Carotene can induce significant changes in appearance and taste of the fortified product. Moreover, costs of fortifying with beta-carotene are higher than with retinyl palmitate. Therefore, RPO should only be used as a source of Vitamin A if it is produced and used in its crude form and regularly consumed without frying. Furthermore, refined RPO should be fortified with retinyl palmitate, not β-carotene, to ensure that there is adequate Vitamin A content.

  9. A comparison of retinyl palmitate and red palm oil β-carotene as strategies to address Vitamin A deficiency.

    Science.gov (United States)

    Souganidis, Ellie; Laillou, Arnaud; Leyvraz, Magali; Moench-Pfanner, Regina

    2013-08-01

    Vitamin A deficiency continues to be an international public health problem with several important health consequences including blindness and overall increased rates of morbidity and mortality. To address this widespread issue, a series of strategies have been put into place from dietary diversification to supplementation and fortification programs. Retinyl palmitate has been used successfully for decades as a supplement as well as a way to fortify numerous foods, including vegetable oil, rice, monosodium glutamate, cereal flours and sugar. Recently, there has been rising interest in using a natural source of carotenoids, β-carotene from red palm oil (RPO), for fortification. Although RPO interventions have also been shown to effectively prevent Vitamin A deficiency, there are numerous challenges in using beta-carotene from RPO as a fortification technique. β-Carotene can induce significant changes in appearance and taste of the fortified product. Moreover, costs of fortifying with beta-carotene are higher than with retinyl palmitate. Therefore, RPO should only be used as a source of Vitamin A if it is produced and used in its crude form and regularly consumed without frying. Furthermore, refined RPO should be fortified with retinyl palmitate, not β-carotene, to ensure that there is adequate Vitamin A content. PMID:23955382

  10. A Comparison of Retinyl Palmitate and Red Palm Oil β-Carotene as Strategies to Address Vitamin A Deficiency

    Directory of Open Access Journals (Sweden)

    Regina Moench-Pfanner

    2013-08-01

    Full Text Available Vitamin A deficiency continues to be an international public health problem with several important health consequences including blindness and overall increased rates of morbidity and mortality. To address this widespread issue, a series of strategies have been put into place from dietary diversification to supplementation and fortification programs. Retinyl palmitate has been used successfully for decades as a supplement as well as a way to fortify numerous foods, including vegetable oil, rice, monosodium glutamate, cereal flours and sugar. Recently, there has been rising interest in using a natural source of carotenoids, β-carotene from red palm oil (RPO, for fortification. Although RPO interventions have also been shown to effectively prevent Vitamin A deficiency, there are numerous challenges in using beta-carotene from RPO as a fortification technique. β-Carotene can induce significant changes in appearance and taste of the fortified product. Moreover, costs of fortifying with beta-carotene are higher than with retinyl palmitate. Therefore, RPO should only be used as a source of Vitamin A if it is produced and used in its crude form and regularly consumed without frying. Furthermore, refined RPO should be fortified with retinyl palmitate, not β-carotene, to ensure that there is adequate Vitamin A content.

  11. Palmitate Luciferin: A molecular design for the second harmonic generation study of ion complexation at the air-water interface

    International Nuclear Information System (INIS)

    A molecular organic chromophore, Palmitate-Luciferin, has been synthesized for studying ion complexation at the air-water interface using second harmonic generation (SHG). This molecule was designed through the addition of a long hydrophobic palmitoyl alkyl chain to the aromatic π-electron system of Luciferin. We first demonstrate that this organic chromophore is a potential candidate for SHG studies of ion complexation with the measurement of its first hyper-polarizability in aqueous solutions by hyper Rayleigh scattering (HRS) with and without calcium ions. Then, we characterize the Palmitate-Luciferin surfactant properties at the air-water interface combining surface tension measurements with a surface SHG study and Brewster angle imaging. These results allow us to build a molecular description of the chromophore at the interface and observe its molecular reorganization during the monolayer compression leading to the formation of aggregates. Finally, we show that the initial goal of the designing work is achieved since Palmitate-Luciferin indeed exhibits a higher SHG response in the presence of calcium ions in the aqueous sub-phase as expected. (authors)

  12. Molar extinction coefficients of some fatty acids

    Science.gov (United States)

    Sandhu, G. K.; Singh, Kulwant; Lark, B. S.; Gerward, L.

    2002-10-01

    The attenuation of gamma rays in some fatty acids, viz. formic acid (CH 2O 2), acetic acid (C 2H 4O 2), propionic acid (C 3H 6O 2), butyric acid (C 4H 8O 2), n-hexanoic acid (C 6H 12O 2), n-caprylic acid (C 8H 16O 2), lauric acid (C 12H 24O 2), myristic acid (C 14H 28O 2), palmitic acid (C 16H 32O 2), oleic acid (C 18H 34O 2) and stearic acid (C 18H 36O 2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement between experiment and theory.

  13. The significance of electron spin resonance of the ascorbic acid radical in freeze dried human brain tumours and oedematous or normal periphery.

    OpenAIRE

    Mueller, H. W.; Tannert, S.

    1986-01-01

    The ESR spectrum, attributed to the ascorbic acid (ascorbyl) radical and obtained by exposing freeze dried material to air, can not be used as proof for the occurrence of in vivo free radical reactions. Depending on the method of freeze drying, the content of blood or hemolyzed blood is the dominant factor in creating higher than normal ESR signals in brain or related tissue. These findings explain why the signal, though larger in many human brain tumours than in their surroundings, is not in...

  14. General oxidative stress during doxorubicin-induced cardiotoxicity in rats: absence of cardioprotection and low antioxidant efficiency of alpha-lipoic acid.

    OpenAIRE

    Ghibu, Steliana; Delemasure, Stéphanie; Richard, Carole; Guilland, Jean-Claude; Martin, Laurent; Gambert, Ségolène; Rochette, Luc; Vergely, Catherine

    2012-01-01

    To evaluate the effects of alpha-lipoic acid (AL) in a model of doxorubicin (DOX)-induced cardiotoxicity, male Wistar rats were treated with DOX (1 mg/kg/d; 10 d) in combination or not with AL (50 mg/kg/d; 15 d). Plasma oxidative stress was determined by hydroperoxides (ROOH) and the ascorbyl radical/ascorbate ratio. One and two months later, the functional parameters of the hearts were determined in vivo by catheterization and cardiac oxidative stress was assessed by malonedialdehyde (MDA) a...

  15. Development of Fatty Acid-Producing Corynebacterium glutamicum Strains

    OpenAIRE

    Takeno, Seiki; Takasaki, Manami; Urabayashi, Akinobu; Mimura, Akinori; Muramatsu, Tetsuhiro; Mitsuhashi, Satoshi; Ikeda, Masato

    2013-01-01

    To date, no information has been made available on the genetic traits that lead to increased carbon flow into the fatty acid biosynthetic pathway of Corynebacterium glutamicum. To develop basic technologies for engineering, we employed an approach that begins by isolating a fatty acid-secreting mutant without depending on mutagenic treatment. This was followed by genome analysis to characterize its genetic background. The selection of spontaneous mutants resistant to the palmitic acid ester s...

  16. Genetic variation in genes of the fatty acid synthesis pathway and breast cancer risk

    NARCIS (Netherlands)

    Campa, Daniele; McKay, James; Sinilnikova, Olga; Huesing, Anika; Vogel, Ulla; Hansen, Rikke Dalgaard; Overvad, Kim; Witt, Petra Mariann; Clavel-Chapelon, Francoise; Boutron-Ruault, Marie-Christine; Chajes, Veronique; Rohrmann, Sabine; Chang-Claude, Jenny; Boeing, Heiner; Fisher, Eva; Trichopoulou, Antonia; Trichopoulos, Dimitrios; Palli, Domenico; Villarini, Anna; Sacerdote, Carlotta; Mattiello, Amalia; Tumino, Rosario; Peeters, Petra H. M.; van Gils, Carla H.; Bueno-de-Mesquita, H. Bas; Lund, Eiliv; Dolores Chirlaque, Maria; Sala, Nuria; Rodriguez Suarez, Laudina; Barricarte, Aurelio; Dorronsoro, Miren; Sanchez, Maria-Jose; Lenner, Per; Hallmans, Goeran; Tsilidis, Kostas; Bingham, Sheila; Khaw, Kay-Tee; Gallo, Valentina; Norat, Teresa; Riboli, Elio; Rinaldi, Sabina; Lenoir, Gilbert; Tavtigian, Sean V.; Canzian, Federico; Kaaks, Rudolf

    2009-01-01

    Fatty acid synthase (FAS) is the major enzyme of lipogenesis. It catalyzes the NADPH-dependent condensation of acetyl-CoA and malonyl-CoA to produce palmitic acid. Transcription of the FAS gene is controlled synergistically by the transcription factors ChREBP (carbohydrate response element-binding p

  17. Process strategies to maximize lipid accumulations of novel yeast in acid and base treated hydrolyzates

    Science.gov (United States)

    Oleaginous yeasts can accumulate up to 70% of cell biomass as lipids, predominantly as triacylglycerols. Yeast lipid fatty acid profiles have been reported to be similar to that of vegetable oils and consist primarily of oleic, palmitic, stearic, and linoleic acids. This capability provides the oppo...

  18. Genetic variation in genes of the fatty acid synthesis pathway and breast cancer risk

    DEFF Research Database (Denmark)

    Campa, Daniele; McKay, James; Sinilnikova, Olga;

    2009-01-01

    Fatty acid synthase (FAS) is the major enzyme of lipogenesis. It catalyzes the NADPH-dependent condensation of acetyl-CoA and malonyl-CoA to produce palmitic acid. Transcription of the FAS gene is controlled synergistically by the transcription factors ChREBP (carbohydrate response element-bindin...

  19. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation

    OpenAIRE

    Srivastava, S. K.; Tripathi, Abhishek Dutt

    2013-01-01

    Polyhydroxyalkanoates (PHAs) are intracellular reserve material stored by gram-negative bacteria under nutrient-limited condition. PHAs are utilized in biodegradable plastics (bio-plastics) synthesis due to their similarity with conventional synthetic plastic. In the present study, the effect of addition of saturated and unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) on the production of PHAs by the soil bacterium Alcaligenes sp. NCIM 5085 was studied. Fat...

  20. Total Oil Content and Fatty Acid Profile of some Almond (Amygdalus Communis L. Cultivars

    Directory of Open Access Journals (Sweden)

    Yildirim Adnan Nurhan

    2016-07-01

    Full Text Available This study was conducted to determine the total oil contents and fatty acid compositions of some commercial almond cultivars. The total oil contents changed significantly (p<0.05 by year in all cultivars with the exception of cultivar Ferrastar. Total oil contents were changed from 50.90% (Picantili to 62.01% (Supernova in 2008 and from 52.44% (Lauranne to 63.18% (Cristomorto in 2009. While predominant unsaturated fatty acids were oleic and linoleic acids, predominant saturated fatty acid was palmitic acid. The highest amount of oleic acid was obtained in Glorieta in both 2008 (83.35% and 2009 (72.74%. Linoleic acid content varied by year and the highest content was recorded in Picantili (26.08% in 2008 and Yaltinski (30.01% in 2009. The highest amount of palmitic acid was detected in cultivar Sonora in both years, i.e. as 7.76% in 2008 and 10.11% in 2009. The mean UFA:SFA ratio was 11.73 in 2008 but 7.59 in 2009. Principal component (PC analysis indicated that palmitic acid, palmitoleic acid, stearic acid, oleic acid, arachidic acid, unsaturated fatty acid (UFA, saturated fatty acid (SFA and UFA:SFA ratio were primarily responsible for the separation on PC1

  1. Rheological Characterization and Safety Evaluation of Non-Ionic Lamellar Liquid Crystalline Systems Containing Retinyl Palmitate.

    Science.gov (United States)

    Chorilli, Marlus; Rigon, Roberta B; Calixto, Giovana; Cartezani, Pedro M F; Ribeiro, Maria C A P; Polacow, Maria L; Cerri, Paulo Sérgio; Sarmento, Victor H V; Scarpa, Maria Virgínia

    2016-02-01

    Retinyl palmitate (RP) is widely used as a special interest ingredient in dermatological formulations to improve the elasticity of the skin and to reduce wrinkles by stimulating collagen synthesis. Nanotechnology-based drug delivery systems, such as liquid crystalline systems (LCSs), can modulate drug permeation into skin and improve the drug action. The effects of such systems on the skin, however, are not completely known. Possible undesirable effects of these formulations on the skin can be detected and interpreted by histopathology and histomorphometry. The objective of this study was to perform a rheological characterization to evaluate the safety of RP used in a lamellar LCS in vitro and in vivo. LCSs containing polyether functional siloxane as a surfactant, silicon glycol copolymer as an oil phase and water at ratios of 60:10:30 and 40:30:30, with (F₁v and F₂v, respectively) and without (F₁ and F₂ respectively) RP, were investigated. The rheological characterization was performed using steady shear rate sweep tests and dynamic frequency sweep tests carried out for up to 30 days for various storage temperature conditions (25 ± 2 °C, 37 ± 2 °C and 5 ± 2 °C). Cytotoxic effects were evaluated using J-774 mouse macrophages as a cellular model system. The in vivo tests were conducted on rabbits that had areas of skin treated as follows for 15 days: C (Control); F₁; F₁v; F₂; and F₂v. Histomorphometric and histopathological techniques were used to estimate the thicknesses of the epidermis and stratum corneum and the numbers of fibroblasts and leukocytes in the papillary dermis. Mean values were compared by ANOVA, followed by the Tukey test (p skin and that formulation F₁v significantly increased the number of fibroblasts in the dermis, which could result in an increase in the production of collagen. PMID:27305773

  2. Analysis of fatty acids in selected Macedonian edible oils

    OpenAIRE

    Ivanova, Violeta; Mitrev, Sasa; Leitner, Erich; Lankmayr, Ernst; Siegmund, Barbara; Stafilov, Trajče

    2015-01-01

    The fatty acid composition of few Macedonian edible oils, including sunflower, pumpkin seed, flax, rapeseed and sesame seeds, was determined using GC-FID analysis after derivatisation with BF3-methanolic solution. Six different types of fatty acids (FAs) were found in the oils samples. Palmitic acid (C16:0) and stearic acid (C18:0) were common in all saturates. Myristic acid (C14:0) was present in the sunflower and pumpkin seed oil. Oleic acid (C18:1), linoleic acid (C18:2) and -linolenic (C...

  3. The effect of retinyl palmitate added to iron-fortified maize porridge on erythrocyte incorporation of iron in African children with vitamin A deficiency.

    Science.gov (United States)

    Davidsson, Lena; Adou, Pierre; Zeder, Christophe; Walczyk, Thomas; Hurrell, Richard

    2003-08-01

    Retinyl palmitate added to Fe-fortified maize bread has been reported to enhance Fe absorption in adult Venezuelan subjects but not in Western Europeans. It is not known to what extent these results were influenced by differences in vitamin A status of the study subjects. The objective of the present study was to evaluate the influence of retinyl palmitate added to Fe-fortified maize porridge on erythrocyte incorporation of Fe in children with vitamin A deficiency, before and after vitamin A supplementation. Erythrocyte incorporation of Fe-stable isotopes was measured 14 d after intake of maize porridge (2.0 mg Fe added as ferrous sulfate) with and without added retinyl palmitate (3.5 micromol; 3300 IU). The study was repeated 3 weeks after vitamin A supplementation (intake of a single dose of 210 micromol retinyl palmitate; 'vitamin A capsule'). Vitamin A status was evaluated by the modified relative dose-response (MRDR) technique. Retinyl palmitate added to the test meal reduced the geometric mean erythrocyte incorporation of Fe at baseline from 4.0 to 2.6 % (P=0.008, n 13; paired t test). At 3 weeks after vitamin A supplementation, geometric mean erythrocyte incorporation was 1.9 and 2.3 % respectively from the test meal with and without added retinyl palmitate (P=0.283). Mean dehydroretinol:retinol molar ratios were 0.156 and 0.125 before and after intake of the single dose of 210 micromol retinyl palmitate; 'vitamin A capsule' (P=0.15). In conclusion, retinyl palmitate added to the labelled test meals significantly decreased erythrocyte incorporation of Fe in children with vitamin A deficiency at baseline but had no statistically significant effect 3 weeks after vitamin A supplementation. The difference in response to retinyl palmitate added to Fe-fortified maize porridge on erythrocyte incorporation of Fe before and after intake of the vitamin A capsule indicates, indirectly, changes in vitamin A status not measurable by the MRDR technique. The lack of

  4. Caveolar fatty acids and acylation of caveolin-1.

    Directory of Open Access Journals (Sweden)

    Qian Cai

    Full Text Available PURPOSE: Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids. METHODS: Caveolae were isolated from Chinese hamster ovary (CHO cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS. The caveolin-1 bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS. RESULTS: In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5 × 10(7 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid. CONCLUSION: Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.

  5. L-Ascorbyl-2-phosphate attenuates NF-κB signaling in SZ95 sebocytes without affecting IL-6 and IL-8 secretion.

    Science.gov (United States)

    Ikeno, Hiroshi; Apel, Mara; Zouboulis, Christos; Luger, Thomas A; Böhm, Markus

    2015-09-01

    Acne is the most common inflammatory skin disease. Interleukin-1 (IL-1) is at the beginning of the cytokine signaling cascade and may be involved in the pathogenesis of this disorder. It activates redox-sensitive transcription factors, which induce IL-6 and IL-8 expression. Interestingly, L-ascorbyl-2-phosphate (APS) was shown to have beneficial effects in patients with acne vulgaris. The mechanism of action of this agent remains unknown. Here, we investigated if APS attenuates IL-1β- or TNF-α-mediated IL-6 and IL-8 expression in SZ95 sebocytes, whereas TNF-α was used as control. We also explored NF-κB activation which is known to orchestrate IL-1β- and TNF-α-mediated cytokine expression in many cell types. Both IL-1β and TNF-α increased IL-6 and IL-8 mRNA expression in SZ95 sebocytes. However, only IL-1β induced IL-6 and IL-8 secretion. IL-1β but not TNF-α activated NF-κB canonical signaling as demonstrated by Iκ-Bα phosphorylation and degradation as well as by nuclear accumulation of NF-κB/p65. Concomitant treatment of SZ95 sebocytes with APS attenuated the effect of IL-1β and TNF-α on IL-6 and IL-8 gene expression as well as on IL-1β-mediated NF-κB signaling. In contrast, APS failed to reduce IL-1β-mediated IL-6 and IL-8 secretion, presumably by maintained IL-1β-mediated p38 activation, which is known to control IL-8 secretion. Our findings shed light into the impact of IL-1β on the inflammatory cytokine response and its molecular mechanisms in human sebocytes. Our data further suggest that the beneficial effect of APS in acne patients involves attenuation of NF-κB signaling but not reduction of IL-6 or IL-8 secretion. PMID:25894228

  6. 抗坏血酸磷酸酯镁及熊果苷的检测方法进展%Advances in detection method of magnesium ascorbyl phosphate and arbutin

    Institute of Scientific and Technical Information of China (English)

    杨园园; 郁荣华; 李勤; 周泽琳

    2014-01-01

    Whitening mechanism and effects on the human body of magnesium ascorbyl phosphate and arbutin are introduced in this paper. The various detection methods currently used for magnesium ascorbyl phosphate and arbutin were summarized, compared and analyzed. The common detection method is liquid chromatography, which can detect five whitening ingredients containing magnesium ascorbyl phosphate and arbutin;in addition, GC/MS and LC/MS/MS method can also detect arbutin, and the detection limit and recov-ery are better than HPLC. The mass spectrometry and simultaneous detection of multiple components will be the mainstream in the future.%本文简要介绍了近年应用十分广泛的美白成分抗坏血酸磷酸酯镁及熊果苷的作用机制以及对人体的影响,综述了目前采用的多种检测方法,并对各种检测方法进行比较及分析。目前较为常用的检测方法为液相色谱法,可以同时检测包含抗坏血酸磷酸酯镁及熊果苷在内的五种美白成分;另外,气相色谱-质谱联用法以及液相色谱-质谱联用法也能够检测熊果苷,而且能得到更低的检出限和较高的回收率,灵敏度高,能提高分析效率。但是由于方法中流动相、检测基质等因素,仍需进一步完善改进检测方法。综合上述方法考虑,质谱联用以及同时检测多种成分是今后美白成分检测的主要发展方向。

  7. Study of the Synthesis of L - ascorbyl - 2 - triphosphate with Asscorbic Acid and Hexmetaphosphate%六偏磷酸钠与Vc合成Vc多聚磷酸酯

    Institute of Scientific and Technical Information of China (English)

    金显春; 赵敏; 王锦堂

    2003-01-01

    报导了Vc与六偏磷酸钠在水介质中合成Vc多聚磷酸酯(LAPP)的方法,研究了不同反应条件对LAPP产率与质量的影响.当Vc/六偏磷酸钠/催化剂(物质的量比)=1:1.30:0.15,溶液pH=9时LAPP的收率为85.6%.

  8. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival.

    Science.gov (United States)

    Fillmore, Natasha; Huqi, Alda; Jaswal, Jagdip S; Mori, Jun; Paulin, Roxane; Haromy, Alois; Onay-Besikci, Arzu; Ionescu, Lavinia; Thébaud, Bernard; Michelakis, Evangelos; Lopaschuk, Gary D

    2015-01-01

    Successful stem cell therapy requires the optimal proliferation, engraftment, and differentiation of stem cells into the desired cell lineage of tissues. However, stem cell therapy clinical trials to date have had limited success, suggesting that a better understanding of stem cell biology is needed. This includes a better understanding of stem cell energy metabolism because of the importance of energy metabolism in stem cell proliferation and differentiation. We report here the first direct evidence that human bone marrow mesenchymal stem cell (BMMSC) energy metabolism is highly glycolytic with low rates of mitochondrial oxidative metabolism. The contribution of glycolysis to ATP production is greater than 97% in undifferentiated BMMSCs, while glucose and fatty acid oxidation combined only contribute 3% of ATP production. We also assessed the effect of physiological levels of fatty acids on human BMMSC survival and energy metabolism. We found that the saturated fatty acid palmitate induces BMMSC apoptosis and decreases proliferation, an effect prevented by the unsaturated fatty acid oleate. Interestingly, chronic exposure of human BMMSCs to physiological levels of palmitate (for 24 hr) reduces palmitate oxidation rates. This decrease in palmitate oxidation is prevented by chronic exposure of the BMMSCs to oleate. These results suggest that reducing saturated fatty acid oxidation can decrease human BMMSC proliferation and cause cell death. These results also suggest that saturated fatty acids may be involved in the long-term impairment of BMMSC survival in vivo.

  9. Identification of sitosteryl glucoside palmitate in a chloroform-derived fraction of Phyllanthus niruri with antiplasmodial and peripheral antinociceptive properties

    Institute of Scientific and Technical Information of China (English)

    Ezenyi Ifeoma Chinwude; Kulkarni Roshan; Joshi Swati; Salawu Oluwakanyinsola Adeola; Emeje Martins

    2014-01-01

    Objective: To evaluate the antiplasmodial properties of fractions of chloroform portion of Phyllanthus niruri (P. niruri) methanol extract and identify a suitable chemical marker present therein. Methods: Chloroform portion of P. niruri methanol extract was separated from silica gel using gradient systems of hexane, ethylacetate and methanol. The fractions were screened for antiplasmodial activity against Plasmodium falciparum HB3 and FcM29. Fractions with IC50 Results:Fractions 12-14 were very active (IC50 Conclusions:Our findings illustrate antiplasmodial column fractions of P. niruri with analgesic activity and identify sitosteryl glucoside palmitate as a chemical marker of activity.

  10. Analysis of embryo, cytoplasm and maternal effects on fatty acid components in soybean (Glycine max Merill.)

    Institute of Scientific and Technical Information of China (English)

    NING Hailong; LI Wenxia; LI Wenbin

    2007-01-01

    The quality of oil determined by the constituents and proportion of fatty acid components,and the understanding of heredity of fatty acid components are of importance to breeding good quality soybean varieties.Embryo,cytoplasmic and maternal effects and genotype×environment interaction effects for quality traits of soybean [Glycine max (L.) Merrill.] seeds were analyzed using a general genetic model for quantitative traits of seeds with parents,F1 and F2,of 20 crosses from a diallel mating design of five parents planted in the field in 2003 and 2004 in Harbin,China.The interaction effects of palmitic,stearic,and linoleic acid contents were larger than the genetic main effects,while the genetic main effects were equal to interaction effects for linolenic and oleic acid content.Among all kinds of genetic main effects,the embryo effects were the largest for palmitic,stearic,and linoleic acids,while the cytoplasm effects were the largest for oleic and linolenic acids.Among all kinds of interaction effects,the embryo interaction effects were the largest for fatty acids.The sum of additive and additive× environment effects were larger than that of dominance and dominance×environment effects for the linolenic acid content,but not for other quality traits.The general heritabilities were the main parts of heritabilities for palmitic and oleic acid contents,but the interaction was more important for stearic,linoleic,and linolenic acid contents.For the general heritability,maternal and cytoplasm heritabilities were the main components for palmitic,oleic,and linolenic acid contents.It was shown for the interaction heritabilities that the embryo interaction heritabilities were more important for oleic and linolenic acid contents,while the maternal interaction heritabilities were more important for linoleic acid content.Among selection response components,the maternal and cytoplasm general responses and/or interaction responses were more important for palmitic

  11. 维A酸维生素C棕榈酸酯泡囊的体外释放、经皮渗透和皮肤贮留研究%Study on the Release Rate, in Vitro Skin Penetration and Retention of Tretinoin Ascorbyl Palmitate Vesicles

    Institute of Scientific and Technical Information of China (English)

    陈正明; 龙晓英; 丁钢; 袁飞

    2010-01-01

    目的 研究维生素C棕榈酸酯泡囊作为维A酸载体时,主药的体外释放、经皮渗透和皮肤贮留情况.方法 采用Franz扩散池测定维A酸从载体中的释放速度,扩散池与供给池之间为纤维素膜(截留分子量8 000~14 000),扩散池面积为2.92 cm2.体外透皮试验用小鼠、大鼠或兔子背部皮肤替代半透膜.在体外透皮试验完结后,取下皮肤,剪碎匀浆,用50%异丙醇-生理盐水提取,提取液处理后用HPLC测定药物浓度.结果 结果 表明维A酸释放速率和累积经皮渗透量大于市售乳膏,同时具有较高的皮肤贮留量.结论 维生素C棕榈酸酯泡囊作为维A酸载体有助于增加局部药物浓度.

  12. Cross linkage studies with the membranes of the vesicular stomatitis virus using radioactive 4-acido and 5-acido palmitic acid

    International Nuclear Information System (INIS)

    In the study described here the spatial arrangement of lipids and proteins in the VS virus was investigated on the basis of the covalent cross linkage technique. The formation of such cross linkages is brought about by the action of photosensitive acidosubstituted lipids, which permit acido functions to be introduced into a membrane in a previously defined position. Subsequently, photolysis helps to trigger the generation of radioactive nitrenes that react with the proteins and lipids in their immediate vicinity in a direct and non-selective way. The findings revealed by this study have raised questions as to the possibility of lipid-protein and lipid-lipid interactions, which is also discussed. (orig./MG)

  13. Incorporation of [14C]-palmitate into lipids of Brassica cells during the induction of freezing tolerance

    International Nuclear Information System (INIS)

    Changes in plasma membrane lipid composition have been causally related to increased freezing tolerance. Studies of lipid metabolism during ABA induction of freezing tolerance in Brassica napus suspension cultures were undertaken. Cells were labeled with [14C]-palmitate four days after transfer to fresh medium (control) or medium containing ABA (which increases freezing tolerance). At times between one and 20 hrs after labeling, ABA-treated cells incorporated almost twice the amount of label as controls cells. Approximately 80% of the radioactivity was associated with neutral lipids in ABA-treated cells and controls. Incorporation of label into total cellular polar lipids was 4.9 x 105 dpm/mg protein for control cells and 1 x 106 dpm/mg protein for cells transferred to medium containing ABA. Analysis of lipids following alkaline hydrolysis indicated that incorporation of [14C]-palmitate into glucosylceramide of ABA-treated cells was less than 60% of control values when expressed relative to that of the total polar lipids. Incorporation into ceramides was also depressed in ABA-treated cells

  14. 硬脂酸中棕榈酸和硬脂酸的GC法测定%Determination of Palmitic Acid and Stearic Acid in Stearic Acid by GC

    Institute of Scientific and Technical Information of China (English)

    邱颖姮

    2010-01-01

    建立了GC法测定硬脂酸中的棕榈酸和硬脂酸.以聚乙二醇(PEG)为固定相,采用程序升温,进样口温度250℃,检测器温度260℃,分流比30:1,载气为氮气.棕榈酸和硬脂酸在0.5~4 mg/ml浓度范围内与峰面积线性关系良好;回收率为100.3%和100.2%,RSD均为0.9%.

  15. Analysis of sterols and fatty acids in natural and cultured Cordyceps by one-step derivatization followed with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Yang, F Q; Feng, K; Zhao, J; Li, S P

    2009-07-12

    Ten free fatty acids namely lauric acid, myristic acid, pentadecanoic acid, palmitoleic acid, palmitic acid, linoleic acid, oleic acid, stearic acid, docosanoic acid and lignoceric acid and four free sterols including ergosterol, cholesterol, campesterol and beta-sitosterol in natural (wild) Cordyceps sinensis, Cordyceps liangshanensis and Cordyceps gunnii, as well as cultured C. sinensis and Cordyceps militaris were first determined using pressurized liquid extraction (PLE), trimethylsilyl (TMS) derivatization and GC-MS analysis. The conditions such as the amount of reagent, temperature and time for TMS derivatization of analytes were optimized. Under the optimum conditions, all calibration curves showed good linearity within the tested ranges. The intra- and inter-day variations for 14 investigated compounds were less than 3.4% and 5.2%, respectively. The results showed that palmitic acid, linoleic acid, oleic acid, stearic acid and ergosterol are main components in natural and cultured Cordyceps which could be discriminated by hierarchical clustering analysis based on the contents of 14 investigated compounds or the 4 fatty acids, where the contents of palmitic acid and oleic acid in natural Cordyceps are significantly higher than those in the cultured ones.

  16. Amiodarone inhibits the mitochondrial beta-oxidation of fatty acids and produces microvesicular steatosis of the liver in mice

    Energy Technology Data Exchange (ETDEWEB)

    Fromenty, B.; Fisch, C.; Labbe, G.; Degott, C.; Deschamps, D.; Berson, A.; Letteron, P.; Pessayre, D. (Institut National de la Sante et de la Recherche Medicale U24, Clichy (France))

    1990-12-01

    Amiodarone has been shown to produce microvesicular steatosis of the liver in some recipients. We have determined the effects of amiodarone on the mitochondrial oxidation of fatty acids in mice. In vitro, the formation of 14C-acid-soluble beta-oxidation products from (U-14C)palmitic acid by mouse liver mitochondria was decreased by 92% in the presence of 125 microM amiodarone and by 94% in the presence of 125 microM N-desethylamiodarone. Inhibition due to 100 or 150 microM amiodarone persisted in the presence of 5 mM acetoacetate, whereas acetoacetate totally relieved inhibition due to 15 microM rotenone. In vivo, exhalation of (14C)CO2 from (U-14C)palmitic acid was decreased by 31, 40, 58 and 78%, respectively, in mice receiving 19, 25, 50 and 100 mg.kg-1 of amiodarone hydrochloride 1 hr before the administration of (U-14C)palmitic acid. One hour after 100 mg.kg-1, the exhalation of (14C)CO2 from (1-14C)palmitic acid, (1-14C)octanoic acid or (1-14C)butyric acid was decreased by 78, 72 and 53%, respectively. Exhalation of (14C)CO2 from (1-14C)palmitic acid was normal between 6 and 9 hr after administration of 100 mg.kg-1 of amiodarone hydrochloride, but was still inhibited by 71 and 37%, 24 and 48 hr after 600 mg.kg-1. Twenty four hours after the latter dose of amiodarone, hepatic triglycerides were increased by 150%, and there was microvesicular steatosis of the liver. We conclude that amiodarone inhibits the mitochondrial beta-oxidation of fatty acids and produces microvesicular steatosis of the liver in mice.

  17. Variation in Fatty Acids Composition Including Trans Fat in Different Brands of Potato Chips by GC-MS

    Directory of Open Access Journals (Sweden)

    Aftab A. Kandhro

    2010-06-01

    Full Text Available Twelve different brands of potato chips were analyzed for their fatty acid compositions with eminence on trans fatty acid (TFA using GC-MS. Results of the present study showed that the dominant fatty acids were saturated fatty acids. Among the saturated fatty acids, palmitic acid (23.91–42.64 % was found in greater amount in all analyzed chips samples. The amount of TFA’s determined was ranged between (4.91–14.13 %. Although there was significant variation in the fatty acid profile of all analyzed chips samples but high amount of palmitic acid and trans fat was commonly observed. The results of present study clearly indicated fat used in the manufacturing of chips was partially hydrogenated and palm oil had major contribution. The high level of trans as well as saturated fat is startling issue for the health of consumers.

  18. Study on Synergies of Natural Antioxidants and their Antioxidation Functions on Peanut Oil%天然抗氧化剂的增效作用及其对花生油抗氧化效果研究

    Institute of Scientific and Technical Information of China (English)

    黄克; 崔春; 赵谋明; 马浩

    2012-01-01

    Rosmarinus officinalis extract, tea polyphenol, phytic acid, ascorbyl palmitate and vitamin E were selected to prepare natural antioxidant compound for peanut oil due to their antioxidant capacities. The induction time of peanut oil added various antioxidant was tested by Rancimat method. According to the range analysis of orthogonal test design results, the contributions of 4 natural antioxidants to antioxidation were ranked in turn as : Rosmarinus officinalis extract>tea polyphenol >phytic acid>ascorbyl palmitate, and the optimum formula of the natural antioxidant compound was as follows: Rosmarinus officinalis extract 0.07%,tea polyphenol 0.03%,phytic acid 0.02% and ascorbyl palmitate 0.02%. The antioxidant capacity of this compound was higher than that of TBHQ.%对迷迭香提取物、荼多酚、植酸、VE、抗坏血酸棕榈酸酯在花生油中的抗氧化性能和五种天然抗氧化剂相互之间的增效作用进行了研究.通过Rancimat法测定了添加各种抗氧剂的花生油的诱导时间,根据正交实验结果,各种天然抗氧化剂在组分中的主次因素为迷迭香提取物>茶多酚>植酸>抗坏血酸棕榈酸酯,优化得出天然抗氧化剂的复配配方为迷迭香提取物0.07%、茶多酚0.03%、植酸0.02%、抗坏血酸棕榈酸酯0.02%.此配方对花生油的抗氧化能力优于TBHQ.

  19. Lipid and fatty acid analysis of the Plodia interpunctella granulosis virus (PiGV) envelope

    Science.gov (United States)

    Shastri-Bhalla, K.; Funk, C. J.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Virus envelope was isolated from Plodia interpunctella granulosis virus, produced in early fourth-instar larvae. Both polar and neutral lipids were analyzed by two-dimensional thin-layer chromatography. Fatty acid composition of various individual neutral and polar lipids was determined by gas-liquid chromatography. The major components of envelope neutral lipid were diacylglycerols. Palmitic acid and stearic acid were the major saturated fatty acids in both polar and neutral lipids. Whereas palmitoleic acid was the major unsaturated fatty acids in neutral lipids, oleic acid was the major unsaturated fatty acid in the polar lipids.

  20. Direct Free Fatty Acid Storage in Different Sized Adipocytes from the Same Depot

    OpenAIRE

    Rajjo, Tamim I.; Harteneck, Debra A.; Jensen, Michael D.

    2014-01-01

    Objective Human adipocytes take up free fatty acids (FFA) directly from the circulation, even at times of high lipolytic activity. Whether these processes occurs simultaneously within the same cells or are partitioned between different cells, for example large and small cells, is unknown. Design and Methods We measured direct FFA storage in subcutaneous fat in 13 adults using a continuous infusion of [U-13C]palmitate and a bolus of [1-14C]palmitate followed 30 min later by abdominal and femor...

  1. Scalable preparation of high purity rutin fatty acid esters following enzymatic synthesis

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing;

    2010-01-01

    -up biosynthesis reactions was established. Acylation reactions of rutin and palmitic or lauric acids were efficient in systems containing dried acetone and molecular sieves, yielding from 70–77% bioconversion after 96 h. Thereafter, high purity isolates (>97%) were easily obtained in significant quantities...

  2. The effect of carbohydrate and fat variation in euenergetic diets on postabsorptive free fatty acid release

    NARCIS (Netherlands)

    Bisschop, PH; Ackermans, MT; Endert, E; Ruiter, AFC; Meijer, AJ; Kuipers, F; Sauerwein, HP; Romijn, JA

    2002-01-01

    Diet composition and energy content modulate free fatty acid (FFA) release. The aim of this study was to evaluate the dose-response effects of euenergetic variations in dietary carbohydrate and fat content on postabsorptive FFA release. The rate of appearance (R-a) of palmitate was measured by infus

  3. Micro method for determination of nonesterified fatty acid in whole blood obtained by fingertip puncture

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Munk, Jens; Gaster, Michael;

    2006-01-01

    background fluorescence reading, NEFAs were converted to acyl-CoA by the acyl-CoA synthetase and the NEFA content was calculated from fluorescence emission changes using palmitic acid as external standard. The FACI-50 NEFA method was compared with two commercially available methods for quantification of NEFA....

  4. Survey of SSC12 regions affecting fatty acid composition of intramuscular fat using high density SNP data

    Directory of Open Access Journals (Sweden)

    María eMuñoz

    2012-01-01

    Full Text Available Fatty acid composition is a critical aspect of pork because it affects sensorial and technological aspects of meat quality and it is relevant for human health. Previous studies identified significant QTLs in porcine chromosome 12 for fatty acid profile of backfat and intramuscular fat. In the present study, 374 SNPs mapped in SSC12 from the 60K Porcine SNP Beadchip were used. We have combined linkage and association analyses with expression data analysis in order to identify regions of SSC12 that could affect fatty acid composition of intramuscular fat in longissimus muscle. The QTL scan showed a region around the 60 cM position that significantly affects palmitic fatty acid and two related fatty acid indexes. The Iberian QTL allele increased the palmitic content (+2.6% of mean trait. This QTL does not match any of those reported in the previous study on fatty acid composition of backfat, suggesting different genetic control acting at both tissues. The SNP association analyses showed significant associations with linolenic and palmitic acids besides several indexes. Among the polymorphisms that affect palmitic fatty acid and match the QTL region at 60 cM, there were three that mapped in the Phosphatidylcholine Transfer Protein (PCTP gene and one in the Acetyl-CoA Carboxylase  gene (ACACA. Interestingly one of the PCTP SNPs also affected significantly unsaturated and double bound indexes and the ratio between polyunsaturated/monounsaturated fatty acids. Differential expression was assessed on longissimus muscle conditional on the genotype of the QTL and on the most significant SNPs, according to the results obtained in the former analyses. Results from the microarray expression analyses, validated by RT-qPCR, showed that PCTP expression levels significantly vary depending on the QTL as well as on the own PCTP genotype. The results obtained with the different approaches point out the PCTP gene as a powerful candidate underlying the QTL for

  5. Comparative Transcriptome Analysis of Three Oil Palm Fruit and Seed Tissues That Differ in Oil Content and Fatty Acid Composition

    OpenAIRE

    Dussert, Stéphane; Guerin, Chloe; Andersson, Mariette; JOET, THIERRY; Tranbarger, Timothy J.; Pizot, Maxime; Gautier, Sarah; Omore, Alphonse; Durand-Gasselin, Tristan; Morcillo, Fabienne

    2013-01-01

    Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To g...

  6. Amino acid peroxyl radicals. Formation and reaction with ascorbate

    International Nuclear Information System (INIS)

    Complete text of publication follows. Proteins are significant targets for partly reduced oxygen species in vivo. This results in random formation of radicals on the amino acid residues (AA·) of the protein, which in turn, in the presence of oxygen, can yield the corresponding peroxyl radicals (AAOO·). Both radical types can cause further biological damage. We studied the N-acetylamide derivatives of the amino acids glycine, alanine and proline as models of these residues in proteins. We generated the amino acid radicals specifically by reaction with hydroxyl radicals produced in solutions irradiated with 2 MeV electrons in the presence of N2O. In the absence of oxygen the amino acid radicals decayed with rate constants in the narrow range (0.9-1.3) x 109 M-1s-1, while in the presence of oxygen they were converted very rapidly to the corresponding peroxyl radicals with rate constants that vary between 6.3 x 108 and 5.5 x 109 M-1s-1, depending on the amino acid. The corresponding N-acetylated amino acids were also studied and showed similar behaviour but with slightly smaller rate constants. Antioxidants are able to repair tyrosyl and tryptophanyl radicals in various proteins in vitro. For ascorbate, the principal endogenous biological antioxidant, we have measured rate constants in the range 105-108 M-1s-1. The peroxyl radicals of all amino acids studied here were reduced by oxidizing ascorbate to the ascorbyl radical. The reaction was followed at 360 nm, where ascorbyl radical has an absorption coefficient of 3300 M-1cm-1, and the derived rate constants were all close to 107 M-1s-1. However, the spontaneous decay of peroxyl radicals is also fast and competes with the reaction with ascorbate. It is to be stressed that reaction of AAOO· and ascorbate gives rise to hydroperoxides (AAOOH) that are also reactive molecules. Our study suggests that reaction with protein radicals may be responsible for the ascorbate loss reported in organisms exposed to oxidative

  7. Solder Flux Residues and Humidity-Related Failures in Electronics: Relative Effects of Weak Organic Acids Used in No-Clean Flux Systems

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    This paper presents the results of humidity testing of weak organic acids (WOAs), namely adipic, succinic, glutaric, dl-malic, and palmitic acids, which are commonly used as activators in no-clean solder fluxes. The study was performed under humidity conditions varying from 60% relative humidity ...

  8. Influence of dietary vitamin C dosage on turbot (Scophthalmus maximus) and European sea bass (Dicentrarchus labrax) nursery stages

    OpenAIRE

    Merchie, G.; Lavens, P.; Storch, V.; Übel, U.; Nelis, H.; De leenheer, A P; Sorgeloos, P.

    1996-01-01

    Stable forms of vitamin C were verified as dietary sources of ascorbic acid (AA) for the nursery stages of European sea bass and turbot. In a first experiment, various concentrations of ascorbyl palmitate (AP) and one level of AA 2-polyphosphate (ApP) were evaluated in a semi purified diet for European sea bass, Dicentrarchus labrax. A significantly lower AA concentration was detected in the fry fed the AP-supplemented diets compared to the ApP-fed group, providing evidence that AP is an infe...

  9. Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes and 3T3-L1 adipocytes.

    Science.gov (United States)

    Lin, Xiaofen; Li, Yi; Leung, Polly Hangmei; Li, Jiashen; Hu, Junyan; Liu, Xuan; Li, Zhi

    2016-05-01

    Human skin temperature can vary widely depending on anatomical location and ambient temperature. It is also known that local changes in skin and subcutaneous temperature can affect fat metabolism. This study aimed to explore the potential effects of surrounding thermal environment on fat by investigating cell viability, lipid oxidation, and lipid accumulation in 3T3-L1 adipocytes and palmitate-treated adipocytes after 4h incubation. No significant differences of viability in 3T3-L1 adipocytes were detected under different temperature conditions. Despite no significant increase being observed under warm temperature (39°C) conditions, a similarly significant suppression of intracellular reactive oxygen species (ROS) and lipid peroxidation were found in 3T3-L1 adipocytes and palmitate-treated adipocytes under 4h exposure to cooler temperatures of 31-33°C (Psize of lipid droplets in 3T3-L1 adipocytes (Padipocytes. In the palmitate-induced adiposity model, although excessive ROS and lipid peroxidation has been attenuated by temperature decrease (Psize (P>0.05) and remedy the palmitate damage induced cell death (Padipocytes. PMID:27157327

  10. Analysis of all-rac-alpha-tocopheryl acetate and retinyl palmitate in medical foods using a zero control reference material (ZRM) as a method development tool.

    Science.gov (United States)

    Chase, G W; Eitenmiller, R R; Long, A R

    1999-01-01

    A liquid chromatographic method is described for analysis of all- rac-alpha-tocopheryl acetate and retinyl palmitate in medical food. The vitamins are extracted in isopropyl alcohol and hexane-ethyl acetate without saponification and quantitated by normal-phase chromatography with fluorescence detection. All rac-alpha-tocopheryl acetate and retinyl palmitate are chromatographed isocratically with a mobile phase of 0.5% (v/v) and 0.125% (v/v) isopropyl alcohol in hexane, respectively. Recovery studies performed on a medical food zero control reference material (ZRM) fortified with the analytes averaged 99.7% (n = 25) for retinyl palmitate and 101% (n = 25) for all- rac-alpha-tocopheryl acetate. Coefficients of variation were 0.87-2.63% for retinyl palmitate and 1.42-3.20% for all-rac-alpha-tocopheryl acetate. The method provides a rapid, specific, and easily controlled assay for analysis of vitamin A and vitamin E in medical foods. Use of chlorinated solvents is avoided. PMID:10232898

  11. Red palm oil-supplemented and biofortified cassava gari increase the carotenoid and retinyl palmitate concentrations of triacylglycerol-rich plasma in women.

    Science.gov (United States)

    Zhu, Chenghao; Cai, Yimeng; Gertz, Erik R; La Frano, Michael R; Burnett, Dustin J; Burri, Betty J

    2015-11-01

    Boiled biofortified cassava containing β-carotene can increase retinyl palmitate in triacylglycerol-rich plasma. Thus, it might alleviate vitamin A deficiency. Cassava requires extensive preparation to decrease its level of cyanogenic glucosides, which can be fatal. Garification is a popular method of preparing cassava that removes cyanogen glucosides. Our objective was to compare the effectiveness of biofortified gari to gari prepared with red palm oil. The study was a randomized crossover trial in 8 American women. Three gari preparations separated by 2-week washout periods were consumed. Treatments (containing 200-225.9 g gari) were as follows: biofortified gari (containing 1 mg β-carotene), red palm oil-fortified gari (1 mg β-carotene), and unfortified gari with a 0.3-mg retinyl palmitate reference dose. Blood was collected 6 times from -0.5 to 9.5 hours after ingestion. Triacylglycerol-rich plasma was separated by ultracentrifugation and analyzed by high-performance liquid chromatography (HPLC) with diode array detection. Area under the curve for β-carotene, α-carotene, and retinyl palmitate increased after the fortified meals were fed (P palm oil treatment was greater than that induced by the biofortified treatment (P palm oil and biofortified gari, respectively. These results show that both treatments increased β-carotene, α-carotene, and retinyl palmitate in triacylglycerol-rich plasma concentrations in healthy well-nourished adult women, supporting our hypothesis that both interventions could support efforts to alleviate vitamin A deficiency.

  12. SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150

    Science.gov (United States)

    Jung, T.W.; Lee, K.T.; Lee, M.W.; Ka, K.H.

    2012-01-01

    Endoplasmic reticulum (ER) stress has been implicated in the pathology of type 2 diabetes mellitus (T2DM). Although SIRT1 has a therapeutic effect on T2DM, the mechanisms by which SIRT1 ameliorates insulin resistance (IR) remain unclear. In this study, we investigated the impact of SIRT1 on palmitate-induced ER stress in HepG2 cells and its underlying signal pathway. Treatment with resveratrol, a SIRT1 activator significantly inhibited palmitate-induced ER stress, leading to the protection against palmitate-induced ER stress and insulin resistance. Resveratrol and SIRT1 overexpression induced the expression of oxygen-regulated protein (ORP) 150 in HepG2 cells. Forkhead box O1 (FOXO1) was involved in the regulation of ORP150 expression because suppression of FOXO1 inhibited the induction of ORP150 by SIRT1. Our results indicate a novel mechanism by which SIRT1 regulates ER stress by overexpression of ORP150, and suggest that SIRT1 ameliorates palmitate-induced insulin resistance in HepG2 cells via regulation of ER stress.

  13. Development of a method for quantitation of retinol and retinyl palmitate in human serum using high-performance liquid chromatography atmospheric pressure chemical ionization mass spectrometry.

    NARCIS (Netherlands)

    Breemen, van R.B.; Nikolic, D.; Xu, X.Y.; Xiong, Y.S.; Lieshout, van M.; West, C.E.; Schilling, A.B.

    1998-01-01

    A method for the quantitative analysis of the vitamin A compounds all-trans-retinol and all-trans-retinyl palmitate was developed using high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (APCI-LC-MS). Unlike previous quantitative mass spectrometric meth

  14. Red palm oil-supplemented and biofortified gari on the carotenoid and retinyl palmitate concentrations of triacylglycerol-rich plasma of women

    Science.gov (United States)

    Boiled biofortified cassava containing ß-carotene (BC) can increase retinyl palmitate (RP) in triacylglycerol (TAG)-rich plasma. Thus, it might alleviate vitamin A deficiency. Cassava requires extensive preparation to decrease its level of cyanogenic glucosides, which can be fatal. Garification ...

  15. Effect of A Long Chain Carboxylate Acid on Sodium Dodecyl Sulfate Micelle Structure: A SANS Study

    Science.gov (United States)

    Patriati, Arum; Giri Rachman Putra, Edy; Seok Seong, Baek

    2010-01-01

    The effect of a different hydrocarbon chain length of carboxylate acid, i.e. dodecanoic acid, CH3(CH)10COOH or lauric acid and hexadecanoic acid, CH3(CH2)14COOH or palmitic acid as a co-surfactant in the 0.3 M sodium dedecyl sulfate, SDS micellar solution has been studied using small angle neutron scattering (SANS). The present of lauric acid has induced the SDS structural micelles. The ellipsoid micelles structures changed significantly in length (major axis) from 22.6 Å to 37.1 Å at a fixed minor axis of 16.7 Å in the present of 0.005 M to 0.1 M lauric acid. Nevertheless, this effect did not occur in the present of palmitic acid with the same concentration range. The present of palmitic acid molecules performed insignificant effect on the SDS micelles growth where the major axis of the micelle was elongated from 22.9 Å to 25.3 Å only. It showed that the appropriate hydrocarbon chain length between surfactant and co-surfactant molecules emerged as one of the determining factors in forming a mixed micelles structure.

  16. Starch aerogel beads obtained from inclusion complexes prepared from high amylose starch and sodium palmitate

    Science.gov (United States)

    Starch aerogels are a class of low density highly porous renewable materials currently prepared from retrograded starch gels and are of interest for their good surface area, porosity, biocompatibility, and biodegradability. Recently, we have reported on starches containing amylose-fatty acid salt h...

  17. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    Directory of Open Access Journals (Sweden)

    Pelin Günç Ergönül

    2013-01-01

    Full Text Available The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2. Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids.

  18. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids

    OpenAIRE

    Jana Orsavova; Ladislava Misurcova; Jarmila Vavra Ambrozova; Robert Vicha; Jiri Mlcek

    2015-01-01

    Characterizations of fatty acids composition in % of total methylester of fatty acids (FAMEs) of fourteen vegetable oils—safflower, grape, silybum marianum, hemp, sunflower, wheat germ, pumpkin seed, sesame, rice bran, almond, rapeseed, peanut, olive, and coconut oil—were obtained by using gas chromatography (GC). Saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA), palmitic acid (C16:0; 4.6%–20.0%), oleic acid (C18:1; 6.2%–71.1%) and linoleic acid (C18:2; 1.6%–79%)...

  19. Comparison of fatty acid composition in total lipid of diapause and non-diapause larvae of Cydia pomonella (Lepidoptera: Tortricidae)

    Institute of Scientific and Technical Information of China (English)

    ABBAS KHANI; SAEID MOHARRAMIPOUR; MOHSEN BARZEGAR; HOSSEIN NADERI-MANESH

    2007-01-01

    Seasonal changes in the fatty acid composition of the total lipid extracted from the whole body of Cydia pomonella L. larvae were determined by gas chromatography. The six most abundant fatty acids in both non-diapause and diapause larvae of codling moth were oleic (35%-39%), palmitic (23%-33%), linoleic (16%-30%), palmitoleic (5%-10%),stearic (1.5%-3.0%) and linolenic acids (1.0%-2.5%). This represents a typical complement of Lepidopteran fatty acids. The fatty acid composition of total lipid of C. pomonella larvae was related to diapause. In similarity to most other reports, the proportion of unsaturated fatty acids increased in diapause initiation state. The total lipid of diapause larvae contained more linoleic acid (25.8% vs. 16.1%) and less palmitic acid (24.7% vs. 33.4%),than that ofnon-diapause larvae. The weight percentage of linoleic acid (C18:2) increased from 16% to 26% from early-August through early-September during transition to diapause,while palmitic acid (C16:0) decreased from 33% to 25% at the same time. These changes resulted in an increase in the ratio of unsaturated to saturated fatty acids (UFA/SFA) from 1.72 in non-diapause larvae to 2.63 in diapause larvae.

  20. Blood Cell Palmitoleate-Palmitate Ratio Is an Independent Prognostic Factor for Amyotrophic Lateral Sclerosis.

    Directory of Open Access Journals (Sweden)

    Alexandre Henriques

    Full Text Available Growing evidence supports a link between fatty acid metabolism and amyotrophic lateral sclerosis (ALS. Here we determined the fatty acid composition of blood lipids to identify markers of disease progression and survival. We enrolled 117 patients from two clinical centers and 48 of these were age and gender matched with healthy volunteers. We extracted total lipids from serum and blood cells, and separated fatty acid methyl esters by gas chromatography. We measured circulating biochemical parameters indicative of the metabolic status. Association between fatty acid composition and clinical readouts was studied, including ALS functional rating scale-revised (ALSFRS-R, survival, disease duration, site of onset and body mass index. Palmitoleate (16:1 and oleate (18:1 levels, and stearoyl-CoA desaturase indices (16:1/16:0 and 18:1/18:0 significantly increased in blood cells from ALS patients compared to healthy controls. Palmitoleate levels and 16:1/16:0 ratio in blood cells, but not body mass index or leptin concentrations, negatively correlated with ALSFRS-R decline over a six-month period (p<0.05. Multivariate Cox analysis, with age, body mass index, site of onset and ALSFRS-R as covariables, showed that blood cell 16:1/16:0 ratio was an independent prognostic factor for survival (hazard ratio=0.1 per unit of ratio, 95% confidence interval=0.01-0.57, p=0.009. In patients with high 16:1/16:0 ratio, survival at blood collection was extended by 10 months, as compared to patients with low ratio. The 16:1/16:0 index is an easy-to-handle parameter that predicts survival of ALS patients independently of body mass index. It therefore deserves further validation in larger cohorts for being used to assess disease outcome and effects of disease-modifying drugs.

  1. 一锅法合成反-β-正烷氧羰基丙烯酸-6-L-抗坏血酸酯及其性能研究%One-pot synthesis of 6-L-ascorbyl trans-β-n-alkoxycarbonyl acrylates and their properties

    Institute of Scientific and Technical Information of China (English)

    郑大贵; 祝显虹; 周安西; 张勇

    2014-01-01

    A general one-pot procedure was described that converted trans-β-n-alkoxycarbonyl( C1-C8 n-alkoxycarbonyl) acrylic acid (1a-1h)to 6-L-ascorbyl trans-β-n-alkoxycarbonyl acrylates(2a-2h) upon sequential treatment of the acid in N,N-dimethylacet-amide(DMAc)with thionyl chloride and L-ascorbic acid. The structures of 2a-2h were confirmed by 1H NMR、13C NMR、MS and IR. The scavenging activity of 2f on DPPH free-radical was tested by UV-Vis spectrophotometry,and the anti-microbial activities of 2a-2h were tested by peptide-agarose diffusion assay. It was fond that when the molar concentration of the tested samples was the same,the scavenging activity on DPPH radical(1,1-Diphenyl-2-picrylhydrazyl radical)of 2f was a little higher than that of L-ascor-bic acid and TBHQ(Tertiary butylhydroquinone)at higher concentration range. The diameters of antibacterial active ring of 2a-2h against Staphyloccocus aureus,Escherichia coli and Bacillus subtilis were between 5. 00-6. 25 mm,and those of 2a-2h against Streptomyces microflavus were between 15. 50-17. 25 mm,when the concentration of tested samples were in 2 mg·mL-1 .%在N,N-二甲基乙酰胺(DMAc)中,反-β-正烷氧羰基丙烯酸(1a-1h,a-h分别对应于C1-C8正烷氧羰基)与SOCl2在0℃下反应,生成的酰氯不经分离,采用一锅法,直接与L-抗坏血酸反应得到反-β-正烷氧羰基丙烯酸-6-L-抗坏血酸酯(2a-2h)。2a-2h的结构经1 H NMR、13 C NMR、MS和IR确证。用分光光度法测试了2f清除二苯代苦味肼基自由基(DPPH·)的活性,用孔穴扩散法测试了2a-2h的抗菌活性。结果表明,受试物摩尔浓度相等时,在较高浓度范围内,2f对DPPH·的清除率略高于L-抗坏血酸和叔丁基对苯二酚(TBHQ);在给药量2 mg·mL-1时,2a-2h对金黄葡萄球菌、大肠杆菌、枯草芽孢杆菌的抑菌圈直径在5.00-6.25 mm之间,对细黄链霉菌的抑菌圈直径在15.50-17.25 mm之间。

  2. Vitamin C derivatives as new coreactants for tris(2,2'-bipyridine)ruthenium(II) electrochemiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Yali; Li Haijuan; Han Shuang; Hu Lianzhe [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100864 (China); Parveen, Saima [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100864 (China); Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Xu Guobao, E-mail: guobaoxu@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2011-09-09

    Highlights: {yields} Ru(bpy){sub 3}{sup 2+} electrochemiluminescence of vitamin C derivatives have been investigated. {yields} Ascorbyl phosphate and ascorbyl palmitate show intense electrochemiluminescence. {yields} Ascorbyl 2-phosphate was detected with high sensitivity. {yields} This study provides a new way to detect vitamin C derivatives. - Abstract: Vitamin C derivatives (VCDs) have been widely used as the alternative and stable sources of vitamin C, and accordingly exhibit many new applications, such as anti-tumor and central nervous system drug delivery. In this study, their Ru(bpy){sub 3}{sup 2+} electrochemiluminescence (ECL) properties have been investigated for the first time using well-known ascorbyl phosphate and ascorbyl palmitate as representative VCDs. Ascorbyl phosphate and ascorbyl palmitate are VCDs with different substituted positions. Both of them increase Ru(bpy){sub 3}{sup 2+} ECL, indicating that other VCDs may also enhance Ru(bpy){sub 3}{sup 2+} ECL signal. The calibration plot for ascorbyl phosphate is linear from 3 x 10{sup -6} to 1.0 x 10{sup -3} M with a detection limit of 1.4 x 10{sup -6} M at a signal-to-noise ratio of 3. The relative standard deviation is 3.6% for six replicate measurements of 0.01 mM ascorbyl 2-phosphate solution. The proposed method is about one order of magnitude more sensitive than electrochemical and UV-vis methods for the determination of ascorbyl phosphate, and is used successfully for the determination of ascorbyl phosphate in whitening and moisturising body wash.

  3. Activity and viability of methanogens in anaerobic digestion of unsaturated and saturated long-chain fatty acids

    NARCIS (Netherlands)

    Sousa, D.Z.; Salvador, A.F.; Ramos, J.; Guedes, A.P.; Barbosa, S.; Stams, A.J.M.; Alves, M.M.; Pereira, M.A.

    2013-01-01

    Lipids can be anaerobically digested to methane, but methanogens are often considered to be highly sensitive to the long-chain fatty acids (LCFA) deriving from lipids hydrolysis. In this study, the effect of unsaturated (oleate [C18:1]) and saturated (stearate [C18:0] and palmitate [C16:0]) LCFA tow

  4. Epigenetic regulation of the ELOVL6 gene is associated with a major QTL effect on fatty acid composition in pigs

    NARCIS (Netherlands)

    Corominas, J.; Marchesi, J.A.; Puig-Oliveras, A.; Revilla, M.; Estelle, J.; Alves, E.; Folch, J.M.; Ballester, M.

    2015-01-01

    BACKGROUND: In previous studies on an Iberian x Landrace cross, we have provided evidence that supported the porcine ELOVL6 gene as the major causative gene of the QTL on pig chromosome 8 for palmitic and palmitoleic acid contents in muscle and backfat. The single nucleotide polymorphism (SNP) ELOVL

  5. Effect of trans-fatty acid intake on insulin sensitivity and intramuscular lipids - a randomized trial in overweight postmenopausal women

    DEFF Research Database (Denmark)

    Bendsen, Nathalie Tommerup; Haugaard, Steen; Larsen, Thomas Meinert;

    2011-01-01

    lipid deposition in abdominally obese women. In a double-blind, parallel dietary intervention study, 52 healthy but overweight postmenopausal women were randomized to receive either partially hydrogenated soybean oil (15 g/d TFA) or a control oil (mainly oleic and palmitic acid) for 16 weeks. Three...

  6. Oxidative stability of structured lipid-based infant formula emulsion: effect of antioxidants.

    Science.gov (United States)

    Zou, Long; Akoh, Casimir C

    2015-07-01

    The effect of permitted antioxidants, including α-tocopherol, β-carotene, ascorbyl palmitate, ascorbic acid, citric acid, and their combinations, on the lipid oxidation of structured lipid (SL)-based infant formula (IF) was evaluated. The 3.5% oil-in-water IF emulsion was formulated with a human milk fat analogue enriched with docosahexaenoic acid and stearidonic acid, and the antioxidants were added at 0.005% and 0.02% of the oil. The peroxide value, anisidine value, and hexanal concentration of emulsion samples were measured over a 28-day period. The results showed that whether a compound exhibited antioxidant behavior depended on its mechanism of action, polarity, concentration, and environmental conditions. The most effective antioxidant was ascorbyl palmitate at 0.005%, and a synergistic antioxidant effect was found between α-tocopherol and β-carotene. A high correlation was observed between anisidine value and hexanal content. Our findings have important implications for the successful incorporation of SL into IF products for infant nutrition and health. PMID:25704676

  7. Onset of efficacy and tolerability following the initiation dosing of long-acting paliperidone palmitate: post-hoc analyses of a randomized, double-blind clinical trial

    Directory of Open Access Journals (Sweden)

    Fu Dong-Jing

    2011-05-01

    Full Text Available Abstract Background Paliperidone palmitate is a long-acting injectable atypical antipsychotic for the acute and maintenance treatment of adults with schizophrenia. The recommended initiation dosing regimen is 234 mg on Day 1 and 156 mg on Day 8 via intramuscular (deltoid injection; followed by 39 to 234 mg once-monthly thereafter (deltoid or gluteal. These post-hoc analyses addressed two commonly encountered clinical issues regarding the initiation dosing: the time to onset of efficacy and the associated tolerability. Methods In a 13-week double-blind trial, 652 subjects with schizophrenia were randomized to paliperidone palmitate 39, 156, or 234 mg (corresponding to 25, 100, or 150 mg equivalents of paliperidone, respectively or placebo (NCT#00590577. Subjects randomized to paliperidone palmitate received 234 mg on Day 1, followed by their randomized fixed dose on Day 8, and monthly thereafter, with no oral antipsychotic supplementation. The onset of efficacy was defined as the first timepoint where the paliperidone palmitate group showed significant improvement in the Positive and Negative Syndrome Scale (PANSS score compared to placebo (Analysis of Covariance [ANCOVA] models and Last Observation Carried Forward [LOCF] methodology without adjusting for multiplicity using data from the Days 4, 8, 22, and 36 assessments. Adverse event (AE rates and relative risks (RR with 95% confidence intervals (CI versus placebo were determined. Results Paliperidone palmitate 234 mg on Day 1 was associated with greater improvement than placebo on Least Squares (LS mean PANSS total score at Day 8 (p = 0.037. After the Day 8 injection of 156 mg, there was continued PANSS improvement at Day 22 (p ≤ 0.007 vs. placebo and Day 36 (p Conclusions Significantly greater symptom improvement was observed by Day 8 with paliperidone palmitate (234 mg on Day 1 compared to placebo; this effect was maintained after the 156 mg Day 8 injection, with a trend towards a dose

  8. Adaptation of anaerobically grown Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans to organic solvents on the level of membrane fatty acid composition

    OpenAIRE

    Duldhardt, Ilka; Gaebel, Julia; Chrzanowski, Lukasz; Nijenhuis, Ivonne; Härtig, Claus; Schauer, Frieder; Heipieper, Hermann J.

    2010-01-01

    Summary The effect of different solvents and pollutants on the cellular fatty acid composition of three bacterial strains: Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans, representatives of diverse predominant anaerobic metabolisms was investigated. As the prevailing adaptive mechanism in cells of T. aromatica and G. sulfurreducens whose cellular fatty acids patterns were dominated by palmitic acid (C16:0) and palmitoleic acid (C16:1cis), the cells reacted by an inc...

  9. Amino and Fatty Acids of Wild Edible Mushrooms of the Genus Boletus

    Directory of Open Access Journals (Sweden)

    Dmitri O. Levitsky

    2010-10-01

    Full Text Available A comparative study on the free amino acids of 15 wild edible mushroom species belonging to the genus Boletus (phylum Basidiomycota was developed. The major amino acids in the fruit bodies were arginine , alanine, glutamine, and glutamic acid. The most abundant fatty acids were oleic ( 9- 18:1, linoleic acid (9,12-18:2 , and palmitic acid (16:0, but a great variation of the ester composition from one to another one was found. Chemical constituents were characterized by GC-MS, and other chemical methods.

  10. Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth

    OpenAIRE

    Karimi, Ehsan; Jaafar, Hawa ZE; Ghasemzadeh, Ali; Ebrahimi, Mahdi

    2015-01-01

    Background The present study was conducted in order to evaluate the fatty acid profile, anti-oxidant and anti-bacterial activities from the microwave aqueous extract of the leaves of three different varieties of Labisia pumila Benth. Results The chemical analysis of the extract showed that fatty acids (palmitic, palmitoleic, stearic, oleic, linoleic and α-linolenic) acid as the main components in three varieties of L. pumila leaves. Furthermore, the obtained results of the anti-oxidant reveal...

  11. A study of the fatty acid profile in the muscle of Monopterus chuchia

    Directory of Open Access Journals (Sweden)

    Mita Dutta

    2014-01-01

    Full Text Available The nutritional capacity of the fish Monopterus chuchia in terms of its fatty acid content was investigated to get an insight of their fatty acid composition in their most consumed part i.e. their muscle tissue. Our investigation shows the presence of SFA’s like caproic acid, caprylic acid, palmitic acid, pentadecanoic acid, heptadecanoic acid, behenic acid, MUFA’s like myristoleic acid, palmitoleic acid, oleic acid and nutritionally important PUFA’s like Eicosapentaenoic acid, docosahexaenoic acid in major amount. Erucic acid, which is reported to be an anti-nutritional factor, is present in extremely low concentration. Thus the fish which is generally consumed by very few can be farmed as a cheap nutritional source for the masses.

  12. Role and mechanism of rosiglitazone on the impairment of insulin secretion induced by free fatty acids on isolated rat islets

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Prolonged exposure of pancreatic β-cells to fatty acids increases basal insulin secretion but inhibits glucose-stimulated insulin secretion. Rosiglitazone is a new antidiabetic agent of the thiazolidinediones. However, the relationship between thiazolidinediones and insulin secretion is highly controversial. The aim of this study is to explore the effect and mechanism of rosiglitazone on insulin secretion of islets under chronic exposure to free fatty acids (FFA).Methods Pancreatic islets were isolated from the pancreata of male Sprague-Dawley rats by the collagenase digestion and by the dextran gradient centrifugation method. The purified islets were cultured in the presence or absence of rosiglitazone and palmitate for 48 hours. The insulin secretion was measured by radioimmunoassay. The mRNA level of peroxisome proliferator-activated receptor (, uncoupling protein 2 (UCP-2) and insulin were determined by real-time polymerase chain reaction (PCR). The cell cytotoxicity assay was measured by cell counting kit-8. Results Islets exposed to elevated palmitate for 48 hours showed an increased basal and a decreased glucose-stimulated insulin secretion (P<0.01). The mRNA level of UCP-2 was increased by 3.7 fold in the 0.5 mmol/L concentration of palmitate. When islets were cultured with palmitate (0.5 mmol/L) in the presence of rosiglitazone (1.0 μmol/L), both basal and glucose-stimulated insulin secretion reversed to a pattern of control islets (P<0.05, P<0.01). The addition of rosiglitazone in the culture medium decreased the mRNA level of UCP-2 by 2.2 fold, having a statistically significant difference (P<0.05) as compared with islets cultured with palmitate alone. The cell viability was not affected. Conclusion The protective effects of rosiglitazone on insulin secretion of isolated pancreatic islets under chronic exposure to palmitate might be mediated through the downregulation of UCP-2 expression.

  13. CARBOXYLIC ACIDS OF HERB OF THYMUS CRETACEUS KLOK. ET SCHOST

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2014-01-01

    Full Text Available We have studied carboxylic acids of the herb of Thymus cretaceus Klok. et Schost which is widespread on a territory of some regions (Belgorod, Voronezh. The study was carried out using gas-liquid chromatography at Agilent Technologies 6890 chromatographer with massspectrometric detector 5973 N. Acids concentration was calculated by means of inner standard.We have established that carboxylic acids of Thymus cretaceus are represented by 34 compounds. Palmitic (1779.02 mg/kg, behenic (1084.15 mg/kg, levulinic (986.24 mg/kg and linoleic acids (678.82 mg/kg predominate among fatty acids; citric (9835.14 mg/kg, malonic (447.91 mg/kg and oxalic acids (388.32 mg/kg predominate among organic acids; andferulic acid predominate amongphenolcarbonic acids.

  14. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    Science.gov (United States)

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis. PMID:27349116

  15. Increased Brain Fatty Acid Uptake in Metabolic Syndrome

    Science.gov (United States)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti; Hirvonen, Jussi; Fielding, Barbara A.; Virtanen, Kirsi; Oikonen, Vesa; Kemppainen, Jukka; Viljanen, Tapio; Guiducci, Letizia; Haaparanta-Solin, Merja; Någren, Kjell; Solin, Olof; Nuutila, Pirjo

    2010-01-01

    OBJECTIVE To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it. RESEARCH DESIGN AND METHODS We measured brain fatty acid uptake in a group of 23 patients with MS and 7 age-matched healthy control subjects during fasting conditions using positron emission tomography (PET) with [11C]-palmitate and [18F]fluoro-6-thia-heptadecanoic acid ([18F]-FTHA). Sixteen MS subjects were restudied after 6 weeks of very low calorie diet intervention. RESULTS At baseline, brain global fatty acid uptake derived from [18F]-FTHA was 50% higher in patients with MS compared with control subjects. The mean percentage increment was 130% in the white matter, 47% in the gray matter, and uniform across brain regions. In the MS group, the nonoxidized fraction measured using [11C]-palmitate was 86% higher. Brain fatty acid uptake measured with [18F]-FTHA-PET was associated with age, fasting serum insulin, and homeostasis model assessment (HOMA) index. Both total and nonoxidized fractions of fatty acid uptake were associated with BMI. Rapid weight reduction decreased brain fatty acid uptake by 17%. CONCLUSIONS To our knowledge, this is the first study on humans to observe enhanced brain fatty acid uptake in patients with MS. Both fatty acid uptake and accumulation appear to be increased in MS patients and reversed by weight reduction. PMID:20566663

  16. Effect of dietary fatty acids on the postprandial fatty acid composition of triacylglycerol-rich lipoproteins in healthy male subjects

    DEFF Research Database (Denmark)

    Bysted, Anette; Holmer, G.; Lund, Pia;

    2005-01-01

    interesterified test fats with equal amounts of palmitic acid ( P fat), stearic acid (S fat), trans-18: 1 isomers (T fat), oleic acid (O fat), or linoleic acid (L fat) were tested. Subjects: A total of 16 healthy, normolipidaemic males ( age 23 +/- 2 y) were recruited. Interventions: The participants ingested fat......Objective: The aim of the present study was to investigate the effect of trans-18: 1 isomers compared to other fatty acids, especially saturates, on the postprandial fatty acid composition of triacylglycerols ( TAG) in chylomicrons and VLDL. Design: A randomised crossover experiment where five......-rich test meals ( 1 g fat per kg body weight) and the fatty acid profiles of chylomicron and VLDL TAG were followed for 8 h. Results: The postprandial fatty acid composition of chylomicron TAG resembled that of the ingested fats. The fatty acids in chylomicron TAG were randomly distributed among the three...

  17. Variation in Fatty Acids Composition Including Trans Fat in Different Brands of Potato Chips by GC-MS

    OpenAIRE

    Kandhro, Aftab A.; S.T.H. Sherazi; S.A. Mahesar; M. Younis Talpur; Yawar Latif

    2010-01-01

    Twelve different brands of potato chips were analyzed for their fatty acid compositions with eminence on trans fatty acid (TFA) using GC-MS. Results of the present study showed that the dominant fatty acids were saturated fatty acids. Among the saturated fatty acids, palmitic acid (23.91–42.64 %) was found in greater amount in all analyzed chips samples. The amount of TFA’s determined was ranged between (4.91–14.13 %). Although there was significant variation in the fatty acid profile of all ...

  18. Rapamycin Improves Palmitate-Induced ER Stress/NF κ B Pathways Associated with Stimulating Autophagy in Adipocytes

    Directory of Open Access Journals (Sweden)

    Jiajing Yin

    2015-01-01

    Full Text Available Obesity-induced endoplasmic reticulum (ER stress and inflammation lead to adipocytes dysfunction. Autophagy helps to adapt to cellular stress and involves in regulating innate inflammatory response. In present study, we examined the activity of rapamycin, a mTOR kinase inhibitor, against endoplasmic reticulum stress and inflammation in adipocytes. An in vitro model was used in which 3T3-L1 adipocytes were preloaded with palmitate (PA to generate artificial hypertrophy mature adipocytes. Elevated autophagy flux and increased number of autophagosomes were observed in response to PA and rapamycin treatment. Rapamycin attenuated PA-induced PERK and IRE1-associated UPR pathways, evidenced by decreased protein levels of eIF2α phosphorylation, ATF4, CHOP, and JNK phosphorylation. Inhibiting autophagy with chloroquine (CQ exacerbated these ER stress markers, indicating the role of autophagy in ameliorating ER stress. In addition, cotreatment of CQ abolished the anti-ER stress effects of rapamycin, which confirms the effect of rapamycin on ERs is autophagy-dependent. Furthermore, rapamycin decreased PA-induced nuclear translocation of NFκB P65 subunit, thereby NFκB-dependent inflammatory cytokines MCP-1 and IL-6 expression and secretion. In conclusion, rapamycin attenuated PA-induced ER stress/NFκB pathways to counterbalance adipocytes stress and inflammation. The beneficial of rapamycin in this context partly depends on autophagy. Stimulating autophagy may become a way to attenuate adipocytes dysfunction.

  19. Rapamycin improves palmitate-induced ER stress/NF κ B pathways associated with stimulating autophagy in adipocytes.

    Science.gov (United States)

    Yin, Jiajing; Gu, Liping; Wang, Yufan; Fan, Nengguang; Ma, Yuhang; Peng, Yongde

    2015-01-01

    Obesity-induced endoplasmic reticulum (ER) stress and inflammation lead to adipocytes dysfunction. Autophagy helps to adapt to cellular stress and involves in regulating innate inflammatory response. In present study, we examined the activity of rapamycin, a mTOR kinase inhibitor, against endoplasmic reticulum stress and inflammation in adipocytes. An in vitro model was used in which 3T3-L1 adipocytes were preloaded with palmitate (PA) to generate artificial hypertrophy mature adipocytes. Elevated autophagy flux and increased number of autophagosomes were observed in response to PA and rapamycin treatment. Rapamycin attenuated PA-induced PERK and IRE1-associated UPR pathways, evidenced by decreased protein levels of eIF2α phosphorylation, ATF4, CHOP, and JNK phosphorylation. Inhibiting autophagy with chloroquine (CQ) exacerbated these ER stress markers, indicating the role of autophagy in ameliorating ER stress. In addition, cotreatment of CQ abolished the anti-ER stress effects of rapamycin, which confirms the effect of rapamycin on ERs is autophagy-dependent. Furthermore, rapamycin decreased PA-induced nuclear translocation of NFκB P65 subunit, thereby NFκB-dependent inflammatory cytokines MCP-1 and IL-6 expression and secretion. In conclusion, rapamycin attenuated PA-induced ER stress/NFκB pathways to counterbalance adipocytes stress and inflammation. The beneficial of rapamycin in this context partly depends on autophagy. Stimulating autophagy may become a way to attenuate adipocytes dysfunction.

  20. Topical Application of Retinyl Palmitate-Loaded Nanotechnology-Based Drug Delivery Systems for the Treatment of Skin Aging

    Directory of Open Access Journals (Sweden)

    Marcela B. Oliveira

    2014-01-01

    Full Text Available The objective of this study was to perform a structural characterization and evaluate the in vitro safety profile and in vitro antioxidant activity of liquid crystalline systems (LCS with and without retinyl palmitate (RP. LCS containing polyether functional siloxane (PFS as a surfactant, silicon glycol copolymer (SGC as oil phase, and water in the ratios 30 : 25 : 45 and 40 : 50 : 10 with (OLSv = RP-loaded opaque liquid system and TLSv = RP-loaded transparent liquid system, respectively and without (OLS and TLS, respectively RP were studied. Samples were characterized using polarized light microscopy (PLM and rheology analysis. In vitro safety profile was evaluated using red cell hemolysis and in vitro cytotoxicity assays. In vitro antioxidant activity was performed by the DPPH method. PLM analysis showed the presence of lamellar LCS just to TLS. Regardless of the presence of RP, the rheological studies showed the pseudoplastic behavior of the formulations. The results showed that the incorporation of RP in LCS improved the safety profile of the drug. In vitro antioxidant activity suggests that LCS presented a higher capacity to maintain the antioxidant activity of RP. PFS-based systems may be a promising platform for RP topical application for the treatment of skin aging.

  1. Photoirradiation of Retinyl Palmitate in Ethanol with Ultraviolet Light - Formation of Photodecomposition Products, Reactive Oxygen Species, and Lipid Peroxides

    Directory of Open Access Journals (Sweden)

    Peter P. Fu

    2006-06-01

    Full Text Available We have previously reported that photoirradiation of retinyl palmitate (RP, a storage and ester form of vitamin A (retinol, with UVA light resulted in the formation of photodecomposition products, generation of reactive oxygen species, and induction of lipid peroxidation. In this paper, we report our results following the photoirradiation of RP in ethanol by an UV lamp with approximately equal UVA and UVB light. The photodecomposition products were separated by reversed-phase HPLC and characterized spectroscopically by comparison with authentic standards. The identified products include: 4-keto-RP, 11-ethoxy-12-hydroxy-RP, 13-ethoxy-14-hydroxy-RP, anhydroretinol (AR, and trans- and cis-15-ethoxy-AR. Photoirradiation of RP in the presence of a lipid, methyl linoleate, resulted in induction of lipid peroxidation. Lipid peroxidation was inhibited when sodium azide was present during photoirradiation which suggests free radicals were formed. Our results demonstrate that, similar to irradiation with UVA light, RP can act as a photosensitizer leading to free radical formation and induction of lipid peroxidation following irradiation with UVB light.

  2. Effects of inhibition of serine palmitoyltransferase (SPT and sphingosine kinase 1 (SphK1 on palmitate induced insulin resistance in L6 myotubes.

    Directory of Open Access Journals (Sweden)

    Agnieszka Mikłosz

    Full Text Available BACKGROUND: The objective of this study was to examine the effects of short (2 h and prolonged (18 h inhibition of serine palmitoyltransferase (SPT and sphingosine kinase 1 (SphK1 on palmitate (PA induced insulin resistance in L6 myotubes. METHODS: L6 myotubes were treated simultaneously with either PA and myriocin (SPT inhibitor or PA and Ski II (SphK1inhibitor for different time periods (2 h and 18 h. Insulin stimulated glucose uptake was measured using radioactive isotope. Expression of insulin signaling proteins was determined using Western blot analyses. Intracellular sphingolipids content [sphinganine (SFA, ceramide (CER, sphingosine (SFO, sphingosine-1-phosphate (S1P] were estimated by HPLC. RESULTS: Our results revealed that both short and prolonged time of inhibition of SPT by myriocin was sufficient to prevent ceramide accumulation and simultaneously reverse palmitate induced inhibition of insulin-stimulated glucose transport. In contrast, prolonged inhibition of SphK1 intensified the effect of PA on insulin-stimulated glucose uptake and attenuated further the activity of insulin signaling proteins (pGSK3β/GSK3β ratio in L6 myotubes. These effects were related to the accumulation of sphingosine in palmitate treated myotubes. CONCLUSION: Myriocin is more effective in restoration of palmitate induced insulin resistance in L6 myocytes, despite of the time of SPT inhibition, comparing to SKII (a specific SphK1 inhibitor. Observed changes in insulin signaling proteins were related to the content of specific sphingolipids, namely to the reduction of ceramide. Interestingly, inactivation of SphK1 augmented the effect of PA induced insulin resistance in L6 myotubes, which was associated with further inhibition of insulin stimulated PKB and GSK3β phosphorylation, glucose uptake and the accumulation of sphingosine.

  3. Oligonol suppresses lipid accumulation and improves insulin resistance in a palmitate-induced in HepG2 hepatocytes as a cellular steatosis model

    OpenAIRE

    Park, Jae-Yeo; Kim, Younghwa; Im, Jee Ae; Lee, Hyangkyu

    2015-01-01

    Background Oligonol is a low molecular weight form of polyphenol polymers derived from lychee fruits. Several studies suggest that Oligonol has an anti-obesity effect. Since obesity is tightly associated with insulin resistance, we investigated a possible remission effect of Oligonol on lipid accumulation and insulin resistance in human hepatic HepG2 cells. Methods HepG2 cells were treated with palmitate for 24 h to induce cellular hepatic steatosis and insulin resistance. The cells were then...

  4. The Synthesis of 6-L-ascorbyl Trans-β-alkoxycarbonylacrylate and Study of Its Antimicrobial Activity%反丁烯二酸-6-L-抗坏血酸甲酯的合成及抑菌性能的研究

    Institute of Scientific and Technical Information of China (English)

    吴亚凉; 宁正祥

    2009-01-01

    A new asymmetrical ester,6-L-ascorbyl trans-β-alkoxycarbonylacrylate,containing α,β-unsaturated carbonyl group structure was prepared via esterification. The antimicrobial activity of 6-L-ascorbyl trans-β-alkoxycar-bonylacrylate was studied. Results showed that 53.45% yield could be obtained. The minimum inhibition concentration and inhibition rate of 6-L-ascorbyl trans-β-alkoxycarbonylacrylate to Escherichia coli,Bacillus subtilis,Saccharo-myces cerevisiae was 1.0 g/L,88. 83% ; 0. 75 g/L,80. 47% ; 0. 75 g/L,82. 12% respectively. Its antimicrobial activity was much better than sodium benzoate and postassium benzoate,besides the antimicrobial activity did not changed obviously under heat treatment. It was also seen that 6-L-ascorbyl trans-β-alkoxycarbonylacrylate had strong antimicrobial effects for bacteria and yeasts. It is worth the exploration of further development and application.%采用直接酯化法合成了一种新型抗坏血酸衍生物并具有α,β-不饱和羰基结构的化学防腐剂--反丁烯二酸-6-L-抗坏血酸甲酯(V_c酯),合成产率可达53.45%,并对其抑菌效果进行了研究.结果表明,V_c酯对大肠杆菌、枯草杆菌、啤酒酵母的最低抑菌浓度及抑菌率分别为1.0g/L,88.83%;0.75g/L,80.47%;0.75g/L,82.12%;其抑菌效果显著优于常用防腐剂苯甲酸钠及山梨酸钾,且高温处理对其抑菌效果无明显影响,表明V_c酯对细菌、酵母均具有较强的抑制作用.

  5. Electrochemical examination of the ascorbic acid radical anion in non-aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, M.; Honda, K.; Kondo, T.; Rao, T.N.; Tryk, D.A.; Fujishima, A

    2002-10-15

    A quasi-reversible redox reaction involving ascorbic acid was observed in non-aqueous electrolytes at conductive diamond electrode. The chemical reversibility of these reactions is consistent with ascorbic acid being reduced to the ascorbic acid radical anion in a one-electron process, with subsequent reoxidation to ascorbic acid. This is the first report on the electrochemical production of the ascorbic acid radical anion in non-aqueous electrolytes. Ascorbyl 6-stearate and 4-hydroxy 2(5H)-furanone, which have somewhat similar structures as ascorbic acid, also showed one-electron transfer reduction reaction producing radicals with a single negative charge, suggesting that these compounds follow the same electrochemical behavior as ascorbic acid. The double bond and hydroxyl substituent on the five-membered ring are shown to be necessary for the stabilization of the radical anions. It was confirmed by the calculation of the total energy using molecular orbital methods that resonance structures involving the double-bond and hydroxyl group provide significant stabilization of the radical anions. Electrochemical preparation may be a useful method for the detailed study of radicals, their molecular structure and reactivity.

  6. Electrochemical examination of the ascorbic acid radical anion in non-aqueous electrolytes

    International Nuclear Information System (INIS)

    A quasi-reversible redox reaction involving ascorbic acid was observed in non-aqueous electrolytes at conductive diamond electrode. The chemical reversibility of these reactions is consistent with ascorbic acid being reduced to the ascorbic acid radical anion in a one-electron process, with subsequent reoxidation to ascorbic acid. This is the first report on the electrochemical production of the ascorbic acid radical anion in non-aqueous electrolytes. Ascorbyl 6-stearate and 4-hydroxy 2(5H)-furanone, which have somewhat similar structures as ascorbic acid, also showed one-electron transfer reduction reaction producing radicals with a single negative charge, suggesting that these compounds follow the same electrochemical behavior as ascorbic acid. The double bond and hydroxyl substituent on the five-membered ring are shown to be necessary for the stabilization of the radical anions. It was confirmed by the calculation of the total energy using molecular orbital methods that resonance structures involving the double-bond and hydroxyl group provide significant stabilization of the radical anions. Electrochemical preparation may be a useful method for the detailed study of radicals, their molecular structure and reactivity

  7. Heterogeneity in limb fatty acid kinetics in type 2 diabetes

    DEFF Research Database (Denmark)

    Sacchetti, M; Olsen, D B; Saltin, B;

    2005-01-01

    AIMS/HYPOTHESIS: In order to test the hypothesis that disturbances in skeletal muscle fatty acid metabolism with type 2 diabetes are not equally present in the upper and lower limbs, we studied fatty acid kinetics simultaneously across the arm and leg of type 2 diabetic patients (n=6) and matched...... of appearance was 3.6+/-0.4 and 2.7+/-0.3 micromol.kg lean body mass(-1).min(-1) and decreased during the clamp by 26% (p=0.04) and 43% (pdiabetic patients and in the control subjects respectively. At baseline, palmitate uptake across the arm was similar in the two groups, whereas leg palmitate...... uptake was lower than in the arm in the diabetic patients. During the clamp, palmitate uptake decreased in the arm (-48%, p=0.02) and the leg (-38%, p=0.04) of the control subjects, whereas it decreased in the arm (-30%, p=0.04) but not in the leg of the diabetic patients. Similarly, during the clamp...

  8. Films prepared from poly(vinyl alcohol) and amylose-fatty acid salt inclusion complexes with increased surface hydrophobicity and high elongation

    Science.gov (United States)

    In this study, water-soluble amylose-inclusion complexes were prepared from high amylose corn starch and sodium salts of lauric, palmitic, and stearic acid by steam jet cooking. Cast films were prepared by combining the amylose complexes with poly(vinyl alcohol)(PVOH) solution at ratios varying from...

  9. Aortic drug delivery of dexamethasone palmitate incorporated into lipid microspheres and its antiatherosclerotic effect in atherogenic mice.

    Science.gov (United States)

    Chono, Sumio; Tauchi, Yoshihiko; Morimoto, Kazuhiro

    2005-08-01

    In order to confirm the efficacy of dexamethasone (DXM) palmitate incorporated into lipid microspheres (d-lipo) on atherosclerosis, the aortic drug delivery by d-lipo and its antiatherosclerotic effect were investigated. In an in vitro uptake experiment, d-lipo or DXM was added to macrophages and foam cells, and then incubated for 1, 4, 8 and 24 h at 37 degrees C. The uptake of drug by these cells after addition of d-lipo was higher than that of DXM at each time point. In an in vitro pharmacological experiment, the macrophages and foam cells were incubated with d-lipo or DXM for 24 h at 37 degrees C. The inhibitory effect of d-lipo on cellular cholesterol ester (CE) accumulation in these cells was significantly more potent than that of DXM. In an in vivo pharmacokinetic experiment, d-lipo or DXM was intravenously administered to atherogenic mice, and then aorta was collected at 1, 8, and 24 h after administration. The aortic drug concentration after administration of d-lipo to atherogenic mice was higher than that of DXM at each time point. In an in vivo pharmacological experiment, d-lipo or DXM was intravenously administered to atherogenic mice once a week for 7 weeks. The inhibitory effect of d-lipo on the aortic CE accumulation in atherogenic mice was significantly more potent than that of DXM. These findings suggest that efficient drug delivery to the atherosclerotic lesions by d-lipo produces an excellent antiatherosclerotic effect at a lower dose. Therefore, d-lipo may be useful for the development of drug delivery systems for atherosclerotic therapy.

  10. Aortic drug delivery of dexamethasone palmitate incorporated into lipid microspheres and its antiatherosclerotic effect in atherogenic mice.

    Science.gov (United States)

    Chono, Sumio; Tauchi, Yoshihiko; Morimoto, Kazuhiro

    2005-08-01

    In order to confirm the efficacy of dexamethasone (DXM) palmitate incorporated into lipid microspheres (d-lipo) on atherosclerosis, the aortic drug delivery by d-lipo and its antiatherosclerotic effect were investigated. In an in vitro uptake experiment, d-lipo or DXM was added to macrophages and foam cells, and then incubated for 1, 4, 8 and 24 h at 37 degrees C. The uptake of drug by these cells after addition of d-lipo was higher than that of DXM at each time point. In an in vitro pharmacological experiment, the macrophages and foam cells were incubated with d-lipo or DXM for 24 h at 37 degrees C. The inhibitory effect of d-lipo on cellular cholesterol ester (CE) accumulation in these cells was significantly more potent than that of DXM. In an in vivo pharmacokinetic experiment, d-lipo or DXM was intravenously administered to atherogenic mice, and then aorta was collected at 1, 8, and 24 h after administration. The aortic drug concentration after administration of d-lipo to atherogenic mice was higher than that of DXM at each time point. In an in vivo pharmacological experiment, d-lipo or DXM was intravenously administered to atherogenic mice once a week for 7 weeks. The inhibitory effect of d-lipo on the aortic CE accumulation in atherogenic mice was significantly more potent than that of DXM. These findings suggest that efficient drug delivery to the atherosclerotic lesions by d-lipo produces an excellent antiatherosclerotic effect at a lower dose. Therefore, d-lipo may be useful for the development of drug delivery systems for atherosclerotic therapy. PMID:16308209

  11. Active ingredients fatty acids as antibacterial agent from the brown algae Padina pavonica and Hormophysa triquetra

    Directory of Open Access Journals (Sweden)

    Gihan Ahmed El Shoubaky

    2014-07-01

    Full Text Available Objective: To estimate the fatty acids content in the brown algae Padina pavonica (P. pavonica and Hormophysa triquetra (H. triquetra and evaluate their potential antimicrobial activity as bioactive compounds. Methods: The fatty acid compositions of the examined species were analyzed using gas chromatography-mass spectrometry. The antimicrobial activity of crude and fatty acids was assessed using the agar plug technique. Results: The fatty acids profile ranged from C8:0 to C20:4. Concentration of saturated fatty acids in P. pavonica was in the order palmitic>myristic>stearic whereas concentration of the unsaturated fatty acids was oleic acid>palmitoleic>9-cis-hexadecenoic>linoleic acid>α- linolenic>arachidonic> elaidic acid. H. triquetra contained high concentration of saturated fatty acids than those of P. pavonica which was in the order as follows: palmitic>margaric>myristic> nonadecyclic>stearic>caprylic>tridecylic>pentadecylic>lauric while the unsaturated fatty acids consisted of oleic>nonadecenoic>non adecadienoate>margaroleic. The crude and fatty acid extracts of H. triquetra and P. pavonica were biologically active on the tested pathogens. H. triquetra exhibited a larger inhibitory zone than P. pavonica. Conclusions: The brown algae P. pavonica and H. triquetra have high efficient amount of fatty acids and showed strong antibacterial activity, especially H. triquetra.

  12. Active ingredients fatty acids as antibacterial agent from the brown algae Padina pavonica and Hormophysa triquetra

    Institute of Scientific and Technical Information of China (English)

    Gihan Ahmed El Shoubaky; Essam Abd El Rahman Salem

    2014-01-01

    Objective: To estimate the fatty acids content in the brown algae Padina pavonica (P. pavonica) and Hormophysa triquetra (H. triquetra) and evaluate their potential antimicrobial activity as bioactive compounds.Methods:The fatty acid compositions of the examined species were analyzed using gas chromatography-mass spectrometry. The antimicrobial activity of crude and fatty acids was assessed using the agar plug technique.Results:The fatty acids profile ranged from C8:0 to C20:4. Concentration of saturated fatty acids in P. pavonica was in the order palmitic>myristic>stearic whereas concentration of the unsaturated fatty acids was oleic acid>palmitoleic>9-cis-hexadecenoic>linoleic acid>α-linolenic>arachidonic> elaidic acid. H. triquetra contained high concentration of saturated fatty acids than those of P. pavonica which was in the order as follows: palmitic>margaric>myristic>nonadecyclic>stearic>caprylic>tridecylic>pentadecylic>lauric while the unsaturated fatty acids consisted of oleic>nonadecenoic>non adecadienoate>margaroleic. The crude and fatty acid extracts of H. triquetra and P. pavonica were biologically active on the tested pathogens. H.triquetra exhibited a larger inhibitory zone than P. pavonica. Conclusions: The brown algae P. pavonica and H. triquetra have high efficient amount of fatty acids and showed strong antibacterial activity, especially H. triquetra.

  13. Muscle cells challenged with saturated fatty acids mount an autonomous inflammatory response that activates macrophages

    Directory of Open Access Journals (Sweden)

    Pillon Nicolas J

    2012-10-01

    Full Text Available Abstract Obesity is associated with chronic low-grade inflammation. Within adipose tissue of mice fed a high fat diet, resident and infiltrating macrophages assume a pro-inflammatory phenotype characterized by the production of cytokines which in turn impact on the surrounding tissue. However, inflammation is not restricted to adipose tissue and high fat-feeding is responsible for a significant increase in pro-inflammatory cytokine expression in muscle. Although skeletal muscle is the major disposer of dietary glucose and a major determinant of glycemia, the origin and consequence of muscle inflammation in the development of insulin resistance are poorly understood. We used a cell culture approach to investigate the vectorial crosstalk between muscle cells and macrophages upon exposure to physiological, low levels of saturated and unsaturated fatty acids. Inflammatory pathway activation and cytokine expression were analyzed in L6 muscle cells expressing myc-tagged GLUT4 (L6GLUT4myc exposed to 0.2 mM palmitate or palmitoleate. Conditioned media thereof, free of fatty acids, were then tested for their ability to activate RAW264.7 macrophages. Palmitate -but not palmitoleate- induced IL-6, TNFα and CCL2 expression in muscle cells, through activation of the NF-κB pathway. Palmitate (0.2 mM alone did not induce insulin resistance in muscle cells, yet conditioned media from palmitate-challenged muscle cells selectively activated macrophages towards a pro-inflammatory phenotype. These results demonstrate that low concentrations of palmitate activate autonomous inflammation in muscle cells to release factors that turn macrophages pro-inflammatory. We hypothesize that saturated fat-induced, low-grade muscle cell inflammation may trigger resident skeletal muscle macrophage polarization, possibly contributing to insulin resistance in vivo.

  14. Anaerobic biodegradation of long chain fatty acids : biomethanisation of biomass-associated LCFA as a challenge for the anaerobic treatment of effluents with high lipid/LCFA content

    OpenAIRE

    Pereira, M.A.

    2003-01-01

    Tese de doutoramento em Engenharia Biológica e Química. This work was focused on the anaerobic biodegradation of Long Chain Fatty Acids, especially those that are associated to anaerobic sludge by mechanisms of adsorption, precipitation or entrapment. When continuously fed with oleic acid (EGSB reactors, influent concentrations between 2 and 8 g COD/l and HRT=1 day), suspended and granular anaerobic sludge accumulated palmitic acid. This LCFA was efficiently biomethanised in batch assays, ...

  15. Inhibitory Effect of Long-Chain Fatty Acids on Biogas Production and the Protective Effect of Membrane Bioreactor

    Science.gov (United States)

    Dasa, Kris Triwulan; Westman, Supansa Y.; Cahyanto, Muhammad Nur; Niklasson, Claes

    2016-01-01

    Anaerobic digestion of lipid-containing wastes for biogas production is often hampered by the inhibitory effect of long-chain fatty acids (LCFAs). In this study, the inhibitory effects of LCFAs (palmitic, stearic, and oleic acid) on biogas production as well as the protective effect of a membrane bioreactor (MBR) against LCFAs were examined in thermophilic batch digesters. The results showed that palmitic and oleic acid with concentrations of 3.0 and 4.5 g/L resulted in >50% inhibition on the biogas production, while stearic acid had an even stronger inhibitory effect. The encased cells in the MBR system were able to perform better in the presence of LCFAs. This system exhibited a significantly lower percentage of inhibition than the free cell system, not reaching over 50% at any LCFA concentration tested. PMID:27699172

  16. Effect of acute lindane and alcohol intoxication on serum concentration of enzymes and fatty acids in rats.

    Science.gov (United States)

    Radosavljević, T; Mladenović, D; Vucević, D; Petrović, J; Hrncić, D; Djuric, D; Loncar-Stevanović, H; Stanojlović, O

    2008-05-01

    This study examines possible synergistic effects of lindane and ethanol on inducing liver injury and serum fatty acid derangement in adult male Wistar rats. When administered together, ethanol and lindane-induced even more pronounced increase of alanine aminotransferase (165 +/- 10 U/L) and gamma-glutamyltranspeptidase activity (10.3 +/- 0.6 U/L) than after isolated administration of either substance. In addition, separate administration of lindane and ethanol was followed by a significant decrease of linoleic acid level in the serum (301 +/- 38 mg/L, 276 +/- 35 mg/L vs. 416 +/- 48 mg/L). However, when ethanol administration was followed by lindane injection, serum linoleic acid was at the similar level found in the control group (516 +/- 62 mg/L). Ethanol-treated rats that received lindane 30 min after ethanol administration have shown a marked increase of palmitic (421 +/- 27 mg/L) and linolic acid level (43 +/- 5 mg/L) in comparison with rats that have been treated only with ethanol (316+/-26 mg/L for palmitic and 32 +/- 2 mg/L for linolic acid) or lindane (295 +/- 26 mg/L for palmitic and 301 +/- 38 mg/L for linolic acid). Linolic acid level was significantly greater in comparison with control group (29 +/- 1 mg/L). In conclusion, this study found enough evidence to support the hypothesis that acute ethanol intoxication potentiates lindane-induced liver injury and enhances lipid derangement.

  17. Toxicity of long chain fatty acids towards acetate conversion by Methanosaeta concilii and Methanosarcina mazei.

    Science.gov (United States)

    Silva, Sérgio A; Salvador, Andreia F; Cavaleiro, Ana J; Pereira, M Alcina; Stams, Alfons J M; Alves, M Madalena; Sousa, Diana Z

    2016-07-01

    Long-chain fatty acids (LCFA) can inhibit methane production by methanogenic archaea. The effect of oleate and palmitate on pure cultures of Methanosaeta concilii and Methanosarcina mazei was assessed by comparing methane production rates from acetate before and after LCFA addition. For both methanogens, a sharp decrease in methane production (> 50%) was observed at 0.5 mmol L(-1) oleate, and no methane was formed at concentrations higher than 2 mmol L(-1) oleate. Palmitate was less inhibitory than oleate, and M. concilii was more tolerant to palmitate than M. mazei, with 2 mmol L(-1) palmitate causing 11% and 64% methanogenic inhibition respectively. This study indicates that M. concilii and M. mazei tolerate LCFA concentrations similar to those previously described for hydrogenotrophic methanogens. In particular, the robustness of M. concilii might contribute to the observed prevalence of Methanosaeta species in anaerobic bioreactors used to treat LCFA-rich wastewater. PMID:27273786

  18. Influence of free fatty acids on glucose uptake in prostate cancer cells☆

    Science.gov (United States)

    Andersen, Kim Francis; Divilov, Vadim; Sevak, Kuntalkumar; Koziorowski, Jacek; Lewis, Jason S.; Pillarsetty, NagaVaraKishore

    2016-01-01

    Introduction The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-d-glucose (FDG) and acetate. Methods Human prostate cancer cell lines (PC3, CWR22Rv1, LNCaP, and DU145) were incubated for 2 h and 24 h in glucose-containing (5.5 mM) Dulbecco’s Modified Eagle’s Medium (DMEM) with varying concentrations of the free fatty acid palmitate (0–1.0 mM). Then the cells were incubated with [18 F]-FDG (1 µCi/mL; 0.037 MBq/mL) in DMEM either in presence or absence of glucose and in presence of varying concentrations of palmitate for 1 h. Standardized procedures regarding cell counting and measuring for 18F radioactivity were applied. Cell uptake studies with 14C-1-acetate under the same conditions were performed on PC3 cells. Results In glucose containing media there was significantly increased FDG uptake after 24 h incubation in all cell lines, except DU145, when upper physiological levels of palmitate were added. A 4-fold increase of FDG uptake in PC3 cells (15.11% vs. 3.94%/106 cells) was observed in media with 1.0 mM palmitate compared to media with no palmitate. The same tendency was observed in PC3 and CWR22Rv1 cells after 2 h incubation. In glucose-free media no significant differences in FDG uptake after 24 h incubation were observed. The significant differences after 2 h incubation all pointed in the direction of increased FDG uptake when palmitate was added. Acetate uptake in PC3 cells was significantly lower when palmitate was added in glucose-free DMEM. No clear tendency when comparing FDG or acetate uptake in the same media at different time points of incubation was observed. Conclusions Our results indicate a FFA dependent metabolic boost/switch of glucose uptake in PCa, with patterns reflecting the true heterogeneity of the disease. PMID:24440212

  19. Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ayorinde, F O; Garvin, K; Saeed, K

    2000-01-01

    A method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) for the determination of the fatty acid composition of vegetable oils is described and illustrated with the analysis of palm kernel oil, palm oil, olive oil, canola oil, soybean oil, vernonia oil, and castor oil. Solutions of the saponified oils, mixed with the matrix, meso-tetrakis(pentafluorophenyl)porphyrin, provided reproducible MALDI-TOF spectra in which the ions were dominated by sodiated sodium carboxylates [RCOONa + Na]+. Thus, palm kernel oil was found to contain capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid. Palm oil had a fatty acid profile including palmitic, linoleic, oleic, and stearic. The relative percentages of the fatty acids in olive oil were palmitoleic (1.2 +/- 0.5), palmitic (10.9 +/- 0.8), linoleic (0.6 +/- 0.1), linoleic (16.5 +/- 0.8), and oleic (70.5 +/- 1.2). For soybean oil, the relative percentages were: palmitoleic (0.4 +/- 0.4), palmitic (6.0 +/- 1.3), linolenic (14.5 +/- 1.8), linoleic (50.1 +/- 4.0), oleic (26.1 +/- 1.2), and stearic (2.2 +/- 0.7). This method was also applied to the analysis of two commercial soap formulations. The first soap gave a fatty acid profile that included: lauric (19.4% +/- 0.8), myristic (9.6% +/- 0.5), palmitoleic (1.9% +/- 0.3), palmitic (16.3% +/- 0.9), linoleic (5.6% +/- 0.4), oleic (37.1% +/- 0.8), and stearic (10.1% +/- 0.7) and that of the second soap was: lauric (9.3% +/- 0.3), myristic (3.8% +/- 0.5), palmitoleic (3.1% +/- 0.8), palmitic (19.4% +/- 0.8), linoleic (4.9% +/- 0.7), oleic (49.5% +/- 1.1), and stearic (10.0% +/- 0.9). The MALDI-TOFMS method described in this communication is simpler and less time-consuming than the established transesterification method that is coupled with analysis by gas chromatography/mass spectrometry (GC/MS). The new method could be used routinely to determine the qualitative fatty acid composition of vegetable oils

  20. Effects of fatty acid regulation on visfatin gene expression in adipocytes

    Institute of Scientific and Technical Information of China (English)

    WEN Yu; WANG Hong-wei; WU Jing; LU Hui-ling; HU Xiu-fen; Katherine Cianflone

    2006-01-01

    Background The levels of long-term elevated serum or intracellular free fatty acid (FFA) induce insulin resistance associated with central obesity. The insulin-mimetic protein visfatin is preferentially produced by visceral adipose tissues and has been implicated in obesity and insulin resistance. To identify that FFA is capable of inducing insulin resistance and to clarify the role of FFA on visfatin, we examined the effect of monounsaturated FFA oleate (C18:1) and saturated FFA palmitate (C16:0) on glucose transport and visfatin gene expression in cultured 3T3-L1 adipocytes or preadipocytes.Methods FFA-free DMEM/F12, 0.125 mmol/L, 0.5 mmol/1 and 1.0 mmol/L oleate or palmitate was added to cultured 3T3-L1 adipocytes or preadipocytes and incubated overnight. Glucose transport was assessed as 3H-2-deoxy-glucose uptake. Total RNA was extracted and subjected to RT-PCR for the measurement of visfatin mRNA levels. Statistical comparisons between control group and other groups were performed with the two-tailed paired t test, and one-way ANOVA was used to compare the mean values among the groups.Results Insulin increased specific membrane glucose transport in 3T3-L1 preadipocytes. Upregulation was evident from 15 minutes to 1 hour exposure to insulin. However, after 6-hour exposure to insulin, there was a downregulation in the response to insulin. Dose response studies demonstrated that 2-deoxy glucose transport was increased by 336% at 50 nmol/L insulin (P<0.01), and reached a maximal effect at 100 nmol/L insulin(P<0.01). Oleate and palmitate treatment did not influence basal glucose transport (without insulin stimulation),whereas insulin-stimulated glucose transport was inhibited after overnight oleate and palmitate treatment in preadipocytes and adipocytes. In 3T3-L1 preadipocytes, insulin resistance could be achieved at 0.125 mmol/L oleate or palmitate (P<0.05, respectively), and the inhibition was dose dependent. In adipocytes, the inhibition was noted at 0

  1. Evaluation of Fatty Acid and Amino Acid Compositions in Okra (Abelmoschus esculentus Grown in Different Geographical Locations

    Directory of Open Access Journals (Sweden)

    Rokayya Sami

    2013-01-01

    Full Text Available Okra has different uses as a food and a remedy in traditional medicine. Since it produces many seeds, distribution of the plant is also quite easy. Although seed oil yield is low (4.7%, since the linoleic acid composition of the seed oil is quiet high (67.5%, it can still be used as a source of (UNSAT unsaturated fatty acids. In this study, samples of okra grown in four different locations were analyzed to measure fatty acid and amino acid compositions. The content of the lipid extraction ranged from 4.34% to 4.52% on a dry weight basis. Quantitatively, the main okra fatty acids were palmitic acid (29.18–43.26%, linoleic acid (32.22–43.07%, linolenic acid (6.79–12.34%, stearic acid (6.36–7.73%, oleic acid (4.31–6.98%, arachidic acid (ND–3.48%, margaric acid (1.44–2.16%, pentadecylic acid (0.63–0.92%, and myristic acid (0.21–0.49%. Aspartic acid, proline, and glutamic acids were the main amino acids in okra pods, while cysteine and tyrosine were the minor amino acids. Statistical methods revealed how the fatty acid and amino acid contents in okra may be affected by the sampling location.

  2. 萘-脂肪酸二元体系液相线%The liquidus of binary systems of naphthalene-fatty acid

    Institute of Scientific and Technical Information of China (English)

    金龙飞; 阮德水

    2001-01-01

    用目视变温法研究了萘-月桂酸、萘-肉豆蔻酸、萘-棕榈酸二元系的固液平衡.三个二元系均为低共熔型,低共熔点分别为:35 ℃,77.1%(wt)月桂酸;44 ℃,73.9%(wt)肉豆蔻酸;52 ℃,67.9%(wt)棕榈酸.%By means of the visual polythermal method,this paper studies the solid-liquid equilibria of binary mixtures of naphthalene-lauric acid,naphthalene-myristic acid and naphthalene-palmitic acid.The result is that the eatectics are 35℃,77.1%(wt) lauric acid,44℃,73.9%(wt) myristic acid,52℃,67.9%(wt) palmitic acid for naphthalene-lauric acid,naphhtalene-myristic acid and naphthalene-palmitic acid,respectively.

  3. Anticancer effects of 6-o-palmitoyl-ascorbate combined with a capacitive-resistive electric transfer hyperthermic apparatus as compared with ascorbate in relation to ascorbyl radical generation

    OpenAIRE

    Kato, Shinya; ASADA, RYOKO; KAGEYAMA, KATSUHIRO; SAITOH, YASUKAZU; Miwa, Nobuhiko

    2011-01-01

    The aim of the present study is to determine the anti-proliferative activity of 6-o-palmitoyl-l-ascorbic acid (Asc6Palm) that is a lipophilic derivative of l-ascorbic acid (Asc), on human tongue squamous carcinoma HSC-4 cells by combined use of hyperthermia in comparison to Asc. Asc6Palm or Asc were administered to HSC-4 cells for 1 h, to which hyperthermia at 42 °C was applied for initial 15 min. After further 1–72 h incubation at 37 °C, cell proliferation was determined with Crystal Violet ...

  4. Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score of three Mediterranean cephalopods.

    Science.gov (United States)

    Zlatanos, Spiros; Laskaridis, Kostas; Feist, Christian; Sagredos, Angelos

    2006-10-01

    Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score (PDCAAS) in three commercially important cephalopods of the Mediterranean sea (cuttlefish, octopus and squid) were determined. The results of the proximate analysis showed that these species had very high protein:fat ratios similar to lean beef. Docosahexaenoic, palmitic and eicosipentaenoic acid were the most abundant fatty acids among analyzed species. The amount of n-3 fatty acids was higher than that of saturated, monounsaturated and n-6 fatty acids. Despite the fact that cephalopods contain small amounts of fat they were found quite rich in n-3 fatty acids. Finally, PDCAAS indicated that these organisms had a very good protein quality.

  5. Omega-3 fatty acids in baked freshwater fish from south of Brazil.

    Science.gov (United States)

    Andrade, A D; Visentainer, J V; Matsushita, M; de Souza, N E

    1997-03-01

    Lipid and fatty acid levels in the edible flesh of 17 baked freshwater fish from Brazil's southern region were determined. Analyses of fatty acids methyl esters were performed by gas chromatography. Palmitic acid (C16:0) was the predominant saturated fatty acid, accouting for 50-70% of total saturated acids. Linoleic acid (C18:2 omega 6), linolenic acid (C18:3 omega 3), and docosahexaenoic acid (C22:6 omega 3) were the predominant polyunsatured fatty acids (PUFA). The data revealed that species such as barbado, corvina, pintado, and truta were good sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and that most freshwater fish examined were good sources of PUFA-omega 3.

  6. Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; DiRusso, C C; Elberger, A;

    1997-01-01

    described in 3T3-L1 adipocytes (Schaffer and Lodish (1994) Cell 79, 427-436), suggesting a similar function. Disruption of FAT1 results in 1) an impaired growth in YPD medium containing 25 microM cerulenin and 500 microM fatty acid (myristate (C14:0), palmitate (C16:0), or oleate (C18:1)); 2) a marked...

  7. The solubilization of fatty acids in systems based on block copolymers and nonionic surfactants

    Science.gov (United States)

    Mirgorodskaya, A. B.; Yatskevich, E. I.; Zakharova, L. Ya.

    2010-12-01

    The solubilizing action of micellar, microemulsion, and polymer-colloid systems formed on the basis of biologically compatible amphiphilic polymers and nonionic surfactants on capric, lauric, palmitic, and stearic acids was characterized quantitatively. Systems based on micelle forming oxyethyl compounds increased the solubility of fatty acids by more than an order of magnitude. Acid molecules incorporated into micelles increased their size and caused structural changes. Solubilization was accompanied by complete or partial destruction of intrinsic acid associates and an increase in their p K a by 1.5-2 units compared with water.

  8. Esterification of free fatty acids with methanol using heteropolyacids immobilized on silica

    OpenAIRE

    Caetano, C; Fonseca, I; Ramos, A.; Vital, J; Castanheiro, Jose

    2008-01-01

    The esterification of palmitic acid with methanol was studied using tungstophosphoric acid (PW), molibdophosphoric acid (PMo) and tungstosilicic acid (SiW) immobilized by sol–gel technique on silica, at 60 º C. It was observed that the catalytic activity decreases in the series: PW-silica > SiW-silica > PMo-silica. A series of PW immobilized on silica with different PW loadings from 2.5 wt.% to 8.4 wt.% were prepared. It was observed that the PW-silica2 (with 4.2 wt.%) shows the highest ca...

  9. Long-term pancreatic beta cell exposure to high levels of glucose but not palmitate induces DNA methylation within the insulin gene promoter and represses transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Kota Ishikawa

    Full Text Available Recent studies have implicated epigenetics in the pathophysiology of diabetes. Furthermore, DNA methylation, which irreversibly deactivates gene transcription, of the insulin promoter, particularly the cAMP response element, is increased in diabetes patients. However, the underlying mechanism remains unclear. We aimed to investigate insulin promoter DNA methylation in an over-nutrition state. INS-1 cells, the rat pancreatic beta cell line, were cultured under normal-culture-glucose (11.2 mmol/l or experimental-high-glucose (22.4 mmol/l conditions for 14 days, with or without 0.4 mmol/l palmitate. DNA methylation of the rat insulin 1 gene (Ins1 promoter was investigated using bisulfite sequencing and pyrosequencing analysis. Experimental-high-glucose conditions significantly suppressed insulin mRNA and increased DNA methylation at all five CpG sites within the Ins1 promoter, including the cAMP response element, in a time-dependent and glucose concentration-dependent manner. DNA methylation under experimental-high-glucose conditions was unique to the Ins1 promoter; however, palmitate did not affect DNA methylation. Artificial methylation of Ins1 promoter significantly suppressed promoter-driven luciferase activity, and a DNA methylation inhibitor significantly improved insulin mRNA suppression by experimental-high-glucose conditions. Experimental-high-glucose conditions significantly increased DNA methyltransferase activity and decreased ten-eleven-translocation methylcytosine dioxygenase activity. Oxidative stress and endoplasmic reticulum stress did not affect DNA methylation of the Ins1 promoter. High glucose but not palmitate increased ectopic triacylglycerol accumulation parallel to DNA methylation. Metformin upregulated insulin gene expression and suppressed DNA methylation and ectopic triacylglycerol accumulation. Finally, DNA methylation of the Ins1 promoter increased in isolated islets from Zucker diabetic fatty rats. This study helps to

  10. Long-term pancreatic beta cell exposure to high levels of glucose but not palmitate induces DNA methylation within the insulin gene promoter and represses transcriptional activity.

    Science.gov (United States)

    Ishikawa, Kota; Tsunekawa, Shin; Ikeniwa, Makoto; Izumoto, Takako; Iida, Atsushi; Ogata, Hidetada; Uenishi, Eita; Seino, Yusuke; Ozaki, Nobuaki; Sugimura, Yoshihisa; Hamada, Yoji; Kuroda, Akio; Shinjo, Keiko; Kondo, Yutaka; Oiso, Yutaka

    2015-01-01

    Recent studies have implicated epigenetics in the pathophysiology of diabetes. Furthermore, DNA methylation, which irreversibly deactivates gene transcription, of the insulin promoter, particularly the cAMP response element, is increased in diabetes patients. However, the underlying mechanism remains unclear. We aimed to investigate insulin promoter DNA methylation in an over-nutrition state. INS-1 cells, the rat pancreatic beta cell line, were cultured under normal-culture-glucose (11.2 mmol/l) or experimental-high-glucose (22.4 mmol/l) conditions for 14 days, with or without 0.4 mmol/l palmitate. DNA methylation of the rat insulin 1 gene (Ins1) promoter was investigated using bisulfite sequencing and pyrosequencing analysis. Experimental-high-glucose conditions significantly suppressed insulin mRNA and increased DNA methylation at all five CpG sites within the Ins1 promoter, including the cAMP response element, in a time-dependent and glucose concentration-dependent manner. DNA methylation under experimental-high-glucose conditions was unique to the Ins1 promoter; however, palmitate did not affect DNA methylation. Artificial methylation of Ins1 promoter significantly suppressed promoter-driven luciferase activity, and a DNA methylation inhibitor significantly improved insulin mRNA suppression by experimental-high-glucose conditions. Experimental-high-glucose conditions significantly increased DNA methyltransferase activity and decreased ten-eleven-translocation methylcytosine dioxygenase activity. Oxidative stress and endoplasmic reticulum stress did not affect DNA methylation of the Ins1 promoter. High glucose but not palmitate increased ectopic triacylglycerol accumulation parallel to DNA methylation. Metformin upregulated insulin gene expression and suppressed DNA methylation and ectopic triacylglycerol accumulation. Finally, DNA methylation of the Ins1 promoter increased in isolated islets from Zucker diabetic fatty rats. This study helps to clarify the

  11. Oils of insects and larvae consumed in Africa: potential sources of polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Womeni Hilaire Macaire

    2009-07-01

    Full Text Available The objective of this paper is to present the beneficial aspects of some insects consumed in sub-Saharan Africa, based on examples of insects consumed in Cameroon, to present their potential as sources of lipids and essential fatty acids. In Africa, termites, larvae of raphia weevil, caterpillars, crickets, bees, maggots, butterflies, weevil, etc. are significant sources of food. These insects belong mainly to the orders of : Isoptera, Orthoptera, Dictyoptera, Coleoptera, Hymenoptera, Lepidoptera and Diptera. Depending on the species, insects are rich in proteins, minerals (K, Ca, Mg, Zn, P, Fe and/or vitamins (thiamine/B1, riboflavine/B2, pyridoxine/B6, acid pantothenic, niacin. The composition of oils extracted from the following six insects consumed in Cameroon was investigated : larvaes of raphia weevil (Rhynchophorus phoenicis, crickets (Homorocoryphus nitidulus, grasshopper (Zonocerus variegates, termites (Macrotermes sp., a variety of caterpillars (Imbrasia sp. and an unidentified caterpillar from the forest (UI carterpillar. The extraction yields of oil were 53.75%, 67.25%, 9.12%, 49.35%, 24.44% and 20.17% respectively for raphia weevil larvae, crickets, devastating crickets, termites, Imbrasia and UI caterpillar. The oil from raphia weevil mainly contains 37.60% of palmitoleic acid and 45.46% of linoleic acid. The oil from crickets is principally made up of palmitoleic acid (27.59%, linoleic acid (45.63% and α-linolenic acid (16.19%. The oil from grasshoppers is composed of palmitoleic acid (23.83%, oleic acid (10.71%, linoleic acid (21.07%, α-linolenic acid (14.76% and γ-linolenic acid (22.54%. The main components of termite oil are : palmitic acid (30.47%, oleic acid (47.52% and linoleic acid (8.79%. Palmitic acid (36.08% and linolenic acid (38.01% are the two dominant fatty acids of Imbrasia oil. As Imbrasia oil, UI caterpillar oil is composed of palmitic acid (30.80% and linolenic acid (41.79%. Stearic acid (7.04%, oleic acid

  12. Multivariate data analysis for finding the relevant fatty acids contributing to the melting fractions of cream

    DEFF Research Database (Denmark)

    Buldo, Patrizia; Larsen, Mette Krogh; Wiking, Lars

    2013-01-01

    feeding regimes. RESULTS: It was demonstrated that the melting point of the medium melting fraction of milk fat was positively correlated with palmitic acid (C16:0), whereas it was negatively correlated with oleic acid (C18:1 cis9), conjugated linoleic acid (CLA cis9 trans11), vaccenic acid (C18:1 trans11......), elaic acid (C18:1 trans9) and myristoleic acid (C14:1). The melting points of the high melting fractions could not be related to the fatty acid composition. Addition of palmitic acid-based fat supplement to the feeding ration in combination with a lower forage intake increased the amount of C16......:0 and palmitoleic acid (C16:1) in milk fat, whereas it decreased the amount of stearic acid (C18:0) and C18:1 trans fatty acid. Average data on the melting behaviour of cream separated the farms into two groups where the main differences in feeding were the amounts of maize silage and rapeseed cake used. CONCLUSION...

  13. A liquid chromatographic method for analysis of all-rac-alpha-tocopheryl acetate and retinyl palmitate in medical food using matrix solid-phase dispersion in conjunction with a zero reference material as a method development tool.

    Science.gov (United States)

    Chase, G W; Eitenmiller, R R; Long, A R

    1999-01-01

    A liquid chromatographic method is described for analysis of all-rac-alpha-tocopheryl acetate and retinyl palmitate in medical food. The vitamins are extracted from medical food without saponification by matrix solid-phase dispersion and chromatographed by normal-phase chromatography with fluorescence detection. Retinyl palmitate and all-rac-alpha-tocopheryl acetate are quantitated isocratically with a mobile phase of 0.125% (v/v) and 0.5% (v/v) isopropyl alcohol in hexane, respectively. Results compared favorably with label declarations on retail medical foods. Recoveries determined on an analyte-fortified zero reference material for a milk-based medical food averaged 98.3% (n = 25) for retinyl palmitate spikes and 95.7% (n = 25) for all-rac-alpha-tocopheryl acetate spikes. Five concentrations were examined for each analyte, and results were linear (r2 = 0.995 for retinyl palmitate and 0.9998 for all-rac-alpha-tocopheryl acetate) over the concentration range examined, with coefficients of variation in the range 0.81-4.22%. The method provides a rapid, specific, and easily controlled assay for analysis of retinyl palmitate and all-rac-alpha-tocopheryl acetate in fortified medical foods. PMID:10028678

  14. Analysis of fatty acids by graphite plate laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Park, K H; Kim, H J

    2001-01-01

    Fatty acids obtained from triglycerides (trioelin, tripalmitin), foods (milk, corn oil), and phospholipids (phosphotidylcholine, phosphotidylserine, phosphatidic acid) upon alkaline hydrolysis were observed directly without derivatization by graphite plate laser desorption/ionization time-of-flight mass spectrometry (GPLDI-TOFMS). Mass-to-charge ratios predicted for sodium adducts of expected fatty acids (e.g. palmitic, oleic, linoleic and arachidonic acids) were observed without interference. Although at present no quantitation is possible, the graphite plate method enables a simple and rapid qualitative analysis of fatty acids. PMID:11507764

  15. Challenges when developing omega-3 enriched foods

    Directory of Open Access Journals (Sweden)

    JACOBSEN Charlotte

    2010-07-01

    Full Text Available Due to the polyunsaturated nature of omega-3 fatty acids, lipid oxidation is a major challenge when developing omega-3 enriched foods. In multiphase food systems, several factors can affect lipid oxidation and efficacy of antioxidants, added to prevent lipid oxidation. This review discusses the influence of important factors such as oil quality, delivery systems for omega-3 fatty acids, processing conditions, composition of the food matrix on lipid oxidation in different omega-3 enriched foods (milk, yoghurt, mayonnaise and mayonnaise-based salads, dressing, energy bar and fish paté. Moreover, the effect of different antioxidants (tocopherol, EDTA, lactoferrin, caffeic acid, ascorbic acid, ascorbyl palmitate, propyl gallate, gallic acid, as well as lipophilized antioxidants is compared in different food systems.

  16. Molecular assessment of complex microbial communities degrading long chain fatty acids in methanogenic bioreactors

    OpenAIRE

    Sousa, D.Z.; Pereira, M.A.; Smidt, Hauke; Stams, A.J.M.; Alves, M. M.

    2007-01-01

    Microbial diversity of anaerobic sludge after extended contact with long chain fatty acids (LCFA) was studied using molecular approaches. Samples containing high amounts of accumulated LCFA were obtained after continuous loading of two bioreactors with oleate or with palmitate. These sludge samples were then incubated in batch assays to allow degradation of the biomass-associated LCFA. In addition, sludge used as inoculum for the reactors was also characterized. Predominant ...

  17. Microbial communities involved in anaerobic degradation of unsaturated or saturated long chain fatty acids

    OpenAIRE

    Sousa, D.Z.; Pereira, M.A.; Stams, A.J.M.; Alves, M. M.; Smidt, H.

    2007-01-01

    Anaerobic long-chain fatty acid (LCFA)-degrading bacteria were identified by combining selective enrichment studies with molecular approaches. Two distinct enrichment cultures growing on unsaturated and saturated LCFAs were obtained by successive transfers in medium containing oleate and palmitate, respectively, as the sole carbon and energy sources. Changes in the microbial composition during enrichment were analyzed by denaturing gradient gel electrophoresis (DGGE) profiling of PCR...

  18. Separation and characterization of the acid lipase and neutral esterases from human liver.

    OpenAIRE

    Warner, T G; Dambach, L M; Shin, J H; O'Brien, J S

    1980-01-01

    Electrophoresis of human liver homogenates followed by reaction with 4-methylumbelliferyl palmitate reveals the presence of two major electrophoretic forms with esterase (lipase) activity toward this substrate. The two enzymes were isolated and partially purified based on their solubility differences and their relative affinities for the lectin column concanavalin A-Sepharose 4B. Lipase A was particulate with an acidic pH optimum (5.2) and could be solubilized with the non-ionic surfactant Tr...

  19. Surface and interlayer base-characters in lepidocrocite titanate: The adsorption and intercalation of fatty acid

    Science.gov (United States)

    Maluangnont, Tosapol; Arsa, Pornanan; Limsakul, Kanokporn; Juntarachairot, Songsit; Sangsan, Saithong; Gotoh, Kazuma; Sooknoi, Tawan

    2016-06-01

    While layered double hydroxides (LDHs) with positively-charged sheets are well known as basic materials, layered metal oxides having negatively-charged sheets are not generally recognized so. In this article, the surface and interlayer base-characters of O2- sites in layered metal oxides have been demonstrated, taking lepidocrocite titanate K0.8Zn0.4Ti1.6O4 as an example. The low basicity (0.04 mmol CO2/g) and low desorption temperature (50-300 °C) shown by CO2- TPD suggests that O2- sites at the external surfaces is weakly basic, while those at the interlayer space are mostly inaccessible to CO2. The liquid-phase adsorption study, however, revealed the uptake as much as 37% by mass of the bulky palmitic acid (C16 acid). The accompanying expansion of the interlayer space by ~0.1 nm was detected by PXRD and TEM. In an opposite manner to the external surfaces, the interlayer O2- sites can deprotonate palmitic acid, forming the salt (i.e., potassium palmitate) occluded between the sheets. Two types of basic sites are proposed based on ultrafast 1H MAS NMR and FTIR results. The interlayer basic sites in lepidocrocite titanate leads to an application of this material as a selective and stable two-dimensional (2D) basic catalyst, as demonstrated by the ketonization of palmitic acid into palmitone (C31 ketone). Tuning of the catalytic activity by varying the type of metal (Zn, Mg, and Li) substituting at TiIV sites was also illustrated.

  20. 长链脂肪酸系列固-液相变动力学的研究%Kinetic Study of Solid-liquid Phase Change in Fatty Acids

    Institute of Scientific and Technical Information of China (English)

    王红; 张建军; 武克忠; 刘晓地; 张建玲

    2000-01-01

    The solid-liquid phase change kinetics in Capric,Lauric and Palmitic acid has been studied by DSC. Kissinger and Ozawa methods have been applied to determine the activation energy and reaction order of solid-liquid phase change. The results from two methods are in agreement.

  1. Thermal characteristic reliability of fatty acid binary mixtures as phase change materials (PCMs) for thermal energy storage applications

    International Nuclear Information System (INIS)

    The thermal characteristic reliability of two binary mixtures of fatty acid, myristic acid/palmitic acid/sodium myristate (MA/PA/SM) and myristic acid/palmitic acid/sodium palmitate (MA/PA/SP), were investigated using a thermal cycling test setup for 0, 1000, 2000, 3000, and 3600 heating/cooling cycles. The changes in thermal properties and chemical bonding of both eutectic PCMs were measured using Differential Scanning Calorimetric (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) analyzer, respectively. MA/PA/SM and MA/PA/SP eutectic mixtures shows only minor changes in phase transition temperature (Tm, Ts) and in latent heat of fusion (ΔHf). Moreover, the chemical bonding structures of these eutectic PCMs show no degradation and the thermal performance of those PCMs shows a good stability after 3600 thermal cycles. Therefore, it is found that the thermal characteristic stability of prepared MA/PA/SM and MA/PA/SP eutectic mixtures were acceptable for long term performance and economic feasibilities used as a phase change material (PCM) for thermal energy storage (TES) application. - Highlights: • The MA/PA/SM and MA/PA/SP were used as eutectic phase change materials (PCM). • Thermal reliability of eutectic PCMs evaluated using a thermal cycling test. • MA/PA/SP has a great thermal characteristic than MA/PA/SM after 3600 thermal cycles. • The eutectic PCMs did not show change of appearance after 3600 thermal cycles

  2. FATTY ACID COMPOSITION OF Capsicum GENUS PEPPERS

    Directory of Open Access Journals (Sweden)

    Gisele Teixeira de Souza Sora

    2015-08-01

    Full Text Available Fatty acids have a great metabolic and structural importance. Evaluation of fatty acid composition of peppers is still incomplete. Pulps and seeds from six varieties of the genus Capsicum were evaluated in this work with respect to their contents in fatty acids. A total of 25 different fatty acids, including some with odd number of carbons were identified in the samples. The most abundant fatty acids were palmitic (16:0, oleic (18:1n-9 and linoleic (18:2n-6 acids. The polyunsaturated:saturated fatty acid (PUFA/SFA ratios for all peppers were high due to the elevated amounts of polyunsaturated acids, particularly linoleic acid. In the pulps, the omega-6/omega-3 ratios ranging from 1.28 to 4.33, were relatively adequate if one considers that ratios between 0.25 and 1.0 in the human diet are regarded as highly appropriate. In the seeds, the levels of omega-3 were very low whereas the levels of omega-6 were high, leading to very inadequate omega-6/omega-3 ratios ranging from 74.2 to 279.6. Principal component analysis (PCA explained 93.49% of the total variance of the data. Considering the PUFA/SFA ratio and omega-6/omega-3 ratio, our data suggest that, among the peppers of the genus Capsicum evaluated in this work, the bell pepper and orange habanero pepper present the best nutritional characteristics concerning fatty acid composition.

  3. Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling.

    Science.gov (United States)

    Li, Yi; Zhu, Tong; Zhao, Jincai; Xu, Bingye

    2012-09-18

    Quinones are toxicological substances in inhalable particulate matter (PM). The mechanisms by which quinones cause hazardous effects can be complex. Quinones are highly active redox molecules that can go through a redox cycle with their semiquinone radicals, leading to formation of reactive oxygen species. Electron spin resonance spectra have been reported for semiquinone radicals in PM, indicating the importance of ascorbic acid and iron in quinone redox cycling. However, these findings are insufficient for understanding the toxicity associated with quinone exposure. Herein, we investigated the interactions among anthraquinone (AQ), ascorbic acid, and iron in hydroxyl radical (·OH) generation through the AQ redox cycling process in a physiological buffer. We measured ·OH concentration and analyzed the free radical process. Our results showed that AQ, ascorbic acid, and iron have synergistic effects on ·OH generation in quinone redox cycling; i.e., ascorbyl radical oxidized AQ to semiquinone radical and started the redox cycling, iron accelerated this oxidation and enhanced ·OH generation through Fenton reactions, while ascorbic acid and AQ could help iron to release from quartz surface and enhance its bioavailability. Our findings provide direct evidence for the redox cycling hypothesis about airborne particle surface quinone in lung fluid. PMID:22891791

  4. Susceptibility of pancreatic beta cells to fatty acids is regulated by LXR/PPARalpha-dependent stearoyl-coenzyme A desaturase.

    Directory of Open Access Journals (Sweden)

    Karine H Hellemans

    Full Text Available Chronically elevated levels of fatty acids-FA can cause beta cell death in vitro. Beta cells vary in their individual susceptibility to FA-toxicity. Rat beta cells were previously shown to better resist FA-toxicity in conditions that increased triglyceride formation or mitochondrial and peroxisomal FA-oxidation, possibly reducing cytoplasmic levels of toxic FA-moieties. We now show that stearoyl-CoA desaturase-SCD is involved in this cytoprotective mechanism through its ability to transfer saturated FA into monounsaturated FA that are incorporated in lipids. In purified beta cells, SCD expression was induced by LXR- and PPARalpha-agonists, which were found to protect rat, mouse and human beta cells against palmitate toxicity. When their SCD was inhibited or silenced, the agonist-induced protection was also suppressed. A correlation between beta cell-SCD expression and susceptibility to palmitate was also found in beta cell preparations isolated from different rodent models. In mice with LXR-deletion (LXRbeta(-/- and LXRalphabeta(-/-, beta cells presented a reduced SCD-expression as well as an increased susceptibility to palmitate-toxicity, which could not be counteracted by LXR or PPARalpha agonists. In Zucker fatty rats and in rats treated with the LXR-agonist TO1317, beta cells show an increased SCD-expression and lower palmitate-toxicity. In the normal rat beta cell population, the subpopulation with lower metabolic responsiveness to glucose exhibits a lower SCD1 expression and a higher susceptibility to palmitate toxicity. These data demonstrate that the beta cell susceptibility to saturated fatty acids can be reduced by stearoyl-coA desaturase, which upon stimulation by LXR and PPARalpha agonists favors their desaturation and subsequent incorporation in neutral lipids.

  5. Increasing fatty acid oxidation remodels the hypothalamic neurometabolome to mitigate stress and inflammation.

    Directory of Open Access Journals (Sweden)

    Joseph W McFadden

    Full Text Available Modification of hypothalamic fatty acid (FA metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1 and fatty acid oxidation (FAOx, exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS, and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.

  6. Determination of Fatty Acid in Asparagus by Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Zehra HAJRULAI-MUSLIU

    2016-05-01

    Full Text Available Asparagus contain a lot of macronutrients and micronutrients including folate, dietary fibre (soluble and insoluble and phenolic compounds. Also asparagus is a good source of unsaturated linoleic and linolenic fatty acids which are precursors for Eicosapentanoic acid (EPA and Docosahexanoic acid (DHA. Unsaturated fatty acids have important biological effects and they have important role in human health. The objective of this study was to analyze fatty acid composition of asparagus as a potential source of linoleic and linolenic acid - a precursor for EPA and DHA. For this reason we analyzed fifty seven samples of asparagus collected from the local market. We used AOAC 996.06 method and analyses were performed with gas chromatograph with flame-ionization detector (GC-FID. The highest concentration of fatty acid in the asparagus was linoleic acid (C18:2n6 which content in asparagus is 25.620±1.0%. Also, asparagus is good source of -linolenic fatty acid (C18:3n3 and content of this fatty acid in asparagus is 8.840±0.3%. The omega-6 to omega-3 (n6/n3 ratio in asparagus was 3.19. Polyunsaturated fatty acids (PUFAs were higher than monounsaturated fatty acids (MUFAs, and from saturated fatty acids, palmitic acid was most frequent with 24.324±1.0%. From our study we can conclude that asparagus is very good source of unsaturated fatty acids, especially linoleic and linolenic fatty acids.

  7. The application of hydrogen-palladium electrode for potentiometric acid-base determinations in tetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Jokić Anja B.

    2013-01-01

    Full Text Available The application of the hydrogen-palladium electrode (H2/Pd as the indicator electrode for the determination of relative acidity scale (Es, mV of tetrahydrofuran (THF and the potentiometric titrations of acids in this solvent was investigated. The relative acidity scale tetrahydrofuran was determined from the difference half-neutralization potentials of perchloric acid and tetrabutylammonium hydroxide (TBAH, which were measured by using both H2/Pd-SCE and glass-SCE electrode pairs. The experimentally obtained value of Es scale THF with a H2/Pd-SCE electrode pair was 1155 mV, and those obtained with glass-SCE electrode pair 880 mV. By using a H2/Pd indicator electrode, the individual acids (benzoic acid, palmitic acid, maleic acid, acetyl acetone, α-naphthol and two component acid mixtures (benzoic acid + α-naphthol, palmitic acid + α-naphthol, maleic acid + α-naphthol and maleic acid + ftalic acid were titrated with a standard solution of TBAH. In addition, sodium methylate and potassium hydroxide proved to be very suitable titrating agents for titrating of the individual acids and the acids in mixtures, respectively. The relative error of the determination of acids in mixture was less than 3%. The results are in agreement with those obtained by a conventional glass electrode. The advantages of H2/Pd electrode over a glass electrode in potentiometric acid-base determinations in tetrahydrofuran lie in the following: this electrode gives wider relative acidity scale THF, higher the potential jumps at the titration end-point and relatively fast response time; furthermore, it is very durable, simple to prepare and can be used in the titrations of small volumes. [Projekat Ministarstva nauke Republike Srbije, br.172051

  8. Oil and fatty acid accumulation during coriander (Coriandrum sativum L.) fruit ripening under organic cultivation

    Institute of Scientific and Technical Information of China (English)

    Quang-Hung; Nguyen; Thierry; Talou; Mureil; Cerny; Philippe; Evon; Othmane; Merah

    2015-01-01

    To evaluate the accumulation of oil and fatty acids in coriander during fruit ripening, a field experiment was conducted under organic cultivation conditions in Auch(near Toulouse,southwestern France) during the 2009 cropping season. The percentage and composition of the fatty acids of coriander were determined by gas chromatography. Our results showed that rapid oil accumulation started in early stages(two days after flowering, DAF). Twelve fatty acids were identified. Saturated and polyunsaturated acids were the dominant fatty acids at earlier stages(2–12 DAF), but decreased after this date. After this stage,petroselinic acid increased to its highest amount at 18 DAF. In contrast, palmitic acid followed the opposite trend. Saturated and polyunsaturated fatty acids decreased markedly and monounsaturated fatty acids increased during fruit maturation. It appears that the fruit of coriander may be harvested before full maturity.

  9. Oil and fatty acid accumulation during coriander (Coriandrum sativum L.) fruit ripening under organic cultivation

    Institute of Scientific and Technical Information of China (English)

    Quang-Hung Nguyen; Thierry Talou; Mureil Cerny; Philippe Evon; Othmane Merah

    2015-01-01

    To evaluate the accumulation of oil and fatty acids in coriander during fruit ripening, a field experiment was conducted under organic cultivation conditions in Auch (near Toulouse, southwestern France) during the 2009 cropping season. The percentage and composition of the fatty acids of coriander were determined by gas chromatography. Our results showed that rapid oil accumulation started in early stages (two days after flowering, DAF). Twelve fatty acids were identified. Saturated and polyunsaturated acids were the dominant fatty acids at earlier stages (2–12 DAF), but decreased after this date. After this stage, petroselinic acid increased to its highest amount at 18 DAF. In contrast, palmitic acid followed the opposite trend. Saturated and polyunsaturated fatty acids decreased markedly and monounsaturated fatty acids increased during fruit maturation. It appears that the fruit of coriander may be harvested before full maturity.

  10. Identification of rapeseed oil fatty acid esters in transesterification reactions by gas chromatography - mass spectrometry method

    International Nuclear Information System (INIS)

    Rapeseed oil transesterification with different alcohols - methyl, ethyl, n-propyl and isopropyl alcohol - has been carried out. Yields of fatty acid alkyl esters obtained from rapeseed oil were determined using the internal standard method. Results of interpretation of the obtained ester mass spectra are reported. The specimen of Latvian rape oil contains: 57.6% of oleic acid, 18.2% of linoleic acid, 8.2% linolenic acid, 3.3% palmitic acid, 2% of stearic acid and less than 1% of arachidic acid. Values of Kovats retention indices of the rapeseed oil fatty acid esters on the capillary columns DB-5 MS and DB-17 MS have been compared. More selective separation of fatty acid alkyl esters has been achieved on the stationary phase with higher content of phenyl groups (DB-17 MS). (authors)

  11. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder.

    Science.gov (United States)

    McNamara, Robert K; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Stanford, Kevin E; Hahn, Chang-Gyu; Richtand, Neil M

    2008-09-30

    Previous antemortem and postmortem tissue fatty acid composition studies have observed significant deficits in the omega-3 fatty acid docosahexaenoic acid (DHA, 22:6n-3) in red blood cell (RBC) and postmortem cortical membranes of patients with unipolar depression. In the present study, we determined the fatty acid composition of postmortem orbitofrontal cortex (OFC, Brodmann area 10) of patients with bipolar disorder (n=18) and age-matched normal controls (n=19) by gas chromatography. After correction for multiple comparisons, DHA (-24%), arachidonic acid (-14%), and stearic acid (C18:0) (-4.5%) compositions were significantly lower, and cis-vaccenic acid (18:1n-7) (+12.5%) composition significantly higher, in the OFC of bipolar patients relative to normal controls. Based on metabolite:precursor ratios, significant elevations in arachidonic acid, stearic acid, and palmitic acid conversion/metabolism were observed in the OFC of bipolar patients, and were inversely correlated with DHA composition. Deficits in OFC DHA and arachidonic acid composition, and elevations in arachidonic acid metabolism, were numerically (but not significantly) greater in drug-free bipolar patients relative to patients treated with mood-stabilizer or antipsychotic medications. OFC DHA and arachidonic acid deficits were greater in patients plus normal controls with high vs. low alcohol abuse severity. These results add to a growing body of evidence implicating omega-3 fatty acid deficiency as well as the OFC in the pathoaetiology of bipolar disorder. PMID:18715653

  12. Determination of fruit characteristics, fatty acid profile and total antioxidant capacity ofMespilus germanica L. fruit

    Institute of Scientific and Technical Information of China (English)

    Hale Seilmi Canbay; Ersin Atay; Serdal Ot

    2015-01-01

    Objective:To determine fruit characteristics, fatty acid profile and total antioxidant capacitiy of first culturedMespilus germanica L. Methods: A total of15 fruits were taken randomly from four directions of adult trees.Then the physical and chemical properties of first cultured medlar fruit (Istanbul/Turkey) were measured by using refractometer, colorimeter, spectrophotometer and gas chromatograph mass spectrometer, respectivly. Results: In the fruit studied, the results showed that palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid and behenic acid were the most abundant fatty acids (FAs), and the main FA was palmitic acid [(35.35 ± 1.20)%]. The percentage of linoleic acid and stearic acid in this fruit oil were (29.10 ± 1.70)% and(8.53 ± 0.25)%, respectively. As a result of the analysis, the total antioxidant capacity of medlar fruit was (1.1 ± 0.2) mmol trolox equivalents/L. Conclusions: The present study has demonstrated the concentrations of FAs and the antioxidantive capacity of first cultured Istanbul medlar fruits by using many tested methods. It is proved that in our daily life, medlar fruit plays a significant role with its nutrition and health effect.

  13. Fatty acid composition of oil synthesized by Aspergillus nidulans.

    Science.gov (United States)

    Sharma, N D; Mathur, J M; Saxena, B S; Sen, K

    1981-01-01

    The filamentous fungus Aspergillus nidulans Eidam strain 300 was found to be capable of synthesizing 24.9% oil or remarkably low free fatty acidity, in a chemically defined medium with 34% glucose as sole carbon source. although the total content of oil synthesized was less, utilization of the carbon source is better as shown by the high (8.4) fat coefficient. The major component fatty acids of the oil were palmitic, stearic, oleic and linoleic and are influenced by the source of carbon. Palmitoleic acid is present in traces, confirming thereby the general observation that high oil formers produce oil of low hexadecenoic acid content. The relatively high stearic acid content of the oil distinguishes it from those of other microorganisms and resembles the oil produced by certain tropical plants, such as Madhuca latifolia. PMID:7026394

  14. Synergistic Effects of Zinc Oxide Nanoparticles and Fatty Acids on Toxicity to Caco-2 Cells

    DEFF Research Database (Denmark)

    Cao, Yi; Roursgaard, Martin; Kermanizadeh, Ali;

    2015-01-01

    Fatty acids exposure may increase sensitivity of intestinal epithelial cells to cytotoxic effects of zinc oxide (ZnO) nanoparticles (NPs). This study evaluated the synergistic effects of ZnO NPs and palmitic acid (PA) or free fatty acids (FFAs) mixture (oleic/PA 2:1) on toxicity to human colon...... epithelial (Caco-2) cells. The ZnO NPs exposure concentration dependently induced cytotoxicity to Caco-2 cells showing as reduced proliferation and activity measured by 3 different assays. PA exposure induced cytotoxicity, and coexposure to ZnO NPs and PA showed the largest cytotoxic effects. The presence of...

  15. Thyroid hormone reverses aging-induced myocardial fatty acid oxidation defects and improves the response to acutely increased afterload.

    Directory of Open Access Journals (Sweden)

    Dolena Ledee

    Full Text Available BACKGROUND: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to the development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone supplementation reverses these defects. METHODS: Studies were performed on young (Young, 4-6 months and aged (Old, 22-24 months C57/BL6 mice at standard (50 mmHg and high afterload (80 mmHg. Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only. Function was measured in isolated working hearts along with substrate fractional contributions (Fc to the citric acid cycle (CAC using perfusate with (13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. RESULTS: Old mice maintained cardiac function under standard workload conditions, despite a marked decrease in unlabeled (presumably palmitate Fc and relatively similar individual carbohydrate contributions. However, old mice exhibited reduced palmitate oxidation with diastolic dysfunction exemplified by lower -dP/dT. Thyroid hormone abrogated the functional and substrate flux abnormalities in aged mice. CONCLUSION: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

  16. The effects of season on fatty acid composition and ω3/ω6 ratios of northern pike ( Esox lucius L., 1758) muscle lipids

    Science.gov (United States)

    Mert, Ramazan; Bulut, Sait; Konuk, Muhsin

    2015-01-01

    In the present study, the effects of season on fatty acid composition, total lipids, and ω3/ω6 ratios of northern pike muscle lipids in Kizilirmak River (Kirikkale, Turkey) were investigated. A total of 35 different fatty acids were determined in gas chromatography. Among these, palmitic, oleic, and palmitoleic acids had the highest proportion. The main polyunsaturated fatty acids (PUFAs) were found to be docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid. There were more PUFAs than monounsaturated fatty acids (MUFA) in all seasons. Similarly, the percentages of ω3 fatty acids were higher than those of total ω6 fatty acids in the fatty acid composition. ω3/ω6 ratios were calculated as 1.53, 1.32, 1.97, and 1.71 in spring, summer, autumn and winter, respectively. Overall, we found that the fatty acid composition and ω3/ω6 fatty acid ratio in the muscle of northern pike were significantly influenced by season.

  17. Fatty acid composition and Ω3/Ω6 ratios of the muscle lipids of six fish species in Sugla Lake, Turkey

    Directory of Open Access Journals (Sweden)

    Cakmak Selim Yavuz

    2012-01-01

    Full Text Available Fatty acid composition of the muscle lipids of Carassius gibelio, Pseudophoxinus anatolicus, Sander lucioperca, Tinca tinca, Vimba vimba tenella and Capoeta capoeta in Sugla Lake were determined. In all species, palmitic acid (13.25- 18.54% of total fatty acids and oleic acid (11.93-34.23% of total fatty acids were identified as major saturated fatty acid (SFA and monounsaturated fatty acid (MUFA, respectively. Docosahexaenoic acid (DHA was found to be the major polyunsaturated fatty acid (PUFA in T. tinca, C. capoeta, C. gibelio, P. anatolicus and S. lucioperca while the predominant PUFA of V. vimba tenella was eicosapentaenoic acid (EPA. S. lucioperca contained more ω3 fatty acids than the other fish species. The percentages of total ω3 fatty acids were higher than those of total ω6 fatty acids in all species. Since P. anatolicus is endemic and endangered, this species should be protected and produced for future marketing.

  18. Fatty acid transfer between multilamellar liposomes and fatty acid-binding proteins.

    Science.gov (United States)

    Brecher, P; Saouaf, R; Sugarman, J M; Eisenberg, D; LaRosa, K

    1984-11-10

    A simple experimental system was developed for studying the movement of long-chain fatty acids between multilamellar liposomes and soluble proteins capable of binding fatty acids. Oleic acid was incorporated into multilamellar liposomes containing cholesterol and egg yolk lecithin and incubated with albumin or hepatic fatty acid-binding protein. It was found that the fatty acid transferred from the liposomes to either protein rapidly and selectively under conditions where phospholipid and cholesterol transfer did not occur. More than 50% of the fatty acid contained within liposomes could become protein bound, suggesting that the fatty acid moved readily between and across phospholipid bilayers. Transfer was reduced at low pH, and this reduction appeared to result from decreased dissociation of the protonated fatty acid from the bilayer. Liposomes made with dimyristoyl or dipalmitoyl lecithin and containing 1 mol per cent palmitic acid were used to show the effect of temperature on fatty acid transfer. Transfer to either protein did not occur at temperatures where the liposomes were in a gel state but occurred rapidly at temperatures at or above the transition temperatures of the phospholipid used. PMID:6490659

  19. ANALYSIS OF FATTY ACID CONTENT OF RAW MIANALYSIS OF FATTY ACID CONTENT OF RAW MILK

    Directory of Open Access Journals (Sweden)

    Juraj Čuboň

    2013-02-01

    Full Text Available In this work was analysedquality of raw cow’s milkof dairy cows which was fed with winter food ration of feed. Milk was observed in terms of the composition of milk fat and fatty acids during the months of August, October, December and February. The proportion of saturated fatty acids in milk fat was 63.22 % and it was found the highest proportion of palmitic acid 34.85%myristic acid accounted for 11.44 % and 10.86 % stearic acid. Linoleic acid, which is given special attention in view of the favourable effect on cholesterol, consisted of 3.48 % milk fat. The average proportion of unsaturated fatty acids in milk fat was 36.76 % of which 32.77 % were monounsaturated and polyunsaturated 4.0 %. A high proportion of milk fat formed monounsaturated oleic acid 30.92 %. The proportion of linoleic acid in milk fat was 3.48 % and 0.31 % linoleic acid.

  20. Bilayers and wormlike micelles at high pH in fatty acid soap systems.

    Science.gov (United States)

    Xu, Wenlong; Liu, Huizhong; Song, Aixin; Hao, Jingcheng

    2016-03-01

    Bilayers at high pH in the fatty acid systems of palmitic acid/KOH/H2O, palmitic acid/CsOH/H2O, stearic acid/KOH/H2O and stearic acid/CsOH/H2O can form spontaneously (Xu et al., 2014, 2015). In this work, the bilayers can still be observed at 25°C with an increase of the concentration of fatty acids. We found that wormlike micelles can also be prepared in the fatty acid soap systems at high pH, even though the temperature was increased to be 50°C. The viscoelasticity, apparent viscosity, yield stress of the bilayers were determined by the rheological measurements. Wormlike micelles were identified by cryogenic transmission electron microscopy (cryo-TEM) and emphasized by the rheological characterizations, which are in accordance with the Maxwell fluids with good fit of Cole-Cole plots. The phase transition temperature was determined by differential scanning calorimetry (DSC) and the transition process was recorded. The regulating role of counterions of fatty acids were discussed by (CH3)4N(+), (C2H5)4N(+), (C3H7)4N(+), and (C4H9)4N(+) as comparison, concluding that counterions with appropriate hydrated radius were the vital factor in the formation wormlike micelles.

  1. Fatty Acid Incubation of Myotubues from Humans with Type 2 Diabetes Leads to Enhanced Release of Beta Oxidation Products Due to Impaired Fatty Acid Oxidation

    DEFF Research Database (Denmark)

    Wensaas, Andreas J; Rustan, Arild C; Just, Marlene;

    2008-01-01

    Objective: Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence...... these processes. Research Design and Methods: We examined fatty acid and glucose metabolism, and gene expression in cultured human skeletal muscle cells from control and T2D individuals after four days preincubation with EPA or TTA. Results: T2D myotubes exhibited reduced formation of CO(2) from palmitic acid (PA....... EPA markedly enhanced TAG accumulation in myotubes, more pronounced in T2D cells. TAG accumulation and fatty acid oxidation were inversely correlated only after EPA preincubation, and total level of acyl-CoA was reduced. Glucose oxidation (CO(2) formation) was enhanced and lactate production decreased...

  2. Analysis of fatty acids and phytosterols in ethanol extracts of Nelumbo nucifera seeds and rhizomes by GC-MS.

    Science.gov (United States)

    Zhao, Xu; Shen, Jian; Chang, Kyung Ja; Kim, Sung Hoon

    2013-07-17

    The purpose of this study was to investigate the fatty acid and phytosterol contents in ethanol extracts of lotus seeds and rhizomes. These ethanol extracts were extracted with hexane. The hexane extracts were hydrolyzed in a microwave reactor, and total fatty acids and phytosterols were analyzed. The hexane extracts were also subjected to silica gel column chromatography. Nonpolar components (triglycerides and steryl-fatty acid esters) were hydrolyzed, and then the contents were analyzed. Polar components (diglycerides, monoglycerides, fatty acids, and phytosterols) were analyzed directly. Seeds contained higher concentrations of fatty acids and phytosterols compared to rhizomes. Linoleic acid, palmitic acid, and oleic acid were the main fatty acid components in seeds and rhizomes, and most of them in seeds were in the ester form. In seeds, phytosterols existed mainly in the free form rather than in steryl-fatty acid ester form. β-Sitosterol was the most abundant phytosterol in seeds and rhizomes.

  3. Curcumin, a Potential Inhibitor of Up-regulation of TNF-alpha and IL-6 Induced by Palmitate in 3T3-L1 Adipocytes through NF-kappaB and JNK Pathway

    Institute of Scientific and Technical Information of China (English)

    SHAO-LING WANG; YING EI; YING WEN; YAN-FENG CHEN; LI-XIN NA; SONG-TAO LI; CHANG-HAO SUN

    2009-01-01

    Objective To investigate the attenuating effect of curcumin, an anti-inflammatory compound derived from dietary spice turmeric (Curcuma longa) on the pro-inflammatory insulin-resistant state in 3T3-L1 adipocytes. Methods Glucose uptake rate was determined with the [3H] 2-deoxyglucose uptake method. Expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were measured by quantitative RT-PCR analysis and ELISA. Nuclear transcription factor kappaB p65 (NF-κB p65) and mitogen-activated protein kinase (MAPKs) were detected by Western blot assay. Results The basal glucose uptake was not altered, and curcumin increased the insulin-stimulated glucose uptake in 3T3-L1 cells. Curcumin suppressed the transcription and secretion of TNF-α and IL-6 induced by palmitate in a concentration-dependent manner. Palmitate induced nuclear translocation of NF-kB. The activities of Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase1/2 (ERK1/2) and p38MAPK decreased in the presence of curcumin. Moreover, pretreatment with SP600125 (inhibitor of JNK) instead of PD98059 or SB203580 (inhibitor of ERK 1/2 or p38MAPK, respectively) decreased the up-regulation of TNF-α induced by palmitate. Conclusion Curcumin reverses palmitate-induced insulin resistance state in 3T3-L1 adipocytes through the NF-kB and JNK pathway.

  4. Effect of sulfate on methanogenic communities that degrade unsaturated and saturated long-chain fatty acids (LCFA)

    OpenAIRE

    Sousa, D.Z.; Alves, J.I.; Alves, M. M.; Smidt, Hauke; Stams, A.J.M.

    2009-01-01

    Anaerobic bacteria involved in the degradation of long-chain fatty acids (LCFA), in the presence of sulfate as electron acceptor, were studied by combined cultivation-dependent and molecular techniques. The bacterial diversity in four mesophilic sulfate-reducing enrichment cultures, growing on oleate (C18:1, unsaturated LCFA) or palmitate (C16:0, saturated LCFA), was studied by denaturing gradient gel electrophoresis (DGGE) profiling of polymerase chain reaction (PCR)-amplified 16S rRNA gene ...

  5. Identification of High Affinity Fatty Acid Binding Sites on Human Serum Albumin by MM-PBSA Method

    OpenAIRE

    Fujiwara, Shin-ichi; Amisaki, Takashi

    2007-01-01

    Human serum albumin (HSA) has seven common fatty acid (FA) binding sites. In this study, we used the molecular mechanics Poisson-Boltzmann surface area method to identify high affinity FA binding sites on HSA in terms of binding free energy. Using multiple HSA-FA (myristate, palmitate) complex models constructed by molecular dynamics simulations, two methods were performed in molecular mechanics Poisson-Boltzmann surface area, the “three-trajectory method” and the “single-trajectory method”. ...

  6. THYROID HORMONE REVERSES AGING-INDUCED MYOCARDIAL FATTY ACID OXIDATION DEFECTS AND IMPROVES THE RESPONSE TO ACUTELY INCREASED AFTERLOAD

    Energy Technology Data Exchange (ETDEWEB)

    Ledee, Dolena; Portman, Michael A.; Kajimoto, Masaki; Isern, Nancy G.; Olson, Aaron

    2013-06-07

    Background: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone reverses these defects. Methods: Studies were performed on young (Young, 4-6 months) and aged (Old, 22-24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with 13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. Results: Cardiac function was similar between Young and Old mice at standard afterload. Palmitate Fc was reduced but no individual carbohydrate contributions differed. CAC and individual substrate fluxes decreased in aged. At high afterload, -dP/dT was decreased in Old versus Young. Similar to low afterload, palmitate Fc was decreased in Old. Thyroid hormone reversed aging-induced changes in palmitate Fc and flux while significantly improving cardiac function. Conclusion: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

  7. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase.

    Science.gov (United States)

    Yao, Jiangwei; Dodson, V Joshua; Frank, Matthew W; Rock, Charles O

    2015-09-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  8. Effect of gamma irradiation on the properties of various kinds of milk fat. II. Fatty acids composition of milk fat

    International Nuclear Information System (INIS)

    Fresh cow's, buffalo's and goat's milk fat were subjected to ascendent doses of 8-rays of 250, 500 and 750 K.rad as compared to raw milk samples (control). The methyl esters of fats separated from these samples were analyzed using gas liquid chromatographic technique. Total saturated fatty acids (T.S.F.A.) were 70.46%, 67.44% and 72.85%, while total unsaturated fatty acid (T.U.F.A.) were 29.51%, 32.54% and 27.15% for cow's buffalo's and goat's raw milk fats, respectively. Water insoluble volatile fatty acids (W.I.V.F.A.) were much higher in goat's raw milk fat (23.24%) than in cows (6.34%) and buffaloes (5.25%) ones. Palmitic acid represents the predominant saturated fatty acid, while oleic acid represents the major unsaturated fatty acids in the three kinds of milk fat. Linoleic acid was present only in buffalo's and goat's raw milk fat. The exposure of buffalo's and goat's milk to 8-rays doses increased TSFA and decreased TUFA of their fats. Meanwhile the same doses induced a minor change in both TSFA and TUFA of cow's milk one. Also, 8-irradiation increased the relative percentage of Palmitic acid in the three types of milk fat, while linoleic acid decreased in buffalo's and goat's milk fat. Besides, W.I.V.F.A. showed a gradual decrease, when the three types of milk were exposed to ascendent doses of 8-rays

  9. 3-MCPD 1-palmitate induced renal tubular cell apoptosis in vivo via JNK/p53 pathway

    Science.gov (United States)

    Fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD esters) are a group of processing-induced food contaminants with nephrotoxicity, but the molecular mechanism(s) remains unclear. This study investigated whether and how the JNK/p53 pathway may play a role in the nephrotoxic effect of 3-MCPD este...

  10. Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2) ameliorates palmitate induced-apoptosis through regulating Akt/FOXO1 pathway and ROS production in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorgani-Firuzjaee, Sattar [Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Adeli, Khosrow [Division of Clinical Biochemistry, The Hospital for Sick Children, University of Toronto, Toronto (Canada); Meshkani, Reza, E-mail: rmeshkani@tums.ac.ir [Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-08-21

    The serine–threonine kinase Akt regulates proliferation and survival by phosphorylating a network of protein substrates; however, the role of a negative regulator of the Akt pathway, the SH2-domain-containing inositol 5-phosphatase (SHIP2) in apoptosis of the hepatocytes, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to apoptosis using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to palmitate (0.5 mM). Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) significantly reduced palmitate-induced apoptosis in HepG2 cells, as these cells had increased cell viability, decreased apoptotic cell death and reduced the activity of caspase-3, cytochrome c and poly (ADP-ribose) polymerase. Overexpression of the wild-type SHIP2 gene led to a massive apoptosis in HepG2 cells. The protection from palmitate-induced apoptosis by SHIP2 inhibition was accompanied by a decrease in the generation of reactive oxygen species (ROS). In addition, SHIP2 inhibition was accompanied by an increased Akt and FOXO-1 phosphorylation, whereas overexpression of the wild-type SHIP2 gene had the opposite effects. Taken together, these findings suggest that SHIP2 expression level is an important determinant of hepatic lipoapotosis and its inhibition can potentially be a target in treatment of hepatic lipoapoptosis in diabetic patients. - Highlights: • Lipoapoptosis is the major contributor to the development of NAFLD. • The PI3-K/Akt pathway regulates apoptosis in different cells. • The role of negative regulator of this pathway, SHIP2 in lipoapoptosis is unknown. • SHIP2 inhibition significantly reduces palmitate-induced apoptosis in HepG2 cells. • SHIP2 inhibition prevents palmitate induced-apoptosis by regulating Akt/FOXO1 pathway.

  11. Role and mechanism of uncoupling protein 2 on the fatty acid-induced dysfunction of pancreatic alpha cells in vitro

    Institute of Scientific and Technical Information of China (English)

    SU Jie-ying; LI Hong-liang; YANG Wen-ying; XIAO Jian-zhong; DU Rui-qin; SHEN Xiao-xia; CAI Zhe; ZHANG Lan; SHU Jun

    2010-01-01

    Background Uncoupling protein (UCP) 2 is related to the dysfunction of beta cells induced by fatty acids. However,whether UCP2 has similar effects on alpha cell is still not clear. This study aimed to investigate the effects of UCP2 and its possible mechanisms in lipotoxicity-induced dysfunction of pancreatic alpha cells.Methods The alpha TC1-6 cells were used in this study to evaluate the effects of palmitate and/or UCP2 inhibit factors on the glucagon secretory function, glucagon content, the glucagon mRNA level and the nitrotyrosine level in the supernatant. Meantime, the expression levels of UCP2 and peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1 alpha) were measured by real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting. Furthermore, the possible relationship between UCP2 and insulin signal transduction pathway was analyzed.Results Palmitate stimulated alpha cell glucagon secretion and the expression of UCP2 and PGC-1 alpha, which could be partially decreased by the inhibition of UCP2. Palmitate increased nitrotyrosine level and suppressed insulin signal transduction pathway in alpha cells. Inhibition of UCP2 influenced the effects of free fatty acid on alpha cells and may relate to glucagon secretion.Conclusion UCP2 played an important role on alpha cell dysfunction induced by free fatty acid in vitro, which may be related to its effects on oxidative stress and insulin signal transduction pathway.

  12. Stereoselective and nonstereoselective effects of ibuprofen enantiomers on mitochondrial beta-oxidation of fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Freneaux, E.; Fromenty, B.; Berson, A.; Labbe, G.; Degott, C.; Letteron, P.; Larrey, D.; Pessayre, D. (Unite de Recherches de Physiolopathologie Hepatique (INSERM U-24), Hopital Beaujon, Clichy (France))

    1990-11-01

    The effects of the R-(-) and S-(+)ibuprofen enantiomers were first studied in vitro with mouse liver mitochondria incubated in the presence of various concentrations of exogenous coenzyme A. In the presence of a low concentration of coenzyme A (2.5 microM), the R-(-)enantiomer (which forms an acylcoenzyme A) inhibited stereoselectively the beta oxidation of (1-{sup 14}C)palmitic acid but not that of (1-{sup 14}C)palmitoyl-L-carnitine (which can directly enter the mitochondria). In the presence, however, of a concentration of coenzyme A (50 microM) reproducing that present in liver cell cytosol, both enantiomers (2 mM) slightly inhibited the beta oxidation of (1-{sup 14}C)palmitic acid and markedly inhibited the beta oxidation of (1-{sup 14}C)octanoic acid and (1-{sup 14}C)butyric acid. In vivo, both enantiomers (1 mmol.kg-1) similarly inhibited the formation of ({sup 14}C)CO{sub 2} from (1-{sup 14}C)fatty acids. Both enantiomers similarly decreased plasma ketone bodies. Both similarly increased hepatic triglycerides, and both produced mild microvesicular steatosis of the liver. We conclude that both ibuprofen enantiomers inhibit beta oxidation of fatty acids in vitro and in vivo. In addition, the R-(-)enantiomer may stereoselectively sequester coenzyme A; at low concentrations of coenzyme A in vitro, this may stereoselectively inhibit the mitochondrial uptake and beta oxidation of long chain fatty acids.

  13. Esterification of Fatty Acids with Short-Chain Alcohols over Commercial Acid Clays in a Semi-Continuous Reactor

    Directory of Open Access Journals (Sweden)

    Mohamed H. Frikha

    2009-11-01

    Full Text Available Production of fatty acid esters from stearic, oleic, and palmitic acids and short-chain alcohols (methanol, ethanol, propanol, and butanol for the production of biodiesel was investigated in this work. A series of montmorillonite-based clays catalysts (KSF, KSF/0, KP10, and K10 were used as acidic catalysts. The influence of the specific surface area and the acidity of the catalysts on the esterification rate were investigated. The best catalytic activities were obtained with KSF/0 catalyst. The esterification reaction has been carried out efficiently in a semi-continuous reactor at 150°C temperature higher than the boiling points of water and alcohol. The reactor used enabled the continuous removal of water and esterification with hydrated alcohol (ethanol 95% without affecting the original activity of the clay.

  14. Glucosylation of aroma chemicals and hydroxy fatty acids.

    Science.gov (United States)

    Huang, Fong-Chin; Hinkelmann, Jens; Schwab, Wilfried

    2015-12-20

    To explore the utility of glycosyltransferases as novel biocatalysts, we isolated the glycosyltransferase genes CaUGT2 and SbUGTA1 from Catharanthus roseus and Starmerella bombicola, respectively and heterologously expressed them in Escherichia coli. The purified recombinant proteins were assayed with a variety of small molecule substrates. Carvacrol and its phenol isomer thymol are efficiently glucosylated by CaUGT2. The Vmax/Km ratios show that CaUGT2 exhibits the highest specificity towards carvacrol, followed by thymol, geraniol, eugenol, vanillin, menthol, and tyrosol. In contrast, SbUGTA1 accepts ω-hydroxy fatty acids and 1-alkanols as substrates. The Vmax/Km ratios indicate that SbUGTA1 exhibits the highest specificity towards 16-hydroxy palmitic acid, followed by octanol, decanol, and hexadecanol. In biotransformation experiments 23, 88 and 99% of octanol, 16-hydroxy palmitic acid, and decanol, respectively is converted into the corresponding β-glucosides by E. coli cells expressing SbUGTA1 whereas those cells expressing CaUGT2 glucosylate 18, 61, 77 and 97% of applied eugenol, thymol, vanillin, and carvacrol, respectively. To optimize the biotransformation rate, the effects of the concentration of IPTG, glucose, and substrate on the production of glucosides were tested. Taken together, this procedure is a simple operation, environmentally friendly, and is useful for the preparation of glycosides as additives for food and cosmetics. PMID:26481830

  15. 脂肪酶催化猪油合成L-抗坏血酸脂肪酸酯工艺条件%Lipase-catalytic Synthesis of L-Ascorbyl Fatty Acid Esters in Mixed Organic Media

    Institute of Scientific and Technical Information of China (English)

    张宇; 吕凤霞; 赵海珍; 刘建伟; 别小妹; 陆兆新

    2010-01-01

    研究一种L-抗坏血酸脂肪酸酯酶法合成的新途径.以廉价的猪油和L-抗坏血酸作为反应底物,探讨酶法合成L-抗坏血酸脂肪酸酯的工艺条件.结果表明,在该酶促反应中,混合有机溶剂体系中底物转化率高于相应纯有机溶剂体系中的转化率,最佳反应体系为30%叔戊醇:70%异辛烷(V/V).研究各反应因素对转化率的影响,确定最适反应条件为底物L-抗坏血酸与复合猪油甲酯的物质的量比为1:10、酶量10%、温度55℃、反应时间24h,转化率可达到(52.7±2.8)%.

  16. Synthesis of Ascorbyl Fatty Acid Esters from Lard by Ultrasound-assisted Lipase Catalysis%超声辅助脂肪酶催化L-抗坏血酸脂肪酸酯的合成

    Institute of Scientific and Technical Information of China (English)

    彭杨; 穆青; 魏微; 熊园; 刘建伟; 陆兆新; 吴涛; 赵海珍

    2011-01-01

    采用猪油和抗坏血酸为原料,通过单因素试验和正交试验,研究超声作用对酶促转酯化反应合成抗坏血酸脂肪酸酯的影响,并确定其最佳反应条件.结果表明,最佳反应条件为:叔戊醇为溶剂,Novozym 435用量20%(抗坏血酸质量百分比),抗坏血酸与猪油物质的量的比1:3,超声功率350W,超声频率59kHz,反应时间9h,在此条件下,抗坏血酸脂肪酸酯转化率达到88.00%.超声处理不仅可以提高产物产率(从71%提高到88%),还可以大大缩短反应时间(从32h降低剑9h).超声条件下Novozym 435有良好的操作稳定性,反应6批次后,酶活还保持在比较高的水平.

  17. Study on Antioxidation of Three Ascorbyl Carboxylates on Conjugated Linoleic Acid%三种抗坏血酸脂肪酸酯对共轭亚油酸的抗氧化性研究

    Institute of Scientific and Technical Information of China (English)

    严梅荣

    2007-01-01

    本实验以葵花籽油为原料制备共轭亚油酸,以L-抗坏血酸、D-异抗坏血酸、棕榈酸和月桂酸为原料合成L-抗坏血酸棕榈酸酯、L-抗坏血酸月桂酸酯和D-异抗坏血酸棕榈酸酯,并研究上述酯对于共轭亚油酸的抗氧化效果.结果表明,添加0.02%、0.04%和0.08%的上述酯对于CLA具有明显且相似的的抗氧化作用,它们可以作为商品CLA的良好、安全的抗氧化剂.

  18. Enzymatic Synthesis of L-ascorbyl Unsaturated Fatty Acid Esters%L-抗坏血酸不饱和脂肪酸酯的酶法合成工艺

    Institute of Scientific and Technical Information of China (English)

    郭金玲; 秦敏朴; 龚大春

    2015-01-01

    以不饱和脂肪酸含量高的食用油为酰基供体,研究了脂肪酶在有机溶剂中通过酯交换反应催化合成L-抗坏血酸不饱和脂肪酸酯的工艺条件.结果表明,在20 mL用分子筛充分除水的叔丁醇中,0.35 g抗坏血酸与3.72g油茶籽油(L-抗坏血酸和脂肪酸的底物摩尔比为1:6)在150 mg脂肪酶Novozym 435的催化下,反应初始加入1.0 g分子筛4A,温度55℃,转速200 r/min,反应36 h后底物转化率可达65%.

  19. Effect of some saturated and unsaturated fatty acids on prostaglandin biosynthesis in washed human blood platelets from (1-/sup 14/ C)arachidonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, K.C.; Awasthi, K.K.; Lindegard, P.; Tiwari, K.P.

    1982-03-01

    The effects of some saturated (lauric, palmitic and stearic) an unsaturated (linoleic, gamma-linolenic, alpha-linolenic and oleic) fatty acids at 0.1. 0.25 and 0.5 mM concentrations on the in vitro metabolization of (1-14 C) arachidonic acid by washed human blood platelets have been studied. Effects of these fatty acids were studied with intact as well as lysed platelet preparations. With intact platelet preparations it was found that (i) all unsaturated fatty acids enhanced the biosynthesis of TxB2, PGE2, PGD2 and PGF2 alpha, (ii) unsaturated fatty acids reduced the formation of HHT and HETE with the exception of oleic acid which showed very little effect, (iii) unsaturated fatty acids reduced the formation of MDA, whereas palmitic and stearic acids increased its formation and (iv) all unsaturated fatty acids reduced the synthesis of prostaglandin endoperoxides. These results support our previous observations where effects of fatty acids were examined at higher concentrations (10). At 0.1 mM FA concentration, inconsistent results were obtained. With lysed platelet preparations all cyclooxygenase products were reduced in presence of unsaturated fatty acids, whereas HETE formation was reduced only in presence of linoleic and gamma-linolenic acids. Electron micrographs of washed platelet suspensions were obtained with untreated platelet preparations and platelet preparations treated with 0.25 and 0.5 mM linoleic acid concentrations. The results are discussed in the light of a possible soap-like effect of FA salt on platelets.

  20. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols

    Science.gov (United States)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Cao, Fang; Lee, Meehye

    2016-04-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls, and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C values of particle phase glyoxal and methylglyoxal are significantly larger than those previously reported for isoprene and other precursors. The values are consistently less negative in oxalic acid (C2, average -14.1‰), glyoxylic acid (-13.8‰), pyruvic acid (-19.4‰), glyoxal (-13.5‰), and methylglyoxal (-18.6‰) compared to other organic species (e.g., palmitic acid, -26.3‰), which can be explained by the kinetic isotope effects during atmospheric oxidation of pre-aged precursors (e.g., isoprene) and the subsequent gas-particle partitioning after the evaporation of clouds or wet aerosols. The δ13C values of C2 is positively correlated with C2 to organic carbon ratio, indicating that photochemical production of C2 is more pronounced than its degradation during long-range atmospheric transport. The isotopic results also suggest that aqueous phase oxidation of glyoxal and methylglyoxal is a major formation process of oxalic acid via the intermediates such as glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photochemically aged in the western North Pacific rim.