WorldWideScience

Sample records for acid ascorbyl palmitate

  1. Stability of ascorbyl palmitate in topical microemulsions.

    Science.gov (United States)

    Spiclin, P; Gasperlin, M; Kmetec, V

    2001-07-17

    Ascorbyl palmitate and sodium ascorbyl phosphate are derivatives of ascorbic acid, which differ in stability and hydro-lipophilic properties. They are widely used in cosmetic and pharmaceutical preparations. In the present work the stability of both derivatives was studied in microemulsions for topical use as carrier systems. The microemulsions were of both o/w and w/o types and composed of the same ingredients. The stability of the less stable derivative ascorbyl palmitate was tested under different conditions to evaluate the influence of initial concentration, location in microemulsion, dissolved oxygen and storage conditions. High concentrations of ascorbyl palmitate reduced the extent of its degradation. The location of ascorbyl palmitate in the microemulsion and oxygen dissolved in the system together significantly influence the stability of the compound. Light accelerated the degradation of ascorbyl palmitate. In contrast, sodium ascorbyl phosphate was stable in both types of microemulsions. Sodium ascorbyl phosphate is shown to be convenient as an active ingredient in topical preparations. In the case of ascorbyl palmitate, long-term stability in selected microemulsions was not adequate. To formulate an optimal carrier system for this ingredient other factors influencing the stability have to be considered.

  2. Scientific Opinion on the safety and efficacy of vitamin C (ascorbic acid, sodium ascorbate, calcium ascorbate, ascorbyl palmitate, sodium calcium ascorbyl phosphate and sodium ascorbyl phosphate) as a feed additive for all animal species based on a dossier submitted by DSM Nutritional Products Ltd

    OpenAIRE

    2013-01-01

    Vitamin C is essential for primates, guinea pigs and fish. Vitamin C, in the form of ascorbic acid and its calcium and sodium salts, ascorbyl palmitate, sodium calcium ascorbyl phosphate and sodium ascorbyl phosphate, is safe for all animal species. Setting a maximum content in feed and water for drinking is not considered necessary. Data on the vitamin C consumption of consumers are based on the levels of vitamin C in foodstuffs, including food of animal origin, produced in accordance with c...

  3. Additions of caffeic acid, ascorbyl palmitate or gamma-tocopherol to fish oil-enriched energy bars affect lipid oxidation differently

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    2009-01-01

    The objectives of the study were to investigate the effects of caffeic acid, ascorbyl palmitate and gamma-tocopherol on protection of fish oil-enriched energy bars against lipid oxidation during storage for 10 weeks at room temperature. The lipophilic gamma-tocopherol reduced lipid oxidation during......, or the hydrophilic caffeic acid, or the amphiphilic ascorbyl palmitate at concentrations of 75, 150 and 300 mu g/g fish oil. Prooxidative effects were observed as an increase in the formation of lipid hydroperoxides and volatile secondary oxidation products, as well as the development of rancid off...

  4. 21 CFR 182.3149 - Ascorbyl palmitate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ascorbyl palmitate. 182.3149 Section 182.3149 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives §...

  5. 21 CFR 582.3149 - Ascorbyl palmitate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ascorbyl palmitate. 582.3149 Section 582.3149 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives §...

  6. Scientific Opinion on the safety and efficacy of vitamin C (ascorbic acid, sodium ascorbate, calcium ascorbate, ascorbyl palmitate, sodium calcium ascorbyl phosphate and sodium ascorbyl phosphate as a feed additive for all animal species based on a dossier submitted by DSM Nutritional Products Ltd

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-02-01

    Full Text Available Vitamin C is essential for primates, guinea pigs and fish. Vitamin C, in the form of ascorbic acid and its calcium and sodium salts, ascorbyl palmitate, sodium calcium ascorbyl phosphate and sodium ascorbyl phosphate, is safe for all animal species. Setting a maximum content in feed and water for drinking is not considered necessary. Data on the vitamin C consumption of consumers are based on the levels of vitamin C in foodstuffs, including food of animal origin, produced in accordance with current EU legislation on the supplementation of feed with vitamin C. The exposure is far below the guidance level. Any potential contribution of the use of vitamin C in feed is therefore already considered in the above data. Consequently, the use of vitamin C in animal nutrition is not of concern for consumer safety. In the absence of inhalation toxicity studies it would be prudent to assume that inhalation of dust from the additives presents a health hazard to workers. Sodium calcium ascorbyl phosphate is not an irritant to skin and eyes and is unlikely to be a skin sensitiser. This conclusion is extrapolated to sodium ascorbyl phosphate. In the absence of data, ascorbic acid, sodium ascorbate, calcium ascorbate and ascorbyl palmitate should be considered as irritant to skin and eyes and as dermal sensitisers. The supplementation of feed with vitamin C does not pose a risk to the environment. Ascorbic acid, sodium calcium ascorbyl phosphate and sodium ascorbyl phosphate are regarded as effective sources of vitamin C when added to feed or water for drinking. Since ascorbic acid, sodium ascorbate, calcium ascorbate and ascorbyl palmitate are authorised for use as antioxidants in food and their function in feed is essentially the same as that in food, no further demonstration of efficacy is considered necessary.

  7. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate.

    Science.gov (United States)

    Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition to the side effects mentioned above by different channel blockers, these drugs can cause arterial wall damage, thereby contributing to vascular wall structure destabilization and promoting events facilitating rupture of plaques. Collagen synthesis is regulated by ascorbic acid, which is also essential for its optimum structure as a cofactor in lysine and proline hydroxylation, a precondition for optimum crosslinking of collagen and elastin. Therefore, the main objective in this study was to evaluate effects of various types of channel blockers on intracellular accumulation and cellular functions of ascorbate, specifically in relation to formation and extracellular deposition of major collagen types relevant for vascular function. Effects of select Na- and Ca- channel blockers on collagen synthesis and deposition were evaluated in cultured human dermal fibroblasts and aortic smooth muscle cells by immunoassay. All channel blockers tested demonstrated inhibitory effects on collagen type I deposition to the ECM by fibroblasts, each to a different degree. Ascorbic acid significantly increased collagen I ECM deposition. Nifedipine (50 µM), a representative of channel blockers tested, significantly reduced ascorbic acid and ascorbyl palmitate-dependent ECM deposition of collagen type l and collagen type lV by cultured aortic smooth muscle cells. In addition, nifedipine (50 µM) significantly reduced ascorbate-dependent collagen type l and type lV synthesis by cultured aortic smooth

  8. Assessment of Combined Ascorbyl Palmitate (AP) and Sodium Ascorbyl Phosphate (SAP) on Facial Skin Sebum Control in Female Healthy Volunteers.

    Science.gov (United States)

    Khan, H; Akhtar, N; Ali, A

    2017-01-01

    The skin is fortified with a setup of lipophilic and hydrophilic, enzymatic and non-enzymatic antioxidant systems. Ascorbyl palmitate (AP) and sodium ascorbyl phosphate (SAP) are reported as lipophilic and hydrophilic antioxidants, respectively used for skin care. Present study was aimed to assess the combined AP (in oil phase) and SAP (in aqueous phase) via multiple emulsion (ME1) for controlling sebum secretions in healthy human females. FTIR analysis of AP and SAP was performed for identification. Multiple emulsions (ME1 and control) were prepared and analyzed for physical stability. Antioxidant activities of AP, SAP as well as ME1 (with combination of these compounds) were determined by DPPH method. 11 female volunteers were included in a single-blinded, placebo-controlled, split-face comparative study. Volunteers were instructed to apply ME1 on left cheek while control (without AP and SAP) on right cheek, for a period of 90 days. A non-invasive photometric device (Sebumeter(®)) was used for the measurement of sebum secretions on both sides of the face with subsequent time intervals. A good antioxidant activity of ME1 was observed. ME1 treatments reduced significant facial sebum secretions as compared with control/placebo treatments. It was concluded that combined AP and SAP supplementations to skin proved a promising choice for controlling facial sebum secretions and could be evaluated for undesired oily skin and acne reductions for beautifying the facial appearance.

  9. Stability of vitamin C derivatives in topical formulations containing lipoic acid, vitamins A and E.

    Science.gov (United States)

    Segall, A I; Moyano, M A

    2008-12-01

    The stability of ascorbyl palmitate, sodium ascorbyl phosphate and magnesium ascorbyl phosphate in topical formulations was investigated by direct reverse phase high performance liquid chromatography after sample dilution with a suitable buffer - organic solvent mixture. Ascorbyl palmitate, sodium ascorbyl phosphate and magnesium ascorbyl phosphate are derivatives of ascorbic acid which differ in hydrolipophilic properties. They are widely used in cosmetic and pharmaceutical preparations. According to the results, ascorbyl esters showed significant differences: sodium ascorbyl phosphate and magnesium ascorbyl phosphate are more stable derivatives of vitamin C than ascorbyl palmitate and may be easily used in cosmetic products.

  10. Palmitato de ascorbil e acetato de tocoferol como antioxidantes metabólicos em larvas de dourado Ascorbyl palmitate and tocopherol acetate as metabolic antioxidants in dourado larvae

    Directory of Open Access Journals (Sweden)

    Daniel Okamura

    2008-08-01

    palmitate, ascorbic acid and dehydroascorbic acid, total length, weight and height of the head. Ascorbyl palmitate provided an increase in the total length and in the weight of the larvae after 15 days of feeding. For head height, differences were observed among the three doses of tested ascorbyl palmitate. The supplementation of ascorbyl palmitate increased the vitamin C concentrations. Although vitamin E has not influenced the development sizes, it acted as a metabolic pro-oxidant, which increased the dehydroascorbic acid.

  11. Ascorbyl palmitate, gamma-tocopherol, and EDTA affect lipid oxidation in fish oil enriched salad dressing differently

    DEFF Research Database (Denmark)

    Let, M.B.; Jacobsen, Charlotte; Meyer, Anne S.

    2007-01-01

    The aim of the study was to investigate the ability of γ-tocopherol, ethylenediaminetetraacetate (EDTA), and ascorbyl palmitate to protect fish oil enriched salad dressing against oxidation during a 6 week storage period at room temperature. The lipid-soluble γ-tocopherol (220 and 880 µg g-1...... of fish oil) reduced lipid oxidation during storage by partly retarding the formation of lipid hydroperoxides (PV) and by decreasing the concentrations of individual volatile oxidation products by 34-39 and 42- 66%, respectively. EDTA (10 and 50 µg g-1 of dressing) was the most efficient single......). Finally, a combination of all three antioxidants completely inhibited oxidation during storage, indicating that the prooxidant effects of ascorbyl palmitate were reverted or overshadowed by EDTA and γ-tocopherol....

  12. Nanocarrier with self-antioxidative property for stabilizing and delivering ascorbyl palmitate into skin.

    Science.gov (United States)

    Janesirisakule, Sirinapa; Sinthusake, Tarit; Wanichwecharungruang, Supason

    2013-08-01

    The concept of a nanocarrier with a self-antioxidative property to deliver and stabilize a labile drug while at the same time providing a free radical scavenging activity is demonstrated. Curcumin was grafted onto a poly(vinyl alcohol) [PV(OH)] chain, and the nanocarriers fabricated from the obtained curcumin-grafted PV(OH) polymer [CUR-PV(OH)] showed a good free radical scavenging activity. Ascorbyl palmitate (AP) could be effectively loaded into the CUR-PV(OH) at 29% by weight. The CUR-PV(OH)-encapsulated AP was 77% more stable than the free (unencapsulated) AP, and 47% more stable than AP encapsulated in the control nanocarrier with no antioxidative property [cinnamoyl-grafted PV(OH); CIN-PV(OH)]. Although coencapsulation of curcumin and AP into CIN-PV(OH) showed some improvement on the AP stability, AP was more stable when encapsulated in CUR-PV(OH). Compared with the free AP, encapsulated AP within the CUR-PV(OH) nanocarriers showed not only a better penetration into pig skin dermis via hair follicle pathway followed by the release and diffusion of the AP, but also a greater AP stability after skin application. Although a proof of principle is shown for CUR-PV(OH) and AP, it is likely that other carriers of the same principal could be designed and applied to different oxidation-sensitive drugs.

  13. Multivariate optimization of a synergistic blend of oleoresin sage (Salvia officinalis L.) and ascorbyl palmitate to stabilize sunflower oil.

    Science.gov (United States)

    Upadhyay, Rohit; Mishra, Hari Niwas

    2016-04-01

    The simultaneous optimization of a synergistic blend of oleoresin sage (SAG) and ascorbyl palmitate (AP) in sunflower oil (SO) was performed using central composite and rotatable design coupled with principal component analysis (PCA) and response surface methodology (RSM). The physicochemical parameters viz., peroxide value, anisidine value, free fatty acids, induction period, total polar matter, antioxidant capacity and conjugated diene value were considered as response variables. PCA reduced the original set of correlated responses to few uncorrelated principal components (PC). The PC1 (eigen value, 5.78; data variance explained, 82.53 %) was selected for optimization using RSM. The quadratic model adequately described the data (R (2) = 0. 91, p  0.05). The contour plot of PC 1 score indicated the optimal synergistic combination of 1289.19 and 218.06 ppm for SAG and AP, respectively. This combination of SAG and AP resulted in shelf life of 320 days at 25 °C estimated using linear shelf life prediction model. In conclusion, the versatility of PCA-RSM approach has resulted in an easy interpretation in multiple response optimizations. This approach can be considered as a useful guide to develop new oil blends stabilized with food additives from natural sources.

  14. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate.

    Science.gov (United States)

    Alemán, Mercedes; Bou, Ricard; Tres, Alba; Polo, Javier; Codony, Rafael; Guardiola, Francesc

    2016-04-01

    Fortification of food products with iron is a common strategy to prevent or overcome iron deficiency. However, any form of iron is a pro-oxidant and its addition will cause off-flavours and reduce a product's shelf life. A highly bioavailable heme iron ingredient was selected to fortify a chocolate cream used to fill sandwich-type cookies. Two different strategies were assessed for avoiding the heme iron catalytic effect on lipid oxidation: ascorbyl palmitate addition and co-spray-drying of heme iron with calcium caseinate. Oxidation development and sensory acceptability were monitored in the cookies over one-year of storage at room temperature in the dark. The addition of ascorbyl palmitate provided protection against oxidation and loss of tocopherols and tocotrienols during the preparation of cookies. In general, ascorbyl palmitate, either alone or in combination with the co-spray-dried heme iron, prevented primary oxidation and hexanal formation during storage. The combination of both strategies resulted in cookies that were acceptable from a sensory point of view after 1year of storage.

  15. Stability of potato chip fried in vegetable oils with different degree of unsaturation. Effect of ascorbyl palmitate during storage

    Directory of Open Access Journals (Sweden)

    Torres, R.

    2002-06-01

    Full Text Available Four vegetable oils with different polyunsaturated/saturated fatty acid ratio (P/S: 5.2 for sunflower oil, 3.,4 for canola rapeseed oil, 0.4 for a blend of palm oleic and canola rapeseed oil (80:20, and 0.3 for palm olein were assayed for stability of crisps fried in these oils during storage at 60º C. The action of ascorbyl palmitate with special attention to its synergistic effect on the natural antioxidants was also tested. by addition to the fried potatoes. The evolution of the oxidative stability was measured through peroxide value, quantitation of tocopherols and tocotrienols, and induction time (IT by means of Rancimat. Oil degradation during frying was very low as both polar compound percentages and natural antioxidant had similar levels to those present in refined oils. Evolution of analytical parameters during storage results indicated that oil unsaturation degree or P/S had a much more importance on stability of the product than had the content and type of natural antioxidants and the addition of AP. Nevertheless, addition of AP to the fried potatoes had a significant effect resulting in higher retention of natural antioxidants, higher IT and lower PV at any storage timeSe estudia la evolución de la oxidación a 60º C en patatas fritas con cuatro aceites vegetales de distinta relación ácidos grasos poliinsaturados/saturados (P/S: 5,4 para el aceite de girasol, 3,4 para el aceite de canola, 0,4 para una mezcla de oleína de palma (80 % y aceite de canola (20 % y 0,3 para la oleína de palma. Se estudia igualmente la influencia de la adición de palmitato de ascorbilo (AP durante la conservación del producto frito con especial atención a su efecto sinergista sobre los antioxidantes naturales. La evolución de la oxidación en lotes de patatas, con y sin adición de AP, se determinó mediante las siguientes determinaciones analíticas: índice de peróxidos (PV, cuantificación de tocoferoles y tocotrienoles, y periodos de

  16. Enzymatic synthesis and application of fatty acid ascorbyl esters

    Directory of Open Access Journals (Sweden)

    Stojanović Marija M.

    2013-01-01

    Full Text Available Fatty acid ascorbyl esters are liposoluble substances that possess good antioxidative properties. These compounds could be synthesized by using various acyl donors for acylation of vitamin C in reaction catalyzed by chemical means or lipases. Enzymatic process is preferred since it is regioselective, performed under mild reaction conditions, with the obtained product being environmentally friendly. Polar organic solvents, ionic liquids, and supercritical fluids has been successfully used as a reaction medium, since commonly used solvents with high Log P values are inapplicable due to ascorbic acid high polarity. Acylation of vitamin C using fatty acids, their methyl-, ethyl-, and vinyl esters, as well as triglycerides has been performed, whereas application of the activated acyl donors enabled higher molar conversions. In each case, majority of authors reported that using excessive amount of the acyl donor had positive effect on yield of product. Furthermore, several strategies have been employed for shifting the equilibrium towards the product by water content control. These include adjusting the initial water activity by pre-equilibration of reaction mixture, enzyme preparation with water vapor of saturated salt solutions, and the removal of formed water by the addition of molecular sieves or salt hydrate pairs. The aim of this article is to provide a brief overview of the procedures described so far for the lipase-catalyzed synthesis of fatty acid ascorbyl esters with emphasis on the potential application in food, cosmetics, and pharmaceutics. Furthermore, it has been pointed out that the main obstacles for process commercialization are long reaction times, lack of adequate purification methods, and high costs of lipases. Thus, future challenges in this area are testing new catalysts, developing continuous processes for esters production, finding cheaper acyl donors and reaction mediums, as well as identifying standard procedures for

  17. Final report of the safety assessment of L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate as used in cosmetics.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate function in cosmetic formulations primarily as antioxidants. Ascorbic Acid is commonly called Vitamin C. Ascorbic Acid is used as an antioxidant and pH adjuster in a large variety of cosmetic formulations, over 3/4 of which were hair dyes and colors at concentrations between 0.3% and 0.6%. For other uses, the reported concentrations were either very low (Sodium Ascorbyl Phosphate functions as an antioxidant in cosmetic products and is used at concentrations ranging from 0.01% to 3%. Magnesium Ascorbyl Phosphate functions as an antioxidant in cosmetics and was reported being used at concentrations from 0.001% to 3%. Sodium Ascorbate also functions as an antioxidant in cosmetics at concentrations from 0.0003% to 0.3%. Related ingredients (Ascorbyl Palmitate, Ascorbyl Dipalmitate, Ascorbyl Stearate, Erythorbic Acid, and Sodium Erythorbate) have been previously reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel and found "to be safe for use as cosmetic ingredients in the present practices of good use." Ascorbic Acid is a generally recognized as safe (GRAS) substance for use as a chemical preservative in foods and as a nutrient and/or dietary supplement. Calcium Ascorbate and Sodium Ascorbate are listed as GRAS substances for use as chemical preservatives. L-Ascorbic Acid is readily and reversibly oxidized to L-dehydroascorbic acid and both forms exist in equilibrium in the body. Permeation rates of Ascorbic Acid through whole and stripped mouse skin were 3.43 +/- 0.74 microg/cm(2)/h and 33.2 +/- 5.2 microg/cm(2)/h. Acute oral and parenteral studies in mice, rats, rabbits, guinea pigs, dogs, and cats demonstrated little toxicity. Ascorbic Acid and Sodium Ascorbate acted as a nitrosation inhibitor in several food and cosmetic product studies. No compound-related clinical signs or gross or microscopic pathological effects were

  18. 1-丁基-3-甲基咪唑三氟甲磺酸盐催化合成L-抗坏血酸棕榈酸酯%Chemical synthesis of L-ascorbyl palmitate in [ BMIM] OTF

    Institute of Scientific and Technical Information of China (English)

    刘瑞瑾; 纪俊敏

    2011-01-01

    L-抗坏血酸棕榈酸酯是一种高效安全的脂溶性抗氧化剂,是近几年被国际上认可的一种新型食品添加剂,广泛地用于粮油、食品、医药、保健品化妆品等领域.1 -丁基-3-甲基咪唑三氟甲磺酸盐( [BMIM] OTF)是一种常用的室温离子液体催化剂,可有效催化乙酰化反应,具有高效、底物普适性好和对水稳定的特点,本文研究了 [BMIM] OTF催化棕榈酸与L-抗坏血酸合成L-抗坏血酸棕榈酸酯,考察了[BMIM] OTF的用量、反应物摩尔比、反应温度、反应时间、对反应转化率的影响.采用正交设计实验法优化工艺条件,得到较佳工艺条件,离子液体用量为反应物质量的3%,棕榈酸∶维生素C为1∶1.2,反应温度为30℃,反应时间为24h,产率达到66.44%.产品质量符合GB16314 - 1996标准.%L - ascorbyl palmitate is a safe and highly efficient lipophilic antioxidant. It is an widely accepted new food antioxidant in recent years and can be used in oil, food, medicine, health protection and cosmetics. 1 - butyl - 3 -methylimidazolium trifluoromethanesulfonate ( [ BMIM] OTF) is a versatile ionic liquid promoter in the room temperature. It can effectively improve acetylization and has the advantage on substrate universality and water soluble stability. In this paper we use [ BMIM ] OTF as a promoter to synthesise L - ascorbyl palmitate. We discussed the impact of dosage of ionic liquid, mole ratio of reaction, temperature and time on the conversion rate. The optimized conditions by orthogonal experiment was: the amount of ionic liquids for the quality of reactant was 3% , the ratio of palmitic acid : VC was 1 : 1. 2, the reaction temperature was 30℃ , and the reaction time was 24h. Under the above condition, L - ascorbyl palmitate conversion rate was 66. 44% . The product was met the requirement of GB16314 - 1996.

  19. Palmitic Acid and Health: Introduction.

    Science.gov (United States)

    Agostoni, Carlo; Moreno, Luis; Shamir, Raanan

    2016-09-09

    Interest in the dietary role and metabolic effect of saturated fatty acids has been recently renewed on the basis of epidemiologic observations and economical approach to health and well-being. Saturated fats may favorably increase blood HDL-Cholesterol levels without significant changes of the total cholesterol/HDL-Cholesterol ratio. Also, the negative effect of saturated fat on cardiovascular diseases risk has recently been challenged. Palmitic acid, among all, may have special structural and functional roles in utero and in infancy, and indeed is it is being delivered in a unique form in human milk. Future research should include objective cost-benefit analyses when disentangling the role of saturated fats in dietary recommendations.

  20. Palmitic Acid in Early Human Development.

    Science.gov (United States)

    Innis, Sheila M

    2016-09-09

    Palmitic acid (16:0) is a saturated fatty acid present in the diet and synthesized endogenously. Although often considered to have adverse effects on chronic disease in adults, 16:0 is an essential component of membrane, secretory, and transport lipids, with crucial roles in protein palmitoylation and signal molecules. At birth, the term infant is 13-15% body fat, with 45-50% 16:0, much of which is derived from endogenous synthesis in the fetus. After birth, the infant accumulates adipose tissue at high rates, reaching 25% body weight as fat by 4-5 months age. Over this time, human milk provides 10% dietary energy as 16:0, but in unusual triglycerides with 16:0 on the glycerol center carbon. This paper reviews the synthesis and oxidation of 16:0 and possible reasons why the infant is endowed with large amounts of fat and 16:0. The marked deviations in tissues with displacement of 16:0 that can occur in infants fed vegetable oil formulas is introduced. Assuming fetal fatty acid synthesis and the unusual delivery of 16:0 in human milk evolved to afford survival advantage to the neonate, it is timely to question if 16:0 is an essential component of tissue lipids whereby both deficiency and excess are detrimental.

  1. Ascorbyl palmitate/d-α-tocopheryl polyethylene glycol 1000 succinate monoester mixed micelles for prolonged circulation and targeted delivery of compound K for antilung cancer therapy in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2017-01-01

    Full Text Available Youwen Zhang, Deyin Tong, Daobiao Che, Bing Pei, Xiaodong Xia, Gaofeng Yuan, Xin Jin Department of Hospital Pharmacy, The First Hospital of Suqian, Suqian, People’s Republic of China Abstract: The roles of ginsenoside compound K (CK in inhibiting tumor have been widely recognized in recent years. However, low water solubility and significant P-gp efflux have restricted its application. In this study, CK ascorbyl palmitate (AP/d-α-tocopheryl polyethylene glycol 1000 succinate monoester (TPGS mixed micelles were prepared as a delivery system to increase the absorption and targeted antitumor effect of CK. Consequently, the solubility of CK increased from 35.2±4.3 to 1,463.2±153.3 µg/mL. Furthermore, in an in vitro A549 cell model, CK AP/TPGS mixed micelles significantly inhibited cell growth, induced G0/G1 phase cell cycle arrest, induced cell apoptosis, and inhibited cell migration compared to free CK, all indicating that the developed micellar delivery system could increase the antitumor effect of CK in vitro. Both in vitro cellular fluorescence uptake and in vivo near-infrared imaging studies indicated that AP/TPGS mixed micelles can promote cellular uptake and enhance tumor targeting. Moreover, studies in the A549 lung cancer xenograft mouse model showed that CK AP/TPGS mixed micelles are an efficient tumor-targeted drug delivery system with an effective antitumor effect. Western blot analysis further confirmed that the marked antitumor effect in vivo could likely be due to apoptosis promotion and P-gp efflux inhibition. Therefore, these findings suggest that the AP/TPGS mixed micellar delivery system could be an efficient delivery strategy for enhanced tumor targeting and antitumor effects. Keywords: ginsenoside CK, ascorbyl palmitate, TPGS, mixed micelles, anti-tumor therapy

  2. Synthesis of ascorbyl oleate by transesterification of olive oil with ascorbic acid in polar organic media catalyzed by immobilized lipases.

    Science.gov (United States)

    Moreno-Perez, Sonia; Filice, Marco; Guisan, Jose M; Fernandez-Lorente, Gloria

    2013-09-01

    The reaction of transesterification between oils (e.g., olive oil) and ascorbic acid in polar anhydrous media (e.g., tert-amyl alcohol) catalyzed by immobilized lipases for the preparation of natural liposoluble antioxidants (e.g., ascorbyl oleate) was studied. Three commercial lipases were tested: Candida antarctica B lipase (CALB), Thermomyces lanuginosus lipase (TLL) and Rhizomucor miehei lipase (RML). Each lipase was immobilized by three different protocols: hydrophobic adsorption, anionic exchange and multipoint covalent attachment. The highest synthetic yields were obtained with CALB adsorbed on hydrophobic supports (e.g., the commercial derivative Novozym 435). The rates and yields of the synthesis of ascorbyl oleate were higher when using the solvent dried with molecular sieves, at high temperatures (e.g. 45°C) and with a small excess of oil (2 mol of oil per mol of ascorbic acid). The coating of CALB derivatives with polyethyleneimine (PEI) improved its catalytic behavior and allowed the achievement of yields of up to 80% of ascorbyl oleate in less than 24h. CALB adsorbed on a hydrophobic support and coated with PEI was 2-fold more stable than a non-coated derivative and one hundred-fold more stable than the best TLL derivative. The best CALB derivative exhibited a half-life of 3 days at 75°C in fully anhydrous media, and this derivative maintained full activity after 28 days at 45°C in dried tert-amyl alcohol.

  3. System Development from Organic Solvents to Ionic Liquids for Synthesiz-ing Ascorbyl Esters with Conjugated Linoleic Acids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Schultz, Lise; Guo, Zheng;

    2012-01-01

    The aim of this paper is to screen suitable reaction systems for the modification of antioxidants through enzy-matic synthesis. Enzymatic esterification of ascorbic acid with conjugated linoleic acid (CLA) was investigated as a mod-el. Four organic solvents and five different enzymes were evaluated....... Results show that only Novozym® 435 turned out to be a useful enzymatic preparation for the production of ascorbyl-CLA ester. The optimum reaction conditions in the or-ganic solvent system were 4 h at 55°C and at a molar ratio of 5 (CLA/ascorbic acid). The esterification reaction was trans...

  4. Manipulating catalytic pathways: deoxygenation of palmitic acid on multifunctional catalysts.

    Science.gov (United States)

    Peng, Baoxiang; Zhao, Chen; Kasakov, Stanislav; Foraita, Sebastian; Lercher, Johannes A

    2013-04-08

    The mechanism of the catalytic reduction of palmitic acid to n-pentadecane at 260 °C in the presence of hydrogen over catalysts combining multiple functions has been explored. The reaction involves rate-determining reduction of the carboxylic group of palmitic acid to give hexadecanal, which is catalyzed either solely by Ni or synergistically by Ni and the ZrO2 support. The latter route involves adsorption of the carboxylic acid group at an oxygen vacancy of ZrO2 and abstraction of the α-H with elimination of O to produce the ketene, which is in turn hydrogenated to the aldehyde over Ni sites. The aldehyde is subsequently decarbonylated to n-pentadecane on Ni. The rate of deoxygenation of palmitic acid is higher on Ni/ZrO2 than that on Ni/SiO2 or Ni/Al2O3, but is slower than that on H-zeolite-supported Ni. As the partial pressure of H2 is decreased, the overall deoxygenation rate decreases. In the absence of H2, ketonization catalyzed by ZrO2 is the dominant reaction. Pd/C favors direct decarboxylation (-CO2), while Pt/C and Raney Ni catalyze the direct decarbonylation pathway (-CO). The rate of deoxygenation of palmitic acid (in units of mmol moltotal metal(-1) h(-1)) decreases in the sequence r(Pt black) ≈r(Pd black) >r(Raney Ni) in the absence of H2 . In situ IR spectroscopy unequivocally shows the presence of adsorbed ketene (C=C=O) on the surface of ZrO2 during the reaction with palmitic acid at 260 °C in the presence or absence of H2.

  5. Palmitic acid and linoleic acid metabolism in Caco-2 cells: Different triglyceride synthesis and lipoprotein secretion

    NARCIS (Netherlands)

    van Greevenbroek, M.M.J.; Voorhout, W.F.; Erkelens, D.W.; van Meer, G.; de Bruin, T.W.A.

    1995-01-01

    Polarized monolayers of intestinal Caco-2 cells were used to study the effects of saturated palmitic acid (16:0) and polyunsaturated linoleic acid (18:2) on triglyceride synthesis and lipoprotein secretion. Monolayers were incubated for 24 h, at the apical or lumenal side, with palmitic acid (16:0)

  6. New alleles of FATB-1A to reduce palmitic acid levels in soybean

    Science.gov (United States)

    In wild-type soybeans, palmitic acid typically constitutes 10% of the total seed oil. Palmitic acid is a saturated fat linked to increased cholesterol levels, and reducing levels of saturated fats in soybean oil has been a breeding target. To identify novel and useful variation that could help in re...

  7. 21 CFR 178.3450 - Esters of stearic and palmitic acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Esters of stearic and palmitic acids. 178.3450 Section 178.3450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... SANITIZERS Certain Adjuvants and Production Aids § 178.3450 Esters of stearic and palmitic acids. The...

  8. Palmitic acid but not palmitoleic acid induces insulin resistance in a human endothelial cell line by decreasing SERCA pump expression.

    Science.gov (United States)

    Gustavo Vazquez-Jimenez, J; Chavez-Reyes, Jesus; Romero-Garcia, Tatiana; Zarain-Herzberg, Angel; Valdes-Flores, Jesus; Manuel Galindo-Rosales, J; Rueda, Angelica; Guerrero-Hernandez, Agustin; Olivares-Reyes, J Alberto

    2016-01-01

    Palmitic acid is a negative regulator of insulin activity. At the molecular level, palmitic acid reduces insulin stimulated Akt Ser473 phosphorylation. Interestingly, we have found that incubation with palmitic acid of human umbilical vein endothelial cells induced a biphasic effect, an initial transient elevation followed by a sustained reduction of SERCA pump protein levels. However, palmitic acid produced a sustained inhibition of SERCA pump ATPase activity. Insulin resistance state appeared before there was a significant reduction of SERCA2 expression. The mechanism by which palmitic acid impairs insulin signaling may involve endoplasmic reticulum stress, because this fatty acid induced activation of both PERK, an ER stress marker, and JNK, a kinase associated with insulin resistance. None of these effects were observed by incubating HUVEC-CS cells with palmitoleic acid. Importantly, SERCA2 overexpression decreased the palmitic acid-induced insulin resistance state. All these results suggest that SERCA pump might be the target of palmitic acid to induce the insulin resistance state in a human vascular endothelial cell line. Importantly, these data suggest that HUVEC-CS cells respond to palmitic acid-exposure with a compensatory overexpression of SERCA pump within the first hour, which eventually fades out and insulin resistance prevails.

  9. Sodium ascorbyl phosphate in topical microemulsions.

    Science.gov (United States)

    Spiclin, Polona; Homar, Miha; Zupancic-Valant, Andreja; Gasperlin, Mirjana

    2003-04-30

    Sodium ascorbyl phosphate is a hydrophilic derivative of ascorbic acid, which has improved stability arising from its chemical structure. It is used in cosmetic and pharmaceutical preparations since it has many favorable effects in the skin, the most important being antioxidant action. In order to achieve this, it has to be converted into free ascorbic acid by enzymatic degradation in the skin. In the present work, o/w and w/o microemulsions composed of the same ingredients, were selected as carrier systems for topical delivery of sodium ascorbyl phosphate. We showed that sodium ascorbyl phosphate was stable in both types of microemulsion with no significant influence of its location in the carrier system. To obtain liquid microemulsions appropriate for topical application, their viscosity was increased by adding thickening agents. On the basis of rheological characterization, 4.00% (m/m) colloidal silica was chosen as a suitable thickening agent for w/o microemulsions and 0.50% (m/m) xanthan gum for the o/w type. The presence of thickening agent and the location of sodium ascorbyl phosphate in the microemulsion influenced the in vitro drug release profiles. When incorporated in the internal aqueous phase, sustained release profiles were observed. This study confirmed microemulsions as suitable carrier systems for topical application of sodium ascorbyl phosphate.

  10. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health.

    Science.gov (United States)

    Mancini, Annamaria; Imperlini, Esther; Nigro, Ersilia; Montagnese, Concetta; Daniele, Aurora; Orrù, Stefania; Buono, Pasqualina

    2015-09-18

    A growing body of evidence highlights the close association between nutrition and human health. Fat is an essential macronutrient, and vegetable oils, such as palm oil, are widely used in the food industry and highly represented in the human diet. Palmitic acid, a saturated fatty acid, is the principal constituent of refined palm oil. In the last few decades, controversial studies have reported potential unhealthy effects of palm oil due to the high palmitic acid content. In this review we provide a concise and comprehensive update on the functional role of palm oil and palmitic acid in the development of obesity, type 2 diabetes mellitus, cardiovascular diseases and cancer. The atherogenic potential of palmitic acid and its stereospecific position in triacylglycerols are also discussed.

  11. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health

    Directory of Open Access Journals (Sweden)

    Annamaria Mancini

    2015-09-01

    Full Text Available A growing body of evidence highlights the close association between nutrition and human health. Fat is an essential macronutrient, and vegetable oils, such as palm oil, are widely used in the food industry and highly represented in the human diet. Palmitic acid, a saturated fatty acid, is the principal constituent of refined palm oil. In the last few decades, controversial studies have reported potential unhealthy effects of palm oil due to the high palmitic acid content. In this review we provide a concise and comprehensive update on the functional role of palm oil and palmitic acid in the development of obesity, type 2 diabetes mellitus, cardiovascular diseases and cancer. The atherogenic potential of palmitic acid and its stereospecific position in triacylglycerols are also discussed.

  12. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate

    OpenAIRE

    Ivanov, Vadim; Ivanova, Svetlana; KALINOVSKY, TATIANA; NIEDZWIECKI, ALEKSANDRA; Rath, Matthias

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition...

  13. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    Science.gov (United States)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  14. Dietary palmitic acid influences LDL-mediated lymphocyte proliferation differently to other mono- and polyunsaturated fatty acids in rats.

    Science.gov (United States)

    Tinahones, F J; Gómez-Zumaquero, J M; Monzón, A; Rojo-Martínez, G; Pareja, A; Morcillo, S; Cardona, F; Olveira, G; Soriguer, F

    2004-10-01

    Recent studies suggest that the biological effects of saturated fatty acids depend on the length of their chain. We compared the effect of diets containing different fatty acids on plasma lipids and lymphocyte proliferation in the presence of lovastatin and with increasing amounts of LDL. Lymphocytes from rats fed with a diet rich in palmitic acid had a greater lymphocyte proliferation capacity than those from rats fed with diets rich in oleic acid, linoleic acid, or fish oil. This effect was maintained when small amounts of polyunsaturatwed fatty acids (PUFA; sunflower oil) were added to the palmitic acid diet. LDL receptor activity, measured by the capacity of lovastatin to revert the inhibition of lymphocyte proliferation with increasing amounts of LDL in the medium, was greater in the rats fed with palmitic acid, and was similar to the other groups when small amounts of PUFA were added. All the groups had similar levels of plasma cholesterol, but the LDL levels were significantly lower in the group fed with palmitic acid plus PUFA. The highest HDL-cholesterol (HDLc) levels were found in the palmitic acid group and the lowest LDL-cholesterol (LDLc)/HDLc ratio in the palmitic acid plus PUFA group. These results suggest that diets rich in palmitic acid do not raise total cholesterol, but reduce LDLc or keep it normal, and raise HDLc levels. This effect may be partly due to an increase in LDL receptor activity. The inclusion of small amounts of PUFA in the diet rich in palmitic acid substantially modified the LDL receptor response in the lymphocytes, suggesting that the proportion of different families of dietary fatty acids may be more important than the individual amount of each in absolute terms to explain their effects on plasma lipids and lipoproteins.

  15. Interaction of Palmitic Acid with Metoprolol Succinate at the Binding Sites of Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Mashiur Rahman

    2014-12-01

    Full Text Available Purpose: The aim of this study was to characterize the binding profile as well as to notify the interaction of palmitic acid with metoprolol succinate at its binding site on albumin. Methods: The binding of metoprolol succinate to bovine serum albumin (BSA was studied by equilibrium dialysis method (ED at 27°C and pH 7.4, in order to have an insight in the binding chemistry of the drug to BSA in presence and absence of palmitic acid. The study was carried out using ranitidine as site-1 and diazepam as site-2 specific probe. Results: Different analysis of binding of metoprolol succinate to bovine serum albumin suggested two sets of association constants: high affinity association constant (k1 = 11.0 x 105 M-1 with low capacity (n1 = 2 and low affinity association (k2 = 4.0×105 M-1 constant with high capacity (n2 = 8 at pH 7.4 and 27°C. During concurrent administration of palmitic acid and metoprolol succinate in presence or absence of ranitidine or diazepam, it was found that palmitic acid displaced metoprolol succinate from its binding site on BSA resulting reduced binding of metoprolol succinate to BSA. The increment in free fraction of metoprolol succinate was from 26.27% to 55.08% upon the addition of increased concentration of palmitic acid at a concentration of 0×10-5 M to 16×10-5 M. In presence of ranitidine and diazepam, palmitic acid further increases the free fraction of metoprolol succinate from 33.05% to 66.95% and 40.68% to 72.88%, respectively. Conclusion: This data provided the evidence of interaction at higher concentration of palmitic acid at the binding sites on BSA, which might change the pharmacokinetic properties of metoprolol succinate.

  16. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  17. Engineering cytochrome P450 BM3 of Bacillus megaterium for terminal oxidation of palmitic acid.

    Science.gov (United States)

    Brühlmann, Fredi; Fourage, Laurent; Ullmann, Christophe; Haefliger, Olivier P; Jeckelmann, Nicolas; Dubois, Cédric; Wahler, Denis

    2014-08-20

    Directed evolution via iterative cycles of random and targeted mutagenesis was applied to the P450 domain of the subterminal fatty acid hydroxylase CYP102A1 of Bacillus megaterium to shift its regioselectivity towards the terminal position of palmitic acid. A powerful and versatile high throughput assay based on LC-MS allowed the simultaneous detection of primary and secondary oxidation products, which was instrumental for identifying variants with a strong preference for the terminal oxidation of palmitic acid. The best variants identified acquired up to 11 amino acid alterations. Substitutions at F87, I263, and A328, relatively close to the bound substrate based on available crystallographic information contributed significantly to the altered regioselectivity. However, non-obvious residues much more distant from the bound substrate showed surprising strong contributions to the increased selectivity for the terminal position of palmitic acid.

  18. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells.

    Science.gov (United States)

    Luo, Yi; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients.

  19. The Effects of plasticizers and palmitic acid toward the properties of the carrageenan Film

    Science.gov (United States)

    Heru Wibowo, Atmanto; Listiyawati, Oktaviana; Purnawan, Candra

    2016-02-01

    Varied plasticizers and palmitic acid additive have been added in the carrageenan film. The film was made by mixing of the carrageenan and plasticizers (glycerol, polyethylene glycol, polyvinyl alcohol) with composition of 92:3, 90:6, 87:9, 84:12, 81:15(%w/w) and in the presence of palmitic acid as additive with 1%, 2%, 3%, 4%, 5% of total weight. Casting method was used for the film molding and drying at 60oC with the oven for 12 hours. To investigate the effects of plasticizers and additive, some mechanical tests on film were performed. The test result concludes that plasticizers in the film decreased the tensile strength and increased the elongation break of the carrageenan film. The additive of palmitic acid decreased the tensile strength of the carrageenan film and also decreased the-the water absorbance of the film. The highest tensile strength of films made was with the formulation of carrageenan: PEG with composition of 92:3 (% w/w). The highest elongation break of the film was for carrageenan:PVA with the composition of 81: 15 (%w/w) and carrageenan:palmitic acid:PEG with the composition of 92: 3: 1 (%w/w). The lowest water absorption of the film was achieved for carrageenan:PVA:palmitic acid with the composition of 87: 3: 5 (%w/w).

  20. Free fatty acid palmitate impairs the vitality and function of cultured human bladder smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Andreas Oberbach

    Full Text Available BACKGROUND: Incidence of urinary tract infections is elevated in patients with diabetes mellitus. Those patients show increased levels of the saturated free fatty acid palmitate. As recently shown metabolic alterations induced by palmitate include production and secretion of the pro-inflammatory cytokine interleukine-6 (IL-6 in cultured human bladder smooth muscle cells (hBSMC. Here we studied the influence of palmitate on vital cell properties, for example, regulation of cell proliferation, mitochondrial enzyme activity and antioxidant capacity in hBSMC, and analyzed the involvement of major cytokine signaling pathways. METHODOLOGY/PRINCIPAL FINDINGS: HBSMC cultures were set up from bladder tissue of patients undergoing cystectomy and stimulated with palmitate. We analyzed cell proliferation, mitochondrial enzyme activity, and antioxidant capacity by ELISA and confocal immunofluorescence. In signal transduction inhibition experiments we evaluated the involvement of NF-κB, JAK/STAT, MEK1, PI3K, and JNK in major cytokine signaling pathway regulation. We found: (i palmitate decreased cell proliferation, increased mitochondrial enzyme activity and antioxidant capacity; (ii direct inhibition of cytokine receptor by AG490 even more strongly suppressed cell proliferation in palmitate-stimulated cells, while counteracting palmitate-induced increase of antioxidant capacity; (iii in contrast knockdown of the STAT3 inhibitor SOCS3 increased cell proliferation and antioxidant capacity; (iv further downstream JAK/STAT3 signaling cascade the inhibition of PI3K or JNK enhanced palmitate induced suppression of cell proliferation; (v increase of mitochondrial enzyme activity by palmitate was enhanced by inhibition of PI3K but counteracted by inhibition of MEK1. CONCLUSIONS/SIGNIFICANCE: Saturated free fatty acids (e.g., palmitate cause massive alterations in vital cell functions of cultured hBSMC involving distinct major cytokine signaling pathways. Thereby

  1. Induction of micronuclei by palmitic acid and its unique radiolytic product 2-dodecylcyclobutanone

    Science.gov (United States)

    Palmitic acid (PA), one of the most abundant fatty acids in the human diet, can cause oxidative stress, DNA strand breakage, cellular necrosis and apoptosis in human and rodent cells in vitro. Radiolysis of PA leads to the formation of 2-dodecylcyclobutanone (2-DCB), a unique radiolytic product for...

  2. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  3. Interaction of Palmitic Acid with Metoprolol Succinate at the Binding Sites of Bovine Serum Albumin

    OpenAIRE

    Mashiur Rahman; Farzana Prianka; Mohammad Shohel; Md. Abdul Mazid

    2014-01-01

    Purpose: The aim of this study was to characterize the binding profile as well as to notify the interaction of palmitic acid with metoprolol succinate at its binding site on albumin. Methods: The binding of metoprolol succinate to bovine serum albumin (BSA) was studied by equilibrium dialysis method (ED) at 27°C and pH 7.4, in order to have an insight in the binding chemistry of the drug to BSA in presence and absence of palmitic acid. The study was carried out using ranitidine as site-1 a...

  4. Effect of Palmitic Acid on the Electrical Conductivity of Carbon Nanotubes−Epoxy Resin Composites

    OpenAIRE

    Barrau, Sophie; Demont, Philippe; Perez, Emile; Peigney, Alain; Laurent, Christophe; Lacabanne, Colette

    2003-01-01

    International audience; We found that the palmitic acid allows an efficient dispersion of carbon nanotubes in the epoxy matrix. We have set up an experimental protocol in order to enhance the CNTs dispersion in epoxy resin. Electrical conductivity is optimal using a 1:1 CNTs to palmitic acid weight ratio. The associated percolation threshold is found between 0.05 and 0.1 wt % CNTs, i.e., between 0.03 and 0.06 vol %. The SEM image shows essentially individual CNTs which is inagreement with con...

  5. alpha-Linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress.

    Science.gov (United States)

    Katsoulieris, Elias; Mabley, Jon G; Samai, Mohamed; Green, Irene C; Chatterjee, Prabal K

    2009-11-25

    Unsaturated fatty acids may counteract the lipotoxicity associated with saturated fatty acids. Palmitic acid induced endoplasmic reticulum (ER) stress and caused apoptotic and necrotic cell death in the renal proximal tubular cell line, NRK-52E. We investigated whether alpha-linolenic acid, an unsaturated fatty acid, protected against ER stress and cell death induced by palmitic acid or by other non-nutrient ER stress generators. Incubation of NRK-52E cells for 24h with palmitic acid produced a significant increase in apoptosis and necrosis. Palmitic acid also increased levels of three indicators of ER stress - the phosphorylated form of the eukaryotic initiation factor 2alpha (eIF2alpha), C/EBP homologous protein (CHOP), and glucose regulated protein 78 (GRP78). alpha-Linolenic acid dramatically reduced cell death and levels of all three indicators of ER stress brought about by palmitic acid. Tunicamycin, which induces ER stress by glycosylation of proteins, produced similar effects to those obtained using palmitic acid; its effects were partially reversed by alpha-linolenic acid. Salubrinal (a phosphatase inhibitor) causes increased levels of the phosphorylated form of eIF2alpha - this effect was partially reversed by alpha-linolenic acid. Palmitoleate, a monosaturated fatty acid, had similar effects to those of alpha-linolenic acid. These results suggest that part of the mechanism of protection of the kidney by unsaturated fatty acids is through inhibition of ER stress, eIF2alpha phosphorylation and consequential reduction of CHOP protein expression and apoptotic renal cell death.

  6. Subcutaneous adipocytes promote melanoma cell growth by activating the Akt signaling pathway: role of palmitic acid.

    Science.gov (United States)

    Kwan, Hiu Yee; Fu, Xiuqiong; Liu, Bin; Chao, Xiaojuan; Chan, Chi Leung; Cao, Huihui; Su, Tao; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2014-10-31

    Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt.

  7. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro.

    Science.gov (United States)

    Jiang, Xu-Shun; Chen, Xue-Mei; Wan, Jiang-Min; Gui, Hai-Bo; Ruan, Xiong-Zhong; Du, Xiao-Gang

    2017-02-22

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis.

  8. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro

    Science.gov (United States)

    Jiang, Xu-shun; Chen, Xue-mei; Wan, Jiang-min; Gui, Hai-bo; Ruan, Xiong-zhong; Du, Xiao-gang

    2017-01-01

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis. PMID:28225005

  9. Incorporation of Palmitic Acid or Stearic Acid into Soybean Oils Using Enzymatic Interesterification.

    Science.gov (United States)

    Teh, Soek Sin; Voon, Phooi Tee; Hock Ong, Augustine Soon; Choo, Yuen May

    2016-09-01

    Incorporations of nature fatty acids which were palmitic acid and stearic acid into the end positions of soybean oils were done using sn-1,3 specific immobilised lipase from Rhizomucor miehei at different ratios in order to produce symmetrical triglycerides without changing the fatty acids at sn-2 position. The optimum ratio for the process was 25:75 w/w. There were 19.2% increase of SFA for P25 and 16% increase for S25 at the sn-1,3 positions. The research findings indicated that the structured lipids produced from enzymatic interesterification possessed a higher oxidative stability than soybean oil. The newly formed structured lipids (SUS type) could be good sources for various applications in food industry.

  10. Endoplasmic reticulum stress is involved in podocyte apoptosis induced by saturated fatty acid palmitate

    Institute of Scientific and Technical Information of China (English)

    TAO Jian-ling; WEN Yu-bing; SHI Bing-yang; ZHANG Hong; RUAN Xiong-zhong; LI Hang; LI Xue-mei; DONG Wen-ji; LI Xue-wang

    2012-01-01

    Background Podocyte apoptosis is recently indicated as an early phenomenon of diabetic nephropathy.Pancreatic β-cells exposed to saturated free fatty acid palmitate undergo irreversible endoplasmic reticulum (ER) stress and consequent apoptosis,contributing to the onset of diabetes.We hypothesized that palmitate could induce podocyte apoptosis via ER stress,which initiates or aggravates proteinuria in diabetic nephropathy.Methods Podocyte apoptosis was detected by 4',6-diamidio-2-phenylindole (DAPI) stained apoptotic cell count and Annexin V-PI stain.The expressions of ER molecule chaperone glucose-regulated protein 78 (GRP78),indicators of ER-associated apoptosis C/EBP homologous protein (CHOP),and Bcl-2 were assayed by Western blotting and real-time PCR.GRP78 and synaptopodin were co-localized by immunofluorescence stain.Results Palmitate significantly increased the percentage of cultured apoptotic murine podocytes time-dependently when loading 0.75 mmol/L (10 hours,13 hours,and 15 hours compared with 0 hour,P <0.001) and dose-dependently when loading palmitate ranging from 0.25 to 1.00 mmol/L for 15 hours (compared to control,P <0.001).Palmitate time-dependently and dose-dependently increased the protein expression of GRP78 and CHOP,and decreased that of Bcl-2.Palmitate loading ranging from 0.5 to 1.0 mmol/L for 12 hours significantly increased mRNA of GRP78 and CHOP,and decreased that of Bcl-2 compared to control (P <0.001),with the maximum concentration being 0.75 mmol/L.Palmitate 0.5 mmol/L loading for 3 hours,8 hours,and 12 hours significantly increased mRNA of GRP78 and CHOP,and decreased that of Bcl-2 compared to 0 hour (P <0.001),with the maximum effect at 3 hours.Confocal microscopy demonstrated that GRP78 expression was significantly increased when exposed to 0.5 mmol/L of palmitate for 8 hours compared to control.Conclusion Palmitate could induce podocyte apoptosis via ER stress,suggesting podocyte apoptosis and consequent proteinuria caused

  11. Calcium Uptake via Mitochondrial Uniporter Contributes to Palmitic Acid-induced Apoptosis in Mouse Podocytes.

    Science.gov (United States)

    Yuan, Zeting; Cao, Aili; Liu, Hua; Guo, Henjiang; Zang, Yingjun; Wang, Yi; Wang, Yunman; Wang, Hao; Yin, Peihao; Peng, Wen

    2017-02-09

    Podocytes are component cells of the glomerular filtration barrier, and their loss by apoptosis is the main cause of proteinuria that leads to diabetic nephropathy (DN). Therefore, insights into podocyte apoptosis mechanism would allow a better understanding of DN pathogenesis and thus help develop adequate therapeutic strategies. Here, we investigated the molecular mechanism of palmitic acid-inhibited cell death in mouse podocytes, and found that palmitic acid increased cell death in a dose- and time-dependent manner. Palmitic acid induces apoptosis in podocytes through up-regulation of cytosolic and mitochondrial Ca(2+) , mitochondrial membrane potential (MMP), cytochrome c release and depletion of endoplasmic reticulum (ER) Ca(2+) , The intracellular calcium chelator, 1,2-bis (2-aminophenoxy) ethane-N,N,N, N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM), partially prevented this up-regulation whereas 2-aminoethoxydiphenyl borate (2-APB), an inositol 1,4,5-triphosphate receptor (IP3R) inhibitor; dantrolene, a ryanodine receptor (RyR) inhibitor; and 4,4'-diisothiocyanatostibene-2,2'-disulfonic acid (DIDS), an anion exchange inhibitor, had no effect. Interestingly, ruthenium red and Ru360, both inhibitors of the mitochondrial Ca(2+) uniporter (MCU), blocked palmitic acid-induced mitochondrial Ca(2+) elevation, cytochrome c release from mitochondria to cytosol, and apoptosis. siRNA to MCU markedly reduced curcumin-induced apoptosis. These data indicate that Ca(2+) uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. This article is protected by copyright. All rights reserved.

  12. Esterification of Palmitic Acid with Methanol in the Presence of Macroporous Ion Exchange Resin as Catalyst

    Directory of Open Access Journals (Sweden)

    Amelia Qarina Yaakob and Subhash Bhatia

    2012-10-01

    Full Text Available The esterification of palmitic acid with methanol was studied in a batch reactor using macro porous ion exchange resin Amberlyst 15 as a catalyst. Methyl palmitate was produced from the reaction between palmitic acid and methanol in the presence of catalyst. The effects of processing parameters, molar ratio of alcohol to acid M, (4-10, catalyst loading (0-10 g cat/liter, water inhibition (0-2 mol/liter, agitator speed (200-800 rpm and reaction temperature (343-373K were studied. The experimental kinetic data were correlated using homogenous as well as heterogeneous models (based on single as well as dual site mechanisms. The activation energy of the reaction was 11.552 kJ/mol for forward reaction whilst 5.464 kJ/mol for backward reaction. The experimental data fitted well with the simulated data obtained from the kinetic models. Keywords: Palmitic Acid, Methanol, Esterification, Ion Exchange Resin, Kinetics.

  13. Relationship between ascorbyl radical intensity and apoptosis-inducing activity.

    Science.gov (United States)

    Sakagami, H; Satoh, K; Ohata, H; Takahashi, H; Yoshida, H; Iida, M; Kuribayashi, N; Sakagami, T; Momose, K; Takeda, M

    1996-01-01

    Ascorbic acid and its related compounds were compared for their ascorbyl radical intensity and apoptosis-inducing activity. Sodium L-ascorbate, L-ascorbic acid, D-isoascorbic acid, sodium 6-beta-O-galactosyl-L-ascorbate and sodium 5,6-benzylidene-L-ascorbate, at the concentration of 1-10 mM, induced apoptotic cell death characterized by cell shrinkage, nuclear fragmentation and internucleosomal DNA cleavage in human promyelocytic leukemic HL-60 cells. On the other hand, L-ascorbic acid-2-phosphate magnesium salt and L-ascorbic acid 2-sulfate did not induce any of these apoptosis-associated characteristics. ESR measurements revealed that all the active compounds were progressively degraded, producing the ascorbyl radical (g = 2.0064, hfc = 0.17 mT) in culture medium, whereas the inactive compounds were stable and did not produce the ascorbyl radical. Cytotoxicity began to appear when the radical intensity exceeded a certain threshold level. In the presence of N-acetyl-L-cysteine, both ascorbyl radical intensity and apoptosis-inducing activity were significantly reduced. These data suggest the possible involvement of the ascorbyl radical in apoptosis induction by ascorbic acid-related compounds. Exposure of HL-60 cells to ascorbic acid or its active derivatives resulted in the rapid elevation of intracellular Ca2+ concentration, which might serve as the initial signal leading to the cell death pathway.

  14. Retention and clearance of C-11 palmitic acid in ischemic and reperfused canine myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Schwaiger, M.; Schelbert, H.R.; Keen, R.; Vinten-Johansen, J.; Hansen, H.; Selin, C.; Barrio, J.; Huang, S.C.; Phelps, M.E.

    1985-08-01

    Free fatty acids are the major energy source for cardiac muscle. Oxidation of fatty acid decreases or even ceases during ischemia. Its recovery after transient ischemia remains largely unexplored. Using intracoronary carbon-11 palmitic acid as a tracer of myocardial fatty acid metabolism in an open chest dog model, retention and clearance of tracer in myocardium were evaluated at control, during ischemia and after reperfusion following a 20 minute occlusion of the left anterior descending coronary artery. Myocardial C-11 time-activity curves were analyzed with biexponential curve-fitting routines yielding fractional distribution and clearance half-times of C-11 palmitic acid in myocardial tissue. In animals with permanent occlusion and intracoronary injection of C-11 palmitic acid distal to the occlusion site, the relative size and half-time of the early clearance curve component differed markedly from control values and did not change with ongoing ischemia. Conversely, in animals with only 20 minutes of coronary occlusion, the relative size of the early C-11 clearance phase was still significantly depressed at 20 and 90 minutes of reperfusion but returned to control level at 180 minutes. Tissue C-11 clearance half-times remained significantly prolonged throughout the reperfusion period. Regional function in reperfused myocardium monitored with ultrasonic crystals recovered slowly and was still less than control after 3 hours of reperfusion. The data indicate that after transient ischemia, myocardial fatty acid metabolism fails to recover immediately. Because the metabolic recovery occurs in parallel with recovery of regional function, C-11 palmitic acid in conjunction with positron tomography may be useful for studying regional fatty acid metabolism noninvasively after an ischemic injury, and may be helpful in identifying reversible tissue injury.

  15. Scientific Opinion on the safety and efficacy of vitamin C (ascorbic acid and sodium calcium ascorbyl phosphate) as a feed additive for all animal species based on a dossier submitted by VITAC EEIG

    OpenAIRE

    2013-01-01

    Vitamin C (formerly known as antiscorbutic vitamin) is essential for primates, guinea pigs and fish. Vitamin C, in the form of ascorbic acid and sodium calcium ascorbyl phosphate, is safe for all animal species. Setting a maximum content in feed and water for drinking is not considered necessary. Data on the vitamin C consumption of consumers are based on the levels of vitamin C in foodstuffs, including food of animal origin, produced in accordance with current EU legislation on the supplemen...

  16. Scientific Opinion on the safety and efficacy of vitamin C (ascorbic acid and sodium calcium ascorbyl phosphate as a feed additive for all animal species based on a dossier submitted by VITAC EEIG

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-02-01

    Full Text Available Vitamin C (formerly known as antiscorbutic vitamin is essential for primates, guinea pigs and fish. Vitamin C, in the form of ascorbic acid and sodium calcium ascorbyl phosphate, is safe for all animal species. Setting a maximum content in feed and water for drinking is not considered necessary. Data on the vitamin C consumption of consumers are based on the levels of vitamin C in foodstuffs, including food of animal origin, produced in accordance with current EU legislation on the supplementation of feed with vitamin C. The exposure is far below the guidance level. Any potential contribution of the use of vitamin C in feed is therefore already considered in the above data. Consequently, the use of vitamin C in animal nutrition is not of concern for consumer safety. In the absence of inhalation toxicity studies it would be prudent to assume that inhalation of dust from the additives presents a health hazard to workers and measures should be taken to minimise inhalation exposure. In the absence of data, ascorbic acid and sodium calcium ascorbyl phosphate should be considered as irritant to skin and eyes and as dermal sensitisers. The supplementation of feed with vitamin C does not pose a risk to the environment. Ascorbic acid and sodium calcium ascorbyl phosphate are regarded as effective sources of vitamin C when added to feed or water for drinking.

  17. Fatty acid acylation of proteins: specific roles for palmitic, myristic and caprylic acids

    Directory of Open Access Journals (Sweden)

    Rioux Vincent

    2016-05-01

    Full Text Available Fatty acid acylation of proteins corresponds to the co- or post-translational covalent linkage of an acyl-CoA, derived from a fatty acid, to an amino-acid residue of the substrate protein. The cellular fatty acids which are involved in protein acylation are mainly saturated fatty acids. Palmitoylation (S-acylation corresponds to the reversible attachment of palmitic acid (C16:0 via a thioester bond to the side chain of a cysteine residue. N-terminal myristoylation refers to the covalent attachment of myristic acid (C14:0 by an amide bond to the N-terminal glycine of many eukaryotic and viral proteins. Octanoylation (O-acylation typically concerns the formation of an ester bond between octanoic acid (caprylic acid, C8:0 and the side chain of a serine residue of the stomach peptide ghrelin. An increasing number of proteins (enzymes, hormones, receptors, oncogenes, tumor suppressors, proteins involved in signal transduction, eukaryotic and viral structural proteins have been shown to undergo fatty acid acylation. The addition of the acyl moiety is required for the protein function and usually mediates protein subcellular localization, protein-protein interaction or protein-membrane interaction. Therefore, through the covalent modification of proteins, these saturated fatty acids exhibit emerging specific and important roles in modulating protein functions. This review provides an overview of the recent findings on the various classes of protein acylation leading to the biological ability of saturated fatty acids to regulate many pathways. Finally, the nutritional links between these elucidated biochemical mechanisms and the physiological roles of dietary saturated fatty acids are discussed.

  18. The production of ω-hydroxy palmitic acid using fatty acid metabolism and cofactor optimization in Escherichia coli.

    Science.gov (United States)

    Sung, Changmin; Jung, Eunok; Choi, Kwon-Young; Bae, Jin-Hyung; Kim, Minsuk; Kim, Joonwon; Kim, Eun-Jung; Kim, Pyoung Il; Kim, Byung-Gee

    2015-08-01

    Hydroxylated fatty acids (HFAs) are used as important precursors for bulk and fine chemicals in the chemical industry. Here, to overproduce long-chain (C16-C18) fatty acids and hydroxy fatty acid, their biosynthetic pathways including thioesterase (Lreu_0335) from Lactobacillus reuteri DSM20016, β-hydroxyacyl-ACP dehydratase (fabZ) from Escherichia coli, and a P450 system (i.e., CYP153A from Marinobacter aquaeolei VT8 and camA/camB from Pseudomonas putida ATCC17453) were overexpressed. Acyl-CoA synthase (fadD) involved in fatty acid degradation by β-oxidation was also deleted in E. coli BW25113. The engineered E. coli FFA4 strain without the P450 system could produce 503.0 mg/l of palmitic (C16) and 508.4 mg/l of stearic (C18) acids, of which the amounts are ca. 1.6- and 2.3-fold higher than those of the wild type. On the other hand, the E. coli HFA4 strain including the P450 system for ω-hydroxylation could produce 211.7 mg/l of ω-hydroxy palmitic acid, which was 42.1 ± 0.1 % of the generated palmitic acid, indicating that the hydroxylation reaction was the rate-determining step for the HFA production. For the maximum production of ω-hydroxy palmitic acid, NADH, i.e., an essential cofactor for P450 reaction, was overproduced by the integration of NAD(+)-dependent formate dehydrogenase (FDH) from Candida boidinii into E. coli chromosome and the deletion of alcohol dehydrogenase (ADH). Finally, the NADH-level-optimized E. coli strain produced 610 mg/l of ω-hydroxy palmitic acid (ω-HPA), which was almost a threefold increase in its yield compared to the same strain without NADH overproduction.

  19. Molecular characterization of two high-palmitic-acid mutant loci induced by X-ray irradiation in soybean.

    Science.gov (United States)

    Anai, Toyoaki; Hoshino, Tomoki; Imai, Naoko; Takagi, Yutaka

    2012-01-01

    Palmitic acid is the most abundant (approx. 11% of total fatty acids) saturated fatty acid in conventional soybean seed oil. Increasing the saturated acid content of soybean oil improves its oxidative stability and plasticity. We have developed three soybean mutants with high palmitic acid content by X-ray irradiation. In this study, we successfully identified the mutated sites of two of these high-palmitic-acid mutants, J10 and M22. PCR-based mutant analysis revealed that J10 has a 206,203-bp-long deletion that includes the GmKASIIA gene and 16 other predicted genes, and M22 has a 26-bp-long deletion in the sixth intron of GmKASIIB. The small deletion in M22 causes mis-splicing of GmKASIIB transcripts, which should result in nonfunctional products. In addition, we designed co-dominant marker sets for these mutant alleles and confirmed the association of genotypes and palmitic acid contents in F(2) seeds of J10 X M22. This information will be useful in breeding programs to develop novel soybean cultivars with improved palmitic acid content. However, in the third mutant, KK7, we found no polymorphism in either GmKASIIA or GmKASIIB, which suggests that several unknown genes in addition to GmKASIIA and GmKASIIB may be involved in elevating the palmitic acid content of soybean seed oil.

  20. Enzymatic synthesis of cocoa butter equivalent from olive oil and palmitic-stearic fatty acid mixture.

    Science.gov (United States)

    Mohamed, Ibrahim O

    2015-01-01

    The main goal of the present research is to restructure olive oil triacylglycerol (TAG) using enzymatic acidolysis reaction to produce structured lipids that is close to cocoa butter in terms of TAG structure and melting characteristics. Lipase-catalyzed acidolysis of refined olive oil with a mixture of palmitic-stearic acids at different substrate ratios was performed in an agitated batch reactor maintained at constant temperature and agitation speed. The reaction attained steady-state conversion in about 5 h with an overall conversion of 92.6 % for the olive oil major triacylglycerol 1-palmitoy-2,3-dioleoyl glycerol (POO). The five major TAGs of the structured lipids produced with substrate mass ratio of 1:3 (olive oil/palmitic-stearic fatty acid mixture) were close to that of the cocoa butter with melting temperature between 32.6 and 37.7 °C. The proposed kinetics model used fits the experimental data very well.

  1. Modification of Turen Bentonite with AlCl3 for Esterification of Palmitic Acid

    Directory of Open Access Journals (Sweden)

    Abdulloh Abdulloh

    2014-03-01

    Full Text Available Natural Turen bentonite has been modified and applied as catalyst for palmitic acid esterification. Modification of natural Turen bentonite was conducted by cation exchange method using AlCl3 solution. Catalyst characterization was performed on X-ray Fluoroscence, X-ray Diffraction, nitrogen adsorption-desorption and infrared spectroscopy techniques. The catalytic activity test in the esterification reaction of palmitic acid with methanol was conducted by bath at 65 °C with a variation of reaction time of 1, 2, 3, 4 and 5 h. Catalytic activity has been observed qualitatively using GC-MS and quantitatively by changes in acid number. The analysis showed the formation of Al3+-bentonite. Observation on the elements has shown that the presence of calcium decreased from 10.2% to 4.17%, with an increase of aluminium content from 9.9% to 13%. Diffraction line at 2θ 5.7379º became 5.6489º, along with changes in d-spacing of 15.3895 Å to 15.6319 Å. The surface area increased from 83.78 m2/g to 91.26 m2/g, while Brönsted acid sites increased from 10.2 µmol/g to 67.5 µmol/g and Lewis acid sites increased from 94.9 µmol/g to 132 µmol/g. Furthermore, Al3+-bentonite has showed as active catalyst in the esterification reaction of palmitic acid with palmitic acid with conversion of 78.78% for 5 h. © 2014 BCREC UNDIP. All rights reservedReceived: 24th September 2013; Revised: 31st December 2013; Accepted: 26th January 2014[How to Cite: Abdulloh, A., Maryam, S., Aminah, N.S., Triyono, T., Trisunaryanti, W., Mudasir, M., Prasetyoko, D. (2014. Modification of Turen’s Bentonite with AlCl3 for Esterification of Palmitic Acid. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 66-73. (doi:10.9767/bcrec.9.1.5513.66-73][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5513.66-73

  2. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection.

    Science.gov (United States)

    Pardo, Virginia; González-Rodríguez, Águeda; Muntané, Jordi; Kozma, Sara C; Valverde, Ángela M

    2015-06-01

    The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. By contrast, oleic acid, a monounsaturated fatty acid, attenuates the effects of palmitic acid. We evaluated whether palmitic acid is directly associated with both insulin resistance and lipoapoptosis in mouse and human hepatocytes and the impact of oleic acid in the molecular mechanisms that mediate both processes. In human and mouse hepatocytes palmitic acid at a lipotoxic concentration triggered early activation of endoplasmic reticulum (ER) stress-related kinases, induced the apoptotic transcription factor CHOP, activated caspase 3 and increased the percentage of apoptotic cells. These effects concurred with decreased IR/IRS1/Akt insulin pathway. Oleic acid suppressed the toxic effects of palmitic acid on ER stress activation, lipoapoptosis and insulin resistance. Besides, oleic acid suppressed palmitic acid-induced activation of S6K1. This protection was mimicked by pharmacological or genetic inhibition of S6K1 in hepatocytes. In conclusion, this is the first study highlighting the activation of S6K1 by palmitic acid as a common and novel mechanism by which its inhibition by oleic acid prevents ER stress, lipoapoptosis and insulin resistance in hepatocytes.

  3. Permeation and metabolism of a novel ascorbic acid derivative, disodium isostearyl 2-O-L-ascorbyl phosphate, in human living skin equivalent models.

    Science.gov (United States)

    Shibayama, H; Hisama, M; Matsuda, S; Ohtsuki, M

    2008-01-01

    A novel amphiphilic vitamin C (VC) derivative, disodium isostearyl 2-O-L-ascorbyl phosphate (VCP-IS-2Na), which possesses a C(18) alkyl chain attached to a stable ascorbate derivative, sodium L-ascorbic acid 2-phosphate (VCP-Na), was evaluated as a topical prodrug of VC with transdermal activity in human living skin equivalent (LSE) models. The permeation assay used was EPI-606X in the Franz-type diffusion cell system. VCP-IS-2Na exhibited much better permeability than VC and VCP-Na. The accumulation assays applied were EPI-200X and LSE-high by the dynamic system. The increased skin accumulation of VCP-IS-2Na was superior to that of VCP-Na and VC. VCP-IS-2Na that is susceptible to enzymatic hydrolysis by esterase and/or phosphatase released VC in the skin. Measurement of the metabolites that permeated and accumulated from the skin model suggested that VCP-IS-2Na was mainly metabolized via VCP-Na to VC in EPI-606X and EPI-200X, while it was mainly metabolized directly to VC in TESTSKIN LSE-high. Thus, these characteristics indicate that the novel VC derivative, VCP-IS-2Na, may be advantageous as a readily available source of VC for skin care applications.

  4. High serum palmitic acid is associated with low antiviral effects of interferon-based therapy for hepatitis C virus.

    Science.gov (United States)

    Miyake, Teruki; Hiasa, Yoichi; Hirooka, Masashi; Tokumoto, Yoshio; Watanabe, Takao; Furukawa, Shinya; Ueda, Teruhisa; Yamamoto, Shin; Kumagi, Teru; Miyaoka, Hiroaki; Abe, Masanori; Matsuura, Bunzo; Onji, Morikazu

    2012-11-01

    Hepatitis C virus (HCV) infection alters fatty acid synthesis and metabolism in association with HCV replication. The present study examined the effect of serum fatty acid composition on interferon (IFN)-based therapy. Fifty-five patients with HCV were enrolled and received IFN-based therapy. Patient characteristics, laboratory data (including fatty acids), and viral factors that could be associated with the anti-HCV effects of IFN-based therapy were evaluated. The effects of individual fatty acids on viral replication and IFN-based therapy were also examined in an in-vitro system. Multivariate logistic regression analysis showed that the level of serum palmitic acid before treatment and HCV genotype were significant predictors for rapid virological response (RVR), early virological response (EVR), and sustained virological response (SVR). High levels of palmitic acid inhibited the anti-HCV effects of IFN-based therapy. HCV replication assays confirmed the inhibitory effects of palmitic acid on anti-HCV therapy. The concentration of serum palmitic acid is an independent predictive factor for RVR, EVR, and SVR in IFN-based antiviral therapy. These results suggest that the effect of IFN-based antiviral therapy in patients with HCV infection might be enhanced by treatment that modulates palmitic acid levels.

  5. An 11-bp insertion in Zea mays fatb reduces the palmitic acid content of fatty acids in maize grain.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb, which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20-60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding.

  6. An 11-bp insertion in Zea mays fatb reduces the palmitic acid content of fatty acids in maize grain.

    Science.gov (United States)

    Li, Lin; Li, Hui; Li, Qing; Yang, Xiaohong; Zheng, Debo; Warburton, Marilyn; Chai, Yuchao; Zhang, Pan; Guo, Yuqiu; Yan, Jianbing; Li, Jiansheng

    2011-01-01

    The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL) is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb), which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20-60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding.

  7. Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge.

    Science.gov (United States)

    Pereira, M A; Pires, O C; Mota, M; Alves, M M

    2005-10-05

    Palmitic acid was the main long chain fatty acids (LCFA) that accumulated onto the anaerobic sludge when oleic acid was fed to an EGSB reactor. The conversion between oleic and palmitic acid was linked to the biological activity. When palmitic acid was fed to an EGSB reactor it represented also the main LCFA that accumulated onto the sludge. The way of palmitic acid accumulation was different in the oleic and in the palmitic acid fed reactors. When oleic acid was fed, the biomass-associated LCFA (83% as palmitic acid) were mainly adsorbed and entrapped in the sludge that became "encapsulated" by an LCFA layer. However, when palmitic acid was fed, the biomass-associated LCFA (the totality as palmitic acid) was mainly precipitated in white spots like precipitates in between the sludge, which remained "non-encapsulated." The two sludges were compared in terms of the specific methanogenic activity (SMA) in the presence of acetate, propionate, butyrate, and H(2)CO(2), before and after the mineralization of similar amounts of biomass-associated LCFA (4.6 and 5.2 g COD-LCFA/g of volatile suspended solids (VSS), for the oleic and palmitic acid fed sludge, respectively). The "non-encapsulated," sludge exhibited a considerable initial methanogenic activity on all the tested substrates, with the single exception of butyrate. However, with the "encapsulated" sludge only methane production from ethanol and H(2)/CO(2) was detected, after a lag phase of about 50 h. After mineralization of the biomass-associated LCFA, both sludges exhibited activities of similar order of magnitude in the presence of the same individual substrates and significantly higher than before. The results evidenced that LCFA accumulation onto the sludge can create a physical barrier and hinder the transfer of substrates and products, inducing a delay on the initial methane production. Whatever the mechanism, metabolic or physical, that is behind this inhibition, it is reversible, being eliminated after the

  8. SHIP2 on pI3K/Akt pathway in palmitic acid stimulated islet β cell.

    Science.gov (United States)

    Liu, Qingjuan; Wang, Ruiying; Zhou, Hong; Zhang, Lihui; Cao, Yanping; Wang, Xianjuan; Hao, Yongmei

    2015-01-01

    This study is to investigate the influence of SHIP2 on palmitic acid stimulated islet β cell and insulin secretion, as well as its role in pI3K/Akt pathway. We defined four groups: control, acid group, acid + NC siRNA group and acid + siRNA transfection group. The control was neither treated by palmitic acid nor transfection. The acid group was subjected to palmitic acid incubation. The acid + NC siRNA group was transiently transfected by NC siRNA, then was stimulated by palmitic acid. The acid + siRNA group was transiently transfected by siRNA, then was stimulated by palmitic acid. Cell proliferation and apoptosis were measured by MTT and flow cytometry. Immunocytochemistry, Western Blot and QPCR were designed to detect the expression of SHIP2, Akt, p-Akt protein and mRNA. Insulin secretion was tested by radioimmunoassay. The apoptosis rate in the acid + siRNA group was non-significantly lower than the acid group and the acid + NC siRNA group (P > 0.05). The expression levels of Akt phosphorylation in the acid + siRNA group was significantly higher than in the acid + NC siRNA group and the acid group (P acid + siRNA group was significantly more than the acid + NC siRNA group and the acid group (P < 0.05). SHIP2 silencing probably stimulates insulin secretion, which may be associated with the enhanced proliferation in the pI3K/Akt pathway.

  9. Palmitic acid, verified by lipid profiling using secondary ion mass spectrometry, demonstrates anti-multiple myeloma activity.

    Science.gov (United States)

    Nagata, Yasuyuki; Ishizaki, Itsuko; Waki, Michihiko; Ide, Yoshimi; Hossen, Md Amir; Ohnishi, Kazunori; Miyayama, Takuya; Setou, Mitsutoshi

    2015-06-01

    Recent studies indicate that lipid metabolic changes affect the survival of multiple myeloma (MM) cells. Time-of-flight secondary ion mass spectrometry (TOF-SIMS), an imaging mass spectrometry technique, is used to visualize the subcellular distribution of biomolecules including lipids. We therefore applied this method to human clinical specimens to analyze the membrane fatty acid composition and determine candidate molecules for MM therapies. We isolated MM cells and normal plasma cells (PCs) from bone marrow aspirates of MM patients and healthy volunteers, respectively, and these separated cells were analyzed by TOF-SIMS. Multiple ions including fatty acids were detected and their ion counts were estimated. In MM cells, the mean intensity of palmitic acid was significantly lower than the mean intensity in PCs. In a cell death assay, palmitic acid reduced U266 cell viability dose-dependently at doses between 50 and 1000 μM. The percentage of apoptotic cells increased from 24h after palmitic acid administration. In contrast, palmitic acid had no effect on the viability of normal peripheral blood mononuclear cells (PBMCs). The results of this study indicated that palmitic acid is a potential candidate for novel therapeutic agents that specifically attack MM cells.

  10. Brain region-specificity of palmitic acid-induced abnormalities associated with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Melrose Joseph

    2008-06-01

    Full Text Available Abstract Background Alzheimer's disease (AD is a progressive, neurodegenerative disease mostly affecting the basal forebrain, cortex and hippocampus whereas the cerebellum is relatively spared. The reason behind this region-specific brain damage in AD is not well understood. Here, we report our data suggesting "differential free fatty acid metabolism in the different brain areas" as a potentially important factor in causing the region-specific damage observed in AD brain. Findings The astroglia from two different rat brain regions, cortex (region affected in AD and cerebellum (unaffected region, were treated with 0.2 mM of palmitic acid. The conditioned media were then transferred to the cortical neurons to study the possible effects on the two main, AD-associated protein abnormalities, viz. BACE1 upregulation and hyperphosphorylation of tau. The conditioned media from palmitic-acid treated cortical astroglia, but not the cerebellar astroglia, significantly elevated levels of phosphorylated tau and BACE1 in cortical neurons as compared to controls (47 ± 7% and 45 ± 4%, respectively. Conclusion The present data provide an experimental explanation for the region-specific damage observed in AD brain; higher fatty acid-metabolizing capacity of cortical astroglia as compared to cerebellar astroglia, may play a causal role in increasing vulnerability of cortex in AD, while sparing cerebellum.

  11. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Tuncbilek, K.; Sari, A. [Gaziosmanpasa Univ., Tokat (Turkey). Dept. of Chemistry; Tarhan, S.; Erguenes, G. [Gaziosmanpasa Univ., Tokat (Turkey). Dept. of Agricultural Machinery; Kaygusuz, K. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Chemistry

    2005-04-01

    Palmitic acid (PA, 59.8 {sup o}C) and lauric acid (LA, 42.6 {sup o}C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 {sup o}C and the latent heat of fusion of 166.3 J g{sup -1}. This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics. (author)

  12. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Kadir Tuncbilek; Ahmet Sari [Gaziosmanpasa University, Tokat (Turkey). Dept. of Chemistry; Sefa Tarhan; Gazanfer Ergunes [Gaziosmanpasa University, Tokat (Turkey). Dept. of Agricultural Machinery; Kamil Kaygusuz [Karadeniz University, Trabzon (Turkey). Dept. of Chemistry

    2005-04-01

    Palmitic acid (PA, 59.8{sup o}C) and lauric acid (LA, 42.6{sup o}C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 {sup o}C and the latent heat of fusion of 166.3 J g{sup -1}. This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics. (author)

  13. Combining high-performance liquid chromatography with on-line microdialysis sampling for the simultaneous determination of ascorbyl glucoside, kojic acid, and niacinamide in bleaching cosmetics.

    Science.gov (United States)

    Lin, Cheng-Hui; Wu, Hsin-Lung; Huang, Yeou-Lih

    2007-01-02

    We have used on-line microdialysis sampling coupled with high-performance liquid chromatography and UV-vis detection to simultaneously determine the contents of ascorbyl glucoside (AA-2G), kojic acid (KA), and niacinamide (VitB(3)) in commercial bleaching cosmetics. Our results indicate that AA-2G, KA, and VitB(3) separated well within 4.5 min on a reverse-phase Hypersil Fluophase PFP column when eluting with 0.020 M phosphate buffer solution in 40% (v/v) methanol at pH 5.5. The calibration curves were linear over the ranges 0.068-304, 0.071-284, and 0.024-488 microg mL(-1) for AA-2G, KA, and VitB(3), respectively, with correlation coefficients for the linear regression analyses falling within the range 0.9982-0.9999. The detection limits for AA-2G, KA, and VitB(3) were 0.01, 0.01, and 0.007 microg mL(-1), respectively. The detection wavelength was robust when the levels of the analytes in the samples were high (0.1-2%). The analytes were all detected using ultraviolet light (254 nm). The compounds diffuse through the membrane more readily when KA and VitB(3) are in their molecular forms and AA-2G is ionized. The recoveries were in the range 92-106% with good reproducibility (R.S.D.=3.9-8.7%). We used this procedure to assay six commercially available bleaching cosmetics; our results confirmed not only the precision of the method but also the claims made on the labels of the cosmetics. This approach provides a very simple means to determine the contents of AA-2G, KA, and VitB(3) in various dosages in bleaching cosmetics.

  14. Digestibility of Fatty Acids in the Gastrointestinal Tract of Dairy Cows Fed with Tallow or Saturated Fats Rich in Stearic Acid or Palmitic Acid

    DEFF Research Database (Denmark)

    Weisbjerg, Martin Riis; Hvelplund, Torben; Børsting, Christian Friis

    1992-01-01

    Fatty acid digestibility was studied with five lactating cows fed three different fat sources in a 5 × 5 latin square experiment. The treatments were 500 g of tallow, 500 or 1000 g of saturated fat rich in stearic acid (C18:0) (SARF) or 500 or 1000 g of saturated fat rich in palmitic acid (C16:0)...

  15. Invited review: palmitic and stearic acid metabolism in lactating dairy cows.

    Science.gov (United States)

    Loften, J R; Linn, J G; Drackley, J K; Jenkins, T C; Soderholm, C G; Kertz, A F

    2014-01-01

    Energy is the most limiting nutritional component in diets for high-producing dairy cows. Palmitic (C16:0) and stearic (C18:0) acids have unique and specific functions in lactating dairy cows beyond a ubiquitous energy source. This review delineates their metabolism and usage in lactating dairy cows from diet to milk production. Palmitic acid is the fatty acid (FA) found in the greatest quantity in milk fat. Dietary sources of C16:0 generally increase milk fat yield and are used as an energy source for milk production and replenishing body weight loss during periods of negative energy balance. Stearic acid is the most abundant FA available to the dairy cow and is used to a greater extent for milk production and energy balance than C16:0. However, C18:0 is also intimately involved in milk fat production. Quantifying the transfer of each FA from diet into milk fat is complicated by de novo synthesis of C16:0 and desaturation of C18:0 to oleic acid in the mammary gland. In addition, incorporation of both FA into milk fat appears to be limited by the cow's requirement to maintain fluidity of milk, which requires a balance between saturated and unsaturated FA. Oleic acid is the second most abundant FA in milk fat and likely the main unsaturated FA involved in regulating fluidity of milk. Because the mammary gland can desaturate C18:0 to oleic acid, C18:0 appears to have a more prominent role in milk production than C16:0. To understand metabolism and utilization of these FA in lactating dairy cows, we reviewed production and milk fat synthesis studies. Additional and longer lactation studies on feeding both FA to lactating dairy cows are required to better delineate their roles in optimizing milk production and milk FA composition and yield.

  16. SYNTHESIS AND ANTIFUNGAL ACTIVITY OF PALMITIC ACID-BASED NEOGLYCOLIPIDS RELATED TO PAPULACANDIN D

    Directory of Open Access Journals (Sweden)

    Thiago Belarmino de Souza

    2015-12-01

    Full Text Available A series of six new palmitic acid-based neoglycolipids related to Papulacandin D were synthesized in five steps, resulting in good yields, and they were evaluated against Candida spp. All twelve synthetic intermediates were also evaluated. The synthesis involved the initial glycosylation of two phenols (4-hydroxy-3-methoxybenzaldehyde and 3-hydroxybenzaldehyde via their reaction with peracetylated glucosyl bromide. This was followed by deacetylation with potassium methoxide/metanol solution and the protection of two hydroxyls (C4 and C6 positions of the saccharide unit as benzilidene acetals (10-11. The next step involved the acylation of the acetal derivatives with palmitic acid, thereby affording a mixture of two isomers mono-acylated at the C2 and C3 positions and a di-acylated product (12-17. After being isolated, each compound was subjected to the removal of the acetal protecting group to yield the papulacandin D analogues 18-23. Three compounds showed low antifungal activity against two species: C. albicans (compounds 7 and 23 and C. tropicalis (compound 17 at 200 µg mL−1.

  17. Lipid characterization of seed oils from high-palmitic, low-palmitoleic, and very high-stearic acid sunflower lines.

    Science.gov (United States)

    Serrano-Vega, María J; Martínez-Force, Enrique; Garcés, Rafael

    2005-04-01

    Information obtained in recent years regarding the enzymes involved in FA synthesis can now be applied to develop novel sunflower lines by incorporating enzymes with specific characteristics into lines with a defined background. We have generated three highly saturated mutant lines in this way and characterized their FA content. The new high-palmitic, low-palmitoleic lines CAS-18 and CAS-25, the latter on a high-oleic background, have been selected from the high-stearic mutant CAS-3 by introducing a deficient stearic acid desaturase in a high-palmitic background from the previously developed mutant lines CAS-5 and CAS-12, respectively. As such, the desaturation of palmitic acid and the synthesis of palmitoleic acid and its derivatives (asclepic and palmitolinoleic acids) were reduced in these high-palmitic lines, increasing the stearic acid content. Likewise, introducing a FA thioesterase from a high-palmitic line (e.g., CAS-5) into the high-stearic CAS-3 increased the stearic acid content from 27 to 32% in the new high-stearic line CAS-31. As previously described in high-palmitic lines, high growth temperatures did not reduce the linoleic acid content of the oil. Furthermore, the FA composition of TAG, DAG, and phospholipids was modified in these lines. Besides a high degree of saturation, the TAG from these new vegetable oils have a low content of saturated FA in the sn-2 position. The alpha asymmetric coefficient obtained also indicates that the saturated FA are asymmetrically distributed within the TAG molecules. Indeed, the disaturated TAG content rose from 31.8 to 48.2%. These values of disaturated TAG are the highest to date in a temperate oilseed.

  18. Regulation of intestinal IgA responses by dietary palmitic acid and its metabolism.

    Science.gov (United States)

    Kunisawa, Jun; Hashimoto, Eri; Inoue, Asuka; Nagasawa, Risa; Suzuki, Yuji; Ishikawa, Izumi; Shikata, Shiori; Arita, Makoto; Aoki, Junken; Kiyono, Hiroshi

    2014-08-15

    Enhancement of intestinal IgA responses is a primary strategy in the development of oral vaccine. Dietary fatty acids are known to regulate host immune responses. In this study, we show that dietary palmitic acid (PA) and its metabolites enhance intestinal IgA responses. Intestinal IgA production was increased in mice maintained on a PA-enriched diet. These mice also showed increased intestinal IgA responses against orally immunized Ag, without any effect on serum Ab responses. We found that PA directly stimulates plasma cells to produce Ab. In addition, mice receiving a PA-enriched diet had increased numbers of IgA-producing plasma cells in the large intestine; this effect was abolished when serine palmitoyltransferase was inhibited. These findings suggest that dietary PA regulates intestinal IgA responses and has the potential to be a diet-derived mucosal adjuvant.

  19. Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose-palmitic acid inclusion complexes.

    Science.gov (United States)

    Fanta, George F; Selling, Gordon W; Felker, Frederick C; Kenar, James A

    2015-05-05

    The use of starch in polymer composites for film production has been studied for increasing biodegradability, improving film properties and reducing cost. In this study, submicron particles were prepared from amylose-sodium palmitate complexes both by rapidly cooling jet-cooked starch-palmitic acid mixtures and by acidifying solutions of starch-sodium palmitate complexes. Films were cast containing poly(vinyl alcohol) (PVOH) with up to 50% starch particles. Tensile strength decreased and Young's modulus increased with starch concentration, but percent elongations remained similar to controls regardless of preparation method or starch content. Microscopy showed particulate starch distribution in films made with rapidly cooled starch-palmitic acid particles but smooth, diffuse starch staining with acidified sodium palmitate complexes. The mild effects on tensile properties suggest that submicron starch particles prepared from amylose-palmitic acid complexes provide a useful, commercially viable approach for PVOH film modification.

  20. Lipotoxic Palmitate Impairs the Rate of β-Oxidation and Citric Acid Cycle Flux in Rat Neonatal Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Taha Haffar

    2016-12-01

    Full Text Available Background/Aims: Diabetic hearts exhibit intracellular lipid accumulation. This suggests that the degree of fatty acid oxidation (FAO in these hearts is insufficient to handle the elevated lipid uptake. We previously showed that palmitate impaired the rate of FAO in primary rat neonatal cardiomyocytes. Here we were interested in characterizing the site of FAO impairment induced by palmitate since it may shed light on the metabolic dysfunction that leads to lipid accumulation in diabetic hearts. Methods: We measured fatty acid oxidation, acetyl-CoA oxidation, and carnitine palmitoyl transferase (Cpt1b activity. We measured both forward and reverse aconitase activity, as well as NAD+ dependent isocitrate dehydrogenase activity. We also measured reactive oxygen species using the 2', 7'-Dichlorofluorescin Diacetate (DCFDA assay. Finally we used thin layer chromatography to assess diacylglycerol (DAG levels. Results: We found that palmitate significantly impaired mitochondrial β-oxidation as well as citric acid cycle flux, but not Cpt1b activity. Palmitate negatively affected net aconitase activity and isocitrate dehydrogenase activity. The impaired enzyme activities were not due to oxidative stress but may be due to DAG mediated PKC activation. Conclusion: This work demonstrates that palmitate, a highly abundant fatty acid in human diets, causes impaired β-oxidation and citric acid cycle flux in primary neonatal cardiomyocytes. This metabolic defect occurs prior to cell death suggesting that it is a cause, rather than a consequence of palmitate mediated lipotoxicity. This impaired mitochondrial metabolism can have important implications for metabolic diseases such as diabetes and obesity.

  1. Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated skeletal muscle insulin resistance.

    Science.gov (United States)

    Talbot, Nicola A; Wheeler-Jones, Caroline P; Cleasby, Mark E

    2014-08-05

    Obesity and saturated fatty acid (SFA) treatment are both associated with skeletal muscle insulin resistance (IR) and increased macrophage infiltration. However, the relative effects of SFA and unsaturated fatty acid (UFA)-activated macrophages on muscle are unknown. Here, macrophages were treated with palmitic acid, palmitoleic acid or both and the effects of the conditioned medium (CM) on C2C12 myotubes investigated. CM from palmitic acid-treated J774s (palm-mac-CM) impaired insulin signalling and insulin-stimulated glycogen synthesis, reduced Inhibitor κBα and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in myotubes. p38 MAPK inhibition or siRNA partially ameliorated these defects, as did addition of tumour necrosis factor-α blocking antibody to the CM. Macrophages incubated with both FAs generated CM that did not induce IR, while palmitoleic acid-mac-CM alone was insulin sensitising. Thus UFAs may improve muscle insulin sensitivity and counteract SFA-mediated IR through an effect on macrophage activation.

  2. Phase equilibria of oleic, palmitic, stearic, linoleic and linolenic acids in supercritical CO2

    Directory of Open Access Journals (Sweden)

    P. L. Penedo

    2009-03-01

    Full Text Available The knowledge of the phase equilibrium is one of the most important factors to study the design of separation processes controlled by the equilibrium. Fatty acids are present in high concentration as by-products in vegetable oils but the equilibrium data involving these components is scarce. The objective of this work is the experimental determination of the liquid-vapor equilibrium of five binary different systems formed by carbon dioxide and palmitic acid (C16:0, stearic acid (C18:0, oleic acid (C18:1, linoleic acid (C18:2 and linolenic acid (C18:3. The equilibrium experimental data was collected at 40, 60 and 80ºC at 60, 90 and 120 bar, at the extract and raffinate phases, using an experimental apparatus containing an extractor, a gas cylinder and pressure and temperature controllers. The data was modeled using the cubic equation of state of Peng-Robinson with the mixing rule of van der Waals with binary interaction parameters. The model was adequate to treat the experimental data at each temperature and at all the temperatures together. The best model that includes the van der Waals mixing rule with two parameters has maximum deviation of 17%. The distribution coefficients were also analyzed and it was concluded that the fractionation of the fatty acids is possible using supercritical carbon dioxide.

  3. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells.

    Science.gov (United States)

    Xu, Q; Chen, S Y; Deng, L D; Feng, L P; Huang, L Z; Yu, R R

    2013-11-18

    Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cultured in medium containing 0.75 mM palmitic acid, mimicking oxidative stress. The effects of 1 mM mogrosides were determined with the dichlorodihydrofluorescein diacetate assay for intracellular reactive oxygen species (ROS) and FITC-Annexin V/PI assay for cell apoptosis. Expression of glucose transporter-2 (GLUT2) and pyruvate kinase was determined by semi-quantitative reverse-transcription polymerase chain reaction. Palmitic acid significantly increased intracellular ROS concentration 2-fold (Ppalmitic acid, co-treatment with 1 mM mogrosides for 48 h significantly reduced intracellular ROS concentration and restored mRNA expression levels of GLUT2 and pyruvate kinase. However, mogrosides did not reverse palmitic acid-induced apoptosis in NIT-1 cells. Our results indicate that mogrosides might exert their antioxidant effect by reducing intracellular ROS and regulating expression of genes involved in glucose metabolism. Further research is needed to achieve a better understanding of the signaling pathway involved in the antioxidant effect of mogrosides.

  4. Ca(2+)-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: a comparative study.

    Science.gov (United States)

    Belosludtsev, Konstantin N; Belosludtseva, Natalia V; Agafonov, Alexey V; Astashev, Maxim E; Kazakov, Alexey S; Saris, Nils-Erik L; Mironova, Galina D

    2014-10-01

    In the present work, we examine and compare the effects of saturated (palmitic) and unsaturated (oleic) fatty acids in relation to their ability to cause the Ca(2+)-dependent membrane permeabilization. The results obtained can be summarized as follows. (1) Oleic acid (OA) permeabilizes liposomal membranes at much higher concentrations of Ca(2+) than palmitic acid (PA): 1mM versus 100μM respectively. (2) The OA/Ca(2+)-induced permeabilization of liposomes is not accompanied by changes in the phase state of lipid bilayer, in contrast to what is observed with PA and Ca(2+). (3) The addition of Ca(2+) to the PA-containing vesicles does not change their size; in the case of OA, it leads to the appearance of larger and smaller vesicles, with larger vesicles dominating. This can be interpreted as a result of fusion and fission of liposomes. (4) Like PA, OA is able to induce a Ca(2+)-dependent high-amplitude swelling of mitochondria, yet it requires higher concentrations of Ca(2+) (30 and 100μM for PA and OA respectively). (5) In contrast to PA, OA is unable to cause the Ca(2+)-dependent high-amplitude swelling of mitoplasts, suggesting that the cause of OA/Ca(2+)-induced permeability transition in mitochondria may be the fusion of the inner and outer mitochondrial membranes. (6) The presence of OA enhances PA/Ca(2+)-induced permeabilization of liposomes and mitochondria. The paper discusses possible mechanisms of PA/Ca(2+)- and OA/Ca(2+)-induced membrane permeabilization, the probability of these mechanisms to be realized in the cell, and their possible physiological role.

  5. PALMITIC AND OLEIC ACIDS AND THEIR ROLE IN PATHOGENESIS OF ATHEROSCLEROSIS

    Directory of Open Access Journals (Sweden)

    V. N. Titov

    2014-01-01

    Full Text Available On the basis of phylogenetic theory of general pathology, the cause of a noninfectious disease whose occurrence in a population is more than 5–7% is an impaired biological function or reaction to the environment. From the general biology viewpoint, high mortality rate related to cardio-vascular diseases and atherosclerosis (intercellular deficiency of polyenic fatty acids (PFA is just extinction of the Homo sapiens population upon adaptation to new environmental factors. The biological function of throphology (feeding and biological reaction of exotrophy (external feeding are impaired in several aspects, the major of which is nonphysiologically high dietary content of saturated fatty acids, primarily, of palmitic fatty acid (FA. The lipoprotein system formed at early stages of phylogenesis cannot transport and provide physiological deposition of great amounts of palmitic FA, which leads to the development of an adaption (compensatory and accumulation disease. This results in hypermipidemia, impaired bioavailability of PFA to cells, compesatory production of humoral mediators from ω-9 eicosatrienoic mead FA, disorders in physiological parameters of cell plasma membrane and integral proteins, nonphysiological conformation of apoВ-100 in lipoproteins, formation of ligandless lipoproteins (biological litter and impairments in the biological function of endoecology, utilization of ligandless lipoproteins in arterial intima by phylogenetically early macrophages that do not hydrolyze polyenic cholesterol esters, increase in the intensity of the biological reaction of inflammation, and destructive and inflammatory lesions in arterial intima of an atheromatosis or atherothrombosis type. Atheromatous masses are catabolites of PFA which were not internalized by phylogenetically late cells via receptor-mediated pathway.

  6. Palmitic acid induces interleukin-1β secretion via NLRP3 inflammasomes and inflammatory responses through ROS production in human placental cells.

    Science.gov (United States)

    Shirasuna, Koumei; Takano, Hiroki; Seno, Kotomi; Ohtsu, Ayaka; Karasawa, Tadayoshi; Takahashi, Masafumi; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Iwata, Hisataka; Kuwayama, Takehito

    2016-08-01

    Maternal obesity, a major risk factor for adverse pregnancy complications, results in inflammatory cytokine release in the placenta. Levels of free fatty acids are elevated in the plasma of obese human. These fatty acids include obesity-related palmitic acids, which is a major saturated fatty acid, that promotes inflammatory responses. Increasing evidence indicates that nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasomes mediate inflammatory responses induced by endogenous danger signals. We hypothesized that inflammatory responses associated with gestational obesity cause inflammation. To test this hypothesis, we investigated the effect of palmitic acid on the activation of NLRP3 inflammasomes and inflammatory responses in a human Sw.71 trophoblast cell line. Palmitic acid stimulated caspase-1 activation and markedly increased interleukin (IL)-1β secretion in Sw.71 cells. Treatment with a caspase-1 inhibitor diminished palmitic acid-induced IL-1β release. In addition, NLRP3 and caspase-1 genome editing using a CRISPR/Cas9 system in Sw.71 cells suppressed IL-1β secretion, which was stimulated by palmitic acid. Moreover, palmitic acid stimulated caspase-3 activation and inflammatory cytokine secretion (e.g., IL-6 and IL-8). Palmitic acid-induced cytokine secretion were dependent on caspase-3 activation. In addition, palmitic acid-induced IL-1β, IL-6, and IL-8 secretion was depended on reactive oxygen species (ROS) generation. In conclusion, palmitic acid caused activation of NLRP3 inflammasomes and inflammatory responses, inducing IL-1β, IL-6, and IL-8 secretion, which is associated with ROS generation, in human Sw.71 placental cells. We suggest that obesity-related palmitic acid induces placental inflammation, resulting in association with pregnancy complications.

  7. Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion.

    Science.gov (United States)

    Graciano, Maria Fernanda; Valle, Maíra Mello; Curi, Rui; Carpinelli, Angelo Rafael

    2013-01-01

    G protein coupled receptor 40 (GPR40) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex have been shown to be involved in the fatty acid amplification of glucose-stimulated insulin secretion (GSIS). The effect of palmitic acid on superoxide production and insulin secretion by INS-1E cells and the possible involvement of GPR40 and NADPH oxidase in these processes were examined in this study. Cells were incubated during 1 h with palmitic acid in low and high glucose concentrations, a GPR40 agonist (GW9508) and inhibitors of NADPH oxidase (diphenyleneiodonium, DPI) and PKC (calphostin C). GW9508 induced superoxide production at 2.8 and 5.6 mM glucose concentrations and stimulated insulin secretion at 16.7 mM glucose concentration involving both PKC and NADPH oxidase activation. Palmitic acid induced superoxide production through NADPH oxidase and GPR40-dependent pathways and the stimulation of insulin secretion in the presence of a high glucose concentration was reduced by knockdown of GPR40 using siRNA. Our results suggest that palmitic acid induces superoxide production and potentiates GSIS through NADPH oxidase and GPR40 pathways in pancreatic ? cells.

  8. Investigation on microstructure and thermal properties of graphene-nanoplatelet/palmitic acid composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jifen, E-mail: jfwang@eed.sspu.cn [East China University of Science and Technology, State Key Laboratory of Chemical Engineering (China); Xie Huaqing, E-mail: hqxie@eed.sspu.cn [Shanghai Second Polytechnic University, School of Urban Development and Environmental Engineering (China); Xin Zhong, E-mail: xzh@ecust.edu.cn [East China University of Science and Technology, State Key Laboratory of Chemical Engineering (China)

    2012-07-15

    Graphene-nanoplatelets (GNPs) were added into melting palmitic acid (PA) to prepare GNP/PA composites. Experimental results revealed that the temperature has little effect on the thermal conductivity of GNP/PA in either solid state or liquid state. Generally, thermal conductivity of GNP/PA increases with the addition of GNPs. There are two sudden increases in thermal conductivity for GNP/PA. One is at 0.5 wt% where GNPs begin to congregate and the thermal conductivity of GNP/PA increases suddenly. The other is at 5.0 wt% where the GNP aggregates are large enough to contact each other and the thermal conductivity of GNP/PA spurts with more GNP loadings.

  9. Investigation on microstructure and thermal properties of graphene-nanoplatelet/palmitic acid composites

    Science.gov (United States)

    Wang, Jifen; Xie, Huaqing; Xin, Zhong

    2012-07-01

    Graphene-nanoplatelets (GNPs) were added into melting palmitic acid (PA) to prepare GNP/PA composites. Experimental results revealed that the temperature has little effect on the thermal conductivity of GNP/PA in either solid state or liquid state. Generally, thermal conductivity of GNP/PA increases with the addition of GNPs. There are two sudden increases in thermal conductivity for GNP/PA. One is at 0.5 wt% where GNPs begin to congregate and the thermal conductivity of GNP/PA increases suddenly. The other is at 5.0 wt% where the GNP aggregates are large enough to contact each other and the thermal conductivity of GNP/PA spurts with more GNP loadings.

  10. Protective Effect of Unsaturated Fatty Acids on Palmitic Acid-Induced Toxicity in Skeletal Muscle Cells is not Mediated by PPARδ Activation.

    Science.gov (United States)

    Tumova, Jana; Malisova, Lucia; Andel, Michal; Trnka, Jan

    2015-10-01

    Unsaturated free fatty acids (FFA) are able to prevent deleterious effects of saturated FFA in skeletal muscle cells although the mechanisms involved are still not completely understood. FFA act as endogenous ligands of peroxisome proliferator-activated receptors (PPAR), transcription factors regulating the expression of genes involved in lipid metabolism. The aim of this study was to determine whether activation of PPARδ, the most common PPAR subtype in skeletal muscle, plays a role in mediating the protective effect of unsaturated FFA on saturated FFA-induced damage in skeletal muscle cells and to examine an impact on mitochondrial respiration. Mouse C2C12 myotubes were treated for 24 h with different concentrations of saturated FFA (palmitic acid), unsaturated FFA (oleic, linoleic and α-linolenic acid), and their combinations. PPARδ agonist GW501516 and antagonist GSK0660 were also used. Both mono- and polyunsaturated FFA, but not GW501516, prevented palmitic acid-induced cell death. Mono- and polyunsaturated FFA proved to be effective activators of PPARδ compared to saturated palmitic acid; however, in combination with palmitic acid their effect on PPARδ activation was blocked and stayed at the levels observed for palmitic acid alone. Unsaturated FFA at moderate physiological concentrations as well as GW501516, but not palmitic acid, mildly uncoupled mitochondrial respiration. Our results indicate that although unsaturated FFA are effective activators of PPARδ, their protective effect on palmitic acid-induced toxicity is not mediated by PPARδ activation and subsequent induction of lipid regulatory genes in skeletal muscle cells. Other mechanisms, such as mitochondrial uncoupling, may underlie their effect.

  11. Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPARβ/δ in HepG2 cells.

    Science.gov (United States)

    Luo, Guanghua; Shi, Yuanping; Zhang, Jun; Mu, Qinfeng; Qin, Li; Zheng, Lu; Feng, Yuehua; Berggren-Söderlund, Maria; Nilsson-Ehle, Peter; Zhang, Xiaoying; Xu, Ning

    2014-02-28

    It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important for further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPARβ/δ pathway.

  12. Comparison of microwave processing and excess steam jet cooking for spherulite production of from starch:palmitic acid inclusion complexes

    Science.gov (United States)

    It was previously shown that toroid and spherical/lobed spherulites were formed upon slow cooling of aqueous dispersions of corn starch and palmitic acid after passing through an excess steam jet cooker. Spherulite yield was 86% based on amylose. In order to determine whether excess steam jet cookin...

  13. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells

    Directory of Open Access Journals (Sweden)

    Q. Xu

    2013-11-01

    Full Text Available Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cultured in medium containing 0.75 mM palmitic acid, mimicking oxidative stress. The effects of 1 mM mogrosides were determined with the dichlorodihydrofluorescein diacetate assay for intracellular reactive oxygen species (ROS and FITC-Annexin V/PI assay for cell apoptosis. Expression of glucose transporter-2 (GLUT2 and pyruvate kinase was determined by semi-quantitative reverse-transcription polymerase chain reaction. Palmitic acid significantly increased intracellular ROS concentration 2-fold (P<0.05, and decreased expression of GLUT2 (by 60%, P<0.05 and pyruvate kinase (by 80%, P<0.05 mRNAs in NIT-1 cells. Compared with palmitic acid, co-treatment with 1 mM mogrosides for 48 h significantly reduced intracellular ROS concentration and restored mRNA expression levels of GLUT2 and pyruvate kinase. However, mogrosides did not reverse palmitic acid-induced apoptosis in NIT-1 cells. Our results indicate that mogrosides might exert their antioxidant effect by reducing intracellular ROS and regulating expression of genes involved in glucose metabolism. Further research is needed to achieve a better understanding of the signaling pathway involved in the antioxidant effect of mogrosides.

  14. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q.; Chen, S.Y.; Deng, L.D.; Feng, L.P.; Huang, L.Z.; Yu, R.R. [Department of Pharmacy, Guilin Medical University, Guilin (China)

    2013-11-18

    Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cultured in medium containing 0.75 mM palmitic acid, mimicking oxidative stress. The effects of 1 mM mogrosides were determined with the dichlorodihydrofluorescein diacetate assay for intracellular reactive oxygen species (ROS) and FITC-Annexin V/PI assay for cell apoptosis. Expression of glucose transporter-2 (GLUT2) and pyruvate kinase was determined by semi-quantitative reverse-transcription polymerase chain reaction. Palmitic acid significantly increased intracellular ROS concentration 2-fold (P<0.05), and decreased expression of GLUT2 (by 60%, P<0.05) and pyruvate kinase (by 80%, P<0.05) mRNAs in NIT-1 cells. Compared with palmitic acid, co-treatment with 1 mM mogrosides for 48 h significantly reduced intracellular ROS concentration and restored mRNA expression levels of GLUT2 and pyruvate kinase. However, mogrosides did not reverse palmitic acid-induced apoptosis in NIT-1 cells. Our results indicate that mogrosides might exert their antioxidant effect by reducing intracellular ROS and regulating expression of genes involved in glucose metabolism. Further research is needed to achieve a better understanding of the signaling pathway involved in the antioxidant effect of mogrosides.

  15. Formulation and evaluation of hydrous and anhydrous skin whitening products containing sodium ascorbyl phosphate and kojic acid dipalmitate / Marike Ganz

    OpenAIRE

    2006-01-01

    In Asia skin lightening products have grown to be the best selling skin care products, whereas in the Western hemisphere, including Europe and North America, the main demand is for the treatment of age spots and skin even toning. For African and Asian women, skin lightening is part of their culture, as lighter skin signifies increased wealth and social status. It is believed that blending vitamin C, or its derivates, with kojic acid, or its esters, could synergistically inhibit...

  16. Fasting increases palmitic acid incorporation into rat hind-limb intramuscular acylglycerols while short-term cold exposure has no effect.

    Science.gov (United States)

    Synak, M; Zarzeczny, R; Górecka, M; Langfort, J; Kaciuba-Uściłko, H; Zernicka, Ewa

    2011-09-01

    The aim of the study was to investigate the palmitic acid incorporation into intramuscular acylglycerols in perfused hind-limb skeletal muscles of different fibre types in rats either fasted for 48 h or exposed to cold (6 °C) for 12 h. Hind-limb preparations of fasted and cold exposed rats were perfused with buffers containing tritium labelled and cold palmitic acid. Palmitic acid incorporation into intracellular lipid pools in the soleus, plantaris, red and white gastrocnemius and red and white quadriceps was measured. It was found that fasting increased approximately 2-fold palmitic acid incorporation in all muscles examined regardless of the fibre type composition of the muscle. On the other hand, exposure to cold had no effect on the palmitic acid incorporation into intramuscular acylglycerols regardless the muscle fibre type. The increased incorporation of palmitic acid into acylglycerols in fasted animals is in line with data showing that 48 h fasting stimulates the expression of plasma membrane proteins putatively facilitating fatty acid uptake. It appears that although 12 h cold exposure increases the use of fatty acids as energy substrates it does not alter the incorporation of palmitic acid into intramuscular acylglycerols in the perfused rat hind-limb.

  17. Palmitic acid induces central leptin resistance and impairs hepatic glucose and lipid metabolism in male mice.

    Science.gov (United States)

    Cheng, Licai; Yu, Yinghua; Szabo, Alexander; Wu, Yizhen; Wang, Hongqin; Camer, Danielle; Huang, Xu-Feng

    2015-05-01

    The consumption of diets rich in saturated fat largely contributes to the development of obesity in modern societies. A diet high in saturated fats can induce inflammation and impair leptin signaling in the hypothalamus. However, the role of saturated fatty acids on hypothalamic leptin signaling, and hepatic glucose and lipid metabolism remains largely undiscovered. In this study, we investigated the effects of intracerebroventricular (icv) administration of a saturated fatty acid, palmitic acid (PA, C16:0), on central leptin sensitivity, hypothalamic leptin signaling, inflammatory molecules and hepatic energy metabolism in C57BL/6J male mice. We found that the icv administration of PA led to central leptin resistance, evidenced by the inhibition of central leptin's suppression of food intake. Central leptin resistance was concomitant with impaired hypothalamic leptin signaling (JAK2-STAT3, PKB/Akt-FOXO1) and a pro-inflammatory response (TNF-α, IL1-β, IL-6 and pIκBa) in the mediobasal hypothalamus and paraventricular hypothalamic nuclei. Furthermore, the pre-administration of icv PA blunted the effect of leptin-induced decreases in mRNA expression related to gluconeogenesis (G6Pase and PEPCK), glucose transportation (GLUT2) and lipogenesis (FAS and SCD1) in the liver of mice. Therefore, elevated central PA concentrations can induce pro-inflammatory responses and leptin resistance, which are associated with disorders of energy homeostasis in the liver as a result of diet-induced obesity.

  18. Determination of Fatty Acid Metabolism with Dynamic [11C]Palmitate Positron Emission Tomography of Mouse Heart In Vivo

    Directory of Open Access Journals (Sweden)

    Yinlin Li

    2015-09-01

    Full Text Available The goal of this study was to establish a quantitative method for measuring fatty acid (FA metabolism with partial volume (PV and spill-over (SP corrections using dynamic [11C]palmitate positron emission tomographic (PET images of mouse heart in vivo. Twenty-minute dynamic [11C]palmitate PET scans of four 18- to 20-week-old male C57BL/6 mice under isoflurane anesthesia were performed using a Focus F-120 PET scanner. A model-corrected blood input function, by which the input function with SP and PV corrections and the metabolic rate constants (k1–k5 are simultaneously estimated from the dynamic [11C]palmitate PET images of mouse hearts in a four-compartment tracer kinetic model, was used to determine rates of myocardial fatty acid oxidation (MFAO, myocardial FA esterification, myocardial FA use, and myocardial FA uptake. The MFAO thus measured in C57BL/6 mice was 375.03 ± 43.83 nmol/min/g. This compares well to the MFAO measured in perfused working C57BL/6 mouse hearts ex vivo of about 350 nmol/g/min and 400 nmol/min/g. FA metabolism was measured for the first time in mouse heart in vivo using dynamic [11C]palmitate PET in a four-compartment tracer kinetic model. MFAO obtained with this model was validated by results previously obtained with mouse hearts ex vivo.

  19. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells

    OpenAIRE

    Xu, Q.; Chen, S. Y.; Deng,L.D.; Feng, L.P.; Huang,L.Z.; R. R. Yu

    2013-01-01

    Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cult...

  20. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells

    OpenAIRE

    Xu, Q.; Chen, S. Y.; Deng,L.D.; Feng, L.P.; Huang,L.Z.; R. R. Yu

    2013-01-01

    Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were...

  1. KINETIC STUDY OF PALMITIC ACID ESTERIFICATION CATALYZED BY Rhizopus oryzae RESTING CELLS

    Directory of Open Access Journals (Sweden)

    RAMON CANELA

    2009-04-01

    Full Text Available

    ABSTRACT

    In the present study, a kinetic model for the biocatalytic synthesis of esters using Rhizopus oryzae resting cells is proposed. The kinetic study has been made in a range of 30-50 °C and atmospheric pressure. The Influence of operating variables, water content, pH, amount of mycelium was studied. Different values of temperature, initial mycelium concentration and acid/alcohol molar ratio were tested. Initial rates were estimated from the slope of the concentration of palmitic acid, or their corresponding ester at conversions of less than 10%, versus time and reported as mmol l-1 min -1. The values of kinetic constants were computed using the freeware program SIMFIT (http:\\www.simfit.man.ac.uk.

    Key words: bound lipase, esterification, fungal resting cells, Rhizopus oryzae, palmitic acid, propanol.


    RESUMEN

    En el presente estudio, un modelo cinético para la síntesis de esteres usando Rhizopus oryzae resting cells es propuesto. El estudio cinético fue realizado en un rango de temperatura de 30-50 ºC a presión atmosférica reducida. La influencia de las variables de operación tales como temperatura, pH y contenido de agua fueron estudiadas. Diferentes valores de concentración de micelio y relación molar de ácido/alcohol son ensayadas, Las velocidades iníciales se estimaron de la curva de concentración de acido palmítico, y su correspondiente conversión a ester en menos del 10%, frente a tiempo y reportadas en mmol I-1 min -1. Los valores de las constantes cinéticas fueron calculados usando el programa freeware SIMFIT (http:\\www.simfit.man.ac.uk.

    Palabras clave: Lipasas, esterificación, resting cells, Rhizopus oryzae, acido palmítico, propanol.

  2. The 73 kilodalton heat shock cognate protein purified from rat brain contains nonesterified palmitic and stearic acids.

    Science.gov (United States)

    Guidon, P T; Hightower, L E

    1986-08-01

    A protein related to the 71 kilodalton inducible rat heat shock protein was purified to electrophoretic homogeneity in milligram amounts from brain tissue of nonheat-stressed rats. The protein has been designated as a stress cognate protein based on previous studies and data presented herein that this protein cross-reacted with a monoclonal antibody originally raised against the Drosophila 70 kilodalton heat shock protein. The purified protein had an apparent molecular mass of 73 kilodaltons when analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and an apparent mass of 150 kilodaltons as determined by nondissociative gel chromatography, suggesting that the purified protein is a homodimer. The purified protein had isoelectric points of 5.0 under nondissociative conditions and 5.6 when exposed to protein denaturants, suggesting loss of bound anionic molecules and/or net exposure of basic residues upon denaturation. Chloroform/methanol extraction of the purified protein and subsequent analyses by thin layer and gas-liquid chromatography resulted in the identification of palmitic and stearic acids noncovalently bound to the protein. Approximately four molecules of fatty acids were bound per dimer with palmitic and stearic acids present in a one-to-one ratio. The purified protein did not bind exogenously added radioactive palmitate, indicating that the fatty acid-binding sites of the cognate protein were fully occupied and that the associated fatty acids were too tightly bound to exchange readily. The possible significance of the fatty acids associated with the 73 kilodalton stress cognate protein is discussed.

  3. Role of orexin A signaling in dietary palmitic acid-activated microglial cells.

    Science.gov (United States)

    Duffy, Cayla M; Yuan, Ce; Wisdorf, Lauren E; Billington, Charles J; Kotz, Catherine M; Nixon, Joshua P; Butterick, Tammy A

    2015-10-08

    Excess dietary saturated fatty acids such as palmitic acid (PA) induce peripheral and hypothalamic inflammation. Hypothalamic inflammation, mediated in part by microglial activation, contributes to metabolic dysregulation. In rodents, high fat diet-induced microglial activation results in nuclear translocation of nuclear factor-kappa B (NFκB), and increased central pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). The hypothalamic neuropeptide orexin A (OXA, hypocretin 1) is neuroprotective in brain. In cortex, OXA can also reduce inflammation and neurodegeneration through a microglial-mediated pathway. Whether hypothalamic orexin neuroprotection mechanisms depend upon microglia is unknown. To address this issue, we evaluated effects of OXA and PA on inflammatory response in immortalized murine microglial and hypothalamic neuronal cell lines. We demonstrate for the first time in microglial cells that exposure to PA increases gene expression of orexin-1 receptor but not orexin-2 receptor. Pro-inflammatory markers IL-6, TNF-α, and inducible nitric oxide synthase in microglial cells are increased following PA exposure, but are reduced by pretreatment with OXA. The anti-inflammatory marker arginase-1 is increased by OXA. Finally, we show hypothalamic neurons exposed to conditioned media from PA-challenged microglia have increased cell survival only when microglia were pretreated with OXA. These data support the concept that OXA may act as an immunomodulatory regulator of microglia, reducing pro-inflammatory cytokines and increasing anti-inflammatory factors to promote a favorable neuronal microenvironment.

  4. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and products identification

    Directory of Open Access Journals (Sweden)

    M. Mendez

    2013-06-01

    Full Text Available The heterogeneous reaction of Cl. radicals with sub-micron palmitic acid (PA particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapors and introduced in the reactor where chlorine atoms are produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ has been determined from the rate loss of PA measured by GC/MS analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analyses have shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although, the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2 which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids are identified by GC/MS. Formation of alcohols and monocarboxylic acids are also suspected. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface, but also in bulk by mechanisms which are still unclear. Furthermore the identified reaction products are explained by a chemical mechanism showing the pathway of the formation of more functionalized products. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  5. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and product identification

    Science.gov (United States)

    Mendez, M.; Ciuraru, R.; Gosselin, S.; Batut, S.; Visez, N.; Petitprez, D.

    2013-12-01

    The heterogeneous reaction of Cl• radicals with submicron palmitic acid (PA) particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapours and introduced into the reactor, where chlorine atoms were produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ) has been determined from the rate loss of PA measured by gas chromatography-mass spectrometer (GC/MS) analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analysis has shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2, which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids were identified by GC/MS. The formation of alcohols and monocarboxylic acids is also suspected. A reaction pathway for the main products and more functionalized species is proposed. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface but also in bulk by mechanisms which are still unclear. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  6. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and products identification

    Science.gov (United States)

    Mendez, M.; Ciuraru, R.; Gosselin, S.; Batut, S.; Visez, N.; Petitprez, D.

    2013-06-01

    The heterogeneous reaction of Cl. radicals with sub-micron palmitic acid (PA) particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapors and introduced in the reactor where chlorine atoms are produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ) has been determined from the rate loss of PA measured by GC/MS analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analyses have shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although, the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2 which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids are identified by GC/MS. Formation of alcohols and monocarboxylic acids are also suspected. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface, but also in bulk by mechanisms which are still unclear. Furthermore the identified reaction products are explained by a chemical mechanism showing the pathway of the formation of more functionalized products. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  7. Conformational change in the C form of palmitic acid investigated by Raman spectroscopy and X-ray diffraction

    Science.gov (United States)

    de Sousa, F. F.; Nogueira, C. E. S.; Freire, P. T. C.; Moreira, S. G. C.; Teixeira, A. M. R.; de Menezes, A. S.; Mendes Filho, J.; Saraiva, G. D.

    2016-05-01

    Fatty acids are substances found in most living beings in nature. Here we report the effect of the low temperature in the vibrational and structural properties of the C form of palmitic acid, a fatty acid with 16 carbon atoms. The Raman spectra were obtained in the temperature interval from 300 to 18 K in the spectral range between 30 and 3100 cm- 1. The assignment of the duly observed bands was done based on the density functional theory. On cooling, the main changes observed in the lattice mode region of the Raman spectra were interpreted as a conformational modification undergone by the palmitic acid molecules in the unit cell. The X-ray diffraction measurements were obtained from 290 to 80 K showing a slight modification in the lattice parameters at about 210 K. Differential scanning calorimetry (DSC) measurements were recorded between 150 and 300 K and no enthalpic anomaly in the DSC thermogram was observed. These techniques provided strong evidence of the conformational change in the molecules of palmitic acid at low temperatures.

  8. Susceptibility of podocytes to palmitic acid is regulated by stearoyl-CoA desaturases 1 and 2.

    Science.gov (United States)

    Sieber, Jonas; Weins, Astrid; Kampe, Kapil; Gruber, Stefan; Lindenmeyer, Maja T; Cohen, Clemens D; Orellana, Jana M; Mundel, Peter; Jehle, Andreas W

    2013-09-01

    Type 2 diabetes mellitus is characterized by dyslipidemia with elevated free fatty acids (FFAs). Loss of podocytes is a hallmark of diabetic nephropathy, and podocytes are highly susceptible to saturated FFAs but not to protective, monounsaturated FFAs. We report that patients with diabetic nephropathy develop alterations in glomerular gene expression of enzymes involved in fatty acid metabolism, including induction of stearoyl-CoA desaturase (SCD)-1, which converts saturated to monounsaturated FFAs. By IHC of human renal biopsy specimens, glomerular SCD-1 induction was observed in podocytes of patients with diabetic nephropathy. Functionally, the liver X receptor agonists TO901317 and GW3965, two known inducers of SCD, increased Scd-1 and Scd-2 expression in cultured podocytes and reduced palmitic acid-induced cell death. Similarly, overexpression of Scd-1 attenuated palmitic acid-induced cell death. The protective effect of TO901317 was associated with a reduction of endoplasmic reticulum stress. It was lost after gene silencing of Scd-1/-2, thereby confirming that the protective effect of TO901317 is mediated by Scd-1/-2. TO901317 also shifted palmitic acid-derived FFAs into biologically inactive triglycerides. In summary, SCD-1 up-regulation in diabetic nephropathy may be part of a protective mechanism against saturated FFA-derived toxic metabolites that drive endoplasmic reticulum stress and podocyte death.

  9. Short communication: Lactational responses to palmitic acid supplementation when replacing soyhulls or dry ground corn.

    Science.gov (United States)

    de Souza, J; Preseault, C L; Lock, A L

    2016-03-01

    The objective of this study was to evaluate the response of mid-lactation dairy cows to a palmitic acid (C16:0)-enriched fatty acid supplement when replacing soyhulls or dry ground corn in the diet. Twenty-four multiparous Holstein cows (182 ± 60 d in milk; mean ± SD) were blocked by preliminary 3.5% fat-corrected milk and randomly assigned to treatment sequence in a replicated 3 × 3 Latin square design with 21-d periods. Treatments consisted of a control diet containing no supplemental fat (CON), and 2 C16:0-enriched fatty acid-supplemented treatments (PA; BergaFat F100, Berg & Schmidt, Hanover, Germany) as a replacement for either soyhulls (PA-SH) or dry ground corn (PA-CG). The C16:0-enriched supplement was fed at 1.5% of diet dry matter. The PA treatments did not affect dry matter intake, but PA-SH increased dry matter intake by 1.4 kg/d compared with PA-CG. The PA treatments did not affect milk yield; however, PA-SH increased milk yield by 2.4 kg/d compared with PA-CG. The PA treatments tended to decrease milk protein content (3.12 vs. 3.15%). In contrast, PA-SH increased milk protein content (3.14 vs. 3.10%) and milk protein yield (1.27 vs. 1.19 kg/d) compared with PA-CG. The PA treatments increased milk fat concentration (3.68 vs. 3.55%) and milk fat yield (1.46 vs. 1.38 kg/d). The increase in milk fat yield with PA treatments was due to the increase in the yield of 16-carbon fatty acid in milk fat. Furthermore, PA-SH tended to increase yield of de novo fatty acids and yield of 16-carbon fatty acids compared with PA-CG. The PA treatments tended to increase feed efficiency (3.5% fat-corrected milk/dry matter intake) compared with CON (1.51 vs. 1.46). The PA-SH treatment tended to increase insulin concentration compared with PA-CG (1.58 vs. 1.49 μg/L) and PA treatments increased nonesterified fatty acids compared with CON (110 vs. 99 μEq/L). Overall, PA treatments improved feed efficiency and increased milk fat yield and the response to the C16:0-enriched

  10. Palmitic Acid on Salt Subphases and in Mixed Monolayers of Cerebrosides: Application to Atmospheric Aerosol Chemistry

    Directory of Open Access Journals (Sweden)

    Ellen M. Adams

    2013-10-01

    Full Text Available Palmitic acid (PA has been found to be a major constituent in marine aerosols, and is commonly used to investigate organic containing atmospheric aerosols, and is therefore used here as a proxy system. Surface pressure-area isotherms (π-A, Brewster angle microscopy (BAM, and vibrational sum frequency generation (VSFG were used to observe a PA monolayer during film compression on subphases of ultrapure water, CaCl2 and MgCl2 aqueous solutions, and artificial seawater (ASW. π-A isotherms indicate that salt subphases alter the phase behavior of PA, and BAM further reveals that a condensation of the monolayer occurs when compared to pure water. VSFG spectra and BAM images show that Mg2+ and Ca2+ induce ordering of the PA acyl chains, and it was determined that the interaction of Mg2+ with the monolayer is weaker than Ca2+. π-A isotherms and BAM were also used to monitor mixed monolayers of PA and cerebroside, a simple glycolipid. Results reveal that PA also has a condensing effect on the cerebroside monolayer. Thermodynamic analysis indicates that attractive interactions between the two components exist; this may be due to hydrogen bonding of the galactose and carbonyl headgroups. BAM images of the collapse structures show that mixed monolayers of PA and cerebroside are miscible at all surface pressures. These results suggest that the surface morphology of organic-coated aerosols is influenced by the chemical composition of the aqueous core and the organic film itself.

  11. Nerve growth factor protects against palmitic acid-induced injury in retinal ganglion cells

    Institute of Scientific and Technical Information of China (English)

    Pan-shi Yan; Shu Tang; Hai-feng Zhang; Yuan-yuan Guo; Zhi-wen Zeng; Qiang Wen

    2016-01-01

    Accumulating evidence supports an important role for nerve growth factor (NGF) in diabetic retinopathy. We hypothesized that NGF has a protective effect on rat retinal ganglion RGC-5 cells injured by palmitic acid (PA), a metabolic factor implicated in the development of dia-betes and its complications. Our results show that PA exposure caused apoptosis of RGC-5 cells, while NGF protected against PA insult in a concentration-dependent manner. Additionally, NGF signiifcantly attenuated the levels of reactive oxygen species (ROS) and malondialde-hyde (MDA) in RGC-5 cells. Pathway inhibitor tests showed that the protective effect of NGF was completely reversed by LY294002 (PI3K inhibitor), Akt VIII inhibitor, and PD98059 (ERK1/2 inhibitor). Western blot analysis revealed that NGF induced the phosphorylation of Akt/FoxO1 and ERK1/2 and reversed the PA-evoked reduction in the levels of these proteins. These results indicate that NGF protects RGC-5 cells against PA-induced injury through anti-oxidation and inhibition of apoptosis by modulation of the PI3K/Akt and ERK1/2 sig-naling pathways.

  12. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid.

    Science.gov (United States)

    Zhao, Mingyue; Lu, Lihui; Lei, Song; Chai, Hua; Wu, Siyuan; Tang, Xiaoju; Bao, Qinxue; Chen, Li; Wu, Wenchao; Liu, Xiaojing

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardiac myocytes (NCMs) or H9c2 cells to study lipotoxicity. Our results demonstrated that cardiomyocyte hypertrophy was induced by PA treatment, determined by upregulation of hypertrophic marker genes and cell surface area enlargement. Upon PA treatment, the expression of RIPK1 and RIPK3 was increased. Pretreatment with the RIPK1 inhibitor necrostatin-1 (Nec-1), the PA-induced cardiomyocyte hypertrophy, was attenuated. Knockdown of RIPK1 or RIPK3 by siRNA suppressed the PA-induced myocardial hypertrophy. Moreover, a crosstalk between necroptosis and endoplasmic reticulum (ER) stress was observed in PA-treated cardiomyocytes. Inhibition of RIPK1 with Nec-1, phosphorylation level of AKT (Ser473), and mTOR (Ser2481) was significantly reduced in PA-treated cardiomyocytes. In conclusion, RIPKs-dependent necroptosis might be crucial in PA-induced myocardial hypertrophy. Activation of mTOR may mediate the effect of necroptosis in cardiomyocyte hypertrophy induced by PA.

  13. Protective effects of arachidonic acid against palmitic acid-mediated lipotoxicity in HIT-T15 cells.

    Science.gov (United States)

    Cho, Young Sik; Kim, Chi Hyun; Kim, Ki Young; Cheon, Hyae Gyeong

    2012-05-01

    Saturated fatty acids have been considered major contributing factors in type 2 diabetes, whereas unsaturated fatty acids have beneficial effects for preventing the development of diabetes. However, the effects of polyunsaturated fatty acids in pancreatic β cells have not been reported. Here, we examined the effects of arachidonic acid (AA) on palmitic acid (PA)-mediated lipotoxicity in clonal HIT-T15 pancreatic β cells. AA prevented the PA-induced lipotoxicity as indicated by cell viability, DNA fragmentation and mitochondrial membrane potential, whereas eicosatetraynoic acid (ETYA), a non-metabolizable AA, had little effect on PA-induced lipotoxicity. In parallel with its protective effects against PA-induced lipotoxicity, AA restored impaired insulin expression and secretion induced by PA. AA but not ETYA increased intracellular triglyceride (TG) in the presence of PA compared with PA alone, and xanthohumol, a diacylglycerol acyltransferase (DGAT) inhibitor, reversed AA-induced protection from PA. Taken together, our results suggest that AA protects against PA-induced lipotoxicity in clonal HIT-T15 pancreatic β cells, and the protective effects may be associated with TG accumulation, possibly through sequestration of lipotoxic PA into TG.

  14. Production of Structured Triacylglycerols Containing Palmitic Acids at sn-2 Position and Docosahexaenoic Acids at sn-1, 3 Positions.

    Science.gov (United States)

    Liu, Yanjun; Guo, Yongli; Sun, Zhaomin; Jie, Xu; Li, Zhaojie; Wang, Jingfeng; Wang, Yuming; Xue, Changhu

    2015-01-01

    Docosahexaenoic acid supplementation has been shown well-established health benefits that justify their use as functional ingredients in healthy foods and nutraceutical products. Structured triacylglycerols rich in 1,3-docosahexenoyl-2-palmitoyl-sn-glycerol were produced from algal oil (Schizochytrium sp) which was prepared by a two-step process. Novozym 435 lipase was used to produce tripalmitin. Tripalmitin was then used to produce the final structured triacylglycerol (STAG) through interesterification reactions using Lipozyme RM IM. The optimum conditions for the enzymatic reaction were a mole ratio of tripalmitin/fatty acid ethyl esters 1:9, 60°C, 10% enzyme load (wt % of substrates), 10 h; the enzymatic product contained 51.6% palmitic acid (PA), 30.13% docosahexaenoic acid (DHA, C22:6 n-3) and 5.33% docosapentanoic acid (DPA, C22:5 n-3), 12.15% oleic acid (OLA). This STAG can be used as a functional ingredient in dietary supplementation to provide the benefits of DHA.

  15. Molecular dynamics simulations of Palmitic acid adsorbed on NaCl

    Science.gov (United States)

    Lovrić, Josip; Brizquez, Stéphane; Duflot, Denis; Monnerville, Maurice; Pouilly, Brigitte; Toubin, Céline

    2015-04-01

    The aerosol and gases effects in the atmosphere play an important role on health, air quality and climate, affecting both political decisions and economic activities around the world [1]. Among the several approaches of studying the origin of these effects, computational modeling is of fundamental importance, providing insights on the elementary chemical processes. Sea salts are the most important aerosol in the troposphere (109T/year) [2]. Our theoretical work consists in modeling a (100) NaCl surface coated with palmitic acid (PA) molecules. Molecular dynamics simulations are carried out with the GROMACS package [3], in the NPT ensemble at different temperatures, different PA coverages and various humidity. We focus on two aspects of the PA organization at the salt surface: the first one is related to transition in molecular orientation of the adsorbate as a function of PA coverage. The second one implies the effect of humidity, by adding water molecules, on the organization of the fatty acid at the salt surface, and especially on the occurrence of PA isolated islands as observed in the experiments [4]. For high humidity conditions, PA are removed from the salt surface and form islands on top of the water. This effect is enhanced when temperature increases. Acknowledgments: this research has been supported by the CaPPA project (Chemical and Physical Properties of the Atmosphere), funded by the French National Research Agency (ANR) through the PIA (Programme d'Investissement d'Avenir) under contract ANR-10-LABX-005. [1] O. Boucher et al, 5th Assessment Report IPCC, (2013) [2] B. J. Finlayson-Pitts, Chem. Rev.103, 4801-4822 (2003) [3] http://www.gromacs.org/ [4] S. Sobanska et al, private communication

  16. Improving the physical and moisture barrier properties of Lepidium perfoliatum seed gum biodegradable film with stearic and palmitic acids.

    Science.gov (United States)

    Seyedi, Samira; Koocheki, Arash; Mohebbi, Mohebbat; Zahedi, Younes

    2015-01-01

    Stearic and palmitic fatty acids (10%, 20% and 30%, W/W gum) were used to improve the barrier properties of Lepidium perfoliatum seed gum (LPSG) film. The impact of the incorporation of fatty acids into the film matrix was studied by investigating the physical, mechanical, and barrier properties of the films. Addition of stearic and palmitic fatty acids to LPSG films reduced their water vapor permeability (WVP), moisture content, water solubility and water adsorption. Increasing fatty acid concentration from 10% to 30%, reduced the elongation at break (EB). Lower values of tensile strength (TS) and elastic modulus (EM) were obtained in the presence of higher fatty acids concentrations. Incorporation of fatty acids led to production of opaque films and the opacity increased as function of fatty acids concentration. Results showed that moisture content, water solubility and WVP decreased as the chain length of fatty acid increased. Therefore, LPSG-fatty acids composite film could be used for packaging in which a low affinity toward water is needed.

  17. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  18. Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPAR{sub β/δ} in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Guanghua; Shi, Yuanping; Zhang, Jun; Mu, Qinfeng; Qin, Li; Zheng, Lu; Feng, Yuehua [Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003 (China); Berggren-Söderlund, Maria; Nilsson-Ehle, Peter [Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85 Lund (Sweden); Zhang, Xiaoying, E-mail: zhangxy6689996@163.com [Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003 (China); Xu, Ning, E-mail: ning.xu@med.lu.se [Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85 Lund (Sweden)

    2014-02-28

    Highlights: • Palmitic acid significantly inhibited APOM gene expression in HepG2 cells. • Palmitic acid could obviously increase PPARB/D mRNA levels in HepG2 cells. • PPAR{sub β/δ} antagonist, GSK3787, had no effect on APOM expression. • GSK3787 could reverse the palmitic acid-induced down-regulation of APOM expression. • Palmitic acid induced suppression of APOM expression is mediated via the PPAR{sub β/δ} pathway. - Abstract: It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important for further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPAR{sub β/δ}) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPAR{sub β/δ} pathway.

  19. Preparation and evaluation of ofloxacin-loaded palmitic acid solid lipid nanoparticles

    Directory of Open Access Journals (Sweden)

    Shuyu Xie

    2011-03-01

    Full Text Available Shuyu Xie, Luyan Zhu, Zhao Dong, Yan Wang, Xiaofang Wang, WenZhong ZhouDepartment of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of ChinaAbstract: The purpose of this study was to use solid lipid nanoparticles (SLN to improve the pharmacological activity of ofloxacin. Ofloxacin-loaded SLN were prepared using palmitic acid as lipid matrix and poly vinyl alcohol (PVA as emulsifier by a hot homogenization and ultrasonication method. The physicochemical characteristics of SLN were investigated by optical microscope, scanning electron microscopy, and photon correlation spectroscopy. Pharmacokinetics was studied after oral administration in mice. In vitro antibacterial activity and in vivo antibacterial efficacy of the SLN were investigated using minimal inhibitory concentrations (MIC and a mouse protection model. The results demonstrated that the encapsulation efficiency, loading capacity, diameter, polydispersivity index, and zeta potential of the nanoparticles were 41.36% ± 1.50%, 4.40% ± 0.16%, 156.33 ± 7.51 nm, 0.26 ± 0.04, and –22.70 ± 1.40 mv, respectively. The SLN showed sustained release and enhanced antibacterial activity in vitro. Pharmacokinetic results demonstrated that SLN increased the bioavailability of ofloxacin by 2.27-fold, and extended the mean residence time of the drug from 10.50 to 43.44 hours. Single oral administrations of ofloxacin-loaded nanoparticles at 3 drug doses, 5 mg/kg, 10 mg/kg, and 20 mg/kg, all produced higher survival rates of lethal infected mice compared with native ofloxacin. These results indicate that SLN might be a promising delivery system to enhance the pharmacological activity of ofloxacin.Keywords: ofloxacin, pharmacological activity, solid lipid nanoparticles, antibacterial activity

  20. [The influence of spermine on Ca(2+)-dependent permeability transition in mitochondria and liposomes induced by palmitic and α,Ω-hexadecanedioic acids].

    Science.gov (United States)

    Belosludtsev, K N; Belosludtseva, N V; Dubinin, M V; Gudkov, S V; Pen'kov, N V; Samartsev, V N

    2014-01-01

    The effect of spermine on Ca(2+)-dependent permeability transition in mitochondria and liposomes induced by palmitic and α,Ω-hexadecanedioic acid was studied. It has been shown that spermine inhibited the cyclosporin A-insensitive mitochondrial swelling induced by palmitic acid and Ca2+ and α,Ω-hexadecanedioic acid and Ca2+. 100 μM spermine did not influence the mitochondrial respiration in state V2 and the respiration stimulated by palmitic acid, α,Ω-hexadecanedioic acid and Ca2+. Pre-incubation of liposomes with 100 μM spermine resulted in the inhibition of palmitic acid/Ca(2+)- and α,Ω-hexadecanedioic acid/Ca(2+)-induced release of the fluorescent dye sulforhodamine B from liposomes. At the same time, spermine added to fatty acids-contained membranes of liposomes stimulated Ca(2+)-dependent release of sulforhodamine B from liposomes. It was shown that an addition of spermine to liposomes resulted in a significant increase in z-potential of liposomal membranes (from -39.8 mV to -18.6 mV). A possible mechanism of spermine influence on palmitic acid/Ca(2+)- and α,Ω-hexadecanedioic acid/Ca(2+)-induced permeability transition in mitochondria and liposomes is discussed.

  1. Eicosapentaenoic Acid Protects against Palmitic Acid-Induced Endothelial Dysfunction via Activation of the AMPK/eNOS Pathway

    Directory of Open Access Journals (Sweden)

    Che-Hsin Lee

    2014-06-01

    Full Text Available Recent studies have shown that free fatty acids are associated with chronic inflammation, which may be involved in vascular injury. The intake of eicosapentaenoic acid (EPA can decrease cardiovascular disease risks, but the protective mechanisms of EPA on endothelial cells remain unclear. In this study, primary human umbilical vein endothelial cells (HUVECs treated with palmitic acid (PA were used to explore the protective effects of EPA. The results revealed that EPA attenuated PA-induced cell death and activation of apoptosis-related proteins, such as caspase-3, p53 and Bax. Additionally, EPA reduced the PA-induced increase in the generation of reactive oxygen species, the activation of NADPH oxidase, and the upregulation of inducible nitric oxide synthase (iNOS. EPA also restored the PA-mediated reduction of endothelial nitric oxide synthase (eNOS and AMP-activated protein kinase (AMPK phosphorylation. Using AMPK siRNA and the specific inhibitor compound C, we found that EPA restored the PA-mediated inhibitions of eNOS and AKT activities via activation of AMPK. Furthermore, the NF-κB signals that are mediated by p38 mitogen-activated protein kinase (MAPK were involved in protective effects of EPA. In summary, these results provide new insight into the possible molecular mechanisms by which EPA protects against atherogenesis via the AMPK/eNOS-related pathway.

  2. Palmitic acid-induced apoptosis in pancreatic β-cells is increased by liver X receptor agonist and attenuated by eicosapentaenoate.

    Science.gov (United States)

    Liang, Huasheng; Zhong, Yuhua; Zhou, Shaobi; Li, Qingdi Quentin

    2011-01-01

    Saturated fatty acids are implicated in the development of diabetes via the impairment of pancreatic islet β-cell viability and function. Liver X receptors (LXRs) and eicosapentaenoate (EPA) are known regulators of fatty acid metabolism. However, their roles in the pathogenesis of diabetes remain incompletely understood. The aim of this study was to determine the effects of EPA and the LXR agonist T0901317 on saturated fatty acid (palmitic acid)-induced apoptosis in the insulinoma β-cell line INS-1, a model for insulin-secreting β-cells. T0901317 significantly promoted palmitic acid-induced apoptotic cell death in the INS-1 cells. Consistent with these results, caspase-3 activity and BAX and sterol regulatory element binding protein-1c (SREBP-1c) mRNA levels were markedly increased in INS-1 cells co-administered palmitic acid and T0901317. The production of reactive oxygen species was considerably higher in the cells cultured concurrently with T0901317 and palmitic acid than in the cells incubated with either agent alone. EPA treatment attenuated the cellular death promoted by palmitic acid and T0901317 in the INS-1 cells, disclosing a possible mediating mechanism involving the inhibition of SREBP-1c. Finally, T0901317 up-regulated the palmitic acid-induced expression of p27(KIP1), transforming growth factor beta 1, and SMAD3 proteins in INS-1 cells. These results demonstrate that palmitic acid-induced apoptosis in β-cells is enhanced by T0901317 via the activation of LXRs and is blocked by EPA via the inhibition of SREBP-1c, suggesting that the regulation of lipogenesis and lipotoxicity affecting pancreatic β-cell viability and insulin production may be a unique strategy for diabetes therapy.

  3. Phyllostachys edulis compounds inhibit palmitic acid-induced monocyte chemoattractant protein 1 (MCP-1 production.

    Directory of Open Access Journals (Sweden)

    Jason K Higa

    Full Text Available BACKGROUND: Phyllostachys edulis Carriere (Poaceae is a bamboo species that is part of the traditional Chinese medicine pharmacopoeia. Compounds and extracts from this species have shown potential applications towards several diseases. One of many complications found in obesity and diabetes is the link between elevated circulatory free fatty acids (FFAs and chronic inflammation. This study aims to present a possible application of P. edulis extract in relieving inflammation caused by FFAs. Monocyte chemoattractant protein 1 (MCP-1/CCL2 is a pro-inflammatory cytokine implicated in chronic inflammation. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and activator protein 1 (AP-1 are transcription factors activated in response to inflammatory stimuli, and upregulate pro-inflammatory cytokines such as MCP-1. This study examines the effect of P. edulis extract on cellular production of MCP-1 and on the NF-κB and AP-1 pathways in response to treatment with palmitic acid (PA, a FFA. METHODOLOGY/PRINCIPAL FINDINGS: MCP-1 protein was measured by cytometric bead assay. NF-κB and AP-1 nuclear localization was detected by colorimetric DNA-binding ELISA. Relative MCP-1 mRNA was measured by real-time quantitative PCR. Murine cells were treated with PA to induce inflammation. PA increased expression of MCP-1 mRNA and protein, and increased nuclear localization of NF-κB and AP-1. Adding bamboo extract (BEX inhibited the effects of PA, reduced MCP-1 production, and inhibited nuclear translocation of NF-κB and AP-1 subunits. Compounds isolated from BEX inhibited MCP-1 secretion with different potencies. CONCLUSIONS/SIGNIFICANCE: PA induced MCP-1 production in murine adipose, muscle, and liver cells. BEX ameliorated PA-induced production of MCP-1 by inhibiting nuclear translocation of NF-κB and AP-1. Two O-methylated flavones were isolated from BEX with functional effects on MCP-1 production. These results may represent a possible

  4. Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of ghKAS2 encoding β-ketoacyl-ACP synthase II (KASII).

    Science.gov (United States)

    Liu, Qing; Wu, Man; Zhang, Baolong; Shrestha, Pushkar; Petrie, James; Green, Allan G; Singh, Surinder P

    2017-01-01

    Palmitic acid (C16:0) already makes up approximately 25% of the total fatty acids in the conventional cotton seed oil. However, further enhancements in palmitic acid content at the expense of the predominant unsaturated fatty acids would provide increased oxidative stability of cotton seed oil and also impart the high melting point required for making margarine, shortening and confectionary products free of trans fatty acids. Seed-specific RNAi-mediated down-regulation of β-ketoacyl-ACP synthase II (KASII) catalysing the elongation of palmitoyl-ACP to stearoyl-ACP has succeeded in dramatically increasing the C16 fatty acid content of cotton seed oil to well beyond its natural limits, reaching up to 65% of total fatty acids. The elevated C16 levels were comprised of predominantly palmitic acid (C16:0, 51%) and to a lesser extent palmitoleic acid (C16:1, 11%) and hexadecadienoic acid (C16:2, 3%), and were stably inherited. Despite of the dramatic alteration of fatty acid composition and a slight yet significant reduction in oil content in these high-palmitic (HP) lines, seed germination remained unaffected. Regiochemical analysis of triacylglycerols (TAG) showed that the increased levels of palmitic acid mainly occurred at the outer positions, while C16:1 and C16:2 were predominantly found in the sn-2 position in both TAG and phosphatidylcholine. Crossing the HP line with previously created high-oleic (HO) and high-stearic (HS) genotypes demonstrated that HP and HO traits could be achieved simultaneously; however, elevation of stearic acid was hindered in the presence of high level of palmitic acid.

  5. Preparation of Solid Phase Microextraction (SPME) Probes through Polyaniline Multiwalled Carbon Nanotubes (PANI/MWCNTs) Coating for the Extraction of Palmitic Acid and Oleic Acid in Organic Solvents.

    Science.gov (United States)

    Khajeamiri, Alireza

    2012-01-01

    A fiber coating from polyaniline (PANI) was electrochemically prepared and employed for Solid phase micreoextraction (SPME). The PANI film was directly electrodeposited on the platinum wire surface using cyclic voltametry (CV) technique. The same method was applied for the preparation of SPME fiber coated by polyaniline multiwalled carbon nanotubes (PANI/MWCNTs) composite. The concentration of sulfuric acid for electropolymerization was 0.1 M in the presence of 0.045 M aniline in aqueous solution. For the electrodeposition of PANI/MWCNT composite, 4 μg/mL of MWCNTs was dispersed into the solution. Film coating was carried out on the platinum wire by repetitive cycling of potentials between 0 and 1.0 V at the scan rate of 0.05 V/s. The applicability of these coatings were assessed through employing a laboratory-made SPME injecting device and gas chromatography with mass spectrometry (GC-MS) for the extraction of palmitic acid and oleic acid from chloroform. The developed method proved to be simple and easy, offering high reproducibility. Both PANI coated and PANI/CNT coated probes had the ability to concentrate palmitic acid and oleic acid on their coating and produced strong signals in GC-MS chromatograms. In the meantime, PANI/CNT coated SPME probes produced signals which were stronger than those produced by PANI coated SPME probes. The amount of extracted palmitic acid and oleic acid from chloroform by the PANI/MWCNTs coating was about 6 and 12 times higher than the amount extracted by plane PANI SPME fibers respectively. It could be suggested that the composite material with CNTs has both an increased surface area and an elevated absorptive capacity which leads to this overall increase in extracted palmitic acid and oleic acid.

  6. [The positional isomers of triglycerides in oils, fats and apoB-100 lipoproteins: palmitic and oleic modes of metabolism of fatty acids-substrates for energy acquiring].

    Science.gov (United States)

    Kotkina, T I; Titov V N

    2014-01-01

    Even total resemblance of content of fatty acids in triglycerides has both no standing for their functional unity nor even identity of their physical chemical characteristics. The etherification of fatty acids in various positions of three-atomic glycerin separates triglycerides on palmitic and oleic substrates for energy acquiring by cells. The kinetic parameters of biochemical reactions under palmitic mode of metabolism of fatty acids are always low. The myocytes in biological reaction of exotrophy experience deficiency of exogenous fatty acids which in vivo is to permanently supply through activation of biological reaction of endotrophy--enhancement of lipolysis in adipocytes. The biological role of insulin is to prevent formation in vivo of palmitic mode of metabolism of saturated and monoenic fatty acids. Under this condition, the necessity to activate lipolysis and to increase in blood plasma concentration of unesteritied fatty acids forms syndrome of resistance to insulin. The surplus of palmitic fatty acid in food and deficiency of insulin show in vivo unidirectional a physiologic action. The formation of palmitic mode of metabolism of energy substrates--portion of pathogenesis of atherosclerosis, metabolic syndrome, obesity, non-alcoholic fatty infiltration of liver and partiallly essential arterial hypertension.

  7. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis.

    Science.gov (United States)

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C; García-Ruiz, Carmen

    2015-12-08

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy.

  8. Regulation of collagen synthesis in human dermal fibroblasts by the sodium and magnesium salts of ascorbyl-2-phosphate.

    Science.gov (United States)

    Geesin, J C; Gordon, J S; Berg, R A

    1993-01-01

    Ascorbic acid has been shown to stimulate collagen synthesis in dermal fibroblasts by increasing the rate of transcription of collagen genes. Experiments involving the use of ascorbic acid require daily supplementation due to the instability of the molecule in aqueous solutions. In order to provide a more stable alternative to ascorbic acid, two salts of ascorbyl-2-phosphate, having a greater chemical stability than ascorbic acid, were tested for their ability to stimulate collagen synthesis in monolayer fibroblast cultures. The concentration and time dependence of their activities were compared with ascorbic acid. The magnesium salt of ascorbyl-2-phosphate was found to be equivalent to ascorbic acid in stimulating collagen synthesis in these assays, while the sodium salt required at least a tenfold greater concentration to produce the same effect as ascorbic acid. Solutions of either ascorbic acid or the ascorbyl-2-phosphate analogs (at 10 mM) in phosphate-buffered saline (PBS) were relatively stable as shown by their decay rates and their ability to stimulate collagen synthesis even after nine days in solution prior to testing their effects on cultured cells. Ascorbic acid was unstable at neutral pH compared to solutions of either sodium or magnesium ascorbyl-2-phosphate. These data support the use of magnesium ascorbyl-2-phosphate in experiments where stability of ascorbic acid is a concern, e.g. in long-term cultures or in in vivo studies.

  9. The effect of oleic and palmitic acid on induction of steatosis and cytotoxicity on rat hepatocytes in primary culture.

    Science.gov (United States)

    Moravcová, A; Červinková, Z; Kučera, O; Mezera, V; Rychtrmoc, D; Lotková, H

    2015-01-01

    In vitro models serve as a tool for studies of steatosis. Palmitic and oleic acids can induce steatosis in cultured hepatocytes. The aim of our study was to verify steatogenic and cytotoxic effects of palmitic acid (PA), oleic acid (OA) and their combinations as well as their impact on functional capacity of rat primary hepatocytes. Hepatocytes were exposed to OA or PA (0.125-2 mmol/l) or their combination at ratios of 3:1, 2:1 or 1:1 at the final concentrations of 0.5-1 mmol/l. Both OA and PA caused a dose-dependent increase in triacylglycerol content in hepatocytes. PA was more steatogenic at 0.25 and 0.5 mmol/l while OA at 0.75 and 1 mmol/l. PA exhibited a dose-dependent cytotoxic effect associated with ROS production, present markers of apoptosis and necrosis and a decrease in albumin production. OA induced a damage of the cytoplasmic membrane from 1 mM concentration. Mixture of OA and PA induced lower cytotoxicity with less weakened functional capacity than did PA alone. Extent of steatosis was comparable to that after exposure to OA alone. In conclusion, OA or combination of OA with PA is more suitable for simulation of simple steatosis than PA alone.

  10. Dietary interesterified fat enriched with palmitic acid induces atherosclerosis by impairing macrophage cholesterol efflux and eliciting inflammation.

    Science.gov (United States)

    Afonso, Milessa Silva; Lavrador, Maria Silvia Ferrari; Koike, Marcia Kiyomi; Cintra, Dennys Esper; Ferreira, Fabiana Dias; Nunes, Valeria Sutti; Castilho, Gabriela; Gioielli, Luiz Antonio; Paula Bombo, Renata; Catanozi, Sergio; Caldini, Elia Garcia; Damaceno-Rodrigues, Nilsa Regina; Passarelli, Marisa; Nakandakare, Edna Regina; Lottenberg, Ana Maria

    2016-06-01

    Interesterified fats are currently being used to replace trans fatty acids. However, their impact on biological pathways involved in the atherosclerosis development was not investigated. Weaning male LDLr-KO mice were fed for 16weeks on a high-fat diet (40% energy as fat) containing polyunsaturated (PUFA), TRANS, palmitic (PALM), palmitic interesterified (PALM INTER), stearic (STEAR) or stearic interesterified (STEAR INTER). Plasma lipids, lipoprotein profile, arterial lesion area, macrophage infiltration, collagen content and inflammatory response modulation were determined. Macrophage cholesterol efflux and the arterial expression of cholesterol uptake and efflux receptors were also performed. The interesterification process did not alter plasma lipid concentrations. Although PALM INTER did not increase plasma cholesterol concentration as much as TRANS, the cholesterol enrichment in the LDL particle was similar in both groups. Moreover, PALM INTER induced the highest IL-1β, MCP-1 and IL-6 secretion from peritoneal macrophages as compared to others. This inflammatory response elicited by PALM INTER was confirmed in arterial wall, as compared to PALM. These deleterious effects of PALM INTER culminate in higher atherosclerotic lesion, macrophage infiltration and collagen content than PALM, STEAR, STEAR INTER and PUFA. These events can partially be attributed to a macrophage cholesterol accumulation, promoted by apoAI and HDL2-mediated cholesterol efflux impairment and increased Olr-1 and decreased Abca1 and Nr1h3 expressions in the arterial wall. Interesterified fats containing palmitic acid induce atherosclerosis development by promoting cholesterol accumulation in LDL particles and macrophagic cells, activating the inflammatory process in LDLr-KO mice.

  11. Susceptibility of podocytes to palmitic acid is regulated by fatty acid oxidation and inversely depends on acetyl-CoA carboxylases 1 and 2.

    Science.gov (United States)

    Kampe, Kapil; Sieber, Jonas; Orellana, Jana Marina; Mundel, Peter; Jehle, Andreas Werner

    2014-02-15

    Type 2 diabetes is characterized by dyslipidemia with elevated free fatty acids (FFAs). Loss of podocytes is a hallmark of diabetic nephropathy, and podocytes are susceptible to saturated FFAs, which induce endoplasmic reticulum (ER) stress and podocyte death. Genome-wide association studies indicate that expression of acetyl-CoA carboxylase (ACC) 2, a key enzyme of fatty acid oxidation (FAO), is associated with proteinuria in type 2 diabetes. Here, we show that stimulation of FAO by aminoimidazole-4-carboxamide-1β-D-ribofuranoside (AICAR) or by adiponectin, activators of the low-energy sensor AMP-activated protein kinase (AMPK), protects from palmitic acid-induced podocyte death. Conversely, inhibition of carnitine palmitoyltransferase (CPT-1), the rate-limiting enzyme of FAO and downstream target of AMPK, augments palmitic acid toxicity and impedes the protective AICAR effect. Etomoxir blocked the AICAR-induced FAO measured with tritium-labeled palmitic acid. The beneficial effect of AICAR was associated with a reduction of ER stress, and it was markedly reduced in ACC-1/-2 double-silenced podocytes. In conclusion, the stimulation of FAO by modulating the AMPK-ACC-CPT-1 pathway may be part of a protective mechanism against saturated FFAs that drive podocyte death. Further studies are needed to investigate the potentially novel therapeutic implications of these findings.

  12. Influence of two different alcohols in the esterification of fatty acids over layered zinc stearate/palmitate.

    Science.gov (United States)

    de Paiva, Eduardo José Mendes; Corazza, Marcos Lúcio; Sierakowski, Maria Rita; Wärnå, Johan; Murzin, Dmitry Yu; Wypych, Fernando; Salmi, Tapio

    2015-10-01

    In this work, esterification of fatty acids (oleic, linoleic and stearic acid) with a commercial zinc carboxylate (a layered compound formed by simultaneous intercalation of stearate and palmitate anions) was performed. Kinetic modeling using a quasi-homogeneous approach successfully fitted experimental data at different molar ratio of fatty acids/alcohols (1-butanol and 1-hexanol) and temperature. An apparent first-order reaction related to all reactants was found and activation energy of 66 kJ/mol was reported. The catalyst showed to be unique, as it can be easily recovered like a heterogeneous catalysts behaving like ionic liquids. In addition, this catalyst demonstrated a peculiar behavior, because higher reactivity was observed with the increase in the alcohols chain length compared to the authors' previous work using ethanol.

  13. Endoplasmic reticulum stress involved in high-fat diet and palmitic acid-induced vascular damages and fenofibrate intervention

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yunxia, E-mail: wwwdluyx@sina.com [Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032 (China); The Comprehensive Laboratory, Anhui Medical University, Hefei, Anhui 230032 (China); Cheng, Jingjing [Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032 (China); Chen, Li [Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032 (China); Department of Medical Laboratory, Anhui Provincial Hospital, Hefei, Anhui 230001 (China); Li, Chaofei; Chen, Guanjun [Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032 (China); Gui, Li [The Comprehensive Laboratory, Anhui Medical University, Hefei, Anhui 230032 (China); Shen, Bing [Department of Physiology, Anhui Medical University, Hefei, Anhui 230032 (China); Zhang, Qiu [Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022 (China)

    2015-02-27

    Fenofibrate (FF) is widely used to lower blood lipids in clinical practice, but whether its protective effect on endothelium-dependent vasodilatation (EDV) in thoracic aorta is related with endoplasmic reticulum (ER) stress remains unknown. In this study, female Sprauge Dawley rats were divided into standard chow diets (SCD), high-fat diets (HFD) and HFD plus FF treatment group (HFD + FF) randomly. The rats of latter two groups were given HFD feeding for 5 months, then HFD + FF rats were treated with FF (30 mg/kg, once daily) via gavage for another 2 months. The pathological and tensional changes, protein expression of eNOS, and ER stress related genes in thoracic aorta were measured. Then impacts of palmitic acid (PA) and FF on EDV of thoracic aorta from normal female SD rats were observed. Ultimately the expression of ER stress related genes were assessed in primary mouse aortic endothelial cells (MAEC) treated by fenofibric acid (FA) and PA. We found that FF treatment improved serum lipid levels and pathological changes in thoracic aorta, accompanied with decreased ER stress and increased phosphorylation of eNOS. FF pretreatment also improved EDV impaired by different concentrations of PA treatment. The dose- and time-dependent inhibition of cell proliferation by PA were inverted by FA pretreatment. Phosphorylation of eNOS and expression of ER stress related genes were all inverted by FA pretreatment in PA-treated MAEC. Our findings show that fenofibrate recovers damaged EDV by chronic HFD feeding and acute stimulation of PA, this effect is related with decreased ER stress and increased phosphorylation of eNOS. - Highlights: • Fenofibrate treatment improved pathological changes in thoracic aorta by chronic high-fat-diet feeding. • Fenofibrate pretreatment improved endothelium-dependent vasodilation impaired by different concentrations of palmitic acid. • The inhibition of proliferation in endothelial cells by palmitic acid were inverted by fenofibric

  14. Inactivation of Salmonella spp. and Listeria spp. by Palmitic, Stearic, and Oleic Acid Sophorolipids and Thiamine Dilauryl Sulfate.

    Science.gov (United States)

    Zhang, Xuejie; Ashby, Richard; Solaiman, Daniel K Y; Uknalis, Joseph; Fan, Xuetong

    2016-01-01

    Food contaminated with human pathogens, such as Salmonella spp. and Listeria monocytogenes, frequently causes outbreaks of foodborne illness. Consumer concern over the use of synthesized antimicrobials to enhance microbial food safety has led to a search of natural alternatives. The objectives of this study were to evaluate the antimicrobial activity of various types of sophorolipids (SLs) and thiamine dilauryl sulfate (TDS) against pathogenic Salmonella spp. and Listeria spp. Both free and lactonic forms of SLs were synthesized from Candida bombicola using palmitic, stearic, and oleic acids as co-feedstocks. TDS and purified SLs were used to treat cocktails of Salmonella spp. and Listeria spp. Results showed that lactonic SLs had higher antimicrobial activity than the free-acid form, and Gram-positive Listeria spp. were more susceptible to SLs and TDS than Gram-negative Salmonella spp. Listeria populations were reduced from an initial concentration of 7.2 log CFU/mL to a non-detectible level within a 1 min treatment of 0.1% (w/v) lactonic SLs and TDS in the presence of 20% ethanol, which itself did not significantly reduce the populations. There were no significant differences in the antimicrobial efficacy among palmitic, stearic, and oleic acid-based SLs against Salmonella or Listeria spp. Ethanol was utilized to improve the antimicrobial activity of free-acid SLs against Gram-negative bacteria. In general, TDS was more effective than the SLs against Salmonella and Listeria spp. scanning electron microscopy and transmission electron microscopy images showed that SLs and TDS damaged Listeria cell membranes and resulted in cell lysis. Overall, our results demonstrated that SLs and TDS in the presence of ethanol can be used to inactivate foodborne pathogens, especially Gram-positive bacteria.

  15. Inactivation of Salmonella spp. and Listeria spp. by Palmitic, Stearic, and Oleic Acid Sophorolipids and Thiamine Dilauryl Sulfate

    Science.gov (United States)

    Zhang, Xuejie; Ashby, Richard; Solaiman, Daniel K. Y.; Uknalis, Joseph; Fan, Xuetong

    2016-01-01

    Food contaminated with human pathogens, such as Salmonella spp. and Listeria monocytogenes, frequently causes outbreaks of foodborne illness. Consumer concern over the use of synthesized antimicrobials to enhance microbial food safety has led to a search of natural alternatives. The objectives of this study were to evaluate the antimicrobial activity of various types of sophorolipids (SLs) and thiamine dilauryl sulfate (TDS) against pathogenic Salmonella spp. and Listeria spp. Both free and lactonic forms of SLs were synthesized from Candida bombicola using palmitic, stearic, and oleic acids as co-feedstocks. TDS and purified SLs were used to treat cocktails of Salmonella spp. and Listeria spp. Results showed that lactonic SLs had higher antimicrobial activity than the free-acid form, and Gram-positive Listeria spp. were more susceptible to SLs and TDS than Gram-negative Salmonella spp. Listeria populations were reduced from an initial concentration of 7.2 log CFU/mL to a non-detectible level within a 1 min treatment of 0.1% (w/v) lactonic SLs and TDS in the presence of 20% ethanol, which itself did not significantly reduce the populations. There were no significant differences in the antimicrobial efficacy among palmitic, stearic, and oleic acid-based SLs against Salmonella or Listeria spp. Ethanol was utilized to improve the antimicrobial activity of free-acid SLs against Gram-negative bacteria. In general, TDS was more effective than the SLs against Salmonella and Listeria spp. scanning electron microscopy and transmission electron microscopy images showed that SLs and TDS damaged Listeria cell membranes and resulted in cell lysis. Overall, our results demonstrated that SLs and TDS in the presence of ethanol can be used to inactivate foodborne pathogens, especially Gram-positive bacteria. PMID:28066390

  16. Mono-thioesters and di-thioesters by lipase-catalyzed reactions of alpha,omega-alkanedithiols with palmitic acid or its methyl ester.

    Science.gov (United States)

    Weber, N; Klein, E; Vosmann, K; Mukherjee, K D

    2004-06-01

    1- S-Mono-palmitoyl-hexanedithiol and 1- S-mono-palmitoyl-octanedithiol were prepared in high yield (80-90%) by solvent-free lipase-catalyzed thioesterification of palmitic acid with the corresponding alpha,omega-alkanedithiols in vacuo. Similarly, 1,6-di- S-palmitoyl-hexanedithiol and 1,8-di- S-palmitoyl-octanedithiol were prepared in moderate yield (50-60%) by solvent-free lipase-catalyzed thioesterification of palmitic acid with 1- S-Mono-palmitoyl-hexanedithiol and 1- S-mono-palmitoyl-octanedithiol, respectively. An immobilized lipase preparation from Rhizomucor miehei (Lipozyme RM IM) was more effective than a lipase B preparation from Candida antarctica (Novozym 435) or a lipase preparation from Thermomyces lanuginosus (Lipozyme TL IM). Lipase-catalyzed transthioesterifications of methyl palmitate with alpha,omega-alkanedithiols using the same enzymes were less effective than thioesterification for the preparation of the corresponding 1- S-mono-palmitoyl thioesters.

  17. The difluoromethylene (CF2) group in aliphatic chains: Synthesis and conformational preference of palmitic acids and nonadecane containing CF2 groups.

    Science.gov (United States)

    Wang, Yi; Callejo, Ricardo; Slawin, Alexandra M Z; O'Hagan, David

    2014-01-06

    The syntheses of palmitic acids and a nonadecane are reported with CF2 groups located 1,3 or 1,4 to each other along the aliphatic chain. Specifically 8,8,10,10- and 8,8,11,11-tetrafluorohexadecanoic acids (6b and 6c) are prepared as well as the singly modified analogue 8,8-difluorohexadecanoic acid (6a). Also 8,8,11,11-tetrafluorononadecane (27) is prepared as a pure hydrocarbon containing a 1,4-di-CF2 motif. The modified palmitic acids are characterized by differential scanning calorimetry (DSC) to determine melting points and phase behaviour relative to palmitic acid (62.5 °C). It emerges that 6c, with the CF2 groups placed 1,4- to each other, has a significantly higher melting point (89.9 °C) when compared to the other analogues and palmitic acid itself. It is a crystalline compound and the structure reveals an extended anti-zig-zag chain. Similarly 8,8,11,11-tetrafluorononadecane (27) adopts an extended anti-zig-zag structure. This is rationalized by dipolar relaxation between the two CF2 groups placed 1,4 to each other in the extended anti-zig-zag chain and suggests a design modification for long chain aliphatics which can introduce conformational stability.

  18. Melt crystallization for refinement of triolein and palmitic acid mixture as a model waste oil for biodiesel fuel production

    Science.gov (United States)

    Fukui, Keisuke; Maeda, Kouji; Kuramochi, Hidetoshi

    2013-06-01

    Melt crystallization using an annular vessel with two circular cylinders was applied to produce high-quality vegetable oil from waste oil. The inner cylinder was cooled at a constant rate and rotated, and the outer cylinder was heated at a constant temperature. The melt was solidified on the inner cylinder surface. The binary system of triolein and palmitic acid was used as the model waste oil. We measured the distribution coefficient of triolein. Suitable operation conditions were proposed to attain a high yield and a high purity of triolein from waste oil. The distribution coefficient correlated well with the theoretical equation derived on the basis of the "local lever rule" at the interface of the crystal layer and melt [1].

  19. Production of ω-hydroxy palmitic acid using CYP153A35 and comparison of cytochrome P450 electron transfer system in vivo.

    Science.gov (United States)

    Jung, Eunok; Park, Beom Gi; Ahsan, Md Murshidul; Kim, Joonwon; Yun, Hyungdon; Choi, Kwon-Young; Kim, Byung-Gee

    2016-12-01

    Bacterial cytochrome P450 enzymes in cytochrome P450 (CYP)153 family were recently reported as fatty acid ω-hydroxylase. Among them, CYP153As from Marinobacter aquaeolei VT8 (CYP153A33), Alcanivorax borkumensis SK2 (CYP153A13), and Gordonia alkanivorans (CYP153A35) were selected, and their specific activities and product yields of ω-hydroxy palmitic acid based on whole cell reactions toward palmitic acid were compared. Using CamAB as redox partner, CYP153A35 and CYP153A13 showed the highest product yields of ω-hydroxy palmitic acid in whole cell and in vitro reactions, respectively. Artificial self-sufficient CYP153A35-BMR was constructed by fusing it to the reductase domain of CYP102A1 (i.e., BM3) from Bacillus megaterium, and its catalytic activity was compared with CYP153A35 and CamAB systems. Unexpectedly, the system with CamAB resulted in a 1.5-fold higher yield of ω-hydroxy palmitic acid than that using A35-BMR in whole cell reactions, whereas the electron coupling efficiency of CYP153A35-BM3 reductase was 4-fold higher than that of CYP153A35 and CamAB system. Furthermore, various CamAB expression systems according to gene arrangements of the three proteins and promoter strength in their gene expression were compared in terms of product yields and productivities. Tricistronic expression of the three proteins in the order of putidaredoxin (CamB), CYP153A35, and putidaredoxin reductase (CamA), i.e., A35-AB2, showed the highest product yield from 5 mM palmitic acid for 9 h in batch reaction owing to the concentration of CamB, which is the rate-limiting factor for the activity of CYP153A35. However, in fed-batch reaction, A35-AB1, which expressed the three proteins individually using three T7 promoters, resulted with the highest product yield of 17.0 mM (4.6 g/L) ω-hydroxy palmitic acid from 20 mM (5.1 g/L) palmitic acid for 30 h.

  20. Dietary oleic and palmitic acids modulate the ratio of triacylglycerols to cholesterol in postprandial triacylglycerol-rich lipoproteins in men and cell viability and cycling in human monocytes.

    Science.gov (United States)

    López, Sergio; Bermúdez, Beatriz; Pacheco, Yolanda M; López-Lluch, Guillermo; Moreda, Wenceslao; Villar, José; Abia, Rocío; Muriana, Francisco J G

    2007-09-01

    The postprandial metabolism of dietary fats produces triacylglycerol (TG)-rich lipoproteins (TRL) that could interact with circulating cells. We investigated whether the ratios of oleic:palmitic acid and monounsaturated fatty acids (MUFA):SFA in the diet affect the ratio of TG:cholesterol (CHOL) in postprandial TRL of healthy men. The ability of postprandial TRL at 3 h (early postprandial period) and 5 h (late postprandial period) to affect cell viability and cycle in the THP-1 human monocytic cell line was also determined. In a randomized, crossover experiment, 14 healthy volunteers (Caucasian men) ate meals enriched (50 g/m(2) body surface area) in refined olive oil, high-palmitic sunflower oil, butter, and a mixture of vegetable and fish oils, which had ratios of oleic:palmitic acid (MUFA:SFA) of 6.83 (5.43), 2.36 (2.42), 0.82 (0.48), and 13.81 (7.08), respectively. The ratio of TG:CHOL in postprandial TRL was inversely correlated (r = -0.89 to -0.99) with the ratio of oleic:palmitic acid and with the MUFA:SFA ratio in the dietary fats (P the cell cycle in THP-1 cells.

  1. Monocyte adhesion induced by multi-walled carbon nanotubes and palmitic acid in endothelial cells and alveolar-endothelial co-cultures

    DEFF Research Database (Denmark)

    Cao, Yi; Roursgaard, Martin; Jacobsen, Nicklas Raun;

    2016-01-01

    Free palmitic acid (PA) is a potential pro-atherogenic stimulus that may aggravate particle-mediated cardiovascular health effects. We hypothesized that the presence of PA can aggravate oxidative stress and endothelial activation induced by multi-walled carbon nanotube (MWCNT) exposure in vitro. We...

  2. The microstructure of the stratum corneum lipid barrier: mid-infrared spectroscopic studies of hydrated ceramide:palmitic acid:cholesterol model systems.

    Science.gov (United States)

    Garidel, Patrick; Fölting, Bettina; Schaller, Ingrid; Kerth, Andreas

    2010-08-01

    The current mid-infrared spectroscopic study is a systematic investigation of hydrated stratum corneum lipid barrier model systems composed of an equimolar mixture of a ceramide, free palmitic acid and cholesterol. Four different ceramide molecules (CER NS, CER NP, CER NP-18:1, CER AS) were investigated with regard to their microstructure arrangement in a stratum corneum lipid barrier model system. Ceramide molecules were chosen from the sphingosine and phytosphingosine groups. The main differences in the used ceramide molecules result from their polar head group architecture as well as hydrocarbon chain properties. The mixing properties with cholesterol and palmitic acid are considered. This is feasible by using perdeuterated palmitic acid and proteated ceramides. Both molecules can be monitored separately, within the same experiment, using mid-infrared spectroscopy; no external label is necessary. At physiological relevant temperatures, between 30 and 35 degrees C, orthorhombic as well as hexagonal chain packing of the ceramide molecules is observed. The formation of these chain packings are extremely dependent on lipid hydration, with a decrease in ceramide hydration favouring the formation of orthorhombic hydrocarbon chain packing, as well as temperature. The presented data suggest in specific cases phase segregation in ceramide and palmitic acid rich phases. However, other ceramides like CER NP-18:1 show a rather high miscibility with palmitic acid and cholesterol. For all investigated ternary systems, more or less mixing of palmitic acid with cholesterol is observed. The investigated stratum corneum mixtures exhibit a rich polymorphism from crystalline domains with heterogeneous lipid composition to a "fluid" homogeneous phase. Thus, a single gel phase is not evident for the presented stratum corneum model systems. The study shows, that under skin physiological conditions (pH 5.5, hydrated, 30-35 degrees C) ternary systems composed of an equimolar ratio of

  3. Preparation and thermal properties of form-stable palmitic acid/active aluminum oxide composites as phase change materials for latent heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Guiyin, E-mail: gyfang@nju.edu.cn [School of Physics, Nanjing University, Nanjing 210093 (China); Li, Hui [Department of Material Science and Engineering, Nanjing University, Nanjing 210093 (China); Cao, Lei; Shan, Feng [School of Physics, Nanjing University, Nanjing 210093 (China)

    2012-12-14

    Form-stable palmitic acid (PA)/active aluminum oxide composites as phase change materials were prepared by adsorbing liquid palmitic acid into active aluminum oxide. In the composites, the palmitic acid was used as latent heat storage materials, and the active aluminum oxide was used as supporting material. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine the chemical structure, crystalloid phase and microstructure of the composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetry analyzer (TGA). The FT-IR analyses results indicated that there is no chemical interaction between the palmitic acid and active aluminum oxide. The SEM results showed that the palmitic acid was well adsorbed into porous network of the active aluminum oxide. The DSC results indicated that the composites melt at 60.25 Degree-Sign C with a latent heat of 84.48 kJ kg{sup -1} and solidify at 56.86 Degree-Sign C with a latent heat of 78.79 kJ kg{sup -1} when the mass ratio of the PA to active aluminum oxide is 0.9:1. Compared with that of the PA, the melting and solidifying time of the composites CPCM5 was reduced by 20.6% and 21.4% because of the increased heat transfer rate through EG addition. The TGA results showed that the active aluminum oxide can improve the thermal stability of the composites. -- Highlights: Black-Right-Pointing-Pointer Form-stable PA/active aluminum oxide composites as PCMs were prepared. Black-Right-Pointing-Pointer Chemical structure, crystalloid phase and microstructure of composites were determined. Black-Right-Pointing-Pointer Thermal properties and thermal stability of the composites were investigated. Black-Right-Pointing-Pointer Expanded graphite can improve thermal conductivity of the composites.

  4. 21 CFR 186.1771 - Sodium palmitate.

    Science.gov (United States)

    2010-04-01

    ..., CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a white... hydroxide and palmitic acid. (b) In accordance with § 186.1(b)(1), the ingredient is used as a...

  5. Palmitic acid increased yields of milk and milk fat and nutrient digestibility across production level of lactating cows.

    Science.gov (United States)

    Piantoni, P; Lock, A L; Allen, M S

    2013-01-01

    The effects of palmitic acid supplementation on feed intake, digestibility, and metabolic and production responses were evaluated in dairy cows with a wide range of milk production (34.5 to 66.2 kg/d) in a crossover design experiment with a covariate period. Thirty-two multiparous Holstein cows (151 ± 66 d in milk) were randomly assigned to treatment sequence within level of milk production. Treatments were diets supplemented (2% of diet DM) with palmitic acid (PA; 99% C16:0) or control (SH; soyhulls). Treatment periods were 21 d, with the final 4 d used for data and sample collection. Immediately before the first treatment period, cows were fed the control diet for 21 d and baseline values were obtained for all variables (covariate period). Milk production measured during the covariate period (preliminary milk yield) was used as covariate. In general, no interactions were detected between treatment and preliminary milk yield for the response variables measured. The PA treatment increased milk fat percentage (3.40 vs. 3.29%) and yields of milk (46.0 vs. 44.9 kg/d), milk fat (1.53 vs. 1.45 kg/d), and 3.5% fat-corrected milk (44.6 vs. 42.9 kg/d), compared with SH. Concentrations and yields of protein and lactose were not affected by treatment. The PA treatment did not affect dry matter (DM) intake or body weight, tended to decrease body condition score (2.93 vs. 2.99), and increased feed efficiency (3.5% fat-corrected milk/DM intake; 1.60 vs. 1.54), compared with SH. The PA treatment increased total-tract digestibility of neutral detergent fiber (39.0 vs.35.7%) and organic matter (67.9 vs. 66.2%), but decreased fatty acid (FA) digestibility (61.2 vs. 71.3%). As total FA intake increased, total FA digestibility decreased (R(2) = 0.51) and total FA absorbed increased (quadratic R(2) = 0.82). Fatty acid yield response, calculated as the additional FA yield secreted in milk per unit of additional FA intake, was 11.7% for total FA and 16.5% for C16:0 plus cis-9 C16:1 FA

  6. 酶催化合成维生素C脂肪酸酯的反应条件优化%Optimization of the enzymatic synthesis of L-ascorbyl fatty acid esters

    Institute of Scientific and Technical Information of China (English)

    宋秋红; 王熙; 田平芳

    2009-01-01

    以维生素C(Vc)和若干种脂肪酸为底物,采用自制假丝酵母Candida sp. 99-125固定化脂肪酶,催化合成维生素C脂肪酸酯.结果表明,在该酯化反应中,油酸为最佳脂肪酸底物,丙酮为最佳反应介质.同时研究了各反应因素对Vc转化率的影响,优化后的反应条件为:当Vc浓度为0.06mol/L时,温度40*#℃,固定化酶量1.5*#g,油酸与Vc物质的量比为5∶1,反应时间48*#h,分子筛添加量0.5*#g,底物Vc分4次流加,Vc转化率可达91%,批次实验表明该固定化酶在重复使用10次后仍具较高活力.%The enzymatic synthesis of L-ascorbyl fatty acid esters (AFAE) has been studied using a self-made immobilized lipase generated by Candida sp. 99 - 125 as the biocatalyst. Oleic acid was found to be the best source of a fatty acid acyl group in the synthesis of AFAEs. Through screening of different reaction media, ace-tone was found to be the most suitable solvent for the esterification. The effects of various other factors on the synthesis of AFAEs were also investigated. Under the following optimized reaction conditions: initial ascorbic acid (vitamin C) concentration (Vc) of 0.06mol/L at 40℃, 1.5g of immobilized enzyme, substrate molar ratio of 5:1, reaction time of 48 h, content of molecular sieve of 0.5 g and four times fed-batch addition of the sub-strate, an esterification ratio of 91 % was obtained. Furthermore, repeated batch reactions revealed the durabili-ty of the immobilized lipase, which retained high activity after sequential reaction for 10 rounds.

  7. Compared with stearic acid, palmitic acid increased the yield of milk fat and improved feed efficiency across production level of cows.

    Science.gov (United States)

    Rico, J E; Allen, M S; Lock, A L

    2014-02-01

    The effects of dietary palmitic and stearic acids on feed intake, yields of milk and milk components, and feed efficiency of dairy cows were evaluated in an experiment with a crossover arrangement of treatments with a covariate period. Cows with a wide range of milk production (38 to 65 kg/d) were used to determine if response to fat supplementation varied according to production level. Thirty-two Holstein cows (143 ± 61 d in milk) were assigned randomly to a treatment sequence within level of milk production. Treatments were diets supplemented (2% of diet dry matter) with palmitic acid (PA; 97.9% C16:0) or stearic acid (SA; 97.4% C18:0). Treatment periods were 21 d and cows were fed a nonfat supplemented diet for 14 d immediately before the first treatment period. The final 4d of each period were used for sample and data collection. Milk production measured during the covariate period (preliminary milk yield) was used as the covariate. No interactions were detected between treatment and preliminary milk yield for the production response variables measured. Compared with SA, the PA treatment increased milk fat concentration (3.66 vs. 3.55%) and yield (1.68 vs. 1.59 kg/d), and 3.5% fat-corrected milk yield (47.5 vs. 45.6 kg/d). Treatment did not affect dry matter intake, milk yield, milk protein yield, body weight, or body condition score. Milk protein concentration was lower for PA compared with SA treatment (3.24 vs. 3.29%). The PA treatment increased feed efficiency (3.5% fat-corrected milk yield/dry matter intake) compared with SA (1.48 vs. 1.40). The increase in milk fat yield by PA was entirely accounted for by a 24% increase in 16-carbon fatty acid output into milk. Yields of de novo (3.2%) and preformed fatty acids (2.9%) were only slightly decreased by PA relative to SA. The PA treatment increased plasma concentration of nonesterified fatty acids (96.3 vs. 88.2 μEq/L) and glucose (56.6 vs. 55.7 mg/dL) compared with SA, but insulin and

  8. Palmitic acid induces production of proinflammatory cytokines interleukin-6, interleukin-1β, and tumor necrosis factor-α via a NF-κB-dependent mechanism in HaCaT keratinocytes.

    Science.gov (United States)

    Zhou, Bing-rong; Zhang, Jia-an; Zhang, Qian; Permatasari, Felicia; Xu, Yang; Wu, Di; Yin, Zhi-qiang; Luo, Dan

    2013-01-01

    To investigate whether palmitic acid can be responsible for the induction of inflammatory processes, HaCaT keratinocytes were treated with palmitic acid at pathophysiologically relevant concentrations. Secretion levels of interleukin-6 (IL-6), tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), NF- κ B nuclear translocation, NF- κ B activation, Stat3 phosphorylation, and peroxisome proliferator-activated receptor alpha (PPAR α) mRNA and protein levels, as well as the cell proliferation ability were measured at the end of the treatment and after 24 hours of recovery. Pyrrolidine dithiocarbamate (PDTC, a selective chemical inhibitor of NF- κ B) and goat anti-human IL-6 polyclonal neutralizing antibody were used to inhibit NF- κ B activation and IL-6 production, respectively. Our results showed that palmitic acid induced an upregulation of IL-6, TNF- α , IL-1 β secretions, accompanied by NF- κ B nuclear translocation and activation. Moreover, the effect of palmitic acid was accompanied by PPAR α activation and Stat3 phosphorylation. Palmitic acid-induced IL-6, TNF- α , IL-1 β productions were attenuated by NF- κ B inhibitor PDTC. Palmitic acid was administered in amounts able to elicit significant hyperproliferation and can be attenuated by IL-6 blockage. These data demonstrate for the first time that palmitic acid can stimulate IL-6, TNF- α , IL-1 β productions in HaCaT keratinocytes and cell proliferation, thereby potentially contributing to acne inflammation and pilosebaceous duct hyperkeratinization.

  9. Binding of Na+ and K+ to the Headgroup of Palmitic Acid Monolayers Studied by Vibrational Sum Frequency Generation Spectroscopy

    Science.gov (United States)

    Huang, Zishuai; Allen, Heather C.

    2012-06-01

    Alkali cations are critical in biological systems due to their electrical interaction with cell membranes. While Na+ and K+ share similar chemical and physical properties, they can exhibit differences when interacting with biological membranes. These phenomena may be modeled using a Langmuir monolayer of surfactant on alkali chloride solutions. Vibrational sum frequency generation (VSFG) spectroscopy is an interface specific technique that is widely employed to study molecular organization at surfaces and interfaces. VSFG spectroscopy was used to probe the CO2- vibrational mode for the carboxylic acid headgroup of palmitic acid (PA) spread on the surface of NaCl and KCl solutions in the vibrational region between 1400 and 1500 cm-1. The ability of Na+ and K+ to bind with the carboxylic headgroup of PA is revealed by observing peak positions (˜1410 cm-1 and ˜1470 cm-1) and relative intensity for the CO2- peaks. These results are compared and discussed with perspective toward elucidating interfacial PA headgroup organization. The time evolution for the PA CO2- peaks is also monitored after monolayer spreading via VSFG and these results are presented as well.

  10. MiRNA-194 Regulates Palmitic Acid-Induced Toll-Like Receptor 4 Inflammatory Responses in THP-1 Cells.

    Science.gov (United States)

    Tian, Huiqun; Liu, Chaoqi; Zou, Xiaohua; Wu, Wei; Zhang, Changcheng; Yuan, Ding

    2015-05-13

    There is strong evidence to suggest that inflammatory responses link obesity and diseases, and the understanding of obesity-induced inflammatory mechanisms is central to the pathogenesis of diseases such asnonalcoholic fatty liver disease(NAFLD) and atherosclerosis that are modified by obesity. Based on this, anti-inflammatory treatments become a potential therapies for obesity-related diseases like NAFLD.A critical role of toll-like receptor (TLR) and its downstream molecules such as tumor necrosis factor receptor-associated factor 6(TRAF6) has been documented in inflammatory response induced by fatty acid. TLR pathway regulation provides a new insight to controlling the inflammatory response induced by fatty acid. Taken together, our study was aimed to understand the mechanism of fatty acid-mediated inflammation and look for an effective target which can prevent the inflammatory response induced by obesity. In this study, we used the saturated fatty acid palmitic acid (PA) to activate TLR4 signal pathway in human monocyte cells THP-1 that established an intracellular inflammatory model. Followed with activated TLR4, downstream molecular TRAF6 was upregulated and ultimately induced proinflammatory cytokine production. Based on this model, we also found that PA downregulated miR-194 expression with TLR4 activation. Moreover, our results showed that key signal molecular TRAF6 is a target of miR-194, overexpression of miR-194 directly decreased TRAF6 expression and attenuated the release of proinflammatory cytokine TNF-α in PA-activated monocyte THP-1. We conclude that miR-194 negatively regulates the TLR4 signal pathway which is activated by PA through directly negative TRAF6 expression.

  11. Diacylglycerol kinase δ phosphorylates phosphatidylcholine-specific phospholipase C-dependent, palmitic acid-containing diacylglycerol species in response to high glucose levels.

    Science.gov (United States)

    Sakai, Hiromichi; Kado, Sayaka; Taketomi, Akinobu; Sakane, Fumio

    2014-09-19

    Decreased expression of diacylglycerol (DG) kinase (DGK) δ in skeletal muscles is closely related to the pathogenesis of type 2 diabetes. To identify DG species that are phosphorylated by DGKδ in response to high glucose stimulation, we investigated high glucose-dependent changes in phosphatidic acid (PA) molecular species in mouse C2C12 myoblasts using a newly established liquid chromatography/MS method. We found that the suppression of DGKδ2 expression by DGKδ-specific siRNAs significantly inhibited glucose-dependent increases in 30:0-, 32:0-, and 34:0-PA and moderately attenuated 30:1-, 32:1-, and 34:1-PA. Moreover, overexpression of DGKδ2 also enhanced the production of these PA species. MS/MS analysis revealed that these PA species commonly contain palmitic acid (16:0). D609, an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), significantly inhibited the glucose-stimulated production of the palmitic acid-containing PA species. Moreover, PC-PLC was co-immunoprecipitated with DGKδ2. These results strongly suggest that DGKδ preferably metabolizes palmitic acid-containing DG species supplied from the PC-PLC pathway, but not arachidonic acid (20:4)-containing DG species derived from the phosphatidylinositol turnover, in response to high glucose levels.

  12. Enteric neuropathy can be induced by high fat diet in vivo and palmitic acid exposure in vitro.

    Directory of Open Access Journals (Sweden)

    Ulrikke Voss

    Full Text Available OBJECTIVE: Obese and/or diabetic patients have elevated levels of free fatty acids and increased susceptibility to gastrointestinal symptoms. Since the enteric nervous system is pivotal in regulating gastrointestinal functions alterations or neuropathy in the enteric neurons are suspected to occur in these conditions. Lipid induced intestinal changes, in particular on enteric neurons, were investigated in vitro and in vivo using primary cell culture and a high fat diet (HFD mouse model. DESIGN: Mice were fed normal or HFD for 6 months. Intestines were analyzed for neuronal numbers, remodeling and lipid accumulation. Co-cultures of myenteric neurons, glia and muscle cells from rat small intestine, were treated with palmitic acid (PA (0 - 10(-3 M and / or oleic acid (OA (0 - 10(-3 M, with or without modulators of intracellular lipid metabolism. Analyses were by immunocyto- and histochemistry. RESULTS: HFD caused substantial loss of myenteric neurons, leaving submucous neurons unaffected, and intramuscular lipid accumulation in ileum and colon. PA exposure in vitro resulted in neuronal shrinkage, chromatin condensation and a significant and concentration-dependent decrease in neuronal survival; OA exposure was neuroprotective. Carnitine palmitoyltransferase 1 inhibition, L-carnitine- or alpha lipoic acid supplementation all counteracted PA-induced neuronal loss. PA or OA alone both caused a significant and concentration-dependent loss of muscle cells in vitro. Simultaneous exposure of PA and OA promoted survival of muscle cells and increased intramuscular lipid droplet accumulation. PA exposure transformed glia from a stellate to a rounded phenotype but had no effect on their survival. CONCLUSIONS: HFD and PA exposure are detrimental to myenteric neurons. Present results indicate excessive palmitoylcarnitine formation and exhausted L-carnitine stores leading to energy depletion, attenuated acetylcholine synthesis and oxidative stress to be main

  13. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Chandan [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Ito, Takashi [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Kawahara, Ko-ichi [Department of Biomedical Engineering, Osaka Institute of Technology, Osaka (Japan); Shrestha, Binita; Yamakuchi, Munekazu; Hashiguchi, Teruto [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Maruyama, Ikuro, E-mail: rinken@m3.kufm.kagoshima-u.ac.jp [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan)

    2013-08-09

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis.

  14. [Effects of palmitic acid on activity of uncoupling proteins and proton leak in in vitro cerebral mitochondria from the rats exposed to simulated high altitude hypoxia].

    Science.gov (United States)

    Xu, Yu; Liu, Jun-Ze; Xia, Chen

    2008-02-25

    To reveal the roles of uncoupling proteins (UCPs) in disorder of mitochondrial oxidative phosphorylation induced by free fatty acid during hypoxic exposure, the effects of palmitic acid on activity of UCPs, proton leak and mitochondrial membrane potential in hypoxia-exposed rat brain mitochondria were observed in vitro. Adult Sprague-Dawley (SD) rats were set randomly into control, acute hypoxia and chronic hypoxia groups (n=8 in each group). The acute and chronic hypoxic rats were exposed to simulated 5000 m high altitude in a hypobaric chamber 23 h/d for 3 d and 30 d, respectively. The brain mitochondria were isolated by centrifugation. UCP content and activity were detected by [(3)H]-GTP binding method. The proton leak was measured by TPMP(+) electrode and oxygen electrode. The membrane potential of mitochondria was calculated by detecting the fluorescence from Rodamine 123. Hypoxic exposure resulted in an increase in UCP activity and content as well as proton leak, but a decrease in the membrane potential of rat brain mitochondria. Palmitic acid resulted in further increases in UCP activity and content as well as proton leak, and further decrease in membrane potential of brain mitochondria in vitro from hypoxia-exposed rats, but hypoxic exposure decreased the reactivity of cerebral mitochondria to palmitic acid, especially in the acute hypoxia group. There was a negative correlation between mitochondrial proton leak and K(d) value (representing derivative of UCP activity, PB(max) (representing the maximal content of UCPs in mitochondrial inner membrane, P<0.01, r = 0.856). Cerebral mitochondrial membrane potential was negatively correlated with proton leak (P<0.01, r = -0.880). It is suggested that hypoxia-induced proton leak enhancement and membrane potential decrease are correlated with the increased activity of UCPs. Hypoxia can also decrease the sensitivity of cerebral mitochondria to palmitic acid, which may be a self-protective mechanism in high altitude

  15. Comparison of enriched palmitic acid and calcium salts of palm fatty acids distillate fat supplements on milk production and metabolic profiles of high-producing dairy cows.

    Science.gov (United States)

    Rico, D E; Ying, Y; Harvatine, K J

    2014-09-01

    A variable response to fat supplementation has been reported in dairy cows, which may be due to cow production level, environmental conditions, or diet characteristics. In the present experiment, the effect of a high palmitic acid supplement was investigated relative to a conventional Ca salts of palm fatty acids (Ca-FA) supplement in 16 high-producing Holstein cows (46.6±12.4kg of milk/d) arranged in a crossover design with 14-d periods. The experiment was conducted in a non-heat-stress season with 29.5% neutral detergent fiber diets. Treatments were (1) high palmitic acid (PA) supplement fed as free FA [1.9% of dry matter (DM); 84.8% C16:0] and (2) Ca-FA supplement (2.3% of DM; 47.7% C16:0, 35.9% C18:1, and 8.4% C18:2). The PA supplement tended to increase DM intake, and increased the yields of milk and energy-corrected milk. Additionally, PA increased the yields of milk fat, protein, and lactose, whereas milk concentrations of these components were not affected. The yields of milk de novo and 16-C FA were increased by PA compared with Ca-FA (7 and 20%, respectively), whereas the yield of preformed FA was higher in Ca-FA. A reduction in milk fat concentration of de novo and 16-C FA and a marginal elevation in trans-10 C18:1 in Ca-FA is indicative of altered ruminal biohydrogenation and increased risk of milk fat depression. No effect of treatment on plasma insulin was observed. A treatment by time interaction was detected for plasma nonesterified fatty acids (NEFA), which tended to be higher in Ca-FA than in PA before feeding. Overall, the palmitic acid supplement improved production performance in high-producing cows while posing a lower risk for milk fat depression compared with a supplement higher in unsaturated FA.

  16. Palmitic acid-rich diet suppresses glucose-stimulated insulin secretion (GSIS) and induces endoplasmic reticulum (ER) stress in pancreatic islets in mice.

    Science.gov (United States)

    Hirata, Takumi; Kawai, Toshihide; Hirose, Hiroshi; Tanaka, Kumiko; Kurosawa, Hideaki; Fujii, Chikako; Fujita, Haruhisa; Seto, Yoshiko; Matsumoto, Hideo; Itoh, Hiroshi

    2016-01-01

    The objective was to clarify whether dietary palmitic acid supplementation affects glucose-stimulated insulin secretion (GSIS) and the endoplasmic reticulum (ER) stress pathway in pancreatic islets in mice. Eight-week-old male C57BL/6J mice were randomly divided into three treatment diet groups: control diet, palmitic acid-supplemented diet (PAL) and oleic acid-supplemented diet (OLE). After 2 weeks of treatment, intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test were performed. GSIS was assessed by pancreatic perfusion in situ with basal (100 mg/dL) glucose followed by a high (300 mg/dL) glucose concentration. We measured mRNA levels of ER stress markers such as C/EBP homologous protein (CHOP), immunoglobulin heavy-chain binding protein (BIP) and X-box binding protein (XBP)-1 using real-time polymerase chain reaction (PCR) analyses in isolated islets. Immunohistochemical staining was also performed. Mice fed PAL showed significantly decreased glucose tolerance (p palmitic acid-supplementation for 2 weeks might suppress GSIS and induce ER stress in pancreatic islets in mice, in the early stage of lipotoxicity.

  17. Palmitic Acid Reduces Circulating Bone Formation Markers in Obese Animals and Impairs Osteoblast Activity via C16-Ceramide Accumulation.

    Science.gov (United States)

    Alsahli, Ahmad; Kiefhaber, Kathryn; Gold, Tziporah; Muluke, Munira; Jiang, Hongfeng; Cremers, Serge; Schulze-Späte, Ulrike

    2016-05-01

    Obesity and impaired lipid metabolism increase circulating and local fatty acid (FA) levels. Our previous studies showed that a high high-saturated -fat diet induced greater bone loss in mice than a high high-unsaturated-fat diet due to increased osteoclast numbers and activity. The impact of elevated FA levels on osteoblasts is not yet clear. We induced obesity in 4 week old male mice using a palmitic acid (PA)- or oleic acid (OA)-enriched high fat high-fat diet (HFD) (20 % of calories from FA), and compared them to mice on a normal (R) caloric diet (10 % of calories from FA). We collected serum to determine FA and bone metabolism marker levels. Primary osteoblasts were isolated; cultured in PA, OA, or control (C) medium; and assessed for mineralization activity, gene expression, and ceramide levels. Obese animals in the PA and OA groups had significantly lower serum levels of bone formation markers P1NP and OC compared to normal weight animals (*p < 0.001), with the lowest marker levels in animals on an PA-enriched HFD (*p < 0.001). Accordingly, elevated levels of PA significantly reduced osteoblast mineralization activity in vitro (*p < 0.05). Elevated PA intake significantly increased C16 ceramide accumulation. This accumulation was preventable through inhibition of SPT2 (serine palmitoyl transferase 2) using myriocin. Elevated levels of PA reduce osteoblast function in vitro and bone formation markers in vivo. Our findings suggest that saturated PA can compromise bone health by affecting osteoblasts, and identify a potential mechanism through which obesity promotes bone loss.

  18. Palmitic acid feeding increases ceramide supply in association with increased milk yield, circulating nonesterified fatty acids, and adipose tissue responsiveness to a glucose challenge.

    Science.gov (United States)

    Rico, J E; Mathews, A T; Lovett, J; Haughey, N J; McFadden, J W

    2016-11-01

    Reduced insulin action is a key adaptation that facilitates glucose partitioning to the mammary gland for milk synthesis and enhances adipose tissue lipolysis during early lactation. The progressive recovery of insulin sensitivity as cows advance toward late lactation is accompanied by reductions in circulating nonesterified fatty acids (NEFA) and milk yield. Because palmitic acid can promote insulin resistance in monogastrics through sphingolipid ceramide-dependent mechanisms, palmitic acid (C16:0) feeding may enhance milk production by restoring homeorhetic responses. We hypothesized that feeding C16:0 to mid-lactation cows would enhance ceramide supply and ceramide would be positively associated with milk yield. Twenty multiparous mid-lactation Holstein cows were enrolled in a study consisting of a 5-d covariate, 49-d treatment, and 14-d posttreatment period. All cows were randomly assigned to a sorghum silage-based diet containing no supplemental fat (control; n=10; 138±45 d in milk) or C16:0 at 4% of ration dry matter (PALM; 98% C16:0; n=10; 136±44 d in milk). Blood and milk were collected at routine intervals. Liver and skeletal muscle tissue were biopsied at d 47 of treatment. Intravenous glucose tolerance tests (300mg/kg of body weight) were performed at d -1, 24, and 49 relative to start of treatment. The plasma and tissue concentrations of ceramide and glycosylated ceramide were determined using liquid chromatography coupled with tandem mass spectrometry. Data were analyzed as repeated measures using a mixed model with fixed effects of treatment and time, and milk yield served as a covariate. The PALM treatment increased milk yield, energy-corrected milk, and milk fat yield. The most abundant plasma and tissue sphingolipids detected were C24:0-ceramide, C24:0-monohexosylceramide (GlcCer), and C16:0-lactosylceramide. Plasma concentrations of total ceramide and GlcCer decreased as lactation advanced, and ceramide and GlcCer were elevated in cows fed PALM

  19. Heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization and the role of particle phase

    Directory of Open Access Journals (Sweden)

    C. B. Stipe

    2008-09-01

    Full Text Available We studied the OH oxidation of submicron aerosol particles consisting of pure palmitic acid (PA or thin (near monolayer coatings of PA on aqueous and effloresced inorganic salt particles. Experiments were performed as a function of particle size and OH exposure using a continuous-flow photochemical reaction chamber coupled to a chemical ionization mass spectrometer (CIMS system, for detection of gas and particle-bound organics, and a DMA/CPC for monitoring particle size distributions. The loss rate of PA observed for pure PA aerosols and PA on crystalline NaCl aerosols indicates that the OH oxidation of PA at the gas-aerosol interface is efficient. The pure PA oxidation data are well represented by a model consisting of four main processes: 1 surface-only reactions between OH and palmitic acid, 2 secondary reactions between palmitic acid and OH oxidation products, 3 volatilization of condensed-phase mass, and 4 a surface renewal process. Using this model we infer a value of γOH between 0.8 and 1. The oxidation of palmitic acid in thin film coatings of salt particles is also efficient, though the inferred γOH is lower, ranging from ~0.3+0.1/−0.05 for coatings on solid NaCl and ~0.05 (±0.01 on aqueous NaCl particles. These results, together with simultaneous data on particle size change and volatilized oxidation products, provide support for the ideas that oxidative aging of aliphatic organic aerosol is a source of small oxidized volatile organic compounds (OVOCs, and that OH oxidation may initiate secondary condensed-phase reactions.

  20. The heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization, secondary chemistry, and the role of particle phase

    Directory of Open Access Journals (Sweden)

    V. F. McNeill

    2008-03-01

    Full Text Available We studied the OH oxidation of submicron aerosol particles consisting of pure palmitic acid (PA or thin (near monolayer coatings of PA on aqueous and effloresced inorganic salt particles. Experiments were performed as a function of particle size and OH exposure using a continuous-flow photochemical reaction chamber coupled to a chemical ionization mass spectrometer (CIMS system, for detection of gas and particle-bound organics, and a DMA/CPC for monitoring particle size distributions. The loss rate of PA observed for pure PA aerosols and PA on crystalline NaCl aerosols indicates that the OH oxidation of PA at the gas-aerosol interface is efficient. The pure PA oxidation data are well represented by a model consisting of four main processes: 1 surface-only reactions between OH and palmitic acid, 2 secondary reactions between palmitic acid and OH oxidation products, 3 volatilization of condensed-phase mass, and 4 a surface renewal process. Using this model we infer a value of γOH between 0.8 and 1. The oxidation of palmitic acid in thin film coatings of salt particles is also efficient, though the inferred γOH is lower, ranging from ~0.3 (+0.1/−0.05 for coatings on solid NaCl and ~0.05 (±0.01 on aqueous NaCl particles. These results, together with simultaneous data on particle size change and volatilized oxidation products, provide support for the ideas that oxidative aging of aliphatic organic aerosol is a source of small oxidized volatile organic compounds (OVOCs, and that OH oxidation may initiate secondary condensed-phase reactions.

  1. Mutations in soybean KASIIa gene are correlated with high levels of seed palmitic acid

    Science.gov (United States)

    A complete understanding of the biosynthetic pathways involved in the formation of soybean seed oils is required to develop lines with useful oil profiles. In particular, modification of the content of saturated fatty acids using genetics has been a target for soybean breeders for many years. One st...

  2. Preparation of CLA ascorbyl ester with improved volumetric productivity by an ionic liquid-based reaction system

    DEFF Research Database (Denmark)

    Chen, B.L.; Guo, Zheng; Let, M.B.

    2008-01-01

    A new approach to the enzymatic production Of conjugated linoleic acid (CLA) ascorbyl ester with a remarkably high volumetric productivity (120-200 g L-1) has been developed, in which strong solvation by tOMA-TFA (methyltrioctylammonium trifluoroacetate) enables a high concentration of ascorbic...

  3. Characterisation of Fecal Soap Fatty Acids, Calcium Contents, Bacterial Community and Short-Chain Fatty Acids in Sprague Dawley Rats Fed with Different sn-2 Palmitic Triacylglycerols Diets.

    Science.gov (United States)

    Wan, Jianchun; Hu, Songyou; Ni, Kefeng; Chang, Guifang; Sun, Xiangjun; Yu, Liangli

    2016-01-01

    The structure of dietary triacylglycerols is thought to influence fatty acid and calcium absorption, as well as intestinal microbiota population of the host. In the present study, we investigated the impact of palmitic acid (PA) esterified at the sn-2 position on absorption of fatty acid and calcium and composition of intestinal microorganisms in rats fed high-fat diets containing either low sn-2 PA (12.1%), medium sn-2 PA (40.4%) or high sn-2 PA (56.3%), respectively. Fecal fatty acid profiles in the soaps were measured by gas chromatography (GC), while fecal calcium concentration was detected by ICP-MS. The fecal microbial composition was assessed using a 16S rRNA high-throughput sequencing technology and fecal short-chain fatty acids were detected by ion chromatograph. Dietary supplementation with a high sn-2 PA fat significantly reduced total fecal contents of fatty acids soap and calcium compared with the medium or low sn-2 PA fat groups. Diet supplementation with sn-2 PA fat did not change the entire profile of the gut microbiota community at phylum level and the difference at genera level also were minimal in the three treatment groups. However, high sn-2 PA fat diet could potentially improve total short-chain fatty acids content in the feces, suggesting that high dietary sn-2 PA fat might have a beneficial effect on host intestinal health.

  4. Characterisation of Fecal Soap Fatty Acids, Calcium Contents, Bacterial Community and Short-Chain Fatty Acids in Sprague Dawley Rats Fed with Different sn-2 Palmitic Triacylglycerols Diets

    Science.gov (United States)

    Wan, Jianchun; Hu, Songyou; Ni, Kefeng; Chang, Guifang; Sun, Xiangjun; Yu, Liangli

    2016-01-01

    The structure of dietary triacylglycerols is thought to influence fatty acid and calcium absorption, as well as intestinal microbiota population of the host. In the present study, we investigated the impact of palmitic acid (PA) esterified at the sn-2 position on absorption of fatty acid and calcium and composition of intestinal microorganisms in rats fed high-fat diets containing either low sn-2 PA (12.1%), medium sn-2 PA (40.4%) or high sn-2 PA (56.3%), respectively. Fecal fatty acid profiles in the soaps were measured by gas chromatography (GC), while fecal calcium concentration was detected by ICP-MS. The fecal microbial composition was assessed using a 16S rRNA high-throughput sequencing technology and fecal short-chain fatty acids were detected by ion chromatograph. Dietary supplementation with a high sn-2 PA fat significantly reduced total fecal contents of fatty acids soap and calcium compared with the medium or low sn-2 PA fat groups. Diet supplementation with sn-2 PA fat did not change the entire profile of the gut microbiota community at phylum level and the difference at genera level also were minimal in the three treatment groups. However, high sn-2 PA fat diet could potentially improve total short-chain fatty acids content in the feces, suggesting that high dietary sn-2 PA fat might have a beneficial effect on host intestinal health. PMID:27783700

  5. Glycation of bovine serum albumin by ascorbate in vitro: Possible contribution of the ascorbyl radical?

    Science.gov (United States)

    Sadowska-Bartosz, Izabela; Stefaniuk, Ireneusz; Galiniak, Sabina; Bartosz, Grzegorz

    2015-12-01

    Ascorbic acid (AA) has been reported to be both pro-and antiglycating agent. In vitro, mainly proglycating effects of AA have been observed. We studied the glycation of bovine serum albumin (BSA) induced by AA in vitro. BSA glycation was accompanied by oxidative modifications, in agreement with the idea of glycoxidation. Glycation was inhibited by antioxidants including polyphenols and accelerated by 2,​2'-​azobis-​2-​methyl-​propanimidamide and superoxide dismutase. Nitroxides, known to oxidize AA, did not inhibit BSA glycation. A good correlation was observed between the steady-state level of the ascorbyl radical in BSA samples incubated with AA and additives and the extent of glycation. On this basis we propose that ascorbyl radical, in addition to further products of AA oxidation, may initiate protein glycation.

  6. Soyasaponins Protect Against Palmitic Acid-Induced Oxidative Stress in Primary Mouse Hepatocytes:Structure-Activity Relationship

    Institute of Scientific and Technical Information of China (English)

    Guang-zhi HE; Jia-ding CHEN; Yan-hong HU; Jin-bin CHEN; Jian-lin LV; Long-ying ZHA

    2014-01-01

    Objective To investigate the relationship between the structure and activity in protection of soyasaponins against palmitic acid (PA)-induced oxidative stress in primary mouse hepatocytes.Methods The primary mouse hepatocytes were treated with 0.05 mmol/L PA in the presence or absence of soyasaponins (10μg/ml) for 16h. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), the contents of malondialdehyde (MDA), triglyceride (TG) and reactive oxygen species (ROS) were determined.Results PA treatment significantly lowered cellular SOD and GSH-Px activities (P<0.05), increased the contents of MDA and TG (P<0.05) and the production of ROS in mitochondria was elevated (P<0.05). When compared to the treatment of PA alone, the combined treatment of soyasaponins and PA significantly increased the activities of SOD and GSH-Px (P<0.05) and decreased the contents of MDA, TG and ROS (P<0.05). It was found that soyasaponin-A1 or A2 significantly increased the cellular activities of SOD and GSH-Px (P<0.05) and decreased the contents of MDA and ROS as compared with soyasapogenol-A (P<0.05). Similarly, soyasaponin-I significantly increased activities of cellular SOD and GSH-Px (P<0.05) and decreased the content of ROS as compared with soyasapogenol-B (P<0.05).Conclusion Soyasaponins possess antioxidant activity against PA-induced oxidative stress in primary mouse hepatocytes. Soyasaponin-A1, A2 and I are stronger than their corresponding soyasapogenols (soyasapogenol-A and B) in antioxidant activity, probably due to the sugar moieties presented in their chemical structures.

  7. Testing the D / H ratio of alkenones and palmitic acid as salinity proxies in the Amazon Plume

    Science.gov (United States)

    Häggi, C.; Chiessi, C. M.; Schefuß, E.

    2015-12-01

    The stable hydrogen isotope composition of lipid biomarkers, such as alkenones, is a promising new tool for the improvement of palaeosalinity reconstructions. Laboratory studies confirmed the correlation between lipid biomarker δD composition (δDLipid), water δD composition (δDH2O) and salinity; yet there is limited insight into the applicability of this proxy in oceanic environments. To fill this gap, we test the use of the δD composition of alkenones (δDC37) and palmitic acid (δDPA) as salinity proxies using samples of surface suspended material along the distinct salinity gradient induced by the Amazon Plume. Our results indicate a positive correlation between salinity and δDH2O, while the relationship between δDH2O and δDLipid is more complex: δDPAM correlates strongly with δDH2O (r2 = 0.81) and shows a salinity-dependent isotopic fractionation factor. δDC37 only correlates with δDH2O in a small number (n = 8) of samples with alkenone concentrations > 10 ng L-1, while there is no correlation if all samples are taken into account. These findings are mirrored by alkenone-based temperature reconstructions, which are inaccurate for samples with low alkenone concentrations. Deviations in δDC37 and temperature are likely to be caused by limited haptophyte algae growth due to low salinity and light limitation imposed by the Amazon Plume. Our study confirms the applicability of δDLipid as a salinity proxy in oceanic environments. But it raises a note of caution concerning regions where low alkenone production can be expected due to low salinity and light limitation, for instance, under strong riverine discharge.

  8. Synthesis of structured lipid enriched with omega fatty acids and sn-2 palmitic acid by enzymatic esterification and its incorporation in powdered infant formula.

    Science.gov (United States)

    Nagachinta, Supakana; Akoh, Casimir C

    2013-05-08

    Structured lipid (SL) enriched with arachidonic (ARA) and docosahexaenoic (DHA) acids was produced from tripalmitin using Lipozyme TL IM. The effects of acyl donors, that is, free fatty acids vs fatty acid ethyl esters, on the reactions were compared. The highest total incorporation of ARA and DHA was obtained when the reaction continued for 24 h, at a substrate mole ratio of 9, using free fatty acids as acyl donors (acidolysis). The SL prepared by a large-scale acidolysis reaction contained 17.69 ± 0.09% total ARA, 10.75 ± 0.15% total DHA, and 48.53 ± 1.40% sn-2 palmitic acid. SL thermograms exhibited multiple peaks indicating complexity of the triacylglycerol (TAG) distribution. RP-HPLC analysis of SL revealed nine of 26 TAG molecular species that were similar to those of human milk fat. Powdered infant formulas containing the SL were prepared by wet-mixing/spray-drying and dry-blending methods. Formula prepared with microencapsulated SL and the dry-blending method had better oxidative stability and color quality.

  9. Comparative evaluation of labelling patterns and turnover of lipids, tagged by 15 (p-/sup 123/I-phenyl-)pentadecanoic and 1-/sup 14/C-palmitic acid

    Energy Technology Data Exchange (ETDEWEB)

    Reske, S.N.; Sauer, W.; Reichmann, K.; Winkler, C. (Bonn Univ. (Germany, F.R.). Inst. fuer Klinische und Experimentelle Nuklearmedizin); Machulla, H.J.; Knust, E.J. (Essen Univ. (Germany, F.R.). Inst. fuer Medizinische Strahlenphysik und Strahlenbiologie)

    1984-06-15

    Uptake and turnover of chloroform/methanol extractable tissue lipids labelled in vivo simultaneously with 15(p-/sup 123/I-phenyl-)pentadecanoic and 1-/sup 14/C-palmitic acid were compared. Lipid turnover studies were performed in fasted pentobarbital-anaesthetized Wistar rats in tissues with highly varying free fatty acid turnover rates. In all tissues investigated, i.e. heart, lung, liver, spleen and kidney, both tracers labelled nearly identical lipid fractions. The main tracer uptake was found in free fatty acids, phospholipids, diglycerides and triglycerides. A highly significant correlation of uptake and turnover in main tissue lipid fractions indicated an essentially identical metabolic pathway of both tracers in intermediary tissue lipid metabolism. Concordant tracer uptake and turnover patterns in tissue of lipids with highly varying fatty acid metabolic rates suggested that intrinsic metabolic activity of the tissue and respective lipid fraction was the major determinant of metabolic handling of both iodophenyl fatty- and palmitic acid. Thus, the feasibility of iodophenylpentadecanoic acid as free fatty acid tracer for studying tissue lipid metabolism is demonstrated. 21 refs.

  10. Vapour liquid equilibria of monocaprylin plus palmitic acid or methyl stearate at P=(1.20 and 2.50) kPa by using DSC technique

    DEFF Research Database (Denmark)

    Cunico, Larissa P.; Damaceno, Daniela S.; Matricarde Falleiro, Rafael M.;

    2015-01-01

    The Differential Scanning Calorimetry (DSC) technique is used for measuring isobaric (vapour+liquid) equilibria for two binary mixtures: {monocaprylin+palmitic acid (system 1) or methyl stearate (system 2)} at two different pressures P=(1.20 and 2.50) kPa. The obtained PTx data are correlated...... that no such data could be found in the open literature, not only for the specific components selected but also for the combination of the classes of components considered; that is, acylglycerol plus fatty acid or fatty ester....

  11. Palmitic acid exerts pro-inflammatory effects on vascular smooth muscle cells by inducing the expression of C-reactive protein, inducible nitric oxide synthase and tumor necrosis factor-α.

    Science.gov (United States)

    Wu, Di; Liu, Juntian; Pang, Xiaoming; Wang, Shuyue; Zhao, Jingjing; Zhang, Xiaolu; Feng, Liuxin

    2014-12-01

    Atherosclerosis is a chronic inflammatory disease in the vessel, and inflammatory cytokines play an important role in the inflammatory process of atherosclerosis. A high level of free fatty acids (FFAs) produced in lipid metabolism disorders are known to participate in the formation of atherosclerosis through multiple bioactivities. As the main saturated fatty acid in FFAs, palmitic acid stimulates the expression of inflammatory cytokines in macrophages. However, it is unclear whether palmitic acid exerts a pro-inflammatory effect on vascular smooth muscle cells (VSMCs). The purpose of the present study was to observe the effect of palmitic acid on the expression of C-reactive protein (CRP), tumor necrosis factor α (TNF-α) and inducible nitric oxide synthase (iNOS) in VSMCs. Rat VSMCs were cultured, and palmitic acid was used as a stimulant for CRP, TNF-α and iNOS expression. mRNA expression was assayed with reverse transcription-polymerase chain reaction, and protein expression was detected with western blot analysis and immunocytochemistry. The results showed that palmitic acid significantly stimulated mRNA and protein expression of CRP, TNF-α and iNOS in VSMCs in time- and concentration-dependent manners, and therefore, palmitic acid is able to exert a pro-inflammatory effect on VSMCs via stimulating CRP, TNF-α and iNOS expression. The findings provide a novel explanation for the direct pro-inflammatory and atherogenic effects of palmitic acid, and for the association with metabolic syndrome, such as type 2 diabetes mellitus, obesity and atherosclerosis. Therefore, the intervention with anti-inflammatory agents may effectively delay the formation and progression of atherosclerosis in patients with metabolic syndrome.

  12. Manganese accumulation in membrane fractions of primary astrocytes is associated with decreased γ-aminobutyric acid (GABA) uptake, and is exacerbated by oleic acid and palmitate.

    Science.gov (United States)

    Fordahl, Steve C; Erikson, Keith M

    2014-05-01

    Manganese (Mn) exposure interferes with GABA uptake; however, the effects of Mn on GABA transport proteins (GATs) have not been identified. We sought to characterize how Mn impairs GAT function in primary rat astrocytes. Astrocytes exposed to Mn (500 μM) had significantly reduced (3)H-GABA uptake despite no change in membrane or cytosolic GAT3 protein levels. Co-treatment with 100 μM oleic or palmitic acids (both known to be elevated in Mn neurotoxicity), exacerbated the Mn-induced decline in (3)H-GABA uptake. Mn accumulation in the membrane fraction of astrocytes was enhanced with fatty acid administration, and was negatively correlated with (3)H-GABA uptake. Furthermore, control cells exposed to Mn only during the experimental uptake had significantly reduced (3)H-GABA uptake, and the addition of GABA (50 μM) blunted cytosolic Mn accumulation. These data indicate that reduced GAT function in astrocytes is influenced by Mn and fatty acids accumulating at or interacting with the plasma membrane.

  13. Stearic acids at sn-1, 3 positions of TAG are more efficient at limiting fat deposition than palmitic and oleic acids in C57BL/6 mice.

    Science.gov (United States)

    Gouk, Shiou-Wah; Cheng, Sit-Foon; Ong, Augustine Soon-Hock; Chuah, Cheng-Hock

    2014-04-14

    In the present study, we investigated the effect of long-acyl chain SFA, namely palmitic acid (16:0) and stearic acid (18:0), at sn-1, 3 positions of TAG on obesity. Throughout the 15 weeks of the experimental period, C57BL/6 mice were fed diets fortified with cocoa butter, sal stearin (SAL), palm mid fraction (PMF) and high-oleic sunflower oil (HOS). The sn-1, 3 positions were varied by 16:0, 18:0 and 18:1, whilst the sn-2 position was preserved with 18:1. The HOS-enriched diet was found to lead to the highest fat deposition. This was in accordance with our previous postulation. Upon normalisation of total fat deposited with food intake to obtain the fat:feed ratio, interestingly, mice fed the SAL-enriched diet exhibited significantly lower visceral fat/feed and total fat/feed compared with those fed the PMF-enriched diet, despite their similarity in SFA-unsaturated fatty acid-SFA profile. That long-chain SFA at sn-1, 3 positions concomitantly with an unsaturated FA at the sn-2 position exert an obesity-reducing effect was further validated. The present study is the first of its kind to demonstrate that SFA of different chain lengths at sn-1, 3 positions exert profound effects on fat accretion.

  14. The Transcription Factor p8 Regulates Autophagy in Response to Palmitic Acid Stress via a Mammalian Target of Rapamycin (mTOR)-independent Signaling Pathway.

    Science.gov (United States)

    Jia, Sheng-Nan; Lin, Cheng; Chen, Dian-Fu; Li, An-Qi; Dai, Li; Zhang, Li; Zhao, Ling-Ling; Yang, Jin-Shu; Yang, Fan; Yang, Wei-Jun

    2016-02-26

    Autophagy is an evolutionarily conserved degradative process that allows cells to maintain homoeostasis in numerous physiological situations. This process also functions as an essential protective response to endoplasmic reticulum (ER) stress, which promotes the removal and degradation of unfolded proteins. However, little is known regarding the mechanism by which autophagy is initiated and regulated in response to ER stress. In this study, different types of autophagy were identified in human gastric cancer MKN45 cells in response to the stress induced by nutrient starvation or lipotoxicity in which the regulation of these pathways is mammalian target of rapamycin (mTOR)-dependent or -independent, respectively. Interestingly, we found that p8, a stress-inducible transcription factor, was enhanced in MKN45 cells treated with palmitic acid to induce lipotoxicity. Furthermore, an increase in autophagy was observed in MKN45 cells stably overexpressing p8 using a lentivirus system, and autophagy induced by palmitic acid was blocked by p8 RNAi compared with the control. Western blotting analyses showed that autophagy was regulated by p8 or mTOR in response to the protein kinase-like endoplasmic reticulum kinase/activating transcription factor 6-mediated ER stress of lipotoxicity or the parkin-mediated mitochondrial stress of nutrient starvation, respectively. Furthermore, our results indicated that autophagy induced by palmitic acid is mTOR-independent, but this autophagy pathway was regulated by p8 via p53- and PKCα-mediated signaling in MKN45 cells. Our findings provide insights into the role of p8 in regulating autophagy induced by the lipotoxic effects of excess fat accumulation in cells.

  15. Recruitment of SH-containing peptides to lipid and biological membranes through the use of a palmitic acid functionalized with a maleimide group.

    Science.gov (United States)

    Haralampiev, Ivan; Mertens, Monique; Schwarzer, Roland; Herrmann, Andreas; Volkmer, Rudolf; Wessig, Pablo; Müller, Peter

    2015-01-02

    This study presents a novel and easily applicable approach to recruit sulfhydryl-containing biomolecules to membranes by using a palmitic acid which is functionalized with a maleimide group. Notably, this strategy can also be employed with preformed (biological) membranes. The applicability of the assay is demonstrated by characterizing the binding of a Rhodamine-labeled peptide to lipid and cellular membranes using methods of fluorescence spectroscopy, lifetime measurement, and microscopy. Our approach offers new possibilities for preparing biologically active liposomes and manipulating living cells.

  16. Lipidomic-based investigation into the regulatory effect of Schisandrin B on palmitic acid level in non-alcoholic steatotic livers.

    Science.gov (United States)

    Kwan, Hiu Yee; Niu, Xuyan; Dai, Wenlin; Tong, Tiejun; Chao, Xiaojuan; Su, Tao; Chan, Chi Leung; Lee, Kim Chung; Fu, Xiuqiong; Yi, Hua; Yu, Hua; Li, Ting; Tse, Anfernee Kai Wing; Fong, Wang Fun; Pan, Si-Yuan; Lu, Aiping; Yu, Zhi-Ling

    2015-03-13

    Schisandrin B (SchB) is one of the most abundant bioactive dibenzocyclooctadiene derivatives found in the fruit of Schisandra chinensis. Here, we investigated the potential therapeutic effects of SchB on non-alcoholic fatty-liver disease (NAFLD). In lipidomic study, ingenuity pathway analysis highlighted palmitate biosynthesis metabolic pathway in the liver samples of SchB-treated high-fat-diet-fed mice. Further experiments showed that the SchB treatment reduced expression and activity of fatty acid synthase, expressions of hepatic mature sterol regulatory element binding protein-1 and tumor necrosis factor-α, and hepatic level of palmitic acid which is known to promote progression of steatosis to steatohepatitis. Furthermore, the treatment also reduced hepatic fibrosis, activated nuclear factor-erythroid-2-related factor-2 which is known to attenuate the progression of NASH-related fibrosis. Interestingly, in fasting mice, a single high-dose SchB induced transient lipolysis and increased the expressions of adipose triglyceride lipase and phospho-hormone sensitive lipase. The treatment also increased plasma cholesterol levels and 3-hydroxy-3-methylglutaryl-CoA reductase activity, reduced the hepatic low-density-lipoprotein receptor expression in these mice. Our data not only suggest SchB is a potential therapeutic agent for NAFLD, but also provided important information for a safe consumption of SchB because SchB overdosed under fasting condition will have adverse effects on lipid metabolism.

  17. Effect of a high-palmitic acid fat supplement on milk production and apparent total-tract digestibility in high- and low-milk yield dairy cows.

    Science.gov (United States)

    Rico, D E; Ying, Y; Harvatine, K J

    2014-01-01

    The effect of a high-palmitic acid fat supplement was tested in 12 high-producing (mean = 42.1 kg/d) and 12 low-producing (mean = 28.9 kg/d) cows arranged in a replicated 3 × 3 Latin square design. Experimental periods were 21 d, with 18d of diet adaptation and 3 d of sample collection. Treatments were (1) control (no supplemental fat), (2) high-palmitic acid (PA) supplement (84% C16:0), and (3) Ca salts of palm fatty acid (FA) supplement (Ca-FA). The PA supplement had no effect on milk production, but decreased dry matter intake by 7 and 9% relative to the control in high- and low-producing cows, respectively, and increased feed efficiency by 8.5% in high-producing cows compared with the control. Milk fat concentration and yield were not affected by PA relative to the control in high- or low-producing cows, although PA increased the yield of milk 16-C FA by more than 85 g/d relative to the control. The Ca-FA decreased milk fat concentration compared with PA in high-, but not in low-producing cows. In agreement, Ca-FA dramatically increased milk fat concentration of trans-10 C18:1 and trans-10, cis-12 conjugated linoleic acid (>300%) compared with PA in high-producing cows, but not in low-producing cows. No effect of treatment on milk protein concentration or yield was detected. The PA supplement also increased 16-C FA apparent digestibility by over 10% and increased total FA digestibility compared with the control in high- and low-producing cows. During short-term feeding, palmitic acid supplementation did not increase milk or milk fat yield; however, it was efficiently absorbed, increased feed efficiency, and increased milk 16-C FA yield, while minimizing alterations in ruminal biohydrogenation commonly observed for other unsaturated fat supplements. Longer-term experiments will be necessary to determine the effects on energy balance and changes in body reserves.

  18. Nutrient digestibility and milk production responses to increasing levels of palmitic acid supplementation vary in cows receiving diets with or without whole cottonseed.

    Science.gov (United States)

    Rico, J E; de Souza, J; Allen, M S; Lock, A L

    2017-01-01

    Our study evaluated the dose-dependent effects of a palmitic acid-enriched supplement in basal diets with or without the inclusion of whole cottonseed on nutrient digestibility and production responses of dairy cows. Sixteen Holstein cows (149 ± 56 days in milk) were used in a split plot Latin square design experiment. Cows were blocked by 3.5% fat-corrected milk (FCM) and allocated to a main plot receiving either a basal diet with soyhulls (SH, = 8) or a basal diet with whole cottonseed (CS, = 8) that was fed throughout the experiment. A palmitic acid-enriched supplement (PA 88.5% C16:0) was fed at 0, 0.75, 1.50, or 2.25% of ration DM in a replicated 4 × 4 Latin Square design within each basal diet group. Periods were 14 d with the final 4 d used for data collection. PA dose increased milk fat content linearly, and cubically affected yields of milk fat and 3.5% FCM. The PA dose did not affect milk protein and lactose contents, BW, and BCS, but tended to increase yields of milk, milk protein, and milk lactose. Also, PA dose reduced DMI and 16-carbon fatty acid digestibility quadratically, and increased 18-carbon fatty acid digestibility quadratically. There were no effects of basal diet on the yield of milk or milk components, but DMI tended to decrease in CS compared with SH, increasing feed efficiency (3.5% FCM/DMI). Compared with SH, CS diets increased yield of preformed milk fatty acids and 16-carbon fatty acid digestibility, and tended to decrease 18-carbon fatty acid digestibility. We observed basal diet × PA dose interactions for yields of milk and milk protein and for 16-carbon and total fatty acid digestibility, as well as tendency for yields of milk fat and 3.5% FCM. Also, there was a tendency for an interaction between basal diet and PA dose for NDF digestibility, which increased more for CS with increasing PA than for SH. PA dose linearly decreased digestibility of total fatty acids in SH diets but did not affect it in CS diets Results demonstrate

  19. Apolipoprotein E isoforms 3/3 and 3/4 differentially interact with circulating stearic, palmitic, and oleic fatty acids and lipid levels in Alaskan Natives.

    Science.gov (United States)

    Castellanos-Tapia, Lyssia; López-Alvarenga, Juan Carlos; Ebbesson, Sven O E; Ebbesson, Lars O E; Tejero, M Elizabeth

    2015-04-01

    Lifestyle changes in Alaskan Natives have been related to the increase of cardiovascular disease and metabolic syndrome in the last decades. Variation of the apolipoprotein E (Apo E) genotype may contribute to the diverse response to diet in lipid metabolism and influence the association between fatty acids in plasma and risk factors for cardiovascular disease. The aim of this investigation was to analyze the interaction between Apo E isoforms and plasma fatty acids, influencing phenotypes related to metabolic diseases in Alaskan Natives. A sample of 427 adult Siberian Yupik Alaskan Natives was included. Fasting glucose, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, Apo A1, and Apo B plasma concentrations were measured using reference methods. Concentrations of 13 fatty acids in fasting plasma were analyzed by gas chromatography, and Apo E variants were identified. Analyses of covariance were conducted to identify Apo E isoform and fatty acid main effects and multiplicative interactions. The means for body mass index and age were 26 ± 5.2 and 47 ± 1.5, respectively. Significant main effects were observed for variation in Apo E and different fatty acids influencing Apo B levels, triglycerides, and total cholesterol. Significant interactions were found between Apo E isoform and selected fatty acids influencing total cholesterol, triglycerides, and Apo B concentrations. In summary, Apo E3/3 and 3/4 isoforms had significant interactions with circulating levels of stearic, palmitic, oleic fatty acids, and phenotypes of lipid metabolism in Alaskan Natives.

  20. Increasing palmitic acid intake enhances milk production and prevents glucose-stimulated fatty acid disappearance without modifying systemic glucose tolerance in mid-lactation dairy cows.

    Science.gov (United States)

    Mathews, A T; Rico, J E; Sprenkle, N T; Lock, A L; McFadden, J W

    2016-11-01

    Feeding saturated fatty acids may enhance milk yield in part by decreasing insulin sensitivity and shifting glucose utilization toward the mammary gland. Our objective was to evaluate the effects of palmitic acid (C16:0) on milk production and insulin sensitivity in cows. Twenty multiparous mid-lactation Holstein cows were enrolled in a study consisting of a 5-d covariate, 49-d treatment, and 14-d posttreatment period. All cows received a common sorghum silage-based diet and were randomly assigned to a diet containing no supplemental fat (control; n=10; 138±45d in milk) or C16:0 at 4% of ration DM (PALM; 98% C16:0; n=10; 136±44d in milk). Blood and milk were collected at routine intervals. Intravenous glucose tolerance tests (300mg/kg of body weight) were performed at d -1, 24, and 49 relative to start of treatment. Data were analyzed as repeated measures using a mixed model with fixed effects of treatment and time, and milk yield served as a covariate. The PALM treatment increased milk yield by wk 7. Furthermore, PALM increased milk fat yield and energy-corrected milk at wk 3 and 7. Changes in milk production occurred in parallel with enhanced energy intake. Increased milk fat yield during PALM treatment was due to increased C16:0 and C16:1 incorporation; PALM had no effect on concentration of milk components, BW, or body condition score. Two weeks posttreatment, energy-corrected milk and milk fat yield remained elevated in PALM-fed cows whereas yields of milk were similar between treatments. Increased milk fat yield after PALM treatment was due to increased de novo lipogenesis and uptake of preformed fatty acids. The basal concentration of nonesterified fatty acids (NEFA) in plasma increased by d 4, 6, and 8 of PALM treatment, a response not observed thereafter. Although PALM supplementation did not modify insulin, glucose, or triacylglycerol levels in plasma, total cholesterol in plasma was elevated by wk 3. Estimated insulin sensitivity was lower during the

  1. Ascorbic acid 6-palmitate suppresses gap-junctional intercellular communication through phosphorylation of connexin 43 via activation of the MEK-ERK pathway.

    Science.gov (United States)

    Lee, Kyung Mi; Kwon, Jung Yeon; Lee, Ki Won; Lee, Hyong Joo

    2009-01-15

    Although the health benefits of dietary antioxidants have been extensively studied, their potential negative effects remain unclear. L-Ascorbic acid 6-palmitate (AAP), a synthetic derivative of ascorbic acid (AA), is widely used as an antioxidant and preservative in foods, vitamins, drugs, and cosmetics. Previously, we found that AA exerted an antitumor effect by protecting inhibition of gap-junctional intercellular communication (GJIC), which is closely associated with tumor progression. In this study, we examined whether AAP, an amphipathic derivative of AA, has chemopreventive effects using a GJIC model. AAP and AA exhibited dose-dependent free radical-scavenging activities and inhibited hydrogen peroxide (H(2)O(2))-induced intracellular reactive oxygen species (ROS) production in normal rat liver epithelial cells. Unexpectedly, however, AAP did not protect against the inhibition of GJIC induced by H(2)O(2); instead, it inhibited GJIC synergistically with H(2)O(2). AAP inhibited GJIC in a dose-dependent and reversible manner. This inhibitory effect was not due to the conjugated lipid structure of AAP, as treatment with palmitic acid alone failed to inhibit GJIC under the same conditions. The inhibition of GJIC by AAP was restored in the presence of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor U0126, but not in the presence of other signal inhibitors and antioxidant (PKC inhibitors, EGFR inhibitor, NADPH oxidase inhibitor, catalase, vitamin E, or AA), indicating the critical involvement of MEK signaling in the GJIC inhibitory activity of AAP. Phosphorylation of ERK and connexin 43 (Cx43) was observed following AAP treatment, and this was reversed by U0126. These results suggest that the AAP-induced inhibition of GJIC is mediated by the phosphorylation of Cx43 via activation of the MEK-ERK pathway. Taken together, our results indicate that AAP has a potent carcinogenic effect, and that the influence of dietary

  2. Inhibition of protein kinase B by Palmitate in the insulin signaling of HepG2 cells and the preventive effect of Arachidonic acid on insulin resistance

    Institute of Scientific and Technical Information of China (English)

    XIA Yanzhi; WAN Xuedong; DUAN Qiuhong; HE Shansu; WANG Ximing

    2007-01-01

    Elevated plasma levels of free fatty acids(FFAs)may contribute to insulin resistance (IR)that is characteristic of type 2 diabetes mellitus.In this study,we investigated the effects of two fatty acids,palmitate(PA)and arachidonic acid (AA)on glycogenesis under insulin signaling in HepG2cells,a transformed hepatic carcinoma cell line.In the presence of 200 μmol of palmitate,insulin(10-7 mol/L)stimulation of glycogenesis was inhibited,as evidenced by increased glucose in the medium and decreased intracellular glycogen.Wortmannin(WM),a specific inhibitor of PI3K,dramatically decreased the amount of intracellular glycogen in cells without PA incubation.However,glycogen in PA treated cells was not significantly changed by WM,indicating that PA may also act on PI3K.Interestingly,AA restored the effects of WM inhibition on glycogenesis in PA cells.Western blot analysis demonstrated that PA in the absence of WM increased phosphorylated glycogen synthase(inactive form of GS)and decreased phosphorylated protein kinase B(active form of PKB),causing a reduction of intracellular glycogen.AA,however,reversed the effects of PA on GS and PKB.Furthermore,inhibition of protein kinase C(PKC)by a specific inhibitor chelerythrine chloride (CC)abolished the inhibitory efrect of PA on glycogen synthesis by decreasing phosphorylated GS and increasing phosphorylated PKB.However,the effect of CC in the presence of PA disappeared when AA was also present.Our results suggest that there is a disruption of the insulin signaling pathway between PKB and GS when the cells were exposed to PA,contributing to IR.PA may also interrupt the PKC signaling pathway.In contrast,AA could rescue glycogenesis impaired by PA.

  3. Identification of the molecular genetic basis of the low palmitic acid seed oil trait in soybean mutant line RG3 and association analysis of molecular markers with elevated seed stearic acid and reduced seed palmitic acid

    Science.gov (United States)

    The fatty acid composition of vegetable oil is becoming increasingly critical for the ultimate functionality and utilization in foods and industrial products. Partial chemical hydrogenation of soybean oil increases oxidative stability and shelf life but also results in the introduction of trans fats...

  4. Thermal properties and structural characterizations of new types of phase change material: Anhydrous and hydrated palmitic acid/camphene solid dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tu, E-mail: tulee@cc.ncu.edu.tw; Chiu, Yu Hsiu; Lee, Yun; Lee, Hung Lin

    2014-01-10

    Highlights: • Solid dispersion is implemented on phase change materials. • Water is added as a tertiary component. • Specific heat of solid is increased by partially amorphous camphene. • Microstructures are characterized by LTDSC, PXRD and SAXS. • Thermal properties are linked to microstructures. - Abstract: Two new types of phase change material anhydrous and hydrated palmitic acid/camphene solid dispersions (PA1CA1) are prepared and characterized by low-temperature differential scanning calorimetry, powder X-ray diffraction, small-angle X-ray scattering and temperature–history method. Their microstructures contain nanometer-sized palmitic acid (PA) crystallites with lamellar periodicity dispersed in a partially amorphous plastic crystalline camphene (CA) matrix. The PA phase apparently possesses a relatively high latent heat value inherited from the pristine crystalline PA of 229.7 ± 0.1 kJ kg{sup −1}. The relatively high specific heat of solid, C{sub ps}, for anhydrous PA1CA1 of 2.17 ± 0.06 kJ kg{sup −1} K{sup −1} is originated from the presence of disordered CA matrix. Hydration of PA1CA1 can further increase the C{sub ps} to 2.61 ± 0.01 kJ kg{sup −1} K{sup −1}. The mixing of partially amorphous CA, some PA and the small amount of water may have turned the matrix into more disorder due to their different bonding natures, molecular weights, and various molecular shapes and sizes.

  5. [THE EXCESS OF PALMITIC FATTY ACID IN FOOD AS MAIN CAUSE OF LIPOIDOSIS OF INSULIN-DEPENDENT CELLS: SKELETAL MYOCYTES, CARDIO-MYOCYTES, PERIPORTAL HEPATOCYTES, KUPFFER MACROPHAGES AND B-CELLS OF PANCREAS].

    Science.gov (United States)

    Titov, V N

    2016-02-01

    In phylogenesis, becoming of biologicalfunctions and biological reactions proceeds with the purpose ofpermanent increasing of "kinetic perfection ". The main role belongs to factors ofphysical, chemical and biological kinetics, their evaluation using systemic approach technique under permanent effect of natural selection. The late-in-phylogenesis insulin, proceeded with, in development of biological function of locomotion, specialization of insulin-dependent cells: skeletal myocytes, syncytium of cardiomyocytes, subcutaneous adipocytes, periportal hepatocytes, Kupffer's macrophages and β-cells of islets of pancreas. The insulin initiated formation of new, late in phylogenesis, large pool of fatty cells-subcutaneous adipocytes that increased kinetic parameters of biological function of locomotion. In realization of biological function of locomotion only adipocytes absorb exogenous mono unsaturated and saturated fatty acids in the form of triglycerides in composition of oleic and palmitic lipoproteins of very low density using apoE/B-100 endocytosis. The rest of insulin-dependent cells absorb fatty acids in the form of unesterified fatty acids from associates with albumin and under effect of CD36 of translocase offatty acids. The insulin in all insulin-depended cells inhibits biological reaction of lipolysis enhancing contributing into development of lipoidosis. The insulin expresses transfer offatty acids in the form of unsaturated fatty acids from adipocytes into matrix of mitochondria. The insulin supplies insulin-dependent cells with substrates for acquiring energy subject to that in pool of unsaturated fatty acids in adipocytes prevails hydrophobic palmitic unsaturated fatiy acid that slowly passes into matrix through external membrane ofmitochondria; oxidases of mitochondria so slowly implement its β-oxidation that content of exogenous palmitic unsaturatedfatty acid can't be higher than phylogenetic, physiological level - 15% of all amount offatty acids

  6. AMPKα, C/EBPβ, CPT1β, GPR43, PPARγ, and SCD Gene Expression in Single- and Co-cultured Bovine Satellite Cells and Intramuscular Preadipocytes Treated with Palmitic, Stearic, Oleic, and Linoleic Acid.

    Science.gov (United States)

    Choi, S H; Park, S K; Johnson, B J; Chung, K Y; Choi, C W; Kim, K H; Kim, W Y; Smith, B

    2015-03-01

    We previously demonstrated that bovine subcutaneous preadipocytes promote adipogenic gene expression in muscle satellite cells in a co-culture system. Herein we hypothesize that saturated fatty acids would promote adipogenic/lipogenic gene expression, whereas mono- and polyunsaturated fatty acids would have the opposite effect. Bovine semimembranosus satellite cells (BSC) and intramuscular preadipocytes (IPA) were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS)/Dulbecco's Modified Eagle Medium (DMEM) and 1% antibiotics during the 3-d proliferation period. After proliferation, cells were treated for 3 d with 3% horse serum/DMEM (BSC) or 5% FBS/DMEM (IPA) with antibiotics. Media also contained 10 μg/mL insulin and 10 μg/mL pioglitazone. Subsequently, differentiating BSC and IPA were cultured in their respective media with 40 μM palmitic, stearic, oleic, or linoleic acid for 4 d. Finally, BSC and IPA were single- or co-cultured for an additional 2 h. All fatty acid treatments increased (p = 0.001) carnitine palmitoyltransferase-1 beta (CPT1β) gene expression, but the increase in CPT1β gene expression was especially pronounced in IPA incubated with palmitic and stearic acid (6- to 17- fold increases). Oleic and linoleic acid decreased (p = 0.001) stearoyl-CoA desaturase (SCD) gene expression over 80% in both BSC and IPA. Conversely, palmitic and stearic acid increased SCD gene expression three fold in co-cultured in IPA, and stearic acid increased AMPKα gene expression in single- and co-cultured BSC and IPA. Consistent with our hypothesis, saturated fatty acids, especially stearic acid, promoted adipogenic and lipogenic gene expression, whereas unsaturated fatty acids decreased expression of those genes associated with fatty acid metabolism.

  7. Oxidative stability of structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall;

    2003-01-01

    a commercial antioxidant blend Grindox 117 (propyl gallate/citric acid/ascorbyl palmitate) or gallic acid to the SL was investigated. The lipid type affected the oxidative stability: SL was less stable than SO and RL. The reduced stability was most likely caused by both the structure of the lipid......Traditional sunflower oil (SO), randomized lipid (RL) and specific structured lipid (SL), both produced from SO and tricaprylin/caprylic acid, respectively, were stored for up to 12 wk to compare their oxidative stabilities by chemical and sensory analyses. Furthermore, the effect of adding...... and differences in production/purification, which caused lower tocopherol content and higher initial levels of primary and secondary oxidation products in SL compared with RL and SO. Grindox 117 and gallic acid did not exert a distinct antioxidative effect in the SL oil samples during storage...

  8. Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway.

    Science.gov (United States)

    Varshney, Ritu; Gupta, Sumeet; Roy, Partha

    2017-02-22

    Lipotoxicity of pancreatic β-cells is the pathological manifestation of obesity-linked type II diabetes. We intended to determine the cytoprotective effect of kaempferol on pancreatic β-cells undergoing apoptosis in palmitic acid (PA)-stressed condition. The data showed that kaempferol treatment increased cell viability and anti-apoptotic activity in PA-stressed RIN-5F cells and murine pancreatic islets. Furthermore, kaempferol's ability to instigate autophagy was illustrated by MDC-LysoTracker red staining and TEM analysis which corroborated well with the observed increase in LC3 puncta and LC3-II protein expressions along with the concomitant decline in p62 expression. Apart from this, the data showed that kaempferol up/down-regulates AMPK/mTOR phosphorylation respectively. Subsequently, upon inhibition of AMPK phosphorylation by AMPK inhibitors, kaempferol mediated autophagy was abolished which further led to the decline in β-cell survival. Such observations collectively lead to the conclusion that, kaempferol exerts its cytoprotective role against lipotoxicity by activation of autophagy via AMPK/mTOR pathway.

  9. Lipase-catalyzed acidolysis of palm mid fraction oil with palmitic and stearic Fatty Acid mixture for production of cocoa butter equivalent.

    Science.gov (United States)

    Mohamed, Ibrahim O

    2013-10-01

    Cocoa butter equivalent (CBE) was prepared by enzymatic acidolysis reaction of substrate consisting of refined palm mid fraction oil and palmitic-stearic fatty acid mixture. The reactions were performed in a batch reactor at a temperature of 60 °C in an orbital shaker operated at 160 RPM. Different mass ratios of substrates were explored, and the composition of the five major triacylglycerols (TAGs) of the structured lipids was identified and quantified using cocoa butter certified reference material IRMM-801. The reaction resulted in production of cocoa butter equivalent with the TAGs' composition (1,3-dipalmitoyl-2-oleoyl-glycerol 30.7%, 1-palmitoyl-2-oleoyl-3-stearoyl-rac-glycerol 40.1%, 1-palmitoy-2,3- dioleoyl glycerol 9.0%, 1,3-distearoyl-2-oleoyl-glycerol 14.5 %, and 1-stearoyl-2,3-dioleoyl glycerol 5.7%) and with onset melting temperature of 31.6 °C and peak temperature of 40.4 °C which are close to those of cocoa butter. The proposed kinetics model for the acidolysis reaction presented the experimental data very well. The results of this research showed that palm mid fraction oil TAGs could be restructured to produce value added product such as CBE.

  10. Film fabrication of Fe or Fe3O4 nanoparticles mixed with palmitic acid for vertically aligned carbon nanotube growth using Langmuir-Blodgett technique

    Science.gov (United States)

    Nakamura, Kentaro; Kuriyama, Naoki; Takagiwa, Shota; Sato, Taiga; Kushida, Masahito

    2016-03-01

    Vertically aligned carbon nanotubes (VA-CNTs) were studied as a new catalyst support for polymer electrolyte fuel cells (PEFCs). Controlling the number density and the diameter of VA-CNTs may be necessary to optimize PEFC performance. As the catalyst for CNT growth, we fabricated Fe or Fe3O4 nanoparticle (NP) films by the Langmuir-Blodgett (LB) technique. The catalyst Fe or Fe3O4 NPs were widely separated by mixing with filler molecules [palmitic acid (C16)]. The number density of VA-CNTs was controlled by varying the ratio of catalyst NPs to C16 filler molecules. The VA-CNTs were synthesized from the catalyst NP-C16 LB films by thermal chemical vapor deposition (CVD) using acetylene gas as the carbon source. The developing solvents used in the LB technique and the hydrogen reduction conditions of CVD were optimized to improve the VA-CNT growth rate. We demonstrate that the proposed method can independently control both the density and the diameter of VA-CNTs.

  11. Improving the encapsulation efficiency and sustained release behaviour of chitosan/β-lactoglobulin double-coated microparticles by palmitic acid grafting.

    Science.gov (United States)

    Yang, Han-Joo; Lee, Pei Sia; Choe, Jaehyeog; Suh, Seokjin; Ko, Sanghoon

    2017-04-01

    Chitosan (CS) was grafted with 0.1 and 0.5% (w/v) palmitic acid (PA) to improve its encapsulation efficiency (EE) and sustained release characteristics when forming CS microparticles. Thereafter, PA-grafted CS (PA-CS) microparticles were coated with denatured β-lactoglobulin (βlg), which forms an outer protective layer. The possibility of hydrophobic interaction with the hydrophobic substances in the CS microparticles increased as the proportion of the grafted PA increased. EE was measured as 64.79, 83.72, and 85.00% for the non-grafted, 0.1, and 0.5% PA-CS microparticles, respectively. In simulated small intestinal conditions, 4.66 and 17.55% of the core material release in the PA-CS microparticles were sustained after 180min by 0.1, and 0.5% PA grafting, respectively. PA grafting enables the sustained release in simulated gastrointestinal fluids by enhancing the hydrophobic interaction between CS and the hydrophobic core material.

  12. Inhibition of HIV-1 infection in ex vivo cervical tissue model of human vagina by palmitic acid; implications for a microbicide development.

    Directory of Open Access Journals (Sweden)

    Xudong Lin

    Full Text Available BACKGROUND: Approximately 80% of all new HIV-1 infections are acquired through sexual contact. Currently, there is no clinically approved microbicide, indicating a clear and urgent therapeutic need. We recently reported that palmitic acid (PA is a novel and specific inhibitor of HIV-1 fusion and entry. Mechanistically, PA inhibits HIV-1 infection by binding to a novel pocket on the CD4 receptor and blocks efficient gp120-to-CD4 attachment. Here, we wanted to assess the ability of PA to inhibit HIV-1 infection in cervical tissue ex vivo model of human vagina, and determine its effect on Lactobacillus (L species of probiotic vaginal flora. PRINCIPAL FINDINGS: Our results show that treatment with 100-200 µM PA inhibited HIV-1 infection in cervical tissue by up to 50%, and this treatment was not toxic to the tissue or to L. crispatus and jensenii species of vaginal flora. In vitro, in a cell free system that is independent of in vivo cell associated CD4 receptor; we determined inhibition constant (Ki to be ∼2.53 µM. SIGNIFICANCE: These results demonstrate utility of PA as a model molecule for further preclinical development of a safe and potent HIV-1 entry microbicide inhibitor.

  13. Formation of palmitic acid/Ca2+ complexes in the mitochondrial membrane: a possible role in the cyclosporin-insensitive permeability transition.

    Science.gov (United States)

    Mironova, Galina D; Gritsenko, Elena; Gateau-Roesch, Odile; Levrat, Christiane; Agafonov, Alexey; Belosludtsev, Konstantin; Prigent, Annie France; Muntean, Danina; Dubois, Madeleine; Ovize, Michel

    2004-04-01

    A possible role of palmitic acid/Ca2+ (PA/Ca2+) complexes in the cyclosporin-insensitive permeability transition in mitochondria has been studied. It has been shown that in the presence of Ca2+, PA induces a swelling of mitochondria, which is not inhibited by cyclosporin A. The swelling is accompanied by a drop in membrane potential, which cannot be explained only by a work of the Ca2+ uniporter. With time, the potential is restored. Evidence has been obtained indicating that the specific content of mitochondrial lipids would favor the PA/Ca2+ -induced permeabilization of the membrane. In experiments with liposomes, the PA/Ca2+ -induced membrane permeabilization was larger for liposomes formed from the mitochondrial lipids, as compared to the azolectin liposomes. Additionally, it has been found that in mitochondria of the TNF (tumor necrosis factor)-sensitive cells (WEHI-164 line), the content of PA is larger than in mitochondria of the TNF-insensitive cells (C6 line), with this difference being mainly provided by PA incorporated in phosphatidylethanolamine and especially, cardiolipin. The PA/Ca2+ -dependent mechanism of permeability transition in mitochondria might be related to some pathologies, e.g. myocardial ischemia. The heaviness of myocardial infarction of ischemic patients has been demonstrated to correlate directly with the content of PA in the human blood serum.

  14. Effects of duodenal infusions of palmitic, stearic, or oleic acids on milk composition and physical properties of butter.

    Science.gov (United States)

    Enjalbert, F; Nicot, M C; Bayourthe, C; Moncoulon, R

    2000-07-01

    Four dairy cows fitted with a duodenal cannula were used in a 4 x 4 Latin square design to investigate the effects of daily duodenal infusion of 500 g of fatty acids (containing mainly C16:0, C18:0, or cis-C18:1) on fecal concentrations of fatty acids, fatty acid profiles of milk fat, and solid fat content of butter. Fecal concentrations of C16:0 and especially of C18:0 were increased by duodenal infusion. Infusion with C16:0 increased the proportion of C16:0 in milk fat and delayed softening of butter when the temperature rose. Infusion with C18:0 resulted only in a slight increase of C18:0 proportion in milk fat and did not significantly affect solid fat in butter between -10 and 30 degrees C. With the infusion of cis-C18:1, the proportion of cis-C18:1 in milk fat was more than twice that of control, to the detriment of C16:0. Butter contained low proportion of solid fat, even at low temperatures. Increasing C16:0 or cis-C18:1 in milk fatty acid via duodenal infusion can be used to study their specific effects on butter characteristics, but, because of a low transfer from infusion to milk, this method is less efficient with C18:0.

  15. Effects of Ghrelin on Triglyceride Accumulation and Glucose Uptake in Primary Cultured Rat Myoblasts under Palmitic Acid-Induced High Fat Conditions

    Directory of Open Access Journals (Sweden)

    Lingling Han

    2015-01-01

    Full Text Available This study aimed to study the effects of acylated ghrelin on glucose and triglyceride metabolism in rat myoblasts under palmitic acid- (PA- induced high fat conditions. Rat myoblasts were treated with 0, 10−11, 10−9, or 10−7 M acylated ghrelin and 0.3 mM PA for 12 h. Triglyceride accumulation was determined by Oil-Red-O staining and the glycerol phosphate dehydrogenase-peroxidase enzymatic method, and glucose uptake was determined by isotope tracer. The glucose transporter 4 (GLUT4, AMP-activated protein kinase (AMPK, acetyl-CoA carboxylase (ACC, and uncoupling protein 3 (UCP3 were assessed by RT-PCR and western blot. Compared to 0.3 mM PA, ghrelin at 10−9 and 10−7 M reduced triglyceride content (5.855 ± 0.352 versus 5.030 ± 0.129 and 4.158 ± 0.254 mM, P<0.05 and prevented PA-induced reduction of glucose uptake (1.717 ± 0.264 versus 2.233 ± 0.333 and 2.333 ± 0.273 10−2 pmol/g/min, P<0.05. The relative protein expression of p-AMPKα/AMPKα, UCP3, and p-ACC under 0.3 mM PA was significantly reduced compared to controls (all P<0.05, but those in the 10−9 and 10−7 M ghrelin groups were significantly protected from 0.3 mM PA (all P<0.05. In conclusion, acylated ghrelin reduced PA-induced triglyceride accumulation and prevented the PA-induced decrease in glucose uptake in rat myoblasts. These effects may involve fatty acid oxidation.

  16. Acidolysis of terebinth fruit oil with palmitic and caprylic acids in a recirculating packed bed reactor: optimization using response surface methodology

    Directory of Open Access Journals (Sweden)

    Koçak Yanık, D.

    2016-06-01

    Full Text Available The acidolysis reaction of terebinth fruit oil with caprylic and palmitic acid has been investigated. The reaction was catalyzed by lipase (Lipozyme IM from Rhizomucormiehei and carried out in recirculating packed bed reactor. The effects of reaction parameters have been analyzed using response surface methodology. Reaction time (3.5–6.5 h, enzyme load (10–20%, substrate flow rate (4–8 mL·min-1 and substrate mole ratios (Terebinth oil : Palmitic acid : Caprylic acid, 1:1.83:1.22–1:3.07:2.05 were evaluated. The optimum reaction conditions were 5.9 h reaction time, 10% enzyme load, 4 mL·min-1 substrate flow rate and 1:3.10:2.07 substrate mole ratio. The structured lipid obtained at these optimum conditions had 52.23% desired triacylglycerols and a lower caloric value than that of terebinth fruit oil. The melting characteristics and microstructure of the structured lipid were similar to those of commercial margarine fat extracts. The results showed that the structured lipid had the highest oxidative stability among the studied fats.Se ha investigado la reacción de acidolisis del aceite de pistacho con los ácidoscaprílico y palmítico. La reacción fue catalizada por la lipasa Lipozyme IM de Rhizomucormiehei y realizada mediante recirculación del reactor de lecho compacto. Los efectos de los parámetros de la reacción han sido analizados mediante el uso de la metodología de superficie de respuesta. El tiempo de reacción (3.5 hasta 6.5 h, la carga de enzima (10–20%, el caudal de sustrato (4–8 mL·min-1 relaciones molares de los sustrato (aceite de pistacho: ácido palmítico: ácido caprílico, 1: 1,83: 1,22–1: 3,07: 2,05 fueron evaluados. Las condiciones óptimas de reacción fueron 5,9 h de tiempo de reacción, el 10% de carga de la enzima, 4 mL·min-1 de caudal de sustrato y 1: 3,10: 2,07 de relación molar de sustratos. Los lípidos estructurados obtenidos en las condiciones óptimas tenías 52,23% de triacilgliceroles

  17. Palmitate impairs cytokinesis associated with RhoA inhibition

    Institute of Scientific and Technical Information of China (English)

    Jianhua Zhang; Ying Yang; Jiarui Wu

    2010-01-01

    @@ Dear Editor, Excess fatty acid accumulation in non-adipose tissues results in lipotoxicity, which has been implicated in the pathogenesis of metabolic diseases such as obesity and diabetes [1]. A number of tissue culture systems have been used to study lipotoxicity by supplementation of culture media with palmitate, which is a major saturated free fatty acid in human plasma and has been reported to induce apoptosis in various cell types [2]. Here we report that palmitate causes formation of binucleate cells as a consequence of cytokinetic impairment. Our results reveal a novel toxic effect of palmitate on cell division and extend the implication of lipotoxicity to cytokinetic failure.

  18. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-05-15

    This study is focused on the preparation and characterization of thermal properties and thermal reliability of palmitic acid (PA)/expanded graphite (EG) composite as form-stable phase change material (PCM). The maximum mass fraction of PA retained in EG was found as 80 wt% without the leakage of PA in melted state even when it is heated over the melting point of PA. Therefore, the PA/EG (80/20 w/w%) composite was characterized as form-stable PCM. From differential scanning calorimetry (DSC) analysis, the melting and freezing temperatures and latent heats of the form-stable PCM were measured as 60.88 and 60.81 C and 148.36 and 149.66 J/g, respectively. Thermal cycling test showed that the composite PCM has good thermal reliability although it was subjected to 3000 melting/freezing cycles. Fourier transformation infrared (FT-IR) spectroscopic investigation indicated that it has good chemical stability after thermal cycling. Thermal conductivities of PA/EG composites including different mass fractions of EG (5%, 10%, 15% and 20%) were also measured. Thermal conductivity of form-stable PA/EG (80/20 w/w%) composite (0.60 W/mK) was found to be 2.5 times higher than that of pure PA (0.17 W/mK). Moreover, the increase in thermal conductivity of PA was confirmed by comparison of the melting and freezing times of pure PA with that of form-stable composite. Based on all results, it was concluded that the form-stable PA/EG (80/20 w/w%) has considerable latent heat energy storage potential because of its good thermal properties, thermal and chemical reliability and thermal conductivity. (author)

  19. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lee-Chuan C.; Ford, Jeffery J. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); Lee, John C. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States); Adamo, Martin L., E-mail: adamo@biochem.uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States)

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  20. Hydrophobic interactions between polymeric carrier and palmitic acid-conjugated siRNA improve PEGylated polyplex stability and enhance in vivo pharmacokinetics and tumor gene silencing.

    Science.gov (United States)

    Sarett, Samantha M; Werfel, Thomas A; Chandra, Irene; Jackson, Meredith A; Kavanaugh, Taylor E; Hattaway, Madison E; Giorgio, Todd D; Duvall, Craig L

    2016-08-01

    Formation of stable, long-circulating siRNA polyplexes is a significant challenge in translation of intravenously-delivered, polymeric RNAi cancer therapies. Here, we report that siRNA hydrophobization through conjugation to palmitic acid (siPA) improves stability, in vivo pharmacokinetics, and tumor gene silencing of PEGylated nanopolyplexes (siPA-NPs) with balanced cationic and hydrophobic content in the core relative to the analogous polyplexes formed with unmodified siRNA, si-NPs. Hydrophobized siPA loaded into the NPs at a lower charge ratio (N(+):P(-)) relative to unmodified siRNA, and siPA-NPs had superior resistance to siRNA cargo unpackaging in comparison to si-NPs upon exposure to the competing polyanion heparin and serum. In vitro, siPA-NPs increased uptake in MDA-MB-231 breast cancer cells (100% positive cells vs. 60% positive cells) but exhibited equivalent silencing of the model gene luciferase relative to si-NPs. In vivo in a murine model, the circulation half-life of intravenously-injected siPA-NPs was double that of si-NPs, resulting in a >2-fold increase in siRNA biodistribution to orthotopic MDA-MB-231 mammary tumors. The increased circulation half-life of siPA-NPs was dependent upon the hydrophobic interactions of the siRNA and the NP core component and not just siRNA hydrophobization, as siPA did not contribute to improved circulation time relative to unmodified siRNA when delivered using polyplexes with a fully cationic core. Intravenous delivery of siPA-NPs also achieved significant silencing of the model gene luciferase in vivo (∼40% at 24 h after one treatment and ∼60% at 48 h after two treatments) in the murine MDA-MB-231 tumor model, while si-NPs only produced a significant silencing effect after two treatments. These data suggest that stabilization of PEGylated siRNA polyplexes through a combination of hydrophobic and electrostatic interactions between siRNA cargo and the polymeric carrier improves in vivo pharmacokinetics and

  1. An investigation of the likely role of (O-acyl) ω-hydroxy fatty acids in meibomian lipid films using (O-oleyl) ω-hydroxy palmitic acid as a model.

    Science.gov (United States)

    Schuett, Burkhardt S; Millar, Thomas J

    2013-10-01

    (O-acyl) ω-hydroxy fatty acids (OAHFAs) are a recently found group of polar lipids in meibum. Since these lipids can potentially serve as a surfactant in the tear film lipid layer, the surface properties of a molecule of this lipid class was investigated and compared with a structurally related wax ester and a fatty acid. (O-oleyl) ω-hydroxy palmitic acid was synthesized and used as the model OAHFA. It was spread either alone or mixed with human meibum on an artificial tear buffer in a Langmuir trough, and pressure-area isocycle profiles were recorded at different temperatures and compared with those of palmityl oleate and oleic acid. These measurements were accompanied by fluorescence microscopy of meibum mixed films during pressure-area isocycles. The pressure area curves indicated that pure films of the model OAHFA are as surface active as oleic acid films, cover a much larger surface area than either palmityl oleate or oleic acid and show a distinct biphasic pressure-area isocycle profile. The OAHFAs appeared to remain on the aqueous surface and show only a minor re-arrangement into multi-layered structures during repetitive pressure area isocycles. All these properties can be explained by OAHFAs binding weakly to the aqueous surface via an ester group and strongly via a carboxyl group. By contrast, the pressure area profiles of palmityl oleate films indicate that they form multi-layers and oleic acid presumably forms micelles and desorbs into the subphase. When mixed with meibum, similar features as for pure films were observed. In addition, meibum-OAHFA films appeared very homogeneous; a feature not seen with other mixtures. In conclusion these data support the notion that the tested OAHFA is a very potent surfactant which is important in spreading and stabilising meibomian lipid films.

  2. Synthesis of L-Ascorbyl Flurbiprofenate by Lipase-Catalyzed Esterification and Transesterification Reactions

    Directory of Open Access Journals (Sweden)

    Jia-ying Xin

    2017-01-01

    Full Text Available The synthesis of L-ascorbyl flurbiprofenate was achieved by esterification and transesterification in nonaqueous organic medium with Novozym 435 lipase as biocatalyst. The conversion was greatly influenced by the kinds of organic solvents, speed of agitation, catalyst loading amount, reaction time, and molar ratio of acyl donor to L-ascorbic acid. A series of solvents were investigated, and tert-butanol was found to be the most suitable from the standpoint of the substrate solubility and the conversion for both the esterification and transesterification. When flurbiprofen was used as acyl donor, 61.0% of L-ascorbic acid was converted against 46.4% in the presence of flurbiprofen methyl ester. The optimal conversion of L-ascorbic acid was obtained when the initial molar ratio of acyl donor to ascorbic acid was 5 : 1. kinetics parameters were solved by Lineweaver-Burk equation under nonsubstrate inhibition condition. Since transesterification has lower conversion, from the standpoint of productivity and the amount of steps required, esterification is a better method compared to transesterification.

  3. Inhibitory effects of a novel ascorbic derivative, disodium isostearyl 2-O-L-ascorbyl phosphate on melanogenesis.

    Science.gov (United States)

    Matsuda, Sanae; Shibayama, Hiroharu; Hisama, Masayoshi; Ohtsuki, Mamitaro; Iwaki, Masahiro

    2008-03-01

    We investigated the inhibitory effects of a novel amphiphilic ascorbic derivative, disodium isostearyl 2-O-L-ascorbyl phosphate (VCP-IS-2Na), synthesized from a hydrophilic ascorbic derivative, sodium-2-O-L-ascorbyl phosphate (VCP-Na), on melanogenesis in cultured human melanoma cells, normal human melanocytes, and three-dimensional cultured human skin models. Melanin synthesis in melanoma cells treated with VCP-IS-2Na at 300 muM and melanocytes treated with VCP-IS-2Na at 100 muM decreased to 23% and 52% of that in non-treated cells, respectively, and the cell viability was not affected. VCP-IS-2Na also significantly suppressed the cellular tyrosinase activity of melanoma cells and melanocytes. Melanin synthesis in human skin models was evaluated by macro- and microscopic observations of its pigmentation and quantitative measurements of melanin. Treatment of the human skin models with 1.0% VCP-IS-2Na did not inhibit cell viability, while melanin synthesis was decreased to 21% of that in the control. In contrast, L-ascorbic acid (VC) and VCP-Na did not seem to inhibit melanin synthesis and cellular tyrosinase activity. These results indicate that VCP-IS-2Na may be an effective whitening agent for the skin, and we expect the application of VCP-IS-2Na in the cosmetic industry.

  4. Targeted metabolomic analysis reveals the association between the postprandial change in palmitic acid, branched-chain amino acids and insulin resistance in young obese subjects.

    Science.gov (United States)

    Liu, Liyan; Feng, Rennan; Guo, Fuchuan; Li, Ying; Jiao, Jundong; Sun, Changhao

    2015-04-01

    Obesity is the result of a positive energy balance and often leads to difficulties in maintaining normal postprandial metabolism. The changes in postprandial metabolites after an oral glucose tolerance test (OGTT) in young obese Chinese men are unclear. In this work, the aim is to investigate the complex metabolic alterations in obesity provoked by an OGTT using targeted metabolomics. We used gas chromatography-mass spectrometry and ultra high performance liquid chromatography-triple quadrupole mass spectrometry to analyze serum fatty acids, amino acids and biogenic amines profiles from 15 control and 15 obese subjects at 0, 30, 60, 90 and 120 min during an OGTT. Metabolite profiles from 30 obese subjects as independent samples were detected in order to validate the change of metabolites. There were the decreased levels of fatty acid, amino acids and biogenic amines after OGTT in obesity. At 120 min, percent change of 20 metabolites in obesity has statistical significance when comparing with the controls. The obese parameters was positively associated with changes in arginine and histidine (Ppalmitic acid (PA), branched-chain amino acids (BCAAs) and phenylalanine between 1 and 120 min were positively associated with fasting insulin and HOMA-IR (all P<0.05) in the obese group. The postprandial metabolite of PA and BCAAs may play important role in the development and onset of insulin resistance in obesity. Our findings offer new insights in the complex physiological regulation of the metabolism during an OGTT in obesity.

  5. Electron spin resonance assay of ascorbyl radical generation in mouse hippocampal slices during and after kainate-induced seizures.

    Science.gov (United States)

    Masumizu, Toshiki; Noda, Yasuko; Mori, Akitane; Packer, Lester

    2005-12-01

    As an index of oxidative status, we analyzed ascorbyl radical generation during and after kainate-induced seizures in mouse hippocampus, using an ESR spectrometer equipped with a special tissue-type quartz cell. A specific doublet ESR spectrum was observed after seizures, and the g value and the hyperfine coupling constant (hfcc) of the spectrum were identical with those of ascorbyl radical itself. Antiepileptic zonisamide inhibited the generation of ascorbyl radical accompanying the seizures.

  6. 棕榈酸/石蜡复合相变储能材料%Properties of Palmitic Acid and Paraffin Wax Composite Phase Change Material

    Institute of Scientific and Technical Information of China (English)

    尹徐影; 王继芬; 关礼辉; 谢华清

    2014-01-01

    The paraffin wax (PW)/palmitic acid (PA) composites were prepared with ultrasound and stirring. Transientshort-hot-wire method (SHW) was used to measure the thermal conductivity of PA/PW composites. The phase change temperature (T ) and latent heat (L) of the composites were observed by differential scanning calorimetrics (DSC). Fourier transform infrared (FTIR) was used to characterize the component of the composites. The absorption spectra indicated that there were no new chemical bonds between PA and PW. Results showed that the thermal conductivities of composite phase change materials decreased with the increasing of temperature, except for those at about 30 and 50◦C, which near the phase change temperatures. The thermal conductivities showed a certain degree of increase in composites at the temperatures near phase change points. Ts-s (solid-solid phase change temperature) of the composites was slightly higher than that of paraffin wax, while Ts-l (solid-liquid phase transition temperature) of most of the composites were lower, except for w=35%(w is the mass fraction of PA). PA/PW composites had higher Ls-l than pure PW, except for w=35%.%将石蜡(PW)与棕榈酸(PA)熔融超声共混,制备出了一系列PA/PW复合材料。采用瞬态热丝法(SHW, Short-Hot-Wire)测量PA/PW复合材料的导热系数,用差示扫描量热仪(DSC, Differential Scanning Calorimetric)分析复合材料的相变温度(T )和相变潜热(L),采用红外光谱仪(FTIR, Fourier Transform Infrared)对复合物的组成进行表征。复合材料的红外吸收光谱图表明, PW和PA只是简单的物理混合,未生成新物质。复合相变材料的导热系数大致随温度的升高而降低,而在30和50◦C左右时由于固-固和固-液相变的作用,导热系数测量值出现了一定程度的升高。复合材料的Ts-s(固-固相变温度)都比PW的略高;与纯PW相比,除PA的质量分数w=35%之外,其他比例复合材料的Ts-l (固-液相变

  7. Paliperidone palmitate-induced sialorrhoea

    Directory of Open Access Journals (Sweden)

    Cengiz Cengisiz

    2016-03-01

    Full Text Available Extrapyramidal, metabolic, and cardiac side effects were reported for atypical antipsychotics; although a few resources show paliperidone-induced sialorrhea, there are no resources that show paliperidone palmitate-induced sialorrhea. In this paper, we present the paliperidone palmitate-induced sialorrhea side effects of a patient who applied on our clinic [Cukurova Med J 2016; 41(0.100: 8-13

  8. Environmentally friendly LC for the simultaneous determination of ascorbic acid and its derivatives in skin-whitening cosmetics.

    Science.gov (United States)

    Balaguer, Angel; Chisvert, Alberto; Salvador, Amparo

    2008-02-01

    Ascorbic acid (AA), also known as vitamin C, is a very popular skin-whitening agent used in cosmetics. However, the use of AA (and also its sodium or magnesium salts) in cosmetic products is limited owing to its labile oxidative properties. In order to avoid its early degradation, different derivatives have been designed, such as ascorbyl phosphate (APH; as magnesium or sodium salts) and ascorbyl palmitate (AP), and more recently the ascorbyl glucoside (AG). Bearing in mind that all these chemicals in skin-whitening cosmetic products must be determined in order to control the efficacy of such products, this paper focuses on developing a wide-ranging LC analytical method able to determine the above-mentioned compounds simultaneously in cosmetic products. The chromatographic variables were studied and selected in order to achieve the total separation and subsequent determination of all the analytes involved. Thus, an octadecylsilica (C(18)) stationary phase and a mobile phase gradient of ethanol: 50 mM phosphate buffer at different pHs (containing 0.1 M NaCl) were used. Detection was carried out with a UV/visible spectrometry detector set at different wavelengths. The LOD ranged from 2 to 6 microg/mL depending on the analyte. The proposed method was validated by analysing a laboratory-made and six commercial skin-whitening cosmetic samples. The method allows any mixture of the four skin-whitening agents studied to be both separated at good resolution and determined without interferences from samples, and moreover it does not require the use of either highly toxic organic solvents or hazardous chemicals.

  9. Activation of PPAR{delta} up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Jun; Jiang, Li; Lue, Qingguo; Ke, Linqiu [Department of Endocrinology, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041 (China); Tong, Nanwei, E-mail: buddyjun@hotmail.com [Department of Endocrinology, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041 (China)

    2010-01-15

    Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor {delta} (PPAR{delta}) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic {beta}-cells. After HIT-T15 cells (a {beta}-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPAR{delta}), we found that administration of GW increased the expression of PPAR{delta} mRNA. GW-induced activation of PPAR{delta} up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4 (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPAR{delta} plays an important role in protecting pancreatic {beta}-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.

  10. Palmitic acid (16:0) competes with omega-6 linoleic and omega-3 ɑ-linolenic acids for FADS2 mediated Δ6-desaturation.

    Science.gov (United States)

    Park, Hui Gyu; Kothapalli, Kumar S D; Park, Woo Jung; DeAllie, Christian; Liu, Lei; Liang, Allison; Lawrence, Peter; Brenna, J Thomas

    2016-02-01

    Sapienic acid, 16:1n-10 is the most abundant unsaturated fatty acid on human skin where its synthesis is mediated by FADS2 in the sebaceous glands. The FADS2 product introduces a double bond at the Δ6, Δ4 and Δ8 positions by acting on at least ten substrates, including 16:0, 18:2n-6, and 18:3n-3. Our aim was to characterize the competition for accessing FADS2 mediated Δ6 desaturation between 16:0 and the most abundant polyunsaturated fatty acids (PUFA) in the human diet, 18:2n-6 and 18:3n-3, to evaluate whether competition may be relevant in other tissues and thus linked to metabolic abnormalities associated with FADS2 or fatty acid levels. MCF7 cells stably transformed with FADS2 biosynthesize 16:1n-10 from exogenous 16:0 in preference to 16:1n-7, the immediate product of SCD highly expressed in cancer cell lines, and 16:1n-9 via partial β-oxidation of 18:1n-9. Increasing availability of 18:2n-6 or 18:3n-3 resulted in decreased bioconversion of 16:0 to 16:1n-10, simultaneously increasing the levels of highly unsaturated products. FADS2 cells accumulate the desaturation-elongation products 20:3n-6 and 20:4n-3 in preference to the immediate desaturation products 18:3n-6 and 18:4n-3 implying prompt/coupled elongation of the nascent desaturation products. MCF7 cells incorporate newly synthesized 16:1n-10 into phospholipids. These data suggest that excess 16:0 due to, for instance, de novo lipogenesis from high carbohydrate or alcohol consumption, inhibits synthesis of highly unsaturated fatty acids, and may in part explain why supplemental preformed EPA and DHA in some studies improves insulin resistance and other factors related to diabetes and metabolic syndrome aggravated by excess calorie consumption.

  11. Palmitic acid interferes with energy metabolism balance by adversely switching the SIRT1-CD36-fatty acid pathway to the PKC zeta-GLUT4-glucose pathway in cardiomyoblasts.

    Science.gov (United States)

    Chen, Yeh-Peng; Tsai, Chia-Wen; Shen, Chia-Yao; Day, Cecilia-Hsuan; Yeh, Yu-Lan; Chen, Ray-Jade; Ho, Tsung-Jung; Padma, V Vijaya; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-05-01

    Metabolic regulation is inextricably linked with cardiac function. Fatty acid metabolism is a significant mechanism for creating energy for the heart. However, cardiomyocytes are able to switch the fatty acids or glucose, depending on different situations, such as ischemia or anoxia. Lipotoxicity in obesity causes impairments in energy metabolism and apoptosis in cardiomyocytes. We utilized the treatment of H9c2 cardiomyoblast cells palmitic acid (PA) as a model for hyperlipidemia to investigate the signaling mechanisms involved in these processes. Our results show PA induces time- and dose-dependent lipotoxicity in H9c2 cells. Moreover, PA enhances cluster of differentiation 36 (CD36) and reduces glucose transporter type 4 (GLUT4) pathway protein levels following a short period of treatment, but cells switch from CD36 back to the GLUT4 pathway after during long-term exposure to PA. As sirtuin 1 (SIRT1) and protein kinase Cζ (PKCζ) play important roles in CD36 and GLUT4 translocation, we used the SIRT1 activator resveratrol and si-PKCζ to identify the switches in metabolism. Although PA reduced CD36 and increased GLUT4 metabolic pathway proteins, when we pretreated cells with resveratrol to activate SIRT1 or transfected si-PKCζ, both were able to significantly increase CD36 metabolic pathway proteins and reduce GLUT4 pathway proteins. High-fat diets affect energy metabolism pathways in both normal and aging rats and involve switching the energy source from the CD36 pathway to GLUT4. In conclusion, PA and high-fat diets cause lipotoxicity in vivo and in vitro and adversely switch the energy source from the CD36 pathway to the GLUT4 pathway.

  12. Possible Involvement of Palmitate in Pathogenesis of Periodontitis.

    Science.gov (United States)

    Shikama, Yosuke; Kudo, Yasusei; Ishimaru, Naozumi; Funaki, Makoto

    2015-12-01

    Type 2 diabetes (T2D) is characterized by decreased insulin sensitivity and higher concentrations of free fatty acids (FFAs) in plasma. Among FFAs, saturated fatty acids (SFAs), such as palmitate, have been suggested to promote inflammatory responses. Although many epidemiological studies have shown a link between periodontitis and T2D, little is known about the clinical significance of SFAs in periodontitis. In this study, we showed that gingival fibroblasts have cell-surface expression of CD36, which is also known as FAT/fatty acid translocase. Moreover, CD36 expression was increased in gingival fibroblasts of high-fat diet-induced T2D model mice, compared with gingival fibroblasts of mice fed a normal diet. DNA microarray analysis revealed that palmitate increased mRNA expression of pro-inflammatory cytokines and chemokines in human gingival fibroblasts (HGF). Consistent with these results, we confirmed that palmitate-induced interleukin (IL)-6, IL-8, and CXCL1 secretion in HGF, using a cytokine array and ELISA. SFAs, but not an unsaturated fatty acid, oleate, induced IL-8 production. Docosahexaenoic acid (DHA), which is one of the omega-3 polyunsaturated fatty acids, significantly suppressed palmitate-induced IL-6 and IL-8 production. Treatment of HGF with a CD36 inhibitor also inhibited palmitate-induced pro-inflammatory responses. Finally, we demonstrated that Porphyromonas gingivalis (P.g.) lipopolysaccharide and heat-killed P.g. augmented palmitate-induced chemokine secretion in HGF. These results suggest a potential link between SFAs in plasma and the pathogenesis of periodontitis.

  13. Beta-palmitate - a natural component of human milk in supplemental milk formulas.

    Science.gov (United States)

    Havlicekova, Zuzana; Jesenak, Milos; Banovcin, Peter; Kuchta, Milan

    2016-03-17

    The composition and function of human milk is unique and gives a basis for the development of modern artificial milk formulas that can provide an appropriate substitute for non-breastfed infants. Although human milk is not fully substitutable, modern milk formulas are attempting to mimic human milk and partially substitute its complex biological positive effects on infants. Besides the immunomodulatory factors from human milk, research has been focused on the composition and structure of human milk fat with a high content of β-palmitic acid (sn-2 palmitic acid, β-palmitate). According to the available studies, increasing the content of β-palmitate added to milk formulas promotes several beneficial physiological functions. β-palmitate positively influences fatty acid metabolism, increases calcium absorption, improves bone matrix quality and the stool consistency, and has a positive effect on the development of the intestinal microbiome.

  14. Biosysthesis of Corn Starch Palmitate by Lipase Novozym 435

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2012-06-01

    Full Text Available Esterification of starch was carried out to expand the usefulness of starch for a myriad of industrial applications. Lipase B from Candida antarctica, immobilized on macroporous acrylic resin (Novozym 435, was used for starch esterification in two reaction systems: micro-solvent system and solvent-free system. The esterification of corn starch with palmitic acid in the solvent-free system and micro-solvent system gave a degree of substitution (DS of 1.04 and 0.0072 respectively. Esterification of corn starch with palmitic acid was confirmed by UV spectroscopy and IR spectroscopy. The results of emulsifying property analysis showed that the starch palmitate with higher DS contributes to the higher emulsifying property (67.6% and emulsion stability (79.6% than the native starch (5.3% and 3.9%. Modified starch obtained by esterification that possesses emulsifying properties and has long chain fatty acids, like palmitic acid, has been widely used in the food, pharmaceutical and biomedical applications industries.

  15. Palmitate binding to serum albumin, measured by rate of dialysis

    DEFF Research Database (Denmark)

    Brodersen, R; Honoré, B; Andersen, S

    1988-01-01

    with binding of the unsaturated acids is less pronounced. Chloride ions compete with binding of palmitate. Reserve albumin concentration in serum samples from 33 male adults was 420 +/- 59 microM (mean +/- SD), and in 33 females, 351 +/- 50 microM. Umbilical cord sera from ten newborn infants averaged 172......Dialysis experiments were performed with an acetylcellulose membrane between two identical sample solutions; a trace amount of radiolabelled palmitate was added on one side and the rate of dialytic equilibration of the label was measured. By comparison with rates measured in standard experiments......, using pure albumin solutions, we obtained the reserve albumin concentration for binding of palmitate, previously defined as the concentration of a pure standard albumin which binds the labelled ligand as tightly as it is bound in the sample. Two techniques were developed, one for 1-ml sample volumes...

  16. Antimutagenic activity of a novel ascorbic derivative, disodium isostearyl 2-O-L-ascorbyl phosphate.

    Science.gov (United States)

    Hisama, Masayoshi; Matsuda, Sanae; Shibayama, Hiroharu; Iwaki, Masahiro

    2008-06-01

    A novel amphiphilic vitamin C derivative, disodium isostearyl 2-O-L-ascorbyl phosphate (VCP-IS-2Na) possessing an alkyl chain of C(18) to a stable ascorbate derivative sodium L-ascorbic acid 2-phosphate (VCP-Na), was synthesized and evaluated as an anti-mutagen with suppressive effect on SOS-inducing activity on mutagen in the Salmonella typhimurium TA1535/pSK1002 umu test. VCP-IS-2Na was assayed with chemical mutagens, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), 2-(2-furyl)-3-(5-nitro-2-furyl) acrylamide (furylfuramide) and 4-nitroquinolin 1-oxide (4NQO), which do not require liver metabolizing enzymes. VCP-IS-2Na at a concentration of 0.40 micromol/ml suppressed 66.2%, 54.7% and 60.2% of the SOS-inducing activity on MNNG, furylfuramide, and 4NQO, and the 50% inhibitory dose value (ID(50)) was 0.12 micromol/ml, 0.26 micromol/ml, and 0.17 micromol/ml, respectively. In addition, VCP-IS-2Na was assayed with 2-aminoanthracene (2AA) and 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), which require liver metabolizing enzymes. To study the structure-activity relationship, L-ascorbic acid (VC) and VCP-Na were also assayed with all mutagens. VCP-IS-2Na, suppressed the chemical and physical mutagens-induced SOS response greater than VC and VCP-Na in the umu test. Also, the antimutagenic activities of VCP-IS-2Na, VC, and VCP-Na against MNNG and Trp-P-1 were assayed by the Ames test using the S. typhimurium TA100 strain. In summary, this research suggests that VCP-IS-2Na showed potent antimutagenic effects against chemical mutagens and UV irradiation.

  17. Sequence-specific {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments for intestinal fatty-acid-binding protein complexed with palmitate (15.4 kDA)

    Energy Technology Data Exchange (ETDEWEB)

    Hodsdon, M.E.; Toner, J.J.; Cistola, D.P. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1994-12-01

    Intestinal fatty-acid-binding protein (I-FABP) belongs to a family of soluble, cytoplasmic proteins that are thought to function in the intracellular transport and trafficking of polar lipids. Individual members of this protein family have distinct specificities and affinities for fatty acids, cholesterol, bile salts, and retinoids. We are comparing several retinol- and fatty-acid-binding proteins from intestine in order to define the factors that control molecular recognition in this family of proteins. We have established sequential resonance assignments for uniformly {sup 13}C/{sup 15}N-enriched I-FABP complexed with perdeuterated palmitate at pH7.2 and 37{degrees}C. The assignment strategy was similar to that introduced for calmodulin. We employed seven three-dimensional NMR experiments to establish scalar couplings between backbone and sidechain atoms. Backbone atoms were correlated using triple-resonance HNCO, HNCA, TOCSY-HMQC, HCACO, and HCA(CO)N experiments. Sidechain atoms were correlated using CC-TOCSY, HCCH-TOCSY, and TOCSY-HMQC. The correlations of peaks between three-dimensional spectra were established in a computer-assisted manner using NMR COMPASS (Molecular Simulations, Inc.) Using this approach, {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments have been established for 120 of the 131 residues of I-FABP. For 18 residues, amide {sup 1}H and {sup 15}N resonances were unobservable, apparently because of the rapid exchange of amide protons with bulk water at pH 7.2. The missing amide protons correspond to distinct amino acid patterns in the protein sequence, which will be discussed. During the assignment process, several sources of ambiguity in spin correlations were observed. To overcome this ambiguity, the additional inter-residue correlations often observed in the HNCA experiment were used as cross-checks for the sequential backbone assignments.

  18. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function

    OpenAIRE

    Maedler, Kathrin; Oberholzer, José; Bucher, Pascal Alain Robert; Spinas, Giatgen A.; Donath, Marc

    2003-01-01

    Glucotoxicity and lipotoxicity contribute to the impaired beta-cell function observed in type 2 diabetes. Here we examine the effect of saturated and monounsaturated fatty acids at different glucose concentrations on human beta-cell turnover and secretory function. Exposure of cultured human islets to saturated fatty acid and/or to an elevated glucose concentration for 4 days increased beta-cell DNA fragmentation and decreased beta-cell proliferation. In contrast, the monounsaturated palmitol...

  19. 非酒精性脂肪性肝病患者血清棕榈酸水平%Level of serum palmitic acid in patients with non-alcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    彭克楠; 唐志鹏; 刘波; 赵海利; 柴国静; 赵晓云

    2014-01-01

    Objective To analyze the serum levels of medium-and long-chain free fatty acids (FFAs)in patients with hyperlipidemic non-alcoholic fatty liver disease (NAFLD) in order to shed some light on prevention and treatment of NAFLD.Methods The clinical data of 125 patients with high triglyceride (TG)levels who were treated in Hebei General Hospital from January 2011 to May 2011 were analyzed in this study.They were further divided into HF group (n =64) and H group (n =61) based on the presence of NAFLD or not.In addition,63 healthy individuals were recruited from the Central Hospital of Handan during the same period as the control group (N group).Serum medium-and long-chain FFAs were detected by gas chromatography.The body mass index (BMI),abdominal circumference,blood pressure,fasting blood glucose (FBG),and serum lipids including TG,total cholesterol (TC),high-density lipoprotein cholesterol (HDL-C),and low-density lipoprotein cholesterol (LDL-C) were measured.Results Compared with the N group,the H group had significantly higher BMI [(25.24 ± 1.41) kg/m2 vs.(24.32 ± 1.12) kg/m2,P =0.004],abdominal circumference [(84.72 ± 1.34) cm vs.(77.33 ±0.89) cm,P =0.010],and diastolic blood pressure [(77.35±1.21) mmHgvs.(75.21 ±1.61) mmHg,P=0.014]; also,the serum TG [(2.86±0.55) mmol/Lvs.(0.93±0.27) mmol/L,P=0.000] andTC levels [(4.56±0.66) mmol/Lvs.(4.36±0.47) mmol/L,P=0.000],serum myristic acid (C14∶0) [(0.49±0.04)% vs.(0.36±0.01)%,P=0.011],palmitic acid (C16 ∶ 0) [(18.36 ± 0.47) % vs.(15.97 ± 0.30) %,P =0.000],palmitoleic acid (C16∶ 1) [(1.00±0.12)% vs.(0.58±0.02)%,P=0.001],and oleic acid (C18 ∶ 1) [(18.20±0.70) % vs.(12.23 ± 0.37) %,P =0.000] all significantly increased,while stearic acid (C18 ∶ 0) [(7.52 ±0.22)% vs.(8.15 ±0.28)%,P=0.012],eicosadienoic acid (C20 ∶ 2) [(0.61 ±0.07)% vs.(1.03 ±0.17) %,P =0.000],eicosatrienoic acid (C20 ∶ 3) [(1.77 ± 0.15) % vs.(2.49 ± 0.18) %,P =0.002],and docosahexenoic acid (C22

  20. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    Directory of Open Access Journals (Sweden)

    Richard Ventura

    2015-08-01

    Research in context: Fatty acid synthase (FASN is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for selecting tumors highly sensitive to FASN inhibition are identified. These preclinical data provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers.

  1. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, Noha M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo (Egypt); El-Demerdash, Ebtehal [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); Abdel-Rahman, Hanaa M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo (Egypt); Algandaby, Mardi M. [Department of Biology (Botany), Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al-Abbasi, Fahad A. [Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Abdel-Naim, Ashraf B., E-mail: abnaim@pharma.asu.edu.eg [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2012-10-01

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). MP and EP decreased NF-κB expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. -- Highlights: ► Efficacy of MP and EP in combating inflammation was displayed in several models. ► MP and EP reduced carrageenan-induced rat paw edema and prostaglandin E2 level. ► MP and EP decreased TNF-α and IL-6 levels in experimental endotoxemia. ► MP and EP reduced NF-κB expression and histological changes in rat liver and lung. ► MP and EP reduced croton oil-induced ear edema and neutrophil infiltration.

  2. Alpha-synuclein gene deletion decreases brain palmitate uptake and alters the palmitate metabolism in the absence of alpha-synuclein palmitate binding

    DEFF Research Database (Denmark)

    Golovko, Mikhail Y; Færgeman, Nils J.; Cole, Nelson B;

    2005-01-01

    . To better define a role for alpha-synuclein in brain fatty acid uptake and metabolism, we infused awake, wild-type, or alpha-synuclein gene-ablated mice with [1-(14)C]palmitic acid (16:0) and assessed fatty acid uptake and turnover kinetics in brain phospholipids. Alpha-synuclein deficiency decreased brain......Alpha-synuclein is an abundant protein in the central nervous system that is associated with a number of neurodegenerative disorders, including Parkinson's disease. Its physiological function is poorly understood, although recently it was proposed to function as a fatty acid binding protein...... 16:0 uptake 35% and reduced its targeting to the organic fraction. The incorporation coefficient for 16:0 entering the brain acyl-CoA pool was significantly decreased 36% in alpha-synuclein gene-ablated mice. Because incorporation coefficients alone are not predictive of fatty acid turnover...

  3. Investigation of the interaction of naringin palmitate with bovine serum albumin: spectroscopic analysis and molecular docking.

    Directory of Open Access Journals (Sweden)

    Xia Zhang

    Full Text Available BACKGROUND: Bovine serum albumin (BSA contains high affinity binding sites for several endogenous and exogenous compounds and has been used to replace human serum albumin (HSA, as these two compounds share a similar structure. Naringin palmitate is a modified product of naringin that is produced by an acylation reaction with palmitic acid, which is considered to be an effective substance for enhancing naringin lipophilicity. In this study, the interaction of naringin palmitate with BSA was characterised by spectroscopic and molecular docking techniques. METHODOLOGY/PRINCIPAL FINDINGS: The goal of this study was to investigate the interactions between naringin palmitate and BSA under physiological conditions, and differences in naringin and naringin palmitate affinities for BSA were further compared and analysed. The formation of naringin palmitate-BSA was revealed by fluorescence quenching, and the Stern-Volmer quenching constant (KSV was found to decrease with increasing temperature, suggesting that a static quenching mechanism was involved. The changes in enthalpy (ΔH and entropy (ΔS for the interaction were detected at -4.11 ± 0.18 kJ·mol(-1 and -76.59 ± 0.32 J·mol(-1·K(-1, respectively, which indicated that the naringin palmitate-BSA interaction occurred mainly through van der Waals forces and hydrogen bond formation. The negative free energy change (ΔG values of naringin palmitate at different temperatures suggested a spontaneous interaction. Circular dichroism studies revealed that the α-helical content of BSA decreased after interacting with naringin palmitate. Displacement studies suggested that naringin palmitate was partially bound to site I (subdomain IIA of the BSA, which was also substantiated by the molecular docking studies. CONCLUSIONS/SIGNIFICANCE: In conclusion, naringin palmitate was transported by BSA and was easily removed afterwards. As a consequence, an extension of naringin applications for use in food, cosmetic

  4. Effect of a novel ascorbic derivative, disodium isostearyl 2-O-L-ascorbyl phosphate on human dermal fibroblasts: increased collagen synthesis and inhibition of MMP-1.

    Science.gov (United States)

    Shibayama, Hiroharu; Hisama, Masayoshi; Matsuda, Sanae; Ohtsuki, Mamitaro; Iwaki, Masahiro

    2008-04-01

    The effects of a novel amphiphilic vitamin C derivative, disodium isostearyl 2-O-L-ascorbyl phosphate (disodium 2-(1,3,3-trimethyl-n-butyl)-5,7,7-trimethyl-n-octyl-L-ascorbyl phosphate, VCP-IS-2Na), possessing a C18 alkyl chain attached to a stable sodium L-ascorbic acid 2-phosphate (VCP-Na), on the proliferation of fibroblasts and collagen synthesis, and inhibition of matrix metalloproteinase-1 (MMP-1) in normal human fibroblasts, NHDFs and NB1RGBs, were evaluated. Compared with proliferation of non-treated fibroblasts, VCP-IS-2Na at 50 microM increased proliferation to 123 and 135% of that in NHDFs and NB1RGBs. On the other hand, L-ascorbic acid (vitamin C) and VCP-Na had little effect on proliferation. At a concentration of 5.0-50 microM, VCP-IS-2Na stimulated collagen synthesis with an effectiveness comparable to that of vitamin C and VCP-Na. The amount of type I collagen in the culture medium was increased by treatment with VCP-IS-2Na for 72 h, in a concentration-dependent manner. Maximum increases of 126 and 1067% were seen with VCP-IS-2Na at 50 microM in NHDFs and NB1RGBs, respectively, whereas vitamin C and VCP-Na only had a small effect. VCP-IS-2Na had a small inhibitory effect on MMP-1, but vitamin C did not inhibit MMP-1, and VCP-Na had very little effect. VCP-IS-2Na exerted its collagen synthesis-promoting activity after being converted to vitamin C by phosphatase. This vitamin C promoted proliferation, collagen synthesis and inhibition of MMP-1, which are prolonged through sustained conversion of VCP-IS-2Na.

  5. Stevioside counteracts the alpha-cell hypersecretion caused by long-term palmitate exposure

    DEFF Research Database (Denmark)

    Hong, J; Chen, L; Jeppesen, P B;

    2006-01-01

    Long-term exposure to fatty acids impairs beta-cell function in type 2 diabetes, but little is known about the chronic effects of fatty acids on alpha-cells. We therefore studied the prolonged impact of palmitate on alpha-cell function and on the expression of genes related to fuel metabolism. We......-activated receptor-gamma, and stearoyl-CoA desaturase gene expressions in the presence of palmitate (Pacids leads to a hypersecretion of glucagon and an accumulation of TG content in clonal alpha-TC1-6 cells. Stevioside was able to counteract the alpha......-cell hypersecretion caused by palmitate and enhanced the expression of genes involved in fatty acid metabolism. This indicates that stevioside may be a promising antidiabetic agent in treatment of type 2 diabetes....

  6. 维生素C衍生物的制备及其在化妆品中的应用%Preparation of L-ascorbic acid derivatives and their application in cosmetics

    Institute of Scientific and Technical Information of China (English)

    谷雪贤

    2011-01-01

    维生素C衍牛物克服了维生素C易被氧化不稳定的缺点,被广泛用于化妆品中.阐述了维生素C衍生物围内外的研究情况,主要对维生素C的磷酸酯盐、糖苷、棕榈酸酯、乙基醚、甲基硅基等衍生物的制备方法进行了总结.介绍了其在化妆品中的应用情况,指出了维生素C衍生物的发展趋势.%The L-ascorbic acid derivatives overcomes the shortcoming of L-ascorbic acid which is easy to be oxidized,and has been broadly applied in cosmetics.The recent development situation of L-ascorbic acid derivatives is reviewed,and the preparation methods and the application on cosmetics of the L-ascorbic acid derivatives such as L-ascorbic acid-2-phosphate, ascorbic acid glucoside, ascorbyl palmitate were summarized.The trendency of the L-ascorbic acid derivatives is proposed also.

  7. Isosteviol has beneficial effects on palmitate-induced α-cell dysfunction and gene expression.

    Directory of Open Access Journals (Sweden)

    Xiaoping Chen

    Full Text Available BACKGROUND: Long-term exposure to high levels of fatty acids impairs insulin secretion and exaggerates glucagon secretion. The aim of this study was to explore if the antihyperglycemic agent, Isosteviol (ISV, is able to counteract palmitate-induced α-cell dysfunction and to influence α-cell gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Long-term incubation studies with clonal α-TC1-6 cells were performed in the presence of 0.5 mM palmitate with or without ISV. We investigated effects on glucagon secretion, glucagon content, cellular triglyceride (TG content, cell proliferation, and expression of genes involved in controlling glucagon synthesis, fatty acid metabolism, and insulin signal transduction. Furthermore, we studied effects of ISV on palmitate-induced glucagon secretion from isolated mouse islets. Culturing α-cells for 72-h with 0.5 mM palmitate in the presence of 18 mM glucose resulted in a 56% (p<0.01 increase in glucagon secretion. Concomitantly, the TG content of α-cells increased by 78% (p<0.01 and cell proliferation decreased by 19% (p<0.05. At 18 mM glucose, ISV (10(-8 and 10(-6 M reduced palmitate-stimulated glucagon release by 27% (p<0.05 and 27% (p<0.05, respectively. ISV (10(-6 M also counteracted the palmitate-induced hypersecretion of glucagon in mouse islets. ISV (10(-6 M reduced α-TC1-6 cell proliferation rate by 25% (p<0.05, but ISV (10(-8 and 10(-6 M had no effect on TG content in the presence of palmitate. Palmitate (0.5 mM increased Pcsk2 (p<0.001, Irs2 (p<0.001, Fasn (p<0.001, Srebf2 (p<0.001, Acaca (p<0.01, Pax6 (p<0.05 and Gcg mRNA expression (p<0.05. ISV significantly (p<0.05 up-regulated Insr, Irs1, Irs2, Pik3r1 and Akt1 gene expression in the presence of palmitate. CONCLUSIONS/SIGNIFICANCE: ISV counteracts α-cell hypersecretion and apparently contributes to changes in expression of key genes resulting from long-term exposure to palmitate. ISV apparently acts as a glucagonostatic drug with potential as a

  8. Signaling dynamics of palmitate-induced ER stress responses mediated by ATF4 in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Cho Hyunju

    2013-01-01

    Full Text Available Abstract Background Palmitic acid, the most common saturated free fatty acid, has been implicated in ER (endoplasmic reticulum stress-mediated apoptosis. This lipoapotosis is dependent, in part, on the upregulation of the activating transcription factor-4 (ATF4. To better understand the mechanisms by which palmitate upregulates the expression level of ATF4, we integrated literature information on palmitate-induced ER stress signaling into a discrete dynamic model. The model provides an in silico framework that enables simulations and predictions. The model predictions were confirmed through further experiments in human hepatocellular carcinoma (HepG2 cells and the results were used to update the model and our current understanding of the signaling induced by palmitate. Results The three key things from the in silico simulation and experimental results are: 1 palmitate induces different signaling pathways (PKR (double-stranded RNA-activated protein kinase, PERK (PKR-like ER kinase, PKA (cyclic AMP (cAMP-dependent protein kinase A in a time dependent-manner, 2 both ATF4 and CREB1 (cAMP-responsive element-binding protein 1 interact with the Atf4 promoter to contribute to a prolonged accumulation of ATF4, and 3 CREB1 is involved in ER-stress induced apoptosis upon palmitate treatment, by regulating ATF4 expression and possibly Ca2+ dependent-CaM (calmodulin signaling pathway. Conclusion The in silico model helped to delineate the essential signaling pathways in palmitate-mediated apoptosis.

  9. Defining the role of DAG, mitochondrial function, and lipid deposition in palmitate-induced proinflammatory signaling and its counter-modulation by palmitoleate.

    Science.gov (United States)

    Macrae, Katherine; Stretton, Clare; Lipina, Christopher; Blachnio-Zabielska, Agnieszka; Baranowski, Marcin; Gorski, Jan; Marley, Anna; Hundal, Harinder S

    2013-09-01

    Chronic exposure of skeletal muscle to saturated fatty acids, such as palmitate (C16:0), enhances proinflammatory IKK-NFκB signaling by a mechanism involving the MAP kinase (Raf-MEK-ERK) pathway. Raf activation can be induced by its dissociation from the Raf-kinase inhibitor protein (RKIP) by diacylglycerol (DAG)-sensitive protein kinase C (PKC). However, whether these molecules mediate the proinflammatory action of palmitate, an important precursor for DAG synthesis, is currently unknown. Here, involvement of DAG-sensitive PKCs, RKIP, and the structurally related monounsaturated fatty acid palmitoleate (C16:1) on proinflammatory signaling are investigated. Palmitate, but not palmitoleate, induced phosphorylation/activation of the MEK-ERK-IKK axis and proinflammatory cytokine (IL-6, CINC-1) expression. Palmitate increased intramyocellular DAG and invoked PKC-dependent RKIP(Ser153) phosphorylation, resulting in RKIP-Raf1 dissociation and MEK-ERK signaling. These responses were mimicked by PMA, a DAG mimetic and PKC activator. However, while pharmacological inhibition of PKC suppressed PMA-induced activation of MEK-ERK-IKK signaling, activation by palmitate was upheld, suggesting that DAG-sensitive PKC and RKIP were dispensable for palmitate's proinflammatory action. Strikingly, the proinflammatory effect of palmitate was potently repressed by palmitoleate. This repression was not due to reduced palmitate uptake but linked to increased neutral lipid storage and enhanced cellular oxidative capacity brought about by palmitoleate's ability to restrain palmitate-induced mitochondrial dysfunction.

  10. 21 CFR 582.5936 - Vitamin A palmitate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Vitamin A palmitate. 582.5936 Section 582.5936 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5936 Vitamin A palmitate. (a) Product. Vitamin A palmitate. (b) Conditions of use....

  11. Valproate and palmitate binding to serum albumin in valproate-treated patients. Relation to obesity

    DEFF Research Database (Denmark)

    Vorum, H; Gram, L; Honoré, B

    1993-01-01

    Binding of valproate and palmitate to serum albumin was studied in 29 valproate-treated epileptic patients. The results were compared with similar observations in a reference group of 43 non valproate-treated individuals. The binding affinity for palmitate was decreased (P ... in increased availability of long-chain fatty acids (P = 0.008) due to competitive valproate binding in the valproate-treated patients. The findings support a hypothesis on the pathogenesis of obesity as a complication of valproate treatment of epilepsy. Udgivelsesdato: 1993-Sep...

  12. Palmitato de ascorbil e acetato de tocoferol como antioxidantes metabólicos em larvas de dourado Ascorbyl palmitate and tocopherol acetate as metabolic antioxidants in dourado larvae

    OpenAIRE

    Daniel Okamura; Felipe Guedes de Araújo; Priscila Viera Rosa Logato; Ulisses Simon da Silveira; Luis David Solis Murgas; Rilke Tadeu Fonseca de Freitas

    2008-01-01

    O objetivo deste trabalho foi avaliar o efeito e a interação entre a suplementação de palmitato de ascorbil e acetato de tocoferol, na alimentação de larvas de dourado (Salminus brasiliensis), durante o seu desenvolvimento inicial. Foi utilizado o delineamento experimental inteiramente ao acaso, com parcelas subdivididas: nas parcelas, em arranjo fatorial (2x3) com seis rações constituídas pela combinação de duas concentrações de acetato de tocoferol (0 e 250 mg kg-1) e três concentrações de ...

  13. Studies on the peroxisomal oxidation of palmitate and lignocerate in rat liver

    NARCIS (Netherlands)

    Wanders, R.J.A.; Roermund, C.W.T. van; Wijland, M.J.A. van; Schutgens, R.B.H.; Schram, A.W.; Bosch, H. van den; Tager, J.M.

    1987-01-01

    We have investigated the pathways involved in the peroxisomal oxidation of palmitate and lignocerate, measured as the cyanide-insensitive formation of acetyl units, in rat-liver homogenates. The peroxisomal β-oxidation of both fatty acids is dependent on the presence of ATP, coenzyme A, NAD+ and Mg2

  14. Effect of ghrelin on the activation of TLR4/NF-κB signaling pathway in THP-1 macrophages induced by palmitic acid%Ghrelin对棕榈酸诱导的THP-1巨噬细胞上TLR4/NF-κB信号通路活化的作用

    Institute of Scientific and Technical Information of China (English)

    李欣颖; 刘石平; 姚岚; 肖扬; 李卉; 周智广

    2012-01-01

    Objective To investigate the effect of acylated ghrelin activating TLR4/NF-κB signaling pathway in human monocyte-derived macrophages (THP-1) induced by palmitic acid. Methods THP-1 macrophage strains were cultured by the palmitic acid in various concentrations for 12 h, treated by acylated ghrelin in different concentrations for 4 h, and then cultured with the palmitic acid 200 μmol/L for 12 h agaia The expression of TLR4 mRNA on the THP-1 macrophages was determined by quantitative real-time PCR. The levels of TLR4 protein and NF-kB p65 phosphorylation protein were measured by Western blot, and the concentrations of IL-1β and TNF-α in the cell supernatant were detected by ELISA. Results Compared with the control group, the palmitic acid increased the levels of TLR4 mRNA and protein, the NF-kB p65 phosphorylation protein, and the secretion of TNF-α and IL-1β of the THP-1 macrophages in a dose-dependent fashion (all P<0. 05). Compared to the palmitic acid 200 μmol/L group, the acylated ghrelin inhibited the levels of TLR4 mRNA (all P<0. 05), TLR4 protein, and the NF-κB p65 phosphorylation protein (all P<0. 01), and decreased the secretion of TNF-a (all P<0. 05) and IL-1β (all P<0. 01) of the THP-1 macrophages in a dose-dependent fashion. Conclusions Palmitic acid can induce the activation of TLR4/NF-κB signaling pathway in THP-1 macrophages in a dose-dependent fashion. Acylated ghrelin can inhibit the activation of TLR4/NF-κB signaling pathway in THP-1 macrophages induced by palmitic acid in a dose-dependent fashion.%目的 探讨酰基化Ghrelin对棕榈酸(PA)诱导的人源单核巨噬细胞(THP-1巨噬细胞)上TLR4-NF-κB信号通路的作用. 方法 用不同浓度的PA孵育THP-1巨噬细胞株12 h;用不同浓度的酰基化Ghrelin孵育THP-1巨噬细胞株4h后,再加入PA(200μmol/L)孵育12 h.用实时定量PCR检测THP-1巨噬细胞上TLR4 mRNA的表达水平;用Western印记检测TLR4蛋白和细胞内NF-κB p65磷酸化蛋白水平;

  15. VC复合脂肪酸酯的合成及抗氧化性能%SYNTHESIS AND ANTIOXIDANT EFFECTS OF ASCORBYL COMPOSITE ALIPHATIC ESTER

    Institute of Scientific and Technical Information of China (English)

    冯光炷; 谢文磊

    2001-01-01

    猪油与甲醇进行酯交换制备复合脂肪酸甲酯,得率97.2%.再以浓硫酸为溶剂和催化剂,VC和复合脂肪酸甲酯进行酯交换合成VC复合脂肪酸酯.考察了反应时间、反应物配比及浓硫酸用量对酯交换反应的影响,结果表明,最适宜的反应条件为:n(VC)∶n(复合脂肪酸酯)为1∶1.2,反应时间为26h,n(浓H2SO4)∶n(VC+复合脂肪酸酯)为1∶0.15,反应温度为25℃,产率达76%.产品的抗氧化性能测试表明VC复合脂肪酸酯是一种优良的无毒抗氧化剂.%Ascorbyl composite aliphatic ester was synyhesized by transesterificantion of L-ascorbic acid with methyl composite aliphatic ester which is synthesized from lard and methyl alcohol using concentrated sulfuric acid as sol ve nt and catalyst. The yield was up to 76%. The effects of reaction temperature, r atio of reactant, amount of concentrated sulfuric acid on transesterification ha ve been investigated. The optimum synthetic conditions are that the ratio of Vc to composite aliphatic ester is 1∶1.2,reaction time is 26 h, the ratio of conce ntrated H2SO4 to composite aliphatic ester is 1∶0.15,reaction temperatur e is 25 ℃ .The test of antioxidant shows that Ascorbyl composite aliphatic ester is a good oxidant without poison.

  16. 棕榈酸在三酰甘油中的位置分布对大鼠营养吸收的影响%Effect of positional distribution of palmitic acid in triglycerides on the absorption of the nutrition in rats

    Institute of Scientific and Technical Information of China (English)

    宋秋; 刘亚东; 李晓敏; 杨丽杰

    2012-01-01

    The impacts of the position of palmitic acid in triglyceride on the absorption of fatty acids and mineral were studied. Feeding experiment was performed by using four groups of young male Wistar rats. Fat raw materials with different proportions of sn-2 position palmitic acid were added into fat-free diets which were the OPO ( 1,3- dioleoyl- 2- palmitoyl triglyceride ) structural fat, the vegetable oil mixture with imitating the composition of OPO,the infant formula containing OPO and the common infant formula. The proportions of the experimental fat in each groups were all 10% ,as for the sn-2 position palmitic acid in four groups were respectively 45.40% ,13.29% ,48.04% ,and 28.66%. After 2 weeks feeding,the contents of lipid,calcium and magnesium in the fecal were analyzed. The results showed that the fat absorption after intake of OPO and the infant formula containing OPO were higher than the other two groups significantly with much less calcium excreting. In conclusion,high content of sn-2 position palmitic acid could promote the absorption of fat in rats, reduce the formation of fatty acid soap and improve the calcium absorption.%研究了棕榈酸在三酰甘油中的不同位置分布对脂肪酸及矿质元素吸收的影响。以幼龄雄性Wistar大鼠为动物模型,将含不同比例sn-2位棕榈酸的脂肪原料添加到无脂饲料中,分别为:OPO(1,3-二油酸-2-棕榈酸甘油酯)结构脂肪,组成模拟OPO的混合植物油,含OPO的婴儿配方奶粉以及常规婴儿配方奶粉。饲料实验脂肪含量均为10%,各组sn-2位棕榈酸相对含量分别为45.40%、13.29%、48.04%、28.66%。喂养两周后,分析大鼠粪便中的脂质及钙、镁元素。结果显示,OPO组和OPO婴儿配方奶粉组的大鼠对脂肪的吸收显著高于另外两组,并且钙排泄较少。由此可得出结论:高含量的sn-2位棕榈酸可以促进大鼠对脂肪的吸收,减少脂肪酸皂的形成,并能改善对钙的吸收。

  17. Constitutive uptake and degradation of fatty acids by Yersinia pestis.

    OpenAIRE

    Moncla, B. J.; Hillier, S L; Charnetzky, W T

    1983-01-01

    Yersinia pestis was found to utilize palmitic acid as a primary carbon and energy source. No inhibition of growth by palmitic acid was observed. Comparison of palmitic acid uptake by cells pregrown either with or without palmitic acid demonstrated that fatty acid uptake was constitutive. High basal levels of two enzymes of beta-oxidation, beta-hydroxyacyl-coenzyme A dehydrogenase and thiolase, and the two enzymes of the glyoxylate shunt, isocitrate lyase and malate synthase, were found in cel...

  18. Palmitate action to inhibit glycogen synthase and stimulate protein phosphatase 2A increases with risk factors for type 2 diabetes.

    Science.gov (United States)

    Mott, David M; Stone, Karen; Gessel, Mary C; Bunt, Joy C; Bogardus, Clifton

    2008-02-01

    Recent studies have suggested that abnormal regulation of protein phosphatase 2A (PP2A) is associated with Type 2 diabetes in rodent and human tissues. Results with cultured mouse myotubes support a mechanism for palmitate activation of PP2A, leading to activation of glycogen synthase kinase 3. Phosphorylation and inactivation of glycogen synthase by glycogen synthase kinase 3 could be the mechanism for long-chain fatty acid inhibition of insulin-mediated carbohydrate storage in insulin-resistant subjects. Here, we test the effects of palmitic acid on cultured muscle glycogen synthase and PP2A activities. Palmitate inhibition of glycogen synthase fractional activity is increased in subjects with high body mass index compared with subjects with lower body mass index (r = -0.43, P = 0.03). Palmitate action on PP2A varies from inhibition in subjects with decreased 2-h plasma glucose concentration to activation in subjects with increased 2-h plasma glucose concentration (r = 0.45, P < 0.03) during oral glucose tolerance tests. The results do not show an association between palmitate effects on PP2A and glycogen synthase fractional activity. We conclude that subjects at risk for Type 2 diabetes have intrinsic differences in palmitate regulation of at least two enzymes (PP2A and glycogen synthase), contributing to abnormal insulin regulation of glucose metabolism.

  19. High beta-palmitate fat controls the intestinal inflammatory response and limits intestinal damage in mucin Muc2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Peng Lu

    Full Text Available BACKGROUND: Palmitic-acid esterified to the sn-1,3 positions of the glycerol backbone (alpha, alpha'-palmitate, the predominant palmitate conformation in regular infant formula fat, is poorly absorbed and might cause abdominal discomfort. In contrast, palmitic-acid esterified to the sn-2 position (beta-palmitate, the main palmitate conformation in human milk fat, is well absorbed. The aim of the present study was to examine the influence of high alpha, alpha'-palmitate fat (HAPF diet and high beta-palmitate fat (HBPF diet on colitis development in Muc2 deficient (Muc2(-/- mice, a well-described animal model for spontaneous enterocolitis due to the lack of a protective mucus layer. METHODS: Muc2(-/- mice received AIN-93G reference diet, HAPF diet or HBPF diet for 5 weeks after weaning. Clinical symptoms, intestinal morphology and inflammation in the distal colon were analyzed. RESULTS: Both HBPF diet and AIN-93G diet limited the extent of intestinal erosions and morphological damage in Muc2(-/- mice compared with HAPF diet. In addition, the immunosuppressive regulatory T (Treg cell response as demonstrated by the up-regulation of Foxp3, Tgfb1 and Ebi3 gene expression levels was enhanced by HBPF diet compared with AIN-93G and HAPF diets. HBPF diet also increased the gene expression of Pparg and enzymatic antioxidants (Sod1, Sod3 and Gpx1, genes all reported to be involved in promoting an immunosuppressive Treg cell response and to protect against colitis. CONCLUSIONS: This study shows for the first time that HBPF diet limits the intestinal mucosal damage and controls the inflammatory response in Muc2(-/- mice by inducing an immunosuppressive Treg cell response.

  20. Effects of 3% sodium ascorbyl phosphate on the hardness and bond strength of human enamel bleached with 10% carbamide peroxide.

    Science.gov (United States)

    da Silva, Ana Paula Brito; Lima, Adriano Fonseca; Cavalcanti, Andrea Nobrega; Marchi, Giselle Maria

    2010-01-01

    For this study, 120 fragments obtained from human third molars were randomly separated into 12 groups (n = 10). Four groups were used for measuring the Knoop hardness number (KHN) of enamel, while the other eight were used for testing the microtensile bond strength (muTBS) of two adhesive systems (Single Bond and Prime & Bond NT). All groups presented statistically similar KHN values. According to bond strength results, bleached enamel without antioxidant application demonstrated the lowest values of all groups. Based on these results, it could be concluded that the bleaching agents used in the present study (with or without sodium ascorbyl phosphate) did not affect human enamel hardness and that sodium ascorbyl phosphate is able to reverse the compromised bonding in bleached human enamel.

  1. Effect of a novel ascorbic derivative, disodium isostearyl 2-O-L-ascorbyl phosphate, on normal human dermal fibroblasts against reactive oxygen species.

    Science.gov (United States)

    Shibayama, Hiroharu; Hisama, Masayoshi; Matsuda, Sanae; Kawase, Atsushi; Ohtsuki, Mamitaro; Hanada, Katsumi; Iwaki, Masahiro

    2008-04-01

    The novel amphiphilic vitamin C derivative disodium isostearyl 2-O-L-ascorbyl phosphate (VCP-IS-2Na), which has a C(18) alkyl chain attached to the stable ascorbate derivative sodium L-ascorbic acid 2-phosphate (VCP-Na), was evaluated for reduction of cell damage induced by oxidative stress, ultraviolet A (UVA), ultraviolet B (UVB), and H(2)O(2); stimulation of collagen synthesis against UVA irradiation; and inhibition of matrix metalloproteinase-1 (MMP-1) activity induced by UVA in human normal dermal fibroblasts. VCP-IS-2Na pretreatment resulted in significant protection against cell damage induced by UVB, UVA, and H(2)O(2). The amount of type I collagen following UVA irradiation was increased by treatment with VCP-IS-2Na in a concentration-dependent manner. These effects of VCP-IS-2Na were superior to those of L-ascorbic acid (vitamin C, VC) and VCP-Na. On the other hand, VCP-IS-2Na suppressed 65% of the excess MMP-1 irradiated UVA, and VC and VCP-Na slightly suppressed it.

  2. Increased incorporation of /sup 14/C-palmitate into tissue lipids by isolated heart myocytes in endotoxic shock

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.S.

    1982-01-01

    The incorporation of /sup 14/C-palmitate into various classes of tissue lipids by isolated adult dog heart myocytes was studied in an attempt to understand the pathophysiology of myocardial dysfunction during endotoxic shock. The results showed that the incorporation of /sup 14/C-palmitate into phospholipids was increased by 85.3% and 108.8% at 0.5 hours and two hours, respectively, following endotoxin (0.5 mg Escherichia coli lipopolysaccharide B per kg body weight) administration. Incorporation of radioactive palmitate into triglycerides was increased by 50.9% and 107.2% at 0.5 and two hours, respectively, postendotoxin. Incorporation of /sup 14/C-palmitate into diglycerides was stimulated by 51.9% and 64.5% at 0.5 and two hours, respectively, after endotoxin injection. The incorporation of /sup 14/C-palmitate into tissue-free fatty acids and unaltered at 0.5 hours but it was increased by 211.7% at two hours postendotoxin. These data demonstrated that myocardial membrane lipid profile was greatly altered by increased incorporation of /sup 14/C-palmitate into phospholipids and neutral lipids after endotoxin administration. An alteration in myocardial lipid profile, as reported in this study, may contribute to the development of myocardial dysfunction during shock.

  3. Determination of the antioxidant activity based on the content changes in fatty acid methyl esters in vegetable oils

    Institute of Scientific and Technical Information of China (English)

    Housam Haj Hamdo; Zaid Al-Assaf; Warid Khayata

    2014-01-01

    Free radicals,which are generated in several biochemical reactions in the body,have been implicated as mediators of many diseases,including cancer,atherosclerosis and heart diseases.Although the endogenous antioxidants can scavenge these free radicals,they are often insufficient to maintain the in vivo redox balance.The antioxidant activity (AOA) was examined by addition of each tested antioxidants [alpha-tocopherol (a-T),beta-tocopherol (β-T),gamma-tocopherol (γ-T),delta-tocopherol (δ-T),butylated hydroxyanisole (BHA),2,6-di-tert-butyl-4-methylphenol (BHT),and ascorbyle palmitate (AP)] to four types of different vegetable oils (sunflower oil,soybean oil,corn oil and olive oil).Moreover,content changes in fatty acids were then investigated every 3 months during the storage period.The results showed that the AOA was different among the tested antioxidants.The AOA for BHA was the most for different types of oil compared with other antioxidants,whereas the δ-T possessed the lowest AOA.

  4. Fenofibrate Reverses Palmitate Induced Impairment in Glucose Uptake in Skeletal Muscle Cells by Preventing Cytosolic Ceramide Accumulation

    Directory of Open Access Journals (Sweden)

    Sudarshan Bhattacharjee

    2015-10-01

    Full Text Available Backgrounds/Aims: The lipid induced insulin resistance is a major pathophysiologic mechanism underlying glucose intolerance of varying severity. PPARα-agonists are proven as effective hypolipidemic agents. The aim of this study was to see if impaired glucose uptake in palmitate treated myotubes is reversed by fenofibrate. Methods: Palmitate-treated myotubes were used as a model for insulin resistance, impaired glucose uptake, fatty acid oxidation and ceramide synthesis. mRNA levels of CPT1 and CPT2 were determined by PCR array and Q-PCR. Results: The incubation of myotubes with 750 uM palmitate not only reduced glucose uptake but also impaired fatty acid oxidation and cytosolic ceramide accumulation. Palmitate upregulated CPT1b expression in L6 myotubes, while CPT2 expression level remained unchanged. The altered stoichiometric ratio between the two CPT isoforms led to reduced fatty acid oxidation (FAO, ceramide accumulation and impaired glucose uptake, whereas administration of 200 µM fenofibrate signifcantly reversed the above abnormalities by increasing CPT2 mRNA levels and restoring CPT1b to CPT2 ratio. Conclusion: Palmitate-induced alteration in the stoichiometric ratio of mitochondrial CPT isoforms leads to incomplete FAO and enhanced cytosolic ceramide accumulation that lead to insulin resistance. Fenofibrate ameliorated insulin resistance by restoring the altered stoichiometry by upregulating CPT2 and preventing, cytoplasmic ceramide accumulation.

  5. Lipophilization of ascorbic acid: a monolayer study and biological and antileishmanial activities.

    Science.gov (United States)

    Kharrat, Nadia; Aissa, Imen; Sghaier, Manel; Bouaziz, Mohamed; Sellami, Mohamed; Laouini, Dhafer; Gargouri, Youssef

    2014-09-17

    Ascorbyl lipophilic derivatives (Asc-C2 to Asc-C(18:1)) were synthesized in a good yield using lipase from Staphylococcus xylosus produced in our laboratory and immobilized onto silica aerogel. Results showed that esterification had little effect on radical-scavenging capacity of purified ascorbyl esters using DPPH assay in ethanol. However, long chain fatty acid esters displayed higher protection of target lipids from oxidation. Moreover, compared to ascorbic acid, synthesized derivatives exhibited an antibacterial effect. Furthermore, ascorbyl derivatives were evaluated, for the first time, for their antileishmanial effects against visceral (Leishmania infantum) and cutaneous parasites (Leishmania major). Among all the tested compounds, only Asc-C10, Asc-C12, and Asc-C(18:1) exhibited antileishmanial activities. The interaction of ascorbyl esters with a phospholipid monolayer showed that only medium and unsaturated long chain (Asc-C10 to Asc-C(18:1)) derivative esters were found to interact efficiently with mimetic membrane of leishmania. These properties would make ascorbyl derivatives good candidates to be used in cosmetic and pharmaceutical lipophilic formulations.

  6. Comparison of clinical efficacies of sodium ascorbyl phosphate, retinol and their combination in acne treatment.

    Science.gov (United States)

    Ruamrak, C; Lourith, N; Natakankitkul, S

    2009-02-01

    Acne vulgaris impairs the appearance of an individual and causes psychological irritation. Inflammatory acne lesion is caused by multifactor incorporates in each step of acne pathogenesis. In an attempt to archive inflammatory lesion treatment with the promise of prevention of acne vulgaris, randomized and double-blind studies on the comparison of the efficacies of topical formulations containing 5% sodium ascorbyl phosphate (SAP) and 0.2% retinol, separately as well as in combination application, were conducted. The resulting data showed that SAP reduced the inflammatory lesion by 20.14% and 48.82% within 4 and 8 weeks respectively. Application of the formulation containing retinol slightly improved the treatment efficacy as the lesion reduced by 21.79% and 49.50% after 4 and 8 weeks respectively. The combination treatment significantly reduced the inflammatory lesion by 29.28% after 4 weeks and 63.10% after 8 weeks of application. The most effective treatment was by using the combination of 5% SAP and 0.2% retinol, which incorporated the synergistic effects on lipid peroxidation and sebaceous gland function in addition to the enhancement of SAP permeability by the desquamation of stratum corneum influenced by retinol, keratin plug removal and anti-inflammatory effect of retinol. This study promises for the development of cosmetic products to overcome aesthetic and psychological problems caused by acne vulgaris.

  7. Investigation of liposomes as carriers of sodium ascorbyl phosphate for cutaneous photoprotection.

    Science.gov (United States)

    Foco, Alma; Gasperlin, Mirjana; Kristl, Julijana

    2005-03-03

    Long-term exposure of the skin to UV-A and UV-B radiation causes degenerative effect which can be decreased by scavenging reactive photochemical intermediates with antioxidants. In this study sodium ascorbyl phosphate (SAP), a very effective oxygen species scavenger, was encapsulated into liposomes in order to improve its penetration through the stratum corneum into the deeper layers of the skin. Two types of multilamellar vesicles were prepared, one from non-hydrogenated and the other from hydrogenated soybean lecithin, together with cholesterol, by the thin films method. They were characterized for size, polydispersity index, and zeta potential. In vitro diffusion of SAP and ex vivo penetration experiments were performed on pig ear epidermis membrane in a Franz diffusion cell. The size and zeta potential of liposomes containing SAP are significantly greater than those of empty liposomes. The upper limit of SAP entrapment efficiency was 8-10% in both types of liposomes. The stability of SAP in liposome formulations is much more influenced by storage temperature than by liposome composition. SAP penetrated through epidermis membrane significantly better from liposome dispersions than from water solution. The amount penetrating is much more influenced by the concentration of SAP in the formulation than by the lipid composition of liposomes. The SAP that penetrates through the epidermis reflects the active compound available to prevent or slow down the complex process of photodamage in the skin.

  8. Paliperidone Palmitate Intramuscular 3-Monthly Formulation: A Review in Schizophrenia.

    Science.gov (United States)

    Lamb, Yvette N; Keating, Gillian M

    2016-10-01

    A 3-monthly formulation of intramuscular paliperidone palmitate (3-monthly paliperidone palmitate) has recently been approved for the maintenance treatment of schizophrenia in adult patients in the EU (Trevicta(®)), following earlier approval in the USA (Invega Trinza(®)). This narrative review discusses the clinical use of 3-monthly paliperidone palmitate in the maintenance treatment of schizophrenia in adult patients and summarizes its pharmacological properties. The efficacy of the 3-monthly paliperidone palmitate formulation as a maintenance treatment for schizophrenia has been demonstrated in well designed, phase III trials. Three-monthly paliperidone palmitate was more effective than placebo in delaying time to relapse and reducing relapse rates, and was noninferior to 1-monthly paliperidone palmitate in the proportion of patients that remained relapse-free. The 3-monthly formulation was also more effective than placebo in controlling the symptoms of schizophrenia, whilst not differing significantly from the 1-monthly formulation in terms of symptomatic control. Three-monthly paliperidone palmitate was generally well tolerated in clinical trials, with a tolerability profile consistent with that of the 1-monthly formulation. In conclusion, 3-monthly paliperidone palmitate is a useful treatment option for adult patients with schizophrenia who are adequately treated with the 1-monthly formulation, particularly for those who would prefer, or may benefit from, longer dosing intervals.

  9. Specific effects of single antioxidants in the lipid peroxidation caused by nano-titania used in sunscreen lotions.

    Science.gov (United States)

    Carlotti, Maria Eugenia; Ugazio, Elena; Gastaldi, Lucia; Sapino, Simona; Vione, Davide; Fenoglio, Ivana; Fubini, Bice

    2009-08-03

    The effect of some additives, phenylalanine, ascorbyl palmitate and sodium ascorbyl phosphate on the oxidation of linoleic acid and porcine ear skin induced by UV irradiation was investigated, in the absence and in the presence of variously uncoated and coated titania powders. Such additives have, on the one hand, a scavenging activity toward the oxidizing species photogenerated by TiO(2), and on the other one an inhibitory effect toward UVB-induced peroxidation. Sodium ascorbyl phosphate and ascorbyl palmitate displayed a stronger antioxidant effect than phenylalanine toward linoleic acid peroxidation. On porcine skin all the three molecules exhibited both antiradical and antioxidant activity. Their protective effect against peroxidation was higher with porcine skin lipids than with linoleic acid, referable to the chemical differences in the two lipid substrates.

  10. Formulation and evaluation of sodium ascorbyl phosphate and kojic acid containing products / Anita van Rensburg

    OpenAIRE

    2004-01-01

    The skin, our main defence against harmful substances such as wind, dirt, bacteria and ultraviolet radiation has also the important functions of preventing water loss, regulating temperature and receiving external stimuli. Skin colour varies depending on racial background, sex and the season of the year due to the exposure to sunlight. Skin colour is primarily determined by the amount of melanin produced by the melanocytes. For this reason, research for the development of white...

  11. Sheep erythrocyte membrane binding and transfer of long-chain fatty acids

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1999-01-01

    Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants......Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants...

  12. Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT4)

    Science.gov (United States)

    Hardy, R. W.; Ladenson, J. H.; Henriksen, E. J.; Holloszy, J. O.; McDonald, J. M.

    1991-01-01

    In rat adipocytes, palmitate: a) increases basal 2-deoxyglucose transport 129 +/- 27% (p less than 0.02), b) decreases the insulin sensitive glucose transporter (GLUT4) in low density microsomes and increases GLUT4 in plasma membranes and c) increases the activity of the insulin receptor tyrosine kinase. Palmitate-stimulated glucose transport is not additive with the effect of insulin and is not inhibited by the protein kinase C inhibitors staurosporine and sphingosine. In rat muscle, palmitate: a) does not affect basal glucose transport in either the soleus or epitrochlearis and b) inhibits insulin-stimulated glucose transport by 28% (p less than 0.005) in soleus but not in epitrochlearis muscle. These studies demonstrate a potentially important differential role for fatty acids in the regulation of glucose transport in different insulin target tissues.

  13. AMPKα, C/EBPβ, CPT1β, GPR43, PPARγ, and SCD Gene Expression in Single- and Co-cultured Bovine Satellite Cells and Intramuscular Preadipocytes Treated with Palmitic, Stearic, Oleic, and Linoleic Acid

    OpenAIRE

    Choi, S H; Park, S. K.; B. J. Johnson; Chung, K. Y.; Choi, C. W.; Kim, K. H.; Kim, W. Y.; Smith, B.

    2015-01-01

    We previously demonstrated that bovine subcutaneous preadipocytes promote adipogenic gene expression in muscle satellite cells in a co-culture system. Herein we hypothesize that saturated fatty acids would promote adipogenic/lipogenic gene expression, whereas mono- and polyunsaturated fatty acids would have the opposite effect. Bovine semimembranosus satellite cells (BSC) and intramuscular preadipocytes (IPA) were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS)/D...

  14. Kinetic models for analysing myocardial [{sup 11}C]palmitate data

    Energy Technology Data Exchange (ETDEWEB)

    Jong, Hugo W.A.M. de [University Medical Centre Utrecht, Department of Radiology and Nuclear Medicine, Utrecht (Netherlands); VU University Medical Centre, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Rijzewijk, Luuk J.; Diamant, Michaela [VU University Medical Centre, Diabetes Centre, Amsterdam (Netherlands); Lubberink, Mark; Lammertsma, Adriaan A. [VU University Medical Centre, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Meer, Rutger W. van der; Lamb, Hildo J. [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands); Smit, Jan W.A. [Leiden University Medical Centre, Department of Endocrinology, Leiden (Netherlands)

    2009-06-15

    [{sup 11}C]Palmitate PET can be used to study myocardial fatty acid metabolism in vivo. Several models have been applied to describe and quantify its kinetics, but to date no systematic analysis has been performed to define the most suitable model. In this study a total of 21 plasma input models comprising one to three compartments and up to six free rate constants were compared using statistical analysis of clinical data and simulations. To this end, 14 healthy volunteers were scanned using [{sup 11}C]palmitate, whilst myocardial blood flow was measured using H{sub 2} {sup 15}O. Models including an oxidative pathway, representing production of {sup 11}CO{sub 2}, provided significantly better fits to the data than other models. Model robustness was increased by fixing efflux of {sup 11}CO{sub 2} to the oxidation rate. Simulations showed that a three-tissue compartment model describing oxidation and esterification was feasible when no more than three free rate constants were included. Although further studies in patients are required to substantiate this choice, based on the accuracy of data description, the number of free parameters and generality, the three-tissue model with three free rate constants was the model of choice for describing [{sup 11}C]palmitate kinetics in terms of oxidation and fatty acid accumulation in the cell. (orig.)

  15. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate

    DEFF Research Database (Denmark)

    Green, C J; Bunprajun, T; Pedersen, B K

    2013-01-01

    in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle maintenance......  The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture......) serine(307) compared to myocytes from active individuals. Despite equal lipid accumulation following palmitate treatment, myocytes from sedentary individuals exhibited delayed acetyl coenzyme A carboxylase phosphorylation compared to the active group. Myocytes from sedentary individuals had significantly...

  16. EPR characterization of ascorbyl and sulfur dioxide anion radicals trapped during the reaction of bovine Cytochrome c Oxidase with molecular oxygen

    Science.gov (United States)

    Yu, Michelle A.; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L.; Gerfen, Gary J.

    2010-04-01

    The reaction intermediates of reduced bovine Cytochrome c Oxidase (CcO) were trapped following its reaction with oxygen at 50 μs-6 ms by innovative freeze-quenching methods and studied by EPR. When the enzyme was reduced with either ascorbate or dithionite, distinct radicals were generated; X-band (9 GHz) and D-band (130 GHz) CW-EPR measurements support the assignments of these radicals to ascorbyl and sulfur dioxide anion radical (SO2-rad), respectively. The X-band spectra show a linewidth of 12 G for the ascorbyl radical and 11 G for the SO2-rad radical and an isotropic g-value of 2.005 for both species. The D-band spectra reveal clear distinctions in the g-tensors and powder patterns of the two species. The ascorbyl radical spectrum displays approximate axial symmetry with g-values of gx = 2.0068, gy = 2.0066, and gz = 2.0023. The SO2-rad>/SUP> radical has rhombic symmetry with g-values of gx = 2.0089, gy = 2.0052, and gz = 2.0017. When the contributions from the ascorbyl and SO2-rad radicals were removed, no protein-based radical on CcO could be identified in the EPR spectra.

  17. Cystic fibrosis bronchial epithelial cells are lipointoxicated by membrane palmitate accumulation.

    Directory of Open Access Journals (Sweden)

    Laurie-Anne Payet

    Full Text Available The F508del-CFTR mutation, responsible for Cystic Fibrosis (CF, leads to the retention of the protein in the endoplasmic reticulum (ER. The mistrafficking of this mutant form can be corrected by pharmacological chaperones, but these molecules showed limitations in clinical trials. We therefore hypothesized that important factors in CF patients may have not been considered in the in vitro assays. CF has also been associated with an altered lipid homeostasis, i. e. a decrease in polyunsaturated fatty acid levels in plasma and tissues. However, the precise fatty acyl content of membrane phospholipids from human CF bronchial epithelial cells had not been studied to date. Since the saturation level of phospholipids can modulate crucial membrane properties, with potential impacts on membrane protein folding/trafficking, we analyzed this parameter for freshly isolated bronchial epithelial cells from CF patients. Interestingly, we could show that Palmitate, a saturated fatty acid, accumulates within Phosphatidylcholine (PC in CF freshly isolated cells, in a process that could result from hypoxia. The observed PC pattern can be recapitulated in the CFBE41o(- cell line by incubation with 100 µM Palmitate. At this concentration, Palmitate induces an ER stress, impacts calcium homeostasis and leads to a decrease in the activity of the corrected F508del-CFTR. Overall, these data suggest that bronchial epithelial cells are lipointoxicated by hypoxia-related Palmitate accumulation in CF patients. We propose that this phenomenon could be an important bottleneck for F508del-CFTR trafficking correction by pharmacological agents in clinical trials.

  18. Palmitate activates autophagy in INS-1E β-cells and in isolated rat and human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Luisa Martino

    Full Text Available We have investigated the in vitro effects of increased levels of glucose and free fatty acids on autophagy activation in pancreatic beta cells. INS-1E cells and isolated rat and human pancreatic islets were incubated for various times (from 2 to 24 h at different concentrations of glucose and/or palmitic acid. Then, cell survival was evaluated and autophagy activation was explored by using various biochemical and morphological techniques. In INS-1E cells as well as in rat and human islets, 0.5 and 1.0 mM palmitate markedly increased autophagic vacuole formation, whereas high glucose was ineffective alone and caused little additional change when combined with palmitate. Furthermore, LC3-II immunofluorescence co-localized with that of cathepsin D, a lysosomal marker, showing that the autophagic flux was not hampered in PA-treated cells. These effects were maintained up to 18-24 h incubation and were associated with a significant decline of cell survival correlated with both palmitate concentration and incubation time. Ultrastructural analysis showed that autophagy activation, as evidenced by the occurrence of many autophagic vacuoles in the cytoplasm of beta cells, was associated with a diffuse and remarkable swelling of the endoplasmic reticulum. Our results indicate that among the metabolic alterations typically associated with type 2 diabetes, high free fatty acids levels could play a role in the activation of autophagy in beta cells, through a mechanism that might involve the induction of endoplasmic reticulum stress.

  19. Application of antioxidants during short-path distillation of structured lipids

    DEFF Research Database (Denmark)

    Timm-Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2007-01-01

    A specific structured lipid was produced from sunflower oil and caprylic acid. The antioxidative effect of adding alpha-tocopherol, ascorbyl palmitate or citric acid (each in three different concentrations) was investigated before and after the purification process (short-path distillation......), and was compared with a control without addition of antioxidant. The oxidative status and stability were characterized by peroxide and anisidine values, secondary volatile oxidation products and induction period. The antioxidants affected the oxidative status compared with the control: citric acid was prooxidative...... at low concentrations, but antioxidative at high concentrations. Addition of ascorbyl palmitate had an antioxidative effect at all concentrations employed. alpha-Tocopherol showed less antioxidative activity compared with ascorbyl palmitate and citric acid, and its efficacy was slightly decreased...

  20. Protective effects of sodium-L-ascorbyl-2 phosphate on the development of UVB-induced damage in cultured mouse skin.

    Science.gov (United States)

    Nayama, S; Takehana, M; Kanke, M; Itoh, S; Ogata, E; Kobayashi, S

    1999-12-01

    The protective effect of sodium-L-ascorbyl-2 phosphate (As-2P), a stable form of ascorbic acid (AsA), against photodamage induced by a single dose of UVB exposure (290-320 nm, Max 312 nm) was investigated using cultured mouse skin. When the cultured skin was treated with various As-2P concentrations, the cutaneous AsA level increased in proportion to the As-2P concentration. After 3 h of incubation, the AsA level in the cultured skin treated with 2, 20 and 100 mM As-2P increased 1.03-, 2.17- and 6.27-fold, respectively, compared with that of the control skin. These results suggest that As-2P was transported into the cultured mouse skin where it was converted to AsA. After 3 h, the cutaneous AsA level in irradiated (20 kJ/m2) skin was depleted to a half of that in the control skin. However, the level in skin pretreated with 20 mM As-2P was maintained within normal limits, even after 24 h. Pretreatment with 20 mM As-2P significantly prevented such photodamage as sunburn cell formation, DNA fragmentation and lipid peroxidation, which were caused by a single dose of UVB irradiation. These results suggest that the protective effect of 20 mM As-2P on UVB-induced cutaneous damage is due to the maintenance of a normal As level by conversion of As-2P to As in skin tissue.

  1. Enhancement of stress resistance of the guppy Poecilia reticulata through feeding with vitamin C supplement

    OpenAIRE

    2002-01-01

    This study investigated the use of vitamin C supplement in formulated diets and live Artemia juveniles to enhance the stress resistance of the guppy Poecilia reticulata. To evaluate the stress resistance, fish were subjected to osmotic shock in pre-aerated water containing 35 ppt sodium chloride. Ascorbyl acid-poly phosphate and ascorbyl palmitate were used as vitamin C sources for formulated diets and live Artemia juveniles, respectively. Results showed that guppies fed moist formulated diet...

  2. KINETIC STUDY OF PALMITIC ACID ESTERIFICATION CATALYZED BY Rhizopus oryzae RESTING CELLS Estudio cinético de la esterificación del ácido palmítico catalizado por células en reposo de Rhizopus oryzae

    Directory of Open Access Journals (Sweden)

    JONH J MÉNDEZ

    Full Text Available In the present study, a kinetic model for the biocatalytic synthesis of esters using Rhizopus oryzae resting cells is proposed. The kinetic study has been made in a range of 30-50 °C and atmospheric pressure. The Influence of operating variables, water content, pH, amount of mycelium was studied. Different values of temperature, initial mycelium concentration and acid/alcohol molar ratio were tested. Initial rates were estimated from the slope of the concentration of palmitic acid, or their corresponding ester at conversions of less than 10%, versus time and reported as mmol l-1 min -1. The values of kinetic constants were computed using the freeware program SIMFIT (http:\\www.simfit.man.ac.uk.En el presente estudio, un modelo cinético para la síntesis de esteres usando Rhizopus oryzae resting cells es propuesto. El estudio cinético fue realizado en un rango de temperatura de 30-50 ºC a presión atmosférica reducida. La influencia de las variables de operación tales como temperatura, pH y contenido de agua fueron estudiadas. Diferentes valores de concentración de micelio y relación molar de ácido/alcohol son ensayadas, Las velocidades iníciales se estimaron de la curva de concentración de acido palmítico, y su correspondiente conversión a ester en menos del 10%, frente a tiempo y reportadas en mmol I-1 min -1. Los valores de las constantes cinéticas fueron calculados usando el programa freeware SIMFIT (http:\\www.simfit.man.ac.uk

  3. Substrate overload: Glucose oxidation in human myotubes conquers palmitate oxidation through anaplerosis

    DEFF Research Database (Denmark)

    Gaster, Michael

    2009-01-01

    To date, two cardinal principles govern oxidation of glucose and fatty acids in skeletal muscle; exogenous fatty acid reduces glucose oxidation and glucose reduces fatty acid oxidation. Both glucose and palmitate (PA) oxidation was increased by increasing their concentration and inhibited...... by increasing concentrations of the other in human myotubes established from healthy, lean subjects exposed to acute stepwise increases in glucose and PA levels. At high substrate levels; PA oxidation was reduced while release of acid soluble metabolites was increased and, both glucose oxidation and release...... of citrate was increased which could be abolished by phenylacetic acid (inhibitor of pyruvate carboxylase (PC)). The present data challenges above preconceptions. Although they operate at low-moderate substrate levels additional two principles determine substrate oxidation at higher substrate concentrations...

  4. Palmitate-induced changes in energy demand cause reallocation of ATP supply in rat and human skeletal muscle cells.

    Science.gov (United States)

    Nisr, Raid B; Affourtit, Charles

    2016-09-01

    Mitochondrial dysfunction has been associated with obesity-related muscle insulin resistance, but the causality of this association is controversial. The notion that mitochondrial oxidative capacity may be insufficient to deal appropriately with excessive nutrient loads is for example disputed. Effective mitochondrial capacity is indirectly, but largely determined by ATP-consuming processes because skeletal muscle energy metabolism is mostly controlled by ATP demand. Probing the bioenergetics of rat and human myoblasts in real time we show here that the saturated fatty acid palmitate lowers the rate and coupling efficiency of oxidative phosphorylation under conditions it causes insulin resistance. Stearate affects the bioenergetic parameters similarly, whereas oleate and linoleate tend to decrease the rate but not the efficiency of ATP synthesis. Importantly, we reveal that palmitate influences how oxidative ATP supply is used to fuel ATP-consuming processes. Direct measurement of newly made protein demonstrates that palmitate lowers the rate of de novo protein synthesis by more than 30%. The anticipated decrease of energy demand linked to protein synthesis is confirmed by attenuated cycloheximide-sensitivity of mitochondrial respiratory activity used to make ATP. This indirect measure of ATP turnover indicates that palmitate lowers ATP supply reserved for protein synthesis by at least 40%. This decrease is also provoked by stearate, oleate and linoleate, albeit to a lesser extent. Moreover, palmitate lowers ATP supply for sodium pump activity by 60-70% and, in human cells, decreases ATP supply for DNA/RNA synthesis by almost three-quarters. These novel fatty acid effects on energy expenditure inform the 'mitochondrial insufficiency' debate.

  5. Insulin Resistance Is Correlated with Palmitic Acid Uptake in Skeletal Muscle Cells%棕榈酸的组织吸收分布及对骨骼肌胰岛素抵抗的影响

    Institute of Scientific and Technical Information of China (English)

    彭恭; 刘延波; 李凌海; 刘平生

    2012-01-01

    Retinoids (vitamin A and its derivatives) play important roles in the maintenance of various tissues in the adult vertebrate and are essential for diverse embryological processes. As a member of retinoids (vitamin A and its derivatives), retinoic acid (RA) has been extensively investigated in embryopathology. However, the mechanisms by which RA influences these processes are not completely understood. In the present study, we found that embryonic RA exposure via maternal treatment with gavage-fed 3 successive doses of RA on day 8 of gestation led to a high incidence (96.77%, 30/31) of rachischisis with myeloschisis, I.e., spina bifida aperta, among the surviving day 18 fetuses. Using microarray technology, we identified 134 genes in the spinal cords of mice that exhibit at least a 1.5-fold change between mice with spina bifida and control samples. Several downstream genes of RA signaling involved in lipid metabolism were regulated at the transcriptional level after maternal RA exposure. Furthermore, a gene set enrichment analysis (GSEA) implicate many altered expression of genes, involved in pro- or anti-apoptosis, cell proliferation, migration, cytoskeleton components, and cell or focal adhesion, which are associated which the spina bifida induced by the maternal RA exposure. This indicates that defective functions of these cell components and biological processes preceded the abnormal development of neural tube. Our study provides a global analysis of gene expression patterns in spina bifida and will help the understanding of the etiology and pathology of neural tube defects.%脂肪酸代谢紊乱是Ⅱ型糖尿病的主要致病因素之一.棕榈酸是血液中含量最高的游离脂肪酸.我们建立了大鼠颈静脉置管输注棕榈酸的模型,发现血液中的大部分棕榈酸被骨骼肌组织所吸收.以棕榈酸处理的C2C12骨骼肌细胞为实验模型发现,棕榈酸进入骨骼肌细胞后的中间代谢产物(磷脂和甘油二酯)的累

  6. Changes in fatty acid composition of sulfolipid and phospholipids during maturation of alfalfa.

    Science.gov (United States)

    Klopfenstein, W E; Shigley, J W

    1967-07-01

    Lipids were extracted from alfalfa samples collected at intervals over the growing season and were fractionated to yield pure sulfolipid. In the sulfolipid and in a phospholipid fraction the major fatty acids were palmitic, linolenic, and linoleic, of which the palmitic acid increased in proportion during the season while the proportion of linolenic acid dropped. The sulfolipid contained more linolenic acid and less palmitic and linoleic acids than the phospholipids, and had a greater rate of change of fatty acid composition.

  7. ClC-3 deficiency protects preadipocytes against apoptosis induced by palmitate in vitro and in type 2 diabetes mice.

    Science.gov (United States)

    Huang, Yun-Ying; Huang, Xiong-Qin; Zhao, Li-Yan; Sun, Fang-Yun; Chen, Wen-Liang; Du, Jie-Yi; Yuan, Feng; Li, Jie; Huang, Xue-Lian; Liu, Jie; Lv, Xiao-Fei; Guan, Yong-Yuan; Chen, Jian-Wen; Wang, Guan-Lei

    2014-11-01

    Palmitate, a common saturated free fatty acid (FFA), has been demonstrated to induce preadipocyte apoptosis in the absence of adipogenic stimuli, suggesting that preadipocytes may be prone to apoptosis under adipogenic insufficient conditions, like type 2 diabetes mellitus (T2DM). ClC-3, encoding Cl(-) channel or Cl(-)/H(+) antiporter, is critical for cell fate choices of proliferation versus apoptosis under diseased conditions. However, it is unknown whether ClC-3 is related with preadipocyte apoptosis induced by palmitate or T2DM. Palmitate, but not oleate, induced apoptosis and increase in ClC-3 protein expression and endoplasmic reticulum (ER) stress in 3T3-L1 preadipocyte. ClC-3 specific siRNA attenuated palmitate-induced apoptosis and increased protein levels of Grp78, ATF4, CHOP and phosphorylation of JNK1/2, whereas had no effects on increased phospho-PERK and phospho-eIF2α protein expression. Moreover, the enhanced apoptosis was shown in preadipocytes from high-sucrose/fat, low-dose STZ induced T2DM mouse model with hyperglycemia, hyperlipidemia (elevated serum TG and FFA levels) and insulin resistance. ClC-3 knockout significantly attenuated preadipocyte apoptosis and the above metabolic disorders in T2DM mice. These data demonstrated that ClC-3 deficiency prevent preadipocytes against palmitate-induced apoptosis via suppressing ER stress, and also suggested that ClC-3 may play a role in regulating cellular apoptosis and disorders of glucose and lipid metabolism during T2DM.

  8. Ethanol diversely alters palmitate, stearate and oleate metabolism in the liver and pancreas of rats using the deuterium oxide single tracer

    Science.gov (United States)

    Boros, Laszlo G.; Deng, Qinggao; Pandol, Stephen J.; Tsukamoto, Hidekazu; Go, Vay Liang W.; Lee, Wai-Nang Paul

    2015-01-01

    Objective To determine tissue specific effects of alcohol on fatty acid synthesis and distribution as related to functional changes in triglyceride transport and membrane formation. Methods Tissue fatty acid profile, and de novo lipogenesis were determined in adult male Wistar rats after 5 weeks of ethanol feeding using deuterated water and GC/MS. Liver and pancreas fatty acid profiles and new synthesis fractions were compared with those from control rats on an isocaloric diet. Results Fatty acid ratios in the liver indicated that there was an over two-fold accumulation of stearate to that of palmitate, with an apparent decrease in oleate content. On the other hand, in the pancreas there was a 17% decrease in the stearate to palmitate ratio, while oleate to palmitate ratio was increased by 30%. The fractions of deuterium labeled palmitate and stearate were substantially reduced in the liver and pancreas of the alcohol treated animals. Deuterium labeling of oleate was reduced in the liver but not in the pancreas consistent with the oleate/stearate ratios in these tissues. Conclusions Long-term alcohol exposure results in opposite effects on the desaturase activity in the liver and pancreas limiting fatty acid transport in the liver but promoting the exocrine function of the pancreas. PMID:19248221

  9. Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized, hypothalamic neurons.

    Science.gov (United States)

    Fick, Laura J; Fick, Gordon H; Belsham, Denise D

    2011-09-30

    The control of energy homeostasis within the hypothalamus is under the regulated control of homeostatic hormones, nutrients and the expression of neuropeptides that alter feeding behavior. Elevated levels of palmitate, a predominant saturated fatty acid in diet and fatty acid biosynthesis, alter cellular function. For instance, a key mechanism involved in the development of insulin resistance is lipotoxicity, through increased circulating saturated fatty acids. Although many studies have begun to determine the underlying mechanisms of lipotoxicity in peripheral tissues, little is known about the effects of excess lipids in the brain. To determine these mechanisms we used an immortalized, clonal, hypothalamic cell line, mHypoE-44, to demonstrate that palmitate directly alters the expression of molecular clock components, by increasing Bmal1 and Clock, or by decreasing Per2, and Rev-erbα, their mRNA levels and altering their rhythmic period within individual neurons. We found that these neurons endogenously express the orexigenic neuropeptides NPY and AgRP, thus we determined that palmitate administration alters the mRNA expression of these neuropeptides as well. Palmitate treatment causes a significant increase in NPY mRNA levels and significantly alters the phase of rhythmic expression. We explored the link between AMPK and the expression of neuropeptide Y using the AMPK inhibitor compound C and the AMP analog AICAR. AMPK inhibition decreased NPY mRNA. AICAR also elevated basal NPY, but prevented the palmitate-mediated increase in NPY mRNA levels. We postulate that this palmitate-mediated increase in NPY and AgRP synthesis may initiate a detrimental positive feedback loop leading to increased energy consumption.

  10. Reduced levels of SCD1 accentuate palmitate-induced stress in insulin-producing β-cells

    Directory of Open Access Journals (Sweden)

    Hovsepyan Meri

    2010-09-01

    Full Text Available Abstract Background Stearoyl-CoA desaturase 1 (SCD1 is an ER resident enzyme introducing a double-bond in saturated fatty acids. Global knockout of SCD1 in mouse increases fatty acid oxidation and insulin sensitivity which makes the animal resistant to diet-induced obesity. Inhibition of SCD1 has therefore been proposed as a potential therapy of the metabolic syndrome. Much of the work has focused on insulin target tissue and very little is known about how reduced levels of SCD1 would affect the insulin-producing β-cell, however. The aim of the present study was therefore to investigate how reduced levels of SCD1 affect the β-cell. Results Insulin-secreting MIN6 cells with reduced levels of SCD1 were established by siRNA mediated knockdown. When fatty acid oxidation was measured, no difference between cells with reduced levels of SCD1 and mock-transfected cells were found. Also, reducing levels of SCD1 did not affect insulin secretion in response to glucose. To investigate how SCD1 knockdown affected cellular mechanisms, differentially regulated proteins were identified by a proteomic approach. Cells with reduced levels of SCD1 had higher levels of ER chaperones and components of the proteasome. The higher amounts did not protect the β-cell from palmitate-induced ER stress and apoptosis. Instead, rise in levels of p-eIF2α and CHOP after palmitate exposure was 2-fold higher in cells with reduced levels of SCD1 compared to mock-transfected cells. Accordingly, apoptosis rose to higher levels after exposure to palmitate in cells with reduced levels of SCD1 compared to mock-transfected cells. Conclusions In conclusion, reduced levels of SCD1 augment palmitate-induced ER stress and apoptosis in the β-cell, which is an important caveat when considering targeting this enzyme as a treatment of the metabolic syndrome.

  11. In Vitro Palmitate Treatment of Myotubes from Postmenopausal Women Leads to Ceramide Accumulation, Inflammation and Affected Insulin Signaling

    DEFF Research Database (Denmark)

    Abildgaard, Julie; Henstridge, Darren C; Pedersen, Anette Tønnes;

    2014-01-01

    Palmitoyltransferase1 (SPT1) after one day of palmitate treatment (p = 0.03) in post-myotubes compared with pre-myotubes. Our findings indicate that post-myotubes are more prone to develop lipid accumulation and defective insulin signaling following chronic saturated fatty acid exposure as compared to pre-myotubes....

  12. 21 CFR 172.860 - Fatty acids.

    Science.gov (United States)

    2010-04-01

    ... acid, caprylic acid, lauric acid, myristic acid, oleic acid, palmitic acid, and stearic acid. (b) The... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fatty acids. 172.860 Section 172.860 Food and Drugs... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and...

  13. Sodium ascorbyl phosphate shows in vitro and in vivo efficacy in the prevention and treatment of acne vulgaris.

    Science.gov (United States)

    Klock, J; Ikeno, H; Ohmori, K; Nishikawa, T; Vollhardt, J; Schehlmann, V

    2005-06-01

    Acne vulgaris is the most common inflammatory skin disorder and jeopardizes seriously the facial impression of a person. Development of acne involves a complex relation among several causes. Treatment and prevention success can be archived by affecting the main contributors positively like Proprionibacterium acnes or lipid oxidation leading to inflammatory reactions and follicular keratinization. Vitamin C tends to break down in cosmetic formulations resulting in a brownish discoloration. Sodium ascorbyl phosphate (SAP) represents a stable precursor of vitamin C that ensures a constant delivery of vitamin C into the skin. We were able to show that 1% SAP has a strong antimicrobial effect with a log reduction of 5 after 8 h on P. acnes in a time-kill study. Further on in a human in vivo study with 20 subjects an SAP O/W formulation significantly prevents the UVA-induced sebum oxidation up to 40%. Finally, we performed an open in vivo study with 60 subjects with a 5% SAP lotion over 12 weeks. The efficacy ranked as excellent and good of SAP was 76.9%, which was superior compared with a widely prescribed acne treatment. In conclusion, these data show that SAP is efficient in the prevention and treatment of acne vulgaris. SAP can be used in a non-antibiotic and effective treatment or co-treatment of acne with no side effects, which makes it particularly attractive for cosmetic purposes.

  14. Water-phase palmitate concentrations in equilibrium with albumin-bound palmitate in a biological system

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1992-01-01

    Biokemi, erythrocyte ghosts, pamitate, bovine serum albumin, long-chain fatty acids, equilibrium constants......Biokemi, erythrocyte ghosts, pamitate, bovine serum albumin, long-chain fatty acids, equilibrium constants...

  15. A case of paliperidone-palmitate-induced tardive dyskinesia.

    LENUS (Irish Health Repository)

    Lally, John

    2012-06-13

    OBJECTIVES: This is one of the first cases reported in the literature of paliperidone-palmitate-induced prolonged dyskinesia. METHOD: Case report. RESULTS: We report the case of a 49-year-old woman with paranoid schizophrenia who developed orofacial dyskinesia some 4 months after the commencement of paliperidone long-acting injection. CONCLUSION: This case serves as a clinical reminder that dyskinesia can occur with all antipsychotic medications.

  16. Effects of Paliperidone Palmitate on Coagulation: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Enver Demirel Yılmaz

    2014-01-01

    Full Text Available Objective. The aim of the present study was to examine the effects of a new antipsychotic drug paliperidone palmitate on hemogram and coagulation parameters in rats. Materials and Methods. Experiments were performed on 22 female albino Wistar rats (8–12 weeks old. Control group was given drinking water as vehicle (0.3 mL. PAL-1 rats were given 1 mg/kg paliperidone palmitate (in 0.3 mL drinking water by oral gavage once a day for ten days and PAL-3 rats received 3 mg/kg paliperidone palmitate (in 0.3 mL drinking water by oral gavage for ten days. Blood samples were drawn from the heart 24 hours after the last drug dose, and hemogram and coagulation parameters were measured with automated analyzers. Results. Hemogram did not change in the paliperidone treated groups compared to the controls. Factor VIII levels decreased in the PAL-1 and PAL-3 groups; and this decrease was significantly greater in the PAL-3. Factor IX levels decreased in PAL-3 rats, but its levels also increased in PAL-1 rats compared to the control. Discussion. Paliperidone has led to changes in the serum levels of coagulation factors VIII and IX in rats. As a result, paliperidone may be causing thromboembolism or bleeding in a dose-independent manner.

  17. Palmitic acid promotes apoptosis of vascular endothelial cells via mitogen-activated protein kinase pathway%软脂酸通过丝裂原活化蛋白激酶通路促进血管内皮细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    江海龙; 马丽群; 苏海明; 沈倩波; 葛冬云; 王海涛; 甘继宏

    2012-01-01

    目的 探讨软脂酸(PA)诱导的血管内皮细胞凋亡中丝裂原活化蛋白激酶(MAPK)通路的作用.方法 将人脐静脉内皮细胞(HUVEC)分对照组、PA组、MAPK通路干预组[分别先用p38抑制剂SB203580、氨基末端激酶(JNK)抑制剂PD98059、细胞外信号调节激酶(ERK)抑制剂SP600125干预]再分为PA+SB组、PA+PD组、PA+SP组.流式细胞仪检测细胞凋亡率;Western blot法检测caspase-3、磷酸化p38、JNK和ERK1/2表达水平;分光光度法检测caspase-3的活性.结果 与对照组比较,PA组、PA+ SB组、PA+PD组、PA+SP组HUVEC凋亡及caspase-3表达和活性明显增加,PA组磷酸化p38MAPK表达明显增加(P<0.05).与PA组比较,PA+ SB组HUVEC细胞凋亡率、caspase-3表达和活性明显降低(P<0.05);而PA+ PD组和PA+ SP组HUVEC凋亡率、caspase-3表达和活性无明显变化(P>0.05).结论 PA通过p38MAPK通路促进内皮细胞凋亡.%Objective To study the role of mitogen-activated protein kinase(MAPK) pathway in palmitic acid(PA)-induced apoptosis of vascular endothelial cells. Methods Cultured HUVEC were divided into control group,PA group,and MAPK pathway interference group. Two hours after interfered with M199 culture fluid containing p38 inhibitor SB203580, amino terminal kinase (JNK) inhibitor PD98059,and extracellular signal regulating kinase(ERK) inhibitor SP600125. The MAPK pathway interference group was further divided into PA+SB group, PA+PD group, PA + SP group and incubated for 46 h by adding 400 jumol/L PA. Apoptotic rate of HUVEC was assayed by flow cytometry. Expressions of apoptotic protein caspase-3 and phosphorylated p38, JNK.ERK1/2 were detected by Western blot. Caspase-3 activity was measured by spectropho-tography. Results The apoptotic rate of HUVEC and the caspase-3 expression and activity levels were significantly higher in PA,PA + SB,PA+PD and PA+SP groups than in control group(P0. 05). Conclusion PA promotes apoptosis of vascular endothelial cells via the p38

  18. Selection of Suitable Reaction Media and Lipase:Synthesize of L-ascorbyl Palmitate Catalyzed by Lipase%催化合成L-抗坏血酸棕榈酸酯的反应媒体和脂肪酶

    Institute of Scientific and Technical Information of China (English)

    汤鲁宏; 张浩

    2000-01-01

    对水、庚烷和叔戊醇等几种反应媒体和NOVO435(Candida antartica), MML(Mucor miehei), LIPOLASE , PPL(Porcine pancreas)等数种脂肪酶对L-抗坏血酸棕榈酸酯合成反应的影响进行了系统的研究.结果表明,反应媒体及脂肪酶品种对反应影响极大.所研究的几种反应媒体中,叔戊醇是唯一适用于该反应的反应媒体.在所研究的几种脂肪酶中,NOVO 435表现出了良好的催化活性;MML也有一定活性,但不如NOVO 435,其相对活力只有NOVO 435的20%,其余酶种则无催化活性.

  19. Kinetics studies on triacontanyl palmitate: a urease inhibitor.

    Science.gov (United States)

    Lodhi, Muhammad Arif; Abbasi, Muhammad Athar; Choudhary, Muhammad Iqbal; Ahmad, Viqar Uddin

    2007-07-10

    The mechanism of inhibition of jack bean and Bacillus pasteurii ureases was investigated by triacontanyl palmitate (1) which is a long-chain fatty ester and has been isolated from Symplocos racemosa Roxb. Lineweaver-Burk, Dixon plots, and their secondary replots showed that 1 is a non-competitive inhibitor of these enzymes. K(i) values were found to be 60.03 +/- 1.72 and 88.23 +/- 0.31 microM against jack bean and B. pasteurii ureases, respectively.

  20. Serotonin- and Dopamine-Related Gene Expression in db/db Mice Islets and in MIN6 β-Cells Treated with Palmitate and Oleate

    Science.gov (United States)

    Cataldo, L. R.; Olmos, P.; Galgani, J. E.; Valenzuela, R.; Aranda, E.; Cortés, V. A.; Santos, J. L.

    2016-01-01

    High circulating nonesterified fatty acids (NEFAs) concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS) through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependent β-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treated β-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob) seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets from db/db and wild-type (WT) mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6 β-cell was determined. Lower Maob expression was found in islets from db/db versus WT mice and in MIN6 β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (−25%; p < 0.0001) and oleate (−43%; p < 0.0001) were detected in MIN6 β-cells. In conclusion, known defects of GSIS in islets from db/db mice and MIN6 β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content. PMID:27366756

  1. Kinetics of saturated, monounsaturated, and polyunsaturated fatty acids in humans.

    Science.gov (United States)

    Nelson, Robert H; Mundi, Manpreet S; Vlazny, Danielle T; Smailovic, Almira; Muthusamy, Kalpana; Almandoz, Jaime P; Singh, Ekta; Jensen, Michael D; Miles, John M

    2013-03-01

    Plasma free fatty acid (FFA) kinetics in humans are often measured with only one tracer. In study 1, healthy volunteers received infusions of [U-¹³C]linoleate, [U-¹³C]oleate, and [U-¹³C]palmitate during continuous feeding with liquid meals low (n = 12) and high (n = 5) in palmitate and containing three labeled fatty acids to measure FFA appearance and fractional spillover of lipoprotein lipase-generated fatty acids. Study 2 used an intravenous lipid emulsion to increase FFA concentrations during infusion of linoleate and palmitate tracers. In study 1, there were no differences in spillover of the three fatty acids for the low-palmitate meal, but linoleate spillover was greater than oleate or palmitate for the high-palmitate meal. In studies 1 and 2, clearance was significantly greater for linoleate than for the other FFAs. There was a negative correlation between clearance and concentration for each fatty acid in the two studies. In study 1, concentration and spillover correlated positively for oleate and palmitate but negatively for linoleate. In conclusion, linoleate spillover is greater than that of other fatty acids under some circumstances. Linoleate clearance is greater than that of palmitate or oleate, indicating a need for caution when using a single FFA to infer the behavior of all fatty acids.

  2. Induction of cell death by ascorbic acid derivatives in human renal carcinoma and glioblastoma cell lines.

    Science.gov (United States)

    Makino, Y; Sakagami, H; Takeda, M

    1999-01-01

    Sodium-L-ascorbate, L-ascorbic acid, D-isoascorbic acid, sodium 5,6-benzylidene-L-ascorbate and sodium-6-beta-O-galactosyl-L-ascorbate, which produce ascorbyl radicals during the oxidative degradation, also induced cytotoxicity against cultured human renal carcinoma (TC-1) and glioblastoma multiform tumor (T98G) cell lines. On the other hand, L-ascorbic acid 2-phosphate magnesium and L-ascorbic acid 2-sulfate dipotassium salt, which do not produce the ascorbyl radical, were inactive. This suggests the possible role of the ascorbyl radical for cell death induction. T98G cells were more resistant to ascorbate analogs than TC-1 and HL-60 cells, possibly due to higher intracellular glutathione concentrations. Ascorbate treatment induced rapid elevation of both intracellular concentration of cAMP and Ca2+ in HL-60 cells, but not in TC-1 and T98G cells. However, the elevation of cAMP by theophyline and N,2-dibutyryl adenosine 3,5 cyclic monophosphate (dibutyryl cAMP) resulted in a decrease in the viable cell number. This suggests the possible role of cAMP for ascorbate-induced cell death.

  3. Protection from palmitate-induced mitochondrial DNA damage prevents from mitochondrial oxidative stress, mitochondrial dysfunction, apoptosis, and impaired insulin signaling in rat L6 skeletal muscle cells.

    Science.gov (United States)

    Yuzefovych, Larysa V; Solodushko, Viktoriya A; Wilson, Glenn L; Rachek, Lyudmila I

    2012-01-01

    Saturated free fatty acids have been implicated in the increase of oxidative stress, mitochondrial dysfunction, apoptosis, and insulin resistance seen in type 2 diabetes. The purpose of this study was to determine whether palmitate-induced mitochondrial DNA (mtDNA) damage contributed to increased oxidative stress, mitochondrial dysfunction, apoptosis, impaired insulin signaling, and reduced glucose uptake in skeletal muscle cells. Adenoviral vectors were used to deliver the DNA repair enzyme human 8-oxoguanine DNA glycosylase/(apurinic/apyrimidinic) lyase (hOGG1) to mitochondria in L6 myotubes. After palmitate exposure, we evaluated mtDNA damage, mitochondrial function, production of mitochondrial reactive oxygen species, apoptosis, insulin signaling pathways, and glucose uptake. Protection of mtDNA from palmitate-induced damage by overexpression of hOGG1 targeted to mitochondria significantly diminished palmitate-induced mitochondrial superoxide production, restored the decline in ATP levels, reduced activation of c-Jun N-terminal kinase (JNK) kinase, prevented cells from entering apoptosis, increased insulin-stimulated phosphorylation of serine-threonine kinase (Akt) (Ser473) and tyrosine phosphorylation of insulin receptor substrate-1, and thereby enhanced glucose transporter 4 translocation to plasma membrane, and restored insulin signaling. Addition of a specific inhibitor of JNK mimicked the effect of mitochondrial overexpression of hOGG1 and partially restored insulin sensitivity, thus confirming the involvement of mtDNA damage and subsequent increase of oxidative stress and JNK activation in insulin signaling in L6 myotubes. Our results are the first to report that mtDNA damage is the proximal cause in palmitate-induced mitochondrial dysfunction and impaired insulin signaling and provide strong evidence that targeting DNA repair enzymes into mitochondria in skeletal muscles could be a potential therapeutic treatment for insulin resistance.

  4. Cytoprotective Effect of Hispidin against Palmitate-Induced Lipotoxicity in C2C12 Myotubes

    Directory of Open Access Journals (Sweden)

    Jun Myoung Park

    2015-03-01

    Full Text Available It is well known that Phellinus linteus, which produces hispidin and its derivatives, possesses antioxidant activities. In this study, we investigated whether hispidin has protective effects on palmitate-induced oxidative stress in C2C12 skeletal muscle cells. Our results showed that palmitate treatment in C2C12 myotubes increased ROS generation and cell death as compared with the control. However, pretreatment of hispidin for 8 h improved the survival of C2C12 myotubes against palmitate-induced oxidative stress via inhibition of intracellular ROS production. Hispidin also inhibited palmitate-induced apoptotic nuclear condensation in C2C12 myotubes. In addition, we found that hispidin can suppress cleavage of caspase-3, expression of Bax, and NF-κB translocation. Therefore, these results suggest that hispidin is capable of protecting C2C12 myotubes against palmitate-induced oxidative stress.

  5. Oviposition response ofLobesia botrana females to long-chain free fatty acids and esters from its eggs.

    Science.gov (United States)

    Gabel, B; Thiéry, D

    1996-01-01

    Avoidance of occupied ovisposition sites supposes that females perceive information related to their own progency. Fatty acids identified from egg extracts have been reevaluated using a different extraction method, and we have investigated the dose-dependent oviposition response of European grape vine moths (Lobesia botrana) to myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, methyl palmitate, methyl oleate, and ethyl palmitate; all except ethyl palmitate have been identified from eggs ofL. botrana. A methylene dichloride extract of eggs fromL. botrana revealed the presence of saturated free fatty acids (myristic, palmitic, and stearic) and unsaturated acids (palmitoleic, oleic, linoleic, and linolenic) in amounts ranging from 3.9 ng/egg equivalent for myristic acid to 30 ng/egg equivalent for palmitic and oleic acids. The extract also contained traces of methyl palmitate and methyl stearate. The greatest avoidance indexes were observed in response to palmitic, palmitoleic, and oleic acids. All the other compounds tested caused weaker responses. A reduction in the number of eggs laid was observed when moths were exposed to each of the esters applied at 0.3 µg per application spot. Reduction in eggs laid was also observed at a 10-fold higher dose of oleic acid. The present results confirm that general and simple molecules can be involved in the regulation of oviposition site selection and that they may participate in chemical marking of the eggs.

  6. Comparative Evaluation of Diagnostic Tools for Oxidative Deterioration of Polyunsaturated Fatty Acid-Enriched Infant Formulas during Storage

    Directory of Open Access Journals (Sweden)

    Caroline Siefarth

    2013-12-01

    than achievable via conventional methods. In detail, oxidative variances between the formulations revealed that lipid oxidation was low when copper was administered in an encapsulated form and when antioxidants (vitamin E, ascorbyl palmitate were present.

  7. High-density lipoprotein and apolipoprotein A-I inhibit palmitate-induced translocation of toll-like receptor 4 into lipid rafts and inflammatory cytokines in 3T3-L1 adipocytes.

    Science.gov (United States)

    Yamada, Hodaka; Umemoto, Tomio; Kawano, Mikihiko; Kawakami, Masanobu; Kakei, Masafumi; Momomura, Shin-Ichi; Ishikawa, San-E; Hara, Kazuo

    2017-03-04

    Saturated fatty acids (SFAs) activate toll-like receptor 4 (TLR4) signal transduction in macrophages and are involved in the chronic inflammation accompanying obesity. High-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I) produce anti-inflammatory effects via reverse cholesterol transport. However, the underlying mechanisms by which HDL and apoA-I inhibit inflammatory responses in adipocytes remain to be determined. Here we examined whether palmitate increases the translocation of TLR4 into lipid rafts and whether HDL and apoA-I inhibit inflammation in adipocytes. Palmitate exposure (250 μM, 24 h) increased interleukin-6 and tumor necrosis factor-α gene expressions and translocation of TLR4 into lipid rafts in 3T3-L1 adipocytes. Pretreatment with HDL and apoA-I (50 μg/mL, 6 h) suppressed palmitate-induced inflammatory cytokine expression and TLR4 translocation into lipid rafts. Moreover, HDL and apoA-I inhibited palmitate-induced phosphorylation of nuclear factor-kappa B. HDL showed an anti-inflammatory effect via ATP-binding cassette transporter G1 and scavenger receptor class B, member 1, whereas apoA-I showed an effect via ATP-binding cassette transporter A1. These results demonstrated that HDL and apoA-I reduced palmitate-potentiated TLR4 trafficking into lipid rafts and its related inflammation in adipocytes via these specific transporters.

  8. Docosahexaenoic acid accumulation in hraustochytrids: Search for the rationale

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, R.; Raghukumar, S.; Sambaiah, K.; Kumon, Y.; Nakahara, T.

    not been refrigerated, total fatty acids, as well as DHA were marginally higher in pre-refrigerated cells, while palmitic acid levels were lower. Starvation of cells resulted in a gradual decrease of absolute concentrations and percentage levels of DHA...

  9. Mitochondrial Ca2+ cycle mediated by the palmitate-activated cyclosporin A-insensitive pore.

    Science.gov (United States)

    Mironova, Galina D; Belosludtsev, Konstantin N; Belosludtseva, Natalia V; Gritsenko, Elena N; Khodorov, Boris I; Saris, Nils-Erik L

    2007-04-01

    Earlier we found that in isolated rat liver mitochondria the reversible opening of the mitochondrial cyclosporin A-insensitive pore induced by low concentrations of palmitic acid (Pal) plus Ca(2+) results in the brief loss of Deltapsi [Mironova et al., J Bioenerg Biomembr (2004), 36:171-178]. Now we report that Pal and Ca(2+), increased to 30 and 70 nmol/mg protein respectively, induce a stable and prolonged (10 min) partial depolarization of the mitochondrial membrane, the release of Ca(2+) and the swelling of mitochondria. Inhibitors of the Ca(2+) uniporter, ruthenium red and La(3+), as well as EGTA added in 10 min after the Pal/Ca(2+)-activated pore opening, prevent the release of Ca(2+) and repolarize the membrane to initial level. Similar effects can be observed in the absence of exogeneous Pal, upon mitochondria accumulating high [Sr(2+)], which leads to the activation of phospholipase A(2) and appearance of endogenous fatty acids. The paper proposes a new model of the mitochondrial Ca(2+) cycle, in which Ca(2+) uptake is mediated by the Ca(2+) uniporter and Ca(2+) efflux occurs via a short-living Pal/Ca(2+)-activated pore.

  10. 3-MCPD 1-Palmitate Induced Tubular Cell Apoptosis In Vivo via JNK/p53 Pathways.

    Science.gov (United States)

    Liu, Man; Huang, Guoren; Wang, Thomas T Y; Sun, Xiangjun; Yu, Liangli Lucy

    2016-05-01

    Fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD esters) are a group of processing induced food contaminants with nephrotoxicity but the molecular mechanism(s) remains unclear. This study investigated whether and how the JNK/p53 pathway may play a role in the nephrotoxic effect of 3-MCPD esters using 3-MCPD 1-palmitate (MPE) as a probe compound in Sprague Dawley rats. Microarray analysis of the kidney from the Sprague Dawley rats treated with MPE, using Gene Ontology categories and KEGG pathways, revealed that MPE altered mRNA expressions of the genes involved in the mitogen-activated protein kinase (JNK and ERK), p53, and apoptotic signal transduction pathways. The changes in the mRNA expressions were confirmed by qRT-PCR and Western blot analyses and were consistent with the induction of tubular cell apoptosis as determined by histopathological, TUNEL, and immunohistochemistry analyses in the kidneys of the Sprague Dawley rats. Additionally, p53 knockout attenuated the apoptosis, and the apoptosis-related protein bax expression and cleaved caspase-3 activation induced by MPE in the p53 knockout C57BL/6 mice, whereas JNK inhibitor SP600125 but not ERK inhibitor U0126 inhibited MPE-induced apoptosis, supporting the conclusion that JNK/p53 might play a critical role in the tubular cell apoptosis induced by MPE and other 3-MCPD fatty acid esters.

  11. The effect of chronic exposure to fatty acids

    DEFF Research Database (Denmark)

    Xiao, J.; Gregersen, S.; Kruhøffer, Mogens;

    2001-01-01

    Fatty acids affect insulin secretion of pancreatic beta-cells. Investigating gene expression profiles may help to characterize the underlying mechanism. INS-1 cells were cultured with palmitate (0, 50, and 200 microM) for up to 44 d. Insulin secretion and expressions of 8740 genes were studied. We...... 44, respectively. Genes involved in fatty acid oxidation were up-regulated, whereas those involved in glycolysis were down-regulated with 200 microM palmitate. A suppression of insulin receptor and insulin receptor substate-2 gene expression was found on d 44 in cells cultured at 200 microM palmitate....... In conclusion, chronic exposure to low palmitate alters insulin secretion as well as gene expression. The number of genes that changed expression was palmitate dose and exposure time dependent. Randle's fatty acid-glucose cycle seems to be operative on the gene transcription level. A modification of expression...

  12. Paliperidone palmitate injection for the acute and maintenance treatment of schizophrenia in adults

    Directory of Open Access Journals (Sweden)

    Kim S

    2012-07-01

    Full Text Available Shiyun Kim,1 Hugo Solari,2 Peter J Weiden,2 Jeffrey R Bishop11Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, 2Department of Psychiatry, University of Illinois at Chicago College of Medicine, Chicago, IL, USAPurpose: To review the use of paliperidone palmitate in treatment of patients with schizophrenia.Methods: Published clinical trial data for the development and utilization of paliperidone palmitate for the treatment of schizophrenia were assessed in this review. Four short-term, randomized, double-blind, placebo-controlled trials investigated the efficacy of paliperidone palmitate in acute exacerbation of schizophrenia. Paliperidone palmitate was also studied as a maintenance treatment to prevent or delay relapse in stable schizophrenia. In addition, paliperidone palmitate was compared to risperidone long-acting injection for noninferiority in three studies.Results: Paliperidone palmitate has been shown to be effective in reducing symptoms as measured by the Positive and Negative Syndrome Scale total scores in the four acute treatment studies. In the maintenance treatment studies, paliperidone palmitate was found to be more effective than placebo in preventing or delaying the time to first relapse in stable schizophrenia patients. In addition, paliperidone palmitate was shown to be noninferior to risperidone long-acting injection in two studies. It was shown to be reasonably well tolerated in all clinical trials. Acute treatment phase should be initiated with a dose of 234 mg on day one and 156 mg on day eight, followed by a recommended monthly maintenance dose of 39–234 mg based on efficacy and tolerability results from the clinical studies.Conclusion: Providing an optimal long-term treatment can be challenging. Paliperidone palmitate can be used as an acute treatment even in outpatient setting, and it has shown to be well tolerated by patients. Also, it does not require overlapping oral

  13. Sodium orthovanadate suppresses palmitate-induced cardiomyocyte apoptosis by regulation of the JAK2/STAT3 signaling pathway.

    Science.gov (United States)

    Liu, Jing; Fu, Hui; Chang, Fen; Wang, Jinlan; Zhang, Shangli; Caudle, Yi; Zhao, Jing; Yin, Deling

    2016-05-01

    Elevated circulatory free fatty acids (FFAs) especially saturated FFAs, such as palmitate (PA), are detrimental to the heart. However, mechanisms responsible for this phenomenon remain unknown. Here, the role of JAK2/STAT3 in PA-induced cytotoxicity was investigated in cardiomyocytes. We demonstrate that PA suppressed the JAK2/STAT3 pathway by dephosphorylation of JAK2 (Y1007/1008) and STAT3 (Y705), and thus blocked the translocation of STAT3 into the nucleus. Conversely, phosphorylation of S727, another phosphorylated site of STAT3, was increased in response to PA treatment. Pretreatment of JNK inhibitor, but not p38 MAPK inhibitor, inhibited STAT3 (S727) activation induced by PA and rescued the phosphorylation of STAT3 (Y705). The data suggested that JNK may be another upstream factor regulating STAT3, and verified the important function of P-STAT3 (Y705) in PA-induced cardiomyocyte apoptosis. Sodium orthovanadate (SOV), a protein tyrosine phosphatase inhibitor, obviously inhibited PA-induced apoptosis by restoring JAK2/STAT3 pathways. This effect was diminished by STAT3 inhibitor Stattic. Collectively, our data suggested a novel mechanism that the inhibition of JAK2/STAT3 activation was responsible for palmitic lipotoxicity and SOV may act as a potential therapeutic agent by targeting JAK2/STAT3 in lipotoxic cardiomyopathy treatment.

  14. Manic Symptoms during a Switch from Paliperidone ER to Paliperidone Palmitate in a Patient with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Kadir Demirci

    2015-01-01

    Full Text Available Some antipsychotic drugs have treatment efficacy for mania and bipolar disorder. However, these drugs may rarely cause manic symptoms in some schizophrenic patients. We hereby report a 22-year-old female patient with schizophrenia who experienced a manic episode during a switch from paliperidone ER to paliperidone palmitate. This case is an important reminder that an abrupt switch from oral paliperidone to paliperidone palmitate may predispose certain patients to hypomanic or manic symptoms.

  15. Fatty Acid Composition of Agaricus bisporus (Lange) Sing.

    OpenAIRE

    Aktümsek, Abdurrahman; ÖZTÜRK, Celâleddin; KAŞIK, Giyasettin

    1998-01-01

    Fatty acid compositions of fruit body, stem, lamellae and total of Agaricus bisporus were seperately analysed by GLC. In the all fatty acid compositions of A. bisporus, linoleic acid were predominant. Percentages of linoleic acid were varied between 53.45 - 68.78%. It was showed that the other major fatty acids were palmitic, oleic and stearic acid in the fatty acid compositions.

  16. Fatty acid profile of Albizia lebbeck and Albizia saman seed oils: Presence of coronaric acid

    Science.gov (United States)

    In this work, the fatty acid profiles of the seed oils of Albizia lebbeck and Albizia saman (Samanea saman) are reported. The oils were analyzed by GC, GC-MS, and NMR. The most prominent fatty acid in both oils is linoleic acid (30-40%), followed by palmitic acid and oleic acid for A. lebbeck and ol...

  17. Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress

    Science.gov (United States)

    Background: Vitamin D deficiency is widespread in pregnancy and has been associated with adverse health conditions for mothers and infants. Vitamin D supplementation in pregnancy may support maintenance of pregnancy by its effects on innate immunity and T cell function. Objective: We assessed the e...

  18. Saturated long-chain fatty acids activate inflammatory signaling in astrocytes.

    Science.gov (United States)

    Gupta, Sunita; Knight, Alecia G; Gupta, Shruti; Keller, Jeffrey N; Bruce-Keller, Annadora J

    2012-03-01

    This study describes the effects of long-chain fatty acids on inflammatory signaling in cultured astrocytes. Data show that the saturated fatty acid palmitic acid, as well as lauric acid and stearic acid, trigger the release of TNFα and IL-6 from astrocytes. Unsaturated fatty acids were unable to induce cytokine release from cultured astrocytes. Furthermore, the effects of palmitic acid on cytokine release require Toll-like receptor 4 rather than CD36 or Toll-like receptor 2, and do not depend on palmitic acid metabolism to palmitoyl-CoA. Inhibitor studies revealed that pharmacologic inhibition of p38 or p42/44 MAPK pathways prevents the pro-inflammatory effects of palmitic acid, whereas JNK and PI3K inhibition does not affect cytokine release. Depletion of microglia from primary astrocyte cultures using the lysosomotropic agent l-leucine methyl ester revealed that the ability of palmitic acid to trigger cytokine release is not dependent on the presence of microglia. Finally, data show that the essential ω-3 fatty acid docosahexaenoic acid acts in a dose-dependent manner to prevent the actions of palmitic acid on inflammatory signaling in astrocytes. Collectively, these data demonstrate the ability of saturated fatty acids to induce astrocyte inflammation in vitro. These data thus raise the possibility that high levels of circulating saturated fatty acids could cause reactive gliosis and brain inflammation in vivo, and could potentially participate in the reported adverse neurologic consequences of obesity and metabolic syndrome.

  19. Vitamin A is rapidly degraded in retinyl palmitate-fortified soybean oil stored under household conditions.

    Science.gov (United States)

    Pignitter, Marc; Dumhart, Bettina; Gartner, Stephanie; Jirsa, Franz; Steiger, Georg; Kraemer, Klaus; Somoza, Veronika

    2014-07-30

    Oil fortification with retinyl palmitate is intended to lower the prevalence of vitamin A deficiency in populations at risk. Although the stability of vitamin A in vegetable oil has been shown to depend on environmental factors, very little information is known about the stability of vitamin A in preoxidized vegetable oils. The present study investigated the stability of retinyl palmitate in mildly oxidized (peroxide value 10 mequiv O2/kg) soybean oil stored under domestic and retail conditions. Soybean oil was filled in transparent bottles, which were exposed to cold fluorescent light at 22 or 32 °C for 56 days. Periodic oil sampling increased the headspace, thereby mimicking consumer handling. Loss of retinyl palmitate in soybean oil by a maximum of 84.8 ± 5.76% was accompanied by a decrease of vitamin E by 53.3 ± 0.87% and by an increase of the peroxide value from 1.20 ± 0.004 to 24.3 ± 0.02 mequiv O2/kg. Fortification of highly oxidized oil with 31.6 IU/g retinyl palmitate led to a doubling of the average decrease of retinol per day compared to fortification of mildly oxidized oil. In conclusion, oil fortification programs need to consider the oxidative status of the oil used for retinyl palmitate fortification.

  20. Unusual fatty acid substitution in lipids and lipopolysaccharides of Helicobacter pylori.

    OpenAIRE

    Geis, G; Leying, H; Suerbaum, S; Opferkuch, W

    1990-01-01

    Cellular fatty acids, phospholipid fatty acids, and lipopolysaccharide fatty acids of four strains of Helicobacter pylori were analyzed by gas-liquid chromatography. The presence of myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, 19-carbon cyclopropane fatty acid, beta-hydroxypalmitic acid, and beta-hydroxystearic acid was confirmed. In phospholipids, myristic acid and 19-carbon cyclopropane fatty acid were the major fatty acids. Hydroxy fatty acids and unsaturated fatt...

  1. Preparation of five 3-MCPD fatty acid esters and the effects of their chemical structures on acute oral toxicity in Swiss mice

    Science.gov (United States)

    Fatty acid esters of 3-monochloro-1, 2-propanediol (3-MCPDEs), including 1-stearic, 1-oleic, 1-linoleic, 1-linoleic-2-palmitic and 1-palmitic-2-linoleic acid esters, were synthetized and examined for their acute oral toxicities in Swiss mice. 3-MCPDEs were obtained through the reaction of 3-MCPD and...

  2. Palmitate and stearate binding to human serum albumin. Determination of relative binding constants

    DEFF Research Database (Denmark)

    Vorum, H; Fisker, K; Honoré, B

    1997-01-01

    Multiple binding equilibria of two apparently insoluble ligands, palmitate and stearate, to defatted human serum albumin were studied in a 66 mM sodium phosphate buffer (pH 7.4) at 37 degrees C, by determination of dialytic exchange rates of ligands among identical equilibrium solutions. The expe......Multiple binding equilibria of two apparently insoluble ligands, palmitate and stearate, to defatted human serum albumin were studied in a 66 mM sodium phosphate buffer (pH 7.4) at 37 degrees C, by determination of dialytic exchange rates of ligands among identical equilibrium solutions...... that cooperativity is absent while the stoichiometric equation is valid even when cooperativity is present. It was found with palmitate as well as with stearate that the two equations fitted the data equally well, and it was concluded that the observations were compatible with absence of cooperativity. The relative...

  3. Insights antifibrotic mechanism of methyl palmitate: Impact on nuclear factor kappa B and proinflammatory cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Mantawy, Eman M.; Tadros, Mariane G. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); Awad, Azza S. [Department of Pharmacology and Toxicology, Faulty of Pharmacy, Al-Azhar University, Cairo (Egypt); Hassan, Dina A.A. [Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo (Egypt); El-Demerdash, Ebtehal, E-mail: ebtehal_dm@yahoo.com [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2012-01-01

    Fibrosis accompanies most chronic liver disorders and is a major factor contributing to hepatic failure. Therefore, the need for an effective treatment is evident. The present study was designed to assess the potential antifibrotic effect of MP and whether MP can attenuate the severity of oxidative stress and inflammatory response in chronic liver injury. Male albino rats were treated with either CCl{sub 4} (1 ml/kg, twice a week) and/or MP (300 mg/kg, three times a week) for six weeks. CCl{sub 4}-intoxication significantly increased liver weight, serum aminotransferases, total cholesterol and triglycerides while decreased albumin level and these effects were prevented by co-treatment with MP. As indicators of oxidative stress, CCl{sub 4}-intoxication caused significant glutathione depletion and lipid peroxidation while MP co-treatment preserved them within normal values. As markers of fibrosis, hydroxyproline content and α-SMA expression increased markedly in the CCl{sub 4} group and MP prevented these alterations. Histopathological examination by both light and electron microscope further confirmed the protective efficacy of MP. To elucidate the antifibrotic mechanisms of MP, the expression of NF-κB, iNOS and COX-2 and the tissue levels of TNF-α and nitric oxide were assessed; CCl{sub 4} increased the expression of NF-κB and all downstream inflammatory cascade while MP co-treatment inhibited them. Collectively these findings indicate that MP possesses a potent antifibrotic effect which may be partly a consequence of its antioxidant and anti-inflammatory properties. -- Highlights: ► Methyl palmitate is free fatty acid methyl ester. ► It possesses a strong antifibrotic effect. ► It inhibits NF-κB and the consequent proinflammatory and oxidative stress response.

  4. Aspects of the regulation of long-chain fatty acid oxidation in bovine liver

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-09-01

    Factors involved in regulation of bovine hepatic fatty acid oxidation were examined using liver slices. Fatty acid oxidation was measured as the conversion of l-(/sup 14/C) palmitate to /sup 14/CO/sub 2/ and total (/sup 14/C) acid-soluble metabolites. Extended (5 to 7 d) fasting of Holstein cows had relatively little effect on palmitate oxidation to acid-soluble metabolites by liver slices, although oxidation to CO/sup 2/ was decreased. Feeding a restricted roughage, high concentrate ration to lactating cows resulted in inhibition of palmitate oxidation. Insulin, glucose, and acetate inhibited palmitate oxidation by bovine liver slices. The authors suggest the regulation of bovine hepatic fatty acid oxidation may be less dependent on hormonally induced alterations in enzyme activity as observed in rat liver and more dependent upon action of rumen fermentation products or their metabolites on enzyme systems involved in fatty acid oxidation.

  5. A new low linolenic acid allele of GmFAD3A gene in soybean PE1690

    Science.gov (United States)

    Relative fatty acid content of soybean oil is about 12 % palmitic acid, 4 % stearic acid, 23 % oleic acid, 54 % linoleic acid, and 8 % linolenic acid. To improve oxidative stability and quality of oil, breeding programs have mainly focused on reducing saturated fatty acids, increasing oleic acid, an...

  6. Optimization of dietary vitamin C in fish and crustacean larvae: a review

    OpenAIRE

    Merchie, G; Lavens, P.; Sorgeloos, P

    1997-01-01

    HPLC techniques were adapted and standardized for quantification of ascorbic acid (AA) and its derivates in both diets and target organisms. To assess the dietary needs for AA at start of exogenous feeding, the AA content in the various live diets currently used in aquaculture (algae, rotifers, Artemia ) was analyzed. Application of techniques for boosting vitamin C using ascorbyl palmitate as the source enabled the transfer of elevated levels (up to 2,500 µg AA/g DW) of bioactive vitamin C. ...

  7. 促红细胞生成素通过叉头状转录因子O1-糖原合酶激酶3β信号改善棕榈酸诱导HepG2细胞糖代谢%Glucose metabolism was improved by erythropoietin treatment through forkhead box O1-glycogen synthase kinase 3β signaling in palmitic acid-induced HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    张红; 毕艳; 葛智娟; 汤孙寅炎; 尹雯雯; 孟然; 张芃子; 朱大龙

    2016-01-01

    Objective To investigate the mechanism of erythropoietin (EPO) on gluconeogenesis and glycogen synthesis in palmitic acid (PA)-induced HepG2 cells. Methods HepG2 cells were cultured in medium with 250μmol/L PA for 24 h , and treated with 5 or 10 U/ml EPO for 24 h. In addition, HepG2 cells were pretreatment with phosphatidylinositol 3-kinase (PI3K)inhibitors LY294002 or wortmannin for 1 h. Glycogen content in HepG2 cells was examined by colorimetric method using glycogen assay kit. The protein expressions of phosphoenolpyruvate carboxykinase (PEPCK),PI3K, protein kinase B (AKT), forkhead box O1 (FOXO1), glycogen synthase kinase 3β(GSK-3β) were measured by western blotting. Data analysis between multiple groups was performed by ANOVA method. Results The expression of p-GSK-3β(PA 0.74 ± 0.11, EPO 5 group 1.02 ± 0.03, EPO 10 group 1.06 ± 0.02, t=4.236, 4.996, P<0.05) and p-FOXO1(PA 0.73 ± 0.09, EPO 5 group 0.99±0.05, EPO 10 group 1.13±0.06, t=4.798, 6.757, P<0.05), down stream molecular of AKT, was enhanced by EPO treatment. Importantly, specific PI3K inhibitors markedly blocked EPO-mediated increase in p-AKT(EPO 1.25 ± 0.08,LY294002 0.74 ± 0.14,wortmannin 0.63 ± 0.03,t=-5.403,-12.255, P<0.05), p-GSK-3β(EPO 1.12±0.14, LY294002 0.68±0.09, wortmannin 0.76±0.10, t=-4.632,-3.655, P<0.05) and p-FOXO1(EPO 1.15 ± 0.06, LY294002 0.92 ± 0.02, wortmannin 0.72 ± 0.07, t=-6.532,-7.984, P<0.05). Conclusion The findings suggest that EPO treatment improves glucose metabolism potentially through PI3K/AKT/FOXO1, GSK-3βsignaling pathway in PA-induced HepG2 cells.%目的:观察促红细胞生成素(EPO)处理对棕榈酸(PA)诱导HepG2细胞糖异生及糖原合成的影响及作用机制。方法250μmol/L的PA作用HepG2细胞24 h,分别用5、10 U/ml EPO作用24 h,另外,EPO处理的HepG2细胞分别加入磷脂酰肌醇3激酶(PI3K)特异性抑制剂LY294002或渥曼青霉素(wortmannin)预孵育1 h。比色法检测HepG2

  8. 氢化棕榈酸甲酯磺酸盐的制备%Preparation of methyl ester sulfonates with methyl palmitate

    Institute of Scientific and Technical Information of China (English)

    马传国; 刘会娟; 苗海卿; 汪鸿

    2012-01-01

    Hydrogenated palmitinic acid methyl ester sulfonate was synthesized through sulfonation reaction, aging reaction, neutralization and drying process using hydrogenated palmitinic acid methyl ester as raw materials, chlorosulfonic acid as sulfonating agent in trichloromethane system. The optimal conditions were approached through single factor experiments and the orthogonal experiments as follows; dropping temperature 40 ℃ , mass ratio of chloroform and methyl palmitate 2.0: 1.0, molar ratio of chlorsulfonic acid and methyl palmitate 1.55:1.0,sulfonation time 60 min,aging time 70 min. Under the optimal conditions, the content of hydrogenated palmitinic acid methyl ester sulfonate was 64. 36% and the colour of the product was light yellow.%在氯仿体系中,以氢化棕榈酸甲酯为原料、氯磺酸为磺化剂,通过磺化、老化、中和、干燥后制得氢化棕榈酸甲酯磺酸盐.经单因素及正交实验优化得到最佳工艺条件:滴加温度40℃,氯仿与甲酯质量比2.0∶1.0,氯磺酸与甲酯物质的量比1.55∶1.0,磺化时间60 min,老化时间70 min.在最佳工艺条件下,制备的产品颜色呈淡黄色,氢化棕榈酸甲酯磺酸盐的含量为64.36%.

  9. Metabolism of dicarboxylic acids in rat hepatocytes.

    Science.gov (United States)

    Bergseth, S; Poisson, J P; Bremer, J

    1990-02-06

    [carboxyl-14C]Dodecanedioic acid (DC12) is metabolized in hepatocytes at a rate about two thirds that of [1-14C]palmitate. Shorter dicarboxylates (sebacic (DC10), suberic (DC8), and adipic (DC6) acid) are formed, mainly DC6, less DC8 and only a little DC10. In hepatocytes from clofibrate-treated rats, more polar products account for most of the breakdown products, presumably because the beta-oxidation proceeds all the way to succinate and acetyl-CoA. [carboxyl-14C]Suberic acid (DC8) is oxidized at a rate only one fifth that of dodecanedioic acid. (+)-Decanoylcarnitine inhibits palmitate oxidation but not the oxidation of dodecanedioic acid. At low concentrations of [carboxyl-14C]dodecanedioic acid or of [1-14C]palmitate, acetylsulfanilamide is more efficiently labeled by the former. High concentrations of dodecanedioic acid inhibit palmitate oxidation and the acetylation of sulfanilamide, presumably because their CoA-esters accumulate in the cytosol. These results indicate that medium-chain dicarboxylic acids are beta-oxidized mainly in the peroxisomes.

  10. Apolipoprotein E polymorphism influences postprandial retinyl palmitate but not triglyceride concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Boerwinkle, E. (Univ. of Texas Health Science Center, Houston, TX (United States)); Brown, S.; Patsch, W. (Methodist Hospital and Baylor College of Medicine, Houston, TX (United States)); Sharrett, A.R. (National Heart, Lung, and Blood Institute, Bethesda, MD (United States)); Heiss, G. (Univ. of North Carolina, Chapel Hill, NC (United States))

    1994-02-01

    To quantify the effect of the apolipoprotein (apo) E polymorphism on the magnitude of postprandial lipemia, the authors have defined its role in determining the response to a single high-fat meal in a large sample of (N = 474) individuals taking part in the biethnic Atherosclerosis Risk in Communities Study. The profile of postprandial response in plasma was monitored over 8 h by triglyceride, triglyceride-rich lipoprotein (TGRL)-triglyceride, apo B-48/apo B-100 ratio, and retinyl palmitate concentrations, and the apo E polymorphism was determined by DNA amplification and digestion. The frequency of the apo E alleles and their effects on fasting lipid levels in this sample with vitamin A was significantly different among apo E genotypes, with delayed clearance in individuals with an [var epsilon]2 allele, compared with [var epsilon]3/3 and [var epsilon]3/4 individuals. In the sample of 397 Caucasians, average retinyl palmitate response was 1,489 [mu]g/dl in [var epsilon]2/3 individuals, compared with 1,037 [mu]g/dl in [var epsilon]3/3 individuals and 1,108 [mu]g/dl in [var epsilon]3/4 individuals. The apo E polymorphism accounted for 7.1% of the interindividual variation in postprandial retinyl palmitate response, a contribution proportionally greater than its well-known effect on fasting LDL-cholesterol. However, despite this effect on postprandial retinyl palmitate, the profile of postprandial triglyceride response was not significantly different among apo E genotypes. The profile of postprandial response was consistent between the sample of Caucasians and a smaller sample of black subjects. While these data indicate that the removal of remnant particles from circulation is delayed in subjects with the [var epsilon]2/3 genotype, there is no reported evidence that the [var epsilon]2 allele predisposes to coronary artery disease (CAD). 82 refs., 6 figs., 4 tabs.

  11. Efficient dermal delivery of retinyl palmitate: Progressive polarimetry and Raman spectroscopy to evaluate the structure and efficacy.

    Science.gov (United States)

    Lee, Jun Bae; Lee, Dong Ryeol; Choi, Nak Cho; Jang, Jihui; Park, Chun Ho; Yoon, Moung Seok; Lee, Miyoung; Won, Kyoungae; Hwang, Jae Sung; Kim, B Moon

    2015-10-12

    Over the past decades, there has been a growing interest in dermal drug delivery. Although various novel delivery devices and methods have been developed, dermal delivery is still challenging because of problems such as poor drug permeation, instability of vesicles and drug leakage from vesicles induced by fusion of vesicles. To solve the vesicle instability problems in current dermal delivery systems, we developed materials comprised of liquid crystals as a new delivery vehicle of retinyl palmitate and report the characterization of the liquid crystals using a Mueller matrix polarimetry. The stability of the liquid-crystal materials was evaluated using the polarimeter as a novel evaluation tool along with other conventional methods. The dermal delivery of retinyl palmitate was investigated through the use of confocal Raman spectroscopy. The results indicate that the permeation of retinyl palmitate was enhanced by up to 106% compared to that using an ordinary emulsion with retinyl palmitate.

  12. 抗坏血酸磷酸酯镁及熊果苷的检测方法进展%Advances in detection method of magnesium ascorbyl phosphate and arbutin

    Institute of Scientific and Technical Information of China (English)

    杨园园; 郁荣华; 李勤; 周泽琳

    2014-01-01

    Whitening mechanism and effects on the human body of magnesium ascorbyl phosphate and arbutin are introduced in this paper. The various detection methods currently used for magnesium ascorbyl phosphate and arbutin were summarized, compared and analyzed. The common detection method is liquid chromatography, which can detect five whitening ingredients containing magnesium ascorbyl phosphate and arbutin;in addition, GC/MS and LC/MS/MS method can also detect arbutin, and the detection limit and recov-ery are better than HPLC. The mass spectrometry and simultaneous detection of multiple components will be the mainstream in the future.%本文简要介绍了近年应用十分广泛的美白成分抗坏血酸磷酸酯镁及熊果苷的作用机制以及对人体的影响,综述了目前采用的多种检测方法,并对各种检测方法进行比较及分析。目前较为常用的检测方法为液相色谱法,可以同时检测包含抗坏血酸磷酸酯镁及熊果苷在内的五种美白成分;另外,气相色谱-质谱联用法以及液相色谱-质谱联用法也能够检测熊果苷,而且能得到更低的检出限和较高的回收率,灵敏度高,能提高分析效率。但是由于方法中流动相、检测基质等因素,仍需进一步完善改进检测方法。综合上述方法考虑,质谱联用以及同时检测多种成分是今后美白成分检测的主要发展方向。

  13. Identification of sitosteryl glucoside palmitate in a chloroform-derived fraction of Phyllanthus niruri with antiplasmodial and peripheral antinociceptive properties

    Institute of Scientific and Technical Information of China (English)

    Ezenyi; Ifeoma; Chinwude; Kulkarni; Roshan; Joshi; Swati; Salawu; Oluwakanyinsola; Adeola; Emeje; Martins

    2014-01-01

    Objective:To evaluate the antiplasmodial properties of fractions of chloroform portion of Phyllanthus niruri(P.niruri) methanol extract and identify a suitable chemical marker present therein.Methods:Chloroform portion of P.niruri methanol extract was separated from silica gel using gradient systems of hexane,ethylacetate and methanol.The fractions were screened for antiplasmodial activity against Plasmodium falciparum HB3 and FcM29.Fractions with IC50<10μg/ml.against parasites were further screened for peripheral analgesic activity,while cytotoxicity was evaluated using THP-1 cells.Results:Fractions 12-14 were very active(IC50<10 μg/mL) against Plasmodium falciparum and showed no significant cytotoxicity.Fractions 12 and 13 exhibited significant(P<0.01) reduction in acetic acid-induced writhing in mice,decreasing the number of writhes by 66.67% and 65.22% respectively and comparable with 100 mg/kg aspirin(65.22%).From fraction 12,a compound was isolated and identified as sitosteryl-6-β-D-glucoside-6’-palmitate by 1H,13C nuclear magnetic resonance and mass spectroscopies.Conclusions:Our findings illustrate antiplasmodial column fractions of P.niruri with analgesic activity and identify sitosteryl glucoside pahmitate as a chemical marker of activity.

  14. Ca2+-induced phase separation in the membrane of palmitate-containing liposomes and its possible relation to membrane permeabilization.

    Science.gov (United States)

    Agafonov, Alexey V; Gritsenko, Elena N; Shlyapnikova, Elena A; Kharakoz, Dmitry P; Belosludtseva, Natalia V; Lezhnev, Enrik I; Saris, Nils-Erik L; Mironova, Galina D

    2007-01-01

    A Ca(2+)-induced phase separation of palmitic acid (PA) in the membrane of azolectin unilamellar liposomes has been demonstrated with the fluorescent membrane probe nonyl acridine orange (NAO). It has been shown that NAO, whose fluorescence in liposomal membranes is quenched in a concentration-dependent way, can be used to monitor changes in the volume of lipid phase. The incorporation of PA into NAO-labeled liposomes increased fluorescence corresponding to the expansion of membrane. After subsequent addition of Ca(2+), fluorescence decreased, which indicated separation of PA/Ca(2+) complexes into distinct membrane domains. The Ca(2+)-induced phase separation of PA was further studied in relation to membrane permeabilization caused by Ca(2+) in the PA-containing liposomes. A supposition was made that the mechanism of PA/Ca(2+)-induced membrane permeabilization relates to the initial stage of Ca(2+)-induced phase separation of PA and can be considered as formation of fast-tightening lipid pores due to chemotropic phase transition in the lipid bilayer.

  15. Direct incorporation of fatty acids into microbial phospholipids in soils: Position-specific labeling tells the story

    Science.gov (United States)

    Dippold, Michaela A.; Kuzyakov, Yakov

    2016-02-01

    Fatty acids have been used as plant and microbial biomarkers, and knowledge about their transformation pathways in soils and sediments is crucial for interpreting fatty acid signatures, especially because the formation, recycling and decomposition processes are concurrent. We analyzed the incorporation of free fatty acids into microbial fatty acids in soil by coupling position-specific 13C labeling with compound-specific 13C analysis. Position-specifically and uniformly 13C labeled palmitate were applied in an agricultural Luvisol. Pathways of fatty acids were traced by analyzing microbial utilization of 13C from individual molecule positions of palmitate and their incorporation into phospholipid fatty acids (PLFA). The fate of palmitate 13C in the soil was characterized by the main pathways of microbial fatty acid metabolism: Odd positions (C-1) were preferentially oxidized to CO2 in the citric acid cycle, whereas even positions (C-2) were preferentially incorporated into microbial biomass. This pattern is a result of palmitate cleavage to acetyl-CoA and its further use in the main pathways of C metabolism. We observed a direct, intact incorporation of more than 4% of the added palmitate into the PLFA of microbial cell membranes, indicating the important role of palmitate as direct precursor for microbial fatty acids. Palmitate 13C was incorporated into PLFA as intact alkyl chain, i.e. the C backbone of palmitate was not cleaved, but palmitate was incorporated either intact or modified (e.g. desaturated, elongated or branched) according to the fatty acid demand of the microbial community. These modifications of the incorporated palmitate increased with time. Future PLFA studies must therefore consider the recycling of existing plant and microbial-derived fatty acids. This study demonstrates the intact uptake and recycling of free fatty acids such as palmitate in soils, as well as the high turnover and transformation of cellular PLFA. Knowledge about the intact

  16. Equilibrium spreading pressure and Langmuir–Blodgett film formation of omega-substituted palmitic acids

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Arthur W., E-mail: arthur.snow@nrl.navy.mil; Jernigan, Glenn G.; Ancona, Mario G.

    2014-04-01

    Langmuir–Blodgett isotherms and equilibrium spreading pressures were measured for compounds of the series X–(CH{sub 2}){sub 15}COOH, X = CH{sub 3}, SH, OH, F, Cl, Br. Only the CH{sub 3} and F terminated compounds formed monolayers with sufficient stability for accurate isotherm measurement, film transfer and X-ray photoelectron spectroscopic analysis. The presence of the terminal heteroatom substituents significantly diminished the stability of the L–B film and depressed the equilibrium spreading pressures (20 °C) from 15.4 mN/m for the CH{sub 3} terminated compound to a range of 0.95 to 0.08 mN/m for the other members of the series. These characteristics are attributed to the monolayer film being in a metastable state and the dipole moment of the heteroatom terminal group increasing the monolayer film kinetic instability by facilitating the formation of three-dimensional structures. - Highlights: • Compound series X–(CH{sub 2}){sub 15}COOH, X = CH{sub 3}, SH, OH, F, Cl, Br was analyzed. • Only-CH{sub 3} and-F terminated compounds form stable Langmuir–Blodgett films. • Heteroatom terminal groups promote kinetic instability in Langmuir–Blodgett films. • X-ray photoelectron spectra analyzed for molecular orientation and packing density.

  17. KINETIC STUDY OF PALMITIC ACID ESTERIFICATION CATALYZED BY Rhizopus oryzae RESTING CELLS

    Directory of Open Access Journals (Sweden)

    JONH J. MÉNDEZ

    2009-01-01

    Full Text Available .En el presente estudio, un modelo cinético para la síntesis de esteres usando Rhizopus oryzae resting cells es propuesto. El estudio cinético fue realizado en un rango de temperatura de 30-50 oC a presión atmosférica reducida. La influencia de las variables de operación tales como temperatura, pH y contenido de agua fueron estudiadas. Diferentes valores de concentración de micelio y relación molar de ácido/alcohol son ensayadas, Las velocidades iníciales se estimaron de la curva de concentración de acido palmítico, y su correspondiente conversión a ester en menos del 10%, frente a tiempo y reportadas en mmol I-1 min -1. Los valores de las constantes cinéticas fueron calculados usando el programa freeware SIMFIT (http:\\\\www.simfit.man.ac.uk.

  18. Effects of palmitate-rich diet on atherosclerosis in apolipoprotein E knockout mice%高棕榈酸饮食对 ApoE 基因敲除小鼠动脉粥样硬化的影响

    Institute of Scientific and Technical Information of China (English)

    靳飞鹏; 蒋四华; 马双陶; 杨大春; 杨永健

    2014-01-01

    目的:观察高棕榈酸饮食对载脂蛋白 E(ApoE)基因敲除小鼠的血脂、血浆游离脂肪酸水平、动脉粥样硬化斑块面积、斑块中胶原含量和基质金属蛋白酶2表达的影响。方法:将20只6~8周龄雄性 ApoE 基因敲除小鼠随机分为对照组和高棕榈酸饮食组,每组10只。分别给予普通小鼠饲料和含5%棕榈酸的饮食,连续喂养12周。用比色法检测血脂和血浆游离脂肪酸水平;主动脉根部连续石蜡切片,Masson 染色检测斑块内胶原含量,免疫组化法检测主动脉基质金属蛋白酶2的表达。结果:两组血脂水平无明显差异。与对照组相比,高棕榈酸饮食组血浆游离脂肪酸水平显著升高,主动脉斑块内胶原含量显著降低,主动脉基质金属蛋白酶2表达明显增加(P 均<0.05)。结论:高棕榈酸饮食能够升高血浆游离脂肪酸水平,降低斑块内胶原含量,从而降低动脉粥样硬化斑块稳定性,其机制可能与其上调基质金属蛋白酶2的表达有关。%Objective:To investigate the effects of palmitate-rich diet on plasma lipids,free fatty acids,atherosclerotic plaque area,plaque collagen content and matrix metalloproteinase-2 (MMP-2 ) expression in apolipoprotein E (ApoE)knockout mice. Methods:Male ApoE knockout mice,6 ~8 weeks old,were randomly divided into control group and palmitate-rich diet group (n = 10 in each group).Mice in control group were given a normal chow diet,and mice in palmitate-rich diet group were given a diet containing 5% palmitic acid.Plasma lipid profiles were measured by colorimetric assays using a commercially available kit.Atherosclerotic lesions were examined in cross-sections of aortic roots.Collagen contents in atherosclerotic lesions were detected with Masson’s Trichrome staining.The expression of MMP-2 was detected by immunohistochemistry. Results:Plasma lipid profiles were not affected by the palmitate-rich diet.Palmitate

  19. Skin phototoxicity of cosmetic formulations containing photounstable and photostable UV-filters and vitamin A palmitate.

    Science.gov (United States)

    Gaspar, Lorena R; Tharmann, Julian; Maia Campos, Patricia M B G; Liebsch, Manfred

    2013-02-01

    The aim of this study was to evaluate the in vitro skin phototoxicity of cosmetic formulations containing photounstable and photostable UV-filters and vitamin A palmitate, assessed by two in vitro techniques: 3T3 Neutral Red Uptake Phototoxicity Test and Human 3-D Skin Model In Vitro Phototoxicity Test. For this, four different formulations containing vitamin A palmitate and different UV-filters combinations, two of them considered photostable and two of them considered photounstable, were prepared. Solutions of each UV-filter and vitamin under study and solutions of four different combinations under study were also prepared. The phototoxicity was assessed in vitro by the 3T3 NRU phototoxicity test (3T3-NRU-PT) and subsequently in a phototoxicity test on reconstructed human skin model (H3D-PT). Avobenzone presented a pronounced phototoxicity and vitamin A presented a tendency to a weak phototoxic potential. A synergistic effect of vitamin A palmitate on the phototoxicity of combinations containing avobenzone was observed. H3D-PT results did not confirm the positive 3T3-NRU-PT results. However, despite the four formulations studied did not present any acute phototoxicity potential, the combination 2 containing octyl methoxycinnamate (OMC), avobenzone (AVB) and 4-methylbenzilidene camphor (MBC) presented an indication of phototoxicity that should be better investigated in terms of the frequency of photoallergic or chronic phototoxicity in humans, once these tests are scientifically validated only to detect phototoxic potential with the aim of preventing phototoxic reactions in the general population, and positive results cannot predict the exact incidence of phototoxic reactions in humans.

  20. The effect of cetyl palmitate crystallinity on physical properties of gamma-oryzanol encapsulated in solid lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ruktanonchai, Uracha; Sakulkhu, Usawadee [National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Limpakdee, Surachai; Meejoo, Siwaporn [Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Bunyapraphatsara, Nuntavan [Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400 (Thailand); Junyaprasert, Varaporn [Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400 (Thailand); Puttipipatkhachorn, Satit [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400 (Thailand)], E-mail: uracha@nanotec.or.th

    2008-03-05

    This present study was aimed at investigating the effect of the crystallinity of cetyl palmitate based solid lipid nanoparticles (SLNs) on the physical properties of {gamma}-oryzanol-loaded SLNs. SLNs consisting of varying ratios of cetyl palmitate and {gamma}-oryzanol were prepared. Their hydrodynamic diameters were in the range 210-280 nm and the zeta potentials were in the range -27 to -35 mV. The size of SLNs increased as the amount of cetyl palmitate decreased whereas no significant change of zeta potentials was found. Atomic force microscopy pictures indicated the presence of disc-like particles. The crystallinity of SLNs, determined by differential scanning calorimetry and powder x-ray diffraction, was directly dependent on the ratio of cetyl palmitate to {gamma}-oryzanol and decreased with decreasing cetyl palmitate content in the lipid matrix. Varying this ratio in the lipid mix resulted in a shift in the melting temperature and enthalpy, although the SLN structure remained unchanged as an orthorhombic lamellar lattice. This has been attributed to a potential inhibition by {gamma}-oryzanol during lipid crystal growth as well as a less ordered structure of the SLNs. The results revealed that the crystallinity of the SLNs was mainly dependent on the solid lipid, and that the crystallinity has an important impact on the physical characteristics of active-loaded SLNs.

  1. Induction of omega-oxidation of monocarboxylic acids in rats by acetylsalicylic acid.

    Science.gov (United States)

    Kundu, R K; Tonsgard, J H; Getz, G S

    1991-12-01

    The accumulation of dicarboxylic acids, particularly long chain, is a prominent feature of Reye's syndrome and diseases of peroxisomal metabolism. We assessed the omega-oxidation of a spectrum of fatty acids in rats and asked whether pretreatment of rats with aspirin, which is known to predispose children to Reye's syndrome, would affect omega-oxidation of long chain fatty acids. We found that aspirin increased liver free fatty acids and increased the capacity for omega-oxidation three- to sevenfold. Omega-oxidation of long chain substrate was stimulated to a greater degree than medium chain substrate and was apparent within one day of treatment, at serum aspirin concentrations below the therapeutic range in humans. The apparent Km for lauric acid was 0.9 microM and 12 microM for palmitate. We also found a difference in the storage stability of activity toward medium and long chain substrate. Saturating concentrations of palmitate had no effect on the formation of dodecanedioic acid, whereas laurate decreased but never eliminated the omega-oxidation of palmitate. 97% of the total laurate omega-oxidative activity recovered was found in the microsomes, but 32% of palmitate omega-oxidative activity was present in the cytosol. These results demonstrate that aspirin is a potent stimulator of omega-oxidation and suggest that there may be multiple enzymes for omega-oxidation with overlapping substrate specificity.

  2. 棕榈酸异丙酯合成反应的热力学分析%Thermodynamic Analysis of Isopropyl Palmitate Synthesis

    Institute of Scientific and Technical Information of China (English)

    付丽丽; 蒋登高

    2016-01-01

    Thermodynamics of isopropyl palmitate synthesis via a two-step noncatalytic method including acylation and alcoholysis reactions was studied. The thermophysical properties of palmitic acid, palmitoyl chloride and isopropyl palmitate were calculated by Tyagi equation, Joback method and Yoneda method.θrm∆H,θrm∆S,θrm∆G, andKθwere estimated and these data were analyzed at different temperatures. The results show that the acylation reaction is endothermic and difficult to achieve separately under standard conditions, while the alcoholysis reaction is exothermic and can be fully preceded separately. Considering the thermodynamics of the whole two-step reaction, the acylation reaction can happen following the approximate principle and Le Chatelier′s Principle.%针对“两步法”合成棕榈酸异丙酯反应体系,采用Joback基团贡献法、Yoneda基团贡献法及Tyagi方程估算了相关物质的热力学数据,并结合有关文献,计算得到了该反应体系的反应焓变θr m∆ H 、反应熵变θrm∆S 、反应吉布斯自由能变θrm∆G 及反应平衡常数Kθ。通过分析该反应热力学性质,结合两步反应的θrm∆G 数值特点,得到一定条件下酰氯化为吸热反应,单独存在时较难进行,醇解为放热反应,且反应可进行完全。由于两步反应是耦合的,依据近似原则和勒夏特列平衡移动原理,酰氯化反应在适当条件下可正常进行,且反应过程中可促使平衡向正向移动,有助于反应进行完全。

  3. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    Energy Technology Data Exchange (ETDEWEB)

    Hinoi, Eiichi; Iezaki, Takashi; Ozaki, Kakeru; Yoneda, Yukio, E-mail: yyoneda@p.kanazawa-u.ac.jp

    2014-10-03

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promoting brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a mechanism

  4. Hyperinsulinemia and skeletal muscle fatty acid trafficking

    OpenAIRE

    Kanaley, Jill A.; Shadid, Samyah; Sheehan, Michael T.; Guo, ZengKui; Jensen, Michael D

    2013-01-01

    We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-13C]palmitate (0400–0900 h) and [U-13C]oleate (0800–1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass−1·min−1) clamp (0800–1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-13C]palmitate in...

  5. Formation and mitigation of N-nitrosamines in nitrite preserved cooked sausages

    DEFF Research Database (Denmark)

    Herrmann, Susan Strange; Granby, Kit; Duedahl-Olesen, Lene

    2015-01-01

    ) and N-nitrosopyrrolidine (NPYR) remained at or below limit of quantification. Erythorbic acid inhibited the formation of NHPRO, NPRO, NPIP and NTCA. This inhibition was for NTCA and NMTCA counteracted by addition of free iron. Ascorbyl palmitate had less inhibitory effect than erythorbic acid......-nitrosohydroxyproline (NHPRO), N-nitrosoproline (NPRO), N-nitrosothiazolidine-4-carboxylic acid (NTCA) and N-nitroso-2-methyl-thiazolidine-4-carboxylic acid (NMTCA) and the amount of nitrite added to cooked pork sausages. The levels studied were 0, 60, 100, 150, 250 and 350 mg kg-1. The levels of N-nitrosodimethylamine (NDMA...

  6. Fatty acids attached to all-trans-astaxanthin alter its cis-trans equilibrium, and consequently its stability, upon light-accelerated autoxidation

    NARCIS (Netherlands)

    Bruijn, De Wouter J.C.; Weesepoel, Y.; Vincken, J.P.; Gruppen, H.

    2016-01-01

    Fatty acid esterification, common in naturally occurring astaxanthin, has been suggested to influence both colour stability and degradation of all-trans-astaxanthin. Therefore, astaxanthin stability was studied as influenced by monoesterification and diesterification with palmitate. Increased est

  7. Heterogeneity in limb fatty acid kinetics in type 2 diabetes

    DEFF Research Database (Denmark)

    Sacchetti, M; Olsen, D B; Saltin, B;

    2005-01-01

    control subjects (n=7) for 5 h under baseline conditions and during a 4-h hyperinsulinaemic-euglycaemic clamp. METHODS: Limb fatty acid kinetics was determined by means of continuous [U-(13)C]palmitate infusion and measurement of arteriovenous differences. RESULTS: The systemic palmitate rate......AIMS/HYPOTHESIS: In order to test the hypothesis that disturbances in skeletal muscle fatty acid metabolism with type 2 diabetes are not equally present in the upper and lower limbs, we studied fatty acid kinetics simultaneously across the arm and leg of type 2 diabetic patients (n=6) and matched...... of appearance was 3.6+/-0.4 and 2.7+/-0.3 micromol.kg lean body mass(-1).min(-1) and decreased during the clamp by 26% (p=0.04) and 43% (ppalmitate uptake across the arm was similar in the two groups, whereas leg palmitate...

  8. Synthesis and structural analysis of 13C-fatty acids

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The 13C-labeled fatty acids octanoic-1-13C acid and palmitic-l-13C acid were synthetically prepared from Ba 13CO3. The yield of the former was more than 90% and that of the latter was above 85%. MS, IR, 1H-NMR and 13NMR were performed to analyze the structures of the two 13C-fatty acids, compared with their unlabeled fatty acids.

  9. Fatty acids composition of fruits of selected Central European sedges (Carex L. Cyperaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Bogucka-Kocka, A.; Janyszek, M.

    2010-07-01

    Fatty acids in the fruits of 13 sedge species (Ca rex L., Cyperaceae) were analyzed. The oil contents in the fruits of the studied sedges ranged from 3.73 and 46.52%. In the studied fruit oils 14 different fatty acids were identified. The main unsaturated fatty acids were: linoleic, a-linolenic, oleic, oleo palmitic n-7; oleo palmitic n-9, octadecenic, and eicosenoic acids. The following acids were found in the greatest quantities: linoleic, oleic, a-linolenic and palmitic acids. Based on the fatty acid composition, studied taxa can be divided in two groups. The first group (C. flava, C. pseudocyperus, C. riparia, C. leporina) is a very good source of linoleic acid. The second group, including the remaining species, is a good source of a-linolenic acid. The highest oleic acid contents were observed in C. vulpina. The studied material has shown a low concentration of saturated fatty acids, among which palmitic acid was the main one.Results of the analyses allow for the inclusion of the studied species among plants whose fruits are characterized by a high content of unsaturated fatty acids. (Author)

  10. Dexamethasone palmitate ameliorates macrophages-rich graft-versus-host disease by inhibiting macrophage functions.

    Directory of Open Access Journals (Sweden)

    Satoshi Nishiwaki

    Full Text Available Macrophage infiltration of skin GVHD lesions correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear and GVHD with many macrophages is a therapeutic challenge. Here, we characterize the macrophages involved in GVHD and report that dexamethasone palmitate (DP, a liposteroid, can ameliorate such GVHD by inhibiting macrophage functions. We found that host-derived macrophages could exacerbate GVHD in a mouse model through expression of higher levels of pro-inflammatory TNF-α and IFN-γ, and lower levels of anti-inflammatory IL-10 than resident macrophages in mice without GVHD. DP significantly decreased the viability and migration capacity of primary mouse macrophages compared to conventional dexamethasone in vitro. DP treatment on day 7 and day 14 decreased macrophage number, and attenuated GVHD score and subsequent mortality in a murine model. This is the first study to provide evidence that therapy for GVHD should be changed on the basis of infiltrating cell type.

  11. Colfosceril palmitate. A pharmacoeconomic evaluation of a synthetic surfactant preparation (Exosurf Neonatal) in infants with respiratory distress syndrome.

    Science.gov (United States)

    Bryson, H M; Whittington, R

    1994-12-01

    Comprehensive clinical data provide strong evidence of the efficacy of the synthetic lung surfactant colfosceril palmitate (Exosurf Neonatal) administered as prophylaxis or rescue therapy in infants with respiratory distress syndrome (RDS). The use of rescue therapy with colfosceril palmitate is further supported by cost-effectiveness analyses which report a 9 to 48% reduction in the cost per survivor compared with placebo or historical controls, despite divergent study methodology and location. Importantly, the savings were evident in both larger (> or = 1250g) and smaller (700 to 1350g) infants. All studies considered costs or charges accrued during initial hospitalisation through to 1 year; measurement of long term resource use data and all resulting costs are required for a more complete pharmacoeconomic evaluation. The optimal timing of surfactant administration is likely to be an important economic issue given that efficacy data from a large international trial support earlier administration of colfosceril palmitate versus delayed therapy in high risk patients. Further economic benefits may be realised by the sequential use of antenatal corticosteroids and surfactant therapy, although this has yet to be prospectively investigated. In conclusion, clinical and pharmacoeconomic data strongly support the use of rescue therapy with colfosceril palmitate. Additionally, recent clinical data indicating that even better results may be achieved with earlier administration and/or combined use with antenatal corticosteroids should be assessed from an economic standpoint to determine the optimal prescribing strategy for this agent.

  12. Synergy analysis reveals association between insulin signaling and desmoplakin expression in palmitate treated HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Xuewei Wang

    Full Text Available The regulation of complex cellular activities in palmitate treated HepG2 cells, and the ensuing cytotoxic phenotype, involves cooperative interactions between genes. While previous approaches have largely focused on identifying individual target genes, elucidating interacting genes has thus far remained elusive. We applied the concept of information synergy to reconstruct a "gene-cooperativity" network for palmititate-induced cytotoxicity in liver cells. Our approach integrated gene expression data with metabolic profiles to select a subset of genes for network reconstruction. Subsequent analysis of the network revealed insulin signaling as the most significantly enriched pathway, and desmoplakin (DSP as its top neighbor. We determined that palmitate significantly reduces DSP expression, and treatment with insulin restores the lost expression of DSP. Insulin resistance is a common pathological feature of fatty liver and related ailments, whereas loss of DSP has been noted in liver carcinoma. Reduced DSP expression can lead to loss of cell-cell adhesion via desmosomes, and disrupt the keratin intermediate filament network. Our findings suggest that DSP expression may be perturbed by palmitate and, along with insulin resistance, may play a role in palmitate induced cytotoxicity, and serve as potential targets for further studies on non-alcoholic fatty liver disease (NAFLD.

  13. [The unity of pathogenesis of insulin resistance syndrome and non-alcoholic fatty disease of liver. The metabolic disorder of fatty acids and triglycerides].

    Science.gov (United States)

    Titov, V N; Ivanova, K V; Malyshev, P P; Kaba, S I; Shiriaeva, Iu K

    2012-11-01

    The pathogenesis of non-alcoholic fatty disease of liver (steatosis) is still as unclear as a loss of hepatocytes similar to apoptosis, development of biological reaction of inflammation, its transformation into steatohepatitis with subsequent fibrosis and formation of atrophic cirrhosis. The article suggests that steatosis is developed due to higher concentration of palmitic saturated fatty acid (C 16:0) in food, intensification of its endogenic synthesis from food carbohydrates and glucose and development of insulin resistance. It is displayed in in hormone ability to activate both oxidation in cells of glucose and synthesis of oleic monoene fatty acid from palmitic saturated fatty acid (C 18:1). The insulin resistance initiates pathologic process on the level of paracrine associations of cells resulting in permanent increase of concentration of non-etherified fatty acids in intercellular medium and intensification of their passive absorption by cells. The phylogenetically ancient mitochondrions will not to oxidize glucose until non-etherified fatty acids are present in cytosol and hence there is an opportunity to oxidize them. To eliminate undesirable action of polar saturated palmitic fatty acid, the cells etherify it by spirit glyceride into triglycerides to deposit in cytosol or to secrete into blood in a form of lipoproteins of very low density. Under insulin resistance, saturated palmitic fatty acid synthesized by hepatocytes from glucose, does not further transform into oleic monoenic fatty acid. The cells are to etherify endogenic (exogenic) palmnitic saturated fatty acid into composition of aphysiologic palmitic triglycerides (saturated palmitic fatty acid in position sn-2 of spirit glyceride). At that, triglycerides of palmitat-palmitat-oleat and even tripalmitat type are formed. The melting temperature of tripalmitat is 48 degrees C and melting temperature of physiologic trioletat is 13 degrees C. The intracellular lipases factually can't hydrolyze

  14. Analysis of fatty acid composition in human bone marrow aspirates.

    Science.gov (United States)

    Deshimaru, Ryota; Ishitani, Ken; Makita, Kazuya; Horiguchi, Fumi; Nozawa, Shiro

    2005-09-01

    In the present study, the fatty acid composition of bone marrow aspirates and serum phospholipids in nine patients with hematologic diseases was investigated, and the effect of fatty acids on osteoblast differentiation in ST2 cells was examined. The concentrations of oleic acid and palmitic acid were significantly higher in bone marrow aspirates than in serum phospholipids, but the concentrations of other fatty acids did not differ. The rate of alkaline phosphatase positive ST2 cells induced by BMP2 was significantly increased by oleic acid, but was unaffected by the presence or absence of palmitic acid. We conclude that the fatty acid composition of bone marrow aspirates differs from that of serum phospholipids. This difference may affect osteoblast differentiation in the bone marrow microenvironment.

  15. A Method for Rapid Determination of Ethyl Palmitate in Baijiu(Liquor)%一种快速测量白酒中棕榈酸乙酯的方法

    Institute of Scientific and Technical Information of China (English)

    周海洋; 王士敏; 于金侠; 孙玉玲

    2014-01-01

    Ethyl palmitate is a pale yellow oily liquid, insoluble in water, soluble in alcohol, ether, acetone, and other organic solvents, and can be prepared by the reaction of palmitic acid and anhydrous ethanol. It has faint aroma of wax, fruit, and cream. In this study, we established a method for the determination of ethyl palmitate in Baijiu(liquor) by GC-MS, which is simple, rapid, with high extraction and recovery rate, strong anti-in-terference ability, good reproducibility, high qualitative and quantitative accuracy. This method can be used to guide production, to provide basis for quality control, and to help improving the quality of Baijiu(liquor).%棕榈酸乙酯为浅黄色油状液体,呈微弱蜡香、果香和奶油香气,不溶于水,溶于醇、醚、丙酮等有机溶剂,可由棕榈酸和无水乙醇反应制得。本研究建立了白酒中棕榈酸乙酯的GC-MS检测方法,此方法操作简便,快速,萃取率和回收率高,抗干扰能力强,重现性良好,定性定量准确,能够快速指导生产,为质量控制提供依据,有助于白酒品质的提高。

  16. The crystallization of metal soaps and fatty acids in oil paint model systems.

    Science.gov (United States)

    Hermans, Joen J; Keune, Katrien; van Loon, Annelies; Iedema, Piet D

    2016-04-28

    The formation and crystallization of metal soaps in oil paint layers is an important issue in the conservation of oil paintings. The chemical reactions and physical processes that are involved in releasing metal ions from pigments and fatty acids from the oil binder to form crystalline metal soap deposits have so far remained poorly understood. We have used a combination of differential scanning calorimetry (DSC) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) on model mixtures of palmitic acid, lead palmitate or zinc palmitate and linseed oil to study the transition from amorphous material to crystalline fatty acid or metal soap. This transition forms the final stage in the cascade of processes leading to metal soap-related oil paint degradation. Palmitic acid as well as the metal soaps showed nearly ideal solubility behavior. However, it was found that, near room temperature, both lead and zinc palmitate are practically insoluble in both liquid and partially polymerized linseed oil. Interestingly, the rate of metal soap and fatty acid crystallization decreased rapidly with the degree of linseed oil polymerization, possibly leading to systems where metal soaps are kinetically trapped in a semi-crystalline state. To explain the various morphologies of metal soap aggregates observed in oil paint layers, it is proposed that factors affecting the probability of crystal nucleation and the rate of crystal growth play a crucial role, like exposure to heat or cleaning solvents and the presence of microcracks.

  17. Hyperinsulinemia and skeletal muscle fatty acid trafficking

    Science.gov (United States)

    Kanaley, Jill A.; Shadid, Samyah; Sheehan, Michael T.; Guo, ZengKui

    2013-01-01

    We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-13C]palmitate (0400–0900 h) and [U-13C]oleate (0800–1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass−1·min−1) clamp (0800–1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-13C]palmitate incorporation into imTG-palmitate and palmitoylcarnitine were similar to those we reported in overnight postabsorptive adults (saline control); the intramyocellular palmitoylcarnitine enrichment was not different from and correlated with imTG-palmitate enrichment for both the morning (r = 0.38, P = 0.02) and afternoon (r = 0.44, P = 0.006) biopsy samples. Plasma FFA concentrations, flux, and the incorporation of plasma oleate into imTG-oleate during hyperinsulinemia were ∼1/10th of that observed in the previous saline control studies (P < 0.001). At the time of the second biopsy, the enrichment in oleoylcarnitine was <25% of that in imTG-oleate and was not correlated with imTG-oleate enrichment. The intramyocellular nonesterified fatty acid-palmitate-to-imTG-palmitate enrichment ratio was greater (P < 0.05) in women than men, suggesting that sex differences in intramyocellular palmitate trafficking may occur under hyperinsulinemic conditions. We conclude that plasma FFA trafficking into imTG during hyperinsulinemia is markedly suppressed, and these newly incorporated FFA fatty acids do not readily enter the LCAC preoxidative pools. Hyperinsulinemia does not seem to inhibit the entry of fatty acids from imTG pools that were labeled under fasting conditions, possibly reflecting the presence of two distinct imTG pools that are differentially regulated by insulin. PMID:23820622

  18. 3-Hydroxy Fatty Acids from the Flowers of Hypericum lysimachioides var. lysimachioides

    OpenAIRE

    ÖZEN, Hasan Çetin; BAŞHAN, Mehmet

    2004-01-01

    Fatty acid methyl esters in the leaves and flowers of Hypericum lysimachioides var. lysimachioides (Guttiferae) were analyzed by gas chromatography and gas chromatography-mass spectrometry. The flowers of H. lysimachioides var. lysimachioides produced unusual 3-hydroxy fatty acids [3-hydroxy- tetradecanoic acid (3-OH-C14:0) and 3-hydroxy-octadecanoic acid (3-OH-C18:0)], along with other normal fatty acids. Major components were linolenic and palmitic acids for both leaves and flowers.

  19. The Composition of Fatty Acids of Pinus sylvestris L. of Olkha Village Surrounding Forests

    Directory of Open Access Journals (Sweden)

    Romanova I.M.

    2016-02-01

    Full Text Available Palmitic, linoleic and α-linolenic acids are the major fatty acids during the study. Analyzing seasonal dynamics derived fatty acids revealed that for acids with 18 carbon atoms are characterized by virtually similar dynamics during the year in all years. Investigation of composition of fatty acids in the needles of different ages throughout the growing season revealed that in different periods of vegetation dominated by those or other fatty acids.

  20. Influence d'une microsporidiose à Thelohania contejeani sur le métabolisme des acides gras totaux, musculaires, hépatopancréatiques et hémolymphatiques chez l'Écrevisse Austropotamobius pallipes le reboulet, 1858.

    Science.gov (United States)

    Kabre, G

    1988-03-01

    The fatty acids of muscular, hepatopancreatic, hemolymphatic of complete lipids of A. pallipes have a high degree of insaturation (40-50%). Palmitic, eicosapentenoïc, arachidonic, stearic, oleic acids are more than 90% of the acids. Into the parasited crayfishes, there is a decrease of the amount of the non-saturated acids and an increase of saturated acids rate.

  1. Influence of fatty acids on the binding of warfarin and phenprocoumon to human serum albumin with relation to anticoagulant therapy

    DEFF Research Database (Denmark)

    Vorum, H; Honoré, B

    1996-01-01

    of palmitic, stearic, oleic or linoleic acids with energetic couplings for co-binding of one molecule of each of the fatty acids and one molecule of warfarin of 0.9, 1.1, 0.7 and 0.6 kJ mol-1, respectively. The affinity of phenprocoumon was only increased slightly on addition of palmitate with an energetic...... of warfarin but not of phenprocoumon was correlated to the increasing plasma fatty acid concentration. Anticoagulant therapy with phenprocoumon may thus be less sensitive than warfarin to changes in the fatty acid concentration of plasma. Udgivelsesdato: 1996-Aug...

  2. Effects of saturated, mono-, and polyunsaturated fatty acids on the secretion of apo B containing lipoproteins by Caco-2 cells

    NARCIS (Netherlands)

    van Greevenbroek, M.M.J.; van Meer, G.; Erkelens, D.W.; de Bruin, T.W.A.

    1996-01-01

    We studied the effects of addition of physiological concentrations (0.5 mM) of fatty acids i.e., palmitic (16:0), stearic (18:0), oleic (18:1) and linoleic acid (18:2) on lipoprotein secretion by polarized Caco-2 cells. With saturated fatty acids, secreted lipoproteins were at IDL/LDL density, 1.009

  3. Clean synthesis of biodiesel over solid acid catalysts of sulfonated mesopolymers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    FDU-15-SO3H,a solid acid material prepared from the sulfonation of FDU-15 mesoporous polymer,has been demonstrated to serve as an efficient catalyst in the esterification of palmitic acid with methanol as well as in the transesterification of fatty acid-edible oil mixture.FDU-15-SO3H achieved an acid conversion of 99.0% when the esterification was carried out at 343 K with a methanol/palmitic acid molar ratio of 6:1 and 5 wt% catalyst loading.It was capable of giving 99.0% yield of fatty acid methyl esters (FAME) when the transesterification of soybean oil was performed at 413 K and the methanol/oil weight ratio of 1:1.FDU-15-SO3H was further applied to the transesterification/esterification of the oil mixtures with a varying ratio of soybean oil to palmitic acid,which simulated the feedstock with a high content of free fatty acids.The yield of FAME reached 95% for the oil mixtures containing 30 wt% palmitic acid.This indicated the sulfonated mesopolymer was a potential catalyst for clean synthesis of fuel alternative of biodiesel from the waste oil without further purification.

  4. Cellular uptake of a dexamethasone palmitate-low density lipoprotein complex by macrophages and foam cells.

    Science.gov (United States)

    Tauchi, Yoshihiko; Chono, Sumio; Morimoto, Kazuhiro

    2003-04-01

    To evaluate the utility of a dexamethasone palmitate (DP)-low density lipoprotein (LDL) complex to transport drug into foam cells, the cellular uptake of DP-LDL complex by macrophages and foam cells was examined. The DP-LDL complex was prepared by incubation with DP and LDL, and the DP-LDL complex and murine macrophages were incubated. No cellular uptake of the DP-LDL complex by macrophages was found until 6 h after the start of incubation, but this gradually increased from 12 to 48 h. On the other hand, the cellular uptake of the oxidized DP-LDL complex was already apparent at 3 h after the start incubation, and then markedly increased until 48 h incubation along with that of the lipid emulsion (LE) containing DP (DP-LE). The cellular uptake of DP-LE by foam cells was significantly lower than that by macrophages. However, the cellular uptake of DP-LDL complex by foam cells was similar to that by macrophages. These findings suggest that the DP-LDL complex is oxidatively modified, and then incorporated into macrophages and foam cells through the scavenger receptor pathway. Since selective delivery of drugs into foam cells in the early stage of atherosclerosis is a useful protocol for antiatherosclerosis treatment, the DP-LDL complex appears to be a potentially useful drug-carrier complex for future antiatherosclerotic therapy.

  5. Chemical composition and fatty acid contents in farmed freshwater prawns

    Directory of Open Access Journals (Sweden)

    Carolina de Gasperi Portella

    2013-08-01

    Full Text Available The objective of this work was to evaluate the chemical composition and fatty acid contents of Amazonian and giant river prawns. After four-month farming, with the same diet for both species, palmitic and stearic acids were the main saturated fatty acids. Oleic acid was the main monounsatured fatty acid, and the eicosapentaenoic and docosahexaenoic acids were the most abundant polyunsaturated acids. Amazonian prawn has higher levels of protein and polyunsaturated fatty acids than those of the giant river prawn, which shows its potential for aquaculture.

  6. A comparison of retinyl palmitate and red palm oil β-carotene as strategies to address Vitamin A deficiency.

    Science.gov (United States)

    Souganidis, Ellie; Laillou, Arnaud; Leyvraz, Magali; Moench-Pfanner, Regina

    2013-08-15

    Vitamin A deficiency continues to be an international public health problem with several important health consequences including blindness and overall increased rates of morbidity and mortality. To address this widespread issue, a series of strategies have been put into place from dietary diversification to supplementation and fortification programs. Retinyl palmitate has been used successfully for decades as a supplement as well as a way to fortify numerous foods, including vegetable oil, rice, monosodium glutamate, cereal flours and sugar. Recently, there has been rising interest in using a natural source of carotenoids, β-carotene from red palm oil (RPO), for fortification. Although RPO interventions have also been shown to effectively prevent Vitamin A deficiency, there are numerous challenges in using beta-carotene from RPO as a fortification technique. β-Carotene can induce significant changes in appearance and taste of the fortified product. Moreover, costs of fortifying with beta-carotene are higher than with retinyl palmitate. Therefore, RPO should only be used as a source of Vitamin A if it is produced and used in its crude form and regularly consumed without frying. Furthermore, refined RPO should be fortified with retinyl palmitate, not β-carotene, to ensure that there is adequate Vitamin A content.

  7. Number needed to treat and number needed to harm with paliperidone palmitate relative to long-acting haloperidol, bromperidol, and fluphenazine decanoate for treatment of patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Srihari Gopal

    2011-03-01

    Full Text Available Srihari Gopal1, Joris Berwaerts1, Isaac Nuamah1, Kasem Akhras2, Danielle Coppola1, Ella Daly1, David Hough1, Joseph Palumbo11Johnson & Johnson Pharmaceutical Research & Development, LLC, Raritan, NJ, USA; 2Johnson & Johnson Pharmaceutical Services, LLC, Raritan, NJ, USABackground: We analyzed data retrieved through a PubMed search of randomized, placebo-controlled trials of first-generation antipsychotic long-acting injectables (haloperidol decanoate, bromperidol decanoate, and fluphenazine decanoate, and a company database of paliperidone palmitate, to compare the benefit-risk ratio in patients with schizophrenia.Methods: From the eight studies that met our selection criteria, two efficacy and six safety parameters were selected for calculation of number needed to treat (NNT, number needed to harm (NNH, and the likelihood of being helped or harmed (LHH using comparisons of active drug relative to placebo. NNTs for prevention of relapse ranged from 2 to 5 for paliperidone palmitate, haloperidol decanoate, and fluphenazine decanoate, indicating a moderate to large effect size.Results: Among the selected maintenance studies, NNH varied considerably, but indicated a lower likelihood of encountering extrapyramidal side effects, such as akathisia, tremor, and tardive dyskinesia, with paliperidone palmitate versus placebo than with first-generation antipsychotic depot agents versus placebo. This was further supported by an overall higher NNH for paliperidone palmitate versus placebo with respect to anticholinergic use and Abnormal Involuntary Movement Scale positive score. LHH for preventing relapse versus use of anticholinergics was 15 for paliperidone palmitate and 3 for fluphenazine decanoate, favoring paliperidone palmitate.Conclusion: Overall, paliperidone palmitate had a similar NNT and a more favorable NNH compared with the first-generation long-acting injectables assessed.Keywords: long-acting injectables, first-generation antipsychotics

  8. Molar extinction coefficients of some fatty acids

    Science.gov (United States)

    Sandhu, G. K.; Singh, Kulwant; Lark, B. S.; Gerward, L.

    2002-10-01

    The attenuation of gamma rays in some fatty acids, viz. formic acid (CH 2O 2), acetic acid (C 2H 4O 2), propionic acid (C 3H 6O 2), butyric acid (C 4H 8O 2), n-hexanoic acid (C 6H 12O 2), n-caprylic acid (C 8H 16O 2), lauric acid (C 12H 24O 2), myristic acid (C 14H 28O 2), palmitic acid (C 16H 32O 2), oleic acid (C 18H 34O 2) and stearic acid (C 18H 36O 2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement between experiment and theory.

  9. Study on Synergies of Natural Antioxidants and their Antioxidation Functions on Peanut Oil%天然抗氧化剂的增效作用及其对花生油抗氧化效果研究

    Institute of Scientific and Technical Information of China (English)

    黄克; 崔春; 赵谋明; 马浩

    2012-01-01

    Rosmarinus officinalis extract, tea polyphenol, phytic acid, ascorbyl palmitate and vitamin E were selected to prepare natural antioxidant compound for peanut oil due to their antioxidant capacities. The induction time of peanut oil added various antioxidant was tested by Rancimat method. According to the range analysis of orthogonal test design results, the contributions of 4 natural antioxidants to antioxidation were ranked in turn as : Rosmarinus officinalis extract>tea polyphenol >phytic acid>ascorbyl palmitate, and the optimum formula of the natural antioxidant compound was as follows: Rosmarinus officinalis extract 0.07%,tea polyphenol 0.03%,phytic acid 0.02% and ascorbyl palmitate 0.02%. The antioxidant capacity of this compound was higher than that of TBHQ.%对迷迭香提取物、荼多酚、植酸、VE、抗坏血酸棕榈酸酯在花生油中的抗氧化性能和五种天然抗氧化剂相互之间的增效作用进行了研究.通过Rancimat法测定了添加各种抗氧剂的花生油的诱导时间,根据正交实验结果,各种天然抗氧化剂在组分中的主次因素为迷迭香提取物>茶多酚>植酸>抗坏血酸棕榈酸酯,优化得出天然抗氧化剂的复配配方为迷迭香提取物0.07%、茶多酚0.03%、植酸0.02%、抗坏血酸棕榈酸酯0.02%.此配方对花生油的抗氧化能力优于TBHQ.

  10. Genetic variation in genes of the fatty acid synthesis pathway and breast cancer risk

    NARCIS (Netherlands)

    Campa, Daniele; McKay, James; Sinilnikova, Olga; Huesing, Anika; Vogel, Ulla; Hansen, Rikke Dalgaard; Overvad, Kim; Witt, Petra Mariann; Clavel-Chapelon, Francoise; Boutron-Ruault, Marie-Christine; Chajes, Veronique; Rohrmann, Sabine; Chang-Claude, Jenny; Boeing, Heiner; Fisher, Eva; Trichopoulou, Antonia; Trichopoulos, Dimitrios; Palli, Domenico; Villarini, Anna; Sacerdote, Carlotta; Mattiello, Amalia; Tumino, Rosario; Peeters, Petra H. M.; van Gils, Carla H.; Bueno-de-Mesquita, H. Bas; Lund, Eiliv; Dolores Chirlaque, Maria; Sala, Nuria; Rodriguez Suarez, Laudina; Barricarte, Aurelio; Dorronsoro, Miren; Sanchez, Maria-Jose; Lenner, Per; Hallmans, Goeran; Tsilidis, Kostas; Bingham, Sheila; Khaw, Kay-Tee; Gallo, Valentina; Norat, Teresa; Riboli, Elio; Rinaldi, Sabina; Lenoir, Gilbert; Tavtigian, Sean V.; Canzian, Federico; Kaaks, Rudolf

    2009-01-01

    Fatty acid synthase (FAS) is the major enzyme of lipogenesis. It catalyzes the NADPH-dependent condensation of acetyl-CoA and malonyl-CoA to produce palmitic acid. Transcription of the FAS gene is controlled synergistically by the transcription factors ChREBP (carbohydrate response element-binding p

  11. Levels of retinyl palmitate and retinol in stratum corneum, epidermis and dermis of SKH-1 mice.

    Science.gov (United States)

    Yan, Jian; Xia, Qingsu; Webb, Peggy; Warbritton, Alan R; Wamer, Wayne G; Howard, Paul C; Boudreau, Mary; Fu, Peter P

    2006-04-01

    Vitamin A (retinol) regulates many biological functions, including epidermal cell growth. Retinyl palmitate (RP) is the major esterified form of retinol and the predominant component of retinoids in the skin; however, how endogenous levels of RP and retinol in the skin are affected by the age of the animal remains unknown. Furthermore, the levels of retinol and RP in the various skin layers - the stratum corneum, epidermis and dermis of skin - have not been reported. In this paper, we report the development of a convenient method for separation of the skin from SKH-1 female mice into the stratum corneum, epidermis, and dermis and the determination of the levels of RP and retinol in the three fractions by HPLC analysis. The total quantities of RP and retinol from the stratum corneum, epidermis, and dermis are comparable to those extracted from the same amount of intact skin from the same mouse. There was an age-related effect on the levels of RP and retinol in the skin and liver of female mice. An age-related effect was also observed in the stratum corneum, epidermis, and dermis. The levels of RP and retinol were highest in the epidermis of 20-week-old mice, and decreased when the age increased to 60- and 68-weeks. The total amount of RP at 20 weeks of age was found to be 1.52 ng/mg skin, and decreased about 4-fold at 60- and 68-weeks of age. A similar trend was found for the effects of age on the levels of retinol.

  12. Total Oil Content and Fatty Acid Profile of some Almond (Amygdalus Communis L. Cultivars

    Directory of Open Access Journals (Sweden)

    Yildirim Adnan Nurhan

    2016-07-01

    Full Text Available This study was conducted to determine the total oil contents and fatty acid compositions of some commercial almond cultivars. The total oil contents changed significantly (p<0.05 by year in all cultivars with the exception of cultivar Ferrastar. Total oil contents were changed from 50.90% (Picantili to 62.01% (Supernova in 2008 and from 52.44% (Lauranne to 63.18% (Cristomorto in 2009. While predominant unsaturated fatty acids were oleic and linoleic acids, predominant saturated fatty acid was palmitic acid. The highest amount of oleic acid was obtained in Glorieta in both 2008 (83.35% and 2009 (72.74%. Linoleic acid content varied by year and the highest content was recorded in Picantili (26.08% in 2008 and Yaltinski (30.01% in 2009. The highest amount of palmitic acid was detected in cultivar Sonora in both years, i.e. as 7.76% in 2008 and 10.11% in 2009. The mean UFA:SFA ratio was 11.73 in 2008 but 7.59 in 2009. Principal component (PC analysis indicated that palmitic acid, palmitoleic acid, stearic acid, oleic acid, arachidic acid, unsaturated fatty acid (UFA, saturated fatty acid (SFA and UFA:SFA ratio were primarily responsible for the separation on PC1

  13. The effect of retinyl palmitate added to iron-fortified maize porridge on erythrocyte incorporation of iron in African children with vitamin A deficiency.

    Science.gov (United States)

    Davidsson, Lena; Adou, Pierre; Zeder, Christophe; Walczyk, Thomas; Hurrell, Richard

    2003-08-01

    Retinyl palmitate added to Fe-fortified maize bread has been reported to enhance Fe absorption in adult Venezuelan subjects but not in Western Europeans. It is not known to what extent these results were influenced by differences in vitamin A status of the study subjects. The objective of the present study was to evaluate the influence of retinyl palmitate added to Fe-fortified maize porridge on erythrocyte incorporation of Fe in children with vitamin A deficiency, before and after vitamin A supplementation. Erythrocyte incorporation of Fe-stable isotopes was measured 14 d after intake of maize porridge (2.0 mg Fe added as ferrous sulfate) with and without added retinyl palmitate (3.5 micromol; 3300 IU). The study was repeated 3 weeks after vitamin A supplementation (intake of a single dose of 210 micromol retinyl palmitate; 'vitamin A capsule'). Vitamin A status was evaluated by the modified relative dose-response (MRDR) technique. Retinyl palmitate added to the test meal reduced the geometric mean erythrocyte incorporation of Fe at baseline from 4.0 to 2.6 % (P=0.008, n 13; paired t test). At 3 weeks after vitamin A supplementation, geometric mean erythrocyte incorporation was 1.9 and 2.3 % respectively from the test meal with and without added retinyl palmitate (P=0.283). Mean dehydroretinol:retinol molar ratios were 0.156 and 0.125 before and after intake of the single dose of 210 micromol retinyl palmitate; 'vitamin A capsule' (P=0.15). In conclusion, retinyl palmitate added to the labelled test meals significantly decreased erythrocyte incorporation of Fe in children with vitamin A deficiency at baseline but had no statistically significant effect 3 weeks after vitamin A supplementation. The difference in response to retinyl palmitate added to Fe-fortified maize porridge on erythrocyte incorporation of Fe before and after intake of the vitamin A capsule indicates, indirectly, changes in vitamin A status not measurable by the MRDR technique. The lack of

  14. In vitro treatment of HepG2 cells with saturated fatty acids reproduces mitochondrial dysfunction found in nonalcoholic steatohepatitis.

    Science.gov (United States)

    García-Ruiz, Inmaculada; Solís-Muñoz, Pablo; Fernández-Moreira, Daniel; Muñoz-Yagüe, Teresa; Solís-Herruzo, José A

    2015-02-01

    Activity of the oxidative phosphorylation system (OXPHOS) is decreased in humans and mice with nonalcoholic steatohepatitis. Nitro-oxidative stress seems to be involved in its pathogenesis. The aim of this study was to determine whether fatty acids are implicated in the pathogenesis of this mitochondrial defect. In HepG2 cells, we analyzed the effect of saturated (palmitic and stearic acids) and monounsaturated (oleic acid) fatty acids on: OXPHOS activity; levels of protein expression of OXPHOS complexes and their subunits; gene expression and half-life of OXPHOS complexes; nitro-oxidative stress; and NADPH oxidase gene expression and activity. We also studied the effects of inhibiting or silencing NADPH oxidase on the palmitic-acid-induced nitro-oxidative stress and subsequent OXPHOS inhibition. Exposure of cultured HepG2 cells to saturated fatty acids resulted in a significant decrease in the OXPHOS activity. This effect was prevented in the presence of a mimic of manganese superoxide dismutase. Palmitic acid reduced the amount of both fully-assembled OXPHOS complexes and of complex subunits. This reduction was due mainly to an accelerated degradation of these subunits, which was associated with a 3-tyrosine nitration of mitochondrial proteins. Pretreatment of cells with uric acid, an antiperoxynitrite agent, prevented protein degradation induced by palmitic acid. A reduced gene expression also contributed to decrease mitochondrial DNA (mtDNA)-encoded subunits. Saturated fatty acids induced oxidative stress and caused mtDNA oxidative damage. This effect was prevented by inhibiting NADPH oxidase. These acids activated NADPH oxidase gene expression and increased NADPH oxidase activity. Silencing this oxidase abrogated totally the inhibitory effect of palmitic acid on OXPHOS complex activity. We conclude that saturated fatty acids caused nitro-oxidative stress, reduced OXPHOS complex half-life and activity, and decreased gene expression of mtDNA-encoded subunits

  15. Caveolar fatty acids and acylation of caveolin-1.

    Directory of Open Access Journals (Sweden)

    Qian Cai

    Full Text Available PURPOSE: Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids. METHODS: Caveolae were isolated from Chinese hamster ovary (CHO cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS. The caveolin-1 bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS. RESULTS: In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5 × 10(7 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid. CONCLUSION: Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.

  16. Lipidomic evidence that lowering the typical dietary palmitate to oleate ratio in humans decreases the leukocyte production of proinflammatory cytokines and muscle expression of redox-sensitive genes.

    Science.gov (United States)

    Kien, C Lawrence; Bunn, Janice Y; Fukagawa, Naomi K; Anathy, Vikas; Matthews, Dwight E; Crain, Karen I; Ebenstein, David B; Tarleton, Emily K; Pratley, Richard E; Poynter, Matthew E

    2015-12-01

    We recently reported that lowering the high, habitual palmitic acid (PA) intake in ovulating women improved insulin sensitivity and both inflammatory and oxidative stress. In vitro studies indicate that PA can activate both cell membrane toll-like receptor-4 and the intracellular nucleotide oligomerization domain-like receptor protein (NLRP3). To gain further insight into the relevance to human metabolic disease of dietary PA, we studied healthy, lean and obese adults enrolled in a randomized, crossover trial comparing 3-week, high-PA (HPA) and low-PA/high-oleic-acid (HOA) diets. After each diet, both hepatic and peripheral insulin sensitivities were measured, and we assessed cytokine concentrations in plasma and in supernatants derived from lipopolysaccharide-stimulated peripheral blood mononuclear cells (PBMCs) as well as proinflammatory gene expression in skeletal muscle. Insulin sensitivity was unaffected by diet. Plasma concentration of tumor necrosis factor-α was higher during the HPA diet. Lowering the habitually high PA intake by feeding the HOA diet resulted in lower secretion of interleukin (IL)-1β, IL-18, IL-10, and tumor necrosis factor-α by PBMCs, as well as lower relative mRNA expression of cJun and NLRP3 in muscle. Principal components analysis of 156 total variables coupled to analysis of covariance indicated that the mechanistic pathway for the differential dietary effects on PBMCs involved changes in the PA/OA ratio of tissue lipids. Our results indicate that lowering the dietary and tissue lipid PA/OA ratio resulted in lower leukocyte production of proinflammatory cytokines and muscle expression of redox-sensitive genes, but the relevance to diabetes risk is uncertain.

  17. Effect of Whole-Body X-Irradiation of the Synthesis of Individual Fatty Acids in Liver Slices from Normal and Fasted Rats

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Hansen, Lisbeth Grænge; Faber, M.

    1965-01-01

    (1) Using (2-14C) acetate and (1-14C) butyrate as precursors, rat-liver fatty acids were synthesized in vitro and assayed by paper chromatography. (2) Whole-body x-irradiation induced a change in the synthetic pattern of hepatic fatty acids towards a relatively enhanced synthesis of palmitic acid...

  18. [Study of the fatty acid components of the triglyceride fraction of the blood in normal and thalassemic subjects, using gas chromatography].

    Science.gov (United States)

    Gilli, G; Moiraghi Ruggenini, A; Nani, E; Bottura, G; Mastretta, L

    1977-01-01

    Thin layer chromatography was used to separate the triglyceridic fraction of plasma lipides in normal (19) and thalassaemic (15) subjects. Gas chromatographic analysis of the fraction was then carried out and the fatty acids represented were identified qualitatively and quantitatively. Statistically significant variations, specifically increase in arachidonic acid and reduction in palmitic and linoleic acids, were observed in the thalassaemic patients.

  19. Vitamin C derivatives as new coreactants for tris(2,2'-bipyridine)ruthenium(II) electrochemiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Yali; Li Haijuan; Han Shuang; Hu Lianzhe [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100864 (China); Parveen, Saima [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100864 (China); Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Xu Guobao, E-mail: guobaoxu@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2011-09-09

    Highlights: {yields} Ru(bpy){sub 3}{sup 2+} electrochemiluminescence of vitamin C derivatives have been investigated. {yields} Ascorbyl phosphate and ascorbyl palmitate show intense electrochemiluminescence. {yields} Ascorbyl 2-phosphate was detected with high sensitivity. {yields} This study provides a new way to detect vitamin C derivatives. - Abstract: Vitamin C derivatives (VCDs) have been widely used as the alternative and stable sources of vitamin C, and accordingly exhibit many new applications, such as anti-tumor and central nervous system drug delivery. In this study, their Ru(bpy){sub 3}{sup 2+} electrochemiluminescence (ECL) properties have been investigated for the first time using well-known ascorbyl phosphate and ascorbyl palmitate as representative VCDs. Ascorbyl phosphate and ascorbyl palmitate are VCDs with different substituted positions. Both of them increase Ru(bpy){sub 3}{sup 2+} ECL, indicating that other VCDs may also enhance Ru(bpy){sub 3}{sup 2+} ECL signal. The calibration plot for ascorbyl phosphate is linear from 3 x 10{sup -6} to 1.0 x 10{sup -3} M with a detection limit of 1.4 x 10{sup -6} M at a signal-to-noise ratio of 3. The relative standard deviation is 3.6% for six replicate measurements of 0.01 mM ascorbyl 2-phosphate solution. The proposed method is about one order of magnitude more sensitive than electrochemical and UV-vis methods for the determination of ascorbyl phosphate, and is used successfully for the determination of ascorbyl phosphate in whitening and moisturising body wash.

  20. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival.

    Science.gov (United States)

    Fillmore, Natasha; Huqi, Alda; Jaswal, Jagdip S; Mori, Jun; Paulin, Roxane; Haromy, Alois; Onay-Besikci, Arzu; Ionescu, Lavinia; Thébaud, Bernard; Michelakis, Evangelos; Lopaschuk, Gary D

    2015-01-01

    Successful stem cell therapy requires the optimal proliferation, engraftment, and differentiation of stem cells into the desired cell lineage of tissues. However, stem cell therapy clinical trials to date have had limited success, suggesting that a better understanding of stem cell biology is needed. This includes a better understanding of stem cell energy metabolism because of the importance of energy metabolism in stem cell proliferation and differentiation. We report here the first direct evidence that human bone marrow mesenchymal stem cell (BMMSC) energy metabolism is highly glycolytic with low rates of mitochondrial oxidative metabolism. The contribution of glycolysis to ATP production is greater than 97% in undifferentiated BMMSCs, while glucose and fatty acid oxidation combined only contribute 3% of ATP production. We also assessed the effect of physiological levels of fatty acids on human BMMSC survival and energy metabolism. We found that the saturated fatty acid palmitate induces BMMSC apoptosis and decreases proliferation, an effect prevented by the unsaturated fatty acid oleate. Interestingly, chronic exposure of human BMMSCs to physiological levels of palmitate (for 24 hr) reduces palmitate oxidation rates. This decrease in palmitate oxidation is prevented by chronic exposure of the BMMSCs to oleate. These results suggest that reducing saturated fatty acid oxidation can decrease human BMMSC proliferation and cause cell death. These results also suggest that saturated fatty acids may be involved in the long-term impairment of BMMSC survival in vivo.

  1. Effect of fatty acid methyl esters from plastrum testudinis on proliferation of rat bone mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Yuehua ZHANG; Heping ZENG; Dongfeng CHEN

    2008-01-01

    The ointment of plastrum testudinis was extracted using petroleum ether,ether and dichloromethane sequentially and the extracts were methyl,esteri,fled. The effects on the proliferation of bone marrow mesenchymal stem cells (bMMSCs) were examined by MTT[3,(4,5,dimethylthiazol,2,yl),2,5,diphenyl tetrazolium bromide] assay and flow cytometry analysis. The volatile components of the samples were studied by gas chromatography,mass spectrometry (GC,MS) and high performance liquid chromatography (HPLC). The results show that the methyl,esterified parts can promote the proliferation of stem cells and they all contain palmitic acid methyl ester. Palmitic acid methyl ester can promote proliferation when the concentration was 0.15 μg/μL. It may be concluded that the palmitic acid methyl ester is important for the methyl,esterified parts that have effects on proliferation.

  2. Identification of sitosteryl glucoside palmitate in a chloroform-derived fraction of Phyllanthus niruri with antiplasmodial and peripheral antinociceptive properties

    Institute of Scientific and Technical Information of China (English)

    Ezenyi Ifeoma Chinwude; Kulkarni Roshan; Joshi Swati; Salawu Oluwakanyinsola Adeola; Emeje Martins

    2014-01-01

    Objective: To evaluate the antiplasmodial properties of fractions of chloroform portion of Phyllanthus niruri (P. niruri) methanol extract and identify a suitable chemical marker present therein. Methods: Chloroform portion of P. niruri methanol extract was separated from silica gel using gradient systems of hexane, ethylacetate and methanol. The fractions were screened for antiplasmodial activity against Plasmodium falciparum HB3 and FcM29. Fractions with IC50 Results:Fractions 12-14 were very active (IC50 Conclusions:Our findings illustrate antiplasmodial column fractions of P. niruri with analgesic activity and identify sitosteryl glucoside palmitate as a chemical marker of activity.

  3. Analysis of embryo, cytoplasm and maternal effects on fatty acid components in soybean (Glycine max Merill.)

    Institute of Scientific and Technical Information of China (English)

    NING Hailong; LI Wenxia; LI Wenbin

    2007-01-01

    The quality of oil determined by the constituents and proportion of fatty acid components,and the understanding of heredity of fatty acid components are of importance to breeding good quality soybean varieties.Embryo,cytoplasmic and maternal effects and genotype×environment interaction effects for quality traits of soybean [Glycine max (L.) Merrill.] seeds were analyzed using a general genetic model for quantitative traits of seeds with parents,F1 and F2,of 20 crosses from a diallel mating design of five parents planted in the field in 2003 and 2004 in Harbin,China.The interaction effects of palmitic,stearic,and linoleic acid contents were larger than the genetic main effects,while the genetic main effects were equal to interaction effects for linolenic and oleic acid content.Among all kinds of genetic main effects,the embryo effects were the largest for palmitic,stearic,and linoleic acids,while the cytoplasm effects were the largest for oleic and linolenic acids.Among all kinds of interaction effects,the embryo interaction effects were the largest for fatty acids.The sum of additive and additive× environment effects were larger than that of dominance and dominance×environment effects for the linolenic acid content,but not for other quality traits.The general heritabilities were the main parts of heritabilities for palmitic and oleic acid contents,but the interaction was more important for stearic,linoleic,and linolenic acid contents.For the general heritability,maternal and cytoplasm heritabilities were the main components for palmitic,oleic,and linolenic acid contents.It was shown for the interaction heritabilities that the embryo interaction heritabilities were more important for oleic and linolenic acid contents,while the maternal interaction heritabilities were more important for linoleic acid content.Among selection response components,the maternal and cytoplasm general responses and/or interaction responses were more important for palmitic

  4. Fatty Acid Digestion and Deposition in Broiler Chickens Fed Diets Containing Either Native or Randomized Palm Oil

    NARCIS (Netherlands)

    Smink, W.; Gerrits, W.J.J.; Hovenier, R.; Geelen, M.J.H.; Lobee, H.W.J.; Verstegen, M.W.A.; Beynen, A.C.

    2008-01-01

    The hypothesis tested was that randomization of palm oil would increase its digestibility, especially that of its palmitic acid (C16:0) component, with subsequent changes in the fatty acid composition in body tissues. Broiler chickens were fed diets containing either native or randomized palm oil. D

  5. Inactivation of Salmonella spp. and Listeria spp. by palmitic, stearic and oleic acid sophorolipids and thiamine dilauryl sulfate

    Science.gov (United States)

    Food contaminated with human pathogens, such as Salmonella spp. and Listeria monocytogenes, frequently causes outbreaks of foodborne illness. Consumer concern over the use of synthesized antimicrobials to enhance microbial food safety has led to a search of natural alternatives. The objectives of th...

  6. Oil content and fatty acid composition of eggs cooked in drying oven, microwave and pan.

    Science.gov (United States)

    Juhaimi, Fahad Al; Uslu, Nurhan; Özcan, Mehmet Musa

    2017-01-01

    In this study, the effect of heating on the oil yield and fatty acid composition of eggs cooked in drying oven, microwave oven, pan and boiled were determined, and compared. The highest oil content (15.22%) was observed for egg cooked in drying oven, while the lowest oil (5.195%) in egg cooked in pan. The cooking in microwave oven caused a decrease in oleic acid content (46.201%) and an increase in the amount of palmitic acid content (26.862%). In addition, the maximum oleic acid (65.837%) and minimum palmitic acid (14.015%) contents were observed in egg oil cooked in pan. Results showed that fatty acids were significantly affected by cooking method. This study confirms that the cooking processing influences the fatty acid composition of egg oils.

  7. Inhibition of Aspergillus spp. and Penicillium spp. by fatty acids and their monoglycerides.

    Science.gov (United States)

    Altieri, Clelia; Cardillo, Daniela; Bevilacqua, Antonio; Sinigaglia, Milena

    2007-05-01

    The antifungal activity of three fatty acids (lauric, myristic, and palmitic acids) and their monoglycerides (monolaurin, monomyristic acid, and palmitin, respectively) against Aspergillus and Penicillium species in a model system was investigated. Data were modeled through a reparameterized Gompertz equation. The maximum colony diameter attained within the experimental time (30 days), the maximal radial growth rate, the lag time (i.e., the number of days before the beginning of radial fungal growth), and the minimum detection time (MDT; the number of days needed to attain 1 cm colony diameter) were evaluated. Fatty acids and their monoglycerides inhibited mold growth by increasing MDT and lag times. The effectiveness of the active compounds seemed to be strain and genus dependent. Palmitic acid was the most effective chemical against aspergilli, whereas penicilli were strongly inhibited by myristic acid. Aspergilli also were more susceptible to fatty acids than were penicilli, as indicated by the longer MDT.

  8. Analysis of sterols and fatty acids in natural and cultured Cordyceps by one-step derivatization followed with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Yang, F Q; Feng, K; Zhao, J; Li, S P

    2009-07-12

    Ten free fatty acids namely lauric acid, myristic acid, pentadecanoic acid, palmitoleic acid, palmitic acid, linoleic acid, oleic acid, stearic acid, docosanoic acid and lignoceric acid and four free sterols including ergosterol, cholesterol, campesterol and beta-sitosterol in natural (wild) Cordyceps sinensis, Cordyceps liangshanensis and Cordyceps gunnii, as well as cultured C. sinensis and Cordyceps militaris were first determined using pressurized liquid extraction (PLE), trimethylsilyl (TMS) derivatization and GC-MS analysis. The conditions such as the amount of reagent, temperature and time for TMS derivatization of analytes were optimized. Under the optimum conditions, all calibration curves showed good linearity within the tested ranges. The intra- and inter-day variations for 14 investigated compounds were less than 3.4% and 5.2%, respectively. The results showed that palmitic acid, linoleic acid, oleic acid, stearic acid and ergosterol are main components in natural and cultured Cordyceps which could be discriminated by hierarchical clustering analysis based on the contents of 14 investigated compounds or the 4 fatty acids, where the contents of palmitic acid and oleic acid in natural Cordyceps are significantly higher than those in the cultured ones.

  9. Omega-3 fatty acids control productions of superoxide and nitrogen oxide and insulin content in INS-1E cells.

    Science.gov (United States)

    Graciano, M F; Leonelli, M; Curi, R; R Carpinelli, A

    2016-12-01

    Omega-3 fatty acids have multiple effects in peripheral tissues and pancreatic beta cell function. Dietary depletion of omega-3 fatty acids is associated with pancreatic islet dysfunction and insulin resistance in rats. Herein, the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on pancreatic beta cell redox state and function were investigated. INS-1E insulin-secreting cells were incubated with EPA and DHA in combination with palmitic acid, and productions of reactive oxygen species (ROS), nitric oxide (NO) and insulin were measured. The involvement of the NADPH oxidase complex in ROS production and expression of the antioxidant enzymes was also investigated. After incubation for 1 or 48 h, productions of superoxide (by hydroethidine method), nitric oxide (by 4,5-diaminofluorescein diacetate-DAF-2DA assay), insulin (by radioimmunoassay), and expressions (by western blot analysis) of glutathione peroxidase (GPx-1) and gp91(PHOX) were measured. EPA and DHA reduced superoxide production after 1-h incubation. After 48 h, palmitic acid reduced superoxide production that was normalized by EPA treatment. Palmitic acid increased NO production that was reverted by EPA and DHA. Palmitic acid increased insulin secretion after 48 h, whereas both omega-3 fatty acids increased intracellular insulin content. EPA and DHA enhanced GPx-1 expression as well as gp91(PHOX) glycosylated form. In conclusion, EPA and DHA increased intracellular insulin content and antioxidant enzymatic defense capacity and decreased pro-oxidant generating activities that are associated with maintenance of pancreatic beta cell redox state in response to palmitic acid.

  10. Amiodarone inhibits the mitochondrial beta-oxidation of fatty acids and produces microvesicular steatosis of the liver in mice

    Energy Technology Data Exchange (ETDEWEB)

    Fromenty, B.; Fisch, C.; Labbe, G.; Degott, C.; Deschamps, D.; Berson, A.; Letteron, P.; Pessayre, D. (Institut National de la Sante et de la Recherche Medicale U24, Clichy (France))

    1990-12-01

    Amiodarone has been shown to produce microvesicular steatosis of the liver in some recipients. We have determined the effects of amiodarone on the mitochondrial oxidation of fatty acids in mice. In vitro, the formation of 14C-acid-soluble beta-oxidation products from (U-14C)palmitic acid by mouse liver mitochondria was decreased by 92% in the presence of 125 microM amiodarone and by 94% in the presence of 125 microM N-desethylamiodarone. Inhibition due to 100 or 150 microM amiodarone persisted in the presence of 5 mM acetoacetate, whereas acetoacetate totally relieved inhibition due to 15 microM rotenone. In vivo, exhalation of (14C)CO2 from (U-14C)palmitic acid was decreased by 31, 40, 58 and 78%, respectively, in mice receiving 19, 25, 50 and 100 mg.kg-1 of amiodarone hydrochloride 1 hr before the administration of (U-14C)palmitic acid. One hour after 100 mg.kg-1, the exhalation of (14C)CO2 from (1-14C)palmitic acid, (1-14C)octanoic acid or (1-14C)butyric acid was decreased by 78, 72 and 53%, respectively. Exhalation of (14C)CO2 from (1-14C)palmitic acid was normal between 6 and 9 hr after administration of 100 mg.kg-1 of amiodarone hydrochloride, but was still inhibited by 71 and 37%, 24 and 48 hr after 600 mg.kg-1. Twenty four hours after the latter dose of amiodarone, hepatic triglycerides were increased by 150%, and there was microvesicular steatosis of the liver. We conclude that amiodarone inhibits the mitochondrial beta-oxidation of fatty acids and produces microvesicular steatosis of the liver in mice.

  11. Lipid and fatty acid analysis of the Plodia interpunctella granulosis virus (PiGV) envelope

    Science.gov (United States)

    Shastri-Bhalla, K.; Funk, C. J.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Virus envelope was isolated from Plodia interpunctella granulosis virus, produced in early fourth-instar larvae. Both polar and neutral lipids were analyzed by two-dimensional thin-layer chromatography. Fatty acid composition of various individual neutral and polar lipids was determined by gas-liquid chromatography. The major components of envelope neutral lipid were diacylglycerols. Palmitic acid and stearic acid were the major saturated fatty acids in both polar and neutral lipids. Whereas palmitoleic acid was the major unsaturated fatty acids in neutral lipids, oleic acid was the major unsaturated fatty acid in the polar lipids.

  12. Distinct roles of specific fatty acids in cellular processes: implications for interpreting and reporting experiments

    OpenAIRE

    Watt, Matthew J.; Hoy, Andrew J.; Muoio, Deborah M.; Coleman, Rosalind A.

    2011-01-01

    Plasma contains a variety of long-chain fatty acids (FAs), such that about 35% are saturated and 65% are unsaturated. There are countless examples that show how different FAs impart specific and unique effects, or even opposing actions, on cellular function. Despite these differing effects, palmitate (C16:0) is regularly used to represent “FAs” in cell based experiments. Although palmitate can be useful to induce and study stress effects in cultured cells, these effects in isolation are not p...

  13. The effect of carbohydrate and fat variation in euenergetic diets on postabsorptive free fatty acid release

    NARCIS (Netherlands)

    Bisschop, PH; Ackermans, MT; Endert, E; Ruiter, AFC; Meijer, AJ; Kuipers, F; Sauerwein, HP; Romijn, JA

    2002-01-01

    Diet composition and energy content modulate free fatty acid (FFA) release. The aim of this study was to evaluate the dose-response effects of euenergetic variations in dietary carbohydrate and fat content on postabsorptive FFA release. The rate of appearance (R-a) of palmitate was measured by infus

  14. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    Science.gov (United States)

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step.

  15. Survey of SSC12 regions affecting fatty acid composition of intramuscular fat using high density SNP data

    Directory of Open Access Journals (Sweden)

    María eMuñoz

    2012-01-01

    Full Text Available Fatty acid composition is a critical aspect of pork because it affects sensorial and technological aspects of meat quality and it is relevant for human health. Previous studies identified significant QTLs in porcine chromosome 12 for fatty acid profile of backfat and intramuscular fat. In the present study, 374 SNPs mapped in SSC12 from the 60K Porcine SNP Beadchip were used. We have combined linkage and association analyses with expression data analysis in order to identify regions of SSC12 that could affect fatty acid composition of intramuscular fat in longissimus muscle. The QTL scan showed a region around the 60 cM position that significantly affects palmitic fatty acid and two related fatty acid indexes. The Iberian QTL allele increased the palmitic content (+2.6% of mean trait. This QTL does not match any of those reported in the previous study on fatty acid composition of backfat, suggesting different genetic control acting at both tissues. The SNP association analyses showed significant associations with linolenic and palmitic acids besides several indexes. Among the polymorphisms that affect palmitic fatty acid and match the QTL region at 60 cM, there were three that mapped in the Phosphatidylcholine Transfer Protein (PCTP gene and one in the Acetyl-CoA Carboxylase  gene (ACACA. Interestingly one of the PCTP SNPs also affected significantly unsaturated and double bound indexes and the ratio between polyunsaturated/monounsaturated fatty acids. Differential expression was assessed on longissimus muscle conditional on the genotype of the QTL and on the most significant SNPs, according to the results obtained in the former analyses. Results from the microarray expression analyses, validated by RT-qPCR, showed that PCTP expression levels significantly vary depending on the QTL as well as on the own PCTP genotype. The results obtained with the different approaches point out the PCTP gene as a powerful candidate underlying the QTL for

  16. The fatty acids and alkanes of Satureja adamovicii Silic and Satureja fukarekii Silic (NOTE

    Directory of Open Access Journals (Sweden)

    DUSANKA KITIC

    1999-05-01

    Full Text Available The content and composition of fatty acids and alkanes of Satureja adamovicii Silic and Satureja fukarekii Silic were analized by GC. It was found that unsaturated acids prevailed and that the major components were palmitic, oleic, linoleic and linolenic acids. The hydrocarbon fractions of pentane extracts were shown to consist of the alkane homologues (C17 to C34 with nonacosane and hentriacontane being prevailing compounds.

  17. Solder Flux Residues and Humidity-Related Failures in Electronics: Relative Effects of Weak Organic Acids Used in No-Clean Flux Systems

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    This paper presents the results of humidity testing of weak organic acids (WOAs), namely adipic, succinic, glutaric, dl-malic, and palmitic acids, which are commonly used as activators in no-clean solder fluxes. The study was performed under humidity conditions varying from 60% relative humidity...

  18. SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150

    Science.gov (United States)

    Jung, T.W.; Lee, K.T.; Lee, M.W.; Ka, K.H.

    2012-01-01

    Endoplasmic reticulum (ER) stress has been implicated in the pathology of type 2 diabetes mellitus (T2DM). Although SIRT1 has a therapeutic effect on T2DM, the mechanisms by which SIRT1 ameliorates insulin resistance (IR) remain unclear. In this study, we investigated the impact of SIRT1 on palmitate-induced ER stress in HepG2 cells and its underlying signal pathway. Treatment with resveratrol, a SIRT1 activator significantly inhibited palmitate-induced ER stress, leading to the protection against palmitate-induced ER stress and insulin resistance. Resveratrol and SIRT1 overexpression induced the expression of oxygen-regulated protein (ORP) 150 in HepG2 cells. Forkhead box O1 (FOXO1) was involved in the regulation of ORP150 expression because suppression of FOXO1 inhibited the induction of ORP150 by SIRT1. Our results indicate a novel mechanism by which SIRT1 regulates ER stress by overexpression of ORP150, and suggest that SIRT1 ameliorates palmitate-induced insulin resistance in HepG2 cells via regulation of ER stress.

  19. Red palm oil-supplemented and biofortified gari on the carotenoid and retinyl palmitate concentrations of triacylglycerol-rich plasma of women

    Science.gov (United States)

    Boiled biofortified cassava containing ß-carotene (BC) can increase retinyl palmitate (RP) in triacylglycerol (TAG)-rich plasma. Thus, it might alleviate vitamin A deficiency. Cassava requires extensive preparation to decrease its level of cyanogenic glucosides, which can be fatal. Garification ...

  20. Red palm oil-supplemented and biofortified cassava gari increase the carotenoid and retinyl palmitate concentrations of triacylglycerol-rich plasma in women.

    Science.gov (United States)

    Zhu, Chenghao; Cai, Yimeng; Gertz, Erik R; La Frano, Michael R; Burnett, Dustin J; Burri, Betty J

    2015-11-01

    Boiled biofortified cassava containing β-carotene can increase retinyl palmitate in triacylglycerol-rich plasma. Thus, it might alleviate vitamin A deficiency. Cassava requires extensive preparation to decrease its level of cyanogenic glucosides, which can be fatal. Garification is a popular method of preparing cassava that removes cyanogen glucosides. Our objective was to compare the effectiveness of biofortified gari to gari prepared with red palm oil. The study was a randomized crossover trial in 8 American women. Three gari preparations separated by 2-week washout periods were consumed. Treatments (containing 200-225.9 g gari) were as follows: biofortified gari (containing 1 mg β-carotene), red palm oil-fortified gari (1 mg β-carotene), and unfortified gari with a 0.3-mg retinyl palmitate reference dose. Blood was collected 6 times from -0.5 to 9.5 hours after ingestion. Triacylglycerol-rich plasma was separated by ultracentrifugation and analyzed by high-performance liquid chromatography (HPLC) with diode array detection. Area under the curve for β-carotene, α-carotene, and retinyl palmitate increased after the fortified meals were fed (P palm oil treatment was greater than that induced by the biofortified treatment (P palm oil and biofortified gari, respectively. These results show that both treatments increased β-carotene, α-carotene, and retinyl palmitate in triacylglycerol-rich plasma concentrations in healthy well-nourished adult women, supporting our hypothesis that both interventions could support efforts to alleviate vitamin A deficiency.

  1. Localization of fatty acids with selective chain length by imaging time-of-flight secondary ion mass spectrometry.

    Science.gov (United States)

    Richter, Katrin; Nygren, Håkan; Malmberg, Per; Hagenhoff, Birgit

    2007-07-01

    Localization of fatty acids in biological tissues was made by using TOF-SIMS (time-of-flight secondary ion mass spectrometry). Two cell-types with a specific fatty acid distribution are shown. In rat cerebellum, different distribution patterns of stearic acid (C18:0), palmitic acid (C16:0), and oleic acid (C18:1) were found. Stearic acid signals were observed accumulated in Purkinje cells with high intensities inside the cell, but not in the nucleus region. The signals colocalized with high intensity signals of the phosphocholine head group, indicating origin from phosphatidylcholine or sphingomyelin. In mouse intestine, high palmitic acid signals were found in the secretory crypt cells together with high levels of phosphorylinositol colocalized in the crypt region. Palmitic acid was also seen in the intestinal lumen that contains high amounts of mucine, which is known to be produced in the crypt cells. Linoleic acid signals (C18:2) were low in the crypt region and high in the villus region. Oleic acid signals were seen in the villi and stearic acid signals were ubiquitous with no specific localization in the intestine. We conclude that the results obtained by using imaging TOF-SIMS are consistent with known brain and intestine biochemistry and that the localization of fatty acids is specific in differentiated cells.

  2. Effect of A Long Chain Carboxylate Acid on Sodium Dodecyl Sulfate Micelle Structure: A SANS Study

    Science.gov (United States)

    Patriati, Arum; Giri Rachman Putra, Edy; Seok Seong, Baek

    2010-01-01

    The effect of a different hydrocarbon chain length of carboxylate acid, i.e. dodecanoic acid, CH3(CH)10COOH or lauric acid and hexadecanoic acid, CH3(CH2)14COOH or palmitic acid as a co-surfactant in the 0.3 M sodium dedecyl sulfate, SDS micellar solution has been studied using small angle neutron scattering (SANS). The present of lauric acid has induced the SDS structural micelles. The ellipsoid micelles structures changed significantly in length (major axis) from 22.6 Å to 37.1 Å at a fixed minor axis of 16.7 Å in the present of 0.005 M to 0.1 M lauric acid. Nevertheless, this effect did not occur in the present of palmitic acid with the same concentration range. The present of palmitic acid molecules performed insignificant effect on the SDS micelles growth where the major axis of the micelle was elongated from 22.9 Å to 25.3 Å only. It showed that the appropriate hydrocarbon chain length between surfactant and co-surfactant molecules emerged as one of the determining factors in forming a mixed micelles structure.

  3. Starch aerogel beads obtained from inclusion complexes prepared from high amylose starch and sodium palmitate

    Science.gov (United States)

    Starch aerogels are a class of low density highly porous renewable materials currently prepared from retrograded starch gels and are of interest for their good surface area, porosity, biocompatibility, and biodegradability. Recently, we have reported on starches containing amylose-fatty acid salt h...

  4. Salsalate and Adiponectin Improve Palmitate-Induced Insulin Resistance via Inhibition of Selenoprotein P through the AMPK-FOXO1α Pathway.

    Directory of Open Access Journals (Sweden)

    Tae Woo Jung

    Full Text Available Selenoprotein P (SeP was recently identified as a hepatokine that induces insulin resistance (IR in rodents and humans. Recent clinical trials have shown that salsalate, a prodrug of salicylate, significantly lowers blood glucose levels and increases adiponectin concentrations. We examined the effects of salsalate and full length-adiponectin (fAd on the expression of SeP under hyperlipidemic conditions and explored their regulatory mechanism on SeP. In palmitate-treated HepG2 cells as well as high fat diet (HFD-fed male Spraque Dawley (SD rats and male db/db mice, SeP expression and its regulatory pathway, including AMPK-FOXO1α, were evaluated after administration of salsalate and salicylate. Palmitate treatment significantly increased SeP expression and aggravated IR, while knock-down of SeP by siRNA restored these changes in HepG2 cells. Palmitate-induced SeP expression was inhibited by both salsalate and salicylate, which was mediated by AMPK activation, and was blocked by AMPK siRNA or an inhibitor of AMPK. Chromatin immunoprecipitation (ChIP and electrophoretic mobility shift (EMSA assay showed that salsalate suppressed SeP expression by AMPK-mediated phosphorylation of FOXO1α. Moreover, fAd also reduced palmitate-induced SeP expression through the activation of AMPK, which results in improved IR. Both salsalate and salicylate treatment significantly improved glucose intolerance and insulin sensitivity, accompanied by reduced SeP mRNA and protein expression in HFD-fed rats and db/db mice, respectively. Taken together, we found that salsalate and adiponectin ameliorated palmitate-induced IR in hepatocytes via SeP inhibition through the AMPK-FOXO1α pathway. The regulation of SeP might be a novel mechanism mediating the anti-diabetic effects of salsalate and adiponectin.

  5. A Chemotaxonomic Approach to the Fatty Acid and Tocochromanol Content of Cannabis sativa L. (Cannabaceae)

    OpenAIRE

    Bağci, Eyüp

    2003-01-01

    In this study, the fatty acid, tocopherol and tocotrienol composition in the seed oil of Cannabis sativa L., which is traded under the common name hemp seed oil, were determined by using GLC and HPLC techniques. While a- linolenic, linoleic, oleic and palmitic acid were the main fatty acid components, g - linolenic (18:3 n-6) and stearidonic acid (18:4 n-3) were found as unusual minor fatty acids in the seed oil. g - linolenic acid is an important fatty acid used both as a healthy nutrient an...

  6. Lack of activation of UCP1 in isolated brown adipose tissue mitochondria by glucose-O-ω-modified saturated fatty acids of various chain lengths.

    Science.gov (United States)

    Breen, Eamon P; Pilgrim, Wayne; Clarke, Kieran J; Yssel, Cristy; Farrell, Mark; Zhou, Jian; Murphy, Paul V; Porter, Richard K

    2013-03-27

    We previously demonstrated that uncoupling protein 1 activity, as measured in isolated brown adipose tissue mitochondria (and as a native protein reconstituted into liposome membranes), was not activated by the non-flippable modified saturated fatty acid, glucose-O-ω-palmitate, whereas activity was stimulated by palmitate alone (40 nM free final concentration). In this study, we investigated whether fatty acid chain length had any bearing on the ability of glucose-O-ω-fatty acids to activate uncoupling protein 1. Glucose-O-ω-saturated fatty acids of various chain lengths were synthesized and tested for their potential to activate GDP-inhibited uncoupling protein 1-dependent oxygen consumption in brown adipose tissue mitochondria, and the results were compared with equivalent non-modified fatty acid controls. Here we demonstrate that laurate (12C), palmitate (16C) and stearate (18C) could activate GDP-inhibited uncoupling protein 1-dependent oxygen consumption in brown adipose tissue mitochondria, whereas there was no activation with glucose-O-ω-laurate (12C), glucose-O-ω-palmitate (16C), glucose-O-ω-stearate (18C), glucose-O-ω-arachidate (20C) or arachidate alone. We conclude that non-flippable fatty acids cannot activate uncoupling protein 1 irrespective of chain length. Our data further undermine the cofactor activation model of uncoupling protein 1 function but are compatible with the model that uncoupling protein 1 functions by flipping long-chain fatty acid anions.

  7. Influence of fatty acids on pressor responses to catecholamines.

    Science.gov (United States)

    Chopde, C T; Brahmankar, D M; Jadhav, S S; Hardas, A P; Dorle, A K

    1975-01-01

    Lauric, Myristic and Palmitic acids had no appreciable effect whereas Stearic, Oleic and Linoleic acids caused some reduction in dog blood pressure. Pressor responses to epinephrine and nor-epinephrine were potentiated whereas the depressor response to isoproterenol was reduced during the infusion of fatty acids in dogs. ACTH alone, which causes mobilization of free fatty acids had no appreciable effect on blood pressure responses to catecholamines, however, its administration followed by salicylate produced marked potentiation of the pressor responses to epinephrine and nor-epinephrine; the depressor response to isoproterenol was reduced.

  8. Effect of 6 dietary fatty acids on the postprandial lipid profile, plasma fatty acids, lipoprotein lipase, and cholesterol ester transfer activities in healthy young men

    DEFF Research Database (Denmark)

    Tholstrup, T.; Sandstrøm, B.; Bysted, Anette;

    2001-01-01

    to the test-fat meals were observed for plasma lipoprotein triacylglycerol and cholesterol concentrations, plasma fatty acid concentrations, and lipoprotein lipase and CETP activities (diet x time interaction: 0.001 saturated fatty acids stearic and palmitic acids resulted...... in a relatively lower lipemic response than did intake of the unsaturated fatty acids, probably because the saturated fatty acids were absorbed less and at a lower rate; therefore, the lipemic response took longer to return to postabsorptive values. Conclusions: Fatty acid chain length and degree of saturation...

  9. Comparison of fatty acid composition in total lipid of diapause and non-diapause larvae of Cydia pomonella (Lepidoptera: Tortricidae)

    Institute of Scientific and Technical Information of China (English)

    ABBAS KHANI; SAEID MOHARRAMIPOUR; MOHSEN BARZEGAR; HOSSEIN NADERI-MANESH

    2007-01-01

    Seasonal changes in the fatty acid composition of the total lipid extracted from the whole body of Cydia pomonella L. larvae were determined by gas chromatography. The six most abundant fatty acids in both non-diapause and diapause larvae of codling moth were oleic (35%-39%), palmitic (23%-33%), linoleic (16%-30%), palmitoleic (5%-10%),stearic (1.5%-3.0%) and linolenic acids (1.0%-2.5%). This represents a typical complement of Lepidopteran fatty acids. The fatty acid composition of total lipid of C. pomonella larvae was related to diapause. In similarity to most other reports, the proportion of unsaturated fatty acids increased in diapause initiation state. The total lipid of diapause larvae contained more linoleic acid (25.8% vs. 16.1%) and less palmitic acid (24.7% vs. 33.4%),than that ofnon-diapause larvae. The weight percentage of linoleic acid (C18:2) increased from 16% to 26% from early-August through early-September during transition to diapause,while palmitic acid (C16:0) decreased from 33% to 25% at the same time. These changes resulted in an increase in the ratio of unsaturated to saturated fatty acids (UFA/SFA) from 1.72 in non-diapause larvae to 2.63 in diapause larvae.

  10. Blood Cell Palmitoleate-Palmitate Ratio Is an Independent Prognostic Factor for Amyotrophic Lateral Sclerosis.

    Directory of Open Access Journals (Sweden)

    Alexandre Henriques

    Full Text Available Growing evidence supports a link between fatty acid metabolism and amyotrophic lateral sclerosis (ALS. Here we determined the fatty acid composition of blood lipids to identify markers of disease progression and survival. We enrolled 117 patients from two clinical centers and 48 of these were age and gender matched with healthy volunteers. We extracted total lipids from serum and blood cells, and separated fatty acid methyl esters by gas chromatography. We measured circulating biochemical parameters indicative of the metabolic status. Association between fatty acid composition and clinical readouts was studied, including ALS functional rating scale-revised (ALSFRS-R, survival, disease duration, site of onset and body mass index. Palmitoleate (16:1 and oleate (18:1 levels, and stearoyl-CoA desaturase indices (16:1/16:0 and 18:1/18:0 significantly increased in blood cells from ALS patients compared to healthy controls. Palmitoleate levels and 16:1/16:0 ratio in blood cells, but not body mass index or leptin concentrations, negatively correlated with ALSFRS-R decline over a six-month period (p<0.05. Multivariate Cox analysis, with age, body mass index, site of onset and ALSFRS-R as covariables, showed that blood cell 16:1/16:0 ratio was an independent prognostic factor for survival (hazard ratio=0.1 per unit of ratio, 95% confidence interval=0.01-0.57, p=0.009. In patients with high 16:1/16:0 ratio, survival at blood collection was extended by 10 months, as compared to patients with low ratio. The 16:1/16:0 index is an easy-to-handle parameter that predicts survival of ALS patients independently of body mass index. It therefore deserves further validation in larger cohorts for being used to assess disease outcome and effects of disease-modifying drugs.

  11. Blood Cell Palmitoleate-Palmitate Ratio Is an Independent Prognostic Factor for Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Henriques, Alexandre; Blasco, Hélène; Fleury, Marie-Céline; Corcia, Philippe; Echaniz-Laguna, Andoni; Robelin, Laura; Rudolf, Gabrielle; Lequeu, Thiebault; Bergaentzle, Martine; Gachet, Christian; Pradat, Pierre-François; Marchioni, Eric; Andres, Christian R.; Tranchant, Christine; Gonzalez De Aguilar, Jose-Luis; Loeffler, Jean-Philippe

    2015-01-01

    Growing evidence supports a link between fatty acid metabolism and amyotrophic lateral sclerosis (ALS). Here we determined the fatty acid composition of blood lipids to identify markers of disease progression and survival. We enrolled 117 patients from two clinical centers and 48 of these were age and gender matched with healthy volunteers. We extracted total lipids from serum and blood cells, and separated fatty acid methyl esters by gas chromatography. We measured circulating biochemical parameters indicative of the metabolic status. Association between fatty acid composition and clinical readouts was studied, including ALS functional rating scale-revised (ALSFRS-R), survival, disease duration, site of onset and body mass index. Palmitoleate (16:1) and oleate (18:1) levels, and stearoyl-CoA desaturase indices (16:1/16:0 and 18:1/18:0) significantly increased in blood cells from ALS patients compared to healthy controls. Palmitoleate levels and 16:1/16:0 ratio in blood cells, but not body mass index or leptin concentrations, negatively correlated with ALSFRS-R decline over a six-month period (p<0.05). Multivariate Cox analysis, with age, body mass index, site of onset and ALSFRS-R as covariables, showed that blood cell 16:1/16:0 ratio was an independent prognostic factor for survival (hazard ratio=0.1 per unit of ratio, 95% confidence interval=0.01-0.57, p=0.009). In patients with high 16:1/16:0 ratio, survival at blood collection was extended by 10 months, as compared to patients with low ratio. The 16:1/16:0 index is an easy-to-handle parameter that predicts survival of ALS patients independently of body mass index. It therefore deserves further validation in larger cohorts for being used to assess disease outcome and effects of disease-modifying drugs. PMID:26147510

  12. Epigenetic regulation of the ELOVL6 gene is associated with a major QTL effect on fatty acid composition in pigs

    NARCIS (Netherlands)

    Corominas, J.; Marchesi, J.A.; Puig-Oliveras, A.; Revilla, M.; Estelle, J.; Alves, E.; Folch, J.M.; Ballester, M.

    2015-01-01

    BACKGROUND: In previous studies on an Iberian x Landrace cross, we have provided evidence that supported the porcine ELOVL6 gene as the major causative gene of the QTL on pig chromosome 8 for palmitic and palmitoleic acid contents in muscle and backfat. The single nucleotide polymorphism (SNP) ELOVL

  13. Onset of efficacy and tolerability following the initiation dosing of long-acting paliperidone palmitate: post-hoc analyses of a randomized, double-blind clinical trial

    Directory of Open Access Journals (Sweden)

    Fu Dong-Jing

    2011-05-01

    Full Text Available Abstract Background Paliperidone palmitate is a long-acting injectable atypical antipsychotic for the acute and maintenance treatment of adults with schizophrenia. The recommended initiation dosing regimen is 234 mg on Day 1 and 156 mg on Day 8 via intramuscular (deltoid injection; followed by 39 to 234 mg once-monthly thereafter (deltoid or gluteal. These post-hoc analyses addressed two commonly encountered clinical issues regarding the initiation dosing: the time to onset of efficacy and the associated tolerability. Methods In a 13-week double-blind trial, 652 subjects with schizophrenia were randomized to paliperidone palmitate 39, 156, or 234 mg (corresponding to 25, 100, or 150 mg equivalents of paliperidone, respectively or placebo (NCT#00590577. Subjects randomized to paliperidone palmitate received 234 mg on Day 1, followed by their randomized fixed dose on Day 8, and monthly thereafter, with no oral antipsychotic supplementation. The onset of efficacy was defined as the first timepoint where the paliperidone palmitate group showed significant improvement in the Positive and Negative Syndrome Scale (PANSS score compared to placebo (Analysis of Covariance [ANCOVA] models and Last Observation Carried Forward [LOCF] methodology without adjusting for multiplicity using data from the Days 4, 8, 22, and 36 assessments. Adverse event (AE rates and relative risks (RR with 95% confidence intervals (CI versus placebo were determined. Results Paliperidone palmitate 234 mg on Day 1 was associated with greater improvement than placebo on Least Squares (LS mean PANSS total score at Day 8 (p = 0.037. After the Day 8 injection of 156 mg, there was continued PANSS improvement at Day 22 (p ≤ 0.007 vs. placebo and Day 36 (p Conclusions Significantly greater symptom improvement was observed by Day 8 with paliperidone palmitate (234 mg on Day 1 compared to placebo; this effect was maintained after the 156 mg Day 8 injection, with a trend towards a dose

  14. Amino and Fatty Acids of Wild Edible Mushrooms of the Genus Boletus

    Directory of Open Access Journals (Sweden)

    Dmitri O. Levitsky

    2010-10-01

    Full Text Available A comparative study on the free amino acids of 15 wild edible mushroom species belonging to the genus Boletus (phylum Basidiomycota was developed. The major amino acids in the fruit bodies were arginine , alanine, glutamine, and glutamic acid. The most abundant fatty acids were oleic ( 9- 18:1, linoleic acid (9,12-18:2 , and palmitic acid (16:0, but a great variation of the ester composition from one to another one was found. Chemical constituents were characterized by GC-MS, and other chemical methods.

  15. Fatty acids composition of fruits of selected Central European sedges (Carex L. Cyperaceae)

    OpenAIRE

    Janyszek, Magdalena; Bogucka-Kocka, Anna

    2010-01-01

    Fatty acids in the fruits of 13 sedge species (Carex L., Cyperaceae) were analyzed. The oil contents in the fruits of the studied sedges ranged from 3.73 and 46.52%. In the studied fruit oils 14 different fatty acids were identified. The main unsaturated fatty acids were: linoleic, α-linolenic, oleic, oleopalmitic n-7; oleopalmitic n-9, octadecenic, and eicosenoic acids. The following acids were found in the greatest quantities: linoleic, oleic, α-linolenic and palmitic acids. Based on the fa...

  16. The influence of saturated fatty acids on complex index and in vitro digestibility of rice starch.

    Science.gov (United States)

    Soong, Yean Yean; Goh, Hui Jen; Henry, C Jeya K

    2013-08-01

    In Asia, rice and rice products are the main sources of carbohydrate contributing to both dietary energy and glycaemic load. It is known that complexation of starch with lipids could potentially reduce the availability of starch to enzymatic degradation. The aim of this study was to investigate the effect of capric, lauric, myristic, palmitic and stearic acids, ranging from 0 to 2 mmol/g starch, on complexing index and in vitro digestibility of gelatinized rice starch. The results revealed that the ability of rice starch to complex with saturated fatty acids increased with increasing concentration; but reduced with increasing lipid chain length. The complexation of rice starch with capric, lauric, myristic and stearic acids did not reduce the in vitro starch digestibility, except rice starch-palmitic acid complexes.

  17. Role and mechanism of rosiglitazone on the impairment of insulin secretion induced by free fatty acids on isolated rat islets

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Prolonged exposure of pancreatic β-cells to fatty acids increases basal insulin secretion but inhibits glucose-stimulated insulin secretion. Rosiglitazone is a new antidiabetic agent of the thiazolidinediones. However, the relationship between thiazolidinediones and insulin secretion is highly controversial. The aim of this study is to explore the effect and mechanism of rosiglitazone on insulin secretion of islets under chronic exposure to free fatty acids (FFA).Methods Pancreatic islets were isolated from the pancreata of male Sprague-Dawley rats by the collagenase digestion and by the dextran gradient centrifugation method. The purified islets were cultured in the presence or absence of rosiglitazone and palmitate for 48 hours. The insulin secretion was measured by radioimmunoassay. The mRNA level of peroxisome proliferator-activated receptor (, uncoupling protein 2 (UCP-2) and insulin were determined by real-time polymerase chain reaction (PCR). The cell cytotoxicity assay was measured by cell counting kit-8. Results Islets exposed to elevated palmitate for 48 hours showed an increased basal and a decreased glucose-stimulated insulin secretion (P<0.01). The mRNA level of UCP-2 was increased by 3.7 fold in the 0.5 mmol/L concentration of palmitate. When islets were cultured with palmitate (0.5 mmol/L) in the presence of rosiglitazone (1.0 μmol/L), both basal and glucose-stimulated insulin secretion reversed to a pattern of control islets (P<0.05, P<0.01). The addition of rosiglitazone in the culture medium decreased the mRNA level of UCP-2 by 2.2 fold, having a statistically significant difference (P<0.05) as compared with islets cultured with palmitate alone. The cell viability was not affected. Conclusion The protective effects of rosiglitazone on insulin secretion of isolated pancreatic islets under chronic exposure to palmitate might be mediated through the downregulation of UCP-2 expression.

  18. A study of the fatty acid profile in the muscle of Monopterus chuchia

    Directory of Open Access Journals (Sweden)

    Mita Dutta

    2014-01-01

    Full Text Available The nutritional capacity of the fish Monopterus chuchia in terms of its fatty acid content was investigated to get an insight of their fatty acid composition in their most consumed part i.e. their muscle tissue. Our investigation shows the presence of SFA’s like caproic acid, caprylic acid, palmitic acid, pentadecanoic acid, heptadecanoic acid, behenic acid, MUFA’s like myristoleic acid, palmitoleic acid, oleic acid and nutritionally important PUFA’s like Eicosapentaenoic acid, docosahexaenoic acid in major amount. Erucic acid, which is reported to be an anti-nutritional factor, is present in extremely low concentration. Thus the fish which is generally consumed by very few can be farmed as a cheap nutritional source for the masses.

  19. Physicochemical characteristics and fatty acid composition of tomato seed oils from processing wastes

    OpenAIRE

    Cantarelli,P.R.; Regitano-d'Arce,M.A.B.; Palma,E.R.

    1993-01-01

    The major component of tomato processing industry wastes is seed. Samples of tomato (Petomech var.) pomace from industries of São Paulo state submitted to Hot and Cold Break treatments, were spontaneously fermented and washed to separate seeds. The oils were analysed for specific gravity, iodine and saponifícation numbers, refractive index, viscosity and fatty acid composition. Except for saponifícation number, Hot and Cold Break seed oils were very similar. In both treatments palmitic acid w...

  20. CARBOXYLIC ACIDS OF HERB OF THYMUS CRETACEUS KLOK. ET SCHOST

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2014-01-01

    Full Text Available We have studied carboxylic acids of the herb of Thymus cretaceus Klok. et Schost which is widespread on a territory of some regions (Belgorod, Voronezh. The study was carried out using gas-liquid chromatography at Agilent Technologies 6890 chromatographer with massspectrometric detector 5973 N. Acids concentration was calculated by means of inner standard.We have established that carboxylic acids of Thymus cretaceus are represented by 34 compounds. Palmitic (1779.02 mg/kg, behenic (1084.15 mg/kg, levulinic (986.24 mg/kg and linoleic acids (678.82 mg/kg predominate among fatty acids; citric (9835.14 mg/kg, malonic (447.91 mg/kg and oxalic acids (388.32 mg/kg predominate among organic acids; andferulic acid predominate amongphenolcarbonic acids.

  1. Challenges when developing omega-3 enriched foods

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte

    2010-01-01

    the influence of important factors such as oil quality, delivery systems for omega-3 fatty acids, processing conditions, composition of the food matrix on lipid oxidation in different omega-3 enriched foods (milk, yoghurt, mayonnaise and mayonnaise-based salads, dressing, energy bar and fish paté). Moreover......Due to the polyunsaturated nature of omega-3 fatty acids, lipid oxidation is a major challenge when developing omega-3 enriched foods. In multiphase food systems, several factors can affect lipid oxidation and efficacy of antioxidants, added to prevent lipid oxidation. This review discusses......, the effect of different antioxidants (tocopherol, EDTA, lactoferrin, caffeic acid, ascorbic acid, ascorbyl palmitate, propyl gallate, gallic acid, as well as lipophilized antioxidants) is compared in different food systems....

  2. Increased Brain Fatty Acid Uptake in Metabolic Syndrome

    Science.gov (United States)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti; Hirvonen, Jussi; Fielding, Barbara A.; Virtanen, Kirsi; Oikonen, Vesa; Kemppainen, Jukka; Viljanen, Tapio; Guiducci, Letizia; Haaparanta-Solin, Merja; Någren, Kjell; Solin, Olof; Nuutila, Pirjo

    2010-01-01

    OBJECTIVE To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it. RESEARCH DESIGN AND METHODS We measured brain fatty acid uptake in a group of 23 patients with MS and 7 age-matched healthy control subjects during fasting conditions using positron emission tomography (PET) with [11C]-palmitate and [18F]fluoro-6-thia-heptadecanoic acid ([18F]-FTHA). Sixteen MS subjects were restudied after 6 weeks of very low calorie diet intervention. RESULTS At baseline, brain global fatty acid uptake derived from [18F]-FTHA was 50% higher in patients with MS compared with control subjects. The mean percentage increment was 130% in the white matter, 47% in the gray matter, and uniform across brain regions. In the MS group, the nonoxidized fraction measured using [11C]-palmitate was 86% higher. Brain fatty acid uptake measured with [18F]-FTHA-PET was associated with age, fasting serum insulin, and homeostasis model assessment (HOMA) index. Both total and nonoxidized fractions of fatty acid uptake were associated with BMI. Rapid weight reduction decreased brain fatty acid uptake by 17%. CONCLUSIONS To our knowledge, this is the first study on humans to observe enhanced brain fatty acid uptake in patients with MS. Both fatty acid uptake and accumulation appear to be increased in MS patients and reversed by weight reduction. PMID:20566663

  3. Combined effects of low levels of palmitate on toxicity of ZnO nanoparticles to THP-1 macrophages.

    Science.gov (United States)

    Jiang, Qin; Li, Xiyue; Cheng, Shanshan; Gu, Yuxiu; Chen, Gui; Shen, Yuexin; Xie, Yixi; Cao, Yi

    2016-12-01

    We have recently proposed that the interaction between food components and nanoparticles (NPs) should be considered when evaluating the toxicity of NPs. In the present study, we used THP-1 differentiated macrophages as a model for immune cells and investigated the combined toxicity of low levels of palmitate (PA; 10 or 50μM) and ZnO NPs. The results showed that PA especially at 50μM changed the size, Zeta potential and UV-vis spectra of ZnO NPs, indicating a possible coating effect. Up to 32μg/mL ZnO NPs did not significantly affect mitochondrial activity, intracellular reactive oxygen species (ROS) or release of interleukin 6 (IL-6), but significantly impaired lysosomal function as assessed by neutral red uptake assay and acridine orange staining. The presence of 50μM PA, but not 10μM PA, further promoted the toxic effects of ZnO NPs to lysosomes but did not significantly affect other endpoints. In addition, ZnO NPs dose-dependently increased intracellular Zn ions in THP-1 macrophages, which was not significantly affected by PA. Taken together, the results of the present study showed a combined toxicity of low levels of PA and ZnO NPs especially to lysosomes in THP-1 macrophages.

  4. Rapamycin Improves Palmitate-Induced ER Stress/NF κ B Pathways Associated with Stimulating Autophagy in Adipocytes

    Directory of Open Access Journals (Sweden)

    Jiajing Yin

    2015-01-01

    Full Text Available Obesity-induced endoplasmic reticulum (ER stress and inflammation lead to adipocytes dysfunction. Autophagy helps to adapt to cellular stress and involves in regulating innate inflammatory response. In present study, we examined the activity of rapamycin, a mTOR kinase inhibitor, against endoplasmic reticulum stress and inflammation in adipocytes. An in vitro model was used in which 3T3-L1 adipocytes were preloaded with palmitate (PA to generate artificial hypertrophy mature adipocytes. Elevated autophagy flux and increased number of autophagosomes were observed in response to PA and rapamycin treatment. Rapamycin attenuated PA-induced PERK and IRE1-associated UPR pathways, evidenced by decreased protein levels of eIF2α phosphorylation, ATF4, CHOP, and JNK phosphorylation. Inhibiting autophagy with chloroquine (CQ exacerbated these ER stress markers, indicating the role of autophagy in ameliorating ER stress. In addition, cotreatment of CQ abolished the anti-ER stress effects of rapamycin, which confirms the effect of rapamycin on ERs is autophagy-dependent. Furthermore, rapamycin decreased PA-induced nuclear translocation of NFκB P65 subunit, thereby NFκB-dependent inflammatory cytokines MCP-1 and IL-6 expression and secretion. In conclusion, rapamycin attenuated PA-induced ER stress/NFκB pathways to counterbalance adipocytes stress and inflammation. The beneficial of rapamycin in this context partly depends on autophagy. Stimulating autophagy may become a way to attenuate adipocytes dysfunction.

  5. Rapamycin improves palmitate-induced ER stress/NF κ B pathways associated with stimulating autophagy in adipocytes.

    Science.gov (United States)

    Yin, Jiajing; Gu, Liping; Wang, Yufan; Fan, Nengguang; Ma, Yuhang; Peng, Yongde

    2015-01-01

    Obesity-induced endoplasmic reticulum (ER) stress and inflammation lead to adipocytes dysfunction. Autophagy helps to adapt to cellular stress and involves in regulating innate inflammatory response. In present study, we examined the activity of rapamycin, a mTOR kinase inhibitor, against endoplasmic reticulum stress and inflammation in adipocytes. An in vitro model was used in which 3T3-L1 adipocytes were preloaded with palmitate (PA) to generate artificial hypertrophy mature adipocytes. Elevated autophagy flux and increased number of autophagosomes were observed in response to PA and rapamycin treatment. Rapamycin attenuated PA-induced PERK and IRE1-associated UPR pathways, evidenced by decreased protein levels of eIF2α phosphorylation, ATF4, CHOP, and JNK phosphorylation. Inhibiting autophagy with chloroquine (CQ) exacerbated these ER stress markers, indicating the role of autophagy in ameliorating ER stress. In addition, cotreatment of CQ abolished the anti-ER stress effects of rapamycin, which confirms the effect of rapamycin on ERs is autophagy-dependent. Furthermore, rapamycin decreased PA-induced nuclear translocation of NFκB P65 subunit, thereby NFκB-dependent inflammatory cytokines MCP-1 and IL-6 expression and secretion. In conclusion, rapamycin attenuated PA-induced ER stress/NFκB pathways to counterbalance adipocytes stress and inflammation. The beneficial of rapamycin in this context partly depends on autophagy. Stimulating autophagy may become a way to attenuate adipocytes dysfunction.

  6. Topical Application of Retinyl Palmitate-Loaded Nanotechnology-Based Drug Delivery Systems for the Treatment of Skin Aging

    Directory of Open Access Journals (Sweden)

    Marcela B. Oliveira

    2014-01-01

    Full Text Available The objective of this study was to perform a structural characterization and evaluate the in vitro safety profile and in vitro antioxidant activity of liquid crystalline systems (LCS with and without retinyl palmitate (RP. LCS containing polyether functional siloxane (PFS as a surfactant, silicon glycol copolymer (SGC as oil phase, and water in the ratios 30 : 25 : 45 and 40 : 50 : 10 with (OLSv = RP-loaded opaque liquid system and TLSv = RP-loaded transparent liquid system, respectively and without (OLS and TLS, respectively RP were studied. Samples were characterized using polarized light microscopy (PLM and rheology analysis. In vitro safety profile was evaluated using red cell hemolysis and in vitro cytotoxicity assays. In vitro antioxidant activity was performed by the DPPH method. PLM analysis showed the presence of lamellar LCS just to TLS. Regardless of the presence of RP, the rheological studies showed the pseudoplastic behavior of the formulations. The results showed that the incorporation of RP in LCS improved the safety profile of the drug. In vitro antioxidant activity suggests that LCS presented a higher capacity to maintain the antioxidant activity of RP. PFS-based systems may be a promising platform for RP topical application for the treatment of skin aging.

  7. Effects of inhibition of serine palmitoyltransferase (SPT and sphingosine kinase 1 (SphK1 on palmitate induced insulin resistance in L6 myotubes.

    Directory of Open Access Journals (Sweden)

    Agnieszka Mikłosz

    Full Text Available BACKGROUND: The objective of this study was to examine the effects of short (2 h and prolonged (18 h inhibition of serine palmitoyltransferase (SPT and sphingosine kinase 1 (SphK1 on palmitate (PA induced insulin resistance in L6 myotubes. METHODS: L6 myotubes were treated simultaneously with either PA and myriocin (SPT inhibitor or PA and Ski II (SphK1inhibitor for different time periods (2 h and 18 h. Insulin stimulated glucose uptake was measured using radioactive isotope. Expression of insulin signaling proteins was determined using Western blot analyses. Intracellular sphingolipids content [sphinganine (SFA, ceramide (CER, sphingosine (SFO, sphingosine-1-phosphate (S1P] were estimated by HPLC. RESULTS: Our results revealed that both short and prolonged time of inhibition of SPT by myriocin was sufficient to prevent ceramide accumulation and simultaneously reverse palmitate induced inhibition of insulin-stimulated glucose transport. In contrast, prolonged inhibition of SphK1 intensified the effect of PA on insulin-stimulated glucose uptake and attenuated further the activity of insulin signaling proteins (pGSK3β/GSK3β ratio in L6 myotubes. These effects were related to the accumulation of sphingosine in palmitate treated myotubes. CONCLUSION: Myriocin is more effective in restoration of palmitate induced insulin resistance in L6 myocytes, despite of the time of SPT inhibition, comparing to SKII (a specific SphK1 inhibitor. Observed changes in insulin signaling proteins were related to the content of specific sphingolipids, namely to the reduction of ceramide. Interestingly, inactivation of SphK1 augmented the effect of PA induced insulin resistance in L6 myotubes, which was associated with further inhibition of insulin stimulated PKB and GSK3β phosphorylation, glucose uptake and the accumulation of sphingosine.

  8. Scientific Opinion on the substantiation of a health claim related to beta-palmitate and contribution to softening of stools pursuant to Article 14 of Regulation (EC No 1924/2006

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA

    2014-02-01

    Full Text Available Following an application from Specialised Nutrition Europe (formerly IDACE, submitted for authorisation of a health claim pursuant to Article 14 of Regulation (EC No 1924/2006 via the Competent Authority of France, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to deliver an opinion on the scientific substantiation of a health claim related to beta-palmitate and contribution to softening of stools. The food constituent, beta-palmitate, that is the subject of the health claim, is sufficiently characterised. Contribution to softening of stools is a beneficial physiological effect for infants. In weighing the evidence the Panel took into account that, out of two human intervention studies with important methodological limitations, one suggested a stool-softening effect of beta-palmitate whereas the second did not, that one animal study did not support a stool-softening effect of beta-palmitate, and that the evidence provided for a mechanism by which beta-palmitate could contribute to the softening of stools is weak. The Panel concludes that a cause and effect relationship has not been established between the consumption of beta-palmitate and softening of stools.

  9. Simultaneous determination of triamcinolone acetonide palmitate and triamcinolone acetonide in beagle dog plasma by UPLC-MS/MS and its application to a long-term pharmacokinetic study of triamcinolone acetonide palmitate lipid emulsion injection.

    Science.gov (United States)

    Liu, Hui; Yang, Mingjing; Wu, Panpan; Guan, Jiao; Men, Lei; Lin, Hongli; Tang, Xing; Zhao, Yunli; Yu, Zhiguo

    2015-02-01

    In order to investigate the pharmacokinetics of triamcinolone acetonide palmitate (TAP) which is a lipid-soluble prodrug of triamcinolone acetonide (TA), a rapid, simple, sensitive and reproducible UPLC-MS/MS method has been developed and validated for the simultaneous determination of TAP and TA in beagle dog plasma. After simple liquid-liquid extraction, the analytes and internal standard (dexamethasone, DEX) were separated on Phenomenex Luna C18 column (50 mm × 2.1mm, 1.7 μm) using a mobile phase consisting of solvent A (acetonitrile) and solvent B (0.1% ammonia solution) at a flow rate of 0.2 ml/min with gradient elution. Acquisition of mass spectrometric data was performed in multiple reaction monitoring (MRM) mode via positive electrospray ionization using the ion transitions of m/z 673.5→397.3, 435.3→415.3 and 393.3→355.3 for TAP, TA and IS, respectively. The method was of satisfactory specificity, sensitivity, precision and accuracy over the concentration range of 1-1,000 ng/ml for TAP and 0.5-500 ng/ml for TA. The intra- and inter-day precisions for both TAP and TA were 3.2% to 18.7% and the accuracy was in the range of -8.4% to 6.8%. The mean recoveries of TAP, TA and IS were 86.7-104.7%. The method was successfully applied to a long-term pharmacokinetic study of TAP and TA after 28-day repeated intravenous administration of TAP lipid emulsion injection to beagle dogs.

  10. Long-chain fatty acid combustion rate is associated with unique metabolite profiles in skeletal muscle mitochondria.

    Directory of Open Access Journals (Sweden)

    Erin L Seifert

    Full Text Available BACKGROUND/AIM: Incomplete or limited long-chain fatty acid (LCFA combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA beta-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. METHODOLOGY/PRINCIPAL FINDINGS: Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition. Three palmitate concentrations (2, 9 and 19 microM; corresponding to low, intermediate and high oxidation rates and 9 microM palmitate plus tricarboxylic acid (TCA cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. CONCLUSIONS/SIGNIFICANCE: This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules

  11. The effects of ascorbic acid on cartilage metabolism in guinea pig articular cartilage explants.

    Science.gov (United States)

    Clark, Amy G; Rohrbaugh, Amy L; Otterness, Ivan; Kraus, Virginia B

    2002-03-01

    Ascorbic acid has been associated with the slowing of osteoarthritis progression in guinea pig and man. The goal of this study was to evaluate transcriptional and translational regulation of cartilage matrix components by ascorbic acid. Guinea pig articular cartilage explants were grown in the presence of L-ascorbic acid (L-Asc), D-isoascorbic acid (D-Asc), sodium L-ascorbate (Na L-Asc), sodium D-isoascorbate (Na D-Asc), or ascorbyl-2-phosphate (A2P) to isolate and analyze the acidic and nutrient effects of ascorbic acid. Transcription of type II collagen, prolyl 4-hydroxylase (alpha subunit), and aggrecan increased in response to the antiscorbutic forms of ascorbic acid (L-Asc, Na L-Asc, and A2P) and was stereospecific to the L-forms. Collagen and aggrecan synthesis also increased in response to the antiscorbutic forms but only in the absence of acidity. All ascorbic acid forms tended to increase oxidative damage over control. This was especially true for the non-nutrient D-forms and the high dose L-Asc. Finally, we investigated the ability of chondrocytes to express the newly described sodium-dependent vitamin C transporters (SVCTs). We identified transcripts for SVCT2 but not SVCT1 in guinea pig cartilage explants. This represents the first characterization of SVCTs in chondrocytes. This study confirms that ascorbic acid stimulates collagen synthesis and in addition modestly stimulates aggrecan synthesis. These effects are exerted at both transcriptional and post-transcriptional levels. The stereospecificity of these effects is consistent with chondrocyte expression of SVCT2, shown previously to transport L-Asc more efficiently than D-Asc. Therefore, this transporter may be the primary mechanism by which the L-forms of ascorbic acid enter the chondrocyte to control matrix gene activity.

  12. Ellagic acid inhibits iron-mediated free radical formation

    Science.gov (United States)

    Dalvi, Luana T.; Moreira, Daniel C.; Andrade, Roberto; Ginani, Janini; Alonso, Antonio; Hermes-Lima, Marcelo

    2017-02-01

    Polyphenols are reported to have some health benefits, which are link to their antioxidant properties. In the case of ellagic acid (EA), there is evidence that it has free radical scavenger properties and that it is able to form complexes with metal ions. However, information on a possible link between the formation of iron-EA complexes and their interference in Haber-Weiss/Fenton reactions was not yet determined. Thus, the present study investigated the in vitro antioxidant mechanism of EA in a system containing ascorbate, Fe(III) and different iron ligands (EDTA, citrate and NTA). Iron-mediated oxidative degradation of 2-deoxyribose was poorly inhibited (by 12%) in the presence of EA (50 μM) and EDTA. When citrate or NTA - which form weak iron complexes - were used, the 2-deoxyribose protection increased to 89-97% and 45%, respectively. EA also presented equivalent inhibitory effects on iron-mediated oxygen uptake and ascorbyl radical formation. Spectral analyses of iron-EA complexes show that EA removes Fe(III) from EDTA within hours, and from citrate within 1 min. This difference in the rate of iron-EA complex formation may explain the antioxidant effects of EA. Furthermore, the EA antioxidant effectiveness was inversely proportional to the Fe(III) concentration, suggesting a competition with EDTA. In conclusion, the results indicate that EA may prevent in vitro free radical formation when it forms a complex with iron ions.

  13. Saturated fatty acids modulate autophagy's proteins in the hypothalamus.

    Science.gov (United States)

    Portovedo, Mariana; Ignacio-Souza, Letícia M; Bombassaro, Bruna; Coope, Andressa; Reginato, Andressa; Razolli, Daniela S; Torsoni, Márcio A; Torsoni, Adriana S; Leal, Raquel F; Velloso, Licio A; Milanski, Marciane

    2015-01-01

    Autophagy is an important process that regulates cellular homeostasis by degrading dysfunctional proteins, organelles and lipids. In this study, the hypothesis that obesity could lead to impairment in hypothalamic autophagy in mice was evaluated by examining the hypothalamic distribution and content of autophagic proteins in animal with obesity induced by 8 or 16 weeks high fat diet to induce obesity and in response to intracerebroventricular injections of palmitic acid. The results showed that chronic exposure to a high fat diet leads to an increased expression of inflammatory markers and downregulation of autophagic proteins. In obese mice, autophagic induction leads to the downregulation of proteins, such as JNK and Bax, which are involved in the stress pathways. In neuron cell-line, palmitate has a direct effect on autophagy even without inflammatory activity. Understanding the cellular and molecular bases of overnutrition is essential for identifying new diagnostic and therapeutic targets for obesity.

  14. Structure of a fatty acid-binding protein from Bacillus subtilis determined by sulfur-SAD phasing using in-house chromium radiation

    DEFF Research Database (Denmark)

    Nan, Jie; Zhou, Yanfeng; Yang, Cheng;

    2009-01-01

    electron-density map was obtained after density modification. The model of BsDegV was built automatically and a palmitate was found tightly bound in the active site. Sequence alignment and comparisons with other known DegV structures provided further insight into the specificity of fatty-acid selection...

  15. Crucial role for LKB1 to AMPKalpha2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes

    DEFF Research Database (Denmark)

    Habets, Daphna D. J.; Coumans, Will A.; El Hasnaoui, Mohammed;

    2009-01-01

    Enhanced contractile activity increases cardiac long-chain fatty acid (LCFA) uptake via translocation of CD36 to the sarcolemma, similarly to increase in glucose uptake via GLUT4 translocation. AMP-activated protein kinase (AMPK) is assumed to mediate contraction-induced LCFA utilization. However......, the stimulating effects of oligomycin and AICAR on palmitate and deoxyglucose uptake and palmitate oxidation were almost completely lost. Moreover, in AMPKalpha2- and LKB1-knockout cardiomyocytes, oligomycin-induced LCFA and deoxyglucose uptake were completely abolished. However, the stimulatory effect...... of dipyridamole on palmitate uptake and oxidation was preserved in AMPKalpha2-kinase-dead cardiomyocytes. In conclusion, in the heart there is a signaling axis consisting of LKB1 and AMPKalpha2 which activation results in enhanced LCFA utilization, similarly to enhanced glucose uptake. In addition, an unknown...

  16. Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: interaction with palmitate or lipopolysaccharide.

    Science.gov (United States)

    Gong, Yu; Ji, Yuejia; Liu, Fang; Li, Juan; Cao, Yi

    2016-11-15

    Recent studies showed that ZnO nanoparticles (NPs) might induce the toxicity to human endothelial cells. However, little is known about the interaction between ZnO NPs and circulatory components, which is likely to occur when NPs enter the blood. In this study, we evaluated ZnO NP-induced cytotoxicity, oxidative stress and inflammation in human umbilical vein endothelial cells (HUVECs), with the emphasis on the interaction with palmitate (PA) or lipopolysaccharide (LPS), because PA and LPS are normal components in human blood that increase in metabolic diseases. Overall, ZnO NPs induced cytotoxicity and intracellular reactive oxygen species (ROS) at a concentration of 32 μg ml(-1) , but did not significantly affect the release of inflammatory cytokines or adhesion of THP-1 monocytes to HUVECs. In addition, exposure to ZnO NPs dose-dependently promoted intracellular Zn ions in HUVECs. PA and LPS have different effects. Two hundred μm PA significantly induced cytotoxicity and THP-1 monocyte adhesion, but did not affect ROS or release of inflammatory cytokines. In contrast, 1 μg ml(-1) LPS significantly induced ROS, release of inflammatory cytokines and THP-1 monocyte adhesion, but not cytotoxicity. The presence of ZnO NPs did not significantly affect the toxicity induced by PA or LPS. In addition, the accumulation of Zn ions after ZnO NP exposure was not significantly affected by the presence of PA or LPS. We concluded that there was no interaction between ZnO NPs and PA or LPS on toxicity to HUVECs in vitro. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Aortic drug delivery of dexamethasone palmitate incorporated into lipid microspheres and its antiatherosclerotic effect in atherogenic mice.

    Science.gov (United States)

    Chono, Sumio; Tauchi, Yoshihiko; Morimoto, Kazuhiro

    2005-08-01

    In order to confirm the efficacy of dexamethasone (DXM) palmitate incorporated into lipid microspheres (d-lipo) on atherosclerosis, the aortic drug delivery by d-lipo and its antiatherosclerotic effect were investigated. In an in vitro uptake experiment, d-lipo or DXM was added to macrophages and foam cells, and then incubated for 1, 4, 8 and 24 h at 37 degrees C. The uptake of drug by these cells after addition of d-lipo was higher than that of DXM at each time point. In an in vitro pharmacological experiment, the macrophages and foam cells were incubated with d-lipo or DXM for 24 h at 37 degrees C. The inhibitory effect of d-lipo on cellular cholesterol ester (CE) accumulation in these cells was significantly more potent than that of DXM. In an in vivo pharmacokinetic experiment, d-lipo or DXM was intravenously administered to atherogenic mice, and then aorta was collected at 1, 8, and 24 h after administration. The aortic drug concentration after administration of d-lipo to atherogenic mice was higher than that of DXM at each time point. In an in vivo pharmacological experiment, d-lipo or DXM was intravenously administered to atherogenic mice once a week for 7 weeks. The inhibitory effect of d-lipo on the aortic CE accumulation in atherogenic mice was significantly more potent than that of DXM. These findings suggest that efficient drug delivery to the atherosclerotic lesions by d-lipo produces an excellent antiatherosclerotic effect at a lower dose. Therefore, d-lipo may be useful for the development of drug delivery systems for atherosclerotic therapy.

  18. Muscle cells challenged with saturated fatty acids mount an autonomous inflammatory response that activates macrophages

    Directory of Open Access Journals (Sweden)

    Pillon Nicolas J

    2012-10-01

    Full Text Available Abstract Obesity is associated with chronic low-grade inflammation. Within adipose tissue of mice fed a high fat diet, resident and infiltrating macrophages assume a pro-inflammatory phenotype characterized by the production of cytokines which in turn impact on the surrounding tissue. However, inflammation is not restricted to adipose tissue and high fat-feeding is responsible for a significant increase in pro-inflammatory cytokine expression in muscle. Although skeletal muscle is the major disposer of dietary glucose and a major determinant of glycemia, the origin and consequence of muscle inflammation in the development of insulin resistance are poorly understood. We used a cell culture approach to investigate the vectorial crosstalk between muscle cells and macrophages upon exposure to physiological, low levels of saturated and unsaturated fatty acids. Inflammatory pathway activation and cytokine expression were analyzed in L6 muscle cells expressing myc-tagged GLUT4 (L6GLUT4myc exposed to 0.2 mM palmitate or palmitoleate. Conditioned media thereof, free of fatty acids, were then tested for their ability to activate RAW264.7 macrophages. Palmitate -but not palmitoleate- induced IL-6, TNFα and CCL2 expression in muscle cells, through activation of the NF-κB pathway. Palmitate (0.2 mM alone did not induce insulin resistance in muscle cells, yet conditioned media from palmitate-challenged muscle cells selectively activated macrophages towards a pro-inflammatory phenotype. These results demonstrate that low concentrations of palmitate activate autonomous inflammation in muscle cells to release factors that turn macrophages pro-inflammatory. We hypothesize that saturated fat-induced, low-grade muscle cell inflammation may trigger resident skeletal muscle macrophage polarization, possibly contributing to insulin resistance in vivo.

  19. Active ingredients fatty acids as antibacterial agent from the brown algae Padina pavonica and Hormophysa triquetra

    Institute of Scientific and Technical Information of China (English)

    Gihan Ahmed El Shoubaky; Essam Abd El Rahman Salem

    2014-01-01

    Objective: To estimate the fatty acids content in the brown algae Padina pavonica (P. pavonica) and Hormophysa triquetra (H. triquetra) and evaluate their potential antimicrobial activity as bioactive compounds.Methods:The fatty acid compositions of the examined species were analyzed using gas chromatography-mass spectrometry. The antimicrobial activity of crude and fatty acids was assessed using the agar plug technique.Results:The fatty acids profile ranged from C8:0 to C20:4. Concentration of saturated fatty acids in P. pavonica was in the order palmitic>myristic>stearic whereas concentration of the unsaturated fatty acids was oleic acid>palmitoleic>9-cis-hexadecenoic>linoleic acid>α-linolenic>arachidonic> elaidic acid. H. triquetra contained high concentration of saturated fatty acids than those of P. pavonica which was in the order as follows: palmitic>margaric>myristic>nonadecyclic>stearic>caprylic>tridecylic>pentadecylic>lauric while the unsaturated fatty acids consisted of oleic>nonadecenoic>non adecadienoate>margaroleic. The crude and fatty acid extracts of H. triquetra and P. pavonica were biologically active on the tested pathogens. H.triquetra exhibited a larger inhibitory zone than P. pavonica. Conclusions: The brown algae P. pavonica and H. triquetra have high efficient amount of fatty acids and showed strong antibacterial activity, especially H. triquetra.

  20. The solid-liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids.

    Science.gov (United States)

    Costa, Mariana C; Sardo, Mariana; Rolemberg, Marlus P; Coutinho, João A P; Meirelles, Antonio J A; Ribeiro-Claro, Paulo; Krähenbühl, M A

    2009-08-01

    For the first time, the solid-liquid phase diagrams of five binary mixtures of saturated fatty acids are here presented. These mixtures are formed of caprylic acid (C(8:0))+capric acid (C(10:0)), capric acid (C(10:0))+lauric acid (C(12:0)), lauric acid (C(12:0))+myristic acid (C(14:0)), myristic acid (C(14:0))+palmitic acid (C(16:0)) and palmitic acid (C(16:0))+stearic acid (C(18:0)). The information used in these phase diagrams was obtained by differential scanning calorimetry (DSC), X-ray diffraction (XRD), FT-Raman spectrometry and polarized light microscopy, aiming at a complete understanding of the phase diagrams of the fatty acid mixtures. All of the phase diagrams reported here presented the same global behavior and it was shown that this was far more complex than previously imagined. They presented not only peritectic and eutectic reactions, but also metatectic reactions, due to solid-solid phase transitions common in fatty acids and regions of solid solution not previously reported. This work contributes to the elucidation of the phase behavior of these important biochemical molecules, with implications in various industrial applications.

  1. Effect of individual dietary fatty acids on postprandial activation of blood coagulation factor VII and fibrinolysis in healthy young men

    DEFF Research Database (Denmark)

    Tholstrup, T.; Miller, G.J.; Bysted, Anette

    2003-01-01

    ), a smaller increase in FVII:c (P tissue plasminogen activator concentrations (P = 0.028, diet effect), and a tendency to a greater postprandial decline in PAI-1 (P = 0.06, diet effect) compared with the unsaturated test fats (O, T, and L). The increase......Background: Hypertriglyceridemia may represent a procoagulant state involving disturbances to the hemostatic system. Plasminogen activator inhibitor type 1 (PAI-1) is increased in the presence of hypertriglyceridemia. Free fatty acids (FFAs) in plasma may promote factor VII (FVII) activation....... Objective: We tested the hypothesis that FVII activation would be less after consumption of saturated fatty acids than after other fatty acids. Design: The effects of 6 matching dietary test fats, rich in stearic (S), palmitic (P), palmitic + myristic (M), oleic (O), trans 18:1 (T), and linoleic (L) acid...

  2. Inhibitory Effect of Long-Chain Fatty Acids on Biogas Production and the Protective Effect of Membrane Bioreactor

    Science.gov (United States)

    Dasa, Kris Triwulan; Westman, Supansa Y.; Cahyanto, Muhammad Nur; Niklasson, Claes

    2016-01-01

    Anaerobic digestion of lipid-containing wastes for biogas production is often hampered by the inhibitory effect of long-chain fatty acids (LCFAs). In this study, the inhibitory effects of LCFAs (palmitic, stearic, and oleic acid) on biogas production as well as the protective effect of a membrane bioreactor (MBR) against LCFAs were examined in thermophilic batch digesters. The results showed that palmitic and oleic acid with concentrations of 3.0 and 4.5 g/L resulted in >50% inhibition on the biogas production, while stearic acid had an even stronger inhibitory effect. The encased cells in the MBR system were able to perform better in the presence of LCFAs. This system exhibited a significantly lower percentage of inhibition than the free cell system, not reaching over 50% at any LCFA concentration tested. PMID:27699172

  3. Effect of acute lindane and alcohol intoxication on serum concentration of enzymes and fatty acids in rats.

    Science.gov (United States)

    Radosavljević, T; Mladenović, D; Vucević, D; Petrović, J; Hrncić, D; Djuric, D; Loncar-Stevanović, H; Stanojlović, O

    2008-05-01

    This study examines possible synergistic effects of lindane and ethanol on inducing liver injury and serum fatty acid derangement in adult male Wistar rats. When administered together, ethanol and lindane-induced even more pronounced increase of alanine aminotransferase (165 +/- 10 U/L) and gamma-glutamyltranspeptidase activity (10.3 +/- 0.6 U/L) than after isolated administration of either substance. In addition, separate administration of lindane and ethanol was followed by a significant decrease of linoleic acid level in the serum (301 +/- 38 mg/L, 276 +/- 35 mg/L vs. 416 +/- 48 mg/L). However, when ethanol administration was followed by lindane injection, serum linoleic acid was at the similar level found in the control group (516 +/- 62 mg/L). Ethanol-treated rats that received lindane 30 min after ethanol administration have shown a marked increase of palmitic (421 +/- 27 mg/L) and linolic acid level (43 +/- 5 mg/L) in comparison with rats that have been treated only with ethanol (316+/-26 mg/L for palmitic and 32 +/- 2 mg/L for linolic acid) or lindane (295 +/- 26 mg/L for palmitic and 301 +/- 38 mg/L for linolic acid). Linolic acid level was significantly greater in comparison with control group (29 +/- 1 mg/L). In conclusion, this study found enough evidence to support the hypothesis that acute ethanol intoxication potentiates lindane-induced liver injury and enhances lipid derangement.

  4. Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ayorinde, F O; Garvin, K; Saeed, K

    2000-01-01

    A method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) for the determination of the fatty acid composition of vegetable oils is described and illustrated with the analysis of palm kernel oil, palm oil, olive oil, canola oil, soybean oil, vernonia oil, and castor oil. Solutions of the saponified oils, mixed with the matrix, meso-tetrakis(pentafluorophenyl)porphyrin, provided reproducible MALDI-TOF spectra in which the ions were dominated by sodiated sodium carboxylates [RCOONa + Na]+. Thus, palm kernel oil was found to contain capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid. Palm oil had a fatty acid profile including palmitic, linoleic, oleic, and stearic. The relative percentages of the fatty acids in olive oil were palmitoleic (1.2 +/- 0.5), palmitic (10.9 +/- 0.8), linoleic (0.6 +/- 0.1), linoleic (16.5 +/- 0.8), and oleic (70.5 +/- 1.2). For soybean oil, the relative percentages were: palmitoleic (0.4 +/- 0.4), palmitic (6.0 +/- 1.3), linolenic (14.5 +/- 1.8), linoleic (50.1 +/- 4.0), oleic (26.1 +/- 1.2), and stearic (2.2 +/- 0.7). This method was also applied to the analysis of two commercial soap formulations. The first soap gave a fatty acid profile that included: lauric (19.4% +/- 0.8), myristic (9.6% +/- 0.5), palmitoleic (1.9% +/- 0.3), palmitic (16.3% +/- 0.9), linoleic (5.6% +/- 0.4), oleic (37.1% +/- 0.8), and stearic (10.1% +/- 0.7) and that of the second soap was: lauric (9.3% +/- 0.3), myristic (3.8% +/- 0.5), palmitoleic (3.1% +/- 0.8), palmitic (19.4% +/- 0.8), linoleic (4.9% +/- 0.7), oleic (49.5% +/- 1.1), and stearic (10.0% +/- 0.9). The MALDI-TOFMS method described in this communication is simpler and less time-consuming than the established transesterification method that is coupled with analysis by gas chromatography/mass spectrometry (GC/MS). The new method could be used routinely to determine the qualitative fatty acid composition of vegetable oils

  5. Effects of fatty acid regulation on visfatin gene expression in adipocytes

    Institute of Scientific and Technical Information of China (English)

    WEN Yu; WANG Hong-wei; WU Jing; LU Hui-ling; HU Xiu-fen; Katherine Cianflone

    2006-01-01

    Background The levels of long-term elevated serum or intracellular free fatty acid (FFA) induce insulin resistance associated with central obesity. The insulin-mimetic protein visfatin is preferentially produced by visceral adipose tissues and has been implicated in obesity and insulin resistance. To identify that FFA is capable of inducing insulin resistance and to clarify the role of FFA on visfatin, we examined the effect of monounsaturated FFA oleate (C18:1) and saturated FFA palmitate (C16:0) on glucose transport and visfatin gene expression in cultured 3T3-L1 adipocytes or preadipocytes.Methods FFA-free DMEM/F12, 0.125 mmol/L, 0.5 mmol/1 and 1.0 mmol/L oleate or palmitate was added to cultured 3T3-L1 adipocytes or preadipocytes and incubated overnight. Glucose transport was assessed as 3H-2-deoxy-glucose uptake. Total RNA was extracted and subjected to RT-PCR for the measurement of visfatin mRNA levels. Statistical comparisons between control group and other groups were performed with the two-tailed paired t test, and one-way ANOVA was used to compare the mean values among the groups.Results Insulin increased specific membrane glucose transport in 3T3-L1 preadipocytes. Upregulation was evident from 15 minutes to 1 hour exposure to insulin. However, after 6-hour exposure to insulin, there was a downregulation in the response to insulin. Dose response studies demonstrated that 2-deoxy glucose transport was increased by 336% at 50 nmol/L insulin (P<0.01), and reached a maximal effect at 100 nmol/L insulin(P<0.01). Oleate and palmitate treatment did not influence basal glucose transport (without insulin stimulation),whereas insulin-stimulated glucose transport was inhibited after overnight oleate and palmitate treatment in preadipocytes and adipocytes. In 3T3-L1 preadipocytes, insulin resistance could be achieved at 0.125 mmol/L oleate or palmitate (P<0.05, respectively), and the inhibition was dose dependent. In adipocytes, the inhibition was noted at 0

  6. Evaluation of Fatty Acid and Amino Acid Compositions in Okra (Abelmoschus esculentus Grown in Different Geographical Locations

    Directory of Open Access Journals (Sweden)

    Rokayya Sami

    2013-01-01

    Full Text Available Okra has different uses as a food and a remedy in traditional medicine. Since it produces many seeds, distribution of the plant is also quite easy. Although seed oil yield is low (4.7%, since the linoleic acid composition of the seed oil is quiet high (67.5%, it can still be used as a source of (UNSAT unsaturated fatty acids. In this study, samples of okra grown in four different locations were analyzed to measure fatty acid and amino acid compositions. The content of the lipid extraction ranged from 4.34% to 4.52% on a dry weight basis. Quantitatively, the main okra fatty acids were palmitic acid (29.18–43.26%, linoleic acid (32.22–43.07%, linolenic acid (6.79–12.34%, stearic acid (6.36–7.73%, oleic acid (4.31–6.98%, arachidic acid (ND–3.48%, margaric acid (1.44–2.16%, pentadecylic acid (0.63–0.92%, and myristic acid (0.21–0.49%. Aspartic acid, proline, and glutamic acids were the main amino acids in okra pods, while cysteine and tyrosine were the minor amino acids. Statistical methods revealed how the fatty acid and amino acid contents in okra may be affected by the sampling location.

  7. [The fatty acids of membranes of erythrocytes in women with ischemic heart disease under effect of statins].

    Science.gov (United States)

    Dygaĭ, A M; Kotlovskiĭ, M Iu; Kirichenko, D A; Iakimovich, I Iu; Trereshina, D S; Kotlovskiĭ, Iu V; Titiov, V N

    2014-03-01

    The technique of evaluation of metabolism of fatty acids in vivo consists in detection of content of fatty acids in phospholipids of membranes of erythrocytes. The fatty acids are received with food, through synthesis on liver from carbohydrates and by katabolism of very long-chain polyolefinic fatty acids of food in peroxisomes of hepatocytes (oxidation, saturation and desaturation). In position sn-1 phospholipids more often than palmitic fatty acid (14%) stearic fatty acid is esterified (21% of all fatty acids). The palmitic, stearic and lignoceric saturated fatty acids are esterified into sn-1 phospholipids as 2:3:1. The simvastatin (80 mg per day) increased content of margarine, tricosanoic and hexacosanoic fatty acids by decrease of level of palmitic fatty acid. The ratio omega-3 polyolefinic fatty acids/omega-6 polyolefinic fatty acids reliably increased. The statins increase content of omega-3 polyolefinic fatty acids. In practice, it is necessary to differentiate the terms "atherosclerosis" and "atheromatosis". The atherosclerosis is a syndrome of intracellular deficiency of polyolefinic fatty acids, derangement of function of cells in vivo under decrease of biological availability for all cells (absorption blockage). The atheromatosis is such most significant clinically symptom of atherosclerosis as accumulation of non-saturated and polyolefinic fatty acids in pool of collection and utilization of biological "garbage" from blood plasma, in intima of elastic type arteries. The statins activate absorption of low density lipoproteins by cells and normalize biological availability of polyolefinic fatty acids which have a positive effect under atherosclerosis and on formation of atheromatosis.

  8. 萘-脂肪酸二元体系液相线%The liquidus of binary systems of naphthalene-fatty acid

    Institute of Scientific and Technical Information of China (English)

    金龙飞; 阮德水

    2001-01-01

    用目视变温法研究了萘-月桂酸、萘-肉豆蔻酸、萘-棕榈酸二元系的固液平衡.三个二元系均为低共熔型,低共熔点分别为:35 ℃,77.1%(wt)月桂酸;44 ℃,73.9%(wt)肉豆蔻酸;52 ℃,67.9%(wt)棕榈酸.%By means of the visual polythermal method,this paper studies the solid-liquid equilibria of binary mixtures of naphthalene-lauric acid,naphthalene-myristic acid and naphthalene-palmitic acid.The result is that the eatectics are 35℃,77.1%(wt) lauric acid,44℃,73.9%(wt) myristic acid,52℃,67.9%(wt) palmitic acid for naphthalene-lauric acid,naphhtalene-myristic acid and naphthalene-palmitic acid,respectively.

  9. Determination of fruit characteristics, fatty acid profile and total antioxidant capacity of Mespilus germanica L. fruit

    Directory of Open Access Journals (Sweden)

    Hale Seçilmiş Canbay

    2015-11-01

    Full Text Available Objective: To determine fruit characteristics, fatty acid profile and total antioxidant capacitiy of first cultured Mespilus germanica L. Methods: A total of 15 fruits were taken randomly from four directions of adult trees. Then the physical and chemical properties of first cultured medlar fruit (Istanbul/Turkey were measured by using refractometer, colorimeter, spectrophotometer and gas chromatograph mass spectrometer, respectivly. Results: In the fruit studied, the results showed that palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid and behenic acid were the most abundant fatty acids (FAs, and the main FA was palmitic acid [(35.35 ± 1.20%]. The percentage of linoleic acid and stearic acid in this fruit oil were (29.10 ± 1.70% and (8.53 ± 0.25%, respectively. As a result of the analysis, the total antioxidant capacity of medlar fruit was (1.1 ± 0.2 mmol trolox equivalents/L. Conclusions: The present study has demonstrated the concentrations of FAs and the antioxidantive capacity of first cultured Istanbul medlar fruits by using many tested methods. It is proved that in our daily life, medlar fruit plays a significant role with its nutrition and health effect.

  10. Minor seed oils. XV. Physico-chemical characteristics and fatty acid composition of four seed oils. [Cucumis melo, Duabanga sonneratioides, Khaya senegalensis, Melia umbraculiformis

    Energy Technology Data Exchange (ETDEWEB)

    Badami, R.C.; Patil, K.B.; Gayathri, K.; Alagawadi, K.R.

    1985-01-01

    The oil contents of the seeds of Cucumis melo, Duabanga sonneratioides, Khaya senegalensis and Melia umbraculiformis were 50.1, 13.3, 66.6 and 6.6%, respectively. K. senegalensis oil was rich in oleic acid (66.2%) while the other seed oils were rich in linoleic acid (58-68%). Palmitic and stearic acids constituted the major saturated acids. D. sonneratioides and M. umbraculiformis contained small amounts of lower saturated acids. All four oils contained small amounts of arachidic and behenic acids. No new fatty acids were detected. 8 references.

  11. Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score of three Mediterranean cephalopods.

    Science.gov (United States)

    Zlatanos, Spiros; Laskaridis, Kostas; Feist, Christian; Sagredos, Angelos

    2006-10-01

    Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score (PDCAAS) in three commercially important cephalopods of the Mediterranean sea (cuttlefish, octopus and squid) were determined. The results of the proximate analysis showed that these species had very high protein:fat ratios similar to lean beef. Docosahexaenoic, palmitic and eicosipentaenoic acid were the most abundant fatty acids among analyzed species. The amount of n-3 fatty acids was higher than that of saturated, monounsaturated and n-6 fatty acids. Despite the fact that cephalopods contain small amounts of fat they were found quite rich in n-3 fatty acids. Finally, PDCAAS indicated that these organisms had a very good protein quality.

  12. Effect of dietary fatty acids on the postprandial fatty acid composition of triacylglycerol-rich lipoproteins in healthy male subjects

    DEFF Research Database (Denmark)

    Bysted, Anette; Holmer, G.; Lund, Pia

    2005-01-01

    positions in accordance with the distributions in test fats. Calculations of postprandial TAG concentrations from fatty acid data revealed increasing amounts up to 4 h but lower response curves (IAUC) for the two saturated fats in accordance with previous published data. The T fat gave results comparable......Objective: The aim of the present study was to investigate the effect of trans-18: 1 isomers compared to other fatty acids, especially saturates, on the postprandial fatty acid composition of triacylglycerols ( TAG) in chylomicrons and VLDL. Design: A randomised crossover experiment where five...... interesterified test fats with equal amounts of palmitic acid ( P fat), stearic acid (S fat), trans-18: 1 isomers (T fat), oleic acid (O fat), or linoleic acid (L fat) were tested. Subjects: A total of 16 healthy, normolipidaemic males ( age 23 +/- 2 y) were recruited. Interventions: The participants ingested fat...

  13. Direct Inhibition of Cellular Fatty Acid Synthase Impairs Replication of Respiratory Syncytial Virus and Other Respiratory Viruses.

    Directory of Open Access Journals (Sweden)

    Yamini M Ohol

    Full Text Available Fatty acid synthase (FASN catalyzes the de novo synthesis of palmitate, a fatty acid utilized for synthesis of more complex fatty acids, plasma membrane structure, and post-translational palmitoylation of host and viral proteins. We have developed a potent inhibitor of FASN (TVB-3166 that reduces the production of respiratory syncytial virus (RSV progeny in vitro from infected human lung epithelial cells (A549 and in vivo from mice challenged intranasally with RSV. Addition of TVB-3166 to the culture medium of RSV-infected A549 cells reduces viral spread without inducing cytopathic effects. The antiviral effect of the FASN inhibitor is a direct consequence of reducing de novo palmitate synthesis; similar doses are required for both antiviral activity and inhibition of palmitate production, and the addition of exogenous palmitate to TVB-3166-treated cells restores RSV production. TVB-3166 has minimal effect on RSV entry but significantly reduces viral RNA replication, protein levels, viral particle formation and infectivity of released viral particles. TVB-3166 substantially impacts viral replication, reducing production of infectious progeny 250-fold. In vivo, oral administration of TVB-3166 to RSV-A (Long-infected BALB/c mice on normal chow, starting either on the day of infection or one day post-infection, reduces RSV lung titers 21-fold and 9-fold respectively. Further, TVB-3166 also inhibits the production of RSV B, human parainfluenza 3 (PIV3, and human rhinovirus 16 (HRV16 progeny from A549, HEp2 and HeLa cells respectively. Thus, inhibition of FASN and palmitate synthesis by TVB-3166 significantly reduces RSV progeny both in vitro and in vivo and has broad-spectrum activity against other respiratory viruses. FASN inhibition may alter the composition of regions of the host cell membrane where RSV assembly or replication occurs, or change the membrane composition of RSV progeny particles, decreasing their infectivity.

  14. Omega-3 fatty acids in baked freshwater fish from south of Brazil.

    Science.gov (United States)

    Andrade, A D; Visentainer, J V; Matsushita, M; de Souza, N E

    1997-03-01

    Lipid and fatty acid levels in the edible flesh of 17 baked freshwater fish from Brazil's southern region were determined. Analyses of fatty acids methyl esters were performed by gas chromatography. Palmitic acid (C16:0) was the predominant saturated fatty acid, accouting for 50-70% of total saturated acids. Linoleic acid (C18:2 omega 6), linolenic acid (C18:3 omega 3), and docosahexaenoic acid (C22:6 omega 3) were the predominant polyunsatured fatty acids (PUFA). The data revealed that species such as barbado, corvina, pintado, and truta were good sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and that most freshwater fish examined were good sources of PUFA-omega 3.

  15. The solubilization of fatty acids in systems based on block copolymers and nonionic surfactants

    Science.gov (United States)

    Mirgorodskaya, A. B.; Yatskevich, E. I.; Zakharova, L. Ya.

    2010-12-01

    The solubilizing action of micellar, microemulsion, and polymer-colloid systems formed on the basis of biologically compatible amphiphilic polymers and nonionic surfactants on capric, lauric, palmitic, and stearic acids was characterized quantitatively. Systems based on micelle forming oxyethyl compounds increased the solubility of fatty acids by more than an order of magnitude. Acid molecules incorporated into micelles increased their size and caused structural changes. Solubilization was accompanied by complete or partial destruction of intrinsic acid associates and an increase in their p K a by 1.5-2 units compared with water.

  16. Gasoline and gaseous hydrocarbons from fatty acids via catalytic cracking

    Energy Technology Data Exchange (ETDEWEB)

    Bielansky, Peter; Weinert, Alexander; Schoenberger, Christoph; Reichhold, Alexander [Institute for Chemical Engineering, Vienna University of Technology, Vienna (Austria)

    2012-03-15

    The conversion of palmitic and oleic acid as well as tall oil fatty acid was investigated in a fully continuous small scale fluid catalytic cracking (FCC) pilot plant. A conventional FCC zeolite catalyst was used. Experiments were performed in the range of 485-550 C. The highest gasoline yield of 44 wt.% was obtained from oleic acid at 550 C. Palmitic acid yielded the most cracking gas at 550 C with 43.9 wt.%. The obtained gasoline was practically oxygen-free at high octane numbers. Oxygen contained in the feed was mainly converted to water and small amounts of CO{sub 2}. Gasoline aromaticity clearly increased with temperature. The formation of high boiling products was enhanced by the number of C=C double bonds in the fatty acids. Large amounts of propene and ethene were formed which are valuable reactants for the polymer industry. The lower price of fatty acids in comparison with fresh vegetable oils makes them an interesting feedstock for the FCC process. (orig.)

  17. Oils of insects and larvae consumed in Africa: potential sources of polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Womeni Hilaire Macaire

    2009-07-01

    Full Text Available The objective of this paper is to present the beneficial aspects of some insects consumed in sub-Saharan Africa, based on examples of insects consumed in Cameroon, to present their potential as sources of lipids and essential fatty acids. In Africa, termites, larvae of raphia weevil, caterpillars, crickets, bees, maggots, butterflies, weevil, etc. are significant sources of food. These insects belong mainly to the orders of : Isoptera, Orthoptera, Dictyoptera, Coleoptera, Hymenoptera, Lepidoptera and Diptera. Depending on the species, insects are rich in proteins, minerals (K, Ca, Mg, Zn, P, Fe and/or vitamins (thiamine/B1, riboflavine/B2, pyridoxine/B6, acid pantothenic, niacin. The composition of oils extracted from the following six insects consumed in Cameroon was investigated : larvaes of raphia weevil (Rhynchophorus phoenicis, crickets (Homorocoryphus nitidulus, grasshopper (Zonocerus variegates, termites (Macrotermes sp., a variety of caterpillars (Imbrasia sp. and an unidentified caterpillar from the forest (UI carterpillar. The extraction yields of oil were 53.75%, 67.25%, 9.12%, 49.35%, 24.44% and 20.17% respectively for raphia weevil larvae, crickets, devastating crickets, termites, Imbrasia and UI caterpillar. The oil from raphia weevil mainly contains 37.60% of palmitoleic acid and 45.46% of linoleic acid. The oil from crickets is principally made up of palmitoleic acid (27.59%, linoleic acid (45.63% and α-linolenic acid (16.19%. The oil from grasshoppers is composed of palmitoleic acid (23.83%, oleic acid (10.71%, linoleic acid (21.07%, α-linolenic acid (14.76% and γ-linolenic acid (22.54%. The main components of termite oil are : palmitic acid (30.47%, oleic acid (47.52% and linoleic acid (8.79%. Palmitic acid (36.08% and linolenic acid (38.01% are the two dominant fatty acids of Imbrasia oil. As Imbrasia oil, UI caterpillar oil is composed of palmitic acid (30.80% and linolenic acid (41.79%. Stearic acid (7.04%, oleic acid

  18. Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and Their Relevance for the Interpretation of Lipidomic Profiles

    OpenAIRE

    Anna Sansone; Evanthia Tolika; Maria Louka; Valentina Sunda; Simone Deplano; Michele Melchiorre; Dimitrios Anagnostopoulos; Chryssostomos Chatgilialoglu; Cesare Formisano; Rosa Di Micco; Maria Rosaria Faraone Mennella; Carla Ferreri

    2016-01-01

    Monounsaturated fatty acids (MUFA) are emerging health biomarkers, and in particular the ratio between palmitoleic acid (9cis-16:1) and palmitic acid (16:0) affords the delta-9 desaturase index that is increased in obesity. Recently, other positional and geometrical MUFA isomers belonging to the hexadecenoic family (C16 MUFA) were found in circulating lipids, such as sapienic acid (6cis-16:1), palmitelaidic acid (9trans-16:1) and 6trans-16:1. In this work we report: i) the identification of s...

  19. Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil.

    Science.gov (United States)

    Yang, Cuiyue; Nie, Renfeng; Fu, Jie; Hou, Zhaoyin; Lu, Xiuyang

    2013-10-01

    A series of fatty acids in microalgae oil, such as stearic acid, palmitic acid, lauric acid, myristic acid, arachidic acid and behenic acid, were selected as the raw materials to produce aviation fuel via hydrothermal decarboxylation over a multi-wall carbon nanotube supported Pt catalyst (Pt/MWCNTs). It was found that Pt/MWCNTs catalysts exhibited higher activity for the hydrothermal decarboxylation of stearic acid with a 97% selectivity toward heptadecane compared to Pt/C and Ru/C under the same conditions. And Pt/MWCNTs is also capable for the decarboxylation of different fatty acids in microalgae oil. The reaction conditions, such as Pt/MWCNTs loading amount, reaction temperature and time were optimized. The activation energy of stearic acid decarboxylation over Pt/MWCNTs was calculated (114 kJ/mol).

  20. Relationship between plasma free fatty acid, intramyocellular triglycerides and long-chain acylcarnitines in resting humans

    Science.gov (United States)

    Kanaley, Jill A; Shadid, Samyah; Sheehan, Michael T; Guo, ZengKui; Jensen, Michael D

    2009-01-01

    We hypothesized that plasma non-esterified fatty acids (NEFA) are trafficked directly to intramyocellular long-chain acylcarnitines (imLCAC) rather than transiting intramyocellular triglycerides (imTG) on the way to resting muscle fatty acid oxidation. Overnight fasted adults (n= 61) received intravenous infusions of [U-13C]palmitate (0400–0830 h) and [U-13C]oleate (0800–1400 h) labelling plasma NEFA, imTG, imLCAC and im-non-esterified FA (imNEFA). Two muscle biopsies (0830 and 1400 h) were performed following 6 h, overlapping, sequential palmitate/oleate tracer infusions. Enrichment of plasma palmitate was ∼15 times greater than enrichment of imTG, imNEFA-palmitate and im-palmitoyl-carnitine. Fatty acid enrichment in LCAC was correlated with imTG and imNEFA; there was a significant correlation between imTG concentrations and imLCAC concentrations in women (r= 0.51, P= 0.005), but not men (r= 0.30, P= 0.11). We estimated that ∼11% of NEFA were stored in imTG. imTG NEFA storage was correlated only with NEFA concentrations (r= 0.52, P= 0.004) in women and with (r= 0.45, P= 0.02) in men. At rest, plasma NEFA are trafficked largely to imTG before they enter LCAC oxidative pools; thus, imTG are an important, central pool that regulates the delivery of fatty acids to the intracellular environment. Factors relating to plasma NEFA storage into imTG differ in men and women. PMID:19858228

  1. Surface and interlayer base-characters in lepidocrocite titanate: The adsorption and intercalation of fatty acid

    Science.gov (United States)

    Maluangnont, Tosapol; Arsa, Pornanan; Limsakul, Kanokporn; Juntarachairot, Songsit; Sangsan, Saithong; Gotoh, Kazuma; Sooknoi, Tawan

    2016-06-01

    While layered double hydroxides (LDHs) with positively-charged sheets are well known as basic materials, layered metal oxides having negatively-charged sheets are not generally recognized so. In this article, the surface and interlayer base-characters of O2- sites in layered metal oxides have been demonstrated, taking lepidocrocite titanate K0.8Zn0.4Ti1.6O4 as an example. The low basicity (0.04 mmol CO2/g) and low desorption temperature (50-300 °C) shown by CO2- TPD suggests that O2- sites at the external surfaces is weakly basic, while those at the interlayer space are mostly inaccessible to CO2. The liquid-phase adsorption study, however, revealed the uptake as much as 37% by mass of the bulky palmitic acid (C16 acid). The accompanying expansion of the interlayer space by ~0.1 nm was detected by PXRD and TEM. In an opposite manner to the external surfaces, the interlayer O2- sites can deprotonate palmitic acid, forming the salt (i.e., potassium palmitate) occluded between the sheets. Two types of basic sites are proposed based on ultrafast 1H MAS NMR and FTIR results. The interlayer basic sites in lepidocrocite titanate leads to an application of this material as a selective and stable two-dimensional (2D) basic catalyst, as demonstrated by the ketonization of palmitic acid into palmitone (C31 ketone). Tuning of the catalytic activity by varying the type of metal (Zn, Mg, and Li) substituting at TiIV sites was also illustrated.

  2. 长链脂肪酸系列固-液相变动力学的研究%Kinetic Study of Solid-liquid Phase Change in Fatty Acids

    Institute of Scientific and Technical Information of China (English)

    王红; 张建军; 武克忠; 刘晓地; 张建玲

    2000-01-01

    The solid-liquid phase change kinetics in Capric,Lauric and Palmitic acid has been studied by DSC. Kissinger and Ozawa methods have been applied to determine the activation energy and reaction order of solid-liquid phase change. The results from two methods are in agreement.

  3. Susceptibility of pancreatic beta cells to fatty acids is regulated by LXR/PPARalpha-dependent stearoyl-coenzyme A desaturase.

    Directory of Open Access Journals (Sweden)

    Karine H Hellemans

    Full Text Available Chronically elevated levels of fatty acids-FA can cause beta cell death in vitro. Beta cells vary in their individual susceptibility to FA-toxicity. Rat beta cells were previously shown to better resist FA-toxicity in conditions that increased triglyceride formation or mitochondrial and peroxisomal FA-oxidation, possibly reducing cytoplasmic levels of toxic FA-moieties. We now show that stearoyl-CoA desaturase-SCD is involved in this cytoprotective mechanism through its ability to transfer saturated FA into monounsaturated FA that are incorporated in lipids. In purified beta cells, SCD expression was induced by LXR- and PPARalpha-agonists, which were found to protect rat, mouse and human beta cells against palmitate toxicity. When their SCD was inhibited or silenced, the agonist-induced protection was also suppressed. A correlation between beta cell-SCD expression and susceptibility to palmitate was also found in beta cell preparations isolated from different rodent models. In mice with LXR-deletion (LXRbeta(-/- and LXRalphabeta(-/-, beta cells presented a reduced SCD-expression as well as an increased susceptibility to palmitate-toxicity, which could not be counteracted by LXR or PPARalpha agonists. In Zucker fatty rats and in rats treated with the LXR-agonist TO1317, beta cells show an increased SCD-expression and lower palmitate-toxicity. In the normal rat beta cell population, the subpopulation with lower metabolic responsiveness to glucose exhibits a lower SCD1 expression and a higher susceptibility to palmitate toxicity. These data demonstrate that the beta cell susceptibility to saturated fatty acids can be reduced by stearoyl-coA desaturase, which upon stimulation by LXR and PPARalpha agonists favors their desaturation and subsequent incorporation in neutral lipids.

  4. Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes.

    Science.gov (United States)

    Mei, Shuang; Ni, Hong-Min; Manley, Sharon; Bockus, Abigail; Kassel, Karen M; Luyendyk, James P; Copple, Bryan L; Ding, Wen-Xing

    2011-11-01

    Fatty acid-induced lipotoxicity plays a critical role in the pathogenesis of nonalcoholic liver disease. Saturated fatty acids and unsaturated fatty acids have differential effects on cell death and steatosis, but the mechanisms responsible for these differences are not known. Using cultured HepG2 cells and primary mouse hepatocytes, we found that unsaturated and saturated fatty acids differentially regulate autophagy and apoptosis. The unsaturated fatty acid, oleic acid, promoted the formation of triglyceride-enriched lipid droplets and induced autophagy but had a minimal effect on apoptosis. In contrast, the saturated fatty acid, palmitic acid, was poorly converted into triglyceride-enriched lipid droplets, suppressed autophagy, and significantly induced apoptosis. Subsequent studies revealed that palmitic acid-induced apoptosis suppressed autophagy by inducing caspase-dependent Beclin 1 cleavage, indicating cross-talk between apoptosis and autophagy. Moreover, our data suggest that the formation of triglyceride-enriched lipid droplets and induction of autophagy are protective mechanisms against fatty acid-induced lipotoxicity. In line with our in vitro findings, we found that high-fat diet-induced hepatic steatosis was associated with autophagy in the mouse liver. Potential modulation of autophagy may be a novel approach that has therapeutic benefits for obesity-induced steatosis and liver injury.

  5. Effects of variations in the proportions of saturated, monosaturated and polynsaturated fatty acids in the rat diet upon spleen lymphocyte functions

    OpenAIRE

    Jeffery, N. M.; M. Cortina-Borja; Newsholme, E A; Calder, P. C.

    1997-01-01

    To obtain further information about the immunomodulatory effects of specific dietary fatty acids, weanling male rats were fed for 6 weeks on high-fat (178 g/kg) diets which differed according to the principal fatty acids present. The nine diets used differed in their contents of palmitic, oleic, linoleic and α-linolenic acids; as a result the total polyunsaturated fatty acid (PUFA) content and the PUFA: saturated fatty acid ratio varied (from 17·8 to 58·5 g/lW g fatty acids and from 0·28 to 5...

  6. [Effect of the B-group vitamin complex on the blood content of saturated and unsaturated fatty acids in patients with ischemic heart disease and hypertension].

    Science.gov (United States)

    Vodoevich, V P; Buko, V U

    1986-01-01

    Gas-liquid chromatography was used to study the blood content of saturated and unsaturated fatty acids, under the influence of the functionally-associated vitamin-B complex, in 45 patients with coronary heart disease and essential hypertension. The vitamins were given daily in the following doses: thiamine diphosphate 50 mg, riboflavine 40 mg, calcium pantothenate 200 mg, nicotinic acid 200 mg and lipoic acid 50 mg. Favourable shifts leading to positive clinical effects were recorded in the fatty acid metabolism after 10-day taking the vitamin-B complex: the content of unsaturated (linoleic and arachidonic) fatty acids increased while that of saturated (stearic and palmitic) fatty acids decreased.

  7. Functional properties and fatty acids profile of different beans varieties.

    Science.gov (United States)

    Lo Turco, Vincenzo; Potortì, Angela Giorgia; Rando, Rossana; Ravenda, Pietro; Dugo, Giacomo; Di Bella, Giuseppa

    2016-10-01

    Dried seeds of four varieties of Phaseolus vulgaris, three of Vigna unguiculata ssp. unguiculata and two of Vigna angularis grown and marketed in Italy, Mexico, India, Japan, Ghana and Ivory Coast were analysed for fatty acids content. In oils from seeds of P. vulgaris, the main fatty acids were linolenic (34.7-41.5%) and linoleic (30.7-40.3%), followed by palmitic (10.7-16.8%). The first three aforementioned fatty acids in the lipid fraction of V. unguiculata varieties were 28.4, 28.7 and 26.2%, respectively; while in V. angularis varieties, main fatty acids were linoleic (36.4-39.1%) and palmitic (26.9-33.3%), followed by linolenic (17.9-22.2%). Statistical analyses indicate that botanical species play a rule in bean fatty acids distribution, while the same was not verified for geographical origin. Furthermore, the atherogenic index (AI) and the thrombogenic index (TI) were investigated for health and nutritional information. The results showed that these wide spread legumes have functional features to human health.

  8. The low levels of eicosapentaenoic acid in rat brain phospholipids are maintained via multiple redundant mechanisms.

    Science.gov (United States)

    Chen, Chuck T; Domenichiello, Anthony F; Trépanier, Marc-Olivier; Liu, Zhen; Masoodi, Mojgan; Bazinet, Richard P

    2013-09-01

    Brain eicosapentaenoic acid (EPA) levels are 250- to 300-fold lower than docosahexaenoic acid (DHA), at least partly, because EPA is rapidly β-oxidized and lost from brain phospholipids. Therefore, we examined if β-oxidation was necessary for maintaining low EPA levels by inhibiting β-oxidation with methyl palmoxirate (MEP). Furthermore, because other metabolic differences between DHA and EPA may also contribute to their vastly different levels, this study aimed to quantify the incorporation and turnover of DHA and EPA into brain phospholipids. Fifteen-week-old rats were subjected to vehicle or MEP prior to a 5 min intravenous infusion of (14)C-palmitate, (14)C-DHA, or (14)C-EPA. MEP reduced the radioactivity of brain aqueous fractions for (14)C-palmitate-, (14)C-EPA-, and (14)C-DHA-infused rats by 74, 54, and 23%, respectively; while it increased the net rate of incorporation of plasma unesterified palmitate into choline glycerophospholipids and phosphatidylinositol and EPA into ethanolamine glycerophospholipids and phosphatidylserine. MEP also increased the synthesis of n-3 docosapentaenoic acid (n-3 DPA) from EPA. Moreover, the recycling of EPA into brain phospholipids was 154-fold lower than DHA. Therefore, the low levels of EPA in the brain are maintained by multiple redundant pathways including β-oxidation, decreased incorporation from plasma unesterified FA pool, elongation/desaturation to n-3 DPA, and lower recycling within brain phospholipids.

  9. Increasing fatty acid oxidation remodels the hypothalamic neurometabolome to mitigate stress and inflammation.

    Directory of Open Access Journals (Sweden)

    Joseph W McFadden

    Full Text Available Modification of hypothalamic fatty acid (FA metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1 and fatty acid oxidation (FAOx, exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS, and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.

  10. Determination of Fatty Acid in Asparagus by Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Zehra HAJRULAI-MUSLIU

    2016-05-01

    Full Text Available Asparagus contain a lot of macronutrients and micronutrients including folate, dietary fibre (soluble and insoluble and phenolic compounds. Also asparagus is a good source of unsaturated linoleic and linolenic fatty acids which are precursors for Eicosapentanoic acid (EPA and Docosahexanoic acid (DHA. Unsaturated fatty acids have important biological effects and they have important role in human health. The objective of this study was to analyze fatty acid composition of asparagus as a potential source of linoleic and linolenic acid - a precursor for EPA and DHA. For this reason we analyzed fifty seven samples of asparagus collected from the local market. We used AOAC 996.06 method and analyses were performed with gas chromatograph with flame-ionization detector (GC-FID. The highest concentration of fatty acid in the asparagus was linoleic acid (C18:2n6 which content in asparagus is 25.620±1.0%. Also, asparagus is good source of -linolenic fatty acid (C18:3n3 and content of this fatty acid in asparagus is 8.840±0.3%. The omega-6 to omega-3 (n6/n3 ratio in asparagus was 3.19. Polyunsaturated fatty acids (PUFAs were higher than monounsaturated fatty acids (MUFAs, and from saturated fatty acids, palmitic acid was most frequent with 24.324±1.0%. From our study we can conclude that asparagus is very good source of unsaturated fatty acids, especially linoleic and linolenic fatty acids.

  11. Differential effects of fatty acids on glycolysis and glycogen metabolism in vascular smooth muscle.

    Science.gov (United States)

    Barron, J T; Kopp, S J; Tow, J P; Parrillo, J E

    1991-07-10

    The effects of fatty acids of different chain lengths on aerobic glycolysis, lactic acid production, glycogen metabolism and contractile function of vascular smooth muscle were investigated. Porcine carotid artery segments were treated with 50 microM iodoacetate and perchloric acid tissue extracts were then analyzed by 31P-NMR spectroscopy to observe the accumulation of phosphorylated glycolytic intermediates so that the activity of the Embden-Myerhof pathway could be tracked under various experimental paradigms. Aerobic glycolysis and lactate production in resting arteries were almost completely inhibited with 0.5 mM octanoate, partially inhibited with 0.5 mM acetate and unaffected by 0.5 mM palmitate. Inhibition of glycolysis by octanoate was not attributable to inhibition of glucose uptake or glucose phosphorylation. Basal glycogen synthesis was unchanged with palmitate and acetate, but was inhibited by 52% with octanoate incubation. The characteristic glycogenolysis which occurs upon isometric contraction with 80 mM KCl in the absence of fatty acid in the medium was not demonstrable in the presence of any of the fatty acids tested. Glycogen sparing was also demonstrable in norepinephrine contractions with octanoate and acetate, but not with palmitate. Additionally, norepinephrine-stimulated isometric contraction was associated with enhanced synthesis of glycogen amounting to 6-times the basal rate in medium containing octanoate. Contractile responses to norepinephrine were attenuated by 20% in media containing fatty acids. Thus, fatty acids significantly alter metabolism and contractility of vascular smooth muscle. Fatty acids of different chain lengths affect smooth muscle differentially; the pattern of substrate utilization during contraction depends on the contractile agonist and the fatty acid present in the medium.

  12. Effects of linoleic and gamma-linolenic acids (efamol evening primrose oil) on fatty acid-binding proteins of rat liver.

    Science.gov (United States)

    Dutta-Roy, A K; Demarco, A C; Raha, S K; Shay, J; Garvey, M; Horrobin, D F

    We have studied the effects of Efamol evening primrose oil (EPO) on fatty acid-binding proteins (L-FABP) of rat liver. EPO contains 72% cis-linoleic acid and 9% cis-gamma linolenic acid. EPO has been clinically used for treatment of a number of diseases in humans and animals. EPO is also known to lower cholesterol level in humans and animals. Feeding of an EPO supplemented diet to rats (n = 9) for 2 months decreases the oleate binding capacity of purified L-FABP of rat liver whereas the palmitate binding activity was increased by 38%. However, EPO feeding did not alter the L-FABP concentrations significantly as measured by using the fluorescence fatty acid probe, dansylamino undecanoic acid. Endogenous fatty acid analysis of L-FABPs revealed significant qualitative and quantitative changes in fatty acid pattern after EPO feeding. EPO feeding decreased the endogenous palmitate level by 53% and oleate level by 64% in L-FABPs and also EPO feeding decreased the total endogenous fatty acid content from 62 nanomole per mg of protein to 42 nanomole per mg of L-FABP (n = 3).

  13. The application of hydrogen-palladium electrode for potentiometric acid-base determinations in tetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Jokić Anja B.

    2013-01-01

    Full Text Available The application of the hydrogen-palladium electrode (H2/Pd as the indicator electrode for the determination of relative acidity scale (Es, mV of tetrahydrofuran (THF and the potentiometric titrations of acids in this solvent was investigated. The relative acidity scale tetrahydrofuran was determined from the difference half-neutralization potentials of perchloric acid and tetrabutylammonium hydroxide (TBAH, which were measured by using both H2/Pd-SCE and glass-SCE electrode pairs. The experimentally obtained value of Es scale THF with a H2/Pd-SCE electrode pair was 1155 mV, and those obtained with glass-SCE electrode pair 880 mV. By using a H2/Pd indicator electrode, the individual acids (benzoic acid, palmitic acid, maleic acid, acetyl acetone, α-naphthol and two component acid mixtures (benzoic acid + α-naphthol, palmitic acid + α-naphthol, maleic acid + α-naphthol and maleic acid + ftalic acid were titrated with a standard solution of TBAH. In addition, sodium methylate and potassium hydroxide proved to be very suitable titrating agents for titrating of the individual acids and the acids in mixtures, respectively. The relative error of the determination of acids in mixture was less than 3%. The results are in agreement with those obtained by a conventional glass electrode. The advantages of H2/Pd electrode over a glass electrode in potentiometric acid-base determinations in tetrahydrofuran lie in the following: this electrode gives wider relative acidity scale THF, higher the potential jumps at the titration end-point and relatively fast response time; furthermore, it is very durable, simple to prepare and can be used in the titrations of small volumes. [Projekat Ministarstva nauke Republike Srbije, br.172051

  14. Oil and fatty acid accumulation during coriander (Coriandrum sativum L.) fruit ripening under organic cultivation

    Institute of Scientific and Technical Information of China (English)

    Quang-Hung Nguyen; Thierry Talou; Mureil Cerny; Philippe Evon; Othmane Merah

    2015-01-01

    To evaluate the accumulation of oil and fatty acids in coriander during fruit ripening, a field experiment was conducted under organic cultivation conditions in Auch (near Toulouse, southwestern France) during the 2009 cropping season. The percentage and composition of the fatty acids of coriander were determined by gas chromatography. Our results showed that rapid oil accumulation started in early stages (two days after flowering, DAF). Twelve fatty acids were identified. Saturated and polyunsaturated acids were the dominant fatty acids at earlier stages (2–12 DAF), but decreased after this date. After this stage, petroselinic acid increased to its highest amount at 18 DAF. In contrast, palmitic acid followed the opposite trend. Saturated and polyunsaturated fatty acids decreased markedly and monounsaturated fatty acids increased during fruit maturation. It appears that the fruit of coriander may be harvested before full maturity.

  15. Oil and fatty acid accumulation during coriander (Coriandrum sativum L.) fruit ripening under organic cultivation

    Institute of Scientific and Technical Information of China (English)

    Quang-Hung; Nguyen; Thierry; Talou; Mureil; Cerny; Philippe; Evon; Othmane; Merah

    2015-01-01

    To evaluate the accumulation of oil and fatty acids in coriander during fruit ripening, a field experiment was conducted under organic cultivation conditions in Auch(near Toulouse,southwestern France) during the 2009 cropping season. The percentage and composition of the fatty acids of coriander were determined by gas chromatography. Our results showed that rapid oil accumulation started in early stages(two days after flowering, DAF). Twelve fatty acids were identified. Saturated and polyunsaturated acids were the dominant fatty acids at earlier stages(2–12 DAF), but decreased after this date. After this stage,petroselinic acid increased to its highest amount at 18 DAF. In contrast, palmitic acid followed the opposite trend. Saturated and polyunsaturated fatty acids decreased markedly and monounsaturated fatty acids increased during fruit maturation. It appears that the fruit of coriander may be harvested before full maturity.

  16. Oil and fatty acid accumulation during coriander (Coriandrum sativum L. fruit ripening under organic cultivation

    Directory of Open Access Journals (Sweden)

    Quang-Hung Nguyen

    2015-08-01

    Full Text Available To evaluate the accumulation of oil and fatty acids in coriander during fruit ripening, a field experiment was conducted under organic cultivation conditions in Auch (near Toulouse, southwestern France during the 2009 cropping season. The percentage and composition of the fatty acids of coriander were determined by gas chromatography. Our results showed that rapid oil accumulation started in early stages (two days after flowering, DAF. Twelve fatty acids were identified. Saturated and polyunsaturated acids were the dominant fatty acids at earlier stages (2–12 DAF, but decreased after this date. After this stage, petroselinic acid increased to its highest amount at 18 DAF. In contrast, palmitic acid followed the opposite trend. Saturated and polyunsaturated fatty acids decreased markedly and monounsaturated fatty acids increased during fruit maturation. It appears that the fruit of coriander may be harvested before full maturity.

  17. Determination of fruit characteristics, fatty acid profile and total antioxidant capacity ofMespilus germanica L. fruit

    Institute of Scientific and Technical Information of China (English)

    Hale Seilmi Canbay; Ersin Atay; Serdal Ot

    2015-01-01

    Objective:To determine fruit characteristics, fatty acid profile and total antioxidant capacitiy of first culturedMespilus germanica L. Methods: A total of15 fruits were taken randomly from four directions of adult trees.Then the physical and chemical properties of first cultured medlar fruit (Istanbul/Turkey) were measured by using refractometer, colorimeter, spectrophotometer and gas chromatograph mass spectrometer, respectivly. Results: In the fruit studied, the results showed that palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid and behenic acid were the most abundant fatty acids (FAs), and the main FA was palmitic acid [(35.35 ± 1.20)%]. The percentage of linoleic acid and stearic acid in this fruit oil were (29.10 ± 1.70)% and(8.53 ± 0.25)%, respectively. As a result of the analysis, the total antioxidant capacity of medlar fruit was (1.1 ± 0.2) mmol trolox equivalents/L. Conclusions: The present study has demonstrated the concentrations of FAs and the antioxidantive capacity of first cultured Istanbul medlar fruits by using many tested methods. It is proved that in our daily life, medlar fruit plays a significant role with its nutrition and health effect.

  18. Lipid mixtures containing a very high proportion of saturated fatty acids only modestly impair insulin signaling in cultured muscle cells.

    Science.gov (United States)

    Newsom, Sean A; Everett, Allison C; Park, Sanghee; Van Pelt, Douglas W; Hinko, Alexander; Horowitz, Jeffrey F

    2015-01-01

    In vitro examinations of the effect of saturated fatty acids on skeletal muscle insulin action often use only one or two different fatty acid species, which does not resemble the human plasma fatty acid profile. We compared graded concentrations (0.1-0.8 mM) of 3 different lipid mixtures: 1) a physiologic fatty acid mixture (NORM; 40% saturated fatty acids), 2) a physiologic mixture high in saturated fatty acids (HSFA; 60% saturated fatty acids), and 3) 100% palmitate (PALM) on insulin signaling and fatty acid partitioning into triacylglycerol (TAG) and diacylglycerol (DAG) in cultured muscle cells. As expected, PALM readily impaired insulin-stimulated pAktThr308/Akt and markedly increased intracellular DAG content. In contrast, the fatty acid mixtures only modestly impaired insulin-stimulated pAktThr308M/Akt, and we found no differences between NORM and HSFA. Importantly, NORM and HSFA did not increase DAG content, but instead dose-dependently increased TAG accumulation. Therefore, the robust impairment in insulin signaling found with palmitate exposure was attenuated with physiologic mixtures of fatty acids, even with a very high proportion of saturated fatty acids. This may be explained in part by selective partitioning of fatty acids into neutral lipid (i.e., TAG) when muscle cells were exposed to physiologic lipid mixtures.

  19. Near Infrared Spectrometry of Clinically Significant Fatty Acids Using Multicomponent Regression

    Science.gov (United States)

    Kalinin, A. V.; Krasheninnikov, V. N.; Sviridov, A. P.; Titov, V. N.

    2016-11-01

    We have developed methods for determining the content of clinically important fatty acids (FAs), primarily saturated palmitic acid, monounsaturated oleic acid, and the sum of polyenoic fatty acids (eicosapentaenoic + docosahexaenoic), in oily media (food products and supplements, fish oils) using different types of near infrared (NIR) spectrometers: Fourier-transform, linear photodiode array, and Raman. Based on a calibration method (regression) by means of projections to latent structures, using standard samples of oil and fat mixtures, we have confirmed the feasibility of reliable and selective quantitative analysis of the above-indicated fatty acids. As a result of comparing the calibration models for Fourier-transform spectrometers in different parts of the NIR range (based on different overtones and combinations of fatty acid absorption), we have provided a basis for selection of the spectral range for a portable linear InGaAs-photodiode array spectrometer. In testing the calibrations of a linear InGaAs-photodiode array spectrometer which is a prototype for a portable instrument, for palmitic and oleic acids and also the sum of the polyenoic fatty acids we have achieved a multiple correlation coefficient of 0.89, 0.85, and 0.96 and a standard error of 0.53%, 1.43%, and 0.39% respectively. We have confirmed the feasibility of using Raman spectra to determine the content of the above-indicated fatty acids in media where water is present.

  20. [The high content of palmitinic fatty acid in food as a major cause of increase of concentration of cholesterol and low density lipoproteins and atheromatous plaques of arteries' intima].

    Science.gov (United States)

    Titov, V N

    2013-02-01

    The positioning of individual triglycerides of blood serum in palmitinic and oleic lipoproteins ofvery low density in the order ofincrease of the rate constant of their hydrolysis under action of post-heparin lipoprotein leads to the sequence as follows: palmitoil-palmitoil-palmitate-->palmitoil-palmitoil-oleate-->palmitoil-oleil-palmitat-->oleil-palmitoil-palmitate-->oleil-palmitate-palmitate-->oleil-oleil-palmitate-->oleil-oleil-oleate. The shift to the left and to the right is discerned with this spectrum of isoforms of triglycerides. The shift to the left into direction of palmitinicc triglycerides occurs in case of eating of animal food (i.e. beef andfoodstuf of fat saw milk) when the content of palmitinic saturated fatty acid supersedes 15% of fatty acids total and under the development of endogenic syndrome of insulin resistance. The content of low density lipoproteins cholesterol is high in blood The shift to the right with prevalence of oleinic triglycerides occurs in case of low content of beef and foodstuff of fat saw milk in food, fish eating, seafood and olive oil. The physiologic levels of carbohydrates in food and insulin function are present too. The shift to the right initiates the action of insulin, ometa-3 essential polyenic fatty acids, glytazones and fibrates. They increase the activity of delta9-stearil-KoA-desaturase-2 and the transformation of palmitine saturated fatty acid into mono unsaturated oleinic fatty acid. The shift to the left forms the palmitine alternative of metabolism of substrate to supply cells with energy. The shift to the right is a more effective oleinic alternative.

  1. Fatty acids and mineral composition of melon (Cucumis melo L. Inodorus) seeds from West Algeria

    OpenAIRE

    Joseph Kajima Mulengi; Naima Bouazzaoui; Wassila Drici; Wafaa Bouazzaoui; Wafaa Lemerini; Djamel Bend