WorldWideScience

Sample records for acid alleviates decreases

  1. Increased Dietary Intake of Saturated Fatty Acid Heptadecanoic Acid (C17:0) Associated with Decreasing Ferritin and Alleviated Metabolic Syndrome in Dolphins.

    Science.gov (United States)

    Venn-Watson, Stephanie K; Parry, Celeste; Baird, Mark; Stevenson, Sacha; Carlin, Kevin; Daniels, Risa; Smith, Cynthia R; Jones, Richard; Wells, Randall S; Ridgway, Sam; Jensen, Eric D

    2015-01-01

    Similar to humans, bottlenose dolphins (Tursiops truncatus) can develop metabolic syndrome and associated high ferritin. While fish and fish-based fatty acids may protect against metabolic syndrome in humans, findings have been inconsistent. To assess potential protective factors against metabolic syndrome related to fish diets, fatty acids were compared between two dolphin populations with higher (n = 30, Group A) and lower (n = 19, Group B) mean insulin (11 ± 12 and 2 ± 5 μIU/ml, respectively; P dolphins. Capelin, a common dietary fish for Group A, had no detectable C17:0, while pinfish and mullet, common in Group B's diet, had C17:0 (41 and 67 mg/100g, respectively). When a modified diet adding 25% pinfish and/or mullet was fed to six Group A dolphins over 24 weeks (increasing the average daily dietary C17:0 intake from 400 to 1700 mg), C17:0 serum levels increased, high ferritin decreased, and blood-based metabolic syndrome indices normalized toward reference levels. These effects were not found in four reference dolphins. Further, higher total serum C17:0 was an independent and linear predictor of lower ferritin in dolphins in Group B dolphins. Among off the shelf dairy products tested, butter had the highest C17:0 (423mg/100g); nonfat dairy products had no detectable C17:0. We hypothesize that humans' movement away from diets with potentially beneficial saturated fatty acid C17:0, including whole fat dairy products, could be a contributor to widespread low C17:0 levels, higher ferritin, and metabolic syndrome.

  2. Increased Dietary Intake of Saturated Fatty Acid Heptadecanoic Acid (C17:0 Associated with Decreasing Ferritin and Alleviated Metabolic Syndrome in Dolphins.

    Directory of Open Access Journals (Sweden)

    Stephanie K Venn-Watson

    Full Text Available Similar to humans, bottlenose dolphins (Tursiops truncatus can develop metabolic syndrome and associated high ferritin. While fish and fish-based fatty acids may protect against metabolic syndrome in humans, findings have been inconsistent. To assess potential protective factors against metabolic syndrome related to fish diets, fatty acids were compared between two dolphin populations with higher (n = 30, Group A and lower (n = 19, Group B mean insulin (11 ± 12 and 2 ± 5 μIU/ml, respectively; P < 0.0001 and their dietary fish. In addition to higher insulin, triglycerides, and ferritin, Group A had lower percent serum heptadecanoic acid (C17:0 compared to Group B (0.3 ± 0.1 and 1.3 ± 0.4%, respectively; P < 0.0001. Using multivariate stepwise regression, higher percent serum C17:0, a saturated fat found in dairy fat, rye, and some fish, was an independent predictor of lower insulin in dolphins. Capelin, a common dietary fish for Group A, had no detectable C17:0, while pinfish and mullet, common in Group B's diet, had C17:0 (41 and 67 mg/100g, respectively. When a modified diet adding 25% pinfish and/or mullet was fed to six Group A dolphins over 24 weeks (increasing the average daily dietary C17:0 intake from 400 to 1700 mg, C17:0 serum levels increased, high ferritin decreased, and blood-based metabolic syndrome indices normalized toward reference levels. These effects were not found in four reference dolphins. Further, higher total serum C17:0 was an independent and linear predictor of lower ferritin in dolphins in Group B dolphins. Among off the shelf dairy products tested, butter had the highest C17:0 (423mg/100g; nonfat dairy products had no detectable C17:0. We hypothesize that humans' movement away from diets with potentially beneficial saturated fatty acid C17:0, including whole fat dairy products, could be a contributor to widespread low C17:0 levels, higher ferritin, and metabolic syndrome.

  3. Alleviating soil acidity through plant organic compounds

    Directory of Open Access Journals (Sweden)

    Meda Anderson R.

    2001-01-01

    Full Text Available A laboratory experiment was conducted to evaluate the effects of water soluble plant extracts on soil acidity. The plant materials were: black oat, oil seed radish, white and blue lupin, gray and dwarf mucuna, Crotalaria spectabilis and C. breviflora, millet, pigeon pea, star grass, mato grosso grass, coffee leaves, sugar cane leaves, rice straw, and wheat straw. Plant extracts were added on soil surface in a PVC soil column at a rate of 1.0 ml min-1. Both soil and drainage water were analyzed for pH, Ca, Al, and K. Plant extracts applied on the soil surface increased soil pH, exchangeable Ca ex and Kex and decreased Al ex. Oil seed radish, black oat, and blue lupin were the best and millet the worst materials to alleviate soil acidity. Oil seed radish markedly increased Al in the drainage water. Chemical changes were associated with the concentrations of basic cations in the plant extract: the higher the concentration the greater the effects in alleviating soil acidity.

  4. Alleviation of Soil Acidity and Aluminium Phytotoxicity in Acid Soils by Using Alkaline-Stabilised Biosolids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A pot experiment was carried out to study alleviation of soil acidity and Al toxicity by applying an alkaline-stabilised sewage sludge product (biosolids) to an acid clay sandy loam (pH 5.7) and a strongly acid sandy loam (pH 4.5). Barley (Hordeum vulgare L. cv. Forrester) was used as a test crop and was grown in the sewage sludge-amended (33.5 t sludge DM ha-1) and unamended soils. The results showed that the alkaline biosloids increased soil pH from 5.7 to 6.9 for the clay sandy loam and from 4.5 to 6.0 for the sandy loam. The sludge product decreased KCl-extractable Al from 0.1 to 0.0 cmol kg-1 for the former soil and from 4.0 to 0.1 cmol kg-1 for the latter soil. As a result, barley plants grew much better and grain yield increased greatly in the amended treatments compared with the unamended controls. These observations indicate that alkaline-stabilised biosolids can be used as a liming material for remedying Al phytotoxicity in strongly acid soils by increasing soil pH and lowering Al bioavailability.

  5. Cadmium Toxicity and Alleviating Effects of Exogenous Salicylic Acid in Iris hexagona.

    Science.gov (United States)

    Han, Ying; Chen, Gang; Chen, Yahua; Shen, Zhenguo

    2015-12-01

    Cadmium (Cd) toxictity and possible role of salicylic acid (SA) in alleviating Cd-induced toxicity were investigated on ornamental hydrophyte Iris hexagona. Compared to the control, treatments with 100 and 500 µM Cd for 7 days significantly decreased dry weight, the contents of chlorophyll, photosynthetic parameters, and increased the content of thiobarbituric acid reactive substance. Pretreatment of the roots of I. hexagona seedlings with 1 µM SA before Cd exposure may increase dry weight, photosynthetic rate, activities of antioxidant enzymes, improve the cell ultrastructure and protect plants from Cd-induced oxidative stress damage. However, SA pretreatment had no significant effect on Cd concentrations in the leaves and roots. It is suggested that SA-induced Cd tolerances in I. hexagona are likely associated with increases in antioxidant enzyme activities and vacuolar compartmentation, rather than Cd uptake.

  6. Hydrogen-rich water alleviates aluminum-induced inhibition of root elongation in alfalfa via decreasing nitric oxide production.

    Science.gov (United States)

    Chen, Meng; Cui, Weiti; Zhu, Kaikai; Xie, Yanjie; Zhang, Chunhua; Shen, Wenbiao

    2014-02-28

    One of the earliest and distinct symptoms of aluminum (Al) toxicity is the inhibition of root elongation. Although hydrogen gas (H2) is recently described as an important bio-regulator in plants, whether and how H2 regulates Al-induced inhibition of root elongation is largely unknown. To address these gaps, hydrogen-rich water (HRW) was used to investigate a physiological role of H2 and its possible molecular mechanism. Individual or simultaneous (in particular) exposure of alfalfa seedlings to Al, or a fresh but not old nitric oxide (NO)-releasing compound sodium nitroprusside (SNP), not only increased NO production, but also led to a significant inhibition of root elongation. Above responses were differentially alleviated by pretreatment with 50% saturation of HRW. The addition of HRW also alleviated the appearance of Al toxicity symptoms, including the improvement of seedling growth and less accumulation of Al. Subsequent results revealed that the removal of NO by the NO scavenger, similar to HRW, could decrease NO production and alleviate Al- or SNP-induced inhibition of root growth. Thus, we proposed that HRW alleviated Al-induced inhibition of alfalfa root elongation by decreasing NO production. Such findings may be applicable to enhance crop yield and improve stress tolerance.

  7. Modulation of fatty acid metabolism is involved in the alleviation of isoproterenol-induced rat heart failure by fenofibrate.

    Science.gov (United States)

    Li, Ping; Luo, Shike; Pan, Chunji; Cheng, Xiaoshu

    2015-12-01

    Heart failure is a disease predominantly caused by an energy metabolic disorder in cardiomyocytes. The present study investigated the inhibitory effects of fenofibrate (FF) on isoproterenol (ISO)‑induced hear failure in rats, and examined the underlying mechanisms. The rats were divided into CON, ISO (HF model), FF and FF+ISO (HF animals pretreated with FF) groups. The cardiac structure and function of the rats were assessed, and contents of free fatty acids and glucose metabolic products were determined. In addition, myocardial cells were isolated from neonatal rats and used in vitro to investigate the mechanisms by which FF relieves heart failure. Western blot analysis was performed to quantify the expression levels of peroxisome proliferator‑activated receptor (PPAR)α and uncoupling protein 2 (UCP2). FF effectively alleviated the ISO‑induced cardiac structural damage, functional decline, and fatty acid and carbohydrate metabolic abnormalities. Compared with the ISO group, the serum levels of brain natriuretic peptide (BNP), free fatty acids, lactic acid and pyruvic acid were decreased in the FF animals. In the cultured myocardial cells, lactic acid and pyruvic acid contents were lower in the supernatants obtained from the FF animals, with lower levels of mitochondrial ROS production and cell necrosis, compared with the ISO group, whereas PPARα upregulation and UCP2 downregulation occurred in the FF+ISO group. The results demonstrated that FF efficiently alleviated heart failure in the ISO‑induced rat model, possibly via promoting fatty acid oxidation.

  8. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation.

    Science.gov (United States)

    Khan, M Iqbal R; Iqbal, Noushina; Masood, Asim; Per, Tasir S; Khan, Nafees A

    2013-11-01

    We investigated the potential of salicylic acid (SA) in alleviating the adverse effects of heat stress on photosynthesis in wheat (Triticum aestivum L.) cv WH 711. Activity of ribulose 1,5-bisphosphate carboxylase (Rubisco), photosynthetic-nitrogen use efficiency (NUE), and net photosynthesis decreased in plants subjected to heat stress (40 °C for 6 h), but proline metabolism increased. SA treatment (0.5 mM) alleviated heat stress by increasing proline production through the increase in γ-glutamyl kinase (GK) and decrease in proline oxidase (PROX) activity, resulting in promotion of osmotic potential and water potential necessary for maintaining photosynthetic activity. Together with this, SA treatment restricted the ethylene formation in heat-stressed plants to optimal range by inhibiting activity of 1-aminocyclopropane carboxylic acid (ACC) synthase (ACS). This resulted in improved proline metabolism, N assimilation and photosynthesis. The results suggest that SA interacts with proline metabolism and ethylene formation to alleviate the adverse effects of heat stress on photosynthesis in wheat.

  9. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats

    Directory of Open Access Journals (Sweden)

    Lili eGao

    2015-10-01

    Full Text Available Idiopathic pulmonary fibrosis is a progressive and lethal form of interstitial lung disease that lacks effective therapies at present. Glycyrrhizic acid (GA, a natural compound extracted from a traditional Chinese herbal medicine Glycyrrhiza glabra, was recently reported to benefit lung injury and liver fibrosis in animal models, yet whether GA has a therapeutic effect on pulmonary fibrosis is unknown. In this study, we investigated the potential therapeutic effect of GA on pulmonary fibrosis in a rat model with bleomycin (BLM-induced pulmonary fibrosis. The results indicated that GA treatment remarkably ameliorated BLM-induced pulmonary fibrosis and attenuated BLM-induced inflammation, oxidative stress, epithelial-mesenchymal transition and activation of tansforming growth factor-beta signaling pathway in the lungs. Further, we demonstrated that GA treatment inhibited proliferation of 3T6 fibroblast cells, induced cell cycle arrest and promoted apoptosis in vitro, implying that GA-mediated suppression of fibroproliferation may contribute to the anti-fibrotic effect against BLM-induced pulmonary fibrosis. In summary, our study suggests a therapeutic potential of GA in the treatment of pulmonary fibrosis.

  10. Alleviative effects of α-lipoic acid supplementation on acute heat stress-induced thermal panting and the level of plasma nonesterified fatty acids in hypothyroid broiler chickens.

    Science.gov (United States)

    Hamano, Y

    2012-01-01

    1. The present study was conducted to examine the effects of α-lipoic acid on hypothyroidism-induced negative growth performance and whether α-lipoic acid alleviates acute heat stress in relation to hypothyroid status. 2. Female broiler chickens (14 d-old) were fed diets supplemented with α-lipoic acid (100 mg/kg) and an antithyroid substance, propylthiouracil (200 mg/kg), for 20 d under thermoneutral conditions (25°C). At 42 d of age, chickens were exposed to a high ambient temperature (36°C, 60% RH) for 4 h. 3. Under the thermoneutral condition, propylthiouracil administration decreased feed efficiency and concomitantly increased adipose tissue and thyroid gland weights. Plasma nonesterified fatty acids and triacylglycerol were also increased by propylthiouracil administration. However, α-lipoic acid supplementation did not affect the hypothyroidism-induced effects. 4. In hypothyroid chickens, the rise in respiratory rate induced by heat exposure was greatly inhibited by α-lipoic acid administration at 1 h, but this effect had disappeared at 4 h. In addition, a similar inhibitory effect on the concentrations of plasma nonesterified fatty acids was subsequently observed at 4 h. 5. Therefore, the present study suggested that α-lipoic acid alleviates acute heat stress if chickens are in a hypothyroid status.

  11. Exogenous application of salicylic acid to alleviate the toxic effects of insecticides in Vicia faba L.

    Science.gov (United States)

    Singh, Aradhana; Srivastava, Anjil Kumar; Singh, Ashok Kumar

    2013-12-01

    The present study investigated the possible mediatory role of salicylic acid (SA) in protecting plants from insecticides toxicity. The seeds of Vicia faba var IIVR Selection-1 were treated with different concentrations (1.5, 3.0, and 6.0 ppm) of the insecticides alphamethrin (AM) and endosulfan (ES) for 6 h with and without 12 h conditioning treatment of SA (0.01 mM). Insecticides treatment caused a significant decrease in mitotic index (MI) and induction of different types of chromosomal abnormalities in the meristematic cells of broad bean roots. Pretreatment of seeds with SA resulted in increased MI and significant reduction of chromosomal abnormalities. SA application also regulated proline accumulation and carotenoid content in the leaf tissues. SA resulted in the decrement of insecticides induced increase in proline content and increased the carotenoids content. These results illustrate the ameliorating effect of SA under stress conditions and reveal that SA is more effective in alleviating the toxic effects of insecticides at higher concentrations than that at lower concentrations.

  12. Alleviation of chilling injury in tomato fruit by exogenous application of oxalic acid.

    Science.gov (United States)

    Li, Peiyan; Yin, Fei; Song, Lijun; Zheng, Xiaolin

    2016-07-01

    The effects of oxalic acid on the development of chilling injury (CI), energy metabolism and lycopene metabolism in tomato fruit (Solanum lycopersicum L.) were investigated. Mature green tomatoes were dipped in 10mmoll(-1) oxalic acid (OA) solution for 10min at 25°C. Tomatoes were subsequently stored at 4±0.5°C for 20days before being transferred to 25°C for 12days. Oxalic acid treatment apparently alleviated CI development and membrane damage; maintained higher levels of ATP and ADP; increased activities of succinic dehydrogenase (SDH), Ca(2+)-adenosine triphosphatase (Ca(2+)-ATPase) and H(+)-adenosine triphosphatase (H(+)-ATPase); and elevated lycopene accumulation associated with the upregulation of PSY1 and ZDS expression in tomatoes during a period at room temperature following exposure to chilling stress. Thus, oxalic acid treatment benefited the control of CI and the maintenance of fruit quality in tomatoes stored for long periods (approximately 32days).

  13. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Jiang, Tao [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Lei, Gui Jie [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Cd reduces endogenous GA levels in Arabidopsis. Black-Right-Pointing-Pointer GA exogenous applied decreases Cd accumulation in plant. Black-Right-Pointing-Pointer GA suppresses the Cd-induced accumulation of NO. Black-Right-Pointing-Pointer Decreased NO level downregulates the expression of IRT1. Black-Right-Pointing-Pointer Suppressed IRT1 expression reduces Cd transport across plasma membrane. - Abstract: Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 {mu}M for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd{sup 2+}, GA at 5 {mu}M improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd{sup 2+} increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd{sup 2+} absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd{sup 2+} uptake related gene-IRT1 in Arabidopsis.

  14. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    Science.gov (United States)

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants.

  15. Alleviation of Seawater Stress on Tomato by Foliar Application of Aspartic Acid and Glutathione

    Directory of Open Access Journals (Sweden)

    Samia Ageeb Akladious

    2013-08-01

    Full Text Available A pot experiment was carried out in the botanical garden of Faculty of Education, Ain Shams University, with the aim of studying the effect of salinity levels (4, 8 and 16% of diluted seawater and foliar application of aspartic acid and/or glutathione on the growth and chemical constituents of tomatoes (lycopersicon esculentum Mill plants. The most important results can be summarized as: 1. Treatments of high salinity levels reduced all growth parameters and chemical constituents of plants. 2 Both aspartic acid and glutathione significantly increased plant growth, the contents of anthocyanin, α-tocopherol, ascorbic acid and enzymatic activities. In addition, the content of endogenous amino acids was increased which in turn led to positive changes in the picture of protein electrophoresis, theses changes were accompanied by appearance and disappearance of some protein bands and caused obvious changes in the anatomical features of the stems. 3 The effect of aspartic acid was superior to that of glutathione on increasing plant growth and chemical constituents. 4 Under low saline conditions, the maximum plant growth for all the recorded growth parameters was obtained from plants treated with aspartic acid and grown under 8% of seawater, followed by 4%. However, glutathione had inhibitor effect on plant growth and chemical constituents of plants grown at 16% seawater. The data revealed that the different antioxidants could partially alleviate the harmful effects of salinity stress that reflected on growth and some physiological changes of tomato plant.

  16. Dietary Saccharomyces cerevisiae Cell Wall Extract Supplementation Alleviates Oxidative Stress and Modulates Serum Amino Acids Profiles in Weaned Piglets

    Science.gov (United States)

    Yu, Lei; Martínez, Yordan

    2017-01-01

    This research aims to evaluate the effects of dietary supplementation with Saccharomyces cerevisiae cell wall extract (SCCWE) on growth performance, oxidative stress, intestinal morphology, and serum amino acid concentration in weaned piglets. Utilizing a completely randomized design, 40 healthy piglets weaned at 21 d were grouped into 4 experimental treatments with 10 pigs per treatment group. Treatments consisted of a basal diet (T0), a basal diet with a 0.05% SCCWE (T1), a basal diet with a 0.10% SCCWE (T2), and a basal diet with a 0.15% SCCWE (T3). SCCWE supplementation increased the average daily gain and final body weight compared with T0 (P < 0.05). SCCWE in T2 and T3 improved the average daily feed intake and decreased the feed/gain ratio compared with T1 and T2 (P < 0.05). SCCWE decreased serum malondialdehyde (MDA) and increased activities of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) significantly compared to T0 (P < 0.05). SCCWE increased the concentration of Ile compared to T0 (P < 0.05). Moreover, the concentrations of Leu, Phe, and Arg were higher in T2 and T3 (P < 0.05). These findings indicate beneficial effects of SCCWE supplementation on growth performance, the concentration of some essential amino acids, and alleviation of oxidative stress in weaned piglets.

  17. The Alleviation of Nutrient Deficiency Symptoms in Changbai Larch (Larix olgensis Seedlings by the Application of Exogenous Organic Acids

    Directory of Open Access Journals (Sweden)

    Jinfeng Song

    2016-09-01

    Full Text Available Exogenous organic acids are beneficial in protecting plants from the stress of heavy metal toxins (e.g., Pb in soils. This work focuses on the potential role of organic acids in protecting Changbai larch (Larix olgensis seedlings from the stress of growing in nutrient deficient soil. The seedlings were planted in a nutrient rich or deficient soil (A1 horizon of a Haplic Cambisol without organic acid as the nutrient rich control, or fully-mixed A1 + B horizons in a proportion of 1:2 as deficient in pots in a greenhouse. In A1 + B horizons the seedlings were treated daily with concentrations of oxalic or citric acid (OA or CA at a rate approximately equivalent to 0, 0.04, 0.2, 1.0, or 2.0 mmol·kg−1 of soil for 10, 20, and 30 days. Nutrient deficiency stressed the seedlings as indicated by lipid peroxidation and malondialdehyde (MDA content in leaves significantly increasing, and superoxide dismutase (SOD activities, proline, photosynthetic pigment contents, and chlorophyll fluorescence (Fv/Fm decreasing. The stress increased in controls over the application periods. When nutrient deficient plants were exposed to an organic acid (especially 5.0 or 10.0 mmol·L−1 for 20 days, the stress as indicated by the physiological parameters was reversed, and survival rate of seedlings, and biomass of root, stem, and leaf significantly increased; CA was more effective than OA. The results demonstrate that exogenous organic acids alleviate nutrient deficiency-induced oxidative injuries and improve the tolerance of L. olgensis seedlings to nutrient deficiency.

  18. Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense.

    Science.gov (United States)

    Pandey, Poonam; Srivastava, Rajneesh Kumar; Dubey, R S

    2013-05-01

    Aluminum toxicity is a major constraint to crop production in acid soils. The present study was undertaken to examine the comparative ameliorating effects of salicylic acid, Ca and Mg on Al toxicity in rice (Oryza sativa L.) seedlings grown in hydroponics. Al treatment (0.5 mM AlCl3) caused decrease in plant vigour, loss of root plasma membrane integrity, increased contents of O 2 (∙-) , H2O2, lipid peroxidation, protein carbonyls and decline in the level of protein thiol. Al treatment caused significant changes in activity of antioxidative enzymes in rice seedlings. Exogenously added salicylic acid (60 μM), Ca (1 mM) and Mg (0.25 mM) significantly alleviated Al toxicity effects in the seedlings marked by restoration of growth, suppression of Al uptake, restoration of root plasma membrane integrity and decline in O 2 (∙-) , H2O2, lipid peroxidation and protein carbonyl contents. Salicylic acid, Ca and Mg suppressed Al-induced increase in SOD, GPX and APX activities while it elevated Al-induced decline in CAT activity. By histochemical staining of O 2 (∙-) using NBT and H2O2 using DAB, it was further confirmed that added salicylic acid, Ca or Mg decreased Al-induced accumulation of O 2 (∙-) and H2O2 in the leaf tissues. Results indicate that exogenously added salicylic acid, Ca or Mg alleviates Al toxicity in rice seedlings by suppressing Al uptake, restoring root membrane integrity, reducing ROS level and ROS induced oxidative damage and regulating the level of antioxidative enzyme activities. Further salicylic appears to be superior to Mg and Ca in alleviating Al toxicity effects in rice plants.

  19. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina.

    Science.gov (United States)

    Lü, Fan; Luo, Chenghao; Shao, Liming; He, Pinjing

    2016-03-01

    This investigation evaluated the effectiveness of biochar of different particle sizes in alleviating ammonium (NH4(+)) inhibition (up to 7 g-N/L) during anaerobic digestion of 6 g/L glucose. Compared to the control treatment without biochar addition, treatments that included biochar particles 2-5 mm, 0.5-1 mm and 75-150 μm in size reduced the methanization lag phase by 23.9%, 23.8% and 5.9%, respectively, and increased the maximum methane production rate by 47.1%, 23.5% and 44.1%, respectively. These results confirmed that biochar accelerated the initiation of methanization during anaerobic digestion under double inhibition risk from both ammonium and acids. Furthermore, fine biochar significantly promoted the production of volatile fatty acids (VFAs). Comparative analysis on the archaeal and bacterial diversity at the early and later stages of digestion, and in the suspended, biochar loosely bound, and biochar tightly bound fractions suggested that, in suspended fractions, hydrogenotrophic Methanobacterium was actively resistant to ammonium. However, acetoclastic Methanosaeta can survive at VFAs concentrations up to 60-80 mmol-C/L by improved affinity to conductive biochar, resulting in the accelerated initiation of acetate degradation. Improved methanogenesis was followed by the colonization of the biochar tightly bound fractions by Methanosarcina. The selection of appropriate biochar particles sizes was important in facilitating the initial colonization of microbial cells.

  20. Role of ascorbic acid and α tocopherol in alleviating salinity stress on flax plant (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Mervat Sh. Sadak

    2014-03-01

    with tap water, it was noted that ascorbic acid at 2.27 mM caused significant increase in oil content by 19.75 % in Giza 8 whereas α tocopherpl at 0.93 mM caused significant increase by 14.83% in Sakha 3 and 13.70% in Ariane. Regarding plants irrigated with saline solution (9.23 ds/m, it was found that α tocopherol at 0.93 mM caused significant increase in oil % by 30.84 %, 9.66 % and 35.62 % in Sakha 3, Giza 8 and Ariane cv. respectively. Responses of three flax cultivars to salt stress were more or less similar; since salinity stress caused marked increases in total saturated fatty acids accompanied by decreases in total unsaturated fatty acids as salinity levels increased. Myristic acid (C14:0 and oleic acid (C18:1 were the most affected saturated and unsaturated fatty acids in response to different salinity levels. The effect of ascorbic acid at 2.27 mM and tocopherol at 0.93 mM were found to be contrary to that of salinity as marked increases appeared in unsaturated fatty acids as compared with control plants. It could be concluded that foliar application of ascorbic acid and α tocopherol could play an enhancement role and alleviate the harmful effect of salinity stress on many metabolic and physiological processes of three flax cultivars that reflected in increasing seed yield quality and quantity.

  1. Diets enriched in trans-11 vaccenic acid alleviate ectopic lipid accumulation in a rat model of NAFLD and metabolic syndrome.

    Science.gov (United States)

    Jacome-Sosa, M Miriam; Borthwick, Faye; Mangat, Rabban; Uwiera, Richard; Reaney, Martin J; Shen, Jianheng; Quiroga, Ariel D; Jacobs, René L; Lehner, Richard; Proctor, Spencer D; Nelson, Randal C

    2014-07-01

    Trans11-18:1 (vaccenic acid, VA) is one of the most predominant naturally occurring trans fats in our food chain and has recently been shown to exert hypolipidemic effects in animal models. In this study, we reveal new mechanism(s) by which VA can alter body fat distribution, energy utilization and dysfunctional lipid metabolism in an animal model of obesity displaying features of the metabolic syndrome (MetS). Obese JCR:LA-cp rats were assigned to a control diet that included dairy-derived fat or the control diet supplemented with 1% VA. VA reduced total body fat (-6%), stimulated adipose tissue redistribution [reduced mesenteric fat (-17%) while increasing inguinal fat mass (29%)] and decreased adipocyte size (-44%) versus control rats. VA supplementation also increased metabolic rate (7%) concomitantly with an increased preference for whole-body glucose utilization for oxidation and increased insulin sensitivity [lower HOMA-IR (-59%)]. Further, VA decreased nonalcoholic fatty liver disease activity scores (-34%) and reduced hepatic (-27%) and intestinal (-39%) triglyceride secretion relative to control diet, while exerting differential transcriptional regulation of SREBP1 and FAS amongst other key genes in the liver and the intestine. Adding VA to dairy fat alleviates features of MetS potentially by remodeling adipose tissue and attenuating ectopic lipid accumulation in a rat model of obesity and MetS. Increasing VA content in the diet (naturally or by fortification) may be a useful approach to maximize the health value of dairy-derived fats.

  2. Postharvest chitosan-g-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage.

    Science.gov (United States)

    Zhang, Youzuo; Zhang, Meiling; Yang, Huqing

    2015-05-01

    The effect of salicylic acid with and without chitosan, or a chitosan-g-salicylic acid complex, on chilling injury and post-harvest quality of cucumber stored at 2 °C for 12 days plus 2 days at 20 °C was investigated. The results showed the chitosan-g-salicylic acid coating inhibited chilling injury better than salicylic acid alone or with chitosan. Chitosan-g-salicylic acid also reduced weight loss and respiration rate, limited increases in malondialdehyde content and electrolyte leakage, and maintained higher total soluble solids, chlorophyll and ascorbic acid content. Furthermore, this coating increased the endogenous salicylic acid concentrations and antioxidant enzyme activities including superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase in cucumber during storage. Our study suggests that chitosan-g-salicylic acid alleviated chilling injury in cucumber through sustained-release of salicylic acid and the higher antioxidant enzymes concentrations.

  3. Retinoic acid alleviates Con A-induced hepatitis and differentially regulates effector production in NKT cells.

    Science.gov (United States)

    Lee, Kyoo-A; Song, You Chan; Kim, Ga-Young; Choi, Gyeyoung; Lee, Yoon-Sook; Lee, Jung-Mi; Kang, Chang-Yuil

    2012-07-01

    Retinoic acid (RA) is a diverse regulator of immune responses. Although RA promotes natural killer T (NKT) cell activation in vitro by increasing CD1d expression on antigen-presenting cells (APCs), the direct effects of RA on NKT-cell responses in vivo are not known. In the present study, we demonstrated the effect of RA on the severity of Con A-induced hepatitis and molecular changes of NKT cells. First, we demonstrated that Con A-induced liver damage was ameliorated by RA. In correlation with cytokine levels in serum, RA regulated the production of IFN-γ and IL-4 but not TNF-α by NKT cells without influencing the NKT-cell activation status. However, RA did not alleviate α-GalCer-induced liver injury, even though it reduced IFN-γ and IL-4 but not TNF-α levels in serum. This regulation was also detected when liver mononuclear cells (MNCs) or NKT hybridoma cells were treated with RA in vitro. The regulatory effect of RA on NKT cells was mediated by RAR-α, and RA reduced the phosphorylation of MAPK. These results suggest that RA differentially modulates the production of effector cytokines by NKT cells in hepatitis, and the suppressive effect of RA on hepatitis varies with the pathogenic mechanism of liver injury.

  4. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress

    Directory of Open Access Journals (Sweden)

    Nafees Khan

    2010-01-01

    Full Text Available Salicylic acid (SA, a naturally occurring plant hormone, is an important signal molecule known to have diverse effects on biotic and abiotic stress tolerance. Its growth-promoting effect on various plants has been shown, but the information on the response of mungbean, an important leguminous plant, to SA application under salt stress is limited. Mungbean (Vigna radiata L. cultivar Pusa Vishal plants grown with 50 mM NaCl were sprayed with 0.1, 0.5, or 1.0 mM SA and basic physiological processes were studied to substantiate our understanding of their role in tolerance to salinity-induced oxidative stress and how much such processes are induced by SA application. Treatment of plants with 0.5 mM SA resulted in a maximum decrease in the content of Na+, Cl-, H2O2, and thiobarbituric acid reactive substances (TBARS, and electrolyte leakage under saline conditions compared to the control. In contrast, this treatment increased N, P, K, and Ca content, activity of antioxidant enzymes, glutathione content, photosynthesis, and yield maximally under nonsaline and saline conditions. The application of higher concentration of SA (1.0 mM either proved inhibitory or was of no additional benefit. It was concluded that 0.5 mM SA alleviates salinity-inhibited photosynthesis and yield through a decrease in Na+, Cl-, H2O2, and TBARS content, and electrolyte leakage, and an increase in N, P, K, and Ca content, activity of antioxidant enzymes, and glutathione content.

  5. ASCORBIC ACID IS DECREASED IN INDUCED SPUTUM OF MILD ASTHMATICS

    Science.gov (United States)

    Asthma is primarily an airways inflammatory disease, and the bronchial airways have been shown to be particularly susceptible to oxidant-induced tissue damage. The antioxidant ascorbic acid (AA) plays an essential role in defending against oxidant attack in the airways. Decreased...

  6. The roles of ascorbic acid and glutathione in symptom alleviation to SA-deficient plants infected with RNA viruses.

    Science.gov (United States)

    Wang, Shao-Dong; Zhu, Feng; Yuan, Shu; Yang, Hui; Xu, Fei; Shang, Jing; Xu, Mo-Yun; Jia, Shu-Dan; Zhang, Zhong-Wei; Wang, Jian-Hui; Xi, De-Hui; Lin, Hong-Hui

    2011-07-01

    Salicylic acid (SA) is required for plant systemic acquired resistance (SAR) to viruses. However, SA-deficient plants adapt to RNA virus infections better, which show a lighter symptom and have less reactive oxygen species (ROS) accumulation. The virus replication levels are higher in the SA-deficient plants during the first 10 days, but lower than the wild-type seedlings after 20 dpi. The higher level of glutathione and ascorbic acid (AsA) in SA-deficient plants may contribute to their alleviated symptoms. Solo virus-control method for mortal viruses results in necrosis and chlorosis, no matter what level of virus RNAs would accumulate. Contrastingly, early and high-dose AsA treatment alleviates the symptom, and eventually inhibits virus replication after 20 days. ROS eliminators could not imitate the effect of AsA, and could neither alleviate symptom nor inhibit virus replication. It suggests that both symptom alleviation and virus replication control should be considered for plant virus cures.

  7. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa.

    Science.gov (United States)

    Cui, Weiti; Li, Le; Gao, Zhaozhou; Wu, Honghong; Xie, Yanjie; Shen, Wenbiao

    2012-09-01

    This work examines the involvement of haem oxygenase-1 (HO-1) in salicylic acid (SA)-induced alleviation of oxidative stress as a result of cadmium (Cd) stress in alfalfa (Medicago sativa L.) seedling roots. CdCl(2) exposure caused severe growth inhibition and Cd accumulation, which were potentiated by pre-treatment with zinc protoporphyrin (ZnPPIX), a potent HO-1 inhibitor. Pre-treatment of plants with the HO-1 inducer haemin or SA, both of which could induce MsHO1 gene expression, significantly reduced the inhibition of growth and Cd accumulation. The alleviation effects were also evidenced by a decreased content of thiobarbituric acid-reactive substances (TBARS). The antioxidant behaviour was confirmed by histochemical staining for the detection of lipid peroxidation and the loss of plasma membrane integrity. Furthermore, haemin and SA pre-treatment modulated the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), and guaiacol peroxidase (POD), or their corresponding transcripts. Significant enhancement of the ratios of reduced/oxidized homoglutathione (hGSH), ascorbic acid (ASA)/dehydroascorbate (DHA), and NAD(P)H/NAD(P)(+), and expression of their metabolism genes was observed, consistent with a decreased reactive oxygen species (ROS) distribution in the root tips. These effects are specific for HO-1, since ZnPPIX blocked the above actions, and the aggravated effects triggered by SA plus ZnPPIX were differentially reversed when carbon monoxide (CO) or bilirubin (BR), two catalytic by-products of HO-1, was added. Together, the results suggest that HO-1 is involved in the SA-induced alleviation of Cd-triggered oxidative stress by re-establishing redox homeostasis.

  8. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants.

    Science.gov (United States)

    Kovácik, Jozef; Klejdus, Borivoj; Hedbavny, Josef; Backor, Martin

    2009-07-01

    Influence of 100 mM NaCl and 50 microM salicylic acid (SA) and their combination on the metabolism of chamomile (Matricaria chamomilla) during 7 days was studied. NaCl reduced growth and selected physiological parameters and SA in combined treatment (NaCl + SA) reversed majority of these symptoms. Application of SA reduced NaCl-induced increase of Na+ in the rosettes, but not in the roots. Accumulation of total amino acids was stimulated in NaCl-treated roots, especially due to exceptional increase of proline (4.4-fold). Among phenolic acids, accumulation of protocatechuic acid was the most enhanced in NaCl-exposed leaf rosettes (ca. 3-fold) while chlorogenic and caffeic acids in the roots (2.4- and 2.8-fold, respectively). Total soluble phenols increased after NaCl and SA treatments, but root lignin content was not affected. Activity of phenylalanine ammonia-lyase and shikimate dehydrogenase increased in response to NaCl, but cinnamyl alcohol dehydrogenase was not affected and polyphenol oxidase decreased. Stress parameters were elevated by NaCl treatment (superoxide radical and malondialdehyde content, activities of catalase, ascorbate- and guaiacol-peroxidase) and substantially prevented by SA, while accumulation of hydrogen peroxide decreased. Overall, SA showed strong beneficial properties against NaCl-induced negative symptoms. Protective effect of SA was the most visible at the level of guaiacol-peroxidase and through amelioration of stress parameters and mineral nutrient contents.

  9. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.).

    Science.gov (United States)

    Shaw, Arun K; Bhardwaj, Pardeep K; Ghosh, Supriya; Roy, Sankhajit; Saha, Suman; Sherpa, Ang R; Saha, Samir K; Hossain, Zahed

    2016-02-01

    The present study highlights the role of β-aminobutyric acid (BABA) in alleviating drought stress effects in maize (Zea mays L.). Chemical priming was imposed by pretreating 1-week-old plants with 600 μM BABA prior to applying drought stress. Specific activities of key antioxidant enzymes and metabolites (ascorbate and glutathione) levels of ascorbate-glutathione cycle were studied to unravel the priming-induced modulation of plant defense system. Furthermore, changes in endogenous ABA and JA concentrations as well as mRNA expressions of key genes involved in their respective biosynthesis pathways were monitored in BABA-primed (BABA+) and non-primed (BABA-) leaves of drought-challenged plants to better understand the mechanistic insights into the BABA-induced hormonal regulation of plant response to water-deficit stress. Accelerated stomatal closure, high relative water content, and less membrane damage were observed in BABA-primed leaves under water-deficit condition. Elevated APX and SOD activity in non-primed leaves found to be insufficient to scavenge all H2O2 and O2 (·-) resulting in oxidative burst as evident after histochemical staining with NBT and DAB. A higher proline accumulation in non-primed leaves also does not give much protection against drought stress. Increased GR activity supported with the enhanced mRNA and protein expressions might help the BABA-primed plants to maintain a high GSH pool essential for sustaining balanced redox status to counter drought-induced oxidative stress damages. Hormonal analysis suggests that in maize, BABA-potentiated drought tolerance is primarily mediated through JA-dependent pathway by the activation of antioxidant defense systems while ABA biosynthesis pathway also plays an important role in fine-tuning of drought stress response.

  10. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat

    Science.gov (United States)

    Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway. PMID:27649534

  11. Dietary docosahexaenoic acid alleviates autistic-like behaviors resulting from maternal immune activation in mice.

    Science.gov (United States)

    Weiser, Michael J; Mucha, Brittany; Denheyer, Heather; Atkinson, Devon; Schanz, Norman; Vassiliou, Evros; Benno, Robert H

    2016-03-01

    The prevalence of autism spectrum disorders over the last several decades has risen at an alarming rate. Factors such as broadened clinical definitions and increased parental age only partially account for this precipitous increase, suggesting that recent changes in environmental factors may also be responsible. One such factor could be the dramatic decrease in consumption of anti-inflammatory dietary omega-3 (n-3) polyunsaturated fatty acids (PUFAs) relative to the amount of pro-inflammatory omega-6 (n-6) PUFAs and saturated fats in the Western diet. Docosahexaenoic acid (DHA) is the principle n-3 PUFA found in neural tissue and is important for optimal brain development, especially during late gestation when DHA rapidly and preferentially accumulates in the brain. In this study, we tested whether supplementation of a low n-3 PUFA diet with DHA throughout development could improve measures related to autism in a mouse model of maternal immune activation. We found that dietary DHA protected offspring from the deleterious effects of gestational exposure to the viral mimetic polyriboinosinic-polyribocytidilic acid on behavioral measures of autism and subsequent adulthood immune system reactivity. These data suggest that elevated dietary levels of DHA, especially during pregnancy and nursing, may help protect normal neurodevelopment from the potentially adverse consequences of environmental insults like maternal infection.

  12. Effect of Salicylic Acid on Alleviating of Electrolyte Leakage and Flower Organ Damage in Apricot (Prunus armeniaca L. cv. ‘Shahroudi’

    Directory of Open Access Journals (Sweden)

    Morteza ALIREZAIE NOGHONDAR

    2013-02-01

    Full Text Available One of the most important limiting factors in spread of apricot in Iran is late spring frost, which damages flower bud and decrease total yield of crop. It has been found that salicylic acid (SA plays a beneficial role during plant response to chilling and freezing stresses. To evaluate the effects of salicylic acid on alleviating of cold stress, the flower buds (FBs of Prunus armeniaca L. cv. ‘Shahroudi’ were sprayed at pink cluster stage with SA at 4 levels (0, 0.5, 1 and 2 mM and were then exposed to artificial cold stress (4 h at -4°C or without cold stress (+ 25. Experimental attributes including electrolyte leakage of FBs and percentage of damage (PD of pistil, anthers and petals to temperature treatments were determined. The results showed that at -4°C the lowest and highest PD and EL of FBs were observed in application of 0.5 and 0 mM SA, respectively. The highest and lowest PD of flower organ and EL were obtained in application of 0 and 2 mM SA, respectively at +25°C. Based on the results of this experiment, SA alleviates the negative effect of cold stress on electrolyte leakage and flower organ damages in apricot cv. ‘Shahroudi’, depending on the concentrations of SA used.

  13. Alleviation Of Nacl Stress In Summer Squash ‘Eskandrani’ By Foliar Application Of Salicylic Acid

    Directory of Open Access Journals (Sweden)

    Elwan Mohammed Wasfy Mohammed

    2014-12-01

    Full Text Available The experiment was performed to assess the possibility of overcoming NaCl salinity stress by foliar sprays of summer squash ‘Eskandrani’ with salicylic acid (SA at the concentration of 10-6 M. NaCl treatment caused reduction of shoot fresh weight, leaf number per plant, fruit yield, concentrations of potassium in aerial parts, and the concentration of chlorophyll in leaves. Plants grown under salt stress conditions had higher shoot sodium concentrations than plants untreated with NaCl. Foliar application of SA ameliorated partly the negative effect of NaCl treatment. The beneficial effect of SA was also observed in non-stressed plants, increasing the shoot potassium accumulation and leaf photosynthetic pigments status, and decreasing sodium accumulation in shoots.

  14. Alleviation of High Temperature Stress in Wax Begonia (Begonia × semperflorens?cultorum Hort.) by Salicylic Acid

    OpenAIRE

    Lin, Ling-Na; Huang, Kuang Liang; Okuibo, Hiroshi

    2011-01-01

    Wax begonia (Begonia × semperflorens?cultorum Hort.) plants often suffer from high temperature stress during hot seasons in Taiwan. Since salicylic acid (SA) has proved to enhance heat tolerance in many plants, this study evaluates whether exogenous SA applications could alleviate high temperature stress of wax begonias. Plug seedlings of wax begonia ‘Super Olympia’ were treated with 25, 100, 400, 800, with 1600 μM SA before 55 °C, for 2 h of high temperature stress. Results indicated that 25...

  15. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    Katarzyna Cyganek

    2013-06-01

    Full Text Available The aim of the study was to assess the role of salicylic acid (SA and abscisic acid (ABA in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1 and drought resistant (CS wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM or ABA (0.1 μM to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa. The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant

  16. Decrease in neuroimmune activation by HSV-mediated gene transfer of TNFα soluble receptor alleviates pain in rats with diabetic neuropathy.

    Science.gov (United States)

    Ortmann, Kathryn L Maier; Chattopadhyay, Munmun

    2014-10-01

    The mechanisms of diabetic painful neuropathy are complicated and comprise of peripheral and central pathophysiological phenomena. A number of proinflammatory cytokines are involved in this process. Tumor necrosis factor α (TNF-α) is considered to be one of the major contributors of neuropathic pain. In order to explore the potential role of inflammation in the peripheral nervous system of Type 1 diabetic animals with painful neuropathy, we investigated whether TNF-α is a key inflammatory mediator to the diabetic neuropathic pain and whether continuous delivery of TNFα soluble receptor from damaged axons achieved by HSV vector mediated transduction of DRG would block or alter the pain perception in animals with diabetic neuropathy. Diabetic animals exhibited changes in threshold of mechanical and thermal pain perception compared to control rats and also demonstrated increases in TNFα in the DRG, spinal cord dorsal horn, sciatic nerve and in the foot skin, 6 weeks after the onset of diabetes. Therapeutic approaches by HSV mediated expression of p55 TNF soluble receptor significantly attenuated the diabetes-induced hyperalgesia and decreased the expression of TNFα with reduction in the phosphorylation of p38MAPK in the spinal cord dorsal horn and DRG. The overall outcome of this study suggests that neuroinflammatory activation in the peripheral nervous system may be involved in the pathogenesis of painful neuropathy in Type 1 diabetes which can be alleviated by local expression of HSV vector expressing p55 TNF soluble receptor.

  17. Pomegranate extract decreases oxidative stress and alleviates mitochondrial impairment by activating AMPK-Nrf2 in hypothalamic paraventricular nucleus of spontaneously hypertensive rats

    Science.gov (United States)

    Sun, Wenyan; Yan, Chunhong; Frost, Bess; Wang, Xin; Hou, Chen; Zeng, Mengqi; Gao, Hongli; Kang, Yuming; Liu, Jiankang

    2016-01-01

    High blood pressure, or “hypertension,” is associated with high levels of oxidative stress in the paraventricular nucleus of the hypothalamus. While pomegranate extract is a known antioxidant that is thought to have antihypertensive effects, the mechanism whereby pomegranate extract lowers blood pressure and the tissue that mediates its antihypertensive effects are currently unknown. We have used a spontaneously hypertensive rat model to investigate the antihypertensive properties of pomegranate extract. We found that chronic treatment of hypertensive rats with pomegranate extract significantly reduced blood pressure and cardiac hypertrophy. Furthermore, pomegranate extract reduced oxidative stress, increased the antioxidant defense system, and decreased inflammation in the paraventricular nucleus of hypertensive rats. We determined that pomegranate extract reduced mitochondrial superoxide anion levels and increased mitochondrial function in the paraventricular nucleus of hypertensive rats by promoting mitochondrial biogenesis and improving mitochondrial dynamics and clearance. We went on to identify the AMPK-nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) pathway as a mechanism whereby pomegranate extract reduces oxidative stress in the paraventricular nucleus to relieve hypertension. Our findings demonstrate that pomegranate extract alleviates hypertension by reducing oxidative stress and improving mitochondrial function in the paraventricular nucleus, and reveal multiple novel targets for therapeutic treatment of hypertension. PMID:27713551

  18. Can Adverse Effects of Acidity and Aluminum Toxicity be Alleviated by Appropriate Rootstock Selection in Cucumber?

    Directory of Open Access Journals (Sweden)

    Youssef Rouphael

    2016-08-01

    Full Text Available Low-pH and aluminium (Al stresses are the major constraints that limit crop yield in acidic soils. Grafting vegetable elite cultivars onto appropriate rootstocks may represent an effective tool to improve crop tolerance to acidity and Al toxicity. Two greenhouse hydroponic experiments were performed to evaluate growth, yield, biomass production, chlorophyll index, electrolyte leakage, mineral composition and assimilate partitioning in plant tissues of cucumber plants (Cucumis sativus L.‘Ekron’ either non-grafted or grafted onto ‘P360’ (Cucurbita maxima Duchesne × Cucurbita moschata Duchesne; E/C or figleaf gourd (Cucurbita ficifolia Bouché; E/F. Cucumber plants were cultured in pots and supplied with nutrient solutions having different pH and Al concentrations: pH 6, pH 3.5, pH 3.5 + 1.5 mM Al and pH 3.5 + 3 mM Al (Exp. 1, 14 d and pH 6, pH 3.5 and pH 3.5 +0.75 mM Al (Exp. 2, 67 d. Significant depression in shoot and root biomass was observed in response to acidity and Al concentrations, with Al-stress being more phytotoxic than low pH treatment. Significant decrease in yield, shoot and root biomass, leaf area, SPAD index, N, K, Ca, Mg, Mn, and B concentration in aerial parts (leaves and stems in response to low pH with more detrimental effects at pH 3.5 + Al. Grafted E/C plants grown under low pH and Al had higher yield, shoot and root biomass compared to E/F and non-grafted plants. This better crop performance of E/C plants in response to Al stress was related to i a reduced translocation of Al from roots to the shoot, ii a better shoot and root nutritional status in K, Ca, Mg, Mn, and Zn concentration, iii a higher chlorophyll synthesis, as well as iv the ability to maintain cell membrane stability and integrity (lower electrolyte leakage. Data provide insight into the role of grafting on Al stress tolerance in cucumber.

  19. Can Adverse Effects of Acidity and Aluminum Toxicity Be Alleviated by Appropriate Rootstock Selection in Cucumber?

    Science.gov (United States)

    Rouphael, Youssef; Rea, Elvira; Cardarelli, Mariateresa; Bitterlich, Michael; Schwarz, Dietmar; Colla, Giuseppe

    2016-01-01

    Low-pH and aluminum (Al) stresses are the major constraints that limit crop yield in acidic soils. Grafting vegetable elite cultivars onto appropriate rootstocks may represent an effective tool to improve crop tolerance to acidity and Al toxicity. Two greenhouse hydroponic experiments were performed to evaluate growth, yield, biomass production, chlorophyll index, electrolyte leakage, mineral composition, and assimilate partitioning in plant tissues of cucumber plants (Cucumis sativus L. "Ekron") either non-grafted or grafted onto "P360" (Cucurbita maxima Duchesne × Cucurbita moschata Duchesne; E/C) or figleaf gourd (Cucurbita ficifolia Bouché; E/F). Cucumber plants were cultured in pots and supplied with nutrient solutions having different pH and Al concentrations: pH 6, pH 3.5, pH 3.5 + 1.5 mM Al, and pH 3.5 + 3 mM Al (Experiment 1, 14 days) and pH 6, pH 3.5, and pH 3.5 + 0.75 mM Al (Experiment 2, 67 days). Significant depression in shoot and root biomass was observed in response to acidity and Al concentrations, with Al-stress being more phytotoxic than low pH treatment. Significant decrease in yield, shoot, and root biomass, leaf area, SPAD index, N, K, Ca, Mg, Mn, and B concentration in aerial parts (leaves and stems) in response to low pH with more detrimental effects at pH 3.5 + Al. Grafted E/C plants grown under low pH and Al had higher yield, shoot, and root biomass compared to E/F and non-grafted plants. This better crop performance of E/C plants in response to Al stress was related to (i) a reduced translocation of Al from roots to the shoot, (ii) a better shoot and root nutritional status in K, Ca, Mg, Mn, and Zn concentration, (iii) a higher chlorophyll synthesis, as well as (iv) the ability to maintain cell membrane stability and integrity (lower electrolyte leakage). Data provide insight into the role of grafting on Al stress tolerance in cucumber.

  20. Pre-storage application of oxalic acid alleviates chilling injury in mango fruit by modulating proline metabolism and energy status under chilling stress.

    Science.gov (United States)

    Li, Peiyan; Zheng, Xiaolin; Liu, Yan; Zhu, Yuyan

    2014-01-01

    Effects of oxalic acid on chilling injury, proline metabolism and energy status in mango fruit were investigated after mango fruit (Mangifera indica L. cv. Zill) were dipped in 5mM oxalic acid solution for 10min at 25°C and then stored at low temperature (10±0.5°C) for 49days thereafter transferred to 25°C for 4days. Pre-storage application of oxalic acid apparently inhibited the development of chilling injury, notably elevated proline accumulation actually associated with increase in Δ(1)-pyrroline-5-carboxylate synthetase (P5CS) activity and decrease in proline dehydrogenase (PDH) activity in the peel and the flesh, without activation of ornithine-δ-aminotransferase (OAT) activity, and maintained high ATP level and energy charge in the flesh during storage. It was suggested that these effects of oxalic acid might collectively contribute to improving chilling tolerance, thereby alleviating chilling injury and maintaining quality of mango fruit in long term cold storage.

  1. UV-C-Induced alleviation of transcriptional gene silencing through plant–plant communication: Key roles of jasmonic acid and salicylic acid pathways

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Wang, Ting [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1138, Hefei, Anhui, 230031 (China); Xu, Shaoxin [School of physics and materials science, Anhui University, Hefei, Anhui, 230601 (China); Li, Fanghua; Deng, Chenguang; Wu, Lijun; Wu, Yuejin [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1138, Hefei, Anhui, 230031 (China); Bian, Po, E-mail: bianpo@ipp.ac.cn [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1138, Hefei, Anhui, 230031 (China)

    2016-08-15

    Highlights: • Transcriptional gene silencing (TGS) in plants can be epigenetically alleviated by volatile signals from UV-C- irradiated neighboring plants. • Alleviation of TGS can be induced by UV-C irradiation through plant–plant–plant communication. • JA and SA signals take part in interplant communication for alleviation of TGS. - Abstract: Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known regarding epigenetic responses to external stresses mediated by plant–plant communication. In this study, we show that DNA repetitive elements of Arabidopsis thaliana, whose expression is inhibited epigenetically by transcriptional gene silencing (TGS) mechanism, are activated by UV-C irradiation through airborne plant–plant and plant–plant–plant communications, accompanied by DNA demethylation at CHH sites. Moreover, the TGS is alleviated by direct treatments with exogenous methyl jasmonate (MeJA) and methyl salicylate (MeSA). Further, the plant–plant and plant–plant–plant communications are blocked by mutations in the biosynthesis or signaling of jasmonic acid (JA) or salicylic acid (SA), indicating that JA and SA pathways are involved in the interplant communication for epigenetic responses. For the plant–plant–plant communication, stress cues are relayed to the last set of receiver plants by promoting the production of JA and SA signals in relaying plants, which exhibit upregulated expression of genes for JA and SA biosynthesis and enhanced emanation of MeJA and MeSA.

  2. Alleviating effects of Bushen-Yizhi formula on ibotenic acid-induced cholinergic impairments in rat.

    Science.gov (United States)

    Hou, Xue-Qin; Zhang, Lei; Yang, Cong; Rong, Cui-Ping; He, Wen-Qing; Zhang, Chun-Xia; Li, Shi; Su, Ru-Yu; Chang, Xiang; Qin, Ji-Huan; Chen, Yun-Bo; Xian, Shao-Xiang; Wang, Qi

    2015-04-01

    This study explored the curative effect and underlying mechanisms of a traditional Chinese medicine compound prescription, Bushen-Yizhi formula (BSYZ), in ibotenic acid (IBO)-induced rats. Morris water maze and novel object recognition tests showed that BSYZ significantly improved spatial and object memory. Brain immunohistochemistry staining showed that BSYZ significantly up-regulated expression of choline acetyltransferase (ChAT) and nerve growth factor (NGF) in the hippocampus and cortex. The protein tyrosine kinase high-affinity receptor TrkA was slightly increased in the hippocampus and cortex, and significantly enhanced in the nucleus basalis of Meynert (NBM) after BSYZ intervention. The immunoreactivity of the p75 low-affinity receptor in BSYZ-treated rats was significantly strengthened in the cortex. Similar expression trends of nerve growth factor (NGF), TrkA, and p75 mRNA were observed in the hippocampus and cortex. Additionally, BSYZ reversed IBO-induced disorders of acetylcholine (ACh) levels, ChAT, and cholinesterase (ChE) in the cortex, which was consistent with the changes in mRNA levels of ChAT and acetylcholinesterase (AChE). Expression of ChAT and AChE proteins and mRNA in the hippocampus was up-regulated, whereas the apoptosis-relative protein cleaved caspase-3 was decreased after administration of BSYZ. Moreover, changes in cell death were confirmed by histological morphology. Thus, the results indicated that the BSYZ formula could ameliorate memory impairments in IBO-induced rats, and it exerted its therapeutic action probably by modulating cholinergic pathways, NGF signaling, and anti-apoptosis. Overall, it is suggested that the BSYZ formula might be a potential therapeutic approach for the treatment of Alzheimer's disease (AD) and other cholinergic impairment-related diseases.

  3. Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings

    Science.gov (United States)

    Genişel, Mucip; Erdal, Serkan

    2016-04-01

    The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg.l-1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treating with ALA significantly mitigated these stress-induced reductions. The data for the isoenzyme profiles of the antioxidant enzymes paralleled that of the ALA-induced increases in antioxidant activity. As a consequence of the high antioxidant activity in the seedlings pre-treated with ALA, the stress-induced elevations in the reactive oxygen species, superoxide anion, and hydrogen peroxide contents and lipid peroxidation levels were markedly diminished. Taken together, this data demonstrated that pre-treating with ALA confers resistance to salt stress by modulating the protein synthesis and antioxidant activity in wheat seedlings.

  4. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.).

    Science.gov (United States)

    Gondor, Orsolya Kinga; Pál, Magda; Darkó, Éva; Janda, Tibor; Szalai, Gabriella

    2016-01-01

    The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms.

  5. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.)

    Science.gov (United States)

    Gondor, Orsolya Kinga; Pál, Magda; Darkó, Éva; Janda, Tibor; Szalai, Gabriella

    2016-01-01

    The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms. PMID:27490102

  6. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups.

    Science.gov (United States)

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-06-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2'-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits.

  7. Alpha-Lipoic Acid Alleviates Acute Inflammation and Promotes Lipid Mobilization During the Inflammatory Response in White Adipose Tissue of Mice.

    Science.gov (United States)

    Guo, Jun; Gao, Shixing; Liu, Zhiqing; Zhao, Ruqian; Yang, Xiaojing

    2016-10-01

    Recently, white adipose tissue has been shown to exhibit immunological activity, and may play an important role in host defense and protection against bacterial infection. Αlpha-lipoic acid (α-LA) has been demonstrated to function as an anti-inflammatory and anti-oxidant agent. However, its influence on the inflammatory response and metabolic changes in white adipose tissue remains unknown. We used male C57BL/6 mice as models to study the effect of α-LA on the inflammatory response and metabolic changes in white adipose tissue after stimulation with lipopolysaccharide (LPS). The non-esterified fatty acid content was measured by an automatic biochemical analyzer. The expression of inflammation-, lipid- and energy metabolism-related genes and proteins was determined by quantitative real-time polymerase chain reaction and western blotting. The results indicated that α-LA significantly decreased the epididymis fat weight index and the non-esterified fatty acid content in plasma compared with the control group. LPS significantly increased the expression of inflammation genes and α-LA reduced their expression. The LPS-induced expression of nuclear factor-κB protein was decreased by α-LA. Regarding lipid metabolism, α-LA significantly counteracted the inhibitory effects of LPS on the expression of hormone-sensitive lipase gene and protein. α-LA evidently increased the gene expression of fatty acid transport protein 1 and cluster of differentiation 36. Regarding energy metabolism, α-LA significantly increased the expression of most of mitochondrial DNA-encoded genes compared with the control and LPS group. Accordingly, α-LA can alleviate acute inflammatory response and this action may be related with the promotion of lipid mobilization in white adipose tissue.

  8. New discovery of cryptorchidism: Decreased retinoic acid in testicle.

    Science.gov (United States)

    Peng, Jinpu; Shen, Lianju; Chen, Jinjun; Cao, Xining; Zhou, Yue; Weng, Huali; Long, Chunlan; Zhang, Deying; Tu, Shengfen; Zhang, Yan; He, Dawei; Lin, Tao; Wei, Guanghui

    2016-05-01

    This study focuses on investigation of cryptorchidism induced by flutamide (Flu) and its histopathological damage, and detects retinoic acid concentration in testicle tissue, in order to find a new method for clinical treatment to infertility caused by cryptorchidism. Twenty SD (Sprague Dawley) pregnant rats were randomly divided into Flu cryptorchidism group (n = 10) and normal control group (n = 10). HE stained for observing morphological difference. Transmission electron microscope (TEM) was used for observing the tight junction structure between Sertoli cells. Epididymal caudal sperms were counted and observed in morphology. The expression of stimulated by retinoic acid gene 8 (Stra8) was detected using immunohistochemistry, western blot, and Q-PCR. High performance liquid chromatography (HPLC) analysis was made on retinoic acid content. Sperm count and morphology observation confirmed cryptorchidism group was lower than normal group in sperm quantity and quality. The observation by TEM showed a loose structure of tight junctions between Sertoli cells. Immunohistochemistry, western blot, and Q-PCR showed that cryptorchidism group was significantly lower than normal group in the expression of Stra8. HPLC showed that retinoic acid content was significantly lower in cryptorchid testis than in normal testis. In the cryptorchidism model, retinoic acid content in testicular tissue has a significant reduction; testicles have significant pathological changes; damage exists in the structure of tight junctions between Sertoli cells; Stra8 expression has a significant reduction, perhaps mainly contributing to spermatogenesis disorder.

  9. New discovery of cryptorchidism: Decreased retinoic acid in testicle

    Directory of Open Access Journals (Sweden)

    Jinpu Peng

    2016-05-01

    Full Text Available This study focuses on investigation of cryptorchidism induced by flutamide (Flu and its histopathological damage, and detects retinoic acid concentration in testicle tissue, in order to find a new method for clinical treatment to infertility caused by cryptorchidism. Twenty SD (Sprague Dawley pregnant rats were randomly divided into Flu cryptorchidism group (n = 10 and normal control group (n = 10. HE stained for observing morphological difference. Transmission electron microscope (TEM was used for observing the tight junction structure between Sertoli cells. Epididymal caudal sperms were counted and observed in morphology. The expression of stimulated by retinoic acid gene 8 (Stra8 was detected using immunohistochemistry, western blot, and Q-PCR. High performance liquid chromatography (HPLC analysis was made on retinoic acid content. Sperm count and morphology observation confirmed cryptorchidism group was lower than normal group in sperm quantity and quality. The observation by TEM showed a loose structure of tight junctions between Sertoli cells. Immunohistochemistry, western blot, and Q-PCR showed that cryptorchidism group was significantly lower than normal group in the expression of Stra8. HPLC showed that retinoic acid content was significantly lower in cryptorchid testis than in normal testis. In the cryptorchidism model, retinoic acid content in testicular tissue has a significant reduction; testicles have significant pathological changes; damage exists in the structure of tight junctions between Sertoli cells; Stra8 expression has a significant reduction, perhaps mainly contributing to spermatogenesis disorder.

  10. Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD)-Fed Rats.

    Science.gov (United States)

    Chang, Wen-Chang; Wu, James Swi-Bea; Chen, Chen-Wen; Kuo, Po-Ling; Chien, Hsu-Min; Wang, Yuh-Tai; Shen, Szu-Chuan

    2015-12-02

    Excess free fatty acid accumulation from abnormal lipid metabolism results in the insulin resistance in peripheral cells, subsequently causing hyperinsulinemia, hyperglycemia and/or hyperlipidemia in diabetes mellitus (DM) patients. Herein, we investigated the effect of phenolic acids on glucose uptake in an insulin-resistant cell-culture model and on hepatic insulin resistance and inflammation in rats fed a high-fat diet (HFD). The results show that vanillic acid (VA) demonstrated the highest glucose uptake ability among all tested phenolic acids in insulin-resistant FL83B mouse hepatocytes. Furthermore, rats fed HFD for 16 weeks were orally administered with VA daily (30 mg/kg body weight) at weeks 13-16. The results show that levels of serum insulin, glucose, triglyceride, and free fatty acid were significantly decreased in VA-treated HFD rats (p hyperlipidemia in HFD rats. Moreover, VA significantly reduced values of area under the curve for glucose (AUCglucose) in oral glucose tolerance test and homeostasis model assessment-insulin resistance (HOMA-IR) index, suggesting the improving effect on glucose tolerance and insulin resistance in HFD rats. The Western blot analysis revealed that VA significantly up-regulated expression of hepatic insulin-signaling and lipid metabolism-related protein, including insulin receptor, phosphatidylinositol-3 kinase, glucose transporter 2, and phosphorylated acetyl CoA carboxylase in HFD rats. VA also significantly down-regulated hepatic inflammation-related proteins, including cyclooxygenase-2 and monocyte chemoattractant protein-1 expressions in HFD rats. These results indicate that VA might ameliorate insulin resistance via improving hepatic insulin signaling and alleviating inflammation pathways in HFD rats. These findings also suggest the potential of VA in preventing the progression of DM.

  11. Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD-Fed Rats

    Directory of Open Access Journals (Sweden)

    Wen-Chang Chang

    2015-12-01

    Full Text Available Excess free fatty acid accumulation from abnormal lipid metabolism results in the insulin resistance in peripheral cells, subsequently causing hyperinsulinemia, hyperglycemia and/or hyperlipidemia in diabetes mellitus (DM patients. Herein, we investigated the effect of phenolic acids on glucose uptake in an insulin-resistant cell-culture model and on hepatic insulin resistance and inflammation in rats fed a high-fat diet (HFD. The results show that vanillic acid (VA demonstrated the highest glucose uptake ability among all tested phenolic acids in insulin-resistant FL83B mouse hepatocytes. Furthermore, rats fed HFD for 16 weeks were orally administered with VA daily (30 mg/kg body weight at weeks 13–16. The results show that levels of serum insulin, glucose, triglyceride, and free fatty acid were significantly decreased in VA-treated HFD rats (p < 0.05, indicating the protective effects of VA against hyperinsulinemia, hyperglycemia and hyperlipidemia in HFD rats. Moreover, VA significantly reduced values of area under the curve for glucose (AUCglucose in oral glucose tolerance test and homeostasis model assessment-insulin resistance (HOMA-IR index, suggesting the improving effect on glucose tolerance and insulin resistance in HFD rats. The Western blot analysis revealed that VA significantly up-regulated expression of hepatic insulin-signaling and lipid metabolism-related protein, including insulin receptor, phosphatidylinositol-3 kinase, glucose transporter 2, and phosphorylated acetyl CoA carboxylase in HFD rats. VA also significantly down-regulated hepatic inflammation-related proteins, including cyclooxygenase-2 and monocyte chemoattractant protein-1 expressions in HFD rats. These results indicate that VA might ameliorate insulin resistance via improving hepatic insulin signaling and alleviating inflammation pathways in HFD rats. These findings also suggest the potential of VA in preventing the progression of DM.

  12. Effects of Ascorbic Acid and Reduced Glutathione on the Alleviation of Salinity Stress in Olive Plants

    NARCIS (Netherlands)

    Aliniaeifard, S.; Hajilou, J.; Tabatabaei, S.J.; Seifi Kalhor, Maryam

    2016-01-01

    The aim of this study was to evaluate the effects of low molecular mass antioxidants and NaCl salinity on growth, ionic balance, proline, and water contents of ‘Zard’ olive trees under controlled greenhouse conditions. The experiment was carried out by spraying 2 mM of ascorbic acid (Asc) and 3 m

  13. Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.).

    Science.gov (United States)

    Zhang, Yongping; Xu, Shuang; Yang, Shaojun; Chen, Youyuan

    2015-05-01

    Cadmium (Cd) is a widespread toxic heavy metal that usually causes deleterious effects on plant growth and development. Salicylic acid (SA), a naturally existing phenolic compound, is involved in specific responses to various environmental stresses. To explore the role of SA in the tolerance of melon (Cucumis melo L.) to Cd stress, the influence of SA application on the growth and physiological processes was compared in the two melon cultivars Hamilv (Cd-tolerant) and Xiulv (Cd-sensitive) under Cd stress. Under 400-μM Cd treatment, Hamilv showed a higher biomass accumulation, more chlorophyll (Chl), greater photosynthesis, and less oxidative damage compared to Xiulv. Foliar spraying of 0.1 mM SA dramatically alleviated Cd-induced growth inhibition in the two melon genotypes. Simultaneously, SA pretreatment attenuated the decrease in Chl content, photosynthetic capacity, and PSII photochemistry efficiency in Cd-stressed plants. Furthermore, exogenous SA significantly reduced superoxide anion production and lipid peroxidation, followed by increase in the activities of antioxidant enzyme superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase, and content of soluble protein and free proline in both the genotypes under Cd stress. The effect of SA was more conspicuous in Xiulv than Hamilv, reflected in the biomass, photosynthetic pigments, stomatal conductance, water use efficiency, and antioxidant enzymes. These results suggest that exogenous spray of SA can alleviate the adverse effects of Cd on the growth and photosynthesis of both the melon cultivars, mostly through promoting antioxidant defense capacity. It also indicates that SA-included protection against Cd damage is to a greater extent more pronounced in Cd-sensitive genotype than Cd-tolerant genotype.

  14. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity.

    Science.gov (United States)

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo; Costa, Maurício Dutra

    2014-05-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F(-)) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F(-) adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F(-) released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F(-) while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F(-) measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F(-) per liter can be removed from solution by biochar when added at 3 g liter(-1) to the culture medium. Thus, biochar acted as an F(-) sink during RP solubilization and led to an F(-) concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F(-) and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F(-), the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP.

  15. Pharmacological Postconditioning with Lactic Acid and Hydrogen Rich Saline Alleviates Myocardial Reperfusion Injury in Rats

    Science.gov (United States)

    Zhang, Guoming; Gao, Song; Li, Xiaoyan; Zhang, Lulu; Tan, Hong; Xu, Lin; Chen, Yaoyu; Geng, Yongjian; Lin, Yanliang; Aertker, Benjamin; Sun, Yuanyuan

    2015-01-01

    This study investigated whether pharmacological postconditioning with lactic acid and hydrogen rich saline can provide benefits similar to that of mechanical postconditioning. To our knowledge, this is the first therapeutic study to investigate the co-administration of lactic acid and hydrogen. SD rats were randomly divided into 6 groups: Sham, R/I, M-Post, Lac, Hyd, and Lac + Hyd. The left coronary artery was occluded for 45 min. Blood was withdrawn from the right atrium to measure pH. The rats were sacrificed at different time points to measure mitochondrial absorbance, infarct size, serum markers and apoptotic index. Rats in Lac + Hyd group had similar blood pH and ROS levels when compared to the M-Post group. Additionally, the infarct area was reduced to the same extent in Lac + Hyd and M-Post groups with a similar trends observed for serum markers of myocardial injury and apoptotic index. Although the level of P-ERK in Lac + Hyd group was lower, P-p38/JNK, TNFα, Caspase-8, mitochondrial absorbance and Cyt-c were all similar in Lac + Hyd and M-Post groups. The Lac and Hyd groups were able to partially mimic this protective role. These data suggested that pharmacological postconditioning with lactic acid and hydrogen rich saline nearly replicates the benefits of mechanical postconditioning. PMID:25928542

  16. Salvianolic acid A alleviates renal injury in systemic lupus erythematosus induced by pristane in BALB/c mice.

    Science.gov (United States)

    Lin, Yihuang; Yan, Yu; Zhang, Huifang; Chen, Yucai; He, Yangyang; Wang, Shoubao; Fang, Lianhua; Lv, Yang; Du, Guanhua

    2017-03-01

    The purpose of this study was to investigate the effects of salvianolic acid A (SAA) in systemic lupus erythematosus (SLE) induced by pristane in BALB/c mice. Lupus mice were established by confirming elevated levels of autoantibodies and IL-6 after intraperitoneal injection of pristane. Mice were then treated with daily oral doses of SAA for 5 months in parallel with mice treated with prednisone and aspirin as positive controls. The levels of autoantibodies were monitored at monthly intervals and nephritic symptoms observed by hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining. Western blot analysis of renal tissue was also employed. SAA treatment caused a significant reduction in the levels of anti-Sm autoantibodies and reduced renal histopathological changes and pathological effects. SAA treatment also significantly inhibited the phosphorylation of IKK, IκB and NFκB in renal tissues of lupus mice. In conclusion, the results suggest that SAA alleviates renal injury in pristane-induced SLE in BALB/c mice through inhibition of phosphorylation of IKK, IκB and NFκB.

  17. The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Alleviates Salinity Stress in Cassava

    Science.gov (United States)

    Patanun, Onsaya; Ueda, Minoru; Itouga, Misao; Kato, Yukari; Utsumi, Yoshinori; Matsui, Akihiro; Tanaka, Maho; Utsumi, Chikako; Sakakibara, Hitoshi; Yoshida, Minoru; Narangajavana, Jarunya; Seki, Motoaki

    2017-01-01

    Cassava (Manihot esculenta Crantz) demand has been rising because of its various applications. High salinity stress is a major environmental factor that interferes with normal plant growth and limits crop productivity. As well as genetic engineering to enhance stress tolerance, the use of small molecules is considered as an alternative methodology to modify plants with desired traits. The effectiveness of histone deacetylase (HDAC) inhibitors for increasing tolerance to salinity stress has recently been reported. Here we use the HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), to enhance tolerance to high salinity in cassava. Immunoblotting analysis reveals that SAHA treatment induces strong hyper-acetylation of histones H3 and H4 in roots, suggesting that SAHA functions as the HDAC inhibitor in cassava. Consistent with increased tolerance to salt stress under SAHA treatment, reduced Na+ content and increased K+/Na+ ratio were detected in SAHA-treated plants. Transcriptome analysis to discover mechanisms underlying salinity stress tolerance mediated through SAHA treatment reveals that SAHA enhances the expression of 421 genes in roots under normal condition, and 745 genes at 2 h and 268 genes at 24 h under both SAHA and NaCl treatment. The mRNA expression of genes, involved in phytohormone [abscisic acid (ABA), jasmonic acid (JA), ethylene, and gibberellin] biosynthesis pathways, is up-regulated after high salinity treatment in SAHA-pretreated roots. Among them, an allene oxide cyclase (MeAOC4) involved in a crucial step of JA biosynthesis is strongly up-regulated by SAHA treatment under salinity stress conditions, implying that JA pathway might contribute to increasing salinity tolerance by SAHA treatment. Our results suggest that epigenetic manipulation might enhance tolerance to high salinity stress in cassava. PMID:28119717

  18. Alleviation Of Nacl Stress In Summer Squash ‘Eskandrani’ By Foliar Application Of Salicylic Acid

    OpenAIRE

    Elwan Mohammed Wasfy Mohammed; El-Shatoury Rewaa Salah Ahmed

    2014-01-01

    The experiment was performed to assess the possibility of overcoming NaCl salinity stress by foliar sprays of summer squash ‘Eskandrani’ with salicylic acid (SA) at the concentration of 10-6 M. NaCl treatment caused reduction of shoot fresh weight, leaf number per plant, fruit yield, concentrations of potassium in aerial parts, and the concentration of chlorophyll in leaves. Plants grown under salt stress conditions had higher shoot sodium concentrations than plants untreated with NaCl. Folia...

  19. Alleviation of Subsoil Acidity of Red Soil in Southeast China with Lime and Gypsum

    Institute of Scientific and Technical Information of China (English)

    SUNBO; R.MOREAU; 等

    1998-01-01

    Application of lime or gypsum is a common agricultrual practice to ameliorate soils with low pH which prohibits crop prduction,Its integrated effect on soil properties in a red soil derved from Quaternary red clay in Southeast China is discussed in this paper,Application of gypsum in the topsoil without leaching raised soil pH and promoted the production of soil NH4,but lime addition had a contrary effect.Generally,application of lime and /or gypsum has little on soil electrical properties.Gypsum had a little effect on soil exchange complex and its effect went down to 30 cm in depth ,The effect of lime reached only to 5 cm below its application layer.With leaching,Ca transferred from top soil to subsoil and decreased exchangeable Al in subsiol.Gypsum application led to a sharp decrease in soil exchangeable Mg but had no effect on K.

  20. Effects of decreasing acid deposition and climate change on acid extremes in an upland stream

    Directory of Open Access Journals (Sweden)

    C. D. Evans

    2008-03-01

    Full Text Available This study assesses the major chemical processes leading to acid extremes in a small, moorland stream in mid-Wales, UK, which has been monitored since 1979. Results suggest that base cation (mainly calcium dilution, the "sea-salt effect", and elevated nitrate pulses, are the major causes of seasonal/episodic minima in acid neutralising capacity (ANC, and that the relative importance of these drivers has remained approximately constant during 25 years of decreasing acid deposition and associated long-term chemical recovery. Many of the chemical variations causing short-term reductions in stream acidity, particularly base cation dilution and organic acid increases, are closely related to changes in water-flowpath and therefore to stream discharge. Changes in the observed pH-discharge relationship over time indicate that high-flow pH has increased more rapidly than mean-flow pH, and therefore that episodes have decreased in magnitude since 1980. However a two-box application of the dynamic model MAGIC, whilst reproducing this trend, suggests that it will not persist in the long term, with mean ANC continuing to increase until 2100, but the ANC of the upper soil (the source of relatively acid water during high-flow episodes stabilising close to zero beyond 2030. With climate change predicted to lead to an increase in maximum flows in the latter half of the century, high-flow related acid episodes may actually become more rather than less severe in the long term, although the model suggests that this effect may be small. Two other predicted climatic changes could also detrimentally impact on acid episodes: increased severity of winter "sea-salt" episodes due to higher wind speeds during winter storms; and larger sulphate pulses due to oxidation of reduced sulphur held in organic soils, during more extreme summer droughts. At the Gwy, the near-coastal location and relatively small extent of peat soils suggest that sea-salt episodes may have the

  1. The interaction of salicylic acid and Ca(2+) alleviates aluminum toxicity in soybean (Glycine max L.).

    Science.gov (United States)

    Lan, Tu; You, Jiangfeng; Kong, Lingnan; Yu, Miao; Liu, Minghui; Yang, Zhenming

    2016-01-01

    Both calcium ion (Ca(2+)) and salicylic acid (SA) influence various stress responses in plants. In acidic soils, aluminum (Al) toxicity adversely affects crop yield. In this study, we determined the influences of Ca(2+) and SA on root elongation, Al accumulation, and citrate secretion in soybean plant. We also investigated the activity of antioxidative enzymes in Al-exposed soybean roots. Root elongation was severally inhibited when the roots were exposed to 30 μM Al. The Al-induced inhibition of root elongation was ameliorated by Ca(2+) and SA but aggravated by Ca(2+) channel inhibitor (VP), CaM antagonists (TFP), Ca(2+) chelator (EGTA), and SA biosynthesis inhibitor (PAC). Furthermore, 1.0 mM CaCl2 and 10 μM SA reduced the accumulation of Al in roots, but their inhibitors stimulated the accumulation of Al in roots. Citrate secretion from these roots increased with the addition of either 1.0 mM CaCl2 or 10 μM SA but did not increase significantly when treated with higher Ca(2+) concentration. Enzymatic analysis showed that Ca(2+) and SA stimulated the activities of superoxidase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in Al-treated roots. In addition, SA restored the inhibition of Ca(2+) inhibitors on root elongation and Al content. Thus, both Ca(2+) and SA contribute to Al tolerance in soybean. Furthermore, Ca(2+) supplements rapidly increased Al-induced accumulation of free-SA or conjugated SA (SAG), while Ca(2+) inhibitors delayed the accumulation of SA for more than 8 h. Within 4 h of treatment, SA increased cytosolic Ca(2+) concentration in Al-treated roots, and upregulated the expression of four genes that possibly encode calmodulin-like (CML) proteins. These findings indicate that SA is involved in Ca(2+)-mediated signal transduction pathways in Al tolerance.

  2. Dietary sea cucumber cerebroside alleviates orotic acid-induced excess hepatic adipopexis in rats

    Directory of Open Access Journals (Sweden)

    Zhang Bei

    2012-05-01

    Full Text Available Abstract Background Nonalcoholic fatty liver disease (NAFLD is a prevalent chronic liver disease in industrialized countries. The present study was undertaken to explore the preventive effect of dietary sea cucumber cerebroside (SCC extracted from Acaudina molpadioides in fatty liver rats. Methods Male Wistar rats were randomly divided into four groups including normal control group, NAFLD model group, and two SCC-treated groups with SCC at 0.006% and 0.03% respectively. The fatty liver model was established by administration of 1% orotic acid (OA to the rats. After 10d, serum and hepatic lipid levels were detected. And the serum alanine aminotransferase (ALT and aspartate aminotransferase (AST activities were also determined. Besides, to gain the potential mechanism, the changes of key enzymes and gene expressions related to the hepatic lipid metabolism were measured. Results Dietary SCC at the level of 0.006% and 0.03% ameliorated the hepatic lipid accumulation in fatty liver rats. SCC administration elevated the serum triglyceride (TG level and the ALT, AST activities in OA-fed rats. The activities of hepatic lipogenic enzymes including fatty acid synthase (FAS, malic enzyme (ME and glucose-6-phosphatedehydrogenase (G6PDH were inhibited by SCC treatment. And the gene expressions of FAS, ME, G6PDH and sterol-regulatory element binding protein (SREBP-1c were also reduced in rats fed SCC. However, dietary SCC didn't affect the activity and mRNA expression of carnitine palmitoyltransferase (CPT in liver. Besides, suppression of microsomal triglyceride transfer protein (MTP activity was observed in SCC-feeding rats. Conclusions These results suggested that dietary SCC could attenuate hepatic steatosis due to its inhibition of hepatic lipogenic gene expression and enzyme activity and the enhancement of TG secretion from liver.

  3. Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L

    Energy Technology Data Exchange (ETDEWEB)

    Najeeb, U.; Xu, L.; Ali, Shafaqat [Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Jilani, Ghulam, E-mail: jilani@uaar.edu.pk [Department of Soil Science, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab 46300 (Pakistan); Gong, H.J. [Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Shen, W.Q. [The University of Nottingham at Ningbo, Ningbo 315100 (China); Zhou, W.J., E-mail: wjzhou@zju.edu.cn [Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China)

    2009-10-30

    Chelate-assisted phytoextraction by high biomass producing plant species enhances the removal of heavy metals from polluted environments. In this regard, Juncus effusus a wetland plant has great potential. This study evaluated the effects of elevated levels of manganese (Mn) on the vegetative growth, Mn uptake and antioxidant enzymes in J. effusus. We also studied the role of citric acid and EDTA on improving metal accumulation, plant growth and Mn toxicity stress alleviation. Three-week-old plantlets of J. effusus were subjected to various treatments in the hydroponics as: Mn (50, 100 and 500 {mu}M) alone, Mn (500 {mu}M) + citric acid (5 mM), and Mn (500 {mu}M) + EDTA (5 mM). After 2 weeks of treatment, higher Mn concentrations significantly reduced the plant biomass and height. Both citric acid and EDTA restored the plant height as it was reduced at the highest Mn level. Only the citric acid (but not EDTA) was able to recover the plant biomass weight, which was also obvious from the microscopic visualization of mesophyll cells. There was a concentration dependent increase in Mn uptake in J. effusus plants, and relatively more deposition in roots compared to aerial parts. Although both EDTA and citric acid caused significant increase in Mn accumulation; however, the Mn translocation was enhanced markedly by EDTA. Elevated levels of Mn augmented the oxidative stress, which was evident from changes in the activities of antioxidative enzymes in plant shoots. Raised levels of lipid peroxidation and variable changes in the activities of antioxidant enzymes were recorded under Mn stress. Electron microscopic images revealed several modifications in the plants at cellular and sub-cellular level due to the oxidative damage induced by Mn. Changes in cell shape and size, chloroplast swelling, increased number of plastoglobuli and disruption of thylakoid were noticed. However, these plants showed a high degree of tolerance against Mn toxicity stress, and it removed

  4. Alleviation effects of Ce3+on inhibition of photochemical activity caused by linolenic acid in spinach chloroplast

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaoqing; HUANG Hao; LIU Chao; MA Linglan; LIU Jie; YIN Sitao; HONG Fashui

    2008-01-01

    Linolenic acid has great effects on the structure and function of chloroplast. The function of Ce3+ on the improvement of chloro-plast photoreduction activity and oxygen evolution damaged by linolenic acid in spinach by in vitro investigation was studied. Results showed that adding Ce3+ to the linolenic acid treated chloroplast could greatly decrease the reduction linolenic acid exerted on the whole chain electron transport rate and the photoreduction activity of photosystem Ⅱ (PSⅡ) and photosystem Ⅰ (PSⅠ) as well as the oxygen evolution rate of chloroplast. It indicated that Ce3+ had the ability to relieve the inhibition of the photochemical reaction of chloroplast caused by lino-lenic acid to some extent.

  5. Docosahexaenoic acid inhibits mechanical allodynia and thermal hyperalgesia in diabetic rats by decreasing the excitability of DRG neurons.

    Science.gov (United States)

    Heng, Li-Jun; Qi, Rui; Yang, Rui-Hua; Xu, Guo-Zheng

    2015-09-01

    Diabetes mellitus is a common metabolic disease in human beings with characteristic symptoms of hyperglycemia, chronic inflammation and insulin resistance. One of the most common complications of early-onset diabetes mellitus is peripheral diabetic neuropathy, which is manifested either by loss of nociception or by allodynia and hyperalgesia. Dietary fatty acids, especially polyunsaturated fatty acids, have been shown the potential of anti-inflammation and modulating neuron excitability. The present study investigated the effects of docosahexaenoic acid (DHA) on the excitability of dorsal root ganglion (DRG) neurons in streptozotocin (STZ)-induced diabetes rats. The effects of DHA on the allodynia and hyperalgesia of diabetic rats were also evaluated. Dietary DHA supplementation effectively attenuated both allodynia and hyperalgesia induced by STZ injection. DHA supplementation decreased the excitability of DRG neurons by decreasing the sodium currents and increasing potassium currents, which may contribute to the effect of alleviating allodynia and hyperalgesia in diabetic rats. The results suggested that DHA might be useful as an adjuvant therapy for the prevention and treatment of painful diabetic neuropathy.

  6. Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum).

    Science.gov (United States)

    Wang, Caixia; Zhang, Qingming

    2017-03-01

    The role of exogenous salicylic acid (SA) in protecting wheat plants (Triticum aestivum) from contamination by the insecticide chlorpyrifos was investigated in this study. The wheat plants were grown in soils with different concentrations (5, 10, 20, and 40mgkg(-1)) of chlorpyrifos. When the third leaf emerged, the wheat leaves were sprayed with 1, 2, 4, 8, and 16mgL(-1) of SA once a day for 6 days. The results showed that wheat exposed to higher concentrations of chlorpyrifos (≥20mgkg(-1)) caused declines in growth and chlorophyll content and altered the activities of a series of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). Interestingly, treatments with different concentrations of SA mitigated the stress generated by chlorpyrifos and improved the measured parameters to varying degrees. Furthermore, a reverse transcription and quantitative PCR experiment revealed that the activities of SOD and CAT can be regulated by their target gene in wheat when treated with SA. We also found that SA is able to block the accumulation of chlorpyrifos in wheat. However, the effect of SA was related to its concentration. In this study, the application of 2mgL(-1) of SA had the greatest ameliorating effect on chlorpyrifos toxicity in wheat plants.

  7. Tannic acid alleviates lead acetate-induced neurochemical perturbations in rat brain.

    Science.gov (United States)

    Ashafaq, Mohammad; Tabassum, Heena; Vishnoi, Shruti; Salman, Mohd; Raisuddin, Sheikh; Parvez, Suhel

    2016-03-23

    Oxidative stress has been projected as a promising mechanism involved in lead exposure. The lead predisposition catalyzes oxidative reactions and generates reactive oxygen species. The present study was carried out to investigate the effect of oral administration of tannic acid (TA) on behavioral deficit, antioxidative deterioration induced by lead acetate (LA) exposure on experimental rat brain. Male Wistar rats were treated with 50mg/kg body weight of LA and TA for three times a week for two weeks. Our data showed LA-induced profound elevation of ROS production and oxidative stress, as evidenced by increased levels of oxidative stress markers such as lipid peroxidation and protein carbonyl observed in LA treated rats, whereas significant depletion in the activity of non-enzymatic antioxidants, enzymatic antioxidants, neurotoxicity biomarker and histological changes were observed in LA treated rat brain. However, TA administration restored antioxidant status of brain significantly when compared to control. Our results demonstrate that TA exhibits potent antioxidant properties and suppresses oxidative damages in rat brain induced by LA treatment. These findings were further supported by the neurotoxicity biomarker and histopathological findings in the brain tissue showed that TA protected tissue from deleterious effects of LA exposure. It is concluded, these data suggest that LA induces oxidative stress and supplementation of TA has a powerful antioxidant effect, and it protected rat brain from poisonous effect of LA exposure in experimental rat.

  8. Salvianolic acid A alleviates renal injury in systemic lupus erythematosus induced by pristane in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Yihuang Lin

    2017-03-01

    Full Text Available The purpose of this study was to investigate the effects of salvianolic acid A (SAA in systemic lupus erythematosus (SLE induced by pristane in BALB/c mice. Lupus mice were established by confirming elevated levels of autoantibodies and IL-6 after intraperitoneal injection of pristane. Mice were then treated with daily oral doses of SAA for 5 months in parallel with mice treated with prednisone and aspirin as positive controls. The levels of autoantibodies were monitored at monthly intervals and nephritic symptoms observed by hematoxylin and eosin (H&E and periodic acid–Schiff (PAS staining. Western blot analysis of renal tissue was also employed. SAA treatment caused a significant reduction in the levels of anti-Sm autoantibodies and reduced renal histopathological changes and pathological effects. SAA treatment also significantly inhibited the phosphorylation of IKK, IκB and NFκB in renal tissues of lupus mice. In conclusion, the results suggest that SAA alleviates renal injury in pristane-induced SLE in BALB/c mice through inhibition of phosphorylation of IKK, IκB and NFκB.

  9. Ferulic Acid Alleviates Changes in a Rat Model of Metabolic Syndrome Induced by High-Carbohydrate, High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Ketmanee Senaphan

    2015-08-01

    Full Text Available Metabolic syndrome is a cluster of metabolic abnormalities characterized by obesity, insulin resistance, hypertension and dyslipidemia. Ferulic acid (FA is the major phenolic compound found in rice oil and various fruits and vegetables. In this study, we examined the beneficial effects of FA in minimizing insulin resistance, vascular dysfunction and remodeling in a rat model of high-carbohydrate, high-fat diet-induced metabolic changes, which is regarded as an analogue of metabolic syndrome (MS in man. Male Sprague-Dawley rats were fed a high carbohydrate, high fat (HCHF diet and 15% fructose in drinking water for 16 weeks, where control rats were fed with standard chow diet and tap water. FA (30 or 60 mg/kg was orally administered to the HCHF and control rats during the last six weeks of the study. We observed that FA significantly improved insulin sensitivity and lipid profiles, and reduced elevated blood pressure, compared to untreated controls (p < 0.05. Moreover, FA also improved vascular function and prevented vascular remodeling of mesenteric arteries. The effects of FA in HCHF-induced MS may be realized through suppression of oxidative stress by down-regulation of p47phox, increased nitric oxide (NO bioavailability with up-regulation of endothelial nitric oxide synthase (eNOS and suppression of tumor necrosis factor-α (TNF-α. Our results suggest that supplementation of FA may have health benefits by minimizing the cardiovascular complications of MS and alleviating its symptoms.

  10. Ferulic Acid Alleviates Changes in a Rat Model of Metabolic Syndrome Induced by High-Carbohydrate, High-Fat Diet.

    Science.gov (United States)

    Senaphan, Ketmanee; Kukongviriyapan, Upa; Sangartit, Weerapon; Pakdeechote, Poungrat; Pannangpetch, Patchareewan; Prachaney, Parichat; Greenwald, Stephen E; Kukongviriyapan, Veerapol

    2015-08-04

    Metabolic syndrome is a cluster of metabolic abnormalities characterized by obesity, insulin resistance, hypertension and dyslipidemia. Ferulic acid (FA) is the major phenolic compound found in rice oil and various fruits and vegetables. In this study, we examined the beneficial effects of FA in minimizing insulin resistance, vascular dysfunction and remodeling in a rat model of high-carbohydrate, high-fat diet-induced metabolic changes, which is regarded as an analogue of metabolic syndrome (MS) in man. Male Sprague-Dawley rats were fed a high carbohydrate, high fat (HCHF) diet and 15% fructose in drinking water for 16 weeks, where control rats were fed with standard chow diet and tap water. FA (30 or 60 mg/kg) was orally administered to the HCHF and control rats during the last six weeks of the study. We observed that FA significantly improved insulin sensitivity and lipid profiles, and reduced elevated blood pressure, compared to untreated controls (p < 0.05). Moreover, FA also improved vascular function and prevented vascular remodeling of mesenteric arteries. The effects of FA in HCHF-induced MS may be realized through suppression of oxidative stress by down-regulation of p47phox, increased nitric oxide (NO) bioavailability with up-regulation of endothelial nitric oxide synthase (eNOS) and suppression of tumor necrosis factor-α (TNF-α). Our results suggest that supplementation of FA may have health benefits by minimizing the cardiovascular complications of MS and alleviating its symptoms.

  11. Ferulic acid, a natural polyphenol, alleviates insulin resistance and hypertension in fructose fed rats: Effect on endothelial-dependent relaxation.

    Science.gov (United States)

    El-Bassossy, Hany; Badawy, Dina; Neamatallah, Thikryat; Fahmy, Ahmed

    2016-07-25

    Ferulic acid (FER) is a polyphenolic compound contained in various types of fruits. It has a substantial therapeutic effect inhibitory activity against aldose reductase (AR) inhibition. In this study, we examined the effect of FER on fructose-fed rats in comparison to a standard AR inhibitor, zopolrestat (ZOP). We determined the protective role of FER against metabolic syndrome by examining serum insulin/Glucose levels, triglycerides (TGs), cholesterol and advanced glycation end product (AGE) in rats supplied with 10% fructose drinking water. In addition, blood pressure, vascular reactivity of isolated thoracic aortas and acetylcholine-induced NO were all evaluated to estimate the cardiovascular complications of metabolic syndrome (MetS) associated with fructose feeding. Animals were randomly divided into four groups: control, (+10% fructose, Fru), zopolrestat-treated fructose fed (Fru-zop) and ferulic acid-treated fructose fed rats (Fru-Fer). After 12 weeks of FER treatment, we found significant reduction in both hyperinsulinemia and elevated diastolic blood pressure associated with fructose-fed to levels comparable to those achieved with ZOP. Both FER and ZOP significantly augmented the impaired relaxation associated with fructose-fed, whereas neither showed any significant effect on the developed vasoconstriction. Isolated aortas from fructose-fed rats incubated with either FER or ZOP, reinstated normal relaxation response to acetylcholine (ACh). Furthermore, isolated aortas showed attenuated nitric oxide (NO) production following the addition of (ACh), while both FER and ZOP restored normal induction of NO. Taken together, the current study shows that, FER alleviated insulin resistance and hypertension associated with metabolic syndrome compared to the standard AR inhibitor (ZOP). This potential protective effect is at least mediated by restoring endothelial relaxation.

  12. A novel acid-stable, acid-active beta-galactosidase potentially suited to the alleviation of lactose intolerance.

    Science.gov (United States)

    O'Connell, Shane; Walsh, Gary

    2010-03-01

    Extracellular beta-galactosidase produced by a strain of Aspergillus niger van Tiegh was purified to homogeneity using a combination of gel filtration, ion-exchange, chromatofocusing, and hydrophobic interaction chromatographies. The enzyme displayed a temperature optimum of 65 degrees C and a low pH optimum of between 2.0 and 4.0. The monomeric glycosylated enzyme displayed a molecular mass of 129 kDa and an isoelectric point of 4.7. Protein database similarity searching using mass spectrometry-derived sequence data indicate that the enzyme shares homology with a previously sequenced A. niger beta-galactosidase. Unlike currently commercialised products, the enzyme displayed a high level of stability when exposed to simulated gastric conditions in vitro, retaining 68+/-2% of original activity levels. This acid-stable, acid-active beta-galactosidase was formulated, along with a neutral beta-galactosidase from Kluyveromyces marxianus DSM5418, in a novel two-segment capsule system designed to ensure delivery of enzymes of appropriate physicochemical properties to both stomach and small intestine. When subjected to simulated full digestive tract conditions, the twin lactase-containing capsule hydrolyzed, per unit activity, some 3.5-fold more lactose than did the commercial supplemental enzyme. The acid-stable, acid-active enzyme, along with the novel two-segment delivery system, may prove beneficial in the more effective treatment of lactose intolerance.

  13. Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet.

    Science.gov (United States)

    Xu, Li; Huang, Danping; Hu, Qiaolin; Wu, Jing; Wang, Yizhen; Feng, Jie

    2015-06-28

    To assess the effects of betaine on hepatic lipid accumulation and investigate the underlying mechanism, thirty-two male Sprague-Dawley rats weighing 100 (sd 2·50) g were divided into four groups, and started on one of four treatments: basal diet, basal diet with betaine administration, high-fat diet and high-fat diet with betaine administration. The results showed that no significant difference of body weight was found among experimental groups. Compared with high-fat diet-fed rats, a betaine supplementation decreased (Pbetaine-homocysteine methyltransferase concentration [corrected] as well as its mRNA abundance and lecithin level were found increased (Pbetaine supplementation in both basal diet-fed rats and high-fat diet-fed rats. Betaine administration in high-fat diet-fed rats exhibited a higher (Pbetaine administration in high-fat diet-fed rats elevated (Pbetaine administration in high-fat diet group; meanwhile the gene expression of hepatic AMP-activated protein kinase was increased (Pbetaine administration enhanced hepatic lipid export and fatty acid oxidation in high-fat diet-fed rats, thus effectively alleviating fat accumulation in the liver.

  14. Exercise pre‑conditioning alleviates brain damage via excitatory amino acid transporter 2 and extracellular signal‑regulated kinase 1/2 following ischemic stroke in rats.

    Science.gov (United States)

    Wang, Xiao; Zhang, Min; Feng, Rui; Li, Wen-Bin; Ren, Shi-Qing; Zhang, Feng

    2015-02-01

    Previous studies have reported that physical exercise may exert a neuroprotective effect in humans as well as animals. However, the detailed mechanisms underlying the neuroprotective effect of exercise has remained to be elucidated. The aim of the present study was to explore the possible signaling pathways involved in the protective effect of pre‑ischemic treadmill training for ischemic stroke in rats. A total of 36 male Sprague‑Dawley rats were divided at random into three groups as follows (n=12 for each): Sham surgery group; middle cerebral artery occlusion (MCAO) group; and exercise with MCAO group. Following treadmill training for three weeks, the middle cerebral artery was occluded for 90 min in order to induce ischemic stroke, followed by reperfusion. Following 24 h post‑reperfusion, six rats from each group were assessed for neurological deficits and then sacrificed to calculate the infarct volume. The remaining rats (n=6 for each group) were sacrificed and the expression levels of excitatory amino acid transporter 2 (EAAT‑2) and extracellular signal‑regulated kinase 1/2 (ERK1/2) were detected using western blot analysis. The results of the present study demonstrated that rats that underwent pre‑ischemic exercise intervention had a significantly decreased brain infarct volume and neurological deficits; in addition, the pre‑ischemic exercise group showed decreased overexpression of phosphorylated ERK1/2 and increased expression of EAAT‑2 following ischemic stroke. In conclusion, treadmill training exercise prior to ischemic stroke alleviated brain damage in rats via regulation of EAAT‑2 and ERK1/2.

  15. Influence of sericin in alleviating the hydrogen peroxide induced oxidative stress in silkworm Bombyx mori: role of the amino acids

    Directory of Open Access Journals (Sweden)

    AS Micheal

    2014-09-01

    Full Text Available Sericin is an important peptide derived from silk fibre spun by the silkworm Bombyx mori and has various biological activities. The aim of the present study was to characterize the major constituents of sericin that are providing cytoprotective effect against hydrogen peroxide-induced cell damage in midgut epithelial cells and hemocytes of silkworm. Extracted sericin was subjected to LCMS analysis for amino acid composition. Isolated cells of midgut and hemocytes were incubated with sericin or with mixture of serine and aspartic acid prior to suboptimal concentration of hydrogen peroxide treatment. Sericin as well as amino acid mixture reduced the activity of antioxidant enzymes triggered by hydrogen peroxide, inhibited oxidative derivatives such as protein carbonyl and malondialdehyde and increased antioxidant capacity in both the cells studied. Furthermore, sericin and amino acid mixture significantly decreased intracellular reactive oxygen species as assessed by fluorescent detection. These results suggest that major constituent amino acids of sericin defend midgut epithelial cells and hemocytes against oxidative damage by scavenging reactive oxygen species rather than activating antioxidant enzyme system thereby inhibiting cell damage.

  16. Autistic children exhibit decreased levels of essential Fatty acids in red blood cells.

    Science.gov (United States)

    Brigandi, Sarah A; Shao, Hong; Qian, Steven Y; Shen, Yiping; Wu, Bai-Lin; Kang, Jing X

    2015-05-04

    Omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFA) are essential nutrients for brain development and function. However, whether or not the levels of these fatty acids are altered in individuals with autism remains debatable. In this study, we compared the fatty acid contents between 121 autistic patients and 110 non-autistic, non-developmentally delayed controls, aged 3-17. Analysis of the fatty acid composition of red blood cell (RBC) membrane phospholipids showed that the percentage of total PUFA was lower in autistic patients than in controls; levels of n-6 arachidonic acid (AA) and n-3 docosahexaenoic acid (DHA) were particularly decreased (pautism.

  17. Dietary non-esterified oleic Acid decreases the jejunal levels of anorectic N-acylethanolamines

    DEFF Research Database (Denmark)

    Diep, Thi Ai; Madsen, Andreas N; Krogh-Hansen, Sandra;

    2014-01-01

    mice respond to dietary fat (olive oil) by reducing levels of anorectic NAEs, and 3) whether dietary non-esterified oleic acid also can decrease levels of anorectic NAEs in mice. We are searching for the fat sensor in the intestine, which mediates the decreased levels of anorectic NAEs. METHODS: Male...... of anorectic NAEs in mice. CONCLUSIONS: These results suggest that the down-regulation of the jejunal level of anorectic NAEs by dietary fat is not restricted to rats, and that the fatty acid component oleic acid, in dietary olive oil may be sufficient to mediate this regulation. Thus, a fatty acid sensor may...

  18. Alleviation of Kainic Acid-Induced Brain Barrier Dysfunction by 4-O-Methylhonokiol in In Vitro and In Vivo Models

    Directory of Open Access Journals (Sweden)

    Jin-Yi Han

    2015-01-01

    Full Text Available This experiment was designed to investigate whether 4-O-methylhonokiol (MH, a principal ingredient of Magnolia (M. officinalis bark, alleviated acute intraperitoneal (i.p. kainic acid- (KA- induced brain blood barrier dysfunction (BBBD via pathological examination and cytological analyses of the brain tissues of mice. KA (10–30 mg/kg time- and dose-dependently increased the water content of brain tissues and induced edema and encephalopathy. However, pretreatment with MH (5 and 20 mg/kg, i.p. significantly reduced the water content of the brain compared to that observed in the KA control group. Furthermore, MH significantly and dose-dependently reversed the remarkable variations in evan’s blue dye (EBD staining and malondialdehyde (MDA levels that were induced by KA (10 mg/kg, i.p.. MH also decreased the elevated seizure scores that were induced by KA (10 mg/kg, i.p. in mice in a manner similar to scavengers such as DMTU and trolox. Additionally, MH significantly scavenged intracellular ROS and Ca2+ within hippocampal cells. The tight junction seals mediated by claudin (Cld-5 were also found to be modulated by MH. MH efficiently reduced 1,1-diphenyl-2-picrylhydrazyl (DPPH (IC50, 52.4 mM and •OH with an electron spin resonance (ESR signal rate constant of 4×109 M-1·S-1, which is close to the reactivity of the vitamin E analog trolox. Taken together, these results suggest that MH may enhance radical scavenging in lipid and hydrophobic environments, which may be important for the physiological activity of the barrier.

  19. Alleviating Effect of Phenol Compounds on Cucumber Fusarium Wilt and Mechanism

    Institute of Scientific and Technical Information of China (English)

    YUAN Fei; ZHANG Chun-lan; SHEN Qi-rong

    2003-01-01

    The amount of phenol compounds in the soil increased after adding organic material into the soil. It was found that p-hydroxybenzoic acid, p-coumaric acid and frulic acid alleviated Fusarium wilt of cucumber, the alleviating effect of p-hydroxybenzoic acid was the best, followed by p-coumaric acid and frulic acid. The total amount of bacterial, actinomyces and fungus in high phenol compounds treatment decreased than that of control treatment, while the microorganisms' amount in low phenol compounds treatment increased. Phenol compounds inhibit the growth of pathogen.

  20. Silicon alleviates simulated acid rain stress of Oryza sativa L. seedlings by adjusting physiology activity and mineral nutrients.

    Science.gov (United States)

    Ju, Shuming; Wang, Liping; Yin, Ningning; Li, Dan; Wang, Yukun; Zhang, Cuiying

    2017-03-16

    Silicon (Si) has been a modulator in plants under abiotic stresses, such as acid rain. To understand how silicon made an effect on rice (Oryza sativa L.) exposed to simulated acid rain (SAR) stress, the growth, physiologic activity, and mineral nutrient content in leaves of rice were investigated. The results showed that combined treatments with Si (1.0, 2.0, or 4.0 mM) and SAR (pH 4.0, 3.0, or 2.0) obviously improved the rice growth compared with the single treatment with SAR. Incorporation of Si into SAR treatment decreased malondialdehyde (MDA) content; increased soluble protein and proline contents; promoted CAT, POD, SOD, and APX activity; and maintained the K, Ca, Mg, Fe, Zn, Cu content balance in leaves of rice seedlings under SAR stress. The moderate concentration of Si (2.0 mM) was better than the low and high concentration of Si (1.0 and 4.0 mM). Therefore, application of Si could be a better strategy for maintaining the crop productivity in acid rain regions.

  1. Coated fatty acids alter virulence properties of Salmonella Typhimurium and decrease intestinal colonization of pigs.

    Science.gov (United States)

    Boyen, F; Haesebrouck, F; Vanparys, A; Volf, J; Mahu, M; Van Immerseel, F; Rychlik, I; Dewulf, J; Ducatelle, R; Pasmans, F

    2008-12-10

    Salmonella Typhimurium infections in pigs are a major source of human foodborne salmonellosis. To reduce the number of infected pigs, acidification of feed or drinking water is a common practice. The aim of the present study was to determine whether some frequently used short- (SCFA) and medium-chain fatty acids (MCFA) are able to alter virulence gene expression and to decrease Salmonella Typhimurium colonization and shedding in pigs using well established and controlled in vitro and in vivo assays. Minimal inhibitory concentrations (MIC) of 4 SCFA (formic acid, acetic acid, propionic acid and butyric acid) and 2 MCFA (caproic and caprylic acid) were determined using 54 porcine Salmonella Typhimurium field strains. MIC values increased at increasing pH-values and were two to eight times lower for MCFA than for SCFA. Expression of virulence gene fimA was significantly lower when bacteria were grown in LB-broth supplemented with sub-MIC concentrations of caproic or caprylic acid (2 mM). Expression of hilA and invasion in porcine intestinal epithelial cells was significantly lower when bacteria were grown in LB-broth containing sub-MIC concentrations of butyric acid or propionic acid (10 mM) and caproic or caprylic acid (2 mM). When given as feed supplement to pigs experimentally infected with Salmonella Typhimurium, coated butyric acid decreased the levels of faecal shedding and intestinal colonization, but had no influence on the colonization of tonsils, spleen and liver. Uncoated fatty acids, however, did not influence fecal shedding, intestinal or tonsillar colonization in pigs. In conclusion, supplementing feed with certain coated fatty acids, such as butyric acid, may help to reduce the Salmonella load in pigs.

  2. Decreased Polyunsaturated Fatty Acid Content Contributes to Increased Survival in Human Colon Cancer

    Directory of Open Access Journals (Sweden)

    Manuela Oraldi

    2009-01-01

    Full Text Available Among diet components, some fatty acids are known to affect several stages of colon carcinogenesis, whereas others are probably helpful in preventing tumors. In light of this, our aim was to determine the composition of fatty acids and the possible correlation with apoptosis in human colon carcinoma specimens at different Duke's stages and to evaluate the effect of enriching human colon cancer cell line with the possible reduced fatty acid(s. Specimens of carcinoma were compared with the corresponding non-neoplastic mucosa: a significant decrease of arachidonic acid, PPARα, Bad, and Bax and a significant increase of COX-2, Bcl-2, and pBad were found. The importance of arachidonic acid in apoptosis was demonstrated by enriching a Caco-2 cell line with this fatty acid. It induced apoptosis in a dose- and time-dependent manner via induction of PPARα that, in turn, decreased COX-2. In conclusion, the reduced content of arachidonic acid is likely related to carcinogenic process decreasing the susceptibility of cancer cells to apoptosis.

  3. FLZ alleviates the memory deficits in transgenic mouse model of Alzheimer's disease via decreasing beta-amyloid production and tau hyperphosphorylation.

    Directory of Open Access Journals (Sweden)

    Xiu-Qi Bao

    Full Text Available Alzheimer's disease (AD is the most common cause of dementia worldwide and mainly characterized by the aggregated β-amyloid (Aβ and hyperphosphorylated tau. FLZ is a novel synthetic derivative of natural squamosamide and has been proved to improve memory deficits in dementia animal models. In this study, we aimed to investigate the mechanisms of FLZ's neuroprotective effect in APP/PS1 double transgenic mice and SH-SY5Y (APPwt/swe cells. The results showed that treatment with FLZ significantly improved the memory deficits of APP/PS1 transgenic mice and decreased apoptosis of SH-SY5Y (APPwt/swe cells. FLZ markedly attenuated Aβ accumulation and tau phosphorylation both in vivo and in vitro. Mechanistic study showed that FLZ interfered APP processing, i.e., FLZ decreased β-amyloid precursor protein (APP phosphorylation, APP-carboxy-terminal fragment (APP-CTF production and β-amyloid precursor protein cleaving enzyme 1 (BACE1 expression. These results indicated that FLZ reduced Aβ production through inhibiting amyloidogenic pathway. The mechanistic study about FLZ's inhibitory effect on tau phosphorylation revealed t the involvement of Akt/glycogen synthase kinase 3β (GSK3β pathway. FLZ treatment increased Akt activity and inhibited GSK3β activity both in vivo and in vitro. The inhibitory effect of FLZ on GSK3β activity and tau phosphorylation was suppressed by inhibiting Akt activity, indicating that Akt/GSK3β pathway might be the possible mechanism involved in the inhibitory effect of FLZ on tau hyperphosphorylation. These results suggested FLZ might be a potential anti-AD drug as it not only reduced Aβ production via inhibition amyloidogenic APP processing pathway, but also attenuated tau hyperphosphoylation mediated by Akt/GSK3β.

  4. Palmitic acid but not palmitoleic acid induces insulin resistance in a human endothelial cell line by decreasing SERCA pump expression.

    Science.gov (United States)

    Gustavo Vazquez-Jimenez, J; Chavez-Reyes, Jesus; Romero-Garcia, Tatiana; Zarain-Herzberg, Angel; Valdes-Flores, Jesus; Manuel Galindo-Rosales, J; Rueda, Angelica; Guerrero-Hernandez, Agustin; Olivares-Reyes, J Alberto

    2016-01-01

    Palmitic acid is a negative regulator of insulin activity. At the molecular level, palmitic acid reduces insulin stimulated Akt Ser473 phosphorylation. Interestingly, we have found that incubation with palmitic acid of human umbilical vein endothelial cells induced a biphasic effect, an initial transient elevation followed by a sustained reduction of SERCA pump protein levels. However, palmitic acid produced a sustained inhibition of SERCA pump ATPase activity. Insulin resistance state appeared before there was a significant reduction of SERCA2 expression. The mechanism by which palmitic acid impairs insulin signaling may involve endoplasmic reticulum stress, because this fatty acid induced activation of both PERK, an ER stress marker, and JNK, a kinase associated with insulin resistance. None of these effects were observed by incubating HUVEC-CS cells with palmitoleic acid. Importantly, SERCA2 overexpression decreased the palmitic acid-induced insulin resistance state. All these results suggest that SERCA pump might be the target of palmitic acid to induce the insulin resistance state in a human vascular endothelial cell line. Importantly, these data suggest that HUVEC-CS cells respond to palmitic acid-exposure with a compensatory overexpression of SERCA pump within the first hour, which eventually fades out and insulin resistance prevails.

  5. Arsenic induced toxicity in broiler chicks and its alleviation with ascorbic acid: a toxico-patho-biochemical study

    Science.gov (United States)

    Khan, Ahrar; Sharaf, Rabia; Khan, Muhammad Zargham; Saleemi, Muhammad Kashif; Mahmood, Fazal

    2013-01-01

    To find out toxico-pathological effects of arsenic (As) and ameliorating effect of ascorbic acid (Vit C), broilers birds were administered 50 and 250 mg/kg arsenic and Vit C, respectively alone/in combination. As-treated birds exhibited severe signs of toxicity such as dullness, depression, increased thirst, open mouth breathing and watery diarrhea. All these signs were partially ameliorated with the treatment of Vit C. As-treated birds showed a significant decrease in serum total proteins while serum enzymes, urea and creatinine were significantly increased. Alkaline phosphatase and lactate dehydrogenase completely whereas proteins, aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea and creatinine were partial ameliorated in birds treated with As+Vit C as compared to As-treated and control birds. Pale and hemorrhagic liver and swollen kidneys were observed in As-treated birds. Histopathologically, liver exhibited congestion and cytoplasmic vacuolation while in kidneys, condensation of tubular epithelium nuclei, epithelial necrosis, increased urinary spaces, sloughing of tubules from basement membrane and cast deposition were observed in As-treated birds. Pathological lesions were partially ameliorated with the treatment of Vit C. It can be concluded that arsenic induces biochemical and histopathological alterations in broiler birds; however, these toxic effects can be partially attenuated by Vit C.

  6. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease.

    Science.gov (United States)

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E

    2015-02-01

    Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease.

  7. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis

    Science.gov (United States)

    Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; de Castro-Faria-Neto, Hugo Caire

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  8. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Lake, April D. [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States); Novak, Petr [Biology Centre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice 37001 (Czech Republic); Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Lu, Zhenqiang [The Arizona Statistical Consulting Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Lehman-McKeeman, Lois D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Cherrington, Nathan J., E-mail: cherrington@pharmacy.arizona.edu [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States)

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  9. Ascorbic acid prevents cimetidine-induced decrease of serum hydrocortisone concentrations

    NARCIS (Netherlands)

    M.P. Boidin (Marinus Pieter); A. Stuurman (Arie); W. Erdmann (Wilhelm)

    1990-01-01

    markdownabstractAbstract A blind, parallel, prospective, clinical study was conducted to investigate the effect of ascorbic acid on human serum hydrocortisone concentrations which were decreased by the administration of cimetidine. The study population included 16 male adults scheduled for major a

  10. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Lucia Natarelli

    Full Text Available Epidemiological studies suggest that moderate and prolonged consumption of coffee is associated with a reduced risk of developing type 2 diabetes but the molecular mechanisms underlying this effect are not known. In this study, we report the effects of physiological concentrations of caffeic acid, easily achievable by normal dietary habits, in endothelial cells cultured in 25 mM of glucose (high glucose, HG. In HG, the presence of 10 nM caffeic acid was associated with a decrease of glucose uptake but not to changes of GLUT-1 membrane localization or mRNA levels. Moreover, caffeic acid countered HG-induced loss of barrier integrity, reducing actin rearrangement and FITC-dextran passage. The decreased flux of glucose associated to caffeic acid affected HG induced apoptosis by down-regulating the expression of initiator (caspase 8 and 9 and effector caspases (caspase 7 and 3 and by increasing the levels of phosphorylated Bcl-2. We also observed that caffeic acid in HG condition was associated to a reduction of p65 subunit nuclear levels with respect to HG alone. NF-κB activation has been shown to lead to apoptosis in HG treated cells and the analysis of the expression of a panel of about 90 genes related to NF-κB signaling pathway revealed that caffeic acid significantly influenced gene expression changes induced by HG. In conclusion, our results suggest that caffeic acid, decreasing the metabolic stress induced by HG, allows the activation of survival mechanisms mediated by a different modulation of NF-κB-related signaling pathways and to the activation of anti-apoptotic proteins.

  11. Trans-10, cis-12 conjugated linoleic acid decreases de novo lipid synthesis in human adipocytes

    DEFF Research Database (Denmark)

    Obsen, Thomas; Faergeman, Nils J; Chung, Soonkyu;

    2012-01-01

    Conjugated linoleic acid (CLA) reduces adiposity in vivo. However, mechanisms mediating these changes are unclear. Therefore, we treated cultures of human adipocytes with trans-10, cis-12 (10,12) CLA, cis-9, trans-11 (9,11) CLA or other trans fatty acids (FA), and measured indices of lipid......]-oleic or [(14)C]-linoleic acids. When using [(14)C]-acetic acid and [(14)C]-pyruvic acid as substrates, 30 μM 10,12 CLA, but not 9,11 CLA, decreased de novo synthesis of triglyceride, free FA, diacylglycerol, cholesterol esters, cardiolipin, phospholipids and ceramides within 3-24 h. Treatment with 30 μM 10......,12 CLA, but not 9,11 CLA, decreased total cellular lipids within 3 days and the ratio of monounsaturated FA (MUFA) to saturated FA, and increased C18:0 acyl-CoA levels within 24 h. Consistent with these data, stearoyl-CoA desaturase (SCD)-1 mRNA and protein levels were down-regulated by 10,12 CLA within...

  12. Autistic Children Exhibit Decreased Levels of Essential Fatty Acids in Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Sarah A. Brigandi

    2015-05-01

    Full Text Available Omega-6 (n-6 and omega-3 (n-3 polyunsaturated fatty acids (PUFA are essential nutrients for brain development and function. However, whether or not the levels of these fatty acids are altered in individuals with autism remains debatable. In this study, we compared the fatty acid contents between 121 autistic patients and 110 non-autistic, non-developmentally delayed controls, aged 3–17. Analysis of the fatty acid composition of red blood cell (RBC membrane phospholipids showed that the percentage of total PUFA was lower in autistic patients than in controls; levels of n-6 arachidonic acid (AA and n-3 docosahexaenoic acid (DHA were particularly decreased (p < 0.001. In addition, plasma levels of the pro-inflammatory AA metabolite prostaglandin E2 (PGE2 were higher in a subset of the autistic participants (n = 20 compared to controls. Our study demonstrates an alteration in the PUFA profile and increased production of a PUFA-derived metabolite in autistic patients, supporting the hypothesis that abnormal lipid metabolism is implicated in autism.

  13. Depletion of hepatic uridine diphosphoglucuronic acid decreases the biliary excretion of drugs.

    Science.gov (United States)

    Gregus, Z; Watkins, J B; Thompson, T N; Klaassen, C D

    1983-05-01

    Hepatic levels of uridine diphosphoglucuronic acid (UDPGA) in rats decreased substantially (greater than 80%) 40 min after galactosamine (GAL) (600 mg/kg i.p.) or after 1 hr of diethyl ether (DE) narcosis. Biliary excretion of several cholephils requiring glucuronidation before excretion was reduced by GAL 76, 62, 92, 90 and 97% for bilirubin, diethylstilbestrol, iopanoic acid, phenolphthalein and valproic acid, respectively. GAL treatment caused delayed plasma clearances of the parent compounds and reductions in plasma concentrations and biliary excretions of glucuronide conjugates. The degree of this reduction was related to the maximal excretion rate of the individual compounds. For phenolphthalein glucuronide and phenol-3,6-dibromphthalein disulfonate, which do not undergo conjugation, GAL had no effect on their biliary excretion. DE-induced UDPGA depletion had no effect on phenolphthalein glucuronide excretion but reduced that of phenol-3,6-dibromphthalein disulfonate 25%. DE did not affect the plasma elimination or biliary secretion of phenolphthalein. Of the other cholephils requiring conjugation, DE reduced the excretion of bilirubin, diethylstilbestrol, iopanoic acid and valproic acid by 41, 29, 76 and 28%, respectively. DE decreased the plasma elimination of the parent compounds and the appearance of the conjugates in both plasma and bile. Reduction of glucuronide excretion into bile was less pronounced at higher doses of the cholephilic anions. Neither treatment reduced in vitro hepatic UDP-glucuronosyltransferase activity toward these substrates or substantially altered extrahepatic UDPGA concentrations. Thus, both GAL and DE decreased UDPGA to similar concentrations, but the biliary excretion of compounds requiring glucuronidation before secretion was depressed to a greater extent by GAL.

  14. Experimental warming decreases the average size and nucleic acid content of marine bacterial communities

    Directory of Open Access Journals (Sweden)

    Tamara Megan Huete-Stauffer

    2016-05-01

    Full Text Available Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6ºC range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively. Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 µm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per ºC. The usually larger HNA bacteria consistently showed a greater reduction in cell and nucleic acid content compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures.

  15. Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease.

    Science.gov (United States)

    Norris, Sarah E; Friedrich, Michael G; Mitchell, Todd W; Truscott, Roger J W; Else, Paul L

    2015-04-01

    Membrane phospholipids make up a substantial portion of the human brain, and changes in their amount and composition are thought to play a role in the pathogenesis of age-related neurodegenerative disease. Nevertheless, little is known about the changes that phospholipids undergo during normal adult aging. This study examined changes in phospholipid composition in the mitochondrial and microsomal membranes of human dorsolateral prefrontal cortex over the adult life span. The largest age-related changes were an increase in the abundance of both mitochondrial and microsomal phosphatidylserine 18:0_22:6 by approximately one-third from age 20 to 100 years and a 25% decrease in mitochondrial phosphatidylethanolamine 18:0_20:4. Generally, increases were seen with age in phospholipids containing docosahexaenoic acid across both membrane fractions, whereas phospholipids containing either arachidonic or adrenic acid decreased with age. These findings suggest a gradual change in membrane lipid composition over the adult life span.

  16. Inositol hexa phosphoric acid (phytic acid), a nutraceuticals, attenuates iron-induced oxidative stress and alleviates liver injury in iron overloaded mice.

    Science.gov (United States)

    Bhowmik, Anwesha; Ojha, Durbadal; Goswami, Debayan; Das, Rashmi; Chandra, Nidhi S; Chatterjee, Tapan K; Chakravarty, Amit; Chakravarty, Sudipa; Chattopadhyay, Debprasad

    2017-03-01

    Inositol hexa phosphoric acid (IP6) or Phytic acid, a natural antioxidant of some leguminous plants, known to act as a protective agent for seed storage in plants by suppressing iron catalyzed oxidative process. Following the same mechanism, we have tested the effect of IP6 on iron overloaded in vitro oxidative stress, and studied it's in vivo hepatoprotective ability in iron-dextran (injection)-induced iron overloaded liver injury in mice (intraperitoneal). Our results showed that IP6 had in vitro iron chelation (IC50 38.4μg/ml) activity, with the inhibition of iron-induced lipid peroxidation (IC50 552μg/ml), and deoxyribose sugar degrading hydroxyl radicals (IC50 448.6μg/ml). Oral administration of IP6 (0-200mg/kg) revealed significant decrease in biochemical markers such as serum iron, total iron binding, serum ferritin and serum enzymes. Histopathology of liver stained with hematoxylin-eosin and Prussian blue showed reduced hepatocellular necrosis, ballooning and inflammation, indicating the restoration of normal cellular integrity. Interestingly, the IP6 was found to down-regulate the mRNA expression of tumor necrosis factor (TNF)-α, Interleukin (IL)-1β, and IL-6 in iron overloaded liver tissues. Thus, we provide an insight that IP6, a natural food component, can serve as an iron chelator against iron overload diseases like Thalassemia, and also as a dietary hepatoprotective supplement.

  17. Lithium Decreases Glial Fibrillary Acidic Protein in a Mouse Model of Alexander Disease.

    Science.gov (United States)

    LaPash Daniels, Christine M; Paffenroth, Elizabeth; Austin, Elizabeth V; Glebov, Konstantin; Lewis, Diana; Walter, Jochen; Messing, Albee

    2015-01-01

    Alexander disease is a fatal neurodegenerative disease caused by mutations in the astrocyte intermediate filament glial fibrillary acidic protein (GFAP). The disease is characterized by elevated levels of GFAP and the formation of protein aggregates, known as Rosenthal fibers, within astrocytes. Lithium has previously been shown to decrease protein aggregates by increasing the autophagy pathway for protein degradation. In addition, lithium has also been reported to decrease activation of the transcription factor STAT3, which is a regulator of GFAP transcription and astrogliogenesis. Here we tested whether lithium treatment would decrease levels of GFAP in a mouse model of Alexander disease. Mice with the Gfap-R236H point mutation were fed lithium food pellets for 4 to 8 weeks. Four weeks of treatment with LiCl at 0.5% in food pellets decreased GFAP protein and transcripts in several brain regions, although with mild side effects and some mortality. Extending the duration of treatment to 8 weeks resulted in higher mortality, and again with a decrease in GFAP in the surviving animals. Indicators of autophagy, such as LC3, were not increased, suggesting that lithium may decrease levels of GFAP through other pathways. Lithium reduced the levels of phosphorylated STAT3, suggesting this as one pathway mediating the effects on GFAP. In conclusion, lithium has the potential to decrease GFAP levels in Alexander disease, but with a narrow therapeutic window separating efficacy and toxicity.

  18. Decreased eicosapentaenoic acid levels in acne vulgaris reveals the presence of a proinflammatory state.

    Science.gov (United States)

    Aslan, İbrahim; Özcan, Filiz; Karaarslan, Taner; Kıraç, Ebru; Aslan, Mutay

    2017-01-01

    This study aimed to determine circulating levels of polyunsaturated fatty acids (PUFAs), secretory phospholipase A2 (sPLA2), lipoprotein lipase (LPL) and measure circulating protein levels of angiopoietin-like protein 3 (ANGPTL3), ANGPTL4, cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in patients with acne vulgaris. Serum from 21 control subjects and 31 acne vulgaris patients were evaluated for levels of arachidonic acid (AA, C20:4n- 6), dihomo-gamma-linolenic acid (DGLA, C20:3n-6), eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3). PUFA levels were determined by an optimized multiple reaction monitoring (MRM) method using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Lipid profile, routine biochemical and hormone parameters were assayed by standard kit methods Serum EPA levels were significantly decreased while AA/EPA and DGLA/EPA ratio were significantly increased in acne vulgaris patients compared to controls. Serum levels of AA, DGLA and DHA showed no significant difference while activity of sPLA2 and LPL were significantly increased in acne vulgaris compared to controls. Results of this study reveal the presence of a proinflammatory state in acne vulgaris as shown by significantly decreased serum EPA levels and increased activity of sPLA2, AA/EPA and DGLA/EPA ratio. Increased LPL activity in the serum of acne vulgaris patients can be protective through its anti-dyslipidemic actions. This is the first study reporting altered EPA levels and increased sPLA2 activity in acne vulgaris and supports the use of omega-3 fatty acids as adjuvant treatment for acne patients.

  19. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Kazutaka Sawada

    2016-01-01

    Full Text Available Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus. Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  20. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation.

    Science.gov (United States)

    Sawada, Kazutaka; Kitagaki, Hiroshi

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  1. CONJUGATED LINOLEIC ACIDS (CLA) DECREASE THE BREAST CANCER RISK IN DMBA-TREATED RATS.

    Science.gov (United States)

    Białek, Agnieszka; Tokarz, Andrzej; Zagrodzki, Paweł

    2016-01-01

    The aim of this study was to investigate how supplementation of diet of female Sprague-Dawley rats with different doses of conjugated linoleic acids and for a varied period of time influences breast cancer risk, fatty acids profile and lipids peroxidation in chemically induced mammary tumors. Animals were divided into nine groups with different modifications of diet (vegetable oil, 1.0 or 2.0% of CLA) and period of supplementation, which lasted after (A), before (B) and before and after (BA) carcinogenic agent--7,12-dimethylbenz[a]anthracene administration at 50th day of life. Mammary adenocarcinomas occurred in all groups, but CLA supplementation decreased the cancer morbidity. Two percent CLA seems to be excessive because of the coexisting cachexia. Two CLA isomers (9-cis, 11-trans and 10-trans, 12-cis) were detected in tumors but content of rumenic acid was higher. Dietary supplementation significantly influenced some unsaturated fatty acids content (C18:2 n-6 trans, C20:1, C20:5 n-3, C22:2), but the anti- or prooxidant properties of CLA were not confirmed. CLA can inhibit chemically induced mammary tumors development in female rats, but their cytotoxic action seems not to be connected with lipids peroxidation. CLA isomers differ with their incorporation into cancerous tissues and they influence the content of some other fatty acids.

  2. Salicylic acid and cysteine contribute to arbutin-induced alleviation of angular leaf spot disease development in cucumber.

    Science.gov (United States)

    Kuźniak, Elżbieta; Wielanek, Marzena; Chwatko, Grażyna; Głowacki, Rafał; Libik-Konieczny, Marta; Piątek, Milena; Gajewska, Ewa; Skłodowska, Maria

    2015-06-01

    Arbutin induced suppression of angular leaf spot disease in cucumber resulting from lower populations of Pseudomonas syringae pv lachrymans in the infected tissues. This study provides insight into mechanisms that may potentially account for this effect. In the absence of the pathogen, exogenous arbutin-induced expression of PR1, the marker of salicylic acid signaling, increased the content of salicylic acid and modulated the cysteine pool. This suggested that arbutin promoted cucumber plants to a "primed" state. When challenged with the pathogen, the arbutin-treated plants showed strongly reduced infection symptoms 7 days after inoculation. At this time point, they were characterized by higher contents of free and protein-bound cysteine due to higher cysteine biosynthetic capacity related to increased activities of serine acetyltransferase and cysteine synthase when compared with plants infected without arbutin treatment. Moreover, in the arbutin-treated and infected plants the contents of free salicylic acid and its conjugates were also increased, partly owing to its biosynthesis via the phenylpropanoid pathway. We suggest that arbutin-induced abrogation of angular leaf spot disease in cucumber could be mediated by salicylic acid and cysteine-based signaling.

  3. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities

    KAUST Repository

    Huete-Stauffer, Tamara M.

    2016-05-23

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures.

  4. Getting on with persistent pollutants: Decreasing trends of perfluoroalkyl acids (PFAAs) in sewage sludge.

    Science.gov (United States)

    Ulrich, Hanna; Freier, Korbinian P; Gierig, Michael

    2016-10-01

    Sewage sludge can be a relevant source of perfluoroalkyl acids (PFAAs) for the environment. In order to reduce emissions from this source, Bavarian authorities enforced in 2008 an analysis of PFAAs from sewage sludge derived from municipal wastewater treatment plants (WWTPs). 4981 sludge samples from 1165 different WWTPs were analyzed between 2008 and 2013 for 11 PFAAs compounds. During this period, 71 WWTPs exceeded the precautionary limit of 125 μg kg(-1) dm of total PFAAs in sludge samples at least once with a decreasing tendency. The yearly exceedances of the investigated WWTPs decreased from 6% in 2008 to 0.8% in 2013. At the same time, the percentage of uncontaminated WWTPs increased from 33% to 65%. Perfluorooctane sulfonic acid (PFOS) was the predominant compound found in 41% of all sludge samples. Perfluorodecanoic acid (PFDA) was detected in 19% and Perfluorooctanoic acid (PFOA) in 7%. Very high PFAAs concentrations (>500 μg kg(-1) dm) in sewage sludge were generally caused by firefighting foams containing PFAAs or emissions from PFAAs-using industries including metal plating, textile, leather or paper industries. Trend analyses of the six year period show that PFAAs contamination in sewage sludge clearly decreased for 47% of the WWTPs. However, for 16% of the WWTPs an increasing trend was detected, even though the concentration levels were below the precautionary limit. During the six years of investigation the load of total PFAAs in sewage sludge was reduced by more than 90%, from 17 t a(-1) in 2008 to 1.5 t a(-1) in 2013.

  5. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities.

    Science.gov (United States)

    Huete-Stauffer, Tamara M; Arandia-Gorostidi, Nestor; Alonso-Sáez, Laura; Morán, Xosé Anxelu G

    2016-01-01

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures.

  6. Mangiferin decreases plasma free fatty acids through promoting its catabolism in liver by activation of AMPK.

    Directory of Open Access Journals (Sweden)

    Yucun Niu

    Full Text Available Mangiferin has been shown to have the effect of improving dyslipidemia. Plasma free fatty acids (FFA are closely associated with blood lipid metabolism as well as many diseases including metabolic syndrome. This study is to investigate whether mangiferin has effects on FFA metabolism in hyperlipidemic rats. Wistar rats were fed a high-fat diet and administered mangiferin simultaneously for 6 weeks. Mangiferin (50, 100, 150 mg/kg BW decreased dose-dependently FFA and triglycerides (TG levels in plasma, and their accumulations in liver, but increased the β-hydroxybutyrate levels in both plasma and liver of hyperlipidemic rats. HepG2 cells were treated with oleic acid (OA, 0.2 mmol/L to simulate the condition of high level of plasma FFA in vitro, and were treated with different concentrations of mangiferin simultaneously for 24 h. We found that mangiferin significantly increased FFA uptake, significantly decreased intracellular FFA and TG accumulations in HepG2 cells. Mangiferin significantly increased AMP-activated protein kinase (AMPK phosphorylation and its downstream proteins involved in fatty acid translocase (CD36 and carnitine palmitoyltransferase 1 (CPT1, but significantly decreased acyl-CoA: diacylgycerol acyltransferase 2 (DGAT2 expression and acetyl-CoA carboxylase (ACC activity by increasing its phosphorylation level in both in vivo and in vitro studies. Furthermore, these effects were reversed by Compound C, an AMPK inhibitor in HepG2 cells. For upstream of AMPK, mangiferin increased AMP/ATP ratio, but had no effect on LKB1 phosphorylation. In conclusion, mangiferin decreased plasma FFA levels through promoting FFA uptake and oxidation, inhibiting FFA and TG accumulations by regulating the key enzymes expression in liver through AMPK pathway. Therefore, mangiferin is a possible beneficial natural compound for metabolic syndrome by improving FFA metabolism.

  7. Mangiferin Decreases Plasma Free Fatty Acids through Promoting Its Catabolism in Liver by Activation of AMPK

    Science.gov (United States)

    Niu, Yucun; Li, Songtao; Na, Lixin; Feng, Rennan; Liu, Liyan; Li, Ying; Sun, Changhao

    2012-01-01

    Mangiferin has been shown to have the effect of improving dyslipidemia. Plasma free fatty acids (FFA) are closely associated with blood lipid metabolism as well as many diseases including metabolic syndrome. This study is to investigate whether mangiferin has effects on FFA metabolism in hyperlipidemic rats. Wistar rats were fed a high-fat diet and administered mangiferin simultaneously for 6 weeks. Mangiferin (50, 100, 150 mg/kg BW) decreased dose-dependently FFA and triglycerides (TG) levels in plasma, and their accumulations in liver, but increased the β-hydroxybutyrate levels in both plasma and liver of hyperlipidemic rats. HepG2 cells were treated with oleic acid (OA, 0.2 mmol/L) to simulate the condition of high level of plasma FFA in vitro, and were treated with different concentrations of mangiferin simultaneously for 24 h. We found that mangiferin significantly increased FFA uptake, significantly decreased intracellular FFA and TG accumulations in HepG2 cells. Mangiferin significantly increased AMP-activated protein kinase (AMPK) phosphorylation and its downstream proteins involved in fatty acid translocase (CD36) and carnitine palmitoyltransferase 1 (CPT1), but significantly decreased acyl-CoA: diacylgycerol acyltransferase 2 (DGAT2) expression and acetyl-CoA carboxylase (ACC) activity by increasing its phosphorylation level in both in vivo and in vitro studies. Furthermore, these effects were reversed by Compound C, an AMPK inhibitor in HepG2 cells. For upstream of AMPK, mangiferin increased AMP/ATP ratio, but had no effect on LKB1 phosphorylation. In conclusion, mangiferin decreased plasma FFA levels through promoting FFA uptake and oxidation, inhibiting FFA and TG accumulations by regulating the key enzymes expression in liver through AMPK pathway. Therefore, mangiferin is a possible beneficial natural compound for metabolic syndrome by improving FFA metabolism. PMID:22292039

  8. Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells

    Science.gov (United States)

    Aires, Virginie; Hichami, Aziz; Moutairou, Kabirou; Khan, Naim Akhtar

    2003-01-01

    Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N-dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery. Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells. To assess the role of calcium in the DHA-induced acidification, we conducted experiments in Ca2+-free (0% Ca2+) and Ca2+-containing (100% Ca2+) buffer. We observed that there was no difference in the degree of DHA-induced transient acidification in both the experimental conditions, though pHi recovery was faster in 0% Ca2+ medium than that in 100% Ca2+ medium. In the presence of BAPTA, a calcium chelator, a rapid recovery of DHA-induced acidosis was observed. Furthermore, addition of CaCl2 into 0% Ca2+ medium curtailed DHA-evoked rapid pHi recovery. In 0% Ca2+ medium, containing BAPTA, DHA did not evoke increases in [Ca2+]i, though this fatty acid still induced a rapid acidification in these cells. These observations suggest that calcium is implicated in the long-lasting DHA-induced acidosis. DHA-induced rapid acidification may be due to its deprotonation in the plasma membrane (flip-flop model), as suggested by the following observations: (1) DHA with a –COOH group induced intracellular acidification, but this fatty acid with a –COOCH3 group failed to do so, and (2) DHA, but not propionic acid, -induced acidification was completely reversed by addition of fatty acid-free bovine serum albumin in these cells. These results suggest that DHA induces acidosis via deprotonation and Ca2+ mobilization in human T-cells. PMID:14645139

  9. Poultry fat decreased fatty acid transporter protein mRNA expression and affected fatty acid composition in chickens

    Directory of Open Access Journals (Sweden)

    Yuan Jianmin

    2012-05-01

    Full Text Available Abstract Background A study was undertaken to examine the effects of poultry fat (PF compared with those of soybean oil (SBO on intestinal development, fatty acid transporter protein (FATP mRNA expression, and fatty acid composition in broiler chickens. A total of 144 day-old male commercial broilers were randomly allocated to 2 treatment groups (6 replicates of 12 chicks for each treatment and fed isocaloric diets containing 3.0% PF or 2.7% SBO at 0 to 3 wk and 3.8% PF or 3.5% SBO at 4 to 6 wk, respectively. Results PF had no influence on intestinal morphology, weight, or DNA, RNA, or protein concentrations at 2, 4, and 6 wk of age. However, compared with SBO, PF significantly decreased FATP mRNA abundance at 4 wk (P = 0.009 and 6 wk of age (P P = 0.039; and decreased C18:2 (P = 0.015, C18:3 (P P = 0.018, Σ-polyunsaturated fatty acids (Σ-PUFA (P = 0.020, and the proportion of PUFA (P P = 0.010, C18:3 (P P P = 0.005, and the proportion of PUFA (P  Conclusions PF decreases FATP and L-FABP mRNA expression and decreased the proportion of PUFA in the intestinal mucosa and breast muscle.

  10. Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Puneet, E-mail: puneetbiochem@gmail.com [Aquatic Biotechnology and Fish Pathology Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly-243 006 (India); Prasad, Y. [Aquatic Biotechnology and Fish Pathology Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly-243 006 (India); Patra, A.K. [West Bengal University of Animal and Fishery Sciences, Kolkata-700037 (India); Ranjan, R.; Swarup, D.; Patra, R.C. [Division of Medicine, Indian Veterinary Research Institute, Izatnagar-243122 (India); Pal, Satya [Env. Eng. Lab., Deptt. of Civil Engineering, I.I.T., Roorkee-247667 (India)

    2009-09-01

    An experiment was conducted to investigate bioaccumulation potential of cadmium (Cd) and changes in oxidative stress indices in liver and kidney tissues from Cd-exposed catfish (Clarias batrachus) with or without simultaneous treatment of water with ascorbic acid, garlic extract or taurine. C. batrachus (n = 324) with average length of 20 {+-} 4 cm and weight of 86 {+-} 5 g were used for the present investigation. Fishes were divided into nine groups (I to IX) each comprising 36 fishes. The fishes of groups II, III, IV and V were challenged with 5 ppm of cadmium chloride monohydrate (CdCl{sub 2}.H{sub 2}O), whereas groups VI, VII, VIII and IX were exposed to 10 ppm CdCl{sub 2}.H{sub 2}O solution for a period of 45 days. Group I was kept as negative control and the fishes of this group were maintained in water containing no added Cadmium. Group II and VI were maintained as Cd exposed non treated control to serve as positive controls. Fishes of III and VII, IV and VIII, V and IX received ascorbic acid (5 ppm), extract of dried garlic (5 ppm) or taurine (5 ppm), respectively during the entire experiment period. The concentrations of Cd in liver and kidney increased significantly following exposure to Cd and the level continued to rise with the increase in exposure duration. Treatment of tank water with ascorbic acid, garlic or taurine significantly reduced the Cd concentrations in tissues compared to the positive control group, but the level in Cd exposed groups was greater than the negative control group. Fishes exposed to Cd and treated with ascorbic acid, garlic or taurine had reduced oxidative stress as evidenced from lower concentration of lipid peroxides and higher activities of superoxide dismutase and catalase in liver, kidney and erythrocytes compared to fishes exposed to Cd. The reduction in Cd induced oxidative stress was highest in ascorbic acid treated group followed by garlic and taurine treatment. The results suggest that ascorbic acid, garlic and

  11. Influence of sericin in alleviating the hydrogen peroxide induced oxidative stress in silkworm Bombyx mori: role of the amino acids

    OpenAIRE

    AS Micheal; Subramanyam, M.

    2014-01-01

    Sericin is an important peptide derived from silk fibre spun by the silkworm Bombyx mori and has various biological activities. The aim of the present study was to characterize the major constituents of sericin that are providing cytoprotective effect against hydrogen peroxide-induced cell damage in midgut epithelial cells and hemocytes of silkworm. Extracted sericin was subjected to LCMS analysis for amino acid composition. Isolated cells of midgut and hemocytes were incubated with sericin o...

  12. Folic acid protects against lead acetate-induced hepatotoxicity by decreasing NF-κB, IL-1β production and lipid peroxidation mediataed cell injury.

    Science.gov (United States)

    Abd Allah, Eman S H; Badary, Dalia M

    2017-03-01

    Folic acid plays an important role in cellular metabolic activities. The present study was designed to investigate the protective effect of folic acid against lead acetate-induced hepatotoxicity. Twenty four male Wistar albino rats were randomly divided into four groups, six animals each. Negative control group received the vehicle, positive control group received 1mg/kg folic acid for five consecutive days/week for 4 weeks orally, lead-exposed group received 10mg/kg lead acetate intraperitoneally (IP) for five consecutive days/week for 4 weeks, and lead-treated group received 10mg/kg lead acetate IP and 1mg/kg folic acid orally for five consecutive days/week for 4 weeks concurrently. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and γ- glutamyltransferase (GGT) were measured. Hepatic total peroxide and interleukin-1β (IL-1β) were also investigated. Histopathological studies using hematoxylin-eosin (H&E) and periodic acid shiff's (PAS) were carried out. The expression of nuclear factor kappa B (NF-κB) was evaluated using immunohistochemistry. Serum AST, ALT and GGT and hepatic total peroxide and IL-1β were significantly increased in lead-exposed group and were positively correlated with hepatic lead level. Moreover, lead-exposed rats showed hydropic degeneration, nuclear vesiculation, high lymphocytic infiltration, depletion of glycogen content and NF-κB expression. Concomitant folic acid administration resulted in a significant alleviation of biochemical and structural alteration-induced by lead. This was associated with reduction of hepatic total peroxide and IL-1β and reduction of NF-κB expression. In conclusion, folic acid protects against lead acetate-induced hepatotoxicity by decreasing NF-κB, IL-1β production and lipid peroxidation mediataed cell injury.

  13. Decreased solubilization of Pu(IV) polymers by humic acids under anoxic conditions

    Science.gov (United States)

    Xie, Jinchuan; Lin, Jianfeng; Liang, Wei; Li, Mei; Zhou, Xiaohua

    2016-11-01

    Pu(IV) polymer has a very low solubility (log[Pu(IV)aq]total = -10.4 at pH 7.2 and I = 0). However, some aspects of their environmental fate remain unclear. Humic acids are able to complex with Pu4+ ions and their dissolved species (EDTA ligands. In contrast, the dissolved humic acids did not solubilize the polymers but in fact decreased their solubility by one order of magnitude. The humic coatings were responsible for the decreased solubilization. Such coatings limited the contact between the polymers and EDTA ligands, especially at the relatively high concentrations of humic acids (>0.57 mg/L). Solubilization of the humic-coated polymers was thus inhibited to a significant extent although EDTA, having the great complexation ability, was present in the humic solutions. Reduction of Pu(IV) polymers by the humic acids was also not observed in the absence of EDTA. In the presence of EDTA, the polymers were partially reduced to Pu(III)aq by the humic acids of 0.57 mg/L and the percentage of Pu(III)aq accounted for 51.7% of the total aqueous Pu. This demonstrates that the humic acids were able to reduce the aqueous Pu(IV), instead of the polymeric Pu(IV). Such a demonstration is supported by the very positive redox potential of aqueous Pu(IV)-EDTA complex: Eho ‧ (PuL24-/PuL25-) = 154.3 mV >>Eh (PuO2 (am) /Pu3+) = -182.7 mV calculated at 10-10 mol/L Pu3+ and pH 7.2. At the higher humic concentrations (>0.57 mg/L), the polymers were reduced to a lesser extent because the much denser humic coatings resulted in lower concentrations of the aqueous Pu(IV). Consequently, humic acids make Pu(IV) polymers pretty stable unless the artificial ligands such as EDTA are present in the groundwater.

  14. Phytic acid decreases deoxynivalenol and fumonisin B1-induced changes on swine jejunal explants

    Directory of Open Access Journals (Sweden)

    Elisângela Olegário da Silva

    2014-01-01

    Full Text Available The purpose of the present study was to investigate the effects of phytic acid (IP6 on morphological and immunohistochemical parameters on intestinal explants exposed to deoxynivalenol (DON and fumonisin B1 (FB1. The jejunal explants were exposed for 4 h to different treatments: control, DON (10 μM, DON plus 2.5 mM or 5 mM IP6, FB1 (70 μM, and FB1 plus 2.5 mM or 5 mM IP6. Both mycotoxins induced significant intestinal lesions and decreased villi height. The presence of 2.5 mM and 5 mM IP6 significantly inhibited the morphological changes caused by the mycotoxins. DON induced a significant increase in caspase-3 (83% and cyclooxygenase-2 (71.3% expression compared with the control. The presence of 5 mM IP6 induced a significant decrease in caspase-3 (43.7% and Cox-2 (48% expression compared with the DON group. FB1 induced a significant increase in caspase-3 expression (47% compared to the control, whereas IP6 induced no significant change in this expression. A significant decrease in cell proliferation was observed when explants were exposed to 5 mM of IP6 in comparison with the DON and FB1 groups. The present data provide evidence that phytic acid modulates the toxic effects induced by DON and FB1 on intestinal tissue.

  15. Lipase inhibitor orlistat decreases incorporation of eicosapentaenoic and docosahexaenoic acids in rat tissues.

    Science.gov (United States)

    Cruz-Hernandez, Cristina; Oliveira, Manuel; Pescia, Grégory; Moulin, Julie; Masserey-Elmelegy, Isabelle; Dionisi, Fabiola; Destaillats, Frédéric

    2010-02-01

    Orlistat is a gastric and pancreatic lipases inhibitor that is often prescribed to obese subjects. Orlistat has been shown to decrease the absorption of biologically important lipophilic micronutrients such as liposoluble vitamins. We hypothesized that long-term administration of orlistat may lower the incorporation of n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in blood lipids and tissues. This hypothesis was tested in rats fed a diet supplemented with fish oil as a source of n-3 LC-PUFA. Male Wistar rats (n = 18) were divided into 3 groups and fed experimental high-fat diets containing fish oil (control diet) or fish oil plus orlistat (200 and 400 mg/kg of diet) over the course of 3 weeks. Fat absorption and the level of eicosapentaenoic acid (EPA) and docosahexaenoic acid, among other fatty acids, in red blood cells, plasma, liver, and spleen, were measured at the end of the experimental period. The results show that at 200 mg and 400 mg/kg of diet orlistat lowers fat absorption by 9% (P = .008) and 54% (P = .008). Orlistat given at the higher level induced a reduction of the incorporation of EPA in red blood cell (-45%; P = .006) and in plasma (-34%; P = .026) compared to the control group. Our results confirmed that administration of orlistat reduces incorporation of n-3 LC-PUFA in blood lipids and tissues in a rat model.

  16. Formulating gels for decreased mucociliary transport using rheologic properties: polyacrylic acids.

    Science.gov (United States)

    Shah, Ankur J; Donovan, Maureen D

    2007-04-20

    The purpose of these studies was to identify the rheologic properties of polyacrylic acid gels necessary for optimal reductions in mucociliary clearance. The mucociliary transport of 2 bioadhesive polyacrylic acid polymers, polycarbophil and carbopol, was assessed in vitro by measuring their clearance rates across explants of ciliated bovine tracheal tissue. The viscoelastic properties of polymer gels were measured in the presence of mucus using controlled stress rheometry. Combinations of apparent viscosity (eta) and complex modulus (G*) were found to be the most useful parameters in the identification of polyacrylic acid formulations capable of decreasing mucociliary transport rate (MTR). A narrow range of eta and G* values suitable for reducing mucociliary clearance, while remaining sufficiently fluid for intranasal administration, were identified. The correlations between the rheologic parameters of the polycarbophil gels and their mucociliary transport rates were used to identify other polyacrylic acid gels that also had suitable mucociliary clearance properties, demonstrating that these parameters can be used to direct the optimization of formulations using simple in vitro rheologic testing.

  17. Metabolite Profiling for Leaf Senescence in Barley Reveals Decreases in Amino Acids and Glycolysis Intermediates

    Directory of Open Access Journals (Sweden)

    Liliana Avila-Ospina

    2017-02-01

    Full Text Available Leaf senescence is a long developmental phase important for plant performance and nutrient management. Cell constituents are recycled in old leaves to provide nutrients that are redistributed to the sink organs. Up to now, metabolomic changes during leaf senescence have been mainly studied in Arabidopsis (Arabidopsis thaliana L.. The metabolite profiling conducted in barley (Hordeum vulgare L. during primary leaf senescence under two nitrate regimes and in flag leaf shows that amino acids, hexose, sucrose and glycolysis intermediates decrease during senescence, while minor carbohydrates accumulate. Tricarboxylic acid (TCA compounds changed with senescence only in primary leaves. The senescence-related metabolite changes in the flag leaf were globally similar to those observed in primary leaves. The effect of senescence on the metabolite changes of barley leaves was similar to that previously described in Arabidopsis except for sugars and glycolysis compounds. This suggests a different role of sugars in the control of leaf senescence in Arabidopsis and in barley.

  18. Tranexamic Acid Decreases Incidence of Blood Transfusion in Simultaneous Bilateral Total Knee Arthroplasty.

    Science.gov (United States)

    Bagsby, Deren T; Samujh, Christopher A; Vissing, Jacqueline L; Empson, Janene A; Pomeroy, Donald L; Malkani, Arthur L

    2015-12-01

    Blood management for simultaneous bilateral total knee arthroplasty (TKA) patients is more challenging than in unilateral arthroplasty. We examined if administration of tranexamic acid (TXA) to patients undergoing simultaneous bilateral TKA would reduce blood loss and decrease allogeneic blood transfusion requirements. A retrospective review of 103 patients, 57 in the control and 46 in the TXA group, was performed. There was higher postoperative day 1 hemoglobin in patients receiving TXA (2.95±1.33 versus 4.33±1.19, Ptransfusion incidence with administration of TXA (17.4% versus 57.9%, Ptransfusion rates by almost 70% in simultaneous bilateral total knee arthroplasty.

  19. Alleviation of alcoholic liver injury by betaine involves an enhancement of antioxidant defense via regulation of sulfur amino acid metabolism.

    Science.gov (United States)

    Jung, Young Suk; Kim, Sun Ju; Kwon, Do Young; Ahn, Chul Won; Kim, Young Soon; Choi, Dal Woong; Kim, Young Chul

    2013-12-01

    Previous studies suggested that the hepatoprotective activity of betaine is associated with its effects on sulfur amino acid metabolism. We examined the mechanism by which betaine prevents the progression of alcoholic liver injury and its therapeutic potential. Rats received a liquid ethanol diet for 6 wk. Ethanol consumption elevated serum triglyceride and TNFα levels, alanine aminotransferase and aspartate aminotransferase activities, and lipid accumulation in liver. The oxyradical scavenging capacity of liver was reduced, and expression of CD14, TNFα, COX-2, and iNOS mRNAs was induced markedly. These ethanol-induced changes were all inhibited effectively by betaine supplementation. Hepatic S-adenosylmethionine, cysteine, and glutathione levels, reduced in the ethanol-fed rats, were increased by betaine supplementation. Methionine adenosyltransferase and cystathionine γ-lyase were induced, but cysteine dioxygenase was down-regulated, which appeared to account for the increment in cysteine availability for glutathione synthesis in the rats supplemented with betaine. Betaine supplementation for the final 2 wk of ethanol intake resulted in a similar degree of hepatoprotection, revealing its potential therapeutic value in alcoholic liver. It is concluded that the protective effects of betaine against alcoholic liver injury may be attributed to the fortification of antioxidant defense via improvement of impaired sulfur amino acid metabolism.

  20. Ozone oxidation of oleic acid surface films decreases aerosol cloud condensation nuclei activity

    Science.gov (United States)

    Schwier, A. N.; Sareen, N.; Lathem, T. L.; Nenes, A.; McNeill, V. F.

    2011-08-01

    Heterogeneous oxidation of aerosols composed of pure oleic acid (C18H34O2, an unsaturated fatty acid commonly found in continental and marine aerosol) by gas-phase O3 is known to increase aerosol hygroscopicity and activity as cloud condensation nuclei (CCN). Whether this trend is preserved when the oleic acid is internally mixed with other electrolytes is unknown and addressed in this study. We quantify the CCN activity of sodium salt aerosols (NaCl and Na2SO4) internally mixed with sodium oleate (SO) and oleic acid (OA). We find that particles containing roughly one monolayer of SO/OA show similar CCN activity to pure salt particles, whereas a tenfold increase in organic concentration slightly depresses CCN activity. O3 oxidation of these multicomponent aerosols has little effect on the critical diameter for CCN activation for unacidified particles at all conditions studied, and the activation kinetics of the CCN are similar in each case to those of pure salts. SO-containing particles which are acidified to atmospherically relevant pH before analysis in order to form oleic acid, however, show depressed CCN activity upon oxidation. This effect is more pronounced at higher organic concentrations. The behavior after oxidation is consistent with the disappearance of the organic surface film, supported by Köhler Theory Analysis (KTA). The κ-Köhler calculations show a small decrease in hygroscopicity after oxidation. The important implication of this finding is that oxidative aging may not always enhance the hygroscopicity of internally mixed inorganic-organic aerosols.

  1. Soman- or kainic acid-induced convulsions decrease muscarinic receptors but not benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, L.; Pazdernik, T.L.; Cross, R.S.; Nelson, S.R.; Samson, F.E. (Univ. of Kansas Medical Center, Kansas City (USA))

    (3H)Quinuclidinyl benzilate (QNB) binding to muscarinic receptors decreased in the rat forebrain after convulsions induced by a single dose of either soman, a potent inhibitor of acetylcholinesterase, or kainic acid, an excitotoxin. A Rosenthal plot revealed that the receptors decreased in number rather than affinity. When the soman-induced convulsions were blocked, the decrease in muscarinic receptors at 3 days was less extensive than when convulsions occurred and at 10 days they approached control levels in most of the brain areas. The most prominent decrements in QNB binding were in the piriform cortex where the decline in QNB binding is probably related to the extensive convulsion-associated neuropathology. The decrements in QNB binding after convulsions suggest that the convulsive state leads to a down-regulation of muscarinic receptors in some brain areas. In contrast to the decrease in QNB binding after convulsions, (3H)flunitrazepam binding to benzodiazepine receptors did not change even in the piriform cortex where the loss in muscarinic receptors was most prominent. Thus, it appears that those neuronal processes that bear muscarinic receptors are more vulnerable to convulsion-induced change than those with benzodiazepine receptors.

  2. FNDC5 Alleviates Hepatosteatosis by Restoring AMPK/mTOR-Mediated Autophagy, Fatty Acid Oxidation, and Lipogenesis in Mice.

    Science.gov (United States)

    Liu, Tong-Yan; Xiong, Xiao-Qing; Ren, Xing-Sheng; Zhao, Ming-Xia; Shi, Chang-Xiang; Wang, Jue-Jin; Zhou, Ye-Bo; Zhang, Feng; Han, Ying; Gao, Xing-Ya; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2016-11-01

    Fibronectin type III domain-containing 5 (FNDC5) protein induces browning of subcutaneous fat and mediates the beneficial effects of exercise on metabolism. However, whether FNDC5 is associated with hepatic steatosis, autophagy, fatty acid oxidation (FAO), and lipogenesis remains unknown. Herein, we show the roles and mechanisms of FNDC5 in hepatic steatosis, autophagy, and lipid metabolism. Fasted FNDC5(-/-) mice exhibited severe steatosis, reduced autophagy, and FAO, and enhanced lipogenesis in the liver compared with wild-type mice. Energy deprivation-induced autophagy, FAO, and AMPK activity were attenuated in FNDC5(-/-) hepatocytes, which were restored by activating AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). Inhibition of mammalian target of rapamycin (mTOR) complex 1 with rapamycin enhanced autophagy and FAO and attenuated lipogenesis and steatosis in FNDC5(-/-) livers. FNDC5 deficiency exacerbated hyperlipemia, hepatic FAO and autophagy impairment, hepatic lipogenesis, and lipid accumulation in obese mice. Exogenous FNDC5 stimulated autophagy and FAO gene expression in hepatocytes and repaired the attenuated autophagy and palmitate-induced steatosis in FNDC5(-/-) hepatocytes. FNDC5 overexpression prevented hyperlipemia, hepatic FAO and autophagy impairment, hepatic lipogenesis, and lipid accumulation in obese mice. These results indicate that FNDC5 deficiency impairs autophagy and FAO and enhances lipogenesis via the AMPK/mTOR pathway. FNDC5 deficiency aggravates whereas FNDC5 overexpression prevents the HFD-induced hyperlipemia, hepatic lipid accumulation, and impaired FAO and autophagy in the liver.

  3. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    Science.gov (United States)

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-11-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress.

  4. Alleviation of Salt Stress in Seedlings of Black Glutinous Rice by Seed Priming with Spermidine and Gibberellic Acid

    Directory of Open Access Journals (Sweden)

    Sumitahnun CHUNTHABUREE

    2014-12-01

    Full Text Available This study was carried out to elucidate the spermidine (Spd and gibberellic acid (GA3 priming-induced physiological and biochemical changes responsible for induction of salinity tolerance in two rice (Oryza sativa L. cultivars, namely ‘Niewdam Gs. no. 00621’ (salt tolerant and ‘KKU-LLR-039’ (salt sensitive. The seeds of the two cultivars were primed separately with distilled water, 1 mM Spd or 0.43 mM GA3. Primed seeds were germinated and the resultant seedlings were hydroponically grown for 14 days before being exposed to salinity stress (150 mM NaCl for 10 days. Seed priming with Spd or GA3 slightly improved salt-induced reductions in growth, anthocyanin and chlorophyll contents of the seedlings. Salt stress induced pronounced increases in Na+/K+ ratio, proline and H2O2 contents, particularly in the sensitive cultivar. The levels of these salt-sensitivity physiological indicators tended to be mitigated by priming with Spd and GA3. Salt-stressed seedlings grown from seeds primed with these growth regulators also possessed higher phenolic contents and greater antioxidant capacity than the control seedlings. Based on all growth and physiological data, Spd tended to be more effective than A3 in improving salt tolerance in both rice cultivars.

  5. Alleviation of Lead Toxicity by 5-Aminolevulinic Acid Is Related to Elevated Growth, Photosynthesis, and Suppressed Ultrastructural Damages in Oilseed Rape

    Directory of Open Access Journals (Sweden)

    Tian Tian

    2014-01-01

    Full Text Available Lead (Pb is a widely spread pollutant and leads to diverse morphological and structural changes in the plants. In this study, alleviating role of 5-aminolevulinic acid (ALA in oilseed rape (Brassica napus L. was investigated with or without foliar application of ALA (25 mg L−1 in hydroponic environment under different Pb levels (0, 100, and 400 µM. Outcomes stated that plant morphology and photosynthetic attributes were reduced under the application of Pb alone. However, ALA application significantly increased the plant growth and photosynthetic parameters under Pb toxicity. Moreover, ALA also lowered the Pb concentration in shoots and roots under Pb toxicity. The microscopic studies depicted that exogenously applied ALA ameliorated the Pb stress and significantly improved the cell ultrastructures. After application of ALA under Pb stress, mesophyll cell had well-developed nucleus and chloroplast having a number of starch granules. Moreover, micrographs illustrated that root tip cell contained well-developed nucleus, a number of mitochondria, and golgi bodies. These results proposed that under 15-day Pb-induced stress, ALA improved the plant growth, chlorophyll content, photosynthetic parameters, and ultrastructural modifications in leaf mesophyll and root tip cells of the B. napus plants.

  6. Pinus densiflora Sieb. et Zucc. Alleviates Lipogenesis and Oxidative Stress during Oleic Acid-Induced Steatosis in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Yu-Jin Hwang

    2014-07-01

    Full Text Available Excess accumulation of lipids and oxidative stress in the liver contribute to nonalcoholic fatty liver disease (NAFLD. We hypothesized that Pinus densiflora Sieb. et Zucc. (PSZ can protect against NAFLD by regulating lipid accumulation and oxidative stress in the liver. To investigate the effect of PSZ upon NAFLD, we used an established cellular model: HepG2 cells treated with oleic acid. Then, the extent of hepatic steatosis and oxidative stress was assessed and levels of inflammatory markers measured. Oleic acid-treated HepG2 cells, compared with controls, had greater lipid accumulation. PSZ decreased lipid accumulation by 63% in oleic acid-treated HepG2 cells. Additionally, PSZ decreased the target gene expression of lipogenesis such as sterol regulatory element binding protein-1c, fatty acid synthase, stearoyl-CoA desaturase-1, diacylglycerol O-acyltransferase-1, and acetyl-CoA carboxylase-1 by 1.75, 6.0, 2.32, 1.93 and 1.81 fold, respectively. In addition, Oleic acid-treated HepG2 cells elicited extensive accumulation of tumor necrosis factor-α (TNFα by 4.53 fold, whereas PSZ-treated cells decreased the expression of TNFα mRNA by 1.76 fold. PSZ significantly inhibited oxidative stress induced by reactive oxygen species. These results suggest that PSZ has effects on steatosis in vitro and further studies are needed in vivo to verify the current observations.

  7. Pinus densiflora Sieb. et Zucc. alleviates lipogenesis and oxidative stress during oleic acid-induced steatosis in HepG2 cells.

    Science.gov (United States)

    Hwang, Yu-Jin; Wi, Hae-Ri; Kim, Haeng-Ran; Park, Kye Won; Hwang, Kyung-A

    2014-07-23

    Excess accumulation of lipids and oxidative stress in the liver contribute to nonalcoholic fatty liver disease (NAFLD). We hypothesized that Pinus densiflora Sieb. et Zucc. (PSZ) can protect against NAFLD by regulating lipid accumulation and oxidative stress in the liver. To investigate the effect of PSZ upon NAFLD, we used an established cellular model: HepG2 cells treated with oleic acid. Then, the extent of hepatic steatosis and oxidative stress was assessed and levels of inflammatory markers measured. Oleic acid-treated HepG2 cells, compared with controls, had greater lipid accumulation. PSZ decreased lipid accumulation by 63% in oleic acid-treated HepG2 cells. Additionally, PSZ decreased the target gene expression of lipogenesis such as sterol regulatory element binding protein-1c, fatty acid synthase, stearoyl-CoA desaturase-1, diacylglycerol O-acyltransferase-1, and acetyl-CoA carboxylase-1 by 1.75, 6.0, 2.32, 1.93 and 1.81 fold, respectively. In addition, Oleic acid-treated HepG2 cells elicited extensive accumulation of tumor necrosis factor-α (TNFα) by 4.53 fold, whereas PSZ-treated cells decreased the expression of TNFα mRNA by 1.76 fold. PSZ significantly inhibited oxidative stress induced by reactive oxygen species. These results suggest that PSZ has effects on steatosis in vitro and further studies are needed in vivo to verify the current observations.

  8. Long Chain Omega-3 Polyunsaturated Fatty Acid Supplementation Alleviates Doxorubicin-Induced Depressive-Like Behaviors and Neurotoxicity in Rats: Involvement of Oxidative Stress and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Yan-Qin Wu

    2016-04-01

    Full Text Available Doxorubicin (DOX is a chemotherapeutic agent widely used in human malignancies. Its long-term use can cause neurobiological side-effects associated with depression. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs, the essential fatty acids found in fish oil, possess neuroprotecitve and antidepressant activities. Thus, the aim of this study was to explore the potential protective effects of ω-3 PUFAs against DOX-induced behavioral changes and neurotoxicity. ω-3 PUFAs were given daily by gavage (1.5 g/kg over three weeks starting seven days before DOX administration (2.5 mg/kg. Open-field test (OFT and forced swimming test (FST were conducted to assess exploratory activity and despair behavior, respectively. Our data showed that ω-3 PUFAs supplementation significantly mitigated the behavioral changes induced by DOX. ω-3 PUFAs pretreatment also alleviated the DOX-induced neural apoptosis. Meanwhile, ω-3 PUFAs treatment ameliorated DOX-induced oxidative stress in the prefrontal cortex and hippocampus. Additionally, gene expression of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and the protein levels of NF-κB and iNOS were significantly increased in brain tissues of DOX-treated group, whereas ω-3 PUFAs supplementation significantly attenuated DOX-induced neuroinflammation. In conclusion, ω-3 PUFAs can effectively protect against DOX-induced depressive-like behaviors, and the mechanisms underlying the neuroprotective effect are potentially associated with its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  9. Long Chain Omega-3 Polyunsaturated Fatty Acid Supplementation Alleviates Doxorubicin-Induced Depressive-Like Behaviors and Neurotoxicity in Rats: Involvement of Oxidative Stress and Neuroinflammation.

    Science.gov (United States)

    Wu, Yan-Qin; Dang, Rui-Li; Tang, Mi-Mi; Cai, Hua-Lin; Li, Huan-De; Liao, De-Hua; He, Xin; Cao, Ling-Juan; Xue, Ying; Jiang, Pei

    2016-04-23

    Doxorubicin (DOX) is a chemotherapeutic agent widely used in human malignancies. Its long-term use can cause neurobiological side-effects associated with depression. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), the essential fatty acids found in fish oil, possess neuroprotecitve and antidepressant activities. Thus, the aim of this study was to explore the potential protective effects of ω-3 PUFAs against DOX-induced behavioral changes and neurotoxicity. ω-3 PUFAs were given daily by gavage (1.5 g/kg) over three weeks starting seven days before DOX administration (2.5 mg/kg). Open-field test (OFT) and forced swimming test (FST) were conducted to assess exploratory activity and despair behavior, respectively. Our data showed that ω-3 PUFAs supplementation significantly mitigated the behavioral changes induced by DOX. ω-3 PUFAs pretreatment also alleviated the DOX-induced neural apoptosis. Meanwhile, ω-3 PUFAs treatment ameliorated DOX-induced oxidative stress in the prefrontal cortex and hippocampus. Additionally, gene expression of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and the protein levels of NF-κB and iNOS were significantly increased in brain tissues of DOX-treated group, whereas ω-3 PUFAs supplementation significantly attenuated DOX-induced neuroinflammation. In conclusion, ω-3 PUFAs can effectively protect against DOX-induced depressive-like behaviors, and the mechanisms underlying the neuroprotective effect are potentially associated with its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  10. Hyaluronic acid dermal fillers: can adjunctive lidocaine improve patient satisfaction without decreasing efficacy or duration?

    Science.gov (United States)

    Smith, Lynnelle; Cockerham, Kimberly

    2011-03-14

    Hyaluronic acid (HA) dermal fillers are the most widely used injectables to augment facial volume without surgery. HA dermal fillers are popular because of their ease of administration, predictable effectiveness, good safety profile, and quick patient recovery. The most common patient complaint is pain. Our goal is to review the current literature on HA fillers and compare outcomes with and without lidocaine. We found adjunctive lidocaine significantly decreases pain during injection and postinjection with corresponding increased patient satisfaction. The efficacy and safety profile appears unchanged. Rare complications with HA fillers and those associated with constituents of the product, contaminants, and lidocaine are reviewed. The corrective effects of HA fillers are temporary; repeat treatment is required to maintain results. Minimizing pain is crucial to optimize patient satisfaction.

  11. Nordihydroguaiaretic Acid Attenuates the Oxidative Stress-Induced Decrease of CD33 Expression in Human Monocytes

    Directory of Open Access Journals (Sweden)

    Silvia Guzmán-Beltrán

    2013-01-01

    Full Text Available Nordihydroguaiaretic acid (NDGA is a natural lignan with recognized antioxidant and beneficial properties that is isolated from Larrea tridentata. In this study, we evaluated the effect of NDGA on the downregulation of oxidant stress-induced CD33 in human monocytes (MNs. Oxidative stress was induced by iodoacetate (IAA or hydrogen peroxide (H2O2 and was evaluated using reactive oxygen species (ROS production, and cell viability. NDGA attenuates toxicity, ROS production and the oxidative stress-induced decrease of CD33 expression secondary to IAA or H2O2 in human MNs. It was also shown that NDGA (20 μM attenuates cell death in the THP-1 cell line that is caused by treatment with either IAA or H2O2. These results suggest that NDGA has a protective effect on CD33 expression, which is associated with its antioxidant activity in human MNs.

  12. Nordihydroguaiaretic acid attenuates the oxidative stress-induced decrease of CD33 expression in human monocytes.

    Science.gov (United States)

    Guzmán-Beltrán, Silvia; Pedraza-Chaverri, José; Gonzalez-Reyes, Susana; Hernández-Sánchez, Fernando; Juarez-Figueroa, Ulises E; Gonzalez, Yolanda; Bobadilla, Karen; Torres, Martha

    2013-01-01

    Nordihydroguaiaretic acid (NDGA) is a natural lignan with recognized antioxidant and beneficial properties that is isolated from Larrea tridentata. In this study, we evaluated the effect of NDGA on the downregulation of oxidant stress-induced CD33 in human monocytes (MNs). Oxidative stress was induced by iodoacetate (IAA) or hydrogen peroxide (H(2)O(2)) and was evaluated using reactive oxygen species (ROS) production, and cell viability. NDGA attenuates toxicity, ROS production and the oxidative stress-induced decrease of CD33 expression secondary to IAA or H(2)O(2) in human MNs. It was also shown that NDGA (20  μ M) attenuates cell death in the THP-1 cell line that is caused by treatment with either IAA or H(2)O(2). These results suggest that NDGA has a protective effect on CD33 expression, which is associated with its antioxidant activity in human MNs.

  13. Hyaluronic acid dermal fillers: can adjunctive lidocaine improve patient satisfaction without decreasing efficacy or duration?

    Directory of Open Access Journals (Sweden)

    Lynnelle Smith

    2011-03-01

    Full Text Available Lynnelle Smith1, Kimberly Cockerham21Ophthalmology Department, Loma Linda University, Loma Linda, CA, USA; 2Ophthalmology Department, Stanford University, Palo Alto, CA, USAAbstract: Hyaluronic acid (HA dermal fillers are the most widely used injectables to augment facial volume without surgery. HA dermal fillers are popular because of their ease of administration, predictable effectiveness, good safety profile, and quick patient recovery. The most common patient complaint is pain. Our goal is to review the current literature on HA fillers and compare outcomes with and without lidocaine. We found adjunctive lidocaine significantly decreases pain during injection and postinjection with corresponding increased patient satisfaction. The efficacy and safety profile appears unchanged. Rare complications with HA fillers and those associated with constituents of the product, contaminants, and lidocaine are reviewed. The corrective effects of HA fillers are temporary; repeat treatment is required to maintain results. Minimizing pain is crucial to optimize patient satisfaction.Keywords: hyaluronic acid, lidocaine, drug toxicity, hypersensitivity, collagen, herpes simplex

  14. Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders.

    Science.gov (United States)

    Burrage, Lindsay C; Jain, Mahim; Gandolfo, Laura; Lee, Brendan H; Nagamani, Sandesh C S

    2014-01-01

    Sodium phenylbutyrate (NaPBA) is a commonly used medication for the treatment of patients with urea cycle disorders (UCDs). Previous reports involving small numbers of patients with UCDs have shown that NaPBA treatment can result in lower plasma levels of the branched-chain amino acids (BCAA) but this has not been studied systematically. From a large cohort of patients (n=553) with UCDs enrolled in the Longitudinal Study of Urea Cycle Disorders, a collaborative multicenter study of the Urea Cycle Disorders Consortium, we evaluated whether treatment with NaPBA leads to a decrease in plasma BCAA levels. Our analysis shows that NaPBA use independently affects the plasma BCAA levels even after accounting for multiple confounding covariates. Moreover, NaPBA use increases the risk for BCAA deficiency. This effect of NaPBA seems specific to plasma BCAA levels, as levels of other essential amino acids are not altered by its use. Our study, in an unselected population of UCD subjects, is the largest to analyze the effects of NaPBA on BCAA metabolism and potentially has significant clinical implications. Our results indicate that plasma BCAA levels should to be monitored in patients treated with NaPBA since patients taking the medication are at increased risk for BCAA deficiency. On a broader scale, these findings could open avenues to explore NaPBA as a therapy in maple syrup urine disease and other common complex disorders with dysregulation of BCAA metabolism.

  15. A decrease in phytic acid content substantially affects the distribution of mineral elements within rice seeds.

    Science.gov (United States)

    Sakai, Hiroaki; Iwai, Toru; Matsubara, Chie; Usui, Yuto; Okamura, Masaki; Yatou, Osamu; Terada, Yasuko; Aoki, Naohiro; Nishida, Sho; Yoshida, Kaoru T

    2015-09-01

    Phytic acid (myo-inositol hexakisphosphate; InsP6) is the storage compound of phosphorus and many mineral elements in seeds. To determine the role of InsP6 in the accumulation and distribution of mineral elements in seeds, we performed fine mappings of mineral elements through synchrotron-based X-ray microfluorescence analysis using developing seeds from two independent low phytic acid (lpa) mutants of rice (Oryza sativa L.). The reduced InsP6 in lpa seeds did not affect the translocation of mineral elements from vegetative organs into seeds, because the total amounts of phosphorus and the other mineral elements in lpa seeds were identical to those in the wild type (WT). However, the reduced InsP6 caused large changes in mineral localization within lpa seeds. Phosphorus and potassium in the aleurone layer of lpa greatly decreased and diffused into the endosperm. Zinc and copper, which were broadly distributed from the aleurone layer to the inner endosperm in the WT, were localized in the narrower space around the aleurone layer in lpa mutants. We also confirmed that similar distribution changes occurred in transgenic rice with the lpa phenotype. Using these results, we discussed the role of InsP6 in the dynamic accumulation and distribution patterns of mineral elements during seed development.

  16. Arachidonic acid incorporation and turnover is decreased in sympathetically denervated rat heart.

    Science.gov (United States)

    Patrick, Casey B; McHowat, Jane; Rosenberger, Thad A; Rapoport, Stanley I; Murphy, Eric J

    2005-06-01

    Heart sympathetic denervation can accompany Parkinson's disease, but the effect of this denervation on cardiac lipid-mediated signaling is unknown. To address this issue, rats were sympathetically denervated with 6-hydroxydopamine (6-OHDA, 50 mg/kg ip) and infused with 170 muCi/kg of either [1-(14)C]palmitic acid ([1-(14)C]16:0) or [1-(14)C]arachidonic acid ([1-(14)C]20:4 n-6), and kinetic parameters were assessed using a steady-state radiotracer model. Heart norepinephrine and epinephrine levels were decreased 82 and 85%, respectively, in denervated rats, and this correlated with a 34% reduction in weight gain in treated rats. Fatty acid tracer uptake was not significantly different between groups for either tracer, although the dilution coefficient lambda was increased in [1-(14)C]20:4 n-6-infused rats, which indicates that less 20:4 n-6 was recycled in denervated rats. In [1-(14)C]16:0-infused rats, incorporation rate and turnover values of 16:0 in stable lipid compartments were unchanged, which is indicative of preservation of beta-oxidation. In [1-(14)C]20:4 n-6-infused rats, there were dramatic reductions in incorporation rate (60-84%) and turnover value (56-85%) in denervated rats that were dependent upon the lipid compartment. In addition, phospholipase A(2) activity was reduced 40% in treated rats, which is consistent with the reduction observed in 20:4 n-6 turnover. These results demonstrate marked reductions in 20:4 n-6 incorporation rate and turnover in sympathetic denervated rats and thereby suggest an effect on lipid-mediated signal transduction mediated by a reduction in phospholipase A(2) activity.

  17. Treatments of free fatty acids to prevent or decrease colour fixation in cottonseed oil

    Directory of Open Access Journals (Sweden)

    Helmy, H. E.

    1994-12-01

    Full Text Available Some treatments have been investigated to prevent or remove colour fixation of cottonseed oil containing high level of free fatty acids without using excess of sodium hydroxide in the refining step. The treatments included use of sodium carbonate and ethanolamine before and after subjecting a crude cottonseed oil containing excess of free fatty acid to a colour fixation treatment.
    The results revealed that the carbonate/ethanolamine treatment improved the oil colour by decreasing the free fatty acids and gossypol in the oil, without using any excess of sodium hydroxide.
    Carrying out the carbonate/ethanolamine treatment on cottonseed oil with high levels of free fatty acid before colour fixation takes place is more recommended than carrying out the same treatment on the same oil after it has been fixed.

    Se han investigado algunos tratamientos para prevenir o eliminar la fijación del color de aceite de semilla de algodón que contienen alto nivel de ácidos grasos libres, sin utilizar un exceso de hidróxido sódico en la etapa de refinación.
    Los tratamientos incluyeron el uso de carbonato sódico y etanolamina antes y después, sometiendo un aceite crudo de semilla de algodón que contiene exceso de ácidos grasos libres a tratamiento de fijación del color.
    Los resultados mostraron que el tratamiento carbonato/etanolamina mejoró el color del aceite por disminución de los ácidos grasos libres y gosipol en el aceite, sin utilizar un exceso de hidróxido sódico.
    Llevar a cabo el tratamiento con carbonato/etanolamina sobre aceite de semilla de algodón con niveles altos de ácidos grasos libres antes que tenga lugar la fijación del color es más recomendable que llevar a cabo el mismo tratamiento sobre el mismo aceite después de que se haya fijado.

  18. Keap1-knockdown decreases fasting-induced fatty liver via altered lipid metabolism and decreased fatty acid mobilization from adipose tissue.

    Directory of Open Access Journals (Sweden)

    Jialin Xu

    Full Text Available AIMS: The purpose of this study was to determine whether Nrf2 activation, via Keap1-knockdown (Keap1-KD, regulates lipid metabolism and mobilization induced by food deprivation (e.g. fasting. METHODS AND RESULTS: Male C57BL/6 (WT and Keap1-KD mice were either fed ad libitum or food deprived for 24 hours. After fasting, WT mice exhibited a marked increase in hepatic lipid accumulation, but Keap1-KD mice had an attenuated increase of lipid accumulation, along with reduced expression of lipogenic genes (acetyl-coA carboxylase, stearoyl-CoA desaturase-1, and fatty acid synthase and reduced expression of genes related to fatty acid transport, such as fatty acid translocase/CD36 (CD36 and Fatty acid transport protein (FATP 2, which may attribute to the reduced induction of Peroxisome proliferator-activated receptor (Ppar α signaling in the liver. Additionally, enhanced Nrf2 activity by Keap1-KD increased AMP-activated protein kinase (AMPK phosphorylation in liver. In white adipose tissue, enhanced Nrf2 activity did not change the lipolysis rate by fasting, but reduced expression of fatty acid transporters--CD36 and FATP1, via a PPARα-dependent mechanism, which impaired fatty acid transport from white adipose tissue to periphery circulation system, and resulted in increased white adipose tissue fatty acid content. Moreover, enhanced Nrf2 activity increased glucose tolerance and Akt phosphorylation levels upon insulin administration, suggesting Nrf2 signaling pathway plays a key role in regulating insulin signaling and enhanced insulin sensitivity in skeletal muscle. CONCLUSION: Enhanced Nrf2 activity via Keap1-KD decreased fasting-induced steatosis, pointing to an important function of Nrf2 on lipid metabolism under the condition of nutrient deprivation.

  19. Mechanisms of Oxalic Acid Alleviating Chilling Injury in Harvested Mango Fruit Under Low Temperature Stress%草酸处理减轻术亡果采后果实冷害的机理研究

    Institute of Scientific and Technical Information of China (English)

    薛锡佳; 李佩艳; 宋夏钦; 沈玫; 郑小林

    2012-01-01

    Harvested mango fruit(Mangifera indica L.‘Zill’)were dipped in oxalic acid solution of 5 mmol · L^-1 for 10 min and then stored under low temperature stress(at 10℃± 0.5 ℃)for 27 days and thereafter at room temperature(about 25 ℃)for 4 days. The results showed that,as compared to control fruit,lower chilling injury index and relative membrane permeability were observed in treated fruit during storage. In addition,oxalic acid treatment not only decreased respiration rate and ethylene release,inhibited activities of peroxidase(POD)and polyphenoloxidase(PPO),and maintained higher flesh L* value during period of later storage,but also maintained higher contents of SSC,free proline and citric acid in fruit during storage. It was suggested that the effects of oxalic acid in enhancing membrane integrity,inhibiting activity of enzymatic browning,and maintaining higher level of osmotic substances including SSC,free proline and citric acid,could contribute to improve cold resistance,and thus alleviate chilling injury in mango fruit during cold storage.%杧果(Mangifera indica L.)‘Zill’果实采后经5 mmol · L^-1草酸溶液浸泡10 min后,在低温(10± 0.5)℃下贮藏27 d,再移至常温25℃贮藏4 d,冷害系数和质膜相对透性显著低于对照;草酸处理降低了果实在贮藏后期的呼吸速率和乙烯释放速率,抑制了多酚氧化酶(PPO)和过氧化物酶(POD)活性,维持了较高果肉亮度值(L*),可溶性固形物(SSC)、游离脯氨酸和柠檬酸含量。说明草酸处理可提高质膜稳定性,抑制褐变相关酶活性以及维持一些渗透调节物质含量来增加采后果实的抗冷性,缓解果实冷害症状。

  20. EFFECT OF DECREASING DIETARY PROTEIN LEVELS WITH OPTIMAL AMINO ACIDS PROFILE ON THE PERFORMANCE OF BROILERS

    Directory of Open Access Journals (Sweden)

    Z. Kamran, M. Aslam Mirza, Ahsan-ul-Haq1 and S. Mahmood1

    2004-10-01

    Full Text Available A six-week trial was conducted to study the effect of decreasing dietary crude protein (CP level on the performance of broilers in hot climatic conditions. Four experimental rations having CP 23 (control group, 22, 21 and 20%, with optimal amino acid balance were prepared. All the four rations were isocaloric having ME 3200 kcal/kg with Energy: Protein (E:P 139.0, 146.5, 152.4 and 160 in diets A, B, C and D respectively. One hundred and twenty day-old chicks were randomly distributed into 12 experimental units, each having 10 chicks. Rations were randomly allotted to experimental units such that each unit received three replicates. The experimental diets were fed to birds from day 1st to 42nd. Performance of birds was monitored in terms of weight gain, feed consumption and feed conversion ratio (FCR. At the end of experiment, two birds per each replicate were randomly selected and slaughtered to record the data on carcass yield, breast meat yield, abdominal fat and composition of breast meat. Results of the trial suggested that weight gain was significantly (P<0.01 increased in birds on diets with CP 20 and 21%. Feed consumption and FCR remained un-changed for all the treatment groups. Eviscerated carcass yield was significantly (P<0.05 higher for the group fed on diet with 20% CP. Breast meat yield, abdominal fat and composition of breast meat also remained un-changed. Economic evaluation of the trial revealed that decreasing CP levels from 23 to 20% resulted in reduced feed cost per kg of live weight gain, which clearly indicated that this approach was useful especially in severe summer conditions. The overall picture of the study suggests that dietary protein level of broilers could be reduced from 23 to 20%, with beneficial effects on growth performance and carcass characteristics and increased economic returns in hot environmental conditions, provided that levels of essential amino acids are closely looked after.

  1. Rice straw incorporated just before soil flooding increases acetic acid formation and decreases available nitrogen

    Directory of Open Access Journals (Sweden)

    Ronaldir Knoblauch

    2014-02-01

    Full Text Available Incorporation of rice straw into the soil just before flooding for water-seeded rice can immobilize mineral nitrogen (N and lead to the production of acetic acid harmful to the rice seedlings, which negatively affects grain yield. This study aimed to evaluate the formation of organic acids and variation in pH and to quantify the mineral N concentration in the soil as a function of different times of incorporation of rice straw or of ashes from burning the straw before flooding. The experiment was carried out in a greenhouse using an Inceptisol (Typic Haplaquept soil. The treatments were as follows: control (no straw or ash; incorporation of ashes from previous straw burning; rice straw incorporated to drained soil 60 days before flooding; straw incorporated 30 days before flooding; straw incorporated 15 days before flooding and straw incorporated on the day of flooding. Experimental units were plastic buckets with 6.0 kg of soil. The buckets remained flooded throughout the trial period without rice plants. Soil samples were collected every seven days, beginning one day before flooding until the 13th week of flooding for determination of mineral N- ammonium (NH4+ and nitrate (NO3-. Soil solution pH and concentration of organic acids (acetic, propionic and butyric were determined. All NO3- there was before flooding was lost in approximately two weeks of flooding, in all treatments. There was sigmoidal behavior for NH4+ formation in all treatments, i.e., ammonium ion concentration began to rise shortly after soil flooding, slightly decreased and then went up again. On the 91st day of flooding, the NH4+ concentrations in soil was 56 mg kg-1 in the control treatment, 72 mg kg-1 for the 60-day treatment, 73 mg kg-1 for the 30-day treatment and 53 mg kg-1 for the ash incorporation treatment. These ammonium concentrations correspond to 84, 108, 110 and 80 kg ha-1 of N-NH4+, respectively. When the straw was incorporated on the day of flooding or 15 days

  2. Retinoic acid reverses the PTU related decrease in neurogranin level in mice brain.

    Science.gov (United States)

    Enderlin, V; Vallortigara, J; Alfos, S; Féart, C; Pallet, V; Higueret, P

    2004-09-01

    Recent data have shown that fine regulation of retinoid mediated gene expression is fundamentally important for optimal brain functioning in aged mice. Nevertheless, alteration of the thyroid hormone signalling pathway may be a limiting factor, which impedes retinoic acid (RA) from exerting its modulating effect. Mild hypothyroidism is often described in the elderly. Thus, in the present study, it was of interest to determine if RA exerts its neurological modulating effect in mild hypothyroidism. To obtain further insight into this question, mice were submitted to a low propylthiouracyl (PTU) drink (0.05%) in order to slightly reduce the serum level of triiodothyronine (T3). A quantitative evaluation of RA nuclear receptors (RAR, RXR), T3 nuclear receptor (TR) and of neurogranin (RC3, a RA target gene which codes for a protein considered as a good marker of synaptic plasticity) in PTU treated mice injected with vehicle or RA or T3 was carried out. The PTU-related decrease in expression of RAR, RXR and RC3 was restored following RA or T3 administration, as observed in aged mice. The amount of TR mRNA, which was not affected in PTU treated mice, was increased only after T3 treatment as observed in overt hypothyroidism. These results suggest that neurobiological alterations observed in aged mice are probably related to RA and T3 signalling pathway modifications associated, in part, with mild changes in thyroid function.

  3. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites.

    Science.gov (United States)

    Louisse, Jochem; Bai, Yanqing; Verwei, Miriam; van de Sandt, Johannes J M; Blaauboer, Bas J; Rietjens, Ivonne M C M

    2010-06-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH(i)) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH(i)in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH(i) of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na(+)/H(+)-antiporter, corroborating an important role of the pH(i) in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH(i) may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  4. Does folic acid use decrease the risk for spina bifida after in utero exposure to valproic acid?

    NARCIS (Netherlands)

    Jentink, J.; Bakker, M.K.; Nijenhuis, C.M.; Wilffert, B.; de Jong-van den Berg, L.T.W.

    2010-01-01

    Purpose Women with child wish are advised to take folic acid supplements to reduce the risk for spina bifida. However, there is less evidence for this protective effect in women using valproic acid (VPA). We investigated the effect of folic acid in women exposed to VPA in the first trimester of preg

  5. Dietary Omega-3 Fatty Acids Increase Survival and Decrease Bacterial Load in Mice Subjected to Staphylococcus aureus-Induced Sepsis.

    Science.gov (United States)

    Svahn, Sara L; Ulleryd, Marcus A; Grahnemo, Louise; Ståhlman, Marcus; Borén, Jan; Nilsson, Staffan; Jansson, John-Olov; Johansson, Maria E

    2016-04-01

    Sepsis caused by Staphylococcus aureus is increasing in incidence. With the alarming use of antibiotics,S. aureus is prone to become methicillin resistant. Antibiotics are the only widely used pharmacological treatment for sepsis. Interestingly, mice fed high-fat diet (HFD) rich in polyunsaturated fatty acids have better survival of S. aureus-induced sepsis than mice fed HFD rich in saturated fatty acids (HFD-S). To investigate what component of polyunsaturated fatty acids, i.e., omega-3 or omega-6 fatty acids, exerts beneficial effects on the survival of S. aureus-induced sepsis, mice were fed HFD rich in omega-3 or omega-6 fatty acids for 8 weeks prior to inoculation with S. aureus Further, mice fed HFD-S were treated with omega-3 fatty acid metabolites known as resolvins. Mice fed HFD rich in omega-3 fatty acids had increased survival and decreased bacterial loads compared to those for mice fed HFD-S after S. aureus-induced sepsis. Furthermore, the bacterial load was decreased in resolvin-treated mice fed HFD-S after S. aureus-induced sepsis compared with that in mice treated with vehicle. Dietary omega-3 fatty acids increase the survival of S. aureus-induced sepsis by reversing the deleterious effect of HFD-S on mouse survival.

  6. INHIBITION OF BILE ACID ACCUMULATION DECREASED THE EXCESSIVE HEPATOCYTE APOPTOSIS AND IMPROVED THE LIVER SECRETION FUNCTIONS ON OBSTRUCTIVE JAUNDICE PATIENTS

    Directory of Open Access Journals (Sweden)

    Akmal Taher

    2011-06-01

    Full Text Available Excessive hepatocyte apoptosis induced by bile acid accumulation occurred in severe obstructive jaundice, and impair the liver secretion function. The objective of this study is to determine whether the inhibition of bile acid accumulation through bile duct decompression affect the excessive hepatocyte apoptosis and caused improvement the liver secretion functions on human model. In this study we use a before and after study on severe obstructive jaundice patients due to extra hepatic bile duct tumor was decompressed. Bile duct decompression was performed as a model of the role of inhibition of bile acid accumulation inhibition bile acid accumulation and excessive hepatocyte apoptosis. Bile acid and marker of liver secretion functions were serially measured. Liver biopsy pre and post decompression was performed for Hepatocyte apoptosis pathologic examination by TUNEL fluorescing, which measured by 2 people in double blinded system. Total bile acid, and liver secretion functions were measured by automated chemistry analyzer. The result of this study shows that twenty one severe obstructive jaundice patients were included. After decompression the hepatocyte apoptosis index decreased from an average of 53.1 (SD 105 to 11.7 (SD 13.6 (p < 0.05. Average of bile acid serum decreased from 96.4 (SD 53.8 to 19.9 (SD 39.5 until 13.0 (SD 12.6 μmol/L (p < 0.05 Total ilirubin decreased from 20.0 (SD 8.9 to 13.3 (SD 5.0 until 6.2 (SD 4.0 mg/dL (p < 0.05, while the phosphates alkaline (ALP and γ-glutamil transpeptidase (γ-GT activities also decreased ignificantly. In conclusion, bile acids accumulation and excessive hepatocyte poptosis through bile duct decompression improve the liver secretion functions by inhibition mechanism.

  7. Oral branched-chain amino acids decrease whole-body proteolysis

    Science.gov (United States)

    Ferrando, A. A.; Williams, B. D.; Stuart, C. A.; Lane, H. W.; Wolfe, R. R.

    1995-01-01

    BACKGROUND: This study reports the effects of ingesting branched-chain amino acids (leucine, valine, and isoleucine) on protein metabolism in four men. METHODS: To calculate leg protein synthesis and breakdown, we used a new model that utilized the infusion of L-[ring-13C6]phenylalanine and the sampling of the leg arterial-venous difference and muscle biopsies. In addition, protein-bound enrichments provided for the direct calculation of muscle fractional synthetic rate. Four control subjects ingested an equivalent amount of essential amino acids (threonine, methionine, and histidine) to discern the effects of branched-chain amino acid nitrogen vs the effects of essential amino acid nitrogen. Each drink also included 50 g of carbohydrate. RESULTS: Consumption of the branched-chain and the essential amino acid solutions produced significant threefold and fourfold elevations in their respective arterial concentrations. Protein synthesis and breakdown were unaffected by branched-chain amino acids, but they increased by 43% (p < .05) and 36% (p < .03), respectively, in the group consuming the essential amino acids. However, net leg balance of phenylalanine was unchanged by either drink. Direct measurement of protein synthesis by tracer incorporation into muscle protein (fractional synthetic rate) revealed no changes within or between drinks. Whole-body phenylalanine flux was significantly suppressed by each solution but to a greater extent by the branched-chain amino acids (15% and 20%, respectively) (p < .001). CONCLUSIONS: These results suggest that branched-chain amino acid ingestion suppresses whole-body proteolysis in tissues other than skeletal muscle in normal men.

  8. Effects of four soil conditioners on alleviating aluminum toxicity in acid red soil%4种土壤调理剂改良红壤铝毒害的效果研究

    Institute of Scientific and Technical Information of China (English)

    李昂; 王旭; 范洪黎

    2014-01-01

    A pot experiment was conducted to investigate the effects of soil conditioner on alleviating aluminum toxicity in acid red soil. The result revealed that all the four soil conditioner could significantly reduce the exchangeable aluminum content and the toxic aluminum content in soil, increase maize height and biomass. Soil exchangeable aluminum content were significantly correlated with plant height and biomass in all treatments. When 0. 2% soil conditioner was added, the soil exchangeable alumi-num of oyster shell, dolomite, potassium feldspar, maifan stone decreased by 63. 8%, 70. 5%, 53. 0%, 12. 3% respectively;and when 0. 4% soil conditioner was added, the soil exchangeable aluminum decreased by 90. 5%, 92. 0%, 80. 5%, 23. 4%respectively. The exchangeable aluminum and toxic aluminum in soil decreased with the increase of the application of soil condi-tioner. The toxic aluminum content in soil was: dolomite

  9. Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds.

    Science.gov (United States)

    Hitz, William D; Carlson, Thomas J; Kerr, Phil S; Sebastian, Scott A

    2002-02-01

    A single, recessive mutation in soybean (Glycine max L. Merr.), which confers a seed phenotype of increased inorganic phosphate, decreased phytic acid, and a decrease in total raffinosaccharides, has been previously disclosed (S.A. Sebastian, P.S. Kerr, R.W. Pearlstein, W.D. Hitz [2000] Soy in Animal Nutrition, pp 56-74). The genetic lesion causing the multiple changes in seed phenotype is a single base change in the third base of the codon for what is amino acid residue 396 of the mature peptide encoding a seed-expressed myo-inositol 1-phospate synthase gene. The base change causes residue 396 to change from lysine to asparagine. That amino acid change decreases the specific activity of the seed-expressed myo-inositol 1-phosphate synthase by about 90%. Radio tracer experiments indicate that the supply of myo-inositol to the reaction, which converts UDP-galactose and myo-inositol to galactinol is a controlling factor in the conversion of total carbohydrate into the raffinosaccharides in both wild-type and mutant lines. That same decrease in myo-inositol 1-phosphate synthetic capacity leads to a decreased capacity for the synthesis of myo-inositol hexaphosphate (phytic acid) and a concomitant increase in inorganic phosphate.

  10. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    OpenAIRE

    Kazutaka Sawada; Hiroshi Kitagaki

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked ...

  11. Decreased serum essential and aromatic amino acids in patients with chronic pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Krystian; Adrych; Marian; Smoczynski; Magdalena; Stojek; Tomasz; Sledzinski; Ewa; Slominska; Elzbieta; Goyke; Ryszard; Tomasz; Smolenski; Julian; Swierczynski

    2010-01-01

    AIM:To investigate the influence of chronic pancreatitis(CP) on serum concentrations of amino acids.METHODS:Thirty-five male patients with alcoholic CP and 21 healthy male subjects were examined.Serum concentrations of amino acids were assayed by ionpair high-performance liquid chromatography with mass detection.RESULTS:Serum glutamate concentration was increased in CP patients as compared to controls.In contrast,serum concentrations of glutamine,histidine,tyrosine,proline,tryptophan and threonine were sign...

  12. Formulating gels for decreased mucociliary transport using rheologic properties: Polyacrylic acids

    OpenAIRE

    Shah, Ankur J.; Donovan, Maureen D.

    2007-01-01

    The purpose of these studies was to identify the rheologic properties of polyacrylic acid gels necessary for optimal reductions in mucociliary clearance. The mucociliary transport of 2 bioadhesive polyacrylic acid polymers, polycarbophil and carbopol, was assessed in vitro by measuring their clerance rates across explants of ciliated bovine tracheal tissue. The viscoelastic properties of polymer gels were measured in the presence of mucus using controlled stress rheometry. Combinations of app...

  13. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Steven D Kunkel

    Full Text Available Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II, blood vessel recruitment (Vegfa and autocrine/paracrine IGF-I signaling (Igf1. As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.

  14. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease.

    Science.gov (United States)

    Kunkel, Steven D; Elmore, Christopher J; Bongers, Kale S; Ebert, Scott M; Fox, Daniel K; Dyle, Michael C; Bullard, Steven A; Adams, Christopher M

    2012-01-01

    Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and autocrine/paracrine IGF-I signaling (Igf1). As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.

  15. A specific protein-enriched enteral formula decreases cortisolemia and improves plasma albumin and amino acid concentrations in elderly patients

    Directory of Open Access Journals (Sweden)

    Pérez de la Cruz Antonio

    2010-07-01

    Full Text Available Abstract Background Old age is associated with an involuntary and progressive but physiological loss of muscle mass. The aim of this study was to evaluate the effects of exclusive consumption for 6 months of a protein-enriched enteral diet with a relatively high content of branched-chain amino acids on albuminemia, cortisolemia, plasma amino acids, insulin resistance, and inflammation biomarkers in elderly patients. Methods Thirty-two patients from the Clinical Nutrition Outpatient Unit at our hospital exclusively consumed a protein-enriched enteral diet for 6 months. Data were collected at baseline and at 3 and 6 months on anthropometric and biochemical parameters and on plasma concentrations of amino acids, cortisol, adrenocorticotropic hormone, urea, creatinine, insulin resistance, and inflammation biomarkers. Results The percentage of patients with albumin concentration below normal cut-off values decreased from 18% to 0% by the end of the study. At 6 months, concentrations of total plasma (p = 0.008 and essential amino acids (p = 0.011, especially branched-chain amino acids (p = 0.031, were higher versus baseline values, whereas 3-methylhistidine (p = 0.001, cortisol (p = 0.001 and adrenocorticotropic hormone (p = 0.004 levels were lower. Conclusions Regular intake of specific protein-enriched enteral formula increases plasma essential amino acids, especially branched-chain amino acids, and decreases cortisol and 3-methylhistidine, while plasma urea and creatinine remain unchanged.

  16. Decreased incidence of myelomeningocele at birth: effect of folic acid recommendations or prenatal diagnostics?

    DEFF Research Database (Denmark)

    Clemmensen, Dorte; Thygesen, Mathias; Rasmussen, Mikkel Mylius

    2011-01-01

    Purpose: In Denmark prevention to reduce Spina bifida birth rate has focused in two areas: Folic acid supplementation (1997) and changes in national ultrasonography screening programme (2004). Myelomeningocele (MMC) is the most severe malformation among Spina Bifida. Taken into consideration...... the potential negative effect of high dose folic acid consumption, we found a need to look into the effectiveness of these two strategies in our complete MMC population. Methods: All Spina Bifida patients born in the western part of Denmark are differentiated into proper subgroups based on MR-Imaging, giving us...

  17. The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kitao, Azusa; Matsui, Osamu; Yoneda, Norihide; Kozaka, Kazuto; Shinmura, Rieko; Koda, Wataru; Kobayashi, Satoshi; Gabata, Toshifumi [Kanazawa University Graduate School of Medical Science, Department of Radiology, Kanazawa (Japan); Zen, Yoh [Kanazawa University Graduate School of Medical Science, Human Pathology, Kanazawa (Japan); King' s College Hospital, Institute of Liver Studies, London (United Kingdom); Yamashita, Tatsuya; Kaneko, Shuichi [Kanazawa University Graduate School of Medical Science, Gastroenterology, Kanazawa (Japan); Nakanuma, Yasuni [Kanazawa University Graduate School of Medical Science, Human Pathology, Kanazawa (Japan)

    2011-10-15

    To clarify the changes in organic anion-transporting polypeptide 8 (OATP8) expression and enhancement ratio on gadoxetic acid-enhanced MR imaging in hepatocellular nodules during multistep hepatocarcinogenesis. In imaging analysis, we focused on 71 surgically resected hepatocellular carcinomas (well, moderately and poorly differentiated HCCs) and 1 dysplastic nodule (DN). We examined the enhancement ratio in the hepatobiliary phase of gadoxetic acid enhanced MR imaging [(1/postcontrast T1 value-1/precontrast T1 value)/(1/precontrast T1 value)], then analysed the correlation among the enhancement ratio, tumour differentiation grade and intensity of immunohistochemical OATP8 expression. In pathological analysis, we focused on surgically resected 190 hepatocellular nodules: low-grade DNs, high-grade DNs, early HCCs, well-differentiated, moderately differentiated and poorly differentiated HCCs, including cases without gadoxetic acid-enhanced MR imaging. We evaluated the correlation between the immunohistochemical OATP8 expression and the tumour differentiation grade. The enhancement ratio of HCCs decreased in accordance with the decline in tumour differentiation (P < 0.0001, R = 0.28) and with the decline of OATP8 expression (P < 0.0001, R = 0.81). The immunohistochemical OATP8 expression decreased from low-grade DNs to poorly differentiated HCCs (P < 0.0001, R = 0.15). The immunohistochemical expression of OATP8 significantly decreases during multistep hepatocarcinogenesis, which may explain the decrease in enhancement ratio on gadoxetic acid-enhanced MR imaging. (orig.)

  18. A folate-rich diet is as effective as folic acid from supplements in decreasing plasma homocysteine concentrations.

    Science.gov (United States)

    Pintó, Xavier; Vilaseca, M Antonia; Balcells, Susana; Artuch, Rafael; Corbella, Emili; Meco, José F; Vila, Ramon; Pujol, Ramon; Grinberg, Daniel

    2005-01-01

    Background & Aims: At least 500 mug of folic acid are required daily to treat hyperhomocysteinemia. To reach this amount by dietary changes alone may be difficult because food has a low folic acid content and bioavailability. No studies have compared the effects of similar amounts of additional folate derived from a combination of folate-rich and fortified foods or folic acid from supplements on plasma total homocysteine (tHcy) concentrations, which was the aim of this study. Methods: Twenty male patients with hyperhomocysteinemia and coronary artery disease were included in a randomized, crossover intervention trial. Patients were treated daily with a combination of foods containing approximately 500 mug of folate or with one 500 mug capsule of synthetic folic acid over two five-week periods separated by a five-week wash-out period. Results: Plasma folate increased markedly (pfoods decreased tHcy by 8.6% (95% CI: -15.9 to -1.2) and synthetic folic acid capsules by 8% (95% CI: -13.3 to -2.7). Conclusions: This study shows, for the first time in the literature, that a folate-rich diet is as effective as folic acid capsules in decreasing plasma tHcy concentrations and adds further support to the recommendation of those diets to prevent cardiovascular disease.

  19. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    Science.gov (United States)

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  20. N-acetylcysteine and meso-2,3 dimercaptosuccinic acid alleviate oxidative stress and hepatic dysfunction induced by sodium arsenite in male rats

    Directory of Open Access Journals (Sweden)

    Abu El-Saad AM

    2016-10-01

    Full Text Available Ahmed M Abu El-Saad,1,4 Mohammed A Al-Kahtani,2 Ashraf M Abdel-Moneim3,4 1Department of Biology, Faculty of Medicine, Dammam University, Dammam, Saudi Arabia; 2Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; 3Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia; 4Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt Abstract: Environmental exposure to arsenic represents a serious challenge to humans and other animals. The aim of the present study was to test the protective effect of antioxidant N-acetylcysteine (NAC either individually or in combination with a chelating agent, meso-2,3-dimercaptosuccinic acid (DMSA, against sodium arsenite oral toxicity in male rats. Five groups were used: control; arsenic group (orally administrated in a concentration of 2 mg/kg body weight [b.w.]; the other three groups were orally administrated sodium arsenite in a concentration of 2 mg/kg b.w. followed by either NAC (10 mg/kg b.w., intraperitoneally [i.p.], DMSA (50 mg/kg b.w., i.p. or NAC plus DMSA. Arsenic toxicity caused significant rise in serum aspartate aminotransferase, alanine aminotransferase and total bilirubin, and a significant decrease in total protein (TP and albumin levels after 3 weeks of experimental period. In addition, arsenic-treated rats showed significantly higher arsenic content in liver and significant rise in hepatic malondialdehyde level. By contrast, sharp decreases in glutathione content and catalase and glutathione reductase activities were discernible. NAC and/or DMSA counteracted most of these physiologic and biochemical defects. NAC monotherapy was more effective than DMSA in increasing TP, while DMSA was more effective in decreasing alanine aminotransferase. The combined treatment was superior over monotherapies in recovery of TP and glutathione. Biochemical data were well supported by histopathological and

  1. N-acetylcysteine and meso-2,3-dimercaptosuccinic acid alleviate oxidative stress and hepatic dysfunction induced by sodium arsenite in male rats

    Science.gov (United States)

    Abu El-Saad, Ahmed M; Al-Kahtani, Mohammed A; Abdel-Moneim, Ashraf M

    2016-01-01

    Environmental exposure to arsenic represents a serious challenge to humans and other animals. The aim of the present study was to test the protective effect of antioxidant N-acetylcysteine (NAC) either individually or in combination with a chelating agent, meso-2,3-dimercaptosuccinic acid (DMSA), against sodium arsenite oral toxicity in male rats. Five groups were used: control; arsenic group (orally administrated in a concentration of 2 mg/kg body weight [b.w.]); the other three groups were orally administrated sodium arsenite in a concentration of 2 mg/kg b.w. followed by either NAC (10 mg/kg b.w., intraperitoneally [i.p.]), DMSA (50 mg/kg b.w., i.p.) or NAC plus DMSA. Arsenic toxicity caused significant rise in serum aspartate aminotransferase, alanine aminotransferase and total bilirubin, and a significant decrease in total protein (TP) and albumin levels after 3 weeks of experimental period. In addition, arsenic-treated rats showed significantly higher arsenic content in liver and significant rise in hepatic malondialdehyde level. By contrast, sharp decreases in glutathione content and catalase and glutathione reductase activities were discernible. NAC and/or DMSA counteracted most of these physiologic and biochemical defects. NAC monotherapy was more effective than DMSA in increasing TP, while DMSA was more effective in decreasing alanine aminotransferase. The combined treatment was superior over monotherapies in recovery of TP and glutathione. Biochemical data were well supported by histopathological and ultrastructural findings. In conclusion, the combination therapy of NAC and DMSA may be an ideal choice against oxidative insult induced by arsenic poisoning.

  2. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health

    Directory of Open Access Journals (Sweden)

    Luigi Fontana

    2016-07-01

    Full Text Available Protein-restricted (PR, high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet.

  3. Can 5-aminosalicylic acid suppository decrease the pain after rectal band ligation?

    Institute of Scientific and Technical Information of China (English)

    Burcak Kayhan; Digdem Ozer; Meral Akdogan; Ersan Ozaslan; Osman Yuksel

    2008-01-01

    AIM: To investigate the effect of 5-aminosalicylic acid (5-ASA) suppositories on rectal band ligation-induced pain.METHODS: Sixty patients were randomized into two treatment groups.RESULTS: Our results showed that there was no difference between 5-ASA suppository group and the control group for pain control.CONCLUSION: 5-ASA may be an alternative treatment for hemorrhoids; however, it does not affect the rectal band ligation-induced pain.

  4. Hyaluronic acid dermal fillers: can adjunctive lidocaine improve patient satisfaction without decreasing efficacy or duration?

    OpenAIRE

    Lynnelle Smith; Kimberly Cockerham

    2011-01-01

    Lynnelle Smith1, Kimberly Cockerham21Ophthalmology Department, Loma Linda University, Loma Linda, CA, USA; 2Ophthalmology Department, Stanford University, Palo Alto, CA, USAAbstract: Hyaluronic acid (HA) dermal fillers are the most widely used injectables to augment facial volume without surgery. HA dermal fillers are popular because of their ease of administration, predictable effectiveness, good safety profile, and quick patient recovery. The most common patient complaint is pain. Our goal ...

  5. Purification of wet process phosphoric acid by decreasing iron and uranium using white silica sand

    Energy Technology Data Exchange (ETDEWEB)

    El-Bayaa, A.A., E-mail: amina.elbayaa@yahoo.com [Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Nasr City, Cairo (Egypt); Badawy, N.A.; Gamal, A.M.; Zidan, I.H.; Mowafy, A.R. [Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Nasr City, Cairo (Egypt)

    2011-06-15

    Natural white silica sand as an adsorbent has been developed to reduce the concentration of iron and uranium ions as inorganic impurities in crude Egyptian phosphoric acid. Several parameters such as adsorbate concentration, adsorbent dose, volume to weight ratio and temperature, were investigated. Equilibrium isotherm studies were used to evaluate the maximum sorption capacity of adsorbent. Thermodynamic parameters showed the exothermic nature of the process and the negative entropy reflects the affinity of the adsorbent material towards each metal ion.

  6. Sodium Phenylbutyrate Decreases Plasma Branched-Chain Amino Acids in Patients with Urea Cycle Disorders

    OpenAIRE

    Burrage, Lindsay C.; Jain, Mahim; Gandolfo, Laura; Lee, Brendan H.; Nagamani, Sandesh CS

    2014-01-01

    Sodium phenylbutyrate (NaPBA) is a commonly used medication for the treatment of patients with urea cycle disorders (UCDs). Previous reports involving small numbers of patients with UCDs have shown that NaPBA treatment can result in lower plasma levels of the branched-chain amino acids (BCAA) but this has not been studied systematically. From a large cohort of patients (n=553) with UCDs enrolled in Longitudinal Study of Urea Cycle Disorders, a collaborative multicenter study of the Urea Cycle...

  7. Dietary non-esterified oleic Acid decreases the jejunal levels of anorectic N-acylethanolamines

    DEFF Research Database (Denmark)

    Diep, Thi Ai; Madsen, Andreas N; Krogh-Hansen, Sandra

    2014-01-01

    are thought to add to the control of food intake via activation of PPARalpha and the vagus nerve. The fat-induced decrease may explain part of the hyperphagic effect of high-fat diets. In the present study, we investigated 1) whether the reduced levels of anorectic NAEs were reversible in rats, 2) whether...

  8. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Chihiro Moriya

    2016-01-01

    Full Text Available We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD or a 60% high-fat diet (HFD with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects.

  9. Long-term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition

    Science.gov (United States)

    Waller, Kristin; Driscoll, Charles; Lynch, Jason; Newcomb, Dani; Roy, Karen

    2012-01-01

    After years of adverse impacts to the acid-sensitive ecosystems of the eastern United States, the Acid Rain Program and Nitrogen Budget Program were developed to control sulfur dioxide (SO 2) and nitrogen oxide (NO x) emissions through market-based cap and trade systems. We used data from the National Atmospheric Deposition Program's National Trends Network (NTN) and the U.S. EPA Temporally Integrated Monitoring of Ecosystems (TIME) program to evaluate the response of lake-watersheds in the Adirondack region of New York to changes in emissions of sulfur dioxide and nitrogen oxides resulting from the Acid Rain Program and the Nitrogen Budget Program. TIME is a long-term monitoring program designed to sample statistically selected subpopulations of lakes and streams across the eastern U.S. to quantify regional trends in surface water chemistry due to changes in atmospheric deposition. Decreases in wet sulfate deposition for the TIME lake-watersheds from 1991 to 2007 (-1.04 meq m -2-yr) generally corresponded with decreases in estimated lake sulfate flux (-1.46 ± 0.72 meq m -2-yr), suggesting declines in lake sulfate were largely driven by decreases in atmospheric deposition. Decreases in lake sulfate and to a lesser extent nitrate have generally coincided with increases in acid neutralizing capacity (ANC) resulting in shifts in lakes among ANC sensitivity classes. The percentage of acidic Adirondack lakes (ANC Budget Program. Two measures of ANC were considered in our analysis: ANC determined directly by Gran plot analysis (ANC G) and ANC calculated by major ion chemistry (ANC calc = CB - CA). While these two metrics should theoretically show similar responses, ANC calc (+2.03 μeq L -1-yr) increased at more than twice the rate as ANC G (+0.76 μeq L -1-yr). This discrepancy has important implications for assessments of lake recovery and appears to be due to compensatory increases in concentrations of naturally occurring organic acids coincident with decreases in

  10. Decreased vitamin B 12 and folic acid concentrations in acne patients after isotretinoin therapy: A controlled study

    Directory of Open Access Journals (Sweden)

    Hilal Gökalp

    2014-01-01

    Full Text Available Background: Oral isotretinoin treatment might influence the levels of vitamin B 12 and folic acid. Aims and Objectives: The aim of this study is to compare vitamin B 12 and folic acid levels in patients with moderate and severe acne vulgaris with those of the healthy control group and to investigate the effect of isotretinoin treatment on these vitamins. Materials and Methods: Patients who completed 6 months of isotretinoin therapy for moderate and severe forms of acne vulgaris and a control group consisting of healthy individuals between February 2011 and March 2012 were included in the study. Before isotretinoin therapy and at 6.- months of the therapy, serum vitamin B 12 and folic acid levels were measured. In the healthy control group, vitamin B 12 and folic acid levels were assessed only once. Results: In total, 120 patients with moderate and severe acne vulgaris who completed 6 months isotretinoin therapy and 100 healthy individuals who constituted the control group were included in the study. Pre-treatment vitamin B 12 values of the patient group were found to be statistically significantly higher (P = 0.002, but any statistically significant difference was not detected in folic acid measurements (P = 0.566. A statistically significant decrease was detected in post-treatment vitamin B 12 and folic acid levels (P < 0.05. Conclusion: Vitamin B 12 /folic acid treatment should be given under medical surveillance before and during isotretinoin therapy. Supplementation of these vitamins should be recommended in cases of their deficiency, so as to decrease the risks of neuropsychiatric and occlusive vascular diseases.

  11. Flufenamic acid decreases neuronal excitability through modulation of voltage-gated sodium channel gating.

    Science.gov (United States)

    Yau, Hau-Jie; Baranauskas, Gytis; Martina, Marco

    2010-10-15

    The electrophysiological phenotype of individual neurons critically depends on the biophysical properties of the voltage-gated channels they express. Differences in sodium channel gating are instrumental in determining the different firing phenotypes of pyramidal cells and interneurons; moreover, sodium channel modulation represents an important mechanism of action for many widely used CNS drugs. Flufenamic acid (FFA) is a non-steroidal anti-inflammatory drug that has been long used as a blocker of calcium-dependent cationic conductances. Here we show that FFA inhibits voltage-gated sodium currents in hippocampal pyramidal neurons; this effect is dose-dependent with IC(50) = 189 μm. We used whole-cell and nucleated patch recordings to investigate the mechanisms of FFA modulation of TTX-sensitive voltage-gated sodium current. Our data show that flufenamic acid slows down the inactivation process of the sodium current, while shifting the inactivation curve ~10 mV toward more hyperpolarized potentials. The recovery from inactivation is also affected in a voltage-dependent way, resulting in slower recovery at hyperpolarized potentials. Recordings from acute slices demonstrate that FFA reduces repetitive- and abolishes burst-firing in CA1 pyramidal neurons. A computational model based on our data was employed to better understand the mechanisms of FFA action. Simulation data support the idea that FFA acts via a novel mechanism by reducing the voltage dependence of the sodium channel fast inactivation rates. These effects of FFA suggest that it may be an effective anti-epileptic drug.

  12. Comparison of Intravenous Ranitidine with Pantoprazole in Decreasing Gastric Fluid Acidity in Emergency Cesarean Section

    Directory of Open Access Journals (Sweden)

    Alipour M

    2013-10-01

    Full Text Available Objectives: Peri-operative aspiration of gastric contents is a problem that causes certain respiratory problems including ARDS. Prophylaxis against aspiration of gastric contents is performed routinely in elective surgeries, but there is rare evidence on the efficacy of this method in emergency cesarean section. Materials and Methods: This is a randomized, controlled, double-blinded clinical trial. 60 parturients undergoing emergency cesarean section were randomly assigned into three groups of 20 each. They were allocated into two study and one placebo groups. The study group one and two received intravenous ranitidine (IV 50 mg or IV pantoprazole 40 mg, half an hour before induction of GA, respectively. The placebo group was administered just 5 ml of isotonic saline half an hour before GA induction. After intubation and confirmation of endotracheal tube insertion, the gastric contents were aspirated through a nasogastric tube for evaluation of acidity and volume. Results: A statistical difference between group one and two with the control group was observed in the acidity of gastric contents, but there was no difference in volume. Also, the PH level of gastric contents in patients receiving pantoprazole was significantly higher than the isotonic saline (p

  13. Effects of Ursolic Acid Derivatives on Caco-2 Cells and Their Alleviating Role in Streptozocin-Induced Type 2 Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Panpan Wu

    2014-08-01

    Full Text Available In this study, the effect and mechanism of a series of ursolic acid (UA derivatives on glucose uptake were investigated in a Caco-2 cells model. Their effect on hyperglycemia, hyperlipidemia and oxidative stress were also demonstrated in streptozocin (STZ-induced diabetic rats. 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-ylamino]-2-deoxy-glucose (2-NBDG was used as a fluorescein in Caco-2 cells model to screen UA derivatives by glucose uptake and expression of glucose transporter protein (SGLT-1, GLUT-2. Moreover, STZ-induced diabetic rats were administered with these derivatives for 4 weeks of treatment. The fasting blood glucose (FBG, insulin levels, biochemical parameters, lipid levels, and oxidative stress markers were finally evaluated. The results of this study indicated that compounds 10 and 11 significantly inhibited 2-NBDG uptake under both Na+-dependent and Na+-independent conditions by decreasing SGLT-1 and GLUT-2 expression in the Caco-2 cells model. Further in vivo studies revealed that compound 10 significantly reduced hyperglycemia by increasing levels of serum insulin, total protein, and albumin, while the fasting blood glucose, body weight and food intake were restored much closer to those of normal rats. Compounds 10 and 11 showed hypolipidemic activity by decreasing the total amounts of cholesterol (TC and triglycerides (TG. Furthermore, compound 10 showed antioxidant potential which was confirmed by elevation of glutathione (GSH and superoxide dismutase (SOD and reduction of malondialdehyde (MDA levels in the liver and kidney of diabetic rats. It was concluded that compound 10 caused an apparent inhibition of intestinal glucose uptake in Caco-2 cells and hypoglycemia, hypolipidemia and augmented oxidative stress in STZ-induced diabetic rats. Thus, compound 10 could be developed as a potentially complementary therapeutic or prophylactic agent for diabetics mellitus and its complications.

  14. Decreases in Phospholipids Containing Adrenic and Arachidonic Acids Occur in the Human Hippocampus over the Adult Lifespan.

    Science.gov (United States)

    Hancock, Sarah E; Friedrich, Michael G; Mitchell, Todd W; Truscott, Roger J W; Else, Paul L

    2015-09-01

    One of the biggest risk factors for developing Alzheimer's disease is advanced age. Despite several studies examining changes to phospholipids in the hippocampus during the pathogenesis of Alzheimer's disease, little is known regarding changes to phospholipids in this region during normal adult aging. This study examined the phospholipid composition of the mitochondrial and microsomal membranes of the human hippocampus from post-mortem tissue of neurologically normal subjects aged between 18 and 104 years. Many of the age-related changes found were in low-to-moderately abundant phospholipids in both membrane fractions, with decreases with age being seen in many phospholipids containing either adrenic or arachidonic acid. The most abundant phospholipid of this type was phosphatidylethanolamine 18:0_22:4, which decreased in both the mitochondrial and microsomal membranes by approximately 20% from ages 20 to 100. Subsequent decreases with age were seen in total adrenic and arachidonic acid in the phospholipids of both membrane fractions, but not in either fatty acid specifically within the phosphatidylethanolamine class. Increases with age were seen in the hippocampus for mitochondrial phosphatidylserine 18:0_22:6. This is the first report of changes to molecular phospholipids of the human hippocampus over the adult lifespan, with this study also providing a comprehensive profile of the phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine phospholipids of the human hippocampus.

  15. Decreasing transcription elongation rate in Escherichia coli exposed to amino acid starvation

    DEFF Research Database (Denmark)

    Vogel, U.; Sørensen, M.A.; Pedersen, Steen;

    1992-01-01

    The time required for transcription of the lacZ gene in Escherichia coli was determined during exponential growth and under conditions, when the bacterium was exposed to partial isoleucine starvation. To do this, RNA was extracted from the cells at 10 s intervals following induction and quantified...... length of the transcribed sequence were used to calculate the lacZ mRNA chain growth-rate. The transcription elongation rate was c. 43 nucleotides s-1 during exponential growth and decreased abruptly to c. 20 nucleotides s-1 in a relA+ strain after the onset of isoleucine starvation, when massive...... concentrations of guanosine tetraphosphate (ppGpp) accumulated in the cells. The starvation condition did not affect initiation of transcription at the lec-promoter, but a substantial fraction of the initiated lacZ mRNA chains was never completed. For the rel+ strain the polarity was moderate, since c. 25...

  16. Maternal high fat diet is associated with decreased plasma n-3 fatty acids and fetal hepatic apoptosis in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Wilmon F Grant

    Full Text Available To begin to understand the contributions of maternal obesity and over-nutrition to human development and the early origins of obesity, we utilized a non-human primate model to investigate the effects of maternal high-fat feeding and obesity on breast milk, maternal and fetal plasma fatty acid composition and fetal hepatic development. While the high-fat diet (HFD contained equivalent levels of n-3 fatty acids (FA's and higher levels of n-6 FA's than the control diet (CTR, we found significant decreases in docosahexaenoic acid (DHA and total n-3 FA's in HFD maternal and fetal plasma. Furthermore, the HFD fetal plasma n-6:n-3 ratio was elevated and was significantly correlated to the maternal plasma n-6:n-3 ratio and maternal hyperinsulinemia. Hepatic apoptosis was also increased in the HFD fetal liver. Switching HFD females to a CTR diet during a subsequent pregnancy normalized fetal DHA, n-3 FA's and fetal hepatic apoptosis to CTR levels. Breast milk from HFD dams contained lower levels of eicosopentanoic acid (EPA and DHA and lower levels of total protein than CTR breast milk. This study links chronic maternal consumption of a HFD with fetal hepatic apoptosis and suggests that a potentially pathological maternal fatty acid milieu is replicated in the developing fetal circulation in the nonhuman primate.

  17. Deletion of fabN in Enterococcus faecalis results in unsaturated fatty acid auxotrophy and decreased release of inflammatory cytokines.

    Science.gov (United States)

    Diederich, Ann-Kristin; Duda, Katarzyna A; Romero-Saavedra, Felipe; Engel, Regina; Holst, Otto; Huebner, Johannes

    2016-05-01

    The Gram-positive bacterium Enterococcus faecalis can cause life-threatening infections and is resistant to several commonly used antibiotics. The type II fatty acid pathway in bacteria is discussed as a potential target for antimicrobial therapy. However, it was shown that inhibition or deletion of its enzymes can be rescued in Gram-positive bacteria by supplementation with fatty acids. Here we show that by deletion of the fabN gene, which is essential for unsaturated fatty acid (UFA) synthesis in E. faecalis, growth is impaired but can be rescued by supplementation with oleic acid or human serum. Nonetheless, we demonstrate alterations of the UFA profile after supplementation with oleic acid in the ΔfabN mutant using a specific glycolipid. In addition, we demonstrate that cytokine release in vitro is almost abolished after stimulation of mouse macrophages by the mutant in comparison to the wild type. The results indicate that fabN is not a suitable target for antimicrobials as UFA auxotrophy can be overcome. However, deletion of fabN resulted in a decreased inflammatory response indicating that fabN and resulting UFA synthesis are relevant for virulence.

  18. NETUPITANT, A POTENT AND HIGHLY SELECTIVE NK1 RECEPTOR ANTAGONIST, ALLEVIATES ACETIC ACID-INDUCED BLADDER OVERACTIVITY IN ANESTHETIZED GUINEA-PIGS

    Directory of Open Access Journals (Sweden)

    Stefano Palea

    2016-08-01

    Full Text Available Introduction. Tachykinins potently contract the isolated urinary bladder from a number of animal species and play an important role in the regulation of the micturition reflex. On the guinea-pig isolated urinary bladder we examined the effects of a new potent and selective NK1 receptor antagonist (netupitant on the contractions induced by a selective NK1 receptor agonist, SP-methylester (SP-OMe. Moreover, the effects of netupitant and another selective NK1 antagonist (L-733,060 were studied in anesthetized guinea-pigs using two experimental models, the isovolumetric bladder contractions and a model of bladder overactivity induced by intravesical administration of acetic acid (AA. Methods and Results. Detrusor muscle strips were mounted in 5 mL organ baths and isometric contractions to cumulative concentrations of SP-OME were recorded before and after incubation with increasing concentrations of netupitant. In anesthetized female guinea-pigs, reflex bladder activity was examined under isovolumetric conditions with the bladder distended with saline or during cystometry using intravesical infusion of acetic acid (AA. After a 30 min stabilization period, netupitant (0.1-3 mg/kg, i.v. or L-733,060 (3-10 mg/kg, i.v. were administered. In the detrusor muscle, netupitant produced a concentration-dependent inhibition (mean pKB = 9.24 of the responses to SP-OMe. Under isovolumetric conditions, netupitant or L-733,060 reduced bladder contraction frequency in a dose-dependent manner, but neither drug changed bladder contraction amplitude. In the AA model, netupitant dose-dependently increased intercontraction interval (ICI but had no effect on the amplitude of micturition (AM. L-733,060 dose-dependently increased ICI also but this effect was paralleled by a significant reduction of AM. Conclusion. Netupitant decreases the frequency of reflex bladder contractions without altering their amplitude, suggesting that this drug targets the afferent limb of the

  19. Determining and surveying the role of carnitine and folic acid to decrease fatigue in β-thalassemia minor subjects.

    Science.gov (United States)

    Tabei, Seyed Mohammad Bagher; Mazloom, Maryam; Shahriari, Mahdi; Zareifar, Soheila; Azimi, Ali; Hadaegh, Amirhossein; Karimi, Mehran

    2013-11-01

    Beta-thalassemia minor (BTM) patients usually experience fatigue, bone pain complaint, and muscle weakness. Carnitine is an essential protein for transportation of long-chain fatty acids to the matrix for beta-oxidation. BTM patients have abnormally low plasma carnitine concentrations, which results in deficient ATP production. Carnitine and folic acid together may have a role in preventing bone pain complaint and fatigue in these patients. The aim of this study is to determine the effect of carnitine and folic acid supplementation in subjects with BTM. Seventy three BTM (mean age 11.06 ± 5.46 years) and 23 healthy controls (mean age 8.48 ± 3.78 years) were enrolled in the study. Fasting blood was drawn to determine baseline free and total carnitine levels, red blood cell folate concentration, and hemoglobin level. BTM were divided into three groups and received different types of supplementation for 3 months: Group 1, 50 mg/kg/day carnitine; Group 2, 50 mg/kg/day carnitine plus 1 mg/day folic acid; and Group 3, 1 mg/day folic acid. Controls did not receive supplementation. Laboratory parameters were again evaluated after 3 months' supplementation. A detailed quality of life questionnaire was designed to investigate muscle symptoms before and after supplementation. Free and total plasma carnitine concentration and hemoglobin levels in BTM subjects increased significantly after carnitine supplementation (P carnitine. Red blood cell folate level increased after folic acid supplementation. Carnitine and folic acid supplementation resulted in a decrease in bone pain complaint and muscle weakness in cases with β-thalassemia minor.

  20. Exogenous salicylic acid on alleviating salt stress in alfalfa seedlings%外源水杨酸对苜蓿幼苗盐胁迫的缓解效应

    Institute of Scientific and Technical Information of China (English)

    周万海; 师尚礼; 寇江涛

    2012-01-01

    In order to make clear the physiological and biochemical mechanisms of exogenous salicylic acid (SA) on salt resistant capability of alfalfa, Medicago sativa cv. Gannong No. 3 was used as material to study the effect of exogenous SA on alfalfa seedling growth, organic osmotic regulation substance contents and anti-oxidization system on condition of 150 mmol/L NaCl stress using foliar application. The result indicated that 150 mmol/L NaCl salt stress had conspicuous inhibitory effect on alfalfa seedling growth, while significant increase in shoot heigth, root length, fresh weight and plant chlorophyll content were found when 0. 25 mmol/L exogenous SA had been applicated, together with significant decrease in free proline and malondialdehyde (MDA) contents in leaves and rootsand increase in soluble protein; superoxide dismutase (SOD), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) activities in leaves were found significantly increased, and no change was found in catalase (CAT), ascorbic acid (AsA) and reduced ghrtathione (GSH); for the root, GPX activity, AsA and GSH contents were found increased, and no change was found in SOD, CAT and APX activities, indicating that exogenous SA could regulate organic osmotic regulation substances and protect the anti-oxidization system in alfalfa seedling, and alleviate the injure of salt stress on alfalfa plants.%为明确外源水杨酸提高苜蓿抗盐的生理生化机制,以“甘农3号”苜蓿品种为材料,在150 mmol/L NaCI胁迫条件下,采用叶面喷施方法,研究外源水杨酸(salicylic acid,SA)对苜蓿幼苗生长、有机渗透调节物质含量及抗氧化系统的影响.结果表明,盐胁迫显著抑制了苜蓿幼苗生长,盐胁迫下添加0.25 mmol/L外源SA后,苜蓿幼苗的株高、根长、鲜重,植株叶绿素含量显著升高,叶片和根系中游离脯氨酸、丙二醛(MDA)含量显著降低.可溶性蛋白含量显著增加;叶片中超氧化物歧化酶(SOD

  1. Chlorogenic acid decreases intestinal permeability and increases expression of intestinal tight junction proteins in weaned rats challenged with LPS.

    Directory of Open Access Journals (Sweden)

    Zheng Ruan

    Full Text Available Chlorogenic acid, a natural phenolic acid present in fruits and plants, provides beneficial effects for human health. The objectives of this study were to investigate whether chlorogenic acid (CHA could improve the intestinal barrier integrity for weaned rats with lipopolysaccharide (LPS challenge. Thirty-two weaned male Sprague Dawley rats (21 ± 1 d of age; 62.26 ± 2.73 g were selected and randomly allotted to four treatments, including weaned rat control, LPS-challenged and chlorogenic acid (CHA supplemented group (orally 20 mg/kg and 50 mg/kg body. Dietary supplementation with CHA decreased (P<0.05 the concentrations of urea and albumin in the serum, compared to the LPS-challenged group. The levels of IFN-γ and TNF-α were lower (P<0.05 in the jejunal and colon of weaned rats receiving CHA supplementation, in comparison with the control group. CHA supplementation increased (P<0.05 villus height and the ratio of villus height to crypt depth in the jejunal and ileal mucosae under condictions of LPS challenge. CHA supplementation decreased (P<0.05 intestinal permeability, which was indicated by the ratio of lactulose to mannitol and serum DAO activity, when compared to weaned rats with LPS challenge. Immunohistochemical analysis of tight junction proteins revealed that ZO-1 and occludin protein abundances in the jejunum and colon were increased (P<0.05 by CHA supplementation. Additionally, results of immunoblot analysis revealed that the amount of occludin in the colon was also increased (P<0.05 in CHA-supplemented rats. In conclusion, CHA decreases intestinal permeability and increases intestinal expression of tight junction proteins in weaned rats challenged with LPS.

  2. Oral folic acid supplementation decreases palate and/or lip cleft occurrence in Pug and Chihuahua puppies and elevates folic acid blood levels in pregnant bitches.

    Science.gov (United States)

    Domosławska, A; Jurczak, A; Janowski, T

    2013-01-01

    The aim of this study was to compare the frequency of the occurrence of lip and/or palate cleft (CL/CP) in new-borns of two breeds, Pugs and Chihuahuas, and to measure the folic acid blood levels in bitches during gestations both with and without folic acid oral supplementation. Bitches of 13 Pugs and 17 Chihuahuas with CL/CP cases were used in the study. In trial 1, the animals of the experimental group (n=25) were given additional folic acid from the onset of heat till the 40th day of gestation. The females of the control group (n=12) were fed a traditional diet. From all the animals blood was collected at the onset of heat, 14 days later and on the 30th day of the gestation to estimate folic acid concentration. In trial 2, the prevalence of CP/CL cases in litters from pregnancies before and after supplementation was compared. The percentage of puppies with CL/CP after supplementation decreased in both Pugs and Chihuahua puppies (10.86% and 15.78% vs. 4.76% and 4.8% respectively). On Day 0, the concentrations of folic acid were at a low physiological level (around 8 ng/ml) in all the animals. In bitches of the experimental group the blood level of folic acid on day 14th and 30th of the treatment showed an increase in both breeds (13.65 +/- 4.27 ng/ml in Pugs, 10.79 +/- 2.84 ng/ml in Chihuahuas, and 14.94 +/- 3.22 ng/ml in Pugs, 12.95 +/- 3.58 in Chihuahuas, respectively) while in the control group, this level decreased with time of gestation both in Pugs and in Chihuahuas (around 6 ng/ml). Folic acid supplementation seems to be a simple, effective preventive method to reduce the risk of CL/CP, especially in the predisposed breeds.

  3. Decreased body weight and hepatic steatosis with altered fatty acid ethanolamide metabolism in aged L-Fabp -/- mice.

    Science.gov (United States)

    Newberry, Elizabeth P; Kennedy, Susan M; Xie, Yan; Luo, Jianyang; Crooke, Rosanne M; Graham, Mark J; Fu, Jin; Piomelli, Daniele; Davidson, Nicholas O

    2012-04-01

    The tissue-specific sources and regulated production of physiological signals that modulate food intake are incompletely understood. Previous work showed that L-Fabp(-/-) mice are protected against obesity and hepatic steatosis induced by a high-fat diet, findings at odds with an apparent obesity phenotype in a distinct line of aged L-Fabp(-/-) mice. Here we show that the lean phenotype in L-Fabp(-/-) mice is recapitulated in aged, chow-fed mice and correlates with alterations in hepatic, but not intestinal, fatty acid amide metabolism. L-Fabp(-/-) mice exhibited short-term changes in feeding behavior with decreased food intake, which was associated with reduced abundance of key signaling fatty acid ethanolamides, including oleoylethanolamide (OEA, an agonist of PPARα) and anandamide (AEA, an agonist of cannabinoid receptors), in the liver. These reductions were associated with increased expression and activity of hepatic fatty acid amide hydrolase-1, the enzyme that degrades both OEA and AEA. Moreover, L-Fabp(-/-) mice demonstrated attenuated responses to OEA administration, which was completely reversed with an enhanced response after administration of a nonhydrolyzable OEA analog. These findings demonstrate a role for L-Fabp in attenuating obesity and hepatic steatosis, and they suggest that hepatic fatty acid amide metabolism is altered in L-Fabp(-/-) mice.

  4. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    Science.gov (United States)

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity.

  5. Weight loss and weight maintenance obtained with or without GLP-1 analogue treatment decrease branched chain amino acid levels

    DEFF Research Database (Denmark)

    Engelbrechtsen, Line; Iepsen, Eva Pers Winning; Galijatovic, Ehm Astrid Andersson

    2016-01-01

    Introduction Increased levels of circulating branched chain amino acids (BCAAs), as well as phenylalanine, and tyrosine have been suggested to be involved in the pathogenesis of insulin resistance and type 2 diabetes. However, it is unknown how these metabolites are affected by weight loss...... spectroscopy was used for quantification of metabolites. Results The weight loss was maintained in both groups and was associated with 9–20 % decreases in plasma concentrations of alanine, phenylalanine, histidine, tyrosine and the BCAAs leucine, isoleucine and valine (p ... is associated with marked changes in plasma concentrations of eight amino acids and glycolysis-related metabolites. Levels of the suggested type 2 diabetes risk markers (BCAAs) remain low during long-term weight maintenance....

  6. Activation of Constitutive Androstane Receptor (CAR) in Mice Results in Maintained Biliary Excretion of Bile Acids Despite a Marked Decrease of Bile Acids in Liver.

    Science.gov (United States)

    Lickteig, Andrew J; Csanaky, Iván L; Pratt-Hyatt, Matthew; Klaassen, Curtis D

    2016-06-01

    Activation of Constitutive Androstane Receptor (CAR) protects against bile acid (BA)-induced liver injury. This study was performed to determine the effect of CAR activation on bile flow, BA profile, as well as expression of BA synthesis and transport genes. Synthetic CAR ligand 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) was administered to mice for 4 days. BAs were quantified by UPLC-MS/MS (ultraperformance liquid chromatography-tandem mass spectrometry). CAR activation decreases total BAs in livers of male (49%) and female mice (26%), largely attributable to decreases of the 12α-hydroxylated BA taurocholic acid (T-CA) (males (M) 65%, females (F) 45%). Bile flow in both sexes was increased by CAR activation, and the increases were BA-independent. CAR activation did not alter biliary excretion of total BAs, but overall BA composition changed. Excretion of muricholic (6-hydroxylated) BAs was increased in males (101%), and the 12α-OH proportion of biliary BAs was decreased in both males (37%) and females (28%). The decrease of T-CA in livers of males and females correlates with the decreased mRNA of the sterol 12α-hydroxylase Cyp8b1 in males (71%) and females (54%). As a response to restore BAs to physiologic concentrations in liver, mRNA of Cyp7a1 is upregulated following TCPOBOP (males 185%, females 132%). In ilea, mRNA of the negative feedback regulator Fgf15 was unaltered by CAR activation, indicating biliary BA excretion was sufficient to maintain concentrations of total BAs in the small intestine. In summary, the effects of CAR activation on BAs in male and female mice are quite similar, with a marked decrease in the major BA T-CA in the liver.

  7. 外源ABA缓解黄瓜幼苗中低温诱导的氧化损伤%Exogenous abscisic acid alleviates low temperature-induced oxidative damage in seedlings of Cucumis sativus.L

    Institute of Scientific and Technical Information of China (English)

    张颖; 蒋卫杰; 余宏军; 杨学勇

    2012-01-01

    electrolyte leakage was increased under chilling stress,whereas the TWC and chlorophyll content was decreased.The activities of peroxidase (POD) and superoxide dismutase (SOD) were increased,whereas the catalase (CAT) activity was decreased under chilling stress.Pretreatment with ABA alleviated the changes of physiological features in cucumber seedlings upon chilling stress.The CAT gene transcriptional level was down-regulated and the SOD gene transcriptional level was up-regulated under chilling stress.Pretreatment with ABA also mitigated the changes of gene expression.It demonstrated that ABA may play a role in alleviating the harm of chilling stress by balancing the production and scavenging of reactive oxygen species (ROS) in cucumber seedlings.The results will provide a reference for the application of ABA to enhance the resistance of cucumber to low-temperature stress.

  8. Dietary conjugated linoleic acids increase intramuscular fat deposition and decrease subcutaneous fat deposition in Yellow Breed × Simmental cattle.

    Science.gov (United States)

    Zhang, Haibo; Dong, Xianwen; Wang, Zhisheng; Zhou, Aiming; Peng, Quanhui; Zou, Huawei; Xue, Bai; Wang, Lizhi

    2016-04-01

    This study was conducted to estimate the effect of dietary conjugated linoleic acids (CLA) on intramuscular and subcutaneous fat deposition in Yellow Breed × Simmental cattle. The experiment was conducted for 60 days. The results showed that the average backfat thickness, (testicles + kidney + pelvic) fat percentage and subcutaneous fat percentage in dietary CLA were significantly lower than in the control group, while intramuscular the fat percentage was significantly higher. Compared to the control group, the Longissimus muscle enzyme activities of lipoprotein lipase (LPL), fatty acid synthase (FAS) and acetyl-coenzyme A carboxylase (ACC) in dietary CLA and the subcutaneous fat enzyme activities of LPL, hormone-sensitive lipase (HSL) and carnitine palmitoyltransferase-1 (CPT-1) were significantly increased. Similarly, compared to the control group, the Longissimus muscle sterol regulatory element binding protein 1 (SREBP-1), FAS, stearoyl-coenzyme A desaturase (SCD), ACC, peroxisome proliferator-activated receptor γ (PPARγ), heart fatty-acid binding protein (H-FABP) and LPL gene expression in dietary CLA were significant increased, as were the subcutaneous fat of PPARγ, H-FABP, LPL, CPT-1 and HSL in dietary CLA. These results indicated that dietary CLA increases IMF deposition mainly by the up-regulation of lipogenic gene expression, while decreasing subcutaneous fat deposition mainly by the up-regulation of lipolytic gene expression.

  9. Docosahexaenoic acid decreases pro-inflammatory mediators in an in vitro murine adipocyte macrophage co-culture model.

    Directory of Open Access Journals (Sweden)

    Anna A De Boer

    Full Text Available Paracrine interactions between adipocytes and macrophages contribute to chronic inflammation in obese adipose tissue. Dietary strategies to mitigate such inflammation include long-chain polyunsaturated fatty acids, docosahexaenoic (DHA and eicosapentaenoic (EPA acids, which act through PPARγ-dependent and independent pathways. We utilized an in vitro co-culture model designed to mimic the ratio of macrophages:adipocytes in obese adipose tissue, whereby murine 3T3-L1 adipocytes were cultured with RAW 264.7 macrophages in direct contact, or separated by a trans-well membrane (contact-independent mechanism, with 125 µM of albumin-complexed DHA, EPA, palmitic acid (PA, or albumin alone (control. Thus, we studied the effect of physical cell contact versus the presence of soluble factors, with or without a PPARγ antagonist (T0070907 in order to elucidate putative mechanisms. After 12 hr, DHA was the most anti-inflammatory, decreasing MCP1 and IL-6 secretion in the contact system (-57%, -63%, respectively, p ≤ 0.05 with similar effects in the trans-well system. The trans-well system allowed for isolation of cell types for inflammatory mediator analysis. DHA decreased mRNA expression (p<0.05 of Mcp1 (-7.1 fold and increased expression of the negative regulator, Mcp1-IP (+1.5 fold. In macrophages, DHA decreased mRNA expression of pro-inflammatory M1 polarization markers (p ≤ 0.05, Nos2 (iNOS; -7 fold, Tnfα (-4.2 fold and Nfκb (-2.3 fold, while increasing anti-inflammatory Tgfβ1 (+1.7 fold. Interestingly, the PPARγ antagonist co-administered with DHA or EPA in co-culture reduced (p ≤ 0.05 adiponectin cellular protein, without modulating other cytokines (protein or mRNA. Overall, our findings suggest that DHA may lessen the degree of MCP1 and IL-6 secreted from adipocytes, and may reduce the degree of M1 polarization of macrophages recruited to adipose tissue, thereby decreasing the intensity of pro-inflammatory cross-talk between adipocytes

  10. Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats.

    Science.gov (United States)

    Shetty, A K; Turner, D A

    1998-05-04

    Aging leads to alterations in the function and plasticity of hippocampal circuitry in addition to behavioral changes. To identify critical alterations in the substrate for inhibitory circuitry as a function of aging, we evaluated the numbers of hippocampal interneurons that were positive for glutamic acid decarboxylase and those that expressed calcium-binding proteins (parvalbumin, calbindin, and calretinin) in young adult (4-5 months old) and aged (23-25 months old) male Fischer 344 rats. Both the overall interneuron population and specific subpopulations of interneurons demonstrated a commensurate decline in numbers throughout the hippocampus with aging. Interneurons positive for glutamic acid decarboxylase were significantly depleted in the stratum radiatum of CA1, the strata oriens, radiatum and pyramidale of CA3, the dentate molecular layer, and the dentate hilus. Parvalbumin interneurons showed significant reductions in the strata oriens and pyramidale of CA1, the stratum pyramidale of CA3, and the dentate hilus. The reductions in calbindin interneurons were more pronounced than other calcium-binding protein-positive interneurons and were highly significant in the strata oriens and radiatum of both CA1 and CA3 subfields and in the dentate hilus. Calretinin interneurons were decreased significantly in the strata oriens and radiatum of CA3, in the dentate granule cell and molecular layers, and in the dentate hilus. However, the relative ratio of parvalbumin-, calbindin-, and calretinin-positive interneurons compared with glutamic acid decarboxylase-positive interneurons remained constant with aging, suggesting actual loss of interneurons expressing calcium-binding proteins with age. This loss contrasts with the reported preservation of pyramidal neurons with aging in the hippocampus. Functional decreases in inhibitory drive throughout the hippocampus may occur due to this loss, particularly alterations in the processing of feed-forward information through the

  11. Asiatic Acid Alleviates Hemodynamic and Metabolic Alterations via Restoring eNOS/iNOS Expression, Oxidative Stress, and Inflammation in Diet-Induced Metabolic Syndrome Rats

    Directory of Open Access Journals (Sweden)

    Poungrat Pakdeechote

    2014-01-01

    Full Text Available Asiatic acid is a triterpenoid isolated from Centella asiatica. The present study aimed to investigate whether asiatic acid could lessen the metabolic, cardiovascular complications in rats with metabolic syndrome (MS induced by a high-carbohydrate, high-fat (HCHF diet. Male Sprague-Dawley rats were fed with HCHF diet with 15% fructose in drinking water for 12 weeks to induce MS. MS rats were treated with asiatic acid (10 or 20 mg/kg/day or vehicle for a further three weeks. MS rats had an impairment of oral glucose tolerance, increases in fasting blood glucose, serum insulin, total cholesterol, triglycerides, mean arterial blood pressure, heart rate, and hindlimb vascular resistance; these were related to the augmentation of vascular superoxide anion production, plasma malondialdehyde and tumor necrosis factor-alpha (TNF-α levels (p < 0.05. Plasma nitrate and nitrite (NOx were markedly high with upregulation of inducible nitric oxide synthase (iNOS expression, but dowregulation of endothelial nitric oxide synthase (eNOS expression (p < 0.05. Asiatic acid significantly improved insulin sensitivity, lipid profiles, hemodynamic parameters, oxidative stress markers, plasma TNF-α, NOx, and recovered abnormality of eNOS/iNOS expressions in MS rats (p < 0.05. In conclusion, asiatic acid improved metabolic, hemodynamic abnormalities in MS rats that could be associated with its antioxidant, anti-inflammatory effects and recovering regulation of eNOS/iNOS expression.

  12. 碳化玉米芯缓解邻苯二甲酸对番茄幼苗生长和酶活性的抑制作用%Studies on Alleviation Effect of Carbonized Maize Cob to Phthalic Acid on Restraining Growth and Enzyme Activity of Tomato Seedlings

    Institute of Scientific and Technical Information of China (English)

    李亮亮; 李天来; 张恩平; 陈彬; 刘文娥; 吴正超

    2011-01-01

    以邻苯二甲酸作为番茄的连作障碍自毒物质,珍珠岩为基质进行盆栽试验,并就生物量、光合作用和保护酶活性等指标的变化研究不同浓度邻苯二甲酸对番茄幼苗生长抑制作用以及加入碳化玉米芯缓解邻苯二甲酸对番茄幼苗生长抑制作用的效果.结果表明:施用邻苯二甲酸对幼苗的光合作用指标、生物量及叶绿素b的含量具有显著的抑制作用.保护酶活性在处理初期提高,随着处理时间的延长,超氧化物歧化酶( SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性先上升后下降,同时使幼苗体内MDA含量显著增加.加入碳化玉米芯显著提高了幼苗的生物量、光合作用指标及叶绿素b的含量,有效缓解了对保护酶活性的抑制作用,降低了保护酶活性变化的幅度及幼苗体内MDA含量.%We examined the effects of phthalic acid on the growth of tomato ( Lycopersicon esculentum Mill.) seedlings, and its alleviation of applied carbonized maize cob was shown. The tomato seedlings were transplanted in the hydroponic system with perlite as substrate, and the biomass, photosynthesis and antioxidant enzymes activity were investigated. The results showed that phthalic acid could inhibit the biomass, photosynthesis and chlorophyll b contents of tomato seedlings. With the extension of treatment time, the activities of SOD, POD and CAT were increased at the initial stage, then decreased and the MDA content was increased by the treatment of phthalic acid. But the inhabitations were alleviated by applied carbonized maize cob. The biomass, photosynthesis index and chlorophyll b content were increased. The fluctuations of antioxidant enzymes were slight and MDA content was decreased.

  13. La3+缓解碱性盐胁迫引起的西瓜幼苗光合能力下降的作用%Effect of La3+ on Alleviation of Decreased Photosynthetic Ability in Alkaline-Stressed Watermelon Seedling

    Institute of Scientific and Technical Information of China (English)

    李进成; 朱世东; 郝晓杰; 单国雷; 阮淑洁

    2012-01-01

    研究了在NaHCO3和NaCO3共同胁迫下,不同浓度的硝酸镧溶液预处理对西瓜苗叶片光合能力的影响,结果表明,叶面喷施0.1 mmol·L-1硝酸镧对碱性盐胁迫下西瓜苗的光合能力下降具有良好的缓解效果,有效减缓了西瓜幼苗叶片叶绿素含量、净光合速率、Mg2+-ATP酶、RuBPCase活性的下降,缓解了碱胁迫对叶片PSⅡ最大光化学效率(Fv/Fm)、光化学猝灭(qp)、实际光化学效率(ΦPSⅡ)的抑制,提高了非光化学猝灭(qN),促进了过剩光能的耗散.不同浓度硝酸镧处理对碱性盐胁迫下西瓜苗叶片乙醇酸氧化酶活性没有显著影响,不阻碍光呼吸的进行.而硝酸镧浓度超过一定值时则加重碱胁迫带来的伤害.因此,适宜浓度的硝酸镧预处理可减缓碱性盐胁迫引起的西瓜幼苗光合能力的下降.%The effects of foliar spray of different concentration La( NO3)3 on the photosynthesis under the stress of NaHCO3 and Na2CO3 were studied. Foliar spraying 0.1 mmol·L-1 La (NO3)3 reduced the decrement of photosynthesis, the decrement of leaf chlorophyll content, photosynthesis rate,and the activities of Mg2+-ATPase and RuBPCase in chloroplast. The application of La(NO3)3 efficiently alleviated the inhibitory effects of alkaline stress on PS II maximum photochemical efficiency (Fv/ Fm),photochemical quenching (qP) and actual photochemical efficiency(ΦPSII ),enhanced the non-photochemical energy dissipation(qN) .promote excessive excitation energy to be consumed. Foliar spray of La(NO3)3 had no effect on glycolic acid oxidase activity, and it did not prevent photorespiration. When the concentration of La(NO3)3 was above a certain level,it aggravated the injury by alkaline stress on watermelon seedlings. These results suggested that the pretreatment of watermelon seedling with proper concentration of La( NO3)3 could decrease the decrement of photosynthesis caused by alkaline stress.

  14. Sida rhomboidea.Roxb extract alleviates pathophysiological changes in experimental in vivo and in vitro models of high fat diet/fatty acid induced non-alcoholic steatohepatitis.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Dandekar, Deven S; Devkar, Ranjitsinh V; Ramachandran, A V

    2012-03-01

    The present study was aim to evaluate protective role of Sida rhomboidea.Roxb (SR) extract against high fat diet/fatty acid induced pathophysiological alterations in experimental model of non-alcoholic steatohepatitis (NASH). Effect of SR extract on plasma levels of markers of hepatic damage, plasma and hepatic lipids, mitochondrial oxidative stress, status of enzymatic and non-enzymatic antioxidants and histopathological changes in liver tissue were evaluated in high fat diet fed C57BL/6J mice. Also, the effect of SR supplementation on lipid accumulation, lipid peroxidation, cytotoxicity and cell viability were evaluated in oleic acid treated HepG2 cells. Supplementation of NASH mice with SR extract prevented high fat diet induced elevation in plasma marker enzymes of liver damage, plasma and hepatic lipids, mitochondrial oxidative stress and compromised enzymatic and non-enzymatic antioxidant status. Further, addition of SR extract to in vitro HepG2 cells minimized oleic acid induced lipid accumulation, higher lipid peroxidation, cytotoxicity and reduced cell viability. These in vivo and in vitro studies suggest that SR extract has the potential of preventing high fat/fatty acid induced NASH mainly due to its hypolipidemic and antioxidant activities.

  15. Effect of Cinnamic Acid on Physiological Characteristics of Tomato Seedlings and Alleviation by Carbonized Maize Cob Application%碳化玉米芯缓解肉桂酸对番茄幼苗生长的抑制作用

    Institute of Scientific and Technical Information of China (English)

    李亮亮; 李天来; 张恩平; 吴正超; 臧健; 陈彬; 刘文娥; 席联敏

    2012-01-01

    研究不同浓度肉桂酸对番茄苗期生长抑制作用以及加入碳化玉米芯缓解肉桂酸对番茄苗期生长抑制作用的效果.以肉桂酸作为番茄的连作障碍自毒物质,珍珠岩为基质进行盆栽试验,并就生物量、光合作用、根尖超微结构和MDA含量等指标的变化进行了讨论.结果表明,施用肉桂酸对幼苗的光合作用指标、生物量及叶绿素的含量具有显著的抑制作用.高浓度的肉桂酸处理使根尖的超微结构受到破坏.同时使幼苗体内MDA的含量显著增加.加入碳化玉米芯有效地缓解了肉桂酸对番茄幼苗的毒害作用.因此,施用碳化玉米芯可作为防止番茄连作障碍的措施之一.%We examined the effects of cinnamic acid on the growth of tomato seedlings, and its alleviation of applied carbonized maize cob was shown. The tomato seedlings were transplanted in the hydroponic system with perlite as substrate, and the biomass, photosynthesis, ultrastructure of root and MDA were investigated. The results showed that cinnamic acid inhibited the biomass, photosynthesis and chlorophyll contents of tomato seedlings. Deformation of the ultrastructures of root was observed and the MDA content was increased by the treatment of high content cinnamic acid. But the inhabitations were alleviated by applied carbonized maize cob. Carbonized corn cob can be used to prevent the plants from monocropping obstacles.

  16. Decreased bile-acid synthesis in livers of hepatocyte-conditional NADPH-cytochrome P450 reductase-null mice results in increased bile acids in serum.

    Science.gov (United States)

    Cheng, Xingguo; Zhang, Youcai; Klaassen, Curtis D

    2014-10-01

    NADPH-cytochrome P450 reductase (Cpr) is essential for the function of microsomal cytochrome P450 monooxygenases (P450), including those P450s involved in bile acid (BA) synthesis. Mice with hepatocyte-specific deletion of NADPH-cytochrome P450 reductase (H-Cpr-null) have been engineered to understand the in vivo function of hepatic P450s in the metabolism of xenobiotics and endogenous compounds. However, the impact of hepatic Cpr on BA homeostasis is not clear. The present study revealed that H-Cpr-null mice had a 60% decrease in total BA concentration in liver, whereas the total BA concentration in serum was almost doubled. The decreased level of cholic acid (CA) in both serum and livers of H-Cpr-null mice is likely due to diminished enzyme activity of Cyp8b1 that is essential for CA biosynthesis. Feedback mechanisms responsible for the reduced liver BA concentrations and/or increased serum BA concentrations in H-Cpr-null mice included the following: 1) enhanced alternative BA synthesis pathway, as evidenced by the fact that classic BA synthesis is diminished but chenodeoxycholic acid still increases in both serum and livers of H-Cpr-null mice; 2) inhibition of farnesoid X receptor activation, which increased the mRNA of Cyp7a1 and 8b1; 3) induction of intestinal BA transporters to facilitate BA absorption from the intestine to the circulation; 4) induction of hepatic multidrug resistance-associated protein transporters to increase BA efflux from the liver to blood; and 5) increased generation of secondary BAs. In summary, the present study reveals an important contribution of the alternative BA synthesis pathway and BA transporters in regulating BA concentrations in H-Cpr-null mice.

  17. Fatty acid desaturase 1 knockout mice are lean with improved glycemic control and decreased development of atheromatous plaque

    Directory of Open Access Journals (Sweden)

    Powell DR

    2016-06-01

    Full Text Available David R Powell, Jason P Gay, Melinda Smith, Nathaniel Wilganowski, Angela Harris, Autumn Holland, Maricela Reyes, Laura Kirkham, Laura L Kirkpatrick, Brian Zambrowicz, Gwenn Hansen, Kenneth A Platt, Isaac van Sligtenhorst, Zhi-Ming Ding, Urvi Desai Metabolism Research, Lexicon Pharmaceuticals, Inc., The Woodlands, TX, USA Abstract: Delta-5 desaturase (D5D and delta-6 desaturase (D6D, encoded by fatty acid desaturase 1 (FADS1 and FADS2 genes, respectively, are enzymes in the synthetic pathways for w3, w6, and w9 polyunsaturated fatty acids (PUFAs. Although PUFAs appear to be involved in mammalian metabolic pathways, the physiologic effect of isolated D5D deficiency on these pathways is unclear. After generating >4,650 knockouts (KOs of independent mouse genes and analyzing them in our high-throughput phenotypic screen, we found that Fads1 KO mice were among the leanest of 3,651 chow-fed KO lines analyzed for body composition and were among the most glucose tolerant of 2,489 high-fat-diet-fed KO lines analyzed by oral glucose tolerance test. In confirmatory studies, chow- or high-fat-diet-fed Fads1 KO mice were leaner than wild-type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 38% and 31% lower in Fads1 male and female KO mice, respectively. Fads1 KO mice also had lower glucose and insulin excursions during oral glucose tolerance tests along with lower fasting glucose, insulin, triglyceride, and total cholesterol levels. In additional studies using a vascular injury model, Fads1 KO mice had significantly decreased femoral artery intima/media ratios consistent with a decreased inflammatory response in their arterial wall. Based on this result, we bred Fads1 KO and WT mice onto an ApoE KO background and fed them a Western diet for 14 weeks; in this atherogenic environment, aortic trees of Fads1 KO mice had 40% less atheromatous plaque compared to WT littermates. Importantly, PUFA levels

  18. Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice.

    Science.gov (United States)

    Chien, Mei-Yin; Chuang, Cheng-Hung; Chern, Chang-Ming; Liou, Kou-Tong; Liu, Der-Zen; Hou, Yu-Chang; Shen, Yuh-Chiang

    2016-10-01

    Salvianolic acid A (SalA), a chemical type of caffeic acid trimer, has drawn great attention for its potent bioactivities against ischemia-induced injury both in vitro and in vivo. In this study, we evaluated SalA's protective effects against acute ischemic stroke by inducing middle cerebral artery occlusion/reperfusion (MCAO) injuries in mice. Treatment of the mice with SalA (50 and 100μg/kg, i.v.) at 2h after MCAO enhanced their survival rate, improved their moving activity, and ameliorated the severity of brain infarction and apoptosis seen in the mice by diminishing pathological changes such as the extensive breakdown of the blood-brain barrier (BBB), nitrosative stress, and the activation of an inflammatory transcriptional factor p65 nuclear factor-kappa B (NF-κB) and a pro-apoptotic kinase p25/Cdk5. SalA also intensively limited cortical infarction and promoted the expression of neurogenesis protein near the peri-infarct cortex and subgranular zone of the hippocampal dentate gyrus by compromising the activation of GSK3β and p25/Cdk5, which in turn upregulated β-catenin, doublecortin (DCX), and Bcl-2, most possibly through the activation of PI3K/Akt signaling via the upregulation of brain-derived neurotrophic factor. We conclude that SalA blocks inflammatory responses by impairing NF-κB signaling, thereby limiting inflammation/nitrosative stress and preserving the integrity of the BBB; SalA also concomitantly promotes neurogenesis-related protein expression by compromising GSK3β/Cdk5 activity to enhance the expression levels of β-catenin/DCX and Bcl-2 for neuroprotection.

  19. The Decrease of n-3 Fatty Acid Energy Percentage in an Equicaloric Diet Fed to B6C3Fe Mice for Three Generations Elicits Obesity

    Directory of Open Access Journals (Sweden)

    Ingeborg Hanbauer

    2009-01-01

    Full Text Available Feeding mice, over 3 generations, an equicaloric diet in which α-linolenic acid, the dietary precursor of n-3 polyunsaturated fatty acids, was substituted by linoleic acid, the dietary precursor of n-6 polyunsaturated fatty acids, significantly increased body weight throughout life when compared with standard diet-fed mice. Adipogenesis observed in the low n-3 fatty acid mice was accompanied by a 6-fold upregulation of stearyl-coenzyme A desaturase 1 (Scd1, whose activity is correlated to plasma triglyceride levels. In total liver lipid and phospholipid extracts, the sum of n-3 fatty acids and the individual longer carbon chain acids, eicosapentaenoic acid (20:5n3, docosapentaenoic acid (22:5n3, and docosahexaenoic acid (22:6n3 were significantly decreased whereas arachidonic acid (20:4n6 was significantly increased. In addition, low n-3 fatty acid-fed mice had liver steatosis, heart, and kidney hypertrophy. Hence, reducing dietary α-linolenic acid, from 1.02 energy% to 0.16 energy% combined with raising linoleic acid intake resulted in obesity and had detrimental consequences on organ function.

  20. Clavulanic acid enhances glutamate transporter subtype I (GLT-1) expression and decreases reinforcing efficacy of cocaine in mice.

    Science.gov (United States)

    Kim, Jae; John, Joel; Langford, Dianne; Walker, Ellen; Ward, Sara; Rawls, Scott M

    2016-03-01

    The β-lactam antibiotic ceftriaxone (CTX) reduces cocaine reinforcement and relapse in preclinical assays through a mechanism involving activation of glutamate transporter subtype 1 (GLT-1). However, its poor brain penetrability and intravenous administration route may limit its therapeutic utility for indications related to CNS diseases. An alternative is clavulanic acid (CA), a structural analog of CTX that retains the β-lactam core required for GLT-1 activity but displays enhanced brain penetrability and oral activity relative to CTX. Here, we tested the hypothesis that CA (1, 10 mg/kg ip) would enhance GLT-1 expression and decrease cocaine self-administration (SA) in mice, but at lower doses than CTX. Experiments revealed that GLT-1 transporter expression in the nucleus accumbens of mice treated with repeated CA (1, 10 mg/kg) was enhanced relative to saline-treated mice. Repeated CA treatment (1 mg/kg) reduced the reinforcing efficacy of cocaine (0.56 mg/kg/inf) in mice maintained on a progressive-ratio (PR) schedule of reinforcement but did not affect acquisition of cocaine SA under fixed-ratio responding or acquisition or retention of learning. These findings suggest that the β-lactamase inhibitor CA can activate the cellular glutamate reuptake system in the brain reward circuit and reduce cocaine's reinforcing efficacy at 100-fold lower doses than CTX.

  1. The Acid Sphingomyelinase Sequence Variant p.A487V Is Not Associated With Decreased Levels of Enzymatic Activity.

    Science.gov (United States)

    Rhein, Cosima; Naumann, Julia; Mühle, Christiane; Zill, Peter; Adli, Mazda; Hegerl, Ulrich; Hiemke, Christoph; Mergl, Roland; Möller, Hans-Jürgen; Reichel, Martin; Kornhuber, Johannes

    2013-01-01

    Rare loss-of-function mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene are known to dramatically decrease the catalytic activity of acid sphingomyelinase (ASM), resulting in an autosomal recessive lysosomal storage disorder known as Niemann-Pick disease (NPD) type A and B. In contrast to the general low frequency of those deleterious mutations, we found a relatively high frequency for the proposed type B NPD variant c.1460C>T (p.A487V) in our sample of 58 patients suffering from Major Depressive Disorder. We therefore investigated the biochemical consequences of this variant more closely. Our in vivo data derived from blood cell analyses indicated cellular ASM activity levels in the normal range. The secreted ASM activity levels in blood plasma were slightly lower, but still above those levels reported for type B NPD patients. In vitro expression studies of this ASM variant in different cell lines confirmed these results, showing cellular and secreted enzymatic activities equivalent to those of wild-type ASM and similar expression levels. Thus, we conclude that the ASM variant c.1460C>T (p.A487V) is not a rare missense mutation but an SMPD1 sequence variant that yields a protein with functional catalytic characteristics.

  2. Betulinic acid alleviates non-alcoholic fatty liver by inhibiting SREBP1 activity via the AMPK-mTOR-SREBP signaling pathway.

    Science.gov (United States)

    Quan, Hai Yan; Kim, Do Yeon; Kim, Soo Jung; Jo, Hee Kyung; Kim, Go Woon; Chung, Sung Hyun

    2013-05-01

    Non-alcoholic fatty liver disease (NAFLD) is emerging as the most common liver disease in industrialized countries. The discovery of food components that can ameliorate NAFLD is therefore of interest. Betulinic acid (BA) is a triterpenoid with many pharmacological activities, but the effect of BA on fatty liver is as yet unknown. To explore the possible anti-fatty liver effects and their underlying mechanisms, we used insulin-resistant HepG2 cells, primary rat hepatocytes and liver tissue from ICR mice fed a high-fat diet (HFD). Oil Red O staining revealed that BA significantly suppressed excessive triglyceride accumulation in HepG2 cells and in the livers of mice fed a HFD. Ca(+2)-calmodulin dependent protein kinase kinase (CAMKK) and AMP-activated protein kinase (AMPK) were both activated by BA treatment. In contrast, the protein levels of sterol regulatory element-binding protein 1 (SREBP1), mammalian target of rapamycin (mTOR) and S6 kinase (S6K) were all reduced when hepatocytes were treated with BA for up to 24h. We found that BA activates AMPK via phosphorylation, suppresses SREBP1 mRNA expression, nuclear translocation and repressed SREBP1 target gene expression in HepG2 cells and primary hepatocytes, leading to reduced lipogenesis and lipid accumulation. These effects were completely abolished in the presence of STO-609 (a CAMKK inhibitor) or compound C (an AMPK inhibitor), indicating that the BA-induced reduction in hepatic steatosis was mediated via the CAMKK-AMPK-SREBP1 signaling pathway. Taken together, our results suggest that BA effectively ameliorates intracellular lipid accumulation in liver cells and thus is a potential therapeutic agent for the prevention of fatty liver disease.

  3. Respiratory plasticity is insufficient to alleviate blood acid-base disturbances after acclimation to ocean acidification in the estuarine red drum, Sciaenops ocellatus.

    Science.gov (United States)

    Esbaugh, Andrew J; Ern, Rasmus; Nordi, Wiolene M; Johnson, Abbey S

    2016-01-01

    The changes in ocean chemistry stemming from anthropogenic CO2 release--termed ocean acidification (OA)--are predicted to have wide-ranging effects on fish and ultimately threaten global populations. The ability of fish to adapt to environmental change is currently unknown, but phenotypic plasticity has been highlighted as a crucial factor in determining species resilience. Here we show that red drum, a long-lived estuarine-dependent fish species native to the Gulf of Mexico, exhibit respiratory plasticity that increases CO2 excretion capacity when acclimated to OA conditions. Specifically, fish exposed to 14 days of 1000 µatm CO2 had a 32% reduction in branchial diffusion distance and increased expression of two putative CO2 channel proteins--rhag and rhcg1. No changes were observed in the erythrocyte CO2 transport pathways. Surprisingly, no significant changes in blood chemistry were observed between acclimated and acutely challenged animals; however, a non-significant 30 % drop in the magnitude of plasma C(CO2) elevation was observed. Reduced diffusion distance also comes with the cost of increased diffusive water loss, which would require greater osmoregulatory investment by the animal. OA exposure induced increased gill Na(+), K(+) ATPase activity and intestinal nkcc2 expression, supporting both the presumed osmotic stress and increased osmoregulatory investment. However, no differences in standard metabolic rate, maximum metabolic rate or aerobic scope were detected between control and OA acclimated individuals. Similarly, no differences in critical swim speed were detected between groups, suggesting the energetic cost related to respiratory plasticity is negligible against background metabolism. The current study demonstrated that red drum exhibit respiratory plasticity with only mild physiological trade-offs; however, this plasticity is insufficient to fully offset the OA-induced acid-base disturbance and as such is unlikely to impact species resilience.

  4. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites.

    NARCIS (Netherlands)

    Louisse, J.; Bai, Y.; Verwei, M.; van de Sandt, J.J.M.; Blaauboer, B.J.; Rietjens, I.M.C.M.

    2010-01-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabol

  5. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    NARCIS (Netherlands)

    Louisse, J.; Bai, Y.; Verwei, M.; Sandt, J.J.M. van de; Blaauboer, B.J.; Rietjens, I.M.C.M.

    2010-01-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabol

  6. Decrease of intercellular pH as possible mechanism of action of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    NARCIS (Netherlands)

    Louisse, J.; Yanquin Bai,; Verwei, M.; Sandt, van de J.J.M.; Blaauboer, B.J.; Rietjens, I.

    2010-01-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabol

  7. Decreased arachidonic acid content and metabolism in tissues of NZB/W F1 females fed a diet containing 0. 45% dehydroisoandrosterone (DHA)

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, A.; Cottam, G.L.

    1987-05-01

    A diet containing 0.45% DHA fed to NZB/W mice, a model of systemic lupus erythematosus, delays the time of onset, improves survival and decreases the formation of antibodies to ds-DNA. Essential fatty acid-deficient diets or inclusion of eicosapentaenoic acid have similar beneficial effects and led them to investigate arachidonic acid metabolism in response to feeding DHA. The arachidonic acid content of plasma cholesteryl ester decreased from 37.4 +/- 2.2 to 28.2 +/- 1.3 mg%. In total liver phospholipid the value decreased from 18.1 +/- 0.52 to 13.7 +/- 1.3 mg%, in total kidney phospholipid the value decreased from 24.10 +/- 0.87 to 20.7 +/- 0.32 mg% and in resident peritoneal macrophages the value decreased from 15.4 +/- 4.6 to 3.6 +/- 1.4 mg%. The metabolism of exogenous (1-/sup 14/C)arachidonic acid by resident peritoneal macrophages in response to Zymosan stimulation for 2 hr was examined by extraction of metabolites and separation by HPLC. Cells isolated from DHA-fed animals produced less PGE2 than controls, yet similar amounts of 6-keto PGF1..cap alpha.. were produced. Arachidonic acid metabolites have significant effects on the immune system and may be a mechanism involved in the benefits obtained by inclusion of DHA in the diet.

  8. 镧对西葫芦幼苗模拟酸雨胁迫的缓解效应%Alleviative effects of LaCl_3 on simulated acid rain stresses for Cucurbita pepo seedlings

    Institute of Scientific and Technical Information of China (English)

    边才苗; 王锦文

    2011-01-01

    Using Cucurbita pepo as the experimental material,the alleviative effects of foliar surface spraying for LaCl3(12 mg/L) on seedling growth and three physiological indexes of C.pepo were investigated under some simulated acid rain(SAR) stresses.Results show that the damage effects of SAR on C.pepo seedlings are alleviated by the LaCl3 treatment.The fresh weights of the seedlings treated with LaCl3 solutions of pH 3.5 and pH 3.0 are significantly higher than those of the treatments only with SAR,and are equivalent to 94.7% and 78.6% of the control level(pH 6.5).However,no significant differences are observed between the treatment with other SAR+LaCl3 solution and the treatment only with SAR.The chlorophyll and dissolved protein contents follow the trend of the seedling fresh weight,and the indexes treated with pH 3.0 and pH 3.5 SAR+LaCl3 solutions are higher significantly than that treated only with SAR,but the differences of pH 3.0 are slightly greater than those of pH 3.5.Compared with the control,the dissolved protein content treated with pH 3.5+LaCl3 solution is the highest.The proline content increase consistently with the pH value,and improved by the LaCl3 treatment.The proline contents treated with pH 3.5 and pH 3.0 SAR+LaCl3 solution are higher significantly than that treated only with SAR.Therefore,the alleviative effects of LaCl3 on middle SAR stresses for C.pepo seedling are significant.%以西葫芦为材料,研究模拟酸雨胁迫下适量镧(La)对幼苗生长及叶绿素、可溶性蛋白和脯氨酸含量的影响。结果显示,镧处理对酸雨胁迫有一定的缓解作用。在pH 3.5和3.0时,幼苗鲜重均显著高于模拟酸雨组,并恢复到对照的94.7%和78.6%;但在其他胁迫强度下,镧处理的缓解效应不显著。叶绿素和可溶性蛋白的含量变化与幼苗鲜重类似,在pH 3.0时镧处理的缓解效应最显著;pH 3.5时镧处理的可溶性蛋白含量超过对照。脯氨酸含量呈现持

  9. Ascorbic acid inhibits TPA-induced HL-60 cell differentiation by decreasing cellular H₂O₂ and ERK phosphorylation.

    Science.gov (United States)

    Yiang, Giou-Teng; Chen, Jen-Ni; Wu, Tsai-Kun; Wang, Hsueh-Fang; Hung, Yu-Ting; Chang, Wei-Jung; Chen, Chinshuh; Wei, Chyou-Wei; Yu, Yung-Luen

    2015-10-01

    Retinoic acid (RA), vitamin D and 12-O‑tetradecanoyl phorbol-13-acetate (TPA) can induce HL-60 cells to differentiate into granulocytes, monocytes and macrophages, respectively. Similar to RA and vitamin D, ascorbic acid also belongs to the vitamin family. High‑dose ascorbic acid (>100 µM) induces HL‑60 cell apoptosis and induces a small fraction of HL‑60 cells to express the granulocyte marker, CD66b. In addition, ascorbic acid exerts an anti‑oxidative stress function. Oxidative stress is required for HL‑60 cell differentiation following treatment with TPA, however, the effect of ascorbic acid on HL‑60 cell differentiation in combination with TPA treatment remains to be fully elucidated. The aim of the present study was to investigate the cellular effects of ascorbic acid treatment on TPA-differentiated HL-60 cells. TPA-differentiated HL-60 cells were used for this investigation, this study and the levels of cellular hydrogen peroxide (H2O2), caspase activity and ERK phosphorylation were determined following combined treatment with TPA and ascorbic acid. The results demonstrated that low‑dose ascorbic acid (5 µM) reduced the cellular levels of H2O2 and inhibited the differentiation of HL‑60 cells into macrophages following treatment with TPA. In addition, the results of the present study further demonstrated that low‑dose ascorbic acid inactivates the ERK phosphorylation pathway, which inhibited HL‑60 cell differentiation following treatment with TPA.

  10. Integration of family planning with poverty alleviation.

    Science.gov (United States)

    Peng, P

    1996-12-01

    The Chinese Communist Central Committee and the State Council aim to solve food and clothing problems among impoverished rural people by the year 2000. This goal was a priority on the agenda of the recent October 1996 National Conference on Poverty Alleviation and Development and the 1996 National Conference of the State Family Planning Commission. Poverty is attributed to rapid population growth and underdevelopment. Poverty is concentrated in parts of 18 large provinces. These provinces are characterized by Family Planning Minister Peng as having high birth rates, early marriage and childbearing, unplanned births, and multiple births. Overpopulation is tied to overconsumption, depletion of resources, deforestation, soil erosion, pollution, shortages of water, decreases in shares of cultivated land, degraded grasslands, and general destruction of the environment. Illiteracy in poor areas is over 20%, compared to the national average of 15%. Mortality and morbidity are higher. Family planning is harder to enforce in poor areas. Pilot programs in Sichuan and Guizhou provinces are promoting integration of family planning with poverty alleviation. Several conferences have addressed the integrated program strategies. Experience has shown that poverty alleviation occurs by controlled population growth and improved quality of life. Departments should "consolidate" their development efforts under Communist Party leadership at all levels. Approaches should emphasize self-reliance and public mobilization. The emphasis should be on women's participation in development. Women's income should be increased. Family planning networks at the grassroots level need to be strengthened simultaneously with increased poverty alleviation and development. The government strategy is to strengthen leadership, mobilize the public, and implement integrated programs.

  11. Monounsaturated and Saturated, but Not n-6 Polyunsaturated Fatty Acids Decrease Cartilage Destruction under Inflammatory Conditions: A Preliminary Study

    NARCIS (Netherlands)

    Bastiaansen-Jenniskens, Y.M.; Siawash, M.; Lest, C.H.A. van de; Verhaar, J.A.N.; Kloppenburg, M.; Zuurmond, A.M.; Stojanovic-Susulic, V.; Osch, G.J.V.M. van; Clockaerts, S.

    2013-01-01

    Purpose: Osteoarthritis (OA) is associated with obesity in which altered fatty acid levels have been observed. We investigated whether the most common fatty acids in synovial fluid influence cartilage deterioration in OA. Design: Cartilage was obtained from OA patients undergoing total knee arthropl

  12. Decreased aortic early atherosclerosis in hypercholesterolemic hamsters fed oleic acid-rich TriSun oil compared to linoleic acid-rich sunflower oil.

    Science.gov (United States)

    Nicolosi, Robert J.; Wilson, Thomas A.; Handelman, Garry; Foxall, Thomas; Keaney, John F.; Vita, Joseph A.

    2002-07-01

    Previous studies have demonstrated that low density lipoprotein (LDL) enriched in polyunsaturated fatty acids (PUFA) are more susceptible to oxidation (ex vivo) than those containing monounsaturated fatty acids (MUFA). To test whether this observation was associated with various parameters considered to be related with the development of early aortic atherosclerosis, hamsters were fed commercial hypercholesterolemic diets (HCD) containing either the PUFA, sunflower oil (SF) or the MUFA, TriSun oil (TS) at 10% with 0.4% cholesterol (wt/wt). LDL isolated from hamsters fed TS had significantly longer lag phase (30%, P < 0.05), a decreased propagation phase (-62%, P < 0.005), and fewer conjugated dienes formed (-37%, P < 0.007) compared to hamsters fed SF. Aortic vasomotor function, measured as degree of aortic relaxation, was significantly greater in the TS vs SF-fed hamsters whether acetylcholine or the calcium ionophore A23187 was used as the endothelium-dependent agonist. As a group, the SF-fed hamsters had significantly more early atherosclerosis than hamsters fed TS (46%, P < 0.006). When animals across the two diets were pair-matched by plasma LDL-C levels, there was an 82% greater mean difference (P < 0.002) in early atherosclerosis in the SF versus the TS-fed hamsters. While there were no significant associations with plasma lipids and lipoprotein cholesterol, early atherosclerosis was significantly correlated with lag phase (r = -0.67, p < 0.02), rate of LDL conjugated diene formation (r = 0.74, p < 0.006) and maximum dienes formed (r = 0.67, p < 0.02). Compared to TS-fed animals, aortic sections from hamsters fed the SF-containing diet revealed that the cytoplasm of numerous foam cells in the subendothelial space reacted positively with the monoclonal anti-bodies MDA-2 and NA59 antibody, epitopes found on oxidized forms of LDL. The present study suggests that compared to TS, hamsters fed the SF-diet demonstrated enhanced LDL oxidative susceptibility, reduced

  13. Hydrogen Sulfide Alleviates Postharvest Senescence of Grape by Modulating the Antioxidant Defenses.

    Science.gov (United States)

    Ni, Zhi-Jing; Hu, Kang-Di; Song, Chang-Bing; Ma, Run-Hui; Li, Zhi-Rong; Zheng, Ji-Lian; Fu, Liu-Hui; Wei, Zhao-Jun; Zhang, Hua

    2016-01-01

    Hydrogen sulfide (H2S) has been identified as an important gaseous signal in plants. Here, we investigated the mechanism of H2S in alleviating postharvest senescence and rotting of Kyoho grape. Exogenous application of H2S released from 1.0 mM NaHS remarkably decreased the rotting and threshing rate of grape berries. H2S application also prevented the weight loss in grape clusters and inhibited the decreases in firmness, soluble solids, and titratable acidity in grape pulp during postharvest storage. The data of chlorophyll and carotenoid content suggested the role of H2S in preventing chlorophyll breakdown and carotenoid accumulation in both grape rachis and pulp. In comparison to water control, exogenous H2S application maintained significantly higher levels of ascorbic acid and flavonoid and total phenolics and reducing sugar and soluble protein in grape pulp. Meanwhile, H2S significantly reduced the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2 (∙-)) in grape pulp. Further investigations showed that H2S enhanced the activities of antioxidant enzymes ascorbate peroxidase (APX) and catalase (CAT) and decreased those of lipoxygenase (LOX) in both grape peels and pulp. In all, we provided strong evidence that H2S effectively alleviated postharvest senescence and rotting of Kyoho grape by modulating antioxidant enzymes and attenuating lipid peroxidation.

  14. Hydrogen Sulfide Alleviates Postharvest Senescence of Grape by Modulating the Antioxidant Defenses

    Directory of Open Access Journals (Sweden)

    Zhi-Jing Ni

    2016-01-01

    Full Text Available Hydrogen sulfide (H2S has been identified as an important gaseous signal in plants. Here, we investigated the mechanism of H2S in alleviating postharvest senescence and rotting of Kyoho grape. Exogenous application of H2S released from 1.0 mM NaHS remarkably decreased the rotting and threshing rate of grape berries. H2S application also prevented the weight loss in grape clusters and inhibited the decreases in firmness, soluble solids, and titratable acidity in grape pulp during postharvest storage. The data of chlorophyll and carotenoid content suggested the role of H2S in preventing chlorophyll breakdown and carotenoid accumulation in both grape rachis and pulp. In comparison to water control, exogenous H2S application maintained significantly higher levels of ascorbic acid and flavonoid and total phenolics and reducing sugar and soluble protein in grape pulp. Meanwhile, H2S significantly reduced the accumulation of malondialdehyde (MDA, hydrogen peroxide (H2O2, and superoxide anion (O2∙- in grape pulp. Further investigations showed that H2S enhanced the activities of antioxidant enzymes ascorbate peroxidase (APX and catalase (CAT and decreased those of lipoxygenase (LOX in both grape peels and pulp. In all, we provided strong evidence that H2S effectively alleviated postharvest senescence and rotting of Kyoho grape by modulating antioxidant enzymes and attenuating lipid peroxidation.

  15. A folate-rich diet is as effective as folic acid from supplements in decreasing plasma homocysteine concentrations

    Directory of Open Access Journals (Sweden)

    2005-04-01

    Full Text Available Background & Aims: At least 500 μg of folic acid are required daily to treat hyperhomocysteinemia. To reach this amount by dietary changes alone may be difficult because food has a low folic acid content and bioavailability. No studies have compared the effects of similar amounts of additional folate derived from a combination of folate-rich and fortified foods or folic acid from supplements on plasma total homocysteine (tHcy concentrations, which was the aim of this study. Methods: Twenty male patients with hyperhomocysteinemia and coronary artery disease were included in a randomized, crossover intervention trial. Patients were treated daily with a combination of foods containing approximately 500 μg of folate or with one 500 μg capsule of synthetic folic acid over two five-week periods separated by a five-week wash-out period. Results: Plasma folate increased markedly (p

  16. Gallic Acid Decreases Inflammatory Cytokine Secretion Through Histone Acetyltransferase/Histone Deacetylase Regulation in High Glucose-Induced Human Monocytes.

    Science.gov (United States)

    Lee, Wooje; Lee, Sang Yeol; Son, Young-Jin; Yun, Jung-Mi

    2015-07-01

    Hyperglycemia contributes to diabetes and several diabetes-related complications. Gallic acid is a polyhydroxy phenolic compound found in various natural products. In this study, we investigated the effects and mechanism of gallic acid on proinflammatory cytokine secretion in high glucose-induced human monocytes (THP-1 cells). THP-1 cells were cultured under normoglycemic or hyperglycemic conditions, in the absence or presence of gallic acid. Hyperglycemic conditions significantly induced histone acetylation, nuclear factor-κB (NF-κB) activation, and proinflammatory cytokine release from THP-1 cells, whereas gallic acid suppressed NF-κB activity and cytokine release. It also significantly reduced CREB-binding protein/p300 (CBP/p300, a NF-κB coactivator) gene expression, acetylation levels, and CBP/p300 histone acetyltransferase (HAT) activity. In addition, histone deacetylase 2 (HDAC2) expression was significantly induced. These results suggest that gallic acid inhibits hyperglycemic-induced cytokine production in monocytes through epigenetic changes involving NF-κB. Therefore, gallic acid may have potential for the treatment and prevention of diabetes and its complications.

  17. Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine.

    Science.gov (United States)

    Qiu, Kai; Qin, Chun Fu; Luo, Min; Zhang, Xin; Sun, Wen Juan; Jiao, Ning; Li, De Fa; Yin, Jing Dong

    2016-01-01

    Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA) absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24), nitrogen balance (n = 6), and the expression of small intestinal AA and peptide transporters (n = 6) were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1) was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption.

  18. Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine

    Science.gov (United States)

    Luo, Min; Zhang, Xin; Sun, Wen Juan; Jiao, Ning; Li, De Fa; Yin, Jing Dong

    2016-01-01

    Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA) absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24), nitrogen balance (n = 6), and the expression of small intestinal AA and peptide transporters (n = 6) were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1) was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption. PMID:27611307

  19. Increased Glutamate and Homocysteine and Decreased Glutamine Levels in Autism: A Review and Strategies for Future Studies of Amino Acids in Autism

    Directory of Open Access Journals (Sweden)

    Ahmad Ghanizadeh

    2013-01-01

    Full Text Available There are many reports about the significant roles of some amino acids in neurobiology and treatment of autism. This is a critical review of amino acids levels in autism. No published review article about the level of amino acids in autism was found. The levels of glutamate and homocystein are increased in autism while the levels of glutamine and tryptophan are decreased. Findings regarding the plasma levels of taurine and lysine are controversial. The urinary levels of homocysteine and essential amino acids in both the untreated and treated autistic children are significantly less than those in the controls. The current literature suffers from many methodological shortcomings which needed to be considered in future studies. Some of them are age, gender, developmental level, autism symptoms severity, type of autism spectrum disorders, medical comorbidities, intelligent quotient, diet, concomitant medications, body mass index, and technical method of assessment of amino acids.

  20. Bile-acid-mediated decrease in endoplasmic reticulum stress: a potential contributor to the metabolic benefits of ileal interposition surgery in UCD-T2DM rats

    Directory of Open Access Journals (Sweden)

    Bethany P. Cummings

    2013-03-01

    Post-operative increases in circulating bile acids have been suggested to contribute to the metabolic benefits of bariatric surgery; however, their mechanistic contributions remain undefined. We have previously reported that ileal interposition (IT surgery delays the onset of type 2 diabetes in UCD-T2DM rats and increases circulating bile acids, independently of effects on energy intake or body weight. Therefore, we investigated potential mechanisms by which post-operative increases in circulating bile acids improve glucose homeostasis after IT surgery. IT, sham or no surgery was performed on 2-month-old weight-matched male UCD-T2DM rats. Animals underwent an oral fat tolerance test (OFTT and serial oral glucose tolerance tests (OGTT. Tissues were collected at 1.5 and 4.5 months after surgery. Cell culture models were used to investigate interactions between bile acids and ER stress. IT-operated animals exhibited marked improvements in glucose and lipid metabolism, with concurrent increases in postprandial glucagon-like peptide-1 (GLP-1 secretion during the OFTT and OGTTs, independently of food intake and body weight. Measurement of circulating bile acid profiles revealed increases in circulating total bile acids in IT-operated animals, with a preferential increase in circulating cholic acid concentrations. Gut microbial populations were assessed as potential contributors to the increases in circulating bile acid concentrations, which revealed proportional increases in Gammaproteobacteria in IT-operated animals. Furthermore, IT surgery decreased all three sub-arms of ER stress signaling in liver, adipose and pancreas tissues. Amelioration of ER stress coincided with improved insulin signaling and preservation of β-cell mass in IT-operated animals. Incubation of hepatocyte, adipocyte and β-cell lines with cholic acid decreased ER stress. These results suggest that postoperative increases in circulating cholic acid concentration contribute to improvements in

  1. EFFICACY OF TRANEXAMIC ACID IN DECREASING BLOOD LOSS DURING AND AFTER CAESAREAN SECTION: A RANDOMIZED CASE CONTROL PROSPECTIVE STUDY

    Directory of Open Access Journals (Sweden)

    Tullika

    2014-03-01

    Full Text Available : INTRODUCTION: To reduce maternal mortality and morbidity caused by bleeding, it is important to reduce the amount of bleeding during and after lower segment caesarean section (LSCS. Tranexamic acid helps to reduce bleeding during and after LSCS. OBJECTIVES: To study the efficacy and safety of Tranexamic acid in reducing blood loss during and after Lower segment Caesarean Section (LSCS. METHODS: A randomized case controlled prospective study was conducted on 200 women undergoing lower segment cesarean section. Hundreds of them that were given tranexamic acid immediately before LSCS were compared to hundred others to whom tranexamic acid was not given. Blood loss was collected and measured during the two periods, from plancental delivery to end of LSCS and second from end of LSCS to two hours postpartum. RESULTS: Tranexamic acid significantly reduced the quantity of blood loss from placental delivery to end of LSCS, 202.25ml in the study group vs392.20 ml in the control group (p<0.001; from the end of LSCS, to 2 hours postpartum 3.80ml in the study group versus 112.25ml in the control group (p<0.001; In totality, it significantly reduced the quantity of blood loss from placental delivery to two hours postpartum i.e. 27.05ml in the study group versus 510.45ml in the control group (p < 0.001. No complications or side effects were noted. CONCLUSION: Tranexamic acid significantly reduced the amount of blood loss during and after LSCS. Tranexamic acid can be used prophylactically; moreover it is safer and effective in women undergoing LSCS.

  2. Temperature Shift Experiments Suggest That Metabolic Impairment and Enhanced Rates of Photorespiration Decrease Organic Acid Levels in Soybean Leaflets Exposed to Supra-Optimal Growth Temperatures

    Directory of Open Access Journals (Sweden)

    Richard C. Sicher

    2015-08-01

    Full Text Available Elevated growth temperatures are known to affect foliar organic acid concentrations in various plant species. In the current study, citrate, malate, malonate, fumarate and succinate decreased 40 to 80% in soybean leaflets when plants were grown continuously in controlled environment chambers at 36/28 compared to 28/20 °C. Temperature effects on the above mentioned organic acids were partially reversed three days after plants were transferred among optimal and supra-optimal growth temperatures. In addition, CO2 enrichment increased foliar malate, malonate and fumarate concentrations in the supra-optimal temperature treatment, thereby mitigating effects of high temperature on respiratory metabolism. Glycerate, which functions in the photorespiratory pathway, decreased in response to CO2 enrichment at both growth temperatures. The above findings suggested that diminished levels of organic acids in soybean leaflets upon exposure to high growth temperatures were attributable to metabolic impairment and to changes of photorespiratory flux. Leaf development rates differed among temperature and CO2 treatments, which affected foliar organic acid levels. Additionally, we report that large decreases of foliar organic acids in response to elevated growth temperatures were observed in legume species.

  3. Temperature Shift Experiments Suggest That Metabolic Impairment and Enhanced Rates of Photorespiration Decrease Organic Acid Levels in Soybean Leaflets Exposed to Supra-Optimal Growth Temperatures.

    Science.gov (United States)

    Sicher, Richard C

    2015-08-05

    Elevated growth temperatures are known to affect foliar organic acid concentrations in various plant species. In the current study, citrate, malate, malonate, fumarate and succinate decreased 40 to 80% in soybean leaflets when plants were grown continuously in controlled environment chambers at 36/28 compared to 28/20 °C. Temperature effects on the above mentioned organic acids were partially reversed three days after plants were transferred among optimal and supra-optimal growth temperatures. In addition, CO2 enrichment increased foliar malate, malonate and fumarate concentrations in the supra-optimal temperature treatment, thereby mitigating effects of high temperature on respiratory metabolism. Glycerate, which functions in the photorespiratory pathway, decreased in response to CO2 enrichment at both growth temperatures. The above findings suggested that diminished levels of organic acids in soybean leaflets upon exposure to high growth temperatures were attributable to metabolic impairment and to changes of photorespiratory flux. Leaf development rates differed among temperature and CO2 treatments, which affected foliar organic acid levels. Additionally, we report that large decreases of foliar organic acids in response to elevated growth temperatures were observed in legume species.

  4. Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Lignos, G.D.; Bakker, R.R.C.; Koukios, E.G.

    2012-01-01

    The objective of this work was to investigate the feasibility of combining low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis for the high production of fermentable substrates and the low release of inhibitory compounds. For most of the pretreatments at 160

  5. Amino acid substitutions of Na,K-ATPase conferring decreased sensitivity to cardenolides in insects compared to mammals

    NARCIS (Netherlands)

    Dalla, S.; Swarts, H.G.P.; Koenderink, J.B.; Dobler, S.

    2013-01-01

    Mutagenesis analyses and a recent crystal structure of the mammalian Na,K-ATPase have identified amino acids which are responsible for high affinity binding of cardenolides (such as ouabain) which at higher doses block the enzyme in the phosphorylated state. Genetic analysis of the Na,K-ATPase of in

  6. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women

    NARCIS (Netherlands)

    Salazar, N.; Dewulf, E.M.; Neyrinck, A.M.; Bindels, L.B.; Cani, P.D.; Mahillon, J.; Vos, de W.M.; Thissen, J.P.; Gueimonde, M.; Reyes-Gavilán, de los C.G.; Delzenne, N.M.

    2015-01-01

    Background & aims : Inulin-type fructans (ITF) prebiotics promote changes in the composition and activity of the gut microbiota. The aim of this study was to determine variations on fecal short chain fatty acids (SCFA) concentration in obese women treated with ITF and to explore associations bet

  7. 降低精对苯二甲酸溶剂系统醋酸消耗的研究%Research and Implementation of Decreasing the Acetic Acid Consumption in Purified Terephthalic Acid Solvent System

    Institute of Scientific and Technical Information of China (English)

    徐圆; 朱群雄

    2008-01-01

    Decreasing the acetic acid consumption in purified terephthalic acid(PTA) solvent system has become a hot issue with common concern.In accordance with the technical features.the electrical conductivity is in direct proportion to the acetic acid content.General regression neural network(GRNN)is used to establish the model of electrical conductivity on the basis of mechanism analysis,and then particle swarm optimization (PSO)algorithm with the improvement of mertia weight and population diversity is proposed to regulate the operatmg conditions.Thus.the method of decreasing the acid lossS is derived and applied to PTA solvent system in a chemical plant.Cases studies show that the precision of modeling and optimization are higher.The results also provide the optimal operating conditions,which decrease the cost and improve the profit.

  8. Maslinic acid-enriched diet decreases intestinal tumorigenesis in Apc(Min/+ mice through transcriptomic and metabolomic reprogramming.

    Directory of Open Access Journals (Sweden)

    Susana Sánchez-Tena

    Full Text Available Chemoprevention is a pragmatic approach to reduce the risk of colorectal cancer, one of the leading causes of cancer-related death in western countries. In this regard, maslinic acid (MA, a pentacyclic triterpene extracted from wax-like coatings of olives, is known to inhibit proliferation and induce apoptosis in colon cancer cell lines without affecting normal intestinal cells. The present study evaluated the chemopreventive efficacy and associated mechanisms of maslinic acid treatment on spontaneous intestinal tumorigenesis in Apc(Min/+ mice. Twenty-two mice were randomized into 2 groups: control group and MA group, fed with a maslinic acid-supplemented diet for six weeks. MA treatment reduced total intestinal polyp formation by 45% (P<0.01. Putative molecular mechanisms associated with suppressing intestinal polyposis in Apc(Min/+ mice were investigated by comparing microarray expression profiles of MA-treated and control mice and by analyzing the serum metabolic profile using NMR techniques. The different expression phenotype induced by MA suggested that it exerts its chemopreventive action mainly by inhibiting cell-survival signaling and inflammation. These changes eventually induce G1-phase cell cycle arrest and apoptosis. Moreover, the metabolic changes induced by MA treatment were associated with a protective profile against intestinal tumorigenesis. These results show the efficacy and underlying mechanisms of MA against intestinal tumor development in the Apc(Min/+ mice model, suggesting its chemopreventive potential against colorectal cancer.

  9. Oleogels, A Promising Structured Oils For Decreasing Saturated Fatty Acid Concentrations: Production and Food-Based Applications.

    Science.gov (United States)

    PehlivanoĞlu, Halime; Demirci, Mehmet; Toker, Omer Said; Konar, Nevzat; Karasu, Salih; Sagdic, Osman

    2016-11-10

    Oils and fats are widely used in the food formulations in order to improve nutritional and some quality characteristics of food products. Solid fats produced from oils by hydrogenization, interesterification and fractionation processes are widely used in different foodstuffs for these aims. In recent years, consumer awareness of relation between diet and health has increased which can cause worry about solid fat including products in terms of their high saturated fatty acid and trans fatty acid contents. Therefore, different attempts have been carried out to find alternative ways to produce solid fat with low saturated fatty acid content. One of the promising way is using oleogels, structuring oils with oleogelators. In this review, history, raw materials and production methods of the oleogels and their functions in oleogel quality were mentioned. Moreover, studies related with oleogel usage in different products were summarized and positive and negative aspects of oleogel were also mentioned. Considering the results of the related studies, it can be concluded that oleogels can be used in the formulation of bakery products, breakfast spreads, margarines, chocolates and chocolate-derived products and some of the meat products.

  10. Capsaicin, nonivamide and trans-pellitorine decrease free fatty acid uptake without TRPV1 activation and increase acetyl-coenzyme A synthetase activity in Caco-2 cells.

    Science.gov (United States)

    Rohm, Barbara; Riedel, Annett; Ley, Jakob P; Widder, Sabine; Krammer, Gerhard E; Somoza, Veronika

    2015-01-01

    Red pepper and its major pungent component, capsaicin, have been associated with hypolipidemic effects in rats, although mechanistic studies on the effects of capsaicin and/or structurally related compounds on lipid metabolism are scarce. In this work, the effects of capsaicin and its structural analog nonivamide, the aliphatic alkamide trans-pellitorine and vanillin as the basic structural element of all vanilloids on the mechanisms of intestinal fatty acid uptake in differentiated intestinal Caco-2 cells were studied. Capsaicin and nonivamide were found to reduce fatty acid uptake, with IC₅₀ values of 0.49 μM and 1.08 μM, respectively. trans-Pellitorine was shown to reduce fatty acid uptake by 14.0±2.14% at 100 μM, whereas vanillin was not effective, indicating a pivotal role of the alkyl chain with the acid amide group in fatty acid uptake by Caco-2 cells. This effect was associated neither with the activation of the transient receptor potential cation channel subfamily V member 1 (TRPV1) or the epithelial sodium channel (ENaC) nor with effects on paracellular transport or glucose uptake. However, acetyl-coenzyme A synthetase activity increased (p<0.05) in the presence of 10 μM capsaicin, nonivamide or trans-pellitorine, pointing to an increased fatty acid biosynthesis that might counteract the decreased fatty acid uptake.

  11. Fish Oil N-3 Fatty Acids Increase Adiponectin and Decrease Leptin Levels in Patients with Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Marcell Alysson Batisti Lozovoy

    2015-02-01

    Full Text Available Cardiovascular disease (CVD has emerged as an important cause of death in patients with systemic lupus erythematosus (SLE. Reduced adiponectin and elevated leptin levels may contribute to CVD in SLE patients. The purpose of this study was to verify the effects of fish oil (FO on adiponectin and leptin in patients with SLE. Biochemical and disease activity analysis were performed. Patients with SLE were divided in two groups: patients who used fish oil for four months and patients who did not use fish oil. Patients with SLE who used FO had a significant decrease in SLE disease activity index (SLEDAI score (p ˂ 0.023 in relation to baseline. SLE patients who used fish oil had increased adiponectin levels (p ˂ 0.026 and decreased leptin levels (p ˂ 0.024 compared to baseline values, whereas there were no differences in adiponectin and leptin levels in patients with SLE who did not use fish oil. In conclusion, the findings of increased serum adiponectin an decreased leptin levels after 120 days in the fish oil group, reinforce the importance of evaluating prospective studies of fish and fish oil fish ingestion on these adipokines in an attempt to decrease cardiovascular risk factors in patients with SLE.

  12. Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development.

    Science.gov (United States)

    Park, Jung-Hyun; Jin, Yoon Mi; Hwang, Soojin; Cho, Du-Hyong; Kang, Duk-Hee; Jo, Inho

    2013-08-01

    The elevated level of uric acid in the body is associated with increased risk of cardiovascular diseases, which is mediated by endothelial dysfunction. However, its underlying mechanism is not fully understood, although dysregulation of endothelial nitric oxide (NO) production is likely to be involved. Using human umbilical vascular endothelial cells (HUVEC), we explored the molecular mechanism of uric acid on endothelial NO synthase (eNOS) activity and NO production. Although high dose of uric acid (12mg/dl for 24h treatment) significantly decreased eNOS activity and NO production, it did not alter eNOS expression and phosphorylations at eNOS-Ser(1177), eNOS-Thr(495) and eNOS-Ser(114). Under this condition, we also found no alterations in the dimerization and acetylation of eNOS, compared with the control. Furthermore, uric acid did not change the activity of arginase II, an enzyme degrading l-arginine, a substrate of eNOS, and intracellular level of calcium, a cofactor for eNOS activation. We also found that uric acid did not alter xanthine oxidase activity, suggesting no involvement of xanthine oxidase-derived O2(-) production in the observed inhibitory effects. In vitro and in cell coimmunoprecipitation studies, however, revealed that uric acid significantly decreased the interaction between eNOS and calmodulin (CaM), an eNOS activator, although it did not change the intracellular CaM level. Like in HUVEC, uric acid also decreased eNOS-CaM interaction in bovine aortic EC. Finally, uric acid attenuated ionomycin-induced increase in the interaction between eNOS and CaM. This study suggests firstly that uric acid decreased eNOS activity and NO production through reducing the binding between eNOS and CaM in EC. Our result may provide molecular mechanism by which uric acid induces endothelial dysfunction.

  13. Bisphenol A alters n-6 fatty acid composition and decreases antioxidant enzyme levels in rat testes: a LC-QTOF-based metabolomics study.

    Directory of Open Access Journals (Sweden)

    Minjian Chen

    Full Text Available BACKGROUND: Male reproductive toxicity induced by exposure to bisphenol A (BPA has been widely reported. The testes have proven to be a major target organ of BPA toxicity, so studying testicular metabolite variation holds promise for the discovery of mechanisms linked to the toxic effects of BPA on reproduction. METHODOLOGY/PRINCIPAL FINDINGS: Male Sprague-Dawley rats were orally administered doses of BPA at the levels of 0, 50 mg/kg/d for 8 weeks. We used an unbiased liquid chromatography-quadrupole time-of-flight (LC-QTOF-based metabolomics approach to discover, identify, and analyze the variation of testicular metabolites. Two n-6 fatty acids, linoleic acid (LA and arachidonic acid (AA were identified as potential testicular biomarkers. Decreased levels of LA and increased levels of AA as well as AA/LA ratio were observed in the testes of the exposed group. According to these suggestions, testicular antioxidant enzyme levels were detected. Testicular superoxide dismutase (SOD declined significantly in the exposed group compared with that in the non-exposed group, and the glutathione peroxidase (GSH-Px as well as catalase (CAT also showed a decreasing trend in BPA treated group. CONCLUSIONS/SIGNIFICANCE: BPA caused testicular n-6 fatty acid composition variation and decreased antioxidant enzyme levels. This study emphasizes that metabolomics brings the promise of biomarkers identification for the discovery of mechanisms underlying reproductive toxicity.

  14. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate.

    Science.gov (United States)

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A

    2016-12-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures.

  15. A novel highly potent autotaxin/ENPP2 inhibitor produces prolonged decreases in plasma lysophosphatidic acid formation in vivo and regulates urethral tension.

    Directory of Open Access Journals (Sweden)

    Hiroshi Saga

    Full Text Available Autotaxin, also known as ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2, is a secreted enzyme that has lysophospholipase D activity, which converts lysophosphatidylcholine to bioactive lysophosphatidic acid. Lysophosphatidic acid activates at least six G-protein coupled recpetors, which promote cell proliferation, survival, migration and muscle contraction. These physiological effects become dysfunctional in the pathology of cancer, fibrosis, and pain. To date, several autotaxin/ENPP2 inhibitors have been reported; however, none were able to completely and continuously inhibit autotaxin/ENPP2 in vivo. In this study, we report the discovery of a highly potent autotaxin/ENPP2 inhibitor, ONO-8430506, which decreased plasma lysophosphatidic acid formation. The IC50 values of ONO-8540506 for lysophospholipase D activity were 6.4-19 nM for recombinant autotaxin/ENPP2 proteins and 4.7-11.6 nM for plasma from various animal species. Plasma lysophosphatidic acid formation during 1-h incubation was almost completely inhibited by the addition of >300 nM of the compound to human plasma. In addition, when administered orally to rats at a dose of 30 mg/kg, the compound demonstrated good pharmacokinetics in rats and persistently inhibited plasma lysophosphatidic acid formation even at 24 h after administration. Smooth muscle contraction is a known to be promoted by lysophosphatidic acid. In this study, we showed that dosing rats with ONO-8430506 decreased intraurethral pressure accompanied by urethral relaxation. These findings demonstrate the potential of this autotaxin/ENPP2 inhibitor for the treatment of various diseases caused by lysophosphatidic acid, including urethral obstructive disease such as benign prostatic hyperplasia.

  16. Maslinic Acid-Enriched Diet Decreases Intestinal Tumorigenesis in ApcMin/+ Mice through Transcriptomic and Metabolomic Reprogramming

    Science.gov (United States)

    Sánchez-Tena, Susana; Reyes-Zurita, Fernando J.; Díaz-Moralli, Santiago; Vinardell, Maria Pilar; Reed, Michelle; García-García, Francisco; Dopazo, Joaquín; Lupiáñez, José A.; Günther, Ulrich; Cascante, Marta

    2013-01-01

    Chemoprevention is a pragmatic approach to reduce the risk of colorectal cancer, one of the leading causes of cancer-related death in western countries. In this regard, maslinic acid (MA), a pentacyclic triterpene extracted from wax-like coatings of olives, is known to inhibit proliferation and induce apoptosis in colon cancer cell lines without affecting normal intestinal cells. The present study evaluated the chemopreventive efficacy and associated mechanisms of maslinic acid treatment on spontaneous intestinal tumorigenesis in ApcMin/+ mice. Twenty-two mice were randomized into 2 groups: control group and MA group, fed with a maslinic acid–supplemented diet for six weeks. MA treatment reduced total intestinal polyp formation by 45% (P<0.01). Putative molecular mechanisms associated with suppressing intestinal polyposis in ApcMin/+ mice were investigated by comparing microarray expression profiles of MA-treated and control mice and by analyzing the serum metabolic profile using NMR techniques. The different expression phenotype induced by MA suggested that it exerts its chemopreventive action mainly by inhibiting cell-survival signaling and inflammation. These changes eventually induce G1-phase cell cycle arrest and apoptosis. Moreover, the metabolic changes induced by MA treatment were associated with a protective profile against intestinal tumorigenesis. These results show the efficacy and underlying mechanisms of MA against intestinal tumor development in the ApcMin/+ mice model, suggesting its chemopreventive potential against colorectal cancer. PMID:23527181

  17. Omega-3 fatty acids decreased irritability of patients with bipolar disorder in an add-on, open label study

    Directory of Open Access Journals (Sweden)

    Baldassano Claudia F

    2005-02-01

    Full Text Available Abstract This is a report on a 37-patient continuation study of the open ended, Omega-3 Fatty Acid (O-3FA add-on study. Subjects consisted of the original 19 patients, along with 18 new patients recruited and followed in the same fashion as the first nineteen. Subjects carried a DSM-IV-TR diagnosis of Bipolar Disorder and were visiting a Mood Disorder Clinic regularly through the length of the study. At each visit, patients' clinical status was monitored using the Clinical Monitoring Form. Subjects reported on the frequency and severity of irritability experienced during the preceding ten days; frequency was measured by way of percentage of days in which subjects experienced irritability, while severity of that irritability was rated on a Likert scale of 1 – 4 (if present. The irritability component of Young Mania Rating Scale (YMRS was also recorded quarterly on 13 of the 39 patients consistently. Patients had persistent irritability despite their ongoing pharmacologic and psychotherapy. Omega-3 Fatty Acid intake helped with the irritability component of patients suffering from bipolar disorder with a significant presenting sign of irritability. Low dose (1 to 2 grams per day, add-on O-3FA may also help with the irritability component of different clinical conditions, such as schizophrenia, borderline personality disorder and other psychiatric conditions with a common presenting sign of irritability.

  18. Alleviating effects of exogenous salicylic acid on antioxidative physiological characters of Phalaenopsis under low temperature stress%外源水杨酸对低温胁迫下蝴蝶兰的缓解效应及其抗氧化生理特征变化

    Institute of Scientific and Technical Information of China (English)

    陈丹; 王丹; 孙丽; 张艳嫣; 黄冲平

    2014-01-01

    recovery growth,to determine the changes of antioxidative enzyme activities and key indicators of photosynthetic system. Five different cultivars of Phalaenopsis (“Hunyan”“Dalajiao”“Tianjiao”“Tianxianggongzhu” and “V31”) were foliar sprayed with a series of SA concentrations (0,0.2,0.4,0.6,0.8 mmol/L).After foliar application,the plants were transferred to a growth chamber treated at low temperature(LT)of 1 1 ℃/6 ℃(day/night)for 3 days and then to recover growth at regular temperature 27 ℃ /22 ℃ (day/night)for 7 days.The changes of antioxidant system and photosynthetic system in Phalaenopsis leaves were tested. The results showed that the foliar spray of SA could obviously alleviate the negative effects of LT stress.In this study,the best concentration of SA was from 0.4 to 0.6 mmol/L.Appropriate concentrations of SA could significantly increase the chlorophyll content,Fv/Fm,superoxide dismutase (SOD) activity,ascorbic acid (AsA) and glutathione (GSH) contents and improve the chilling tolerance of Phalaenopsis .The activity of ascorbate peroxidase(APX) and soluble sugar content were decreased in most of LT stress treatments.After LT stress, exogenous SA could promote the plant growth.After 7 days recovery growth,application of 0.6 mmol/L SA increased SOD and APX activities,chlorophyll content and Fv/Fm,and decreased AsA and GSH contents.The treatment enhanced the photosynthetic and antioxidant capacity of the plants. These results indicated that the application of appropriate concentration of SA can improve the LT tolerance of Phalaenopsis .Compared the different varieties of Phalaenopsis ,it is concluded that the variety “Huanyan” is of strong LT tolerance and more sensitive and effective to SA application.

  19. Dietary unsaturated fatty acids increase plasma glucagon-like peptide-1 and cholecystokinin and may decrease premeal ghrelin in lactating dairy cows.

    Science.gov (United States)

    Bradford, B J; Harvatine, K J; Allen, M S

    2008-04-01

    Previous reports have indicated that dietary unsaturated fat can decrease energy intake of lactating dairy cattle. However, the mechanism for this response is unclear. To evaluate the potential role of gut peptides, periprandial concentrations of cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), and ghrelin were measured. From a replicated 4 x 4 Latin square experiment, 4 cows from a single square were selected for analysis of responses to 3 treatments: a control diet (5.5% total fatty acids, 65% unsaturated), a diet with added saturated fat (SAT, 8.3% fatty acids, 47% unsaturated), and a diet with added unsaturated fat (UNS, 7.8% fatty acids, 63% unsaturated). The SAT treatment increased duodenal flow of saturated fatty acids compared with UNS and control and, despite the fact that ruminal biohydrogenation altered fatty acid profiles of digesta, UNS increased duodenal flow of unsaturated fatty acids compared with SAT and control. Blood samples were collected at 8-min intervals through the first 2 meals of the day and analyzed by commercial radioimmunoassays. The UNS treatment increased plasma CCK concentration relative to SAT and control, and increased plasma GLP-1 concentration compared with control. Furthermore, fat treatments tended to suppress the prandial ghrelin surge that was evident for control. Suppression of feed intake by unsaturated fats is likely mediated in part by increased secretion of CCK and GLP-1, and dietary fat may also inhibit ghrelin release before conditioned meals.

  20. Decreased mental time travel to the past correlates with default-mode network disintegration under lysergic acid diethylamide.

    Science.gov (United States)

    Speth, Jana; Speth, Clemens; Kaelen, Mendel; Schloerscheidt, Astrid M; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2016-04-01

    This paper reports on the effects of LSD on mental time travel during spontaneous mentation. Twenty healthy volunteers participated in a placebo-controlled crossover study, incorporating intravenous administration of LSD (75 μg) and placebo (saline) prior to functional magnetic resonance imaging (fMRI). Six independent, blind judges analysed mentation reports acquired during structured interviews performed shortly after the functional magnetic resonance imaging (fMRI) scans (approximately 2.5 h post-administration). Within each report, specific linguistic references to mental spaces for the past, present and future were identified. Results revealed significantly fewer mental spaces for the past under LSD and this effect correlated with the general intensity of the drug's subjective effects. No differences in the number of mental spaces for the present or future were observed. Consistent with the previously proposed role of the default-mode network (DMN) in autobiographical memory recollection and ruminative thought, decreased resting-state functional connectivity (RSFC) within the DMN correlated with decreased mental time travel to the past. These results are discussed in relation to potential therapeutic applications of LSD and related psychedelics, e.g. in the treatment of depression, for which excessive reflection on one's past, likely mediated by DMN functioning, is symptomatic.

  1. L-FABP T94A decreased fatty acid uptake and altered hepatic triglyceride and cholesterol accumulation in Chang liver cells stably transfected with L-FABP.

    Science.gov (United States)

    Gao, Na; Qu, Xia; Yan, Jin; Huang, Qi; Yuan, Hao-Yong; Ouyang, Dong-Sheng

    2010-12-01

    Liver fatty acid-binding protein (L-FABP, FABP1) is a highly conserved key factor in lipid metabolism. This study was undertaken to verify whether the T94A mutation in the L-FABP gene affects fatty acid uptake and intracellular esterification into specific lipid pools. Candidate SNPs were recreated using site-directed mutagenesis and tested for physical function in stably transfected Chang liver cell lines. We found that the T94A mutant of L-FABP lowered FFA uptake but had no effect on FFA efflux. L-FABP T94A-expressing cells showed decreased triglyceride content and increased cholesterol accumulation compared to the wild-type control for cells incubated with an FFA mixture (oleate: palmitate, 2:1 ratio). In conclusion, our study provided additional indications of the functional relevance of the L-FABP T94A SNP in hepatic fatty acid and lipid metabolism in humans.

  2. Omega-3 Polyunsaturated Fatty Acids Inhibited Tumor Growth via Preventing the Decrease of Genomic DNA Methylation in Colorectal Cancer Rats.

    Science.gov (United States)

    Huang, Qionglin; Wen, Juan; Chen, Guangzhao; Ge, Miaomiao; Gao, Yihua; Ye, Xiaoxia; Liu, Chunan; Cai, Chun

    2016-01-01

    Omge-3 polyunsaturated fatty acids (PUFAs) exhibited significant effect in inhibiting various tumors. However, the mechanisms of its anticancer role have not been fully demonstrated. The declination of 5-methylcytosine (5 mC) was closely associated with poor prognosis of tumors. To explore whether omega-3 PUFAs influences on DNA methylation level in tumors, colorectal cancer (CRC) rat model were constructed using N-methyl phosphite nitrourea and omega-3 PUFAs were fed to part of the rats during tumor induction. The PUFAs contents in the rats of 3 experimental groups were measured using gas chromatography and 5 mC level were detected by liquid chromatography tandem mass spectrometry. The results showed that tumor incidence in omega-3 treated rats was much lower than in CRC model rats, which confirmed significant antitumor role of omega-3 PUFAs. Six PUFA members categorized to omega-3 and omega-6 families were quantified and the ratio of omega-6/omega-3 PUFAs was remarkably lower in omega-3 PUFAs treatment group than in CRC model group. 5 mC content in omega-3 PUFAs treated rats was higher than in CRC model rats, suggesting omega-3 PUFAs promoted 5 mC synthesis. Therefore, omega-3 PUFAs probably inhibited tumor growth via regulating DNA methylation process, which provided a novel anticancer mechanism of omega-3 PUFAs from epigenetic view.

  3. Manganese accumulation in membrane fractions of primary astrocytes is associated with decreased γ-aminobutyric acid (GABA) uptake, and is exacerbated by oleic acid and palmitate.

    Science.gov (United States)

    Fordahl, Steve C; Erikson, Keith M

    2014-05-01

    Manganese (Mn) exposure interferes with GABA uptake; however, the effects of Mn on GABA transport proteins (GATs) have not been identified. We sought to characterize how Mn impairs GAT function in primary rat astrocytes. Astrocytes exposed to Mn (500 μM) had significantly reduced (3)H-GABA uptake despite no change in membrane or cytosolic GAT3 protein levels. Co-treatment with 100 μM oleic or palmitic acids (both known to be elevated in Mn neurotoxicity), exacerbated the Mn-induced decline in (3)H-GABA uptake. Mn accumulation in the membrane fraction of astrocytes was enhanced with fatty acid administration, and was negatively correlated with (3)H-GABA uptake. Furthermore, control cells exposed to Mn only during the experimental uptake had significantly reduced (3)H-GABA uptake, and the addition of GABA (50 μM) blunted cytosolic Mn accumulation. These data indicate that reduced GAT function in astrocytes is influenced by Mn and fatty acids accumulating at or interacting with the plasma membrane.

  4. Locked nucleic acid-inhibitor of miR-205 decreases endometrial cancer cells proliferation in vitro and in vivo.

    Science.gov (United States)

    Torres, Anna; Kozak, Joanna; Korolczuk, Agnieszka; Rycak, Dominika; Wdowiak, Paulina; Maciejewski, Ryszard; Torres, Kamil

    2016-11-08

    Pathogenesis of endometrial cancer has been connected with alterations of microRNA expression and in particular miR-205 up-regulation was consistently reported in this carcinoma. Presented study aimed to investigate if inhibition of miR-205 expression using LNA-modified-nucleotide would attenuate endometrial cancer cells proliferation in vitro and in vivo.In the course of the study we found that the proliferation of endometrial cancer cells (HEC-1-B, RL-95, KLE, Ishikawa) transfected with LNA-miR-205-inhibitor and evaluated using real time cell monitoring as well as standard cell proliferation assay, was significantly decreased. Next, LNA-miR-205-inhibitor was used to assess the in vivo effects of miR-205 inhibition of endometrial cancer growth. Cby.Cg-Foxn1/cmdb mice bearing endometrial cancer xenografts were intraperitoneally injected with nine dosages of 25mg/kg of miR-205-LNA-inhibitor or scramble control or phosphatase buffered saline and were observed for 32 days. We found that systemic administration of miR-205-LNA-inhibitor was technically possible, and exerted inhibitory effect on endometrial cancer xenograft growth in vivo with only mild toxic effects in treated animals.In conclusion our results suggest that systemic delivery of miR-205-LNA-inhibitor is feasible, devoid of significant toxicity, and could be a promising treatment strategy for endometrial cancer. Therefore it warrants further studies in other animal models.

  5. Alleviating energy poverty: Indian experience

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Garima

    2010-09-15

    Energy services play an important role in human welfare. India faces acute energy poverty indicating lack of access of clean energy fuels. Access to electricity is limited to 56% households in India and about 89% of rural households depend on polluting energy sources. Energy poverty impacts income poverty as poor find it difficult to acquire high priced cleaner fuels. It also adversely impacts the socio economic conditions of women. The paper highlights the linkage of energy poverty with income poverty and gender inequality. It analyses measures taken to alleviate energy poverty and recommends regulatory and policy measures as way forward.

  6. Adipocyte Accumulation of Long-Chain Fatty Acids in Obesity is Multifactorial, Resulting from Increased Fatty Acid Uptake and Decreased Activity of Genes Involved in Fat Utilization

    Science.gov (United States)

    Walewski, José L.; Ge, Fengxia; Gagner, Michel; Inabnet, William B.; Pomp, Alfons; Branch, Andrea D.

    2010-01-01

    Background The obesity epidemic causes significant morbidity and mortality. Knowledge of cellular function and gene expression in obese adipose tissue will yield insights into obesity pathogenesis and suggest therapeutic targets. The aim of this work is to study the processes determining fat accumulation in adipose tissue from obese patients. Methods Omental fat was collected from two cohorts of obese bariatric surgery patients and sex-matched normal-weight donors. Isolated adipocytes were compared for cell size, volume, and long-chain fatty acid (LCFA) uptake. Omental fat RNAs were screened by 10K microarray (cohort 1: three obese, three normal) or Whole Genome microarray (cohort 2: seven obese, four normal). Statistical differences in gene and pathway expression were identified in cohort 1 using the GeneSifter Software (Geospiza) with key results confirmed in cohort 2 samples by microarray, quantitative real-time polymerase chain reaction, and pathway analysis. Results Obese omental adipocytes had increased surface area, volume, and Vmax for saturable LCFA uptake. Dodecenoyl-coenzyme A delta isomerase, central to LCFA metabolism, was approximately 1.6-fold underexpressed in obese fat in cohorts 1 and 2. Additionally, the Kyoto Encyclopedia of Genes and Genomics pathway analysis identified oxidative phosphorylation and fatty acid metabolism pathways as having coordinate, nonrandom down-regulation of gene expression in both cohorts. Conclusions In obese omental fat, saturable adipocyte LCFA uptake was greater than in controls, and expression of key genes involved in lipolysis, β-oxidation, and metabolism of fatty acids was reduced. Thus, both increased uptake and reduced metabolism of LCFAs contribute to the accumulation of LCFAs in obese adipocytes. PMID:19866242

  7. Dietary Caprylic Acid (C8:0) Does Not Increase Plasma Acylated Ghrelin but Decreases Plasma Unacylated Ghrelin in the Rat.

    Science.gov (United States)

    Lemarié, Fanny; Beauchamp, Erwan; Dayot, Stéphanie; Duby, Cécile; Legrand, Philippe; Rioux, Vincent

    2015-01-01

    Focusing on the caprylic acid (C8:0), this study aimed at investigating the discrepancy between the formerly described beneficial effects of dietary medium chain fatty acids on body weight loss and the C8:0 newly reported effect on food intake via ghrelin octanoylation. During 6 weeks, Sprague-Dawley male rats were fed with three dietary C8:0 levels (0, 8 and 21% of fatty acids) in three experimental conditions (moderate fat, caloric restriction and high fat). A specific dose-response enrichment of the stomach tissue C8:0 was observed as a function of dietary C8:0, supporting the hypothesis of an early preduodenal hydrolysis of medium chain triglycerides and a direct absorption at the gastric level. However, the octanoylated ghrelin concentration in the plasma was unchanged in spite of the increased C8:0 availability. A reproducible decrease in the plasma concentration of unacylated ghrelin was observed, which was consistent with a decrease in the stomach preproghrelin mRNA and stomach ghrelin expression. The concomitant decrease of the plasma unacylated ghrelin and the stability of its acylated form resulted in a significant increase in the acylated/total ghrelin ratio which had no effect on body weight gain or total dietary consumption. This enhanced ratio measured in rats consuming C8:0 was however suspected to increase (i) growth hormone (GH) secretion as an increase in the GH-dependent mRNA expression of the insulin like growth Factor 1 (IGF-1) was measured (ii) adipocyte diameters in subcutaneous adipose tissue without an increase in the fat pad mass. Altogether, these results show that daily feeding with diets containing C8:0 increased the C8:0 level in the stomach more than all the other tissues, affecting the acylated/total ghrelin plasma ratio by decreasing the concentration of circulating unacylated ghrelin. However, these modifications were not associated with increased body weight or food consumption.

  8. High dietary consumption of trans fatty acids decreases brain docosahexaenoic acid but does not alter amyloid-beta and tau pathologies in the 3xTg-AD model of Alzheimer's disease.

    Science.gov (United States)

    Phivilay, A; Julien, C; Tremblay, C; Berthiaume, L; Julien, P; Giguère, Y; Calon, F

    2009-03-03

    Dietary consumption of trans fatty acids (TFA) has increased during the 20th century and is a suspected risk factor for cardiovascular diseases. More recently, high TFA intake has been associated with a higher risk of developing Alzheimer's disease (AD). To investigate the impact of TFA on an animal model genetically programmed to express amyloid-beta (Abeta) and tau pathological markers of AD, we have fed 3xTg-AD mice with either control (0% TFA/total fatty acid), high TFA (16% TFA) or very high TFA (43% TFA) isocaloric diets from 2 to 16 months of age. Effects of TFA on plasma hepatic enzymes, glucose and lipid profile were minimal but very high TFA intake decreased visceral fat of non-transgenic mice. Importantly, dietary TFA increased brain TFA concentrations in a dose-related manner. Very high TFA consumption substantially modified the brain fatty acid profile by increasing mono-unsaturated fatty acids and decreasing polyunsaturated fatty acids (PUFA). Very high TFA intake induced a shift from docosahexaenoic acid (DHA, 22:6n-3) toward n-6 docosapentaenoic acid (DPA, 22:5n-6) without altering the n-3:n-6 PUFA ratio in the cortex of both control and 3xTg-AD mice. Changes in levels of Abeta(40), Abeta(42), tau protein, phosphorylated tau protein and synaptic markers were not statistically significant in the three groups of 3xTg-AD mice, despite a trend toward decreased insoluble tau in very high TFA-fed 3xTg-AD animals. In summary, TFA intake modulated brain fatty acid profiles but had no significant effect on major brain neuropathological hallmarks of AD in an animal model.

  9. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition

    Science.gov (United States)

    Driscoll, Charles T.; Driscoll, Kimberley M.; Fakhraei, Habibollah; Civerolo, Kevin

    2016-12-01

    We examined the response of lake water chemistry in the Adirondack Mountains of New York State, USA to decreases in acid deposition. Striking declines in the concentrations and fluxes of sulfate and hydrogen ion in wet deposition have been observed since the late 1970s, while significant decreases in nitrate have been evident since the early 2000s. Decreases in estimated dry sulfur and nitrate deposition have also occurred in the Adirondacks, but with no change in dry to wet deposition ratios. These patterns follow long-term decreases in anthropogenic emissions of sulfur dioxide and nitrogen oxides in the U.S. over the same interval. All of the 48 lakes monitored through the Adirondack Long-Term Monitoring program since 1992 have exhibited significant declines in sulfate concentrations, consistent with reductions in atmospheric deposition of sulfur. Nitrate concentrations have also significantly diminished at variable rates in many (33 of 48) lakes. Decreases in concentrations of sulfate plus nitrate (48 of 48) in lakes have driven widespread increases in acid neutralizing capacity (ANC; 42 of 48) and lab pH (33 of 48), and decreases in the toxic fraction, inorganic monomeric Al (45 of 48). Coincident with decreases in acid deposition, concentrations of dissolved organic carbon (DOC) have also increased in some (29 of 48) lakes. While recovery from elevated acid deposition is evident across Adirondack lakes, highly sensitive and impacted mounded seepages lakes and thin till drainage lakes are recovering most rapidly. Future research might focus on how much additional recovery could be achieved given the current deposition relative to future deposition anticipated under the Clean Power Plan, ecosystem effects of increased mobilization of dissolved organic matter, and the influence of changing climate on recovery from acidification.

  10. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Weiti; Gao, Cunyi; Fang, Peng [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Lin, Guoqing [Laboratory Center of Life Sciences, Co. Laboratory of Nanjing Agricultural University and Carl Zeiss Far East, Nanjing Agricultural University, Nanjing 210095 (China); Shen, Wenbiao, E-mail: wbshenh@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2013-09-15

    Highlights: • HRW can alleviate Cd-induced alfalfa seedling growth inhibition and DNA laddering. • HRW alleviates Cd-induced oxidative stress by activating antioxidant enzymes. • Cd uptake in alfalfa seedling roots was decreased by HRW. • HRW can re-establish glutathione homeostasis under Cd stress. -- Abstract: Hydrogen gas (H{sub 2}) induces plant tolerance to several abiotic stresses, including salinity and paraquat exposure. However, the role of H{sub 2} in cadmium (Cd)-induced stress amelioration is largely unknown. Here, pretreatment with hydrogen-rich water (HRW) was used to characterize physiological roles and molecular mechanisms of H{sub 2} in the alleviation of Cd toxicity in alfalfa plants. Our results showed that the addition of HRW at 10% saturation significantly decreased contents of thiobarbituric acid reactive substances (TBARS) caused by Cd, and inhibited the appearance of Cd toxicity symptoms, including the improvement of root elongation and seedling growth. These responses were related to a significant increase in the total or isozymatic activities of representative antioxidant enzymes, or their corresponding transcripts. In vivo imaging of reactive oxygen species (ROS), and the detection of lipid peroxidation and the loss of plasma membrane integrity provided further evidence for the ability of HRW to improve Cd tolerance significantly, which was consistent with a significant enhancement of the ratio of reduced/oxidized (homo)glutathione ((h)GSH). Additionally, plants pretreated with HRW accumulated less amounts of Cd. Together, this study suggested that the usage of HRW could be an effective approach for Cd detoxification and could be explored in agricultural production systems.

  11. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.

    Science.gov (United States)

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-08

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.

  12. Alleviating versus stimulating effects of bicarbonate on the growth of Vallisneria natans under ammonia stress.

    Science.gov (United States)

    Dou, Yanyan; Wang, Baozhong; Chen, Liangyan; Yin, Daqiang

    2013-08-01

    Bicarbonate plays a crucial role in limiting the growth of submersed aquatic macrophytes in eutrophic lakes, and high ammonia is often toxic to macrophytes. In order to evaluate the combined effect of HCO3 (-) and total ammonia (i.e., the total of NH3 and NH4 (+)) on submersed macrophytes Vallisneria natans, the growth and physiological response of V. natans in the presence of HCO3 (-) and ammonia were studied. The results showed that with the increase of ammonia, morphological parameters of V. natans declined. In contrast, increased HCO3 (-) concentration stimulated the growth of V. natans, especially when the NH4 (+)-N/NO3 (-)-N ratio was 1:7. High ammonia concentration induced excess free amino acids (FAA) accumulation and soluble carbohydrates (SC) depletion in plant tissues. However, the elevated HCO3 (-) promoted the synthesis of SC and rendered the decrease of FAA/SC ratio. The results also suggested that HCO3 (-) could partially alleviate the stress of ammonia, as evidenced by the decrease of FAA/SC ratio and the growth enhancement of V. natans when the ammonia concentration was 0.58 mg L(-1). Given the fact that HCO3 (-) is probably the dominant available carbon source in most eutrophic lakes, the ability of V. natans to use HCO3 (-) for SC synthesis may explain the alleviating effect of HCO3 (-) on V. natans under ammonia stress.

  13. Chronic postnatal administration of methylmalonic acid provokes a decrease of myelin content and ganglioside N-acetylneuraminic acid concentration in cerebrum of young rats

    Directory of Open Access Journals (Sweden)

    Brusque A.M.

    2001-01-01

    Full Text Available Levels of methylmalonic acid (MMA comparable to those of human methylmalonic acidemia were achieved in blood (2-2.5 mmol/l and brain (1.35 µmol/g of rats by administering buffered MMA, pH 7.4, subcutaneously twice a day from the 5th to the 28th day of life. MMA doses ranged from 0.76 to 1.67 µmol/g as a function of animal age. Control rats were treated with saline in the same volumes. The animals were sacrificed by decapitation on the 28th day of age. Blood was taken and the brain was rapidly removed. Medulla, pons, the olfactory lobes and cerebellum were discarded and the rest of the brain ("cerebrum" was isolated. Body and "cerebrum" weight were measured, as well as the cholesterol and triglyceride concentrations in blood and the content of myelin, total lipids, and the concentrations of the lipid fractions (cholesterol, glycerolipids, phospholipids and ganglioside N-acetylneuraminic acid (ganglioside-NANA in the "cerebrum". Chronic MMA administration had no effect on body or "cerebrum" weight, suggesting that the metabolites per se neither affect the appetite of the rats nor cause malnutrition. In contrast, MMA caused a significant reduction of plasma triglycerides, but not of plasma cholesterol levels. A significant diminution of myelin content and of ganglioside-NANA concentration was also observed in the "cerebrum". We propose that the reduction of myelin content and ganglioside-NANA caused by MMA may be related to the delayed myelination/cerebral atrophy and neurological dysfunction found in methylmalonic acidemic children.

  14. Alleviation Effects of Rare Earth on Cd Stress to Rape

    Institute of Scientific and Technical Information of China (English)

    马建军; 张淑侠; 朱京涛; 吴贺平

    2004-01-01

    Using rapes as test materials, the fastness expression and alleviation effect of rapes were studied under Cd stress condition, as the rapeseeds were dipped in the single element(La, Ce, Nd, Pr)and mixed rare earth(RE). The results indicate that, under Cd stress, the dry and fresh weight are increased by both the single element and mixed rare earth treatment, and the fastness of rape is improved.The single element of rare earth decreases the Cd content in rape roots and transmits Cd to the edible parts above the ground in which the alleviation effect of Ce is most significant.La treatment takes the second place, so that the poisonous effect of heavy metal Cd is eased.The mixed rare earth doesn't alleviate the assimilation of Cd in rape roots, but accelerates the transfer of Cd to the parts above the ground. The research puts forward that the alleviation of rare earth on Cd stress has connection with the decrease of Ca content.

  15. Insulin does not stimulate muscle protein synthesis during increased plasma branched-chain amino acids alone but still decreases whole body proteolysis in humans.

    Science.gov (United States)

    Everman, Sarah; Meyer, Christian; Tran, Lee; Hoffman, Nyssa; Carroll, Chad C; Dedmon, William L; Katsanos, Christos S

    2016-10-01

    Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change (P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased (P BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments (P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA.

  16. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis.

    Science.gov (United States)

    Kravchenko, Alena; Citerne, Sylvie; Jéhanno, Isabelle; Bersimbaev, Rakhmetkazhi I; Veit, Bruce; Meyer, Christian; Leprince, Anne-Sophie

    2015-11-27

    The Target of Rapamycin (TOR) kinase regulates essential processes in plant growth and development by modulation of metabolism and translation in response to environmental signals. In this study, we show that abscisic acid (ABA) metabolism is also regulated by the TOR kinase. Indeed ABA hormone level strongly decreases in Lst8-1 and Raptor3g mutant lines as well as in wild-type (WT) Arabidopsis plants treated with AZD-8055, a TOR inhibitor. However the growth and germination of these lines are more sensitive to exogenous ABA. The diminished ABA hormone accumulation is correlated with lower transcript levels of ZEP, NCED3 and AAO3 biosynthetic enzymes, and higher transcript amount of the CYP707A2 gene encoding a key-enzyme in abscisic acid catabolism. These results suggest that the TOR signaling pathway is implicated in the regulation of ABA accumulation in Arabidopsis.

  17. XANTHINE OXYDASE INHIBITION OF KOMBUCHA TEA IN HYPERURICEMIA INDUCED WISTAR RAT: decrease of uric acid, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine

    Directory of Open Access Journals (Sweden)

    I D. M. Sukrama

    2015-04-01

    Full Text Available Background: Hyperuricemia is a condition of high level of uric acid in the body due to distortion of purine nucleoside metabolism through hipoxanthin, xanthin, and guanin of basic purine. Objective: to find a cure of hyperuricemia base on the utilization of kombucha tea. Methods: This is a true experimental study by applying posttest only control group design to determine whether kombucha tea inhibit xanthine oxidase in hyperuricemic induced rat reveales by decrease of uric acid, malondialdehyde (MDA, and 8-hydroxy-2’-deoxyguanosine (8-OHdG. In this study, hyperuricemia rat was achieved by intake of high purine diet. Rats were fed with a mixture of 4 g/kg BW of Gnetum gnemon with 50 mL/kg BW of chicken liver ad libitum for 9 days. Treatments in this research are combination of fermentation time of Kombucha tea and volume of this tea, i.e fermentation time 4, 8, and 12 days and the volume are 1 mL and 4 mL. Therefore, there would be seven groups of treatment including control group. ANOVA was then applied to determine the treatment effect with p < 0.05 was concidered significant. Results: This study indicates that kombucha tea has an ability to inhibit xanthine oxidase in hyperuricemic induced rat and decrease uric acid, MDA, and 8-OHdG. This ability was achieved with combination treatment of 12 days fermentation and 4 mL of kombucha intake. Xanthine oxidase, uric acid, MDA, and 8-OHdG levels by this treatment were obtained significantly lower compare to control group. Conclusion: This study proved that kombucha tea was potent to cure hyperuricemia of wistar rat via inhibition of xanthine oxidase produced.

  18. Carrot Juice Administration Decreases Liver Stearoyl-CoA Desaturase 1 and Improves Docosahexaenoic Acid Levels, but Not Steatosis in High Fructose Diet-Fed Weanling Wistar Rats

    Science.gov (United States)

    Mahesh, Malleswarapu; Bharathi, Munugala; Reddy, Mooli Raja Gopal; Kumar, Manchiryala Sravan; Putcha, Uday Kumar; Vajreswari, Ayyalasomayajula; Jeyakumar, Shanmugam M.

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases associated with an altered lifestyle, besides genetic factors. The control and management of NAFLD mostly depend on lifestyle modifications, due to the lack of a specific therapeutic approach. In this context, we assessed the effect of carrot juice on the development of high fructose-induced hepatic steatosis. For this purpose, male weanling Wistar rats were divided into 4 groups, fed either a control (Con) or high fructose (HFr) diet of AIN93G composition, with or without carrot juice (CJ) for 8 weeks. At the end of the experimental period, plasma biochemical markers, such as triglycerides, alanine aminotransferase, and β-hydroxy butyrate levels were comparable among the 4 groups. Although, the liver injury marker, aspartate aminotransferase, levels in plasma showed a reduction, hepatic triglycerides levels were not significantly reduced by carrot juice ingestion in the HFr diet-fed rats (HFr-CJ). On the other hand, the key triglyceride synthesis pathway enzyme, hepatic stearoyl-CoA desaturase 1 (SCD1), expression at mRNA level was augmented by carrot juice ingestion, while their protein levels showed a significant reduction, which corroborated with decreased monounsaturated fatty acids (MUFA), particularly palmitoleic (C16:1) and oleic (C18:1) acids. Notably, it also improved the long chain n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA; C22:6) content of the liver in HFr-CJ. In conclusion, carrot juice ingestion decreased the SCD1-mediated production of MUFA and improved DHA levels in liver, under high fructose diet-fed conditions. However, these changes did not significantly lower the hepatic triglyceride levels. PMID:27752492

  19. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids.

    Science.gov (United States)

    Chang, Perng-Kuang; Hua, Sui Sheng T; Sarreal, Siov Bouy L; Li, Robert W

    2015-09-24

    The saprophytic soil fungus Aspergillus flavus infects crops and produces aflatoxin. Pichia anomala, which is a biocontrol yeast and produces the major volatile 2-phenylethanol (2-PE), is able to reduce growth of A. flavus and aflatoxin production when applied onto pistachio trees. High levels of 2-PE are lethal to A. flavus and other fungi. However, at low levels, the underlying mechanism of 2-PE to inhibit aflatoxin production remains unclear. In this study, we characterized the temporal transcriptome response of A. flavus to 2-PE at a subinhibitory level (1 μL/mL) using RNA-Seq technology and bioinformatics tools. The treatment during the entire 72 h experimental period resulted in 131 of the total A. flavus 13,485 genes to be significantly impacted, of which 82 genes exhibited decreased expression. They included those encoding conidiation proteins and involved in cyclopiazonic acid biosynthesis. All genes in the aflatoxin gene cluster were also significantly decreased during the first 48 h treatment. Gene Ontology (GO) analyses showed that biological processes with GO terms related to catabolism of propionate and branched-chain amino acids (valine, leucine and isoleucine) were significantly enriched in the down-regulated gene group, while those associated with ribosome biogenesis, translation, and biosynthesis of α-amino acids OPEN ACCESS Toxins 2015, 7 3888 were over-represented among the up-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that metabolic pathways negatively impacted among the down-regulated genes parallel to those active at 30 °C, a condition conducive to aflatoxin biosynthesis. In contrast, metabolic pathways positively related to the up-regulated gene group resembled those at 37 °C, which favors rapid fungal growth and is inhibitory to aflatoxin biosynthesis. The results showed that 2-PE at a low level stimulated active growth of A. flavus but concomitantly rendered decreased activities in

  20. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids

    Directory of Open Access Journals (Sweden)

    Perng-Kuang Chang

    2015-09-01

    Full Text Available The saprophytic soil fungus Aspergillus flavus infects crops and produces aflatoxin. Pichia anomala, which is a biocontrol yeast and produces the major volatile 2-phenylethanol (2-PE, is able to reduce growth of A. flavus and aflatoxin production when applied onto pistachio trees. High levels of 2-PE are lethal to A. flavus and other fungi. However, at low levels, the underlying mechanism of 2-PE to inhibit aflatoxin production remains unclear. In this study, we characterized the temporal transcriptome response of A. flavus to 2-PE at a subinhibitory level (1 μL/mL using RNA-Seq technology and bioinformatics tools. The treatment during the entire 72 h experimental period resulted in 131 of the total A. flavus 13,485 genes to be significantly impacted, of which 82 genes exhibited decreased expression. They included those encoding conidiation proteins and involved in cyclopiazonic acid biosynthesis. All genes in the aflatoxin gene cluster were also significantly decreased during the first 48 h treatment. Gene Ontology (GO analyses showed that biological processes with GO terms related to catabolism of propionate and branched-chain amino acids (valine, leucine and isoleucine were significantly enriched in the down-regulated gene group, while those associated with ribosome biogenesis, translation, and biosynthesis of α-amino acids were over-represented among the up-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analysis revealed that metabolic pathways negatively impacted among the down-regulated genes parallel to those active at 30 °C, a condition conducive to aflatoxin biosynthesis. In contrast, metabolic pathways positively related to the up-regulated gene group resembled those at 37 °C, which favors rapid fungal growth and is inhibitory to aflatoxin biosynthesis. The results showed that 2-PE at a low level stimulated active growth of A. flavus but concomitantly rendered decreased activities in branched-chain amino

  1. Probiotics decreased the bioavailability of the bile acid analog, monoketocholic acid, when coadministered with gliclazide, in healthy but not diabetic rats.

    Science.gov (United States)

    Al-Salami, Hani; Butt, Grant; Tucker, Ian; Golocorbin-Kon, Svetlana; Mikov, Momir

    2012-06-01

    In recent studies we showed that gliclazide has no hypoglycemic effect on type 1 diabetic (T1D) rats while MKC does, and their combination exerted a better hypoglycemic effect than MKC alone. We also showed that the most hypoglycemic effect was noticed when T1D rats were treated with probiotics then gavaged with MKC + gliclazide (blood glucose decreased from 24 ± 3 to 10 ± 2 mmol/l). The aim of this study is to investigate the influence of probiotics on MKC pharmacokinetics when coadministered with gliclazide, in T1D rats. 80 male Wistar rats (weight 350 ± 50 g) were randomly allocated into 8 groups (10 rats/group), 4 of which were injected with alloxan (30 mg/kg) to induce T1D. Group 1 was healthy and group 2 was diabetic. Groups 3 (healthy) and 4 (diabetic) were gavaged with probiotics (75 mg/kg) every 12 h for 3 days and 12 h later all groups received a single oral dose of MKC + gliclazide (4 and 20 mg/kg respectively). The remaining 4 groups were treated in the same way but administered MKC + gliclazide via the i.v. route. Blood samples collected from T1D rats prior to MKC + gliclazide revealed that probiotic treatment alone reduced blood glucose levels twofold. When coadministered with gliclazide, the bioavailability of MKC was reduced in healthy rats treated with probiotics but remained the same in diabetic pretreated rats. The decrease in MKC bioavailability, when administered with gliclazide, caused by probiotic treatment in healthy but not diabetic rats suggests that probiotic treatment induced MKC metabolism or impaired its absorption, only in healthy animals. The different MKC bioavailability in healthy and diabetic rats could be explained by different induction of presystemic elimination of MKC in the gut by probiotic treatment.

  2. Production of trans C18:1 and conjugated linoleic acid in continuous culture fermenters fed diets containing fish oil and sunflower oil with decreasing levels of forage.

    Science.gov (United States)

    Abughazaleh, A; Jacobson, B N

    2007-06-01

    Previously, feeding fish oil (FO) and sunflower seeds to dairy cows resulted in the greatest increases in the concentrations of vaccenic acid (VA, t11 C18:1) and conjugated linoleic acid (CLA) in milk fat. The objective of this study was to evaluate the effects of forage level in diets containing FO and sunflower oil (SFO) on the production of trans C18:1 and CLA by mixed ruminal microbes. A dual-flow continuous culture system consisting of three fermenters was used in a 3 × 3 Latin-square design. Treatments consisted of (1) 75:25 forage:concentrate (HF); (2) 50:50 forage:concentrate (MF); and (3) 25:75 forage:concentrate (LF). FO and SFO were added to each diet at 1 and 2 g/100 g dry matter (DM), respectively. The forage source was alfalfa pellets. During 10-day incubations, fermenters were fed treatment diets three times daily (140 g/day, divided equally between three feedings) as TMR diet. Effluents from the last 3 days of incubation were collected and composited for analysis. The concentration of trans C18:1 (17.20, 26.60, and 36.08 mg/g DM overflow for HF, MF, and LF treatments, respectively) increased while CLA (2.53, 2.35, and 0.81 mg/g DM overflow) decreased in a linear manner ( P effluent increased ( P effluent decreased in a linear manner ( P < 0.05) as dietary forage levels decreased. Decreasing dietary forage levels resulted in t10 C18:1 and t10c12 CLA replacing VA and c9t11 CLA, respectively, in fermenters fed FO and SFO.

  3. Fatty acids, epicatechin-dimethylgallate, and rutin interact with buckwheat starch inhibiting its digestion by amylase: implications for the decrease in glycemic index by buckwheat flour.

    Science.gov (United States)

    Takahama, Umeo; Hirota, Sachiko

    2010-12-08

    Glycemic indexes of bread made from mixtures of wheat flour and buckwheat flour are lower than those made from wheat flour. To discuss the mechanism of the buckwheat flour-dependent decrease in glycemic indexes, the formation of a starch-iodine complex and amylase-catalyzed digestion of starch were studied using buckwheat flour itself and buckwheat flour from which fatty acids, rutin, and proanthocyanidins including flavan-3-ols had been extracted. Absorbance due to the formation of a starch-iodine complex was larger in extracted than control flour, and starch in extracted flour was more susceptible to pancreatin-induced digestion than starch in control flour. Fatty acids, which were found in the buckwheat flour extract, bound to amylose in the extracted flour, inhibiting its digestion by pancreatin. Rutin and epicatechin-dimethylgallate, which were also found in the extract, bound to both amylose and amylopectin in the extracted flour, inhibiting their digestion induced by pancreatin. We discussed from these results that the lower glycemic indexes of bread made from mixtures of wheat flour and buckwheat flour were due to binding of fatty acids, rutin, and epicatechin-dimethylgallate, which were contained in buckwheat flour, to wheat flour starch.

  4. Herbivore perception decreases photosynthetic carbon-assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception.

    Science.gov (United States)

    Meza-Canales, Ivan D; Meldau, Stefan; Zavala, Jorge A; Baldwin, Ian T

    2016-12-07

    Herbivory-induced changes in photosynthesis have been documented in many plant species, however the complexity of photosynthetic regulation and analysis has thwarted progress in understanding the mechanism involved, particularly those elicited by herbivore-specific elicitors. Here we analyzed the early photosynthetic gas-exchange responses in Nicotiana attenuata plants after wounding and elicitation with Manduca sexta oral-secretions, and the pathways regulating these responses. Elicitation with M. sexta oral-secretions rapidly decreased photosynthetic carbon-assimilation (AC ) in treated and systemic (untreated, vascularly connected) leaves, which were associated with changes in stomatal conductance, rather than with changes in Rubisco activity and RuBP-turnover. Phytohormone profiling and gas-exchange-analysis of oral-secretion-elicited transgenic plants altered in phytohormone regulation, biosynthesis and perception, combined with micrografting techniques, revealed that the local photosynthetic-responses were mediated by 12-oxo-phytodienoic acid (OPDA), while the systemic responses involved interactions among jasmonates, cytokinins and abscisic acid signaling mediated by mitogen activated protein kinase 4 (MPK4). The analysis also revealed a role for cytokinins interacting with MPK4 in CO2 -mediated stomatal regulation. Hence oral-secretions, while eliciting jasmonic acid-mediated defense responses, also elicits OPDA-mediated changes in stomatal conductance and AC , an observation illustrating the complexity and economy of the signaling that regulates defense and carbon assimilation pathways in response to herbivore attack.

  5. Potent PPARα activator derived from tomato juice, 13-oxo-9,11-octadecadienoic acid, decreases plasma and hepatic triglyceride in obese diabetic mice.

    Directory of Open Access Journals (Sweden)

    Young-il Kim

    Full Text Available Dyslipidemia is a major risk factor for development of several obesity-related diseases. The peroxisome proliferator-activated receptor α (PPARα is a ligand-activated transcription factor that regulates energy metabolism. Previously, we reported that 9-oxo-10,12-octadecadienoic acid (9-oxo-ODA is presented in fresh tomato fruits and acts as a PPARα agonist. In addition to 9-oxo-ODA, we developed that 13-oxo-9,11-octadecadienoic acid (13-oxo-ODA, which is an isomer of 9-oxo-ODA, is present only in tomato juice. In this study, we explored the possibility that 13-oxo-ODA acts as a PPARα agonist in vitro and whether its effect ameliorates dyslipidemia and hepatic steatosis in vivo. In vitro luciferase assay experiments revealed that 13-oxo-ODA significantly induced PPARα activation; moreover, the luciferase activity of 13-oxo-ODA was stronger than that of 9-oxo-ODA and conjugated linoleic acid (CLA, which is a precursor of 13-oxo-ODA and is well-known as a potent PPARα activator. In addition to in vitro experiment, treatment with 13-oxo-ODA decreased the levels of plasma and hepatic triglycerides in obese KK-Ay mice fed a high-fat diet. In conclusion, our findings indicate that 13-oxo-ODA act as a potent PPARα agonist, suggesting a possibility to improve obesity-induced dyslipidemia and hepatic steatosis.

  6. Intracerebroventricular administration of α-ketoisocaproic acid decreases brain-derived neurotrophic factor and nerve growth factor levels in brain of young rats.

    Science.gov (United States)

    Wisniewski, Miriam S W; Carvalho-Silva, Milena; Gomes, Lara M; Zapelini, Hugo G; Schuck, Patrícia F; Ferreira, Gustavo C; Scaini, Giselli; Streck, Emilio L

    2016-04-01

    Maple syrup urine disease (MSUD) is an inherited aminoacidopathy resulting from dysfunction of the branched-chain keto acid dehydrogenase complex, leading to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine as well as their corresponding transaminated branched-chain α-ketoacids. This disorder is clinically characterized by ketoacidosis, seizures, coma, psychomotor delay and mental retardation whose pathophysiology is not completely understood. Recent studies have shown that oxidative stress may be involved in neuropathology of MSUD. However, the effect of accumulating α-ketoacids in MSUD on neurotrophic factors has not been investigated. Thus, the objective of the present study was to evaluate the effects of acute intracerebroventricular administration of α-ketoisocaproic acid (KIC) on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels in the brains of young male rats. Ours results showed that intracerebroventricular administration of KIC decreased BDNF levels in hippocampus, striatum and cerebral cortex, without induce a detectable change in pro-BDNF levels. Moreover, NGF levels in the hippocampus were reduced after intracerebroventricular administration of KIC. In conclusion, these data suggest that the effects of KIC on demyelination and memory processes may be mediated by reduced trophic support of BDNF and NGF. Moreover, lower levels of BDNF and NGF are consistent with the hypothesis that a deficit in this neurotrophic factor may contribute to the structural and functional alterations of brain underlying the psychopathology of MSUD, supporting the hypothesis of a neurodegenerative process in MSUD.

  7. Dietary Caprylic Acid (C8:0 Does Not Increase Plasma Acylated Ghrelin but Decreases Plasma Unacylated Ghrelin in the Rat.

    Directory of Open Access Journals (Sweden)

    Fanny Lemarié

    Full Text Available Focusing on the caprylic acid (C8:0, this study aimed at investigating the discrepancy between the formerly described beneficial effects of dietary medium chain fatty acids on body weight loss and the C8:0 newly reported effect on food intake via ghrelin octanoylation. During 6 weeks, Sprague-Dawley male rats were fed with three dietary C8:0 levels (0, 8 and 21% of fatty acids in three experimental conditions (moderate fat, caloric restriction and high fat. A specific dose-response enrichment of the stomach tissue C8:0 was observed as a function of dietary C8:0, supporting the hypothesis of an early preduodenal hydrolysis of medium chain triglycerides and a direct absorption at the gastric level. However, the octanoylated ghrelin concentration in the plasma was unchanged in spite of the increased C8:0 availability. A reproducible decrease in the plasma concentration of unacylated ghrelin was observed, which was consistent with a decrease in the stomach preproghrelin mRNA and stomach ghrelin expression. The concomitant decrease of the plasma unacylated ghrelin and the stability of its acylated form resulted in a significant increase in the acylated/total ghrelin ratio which had no effect on body weight gain or total dietary consumption. This enhanced ratio measured in rats consuming C8:0 was however suspected to increase (i growth hormone (GH secretion as an increase in the GH-dependent mRNA expression of the insulin like growth Factor 1 (IGF-1 was measured (ii adipocyte diameters in subcutaneous adipose tissue without an increase in the fat pad mass. Altogether, these results show that daily feeding with diets containing C8:0 increased the C8:0 level in the stomach more than all the other tissues, affecting the acylated/total ghrelin plasma ratio by decreasing the concentration of circulating unacylated ghrelin. However, these modifications were not associated with increased body weight or food consumption.

  8. Conjugated linoleic acids (CLAs) decrease prostate cancer cell proliferation: different molecular mechanisms for cis-9, trans-11 and trans-10, cis-12 isomers.

    Science.gov (United States)

    Ochoa, Julio J; Farquharson, Andrew J; Grant, Ian; Moffat, L E; Heys, Steven D; Wahle, Klaus W J

    2004-07-01

    The aims of this study were to examine the anti-proliferative effects of different concentrations of a commercial preparation of conjugated linoleic acids (CLA) mixture of isomers [cis-9, trans-11 CLA (c9,t11 CLA): trans-10, cis-12 CLA (50:50)] and their constituent isomers on PC-3, a human prostatic carcinoma cell line, and to study their effects on gene expression (mRNA and protein levels) of different enzymes and oncoproteins involved in oncogenesis and progression of prostate cancer. This includes pathways for arachidonic acid metabolism [cyclooxygenase 1 (COX-1), 2 (COX-2) and 5-lipoxygenase (5-LOX)], apoptosis (bcl-2) and cell cycle control (p21(WAF/Cip1)). Our results indicate a significant decrease in PC-3 proliferation elicited by CLA, although with high variability between isomers. The trans-10, cis-12 CLA was the most effective isomer (55% inhibition). This isomer was also able to decrease bcl-2 gene expression and to increase p21(WAF1/Cip1) mRNA levels (60% increase at highest concentration). In contrast, cis-9, trans-11 had no effect on these proteins but had a clear effect on 5-LOX expression and to a lesser degree on COX-2 protein level isomers. In conclusion, the anti-proliferative effects on PC-3 of CLA mixture and their constituent isomers are not equivalent, due to the different pathways involved for individual isomers. Trans-10, cis-12 seems to work preferentially through modulation of apoptosis and cell cycle control, while c9,t11 CLA isomer affects arachidonic acid metabolism.

  9. Focused grooming networks and stress alleviation in wild female baboons.

    Science.gov (United States)

    Wittig, Roman M; Crockford, Catherine; Lehmann, Julia; Whitten, Patricia L; Seyfarth, Robert M; Cheney, Dorothy L

    2008-06-01

    We examine the relationship between glucocorticoid (GC) levels and grooming behavior in wild female baboons during a period of instability in the alpha male rank position. All females' GC levels rose significantly at the onset of the unstable period, though levels in females who were at lower risk of infanticide began to decrease sooner in the following weeks. Three factors suggest that females relied on a focused grooming network as a coping mechanism to alleviate stress. First, all females' grooming networks became less diverse in the weeks following the initial upheaval. Second, females whose grooming had already focused on a few predictable partners showed a less dramatic rise in GC levels than females whose grooming network had been more diverse. Third, females who contracted their grooming network the most experienced a greater decrease in GC levels in the following week. We conclude that close bonds with a few preferred partners allow female baboons to alleviate the stress associated with social instability.

  10. The Ras antagonist, farnesylthiosalicylic acid (FTS, decreases fibrosis and improves muscle strength in dy/dy mouse model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Yoram Nevo

    Full Text Available The Ras superfamily of guanosine-triphosphate (GTP-binding proteins regulates a diverse spectrum of intracellular processes involved in inflammation and fibrosis. Farnesythiosalicylic acid (FTS is a unique and potent Ras inhibitor which decreased inflammation and fibrosis in experimentally induced liver cirrhosis and ameliorated inflammatory processes in systemic lupus erythematosus, neuritis and nephritis animal models. FTS effect on Ras expression and activity, muscle strength and fibrosis was evaluated in the dy(2J/dy(2J mouse model of merosin deficient congenital muscular dystrophy. The dy(2J/dy(2J mice had significantly increased RAS expression and activity compared with the wild type mice. FTS treatment significantly decreased RAS expression and activity. In addition, phosphorylation of ERK, a Ras downstream protein, was significantly decreased following FTS treatment in the dy(2J/dy(2J mice. Clinically, FTS treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter. Significant reduction of fibrosis was demonstrated in the treated group by quantitative Sirius Red staining and lower muscle collagen content. FTS effect was associated with significantly inhibition of both MMP-2 and MMP-9 activities. We conclude that active RAS inhibition by FTS was associated with attenuated fibrosis and improved muscle strength in the dy(2J/dy(2J mouse model of congenital muscular dystrophy.

  11. Harnessing motivation to alleviate neglect.

    Science.gov (United States)

    Russell, Charlotte; Li, Korina; Malhotra, Paresh A

    2013-01-01

    The syndrome of spatial neglect results from the combination of a number of deficits in attention, with patients demonstrating both spatially lateralized and non-lateralized impairments. Previous reports have hinted that there may be a motivational component to neglect and that modulating this might alleviate some of the debilitating symptoms. Additionally, recent work on the effects of reward on attention in healthy participants has revealed improvements across a number of paradigms. As the primary deficit in neglect has been associated with attention, this evidence for reward's effects is potentially important. However, until very recently there have been few empirical studies addressing this potential therapeutic avenue. Here we review the growing body of evidence that attentional impairments in neglect can be reduced by motivation, for example in the form of preferred music or anticipated monetary reward, and discuss the implications of this for treatments for these patients. Crucially these effects of positive motivation are not observed in all patients with neglect, suggesting that the consequences of motivation may relate to individual lesion anatomy. Given the key role of dopaminergic systems in motivational processes, we suggest that motivational stimulation might act as a surrogate for dopaminergic stimulation. In addition, we consider the relationship between clinical post stroke apathy and lack of response to motivation.

  12. Harnessing motivation to alleviate neglect

    Directory of Open Access Journals (Sweden)

    Charlotte eRussell

    2013-06-01

    Full Text Available The syndrome of spatial neglect results from the combination of a number of deficits in attention, with patients demonstrating both spatially lateralised and non-lateralised impairments. Previous reports have hinted that there may be a motivational component to neglect and that modulating this might alleviate some of the debilitating symptoms. Additionally, recent work on the effects of reward on attention in healthy participants has revealed improvements across a number of paradigms. As the primary deficit in neglect has been associated with attention, this evidence for reward’s effects is potentially important. However, until very recently there have been few empirical studies addressing this potential therapeutic avenue. Here we review the growing body of evidence that attentional impairments in neglect can be reduced by motivation, for example in the form of preferred music or anticipated monetary reward, and discuss the implications of this for treatments for these patients. Crucially these effects of positive motivation are not observed in all patients with neglect, suggesting that the consequences of motivation may relate to individual lesion anatomy. Given the key role of dopaminergic systems in motivational processes, we suggest that motivational stimulation might act as a surrogate for dopaminergic stimulation. In addition, we consider the relationship between clinical post stroke apathy and lack of response to motivation.

  13. Role of Ulva lactuca Extract in Alleviation of Salinity Stress on Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    Wael M. Ibrahim

    2014-01-01

    Full Text Available Seaweeds are potentially excellent sources of highly bioactive materials that could represent useful leads in the alleviation of salinity stress. The effects of presoaking wheat grains in water extract of Ulva lactuca on growth, some enzymatic activities, and protein pattern of salinized plants were investigated in this study. Algal presoaking of grains demonstrated a highly significant enhancement in the percentage of seed germination and growth parameters. The activity of superoxide dismutase (SOD and catalase (CAT increased with increasing the algal extract concentration while activity of ascorbate peroxidase (APX and glutathione reductase (GR was decreased with increasing concentration of algal extract more than 1% (w/v. The protein pattern of wheat seedling showed 12 newly formed bands as result of algal extract treatments compared with control. The bioactive components in U. lactuca extract such as ascorbic acid, betaine, glutathione, and proline could potentially participate in the alleviation of salinity stress. Therefore, algal presoaking is proved to be an effective technique to improve the growth of wheat seedlings under salt stress conditions.

  14. Decrease of urinary nerve growth factor but not brain-derived neurotrophic factor in patients with interstitial cystitis/bladder pain syndrome treated with hyaluronic acid.

    Directory of Open Access Journals (Sweden)

    Yuan-Hong Jiang

    Full Text Available To investigate urinary nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF levels in interstitial cystitis/bladder pain syndrome (IC/BPS patients after hyaluronic acid (HA therapy.Thirty-three patients with IC/BPS were prospectively studied; a group of 45 age-matched healthy subjects served as controls. All IC/BPS patients received nine intravesical HA instillations during the 6-month treatment regimen. Urine samples were collected for measuring urinary NGF and BDNF levels at baseline and 2 weeks after the last HA treatment. The clinical parameters including visual analog scale (VAS of pain, daily frequency nocturia episodes, functional bladder capacity (FBC and global response assessment (GRA were recorded. Urinary NGF and BDNF levels were compared between IC/BPS patients and controls at baseline and after HA treatment.Urinary NGF, NGF/Cr, BDNF, and BDNF/Cr levels were significantly higher in IC/BPS patients compared to controls. Both NGF and NGF/Cr levels significantly decreased after HA treatment. Urinary NGF and NGF/Cr levels significantly decreased in the responders with a VAS pain reduction by 2 (both p < 0.05 and the GRA improved by 2 (both p < 0.05, but not in non-responders. Urinary BDNF and BDNF/Cr did not decrease in responders or non-responders after HA therapy.Urinary NGF, but not BDNF, levels decreased significantly after HA therapy; both of these factors remained higher than in controls even after HA treatment. HA had a beneficial effect on IC/BPS, but it was limited. The reduction of urinary NGF levels was significant in responders, with a reduction of pain and improved GRA.

  15. Effective alleviation of aluminum phytotoxicity by manure-derived biochar.

    Science.gov (United States)

    Qian, Linbo; Chen, Baoliang; Hu, Dingfei

    2013-03-19

    The alleviation of aluminum phytotoxicity to wheat plants in a hydroponic system through the amendment of biochar is investigated to explore the possibility of applying biochar in acidic soil amelioration. Biochar derived from cattle manure pyrolyzed at 400 °C (CM400) and the CM400 biochar washed with distilled-deionized water to remove alkalinity (WCM400) were prepared to determine the roles of the liming effect and adsorption during the alleviation of Al toxicity. Upon addition of 0.02% (W/V) CM400 to the exposure solution, the inhibition of plant growth by Al was significantly reduced while the toxic threshold was extended from 3 to 95 μmol/L Al(3+). Due to the biochar liming effect, the aluminum species were converted to Al(OH)(2+) and Al(OH)2(+) monomers, which were strongly adsorbed by biochar; furthermore, the highly toxic Al(3+) evolved to less toxic Al(OH)3 and Al(OH)4(-) species. Adsorption of Al by the biochar is dominated by surface complexation of the carboxyl groups with Al(OH)(2+)/Al(OH)2(+) rather than through electrostatic attraction of Al(3+) with negatively charged sites. Compared to the liming effect, the adsorption by biochar exhibited a sustainable effect on the alleviation of Al toxicity. Therefore, the biochar amendment appears to be a novel approach for aluminum detoxification in acidic soils.

  16. Strategies to alleviate the incidence of ascites in broilers: a review

    Directory of Open Access Journals (Sweden)

    U Aftab

    2005-12-01

    Full Text Available Ascites is a complex problem caused by many interacting factors such as genetics, environment and management. Many nutritional, medicinal and management strategies have been proposed to alleviate the problem. Higher levels of dietary vitamin C and E along with selenium yeast might be beneficial, presumably because of their role in improving cellular integrity. Oils rich in n-3 fatty acids have been shown to reduce pulmonary hypertension and, consequently, ascites incidence. The potential use of flax oil has already been demonstrated, whereas the effects of other oils rich in n-3 fatty acids (fish, linseed and canola oils remain to be investigated. The assessment of the effects of dietary electrolyte balance on ascites incidence seems to be a promising field of research in broiler nutrition. In general, reducing the dietary level of salt (NaCl and adding bicarbonates to the diet and drinking water have been proposed as potential "cost-effective" methods to reduce ascites incidence. The use of nutrients/drug agents that increase the vascular capacity of the lungs or decrease the pulmonary vascular resistance may help to alleviate the problem, but economic and local feed regulations might restrict such use. Diuretics have also shown positive effects, presumably because there is a reduction of sodium and fluid retention in the body; litter humidity however must be closely monitored if diuretics are continuously administered. As the high metabolic rate (fast growth is a major factor contributing to the susceptibility of broilers to ascites, early-age feed or nutrient restriction (qualitative or quantitative or light restriction in order to slow down the growth rate seem practically viable methods, since final body weight is not compromised. Optimization of the house temperature and ventilation in cold weather seem helpful practices to decrease ascites incidence. Under practical conditions, it might be interesting to test the additive effects of

  17. The gamma-aminobutyric acid type B (GABAB receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Fu Zhenyu

    2012-07-01

    Full Text Available Abstract Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c. obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  18. Valproic acid, a histone deacetylase inhibitor, decreases proliferation of and induces specific neurogenic differentiation of canine adipose tissue-derived stem cells.

    Science.gov (United States)

    Kurihara, Yasuhiro; Suzuki, Takehito; Sakaue, Motoharu; Murayama, Ohoshi; Miyazaki, Yoko; Onuki, Atsushi; Aoki, Takuma; Saito, Miyoko; Fujii, Yoko; Hisasue, Masaharu; Tanaka, Kazuaki; Takizawa, Tatsuya

    2014-01-01

    Adipose tissue-derived stem cells (ADSCs) isolated from adult tissue have pluripotent differentiation and self-renewal capability. The tissue source of ADSCs can be obtained in large quantities and with low risks, thus highlighting the advantages of ADSCs in clinical applications. Valproic acid (VPA) is a widely used antiepileptic drug, which has recently been reported to affect ADSC differentiation in mice and rats; however, few studies have been performed on dogs. We aimed to examine the in vitro effect of VPA on canine ADSCs. Three days of pretreatment with VPA decreased the proliferation of ADSCs in a dose-dependent manner; VPA concentrations of 4 mM and above inhibited the proliferation of ADSCs. In parallel, VPA increased p16 and p21 mRNA expression, suggesting that VPA attenuated the proliferative activity of ADSCs by activating p16 and p21. Furthermore, the effects of VPA on adipogenic, osteogenic or neurogenic differentiation were investigated morphologically. VPA pretreatment markedly promoted neurogenic differentiation, but suppressed the accumulation of lipid droplets and calcium depositions. These modifications of ADSCs by VPA were associated with a particular gene expression profile, viz., an increase in neuronal markers, that is, NSE, TUBB3 and MAP2, a decrease in the adipogenic marker, LPL, but no changes in osteogenic markers, as estimated by reverse transcription-PCR analysis. These results suggested that VPA is a specific inducer of neurogenic differentiation of canine ADSCs and is a useful tool for studying the interaction between chromatin structure and cell fate determination.

  19. Tranexamic Acid in a Multimodal Blood Loss Prevention Protocol to Decrease Blood Loss in Revision Total Knee Arthroplasty: A Cohort Study#

    Science.gov (United States)

    Ortega-Andreu, Miguel; Talavera, Gloria; Padilla-Eguiluz, Norma G.; Perez-Chrzanowska, Hanna; Figueredo-Galve, Reyes; Rodriguez-Merchán, Carlos E.; Gómez-Barrena, Enrique

    2016-01-01

    Purpose: To clarify if blood loss and transfusion requirements can be decreased in revision knee surgery through a multimodal blood loss approach with tranexamic acid (TXA) Patients and Methods: A retrospective study was designed in 87 knees (79 patients) that received a knee revision between 2007 and 2013. To avoid heterogeneity in the surgical technique, only revisions with one single implant system were included. A treatment series of 44 knees that received TXA and other techniques in a multimodal blood loss protocol was compared to a control series of 43 knees that received neither TXA nor the rest of the multimodal blood loss protocol. No differences in the complexity of surgeries or case severity were detected. Results: A significant decrease was observed from 58% transfusion rate in the control group to 5% in the treated group. The postoperative haemoglobin drop was also significantly different. Although the use of a blood loss prevention approach including TXA was the most relevant factor in the transfusion risk (OR=15), longer surgical time also associated an increased risk of transfusion (OR=1.15). Conclusion: This study supports the use of a two-dose intravenous TXA under a multimodal blood loss prevention approach in revision knee replacement with significant reduction in the transfusion rate, postoperative blood loss and haemoglobin drop. PMID:27708740

  20. Functional decreases in P2X7 receptors are associated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells.

    Science.gov (United States)

    Wu, Pei-Yu; Lin, Yu-Chia; Chang, Chia-Ling; Lu, Hsing-Tsen; Chin, Chia-Hsuan; Hsu, Tsan-Ting; Chu, Dachen; Sun, Synthia H

    2009-06-01

    Neuro-2a (N2a) cells are derived from spontaneous neuroblastoma of mouse and capable to differentiate into neuronal-like cells. Recently, P2X7 receptor has been shown to sustain growth of human neuroblastoma cells but its role during neuronal differentiation remains unexamined.We characterized the role of P2X7 receptors in the retinoic acid (RA)-differentiated N2a cells. RA induced N2a cells differentiation into neurite bearing and neuronal specific proteins, microtubule-associated protein 2 (MAP2) and neuronal specific nuclear protein (NeuN), expressing neuronal-like cells. Interestingly, the RA-induced neuronal differentiation was associated with decreases in the expression and function of P2X7 receptors. Functional inhibition of P2X7 receptors by P2X7 receptor selective antagonists, 5'-triphosphate, periodate-oxidized 2',3'-dialdehyde ATP (oATP), brilliant blue G (BBG) or A438079 induced neurite outgrowth. In addition, RA and oATP treatment stimulated the expression of neuron-specific class III beta-tubulin (TuJ1), and knockdown of P2X7 receptor expression by siRNA induced neurite outgrowth. To elucidate the possible mechanism, we found the levels of basal intracellular Ca2+ concentrations ([Ca2+]i) were decreased in either RA- or oATP-differentiated or P2X7receptor knockdown N2a cells. Simply cultured N2a cells in low Ca2+ medium induced a 2-fold increase in neurite length. Treatment of N2a cells with ATP hydrolase apyrase and the P2X7 receptors selective antagonist oATP or BBG decreased cell viability and cell number. Nevertheless, oATP but not BBG decreased cell proliferation and cell cycle progression. These results suggest for the first time that decreases in expression/function of P2X7 receptors are involved in neuronal differentiation.We provide additional evidence shown that the ATP release-activated P2X7 receptor is important in maintaining cell survival of N2a neuroblastoma cells.

  1. Growth inhibition of fungus Phycomyces blakesleeanus by anion channel inhibitors anthracene-9-carboxylic and niflumic acid attained through decrease in cellular respiration and energy metabolites.

    Science.gov (United States)

    Stanić, Marina; Križak, Strahinja; Jovanović, Mirna; Pajić, Tanja; Ćirić, Ana; Žižić, Milan; Zakrzewska, Joanna; Cvetić Antić, Tijana; Todorović, Nataša; Živić, Miroslav

    2017-01-18

    Increasing resistance of fungal strains to known fungicides has prompted identification of new candidates for fungicides among substances previously used for other purposes. We have tested the effects of known anion channel inhibitors anthracene-9-carboxylic (A9C) and niflumic acid (NFA) on growth, energy metabolism and anionic current of mycelium of fungus Phycomyces blakesleeanus. Both inhibitors significantly decreased growth and respiration of mycelium, but complete inhibition was only achieved by 100 or 500 µM NFA, for growth and respiration, respectively. A9C had no effect on respiration of human NCI-H460 cell line, and very little effect on cucumber root sprout clippings, which nominates this inhibitor for further investigation as a potential new fungicide. Effects of A9C and NFA on respiration of isolated mitochondria of P. blakesleeanus were significantly smaller, which indicates that their inhibitory effect on respiration of mycelium is indirect. NMR spectroscopy showed that both A9C and NFA decrease the levels of ATP and polyphosphates in the mycelium of P. blakesleanus, but only A9C caused intracellular acidification. Outwardly rectifying, fast inactivating instantaneous anionic current (ORIC) was also reduced to 33±5% and 21±3% of its pre-treatment size by A9C and NFA, respectively, but only in the absence of ATP. It can be assumed from our results that the regulation of ORIC is tightly linked to cellular energy metabolism in P. blakesleeanus, and the decrease in ATP and polyphosphate levels could be a direct cause of growth inhibition.

  2. Seed storage-mediated dormancy alleviation in Fabaceae from campo rupestre

    Directory of Open Access Journals (Sweden)

    Naïla Nativel

    2015-09-01

    Full Text Available ABSTRACTWe studied the effects of seed storage on germination and dormancy alleviation in three species of Fabaceae endemic to campo rupestrein southeastern Brazil. Fresh seeds of Collaea cipoensis, Mimosa maguirei and Mimosa foliolosawere set to germinate and germination of seeds after four, five and 13 years of storage was tested. Seed viability was maintained for all species after the full storage period. Seed storage significantly increased germination percentage and decreased germination time for C. cipoensisand M. foliolosa, suggesting the alleviation of physical dormancy with storage. However, we did not find evidence of dormancy alleviation in M. maguirei since stored seeds showed a decrease in germination in comparison to that of fresh seeds. Our data indicate species-specific storage-mediated dormancy alleviation, which will have important implications for restoration of campo rupestre.

  3. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.

    Science.gov (United States)

    Wang, Fayuan; Liu, Xueqin; Shi, Zhaoyong; Tong, Ruijian; Adams, Catharine A; Shi, Xiaojun

    2016-03-01

    ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems.

  4. Hypochlorous Acid as a Potential Wound Care Agent: Part II. Stabilized Hypochlorous Acid: Its Role in Decreasing Tissue Bacterial Bioburden and Overcoming the Inhibition of Infection on Wound Healing.

    Science.gov (United States)

    Robson, Martin C; Payne, Wyatt G; Ko, Francis; Mentis, Marni; Donati, Guillermo; Shafii, Susan M; Culverhouse, Susan; Wang, Lu; Khosrovi, Behzad; Najafi, Ramin; Cooper, Diane M; Bassiri, Mansour

    2007-04-11

    Background: A topical antimicrobial that can decrease the bacterial bioburden of chronic wounds without impairing the wound's ability to heal is a therapeutic imperative. A stabilized form of hypochlorous acid (NVC-101) has been demonstrated in vitro and in standard toxicity testing to possess properties that could fulfill these criteria. Materials and Methods: Using a standard rodent model of a chronically infected granulating wound, various preparations of NVC-101 and multiple treatment regimens were investigated to evaluate the role of NVC-101 in decreasing tissue bacterial bioburden and overcoming the inhibition of infection on wound healing. Quantitative bacteriology of tissue biopsies and wound healing trajectories were used to compare the various NVC-101 preparations and regimens to saline-treated negative controls and silver sulfadiazine-treated positive controls. Results: NVC-101 at 0.01% hypochlorous acid with a pH of 3.5 to 4.0 proved to be an effective topical antimicrobial. It was most effective when used for a brief period (15-30 minutes), and followed with another application. Possibly this was due to its rapid neutralization in the wound bed environment. Although not as effective at decreasing the tissue bacterial bioburden as silver sulfadiazine, NVC-101 was associated with improved wound closure. Conclusions: This stabilized form of hypochlorous acid (NVC-101) could have potential application as an antimicrobial wound irrigation and treatment solution if its effective pH range can be maintained in the clinical situation. NVC-101 solution was equally effective at pH 3.5 or 4.0 and more efficient soon after its application. As opposed to other antimicrobials investigated in this animal model, NVC-101 controls the tissue bacterial bioburden without inhibiting the wound healing process.

  5. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    An, Lei, E-mail: anleim@yahoo.com.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Pang, Yun-Wei, E-mail: yunweipang@126.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Gao, Hong-Mei, E-mail: Gaohongmei_123@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Research Unit for Animal Life Sciences, Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki-Iwama 319-0206 (Japan); Tao, Li, E-mail: Eunice8023@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118 (China); Miao, Kai, E-mail: miaokai7@163.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Wu, Zhong-Hong, E-mail: wuzhh@cau.edu.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); and others

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. Black-Right-Pointing-Pointer fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. Black-Right-Pointing-Pointer fat-1 reduces lipid deposition in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.

  6. 3,3',4,4',5-Pentachlorobiphenyl (PCB 126) Decreases Hepatic and Systemic Ratios of Epoxide to Diol Metabolites of Unsaturated Fatty Acids in Male Rats.

    Science.gov (United States)

    Wu, Xianai; Yang, Jun; Morisseau, Christophe; Robertson, Larry W; Hammock, Bruce; Lehmler, Hans-Joachim

    2016-08-01

    Disruption of the homeostasis of oxygenated regulatory lipid mediators (oxylipins), potential markers of exposure to aryl hydrocarbon receptor (AhR) agonists, such as 3,3',4,4',5-pentachlorobiphenyl (PCB 126), is associated with a range of diseases, including nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Here we test the hypothesis that PCB 126 exposure alters the levels of oxylipins in rats. Male Sprague-Dawley rats (5-weeks old) were treated over a 3-month period every 2 weeks with intraperitoneal injections of PCB 126 in corn oil (cumulative doses of 0, 19.8, 97.8, and 390 µg/kg b.w.; 6 injections total). PCB 126 treatment caused a reduction in growth rates at the highest dose investigated, a dose-dependent decrease in thymus weights, and a dose-dependent increase in liver weights. Liver PCB 126 levels increased in a dose-dependent manner, while levels in plasma were below or close to the detection limit. The ratios of several epoxides to diol metabolites formed via the cytochrome P450 (P450) monooxygenase/soluble epoxide hydrolase (sEH) pathway from polyunsaturated fatty acids displayed a dose-dependent decrease in the liver and plasma, whereas levels of oxylipins formed by other metabolic pathways were generally not altered by PCB 126 treatment. The effects of PCB 126 on epoxide-to-diol ratios were associated with an increased CYP1A activity in liver microsomes and an increased sEH activity in liver cytosol and peroxisomes. These results suggest that oxylipins are potential biomarkers of exposure to PCB 126 and that the P450/sEH pathway is a therapeutic target for PCB 126-mediated hepatotoxicity that warrants further attention.

  7. Amelioration of glomerulosclerosis with all-trans retinoic acid is linked to decreased plasminogen activator inhibitor-1 and α-smooth muscle actin

    Institute of Scientific and Technical Information of China (English)

    Xia LIU; Lei L(U); Bei-bei TAO; Ai-ling ZHOU; Yi-chun ZHU

    2011-01-01

    Aim:To examine the effects of all-trans retinoic acid (atRA) on renal morphology and function as well as on renal plasminogen activator inhibitor-1 (PAI-1) expression and plasmin activity in rats with 5/6 nephrectomy.Methods:Adult male Sprague Dawley rats were given 5/6 nephrectomy or sham operation. Renal function was measured 2 weeks later. The nephrectomized rats were assigned to groups matched for proteinuria and treated with vehicle or atRA (5 or 10 mg/kg by gastric gavage once daily) for the next 12 weeks. Rats with sham operation were treated with vehicle. At the end of the treatments,kidneys were collected for histological examination, Western blot analysis, and enzymatic activity measurements.Results:The 5/6 nephrectomy promoted hypertension, renal dysfunction, and glomerulosclerosis. These changes were significantly reduced in the atRA-treated group. The expressions of PAI-1 and α-smooth muscle actin (α-SMA) were significantly increased in the vehicle-treated nephrectomized rats. Treatment with atRA significantly reduced the expressions of PAI-1 and α-SMA. However, piasmin activity remained unchanged following atRA treatment.Conclusion:Treatment with atRA ameliorates glomerulosclerosis and improves renal function in rats with 5/6 nephrectomy. This is associated with a decrease in PAI-1 and α-SMA, but not with a change in plasmin activity.

  8. Cyclisation Increases the Stability of the Sea Anemone Peptide APETx2 but Decreases Its Activity at Acid-Sensing Ion Channel 3

    Directory of Open Access Journals (Sweden)

    Lachlan D. Rash

    2012-07-01

    Full Text Available APETx2 is a peptide isolated from the sea anemone Anthopleura elegantissima. It is the most potent and selective inhibitor of acid-sensing ion channel 3 (ASIC3 and it is currently in preclinical studies as a novel analgesic for the treatment of chronic inflammatory pain. As a peptide it faces many challenges in the drug development process, including the potential lack of stability often associated with therapeutic peptides. In this study we determined the susceptibility of wild-type APETx2 to trypsin and pepsin and tested the applicability of backbone cyclisation as a strategy to improve its resistance to enzymatic degradation. Cyclisation with either a six-, seven- or eight-residue linker vastly improved the protease resistance of APETx2 but substantially decreased its potency against ASIC3. This suggests that either the N- or C-terminus of APETx2 is involved in its interaction with the channel, which we confirmed by making N- and C-terminal truncations. Truncation of either terminus, but especially the N-terminus, has detrimental effects on the ability of APETx2 to inhibit ASIC3. The current work indicates that cyclisation is unlikely to be a suitable strategy for stabilising APETx2, unless linkers can be engineered that do not interfere with binding to ASIC3.

  9. ω-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin

    Directory of Open Access Journals (Sweden)

    O'Shea Karen M

    2010-09-01

    Full Text Available Abstract Background Pathological left ventricular (LV hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1 assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2 evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart. Methods Wild type (WT and adiponectin-/- mice underwent transverse aortic constriction (TAC and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated. Results TAC induced similar pathological LV hypertrophy compared to sham mice in both strains on both diets. In WT mice TAC increased LV systolic and diastolic volumes and reduced mitochondrial enzyme activities, which were attenuated by ω-3 PUFA without increasing adiponectin. In contrast, adiponectin-/- mice displayed no increase in LV end diastolic and systolic volumes or decrease in mitochondrial enzymes with TAC, and did not respond to ω-3 PUFA. Conclusion These findings suggest ω-3 PUFA attenuates cardiac pathology in response to pressure overload independent of an elevation in adiponectin.

  10. 20-Hydroxyeicosatetraenoic Acid Inhibition by HET0016 Offers Neuroprotection, Decreases Edema, and Increases Cortical Cerebral Blood Flow in a Pediatric Asphyxial Cardiac Arrest Model in Rats.

    Science.gov (United States)

    Shaik, Jafar Sadik B; Poloyac, Samuel M; Kochanek, Patrick M; Alexander, Henry; Tudorascu, Dana L; Clark, Robert Sb; Manole, Mioara D

    2015-11-01

    Vasoconstrictive and vasodilatory eicosanoids generated after cardiac arrest (CA) may contribute to cerebral vasomotor disturbances and neurodegeneration. We evaluated the balance of vasodilator/vasoconstrictor eicosanoids produced by cytochrome P450 (CYP) metabolism, and determined their role on cortical perfusion, functional outcome, and neurodegeneration after pediatric asphyxial CA. Cardiac arrest of 9 and 12 minutes was induced in 16- to 18-day-old rats. At 5 and 120 minutes after CA, we quantified the concentration of CYP eicosanoids in the cortex and subcortical areas. In separate rats, we inhibited 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis after CA and assessed cortical cerebral blood flow (CBF), neurologic deficit score, neurodegeneration, and edema. After 9 minutes of CA, vasodilator eicosanoids markedly increased versus sham. Conversely, after 12 minutes of CA, vasoconstrictor eicosanoid 20-HETE increased versus sham, without compensatory increases in vasodilator eicosanoids. Inhibition of 20-HETE synthesis after 12 minutes of CA decreased cortical 20-HETE levels, increased CBF, reduced neurologic deficits at 3 hours, and reduced neurodegeneration and edema at 48 hours versus vehicle-treated rats. In conclusion, cerebral vasoconstrictor eicosanoids increased after a pediatric CA of 12 minutes. Inhibition of 20-HETE synthesis improved cortical perfusion and short-term neurologic outcome. These results suggest that alterations in CYP eicosanoids have a role in cerebral hypoperfusion and neurodegeneration after CA and may represent important therapeutic targets.

  11. Sargaquinoic Acid Inhibits TNF-α-Induced NF-κB Signaling, Thereby Contributing to Decreased Monocyte Adhesion to Human Umbilical Vein Endothelial Cells (HUVECs).

    Science.gov (United States)

    Gwon, Wi-Gyeong; Lee, Bonggi; Joung, Eun-Ji; Choi, Min-Woo; Yoon, Nayoung; Shin, Taisun; Oh, Chul-Woong; Kim, Hyeung-Rak

    2015-10-21

    Sargaquinoic acid (SQA) has been known for its antioxidant and anti-inflammatory properties. This study investigated the effects of SQA isolated from Sargassum serratifolium on the inhibition of tumor necrosis factor (TNF)-α-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). SQA decreased the expression of cell adhesion molecules such as intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 as well as chemotactic cytokines such as interleukin-8 and monocyte chemoattractant protein-1 in TNF-α-treated HUVECs. As a result, SQA prevented monocyte adhesion to TNF-α-induced adhesion. SQA also inhibited TNF-α-induced nuclear factor kappa B (NF-κB) translocation into the nucleus by preventing proteolytic degradation of inhibitor κB-α. Overall, SQA protects against TNF-α-induced vascular inflammation through inhibition of the NF-κB pathway in HUVECs. These data suggest that SQA may be used as a therapeutic agent for vascular inflammatory diseases such as atherosclerosis.

  12. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ruibing [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Lihui [Shandong Normal University, Jinan, Shandong Province 250012 (China); Luo, Zheng; Guo, Xiaolan [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Ming, E-mail: ymylh@163.com [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China)

    2015-08-15

    Extracellular Ca{sup 2+} influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca{sup 2+} entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 h in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca{sup 2+} overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca{sup 2+} and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases.

  13. 间充质干细胞移植减轻大鼠盐酸吸入性肺损伤%Bone marrow-derived mesenchymal stem cells alleviate lung injury in a rat model of acid aspiration

    Institute of Scientific and Technical Information of China (English)

    吴晓丹; 贾庆安; 钱梦佳; 隆玄; 李善群; 宋元林; 王向东; 白春学

    2013-01-01

    rat model of acid aspiration induced lung injury.Methods BMSCs cultures were obtained from bone marrow of Sprague-Dawley (SD) rats.Twenty-four SD rats were randomly divided into 3 groups:Control,Injury and Injury + BMSCs groups,and hydrochloric acid (HCl) (1.2ml/kg,pH =1.5) or the same volume of phosphate buffered saline (PBS) instead were instilled into trachea of rats to make injury models or for control group respectively.Then,5 × 106 BMSCs or 0.5 ml PBS were injected into jugular vein of rats.Rats were exsanguinated at 6 h after injury.Arterial blood gas,wet/dry ratio and histological changes of lung tissue were determined.Bronchoalveolar lavage fluid (BALF) and serum were collected for the measurement of Tumor necrosis factor-α (TNF-α),Interleukin-6 (IL-6) and Interleukin-10 (IL-10) by Enzyme-linked immuno-sorbent assay (ELISA).In vitro,lung cells from normal rats and from HCl injury rats were co-cultured with BMSCs in a Transwell system (8 μm pore size).Thirty-six hours later,the numbers of migrated BMSCs were counted.In addition,lung cells from HCl injured rats were co-cultured with BMSCs in either a standard single well or in a Transwell (0.4 μm pore size).Control wells were prepared with only lung cells from normal rats or HC; injured rats.After incubation for 6 hours,the cell culture supernalants were then collected to assay the levels of TNF-α,IL-6 and IL-10using ELISA.Comparisons among multiple groups were performed using One-way analysis of variance (ANOVA).Comparisons between groups were carried out using independent-sample t-test.Results BMSCs transplantation attenuated histological lung injury and hypoxia caused by HCl instillation.Injury +BMSCs group decreased wet/dry ratio compared with Injury group.BMSCs administration mediated a down-regulation of inflammation by deceasing TNF-α concentration and increasing IL-10 in BALF and serum.Invitro,co-culture studies of BMSCs with lung cells provided evidence that lung cells stimulated BMSCs migration

  14. Ergot alkaloids from endophyte-infected tall fescue decrease reticuloruminal epithelial blood flow and volatile fatty acid absorption from the washed reticulorumen.

    Science.gov (United States)

    Foote, A P; Kristensen, N B; Klotz, J L; Kim, D H; Koontz, A F; McLeod, K R; Bush, L P; Schrick, F N; Harmon, D L

    2013-11-01

    An experiment was conducted to determine if ergot alkaloids affect blood flow to the absorptive surface of the rumen. Steers (n=8) were pair-fed alfalfa cubes and received ground endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum; E+) seed (0.015 mg ergovaline·kg BW(-1)·d(-1)) or endophyte-free tall fescue (E-) seed via the rumen cannula 2x daily for 7 d at thermoneutral (TN; 22°C) and heat stress (HS; 32°C) conditions. On d 8, the rumen was emptied and rinsed. A buffer containing VFA was incubated in the following sequence: control (CON), 15 μg ergovaline·kg BW(-1) (1×EXT) from a tall fescue seed extract, and 45 μg ergovaline·kg BW(-1) (3×EXT). For each buffer treatment there were two 30-min incubations: a 30-min incubation of a treatment buffer with no sampling followed by an incubation of an identical sampling buffer with the addition of Cr-EDTA and deuterium oxide (D2O). Epithelial blood flow was calculated as ruminal clearance of D2O corrected for influx of physiological water and liquid outflow. Feed intake decreased with dosing E+ seed at HS but not at thermoneutral conditions (TN; P0.05). Inclusion of the extract in the buffer caused at least a 50% reduction in epithelial blood flow at TN (P=0.004), but there was no difference between 1×EXT and 3×EXT. There was a seed × buffer treatment interaction at HS (P=0.005), indicating that the reduction of blood flow induced by incubating the extract was larger for steers receiving E- seed than E+ seed. Volatile fatty acid flux was reduced during the 1×EXT and 3×EXT treatments (P0.80), indicating that observed differences are due to the presence of ergot alkaloids in the rumen. A decrease in VFA absorption could contribute to the signs of fescue toxicosis including depressed growth and performance.

  15. Increasing serum pre-adipocyte factor-1 (Pref-1) correlates with decreased body fat, increased free fatty acids, and level of recent alcohol consumption in excessive alcohol drinkers.

    Science.gov (United States)

    Liangpunsakul, Suthat; Bennett, Rachel; Westerhold, Chi; Ross, Ruth A; Crabb, David W; Lai, Xianyin; Witzmann, Frank A

    2014-12-01

    Patients with alcoholic liver disease have been reported to have a significantly lower percentage of body fat (%BF) than controls. The mechanism for the reduction in %BF in heavy alcohol users has not been elucidated. In adipose tissue, Pref-1 is specifically expressed in pre-adipocytes but not in adipocytes. Pref-1 inhibits adipogenesis and elevated levels are associated with reduced adipose tissue mass. We investigated the association between serum Pref-1 and %BF, alcohol consumption, and serum free fatty acids (FFA) in a well-characterized cohort of heavy alcohol users compared to controls. One hundred forty-eight subjects were prospectively recruited. The Time Line Follow-Back (TLFB) questionnaire was used to quantify the amount of alcohol consumed over the 30-day period before their enrollment. Anthropometric measurements were performed to calculate %BF. Serum Pref-1 and FFA were measured. Fifty-one subjects (mean age 32 ± 9 years, 88% men) were non-excessive drinkers whereas 97 were excessive drinkers (mean age 41 ± 18 years, 69% men). Compared to non-excessive drinkers, individuals with excessive drinking had significantly higher levels of Pref-1 (p<0.01), FFA (p < 0.001), and lower %BF (p = 0.03). Serum levels of Pref-1 were associated with the amount of alcohol consumed during the previous 30 days. Serum Pref-1 was negatively correlated with %BF, but positively associated with serum FFA. Our data suggest that elevated Pref-1 levels in excessive drinkers might inhibit the expansion of adipose tissue, decreasing %BF in alcoholics. Further work is needed to validate these findings and to better understand the role of Pref-1 and its clinical significance in subjects with heavy alcohol use.

  16. Decreased concentrating capacity in children with febrile urinary tract infection and normal 99mTc-dimercaptosuccinic acid scan:does medullonephritis exist?

    Institute of Scientific and Technical Information of China (English)

    Víctor García-Nieto; Silvia González-Cerrato; María Isabel Luis-Yanes; Margarita Monge-Zamorano; Beatriz Reyes-Millán

    2014-01-01

    Background: Although 99mTc-dimercaptosuccinic acid (DMSA) scan is considered the gold standard for the diagnosis of acute pyelonephritis (AP), sometimes it produces false results in children with clinical features of AP. There are no studies on the comparison of the sensitivity of DMSA and concentrating capacity test. Methods: Eighty-fi ve infants with AP of less than one year old were studied to evaluate whether they had real AP or not. Data were compared between infants with an abnormal (group A, n=64) and those with a normal DMSA scan (group B, n=21) respectively. A DDAVP test was performed for each infant. Results: All the infants in both groups presented a high level of C-reactive protein and fever (≥38ºC). There were no differences in clinical and analytical variables except C-reactive protein level in the two groups. Both groups exhibited a low urinary osmolality (87.5% in the group A vs. 85.7% in the group B). The patients with normal DMSA and decreased concentrating capacity have some renal parenchymal damage and not only a lower urinary infection. Of the infants with an abnormal DMSA scan, 33.9% showed renal scars after 6-12 months. No infant with a normal DMSA scan showed scars. The biochemical variables in both groups of infants were not related to vesicoureteral refl ux. Conclusion: Infants with AP, normal DMSA scan and low concentrating capacity may be characterized by a localized infection in the medulla (medullonephritis) or by a false negative DMSA scan.

  17. Maternal supplementation with n-3 long chain polyunsaturated fatty acids during perinatal period alleviates the metabolic syndrome disturbances in adult hamster pups fed a high-fat diet after weaning.

    Science.gov (United States)

    Kasbi-Chadli, Fatima; Boquien, Clair-Yves; Simard, Gilles; Ulmann, Lionel; Mimouni, Virginie; Leray, Véronique; Meynier, Anne; Ferchaud-Roucher, Véronique; Champ, Martine; Nguyen, Patrick; Ouguerram, Khadija

    2014-07-01

    Perinatal nutrition is thought to affect the long-term risk of the adult to develop metabolic syndrome. We hypothesized that maternal supplementation with eicosapentaenoic acid and docosahexaenoic acid during pregnancy and lactation would protect offspring fed a high-fat diet from developing metabolic disturbances. Thus, two groups of female hamsters were fed a low-fat control diet, either alone (LC) or enriched with n-3 long chain polyunsaturated fatty acids (LC-PUFA) (LO), through the gestational and lactation periods. After weaning, male pups were randomized to separate groups that received either a control low-fat diet (LC) or a high-fat diet (HC) for 16 weeks. Four groups of pups were defined (LC-LC, LC-HC, LO-LC and LO-HC), based on the combinations of maternal and weaned diets. Maternal n-3 LC-PUFA supplementation was associated with reduced levels of basal plasma glucose, hepatic triglycerides secretion and postprandial lipemia in the LO-HC group compared to the LC-HC group. Respiratory parameters were not affected by maternal supplementation. In contrast, n-3 LC-PUFA supplementation significantly enhanced the activities of citrate synthase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase compared to the offspring of unsupplemented mothers. Sterol regulatory element binding protein-1c, diacylglycerol O-acyltransferase 2, fatty acid synthase, stearoyl CoA desaturase 1 and tumor necrosis factor α expression levels were not affected by n-3 LC-PUFA supplementation. These results provide evidence for a beneficial effect of n-3 LC-PUFA maternal supplementation in hamsters on the subsequent risk of metabolic syndrome. Underlying mechanisms may include improved lipid metabolism and activation of the mitochondrial oxidative pathway.

  18. Elderly poverty alleviation through living with family.

    Science.gov (United States)

    Rendall, M S; Speare, A

    1995-11-01

    "We estimate here the extent of United States elderly poverty alleviation through living with family. These estimates are motivated by public-policy concern about the well-being of the elderly, and by the relevance of the process for fertility under the old-age-security hypothesis. An inter-temporal poverty-measurement model is estimated with 1984 Survey of Income and Program Participation income and wealth data. Without extended-family co-residence, and assuming no bequests, poverty rates would increase 42% over observed rates. Female elderly account for almost all the alleviated poverty. As a population, their impoverishment with age is effectively prevented by co-residence. Proportionately more black than white elderly are beneficiaries of poverty alleviation through living with family, but white elderly are more likely to be beneficiaries if at risk."

  19. Role of magnesium in alleviation of aluminium toxicity in plants.

    Science.gov (United States)

    Bose, Jayakumar; Babourina, Olga; Rengel, Zed

    2011-04-01

    Magnesium is pivotal for activating a large number of enzymes; hence, magnesium plays an important role in numerous physiological and biochemical processes affecting plant growth and development. Magnesium can also ameliorate aluminium phytotoxicity, but literature reports on the dynamics of magnesium homeostasis upon exposure to aluminium are rare. Herein existing knowledge on the magnesium transport mechanisms and homeostasis maintenance in plant cells is critically reviewed. Even though overexpression of magnesium transporters can alleviate aluminium toxicity in plants, the mechanisms governing such alleviation remain obscure. Possible magnesium-dependent mechanisms include (i) better carbon partitioning from shoots to roots; (ii) increased synthesis and exudation of organic acid anions; (iii) enhanced acid phosphatase activity; (iv) maintenance of proton-ATPase activity and cytoplasmic pH regulation; (v) protection against an aluminium-induced cytosolic calcium increase; and (vi) protection against reactive oxygen species. Future research should concentrate on assessing aluminium toxicity and tolerance in plants with overexpressed or antisense magnesium transporters to increase understanding of the aluminium-magnesium interaction.

  20. The bioactive compounds alpha-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells.

    Science.gov (United States)

    Reddivari, Lavanya; Vanamala, Jairam; Safe, Stephen H; Miller, J Creighton

    2010-01-01

    We recently reported that colored potato extracts and an anthocyanin rich fraction suppressed lymph-node carcinoma of the prostate (LNCaP) and prostate cancer-3 (PC-3) prostate cancer cell proliferation and induced apoptosis via caspase-dependent and caspase-independent pathways. Chlorogenic acid, caffeic acid, gallic acid, catechin, malvidin, and glycoalkaloids (alpha-chaconine and solanine) have now been identified as the major bioactive components of potato, and their effects on LNCaP and PC-3 cell proliferation and apoptosis have been investigated. alpha-chaconine (5 microg/ml) and gallic acid (15 microg/ml) exhibited potent antiproliferative properties and increased cyclin-dependent kinase inhibitor p27 levels in both cell lines. Both alpha-chaconine and gallic acid induced poly [adenosine diphosphate (ADP)] ribose polymerase cleavage and caspase-dependent apoptosis in LNCaP cells; however, caspase-independent apoptosis through nuclear translocation of endonuclease G was observed in both LNCaP and PC-3 cells. alpha-chaconine and gallic acid activated c-Jun N-terminal protein kinase (JNK), and this response played a major role in induction of caspase-dependent apoptosis in LNCaP cells; whereas modulation of JNK and mitogen-activated protein kinase did not affect alpha-chaconine- and gallic acid-induced caspase-independent apoptosis. These results suggest that apoptosis induced by whole potato extracts in prostate cancer cell lines may be in part due to alpha-chaconine and gallic acid.

  1. Decreased expression of adipose CD36 and FATP1 are associated with increased plasma nonesterified fatty acids during prolonged fasting in northern elephant seal pups (Mirounga angustirostris)

    Science.gov (United States)

    The northern elephant seal undergoes a 2-3 month post-weaning fast during which it depends primarily on the oxidation of fatty acids to meet its energetic demands. The concentration of plasma free fatty acids (FFA) increases and is associated with the development of insulin resistance in late-fasted...

  2. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa.

    Science.gov (United States)

    Ouzounis, Theoharis; Razi Parjikolaei, Behnaz; Fretté, Xavier; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. "Batavia" (green) and cv. "Lollo Rossa" (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m(-2) s(-1) for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m(-2) s(-1) from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m(-2) s(-1) from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m(-2) s(-1) from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m(-2) s(-1) from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent.

  3. Dietary Caprylic Acid (C8:0) Does Not Increase Plasma Acylated Ghrelin but Decreases Plasma Unacylated Ghrelin in the Rat

    OpenAIRE

    Fanny Lemarié; Erwan Beauchamp; Stéphanie Dayot; Cécile Duby; Philippe Legrand; Vincent Rioux

    2015-01-01

    International audience; Focusing on the caprylic acid (C8:0), this study aimed at investigating the discrepancy between the formerly described beneficial effects of dietary medium chain fatty acids on body weight loss and the C8:0 newly reported effect on food intake via ghrelin octanoylation. During 6 weeks, Sprague-Dawley male rats were fed with three dietary C8:0 levels (0, 8 and 21% of fatty acids) in three experimental conditions (moderate fat, caloric restriction and high fat). A specif...

  4. Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars

    Science.gov (United States)

    Qian, Linbo; Chen, Baoliang; Chen, Mengfang

    2016-07-01

    Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 and 700 °C (RS400 and RS700) and the feedstock (RS100) were studied using a slurry system containing typical acidic soils for a 15-day exposure experiment. The distributions of Al and Si in the slurry solution, soil and plant root tissue were monitored by staining methods, chemical extractions and SEM-EDS observations. We found that the biological sourced silicon in biochars served dual roles in Al phytotoxicity alleviation in acidic soil slurry. On one hand, the Si particles reduced the amount of soil exchangeable Al and prevented the migration of Al to the plant. More importantly, the Si released from biochars synchronously absorbed by the plants and coordinated with Al to form Al-Si compounds in the epidermis of wheat roots, which is a new mechanism for Al phytotoxicity alleviation in acidic soil slurry by biochar amendment. In addition, the steady release of Si from the rice straw-derived biochars was a sustainable Si source for aluminosilicate reconstruction in acidic soil.

  5. Effects of Ce3+ on improvement of spectral characteristics and function of chloroplasts damaged by linolenic acid in spinach

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaoqing; ZE Yuguan; LIU Chao; ZHOU Min; LI Na; DUAN Yanmei; YIN Sitao; HONG Fashui

    2009-01-01

    Linolenic acid has great effects on the structure and function of chloroplast. We studied the effects of Ce3+ on the improvement of chloroplast spectral characteristics and oxygen evolution damaged by linolenic acid in spinach. Results showed that Ce3+ could decrease the light absorption increased by linolenic acid and promote the distribution of excitation energy to PS Ⅱ and alleviate the decrease of PS Ⅱ fluo-rescence yield caused by linolenic acid. The linolenic acid treatments in various concentrations reduced the oxygen-evolving rate of chloro-plasts, but the rate was accelerated since adding Ce3+.

  6. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants.

    Science.gov (United States)

    Islam, Faisal; Yasmeen, Tahira; Riaz, Muhammad; Arif, Muhammad Saleem; Ali, Shafaqat; Raza, Syed Hammad

    2014-12-01

    Plant-associated bacteria can have beneficial effects on the growth and health of their host. However, the role of plant growth promoting bacteria (PGPR), under metal stress, has not been widely investigated. The present study investigated the possible mandatory role of plant growth promoting rhizobacteria in protecting plants from zinc (Zn) toxicity. The exposure of maize plants to 50µM zinc inhibited biomass production, decreased chlorophyll, total soluble protein and strongly increased accumulation of Zn in both root and shoot. Similarly, Zn enhanced hydrogen peroxide, electrolyte leakage and lipid peroxidation as indicated by malondaldehyde accumulation. Pre-soaking with novel Zn tolerant bacterial strain Proteus mirabilis (ZK1) isolated zinc (Zn) contaminated soil, alleviated the negative effect of Zn on growth and led to a decrease in oxidative injuries caused by Zn. Furthermore, strain ZK1 significantly enhanced the activities of catalase, guaiacol peroxidase, superoxide dismutase and ascorbic acid but lowered the Proline accumulation in Zn stressed plants. The results suggested that the inoculation of Zea mays plants with P. mirabilis during an earlier growth period could be related to its plant growth promoting activities and avoidance of cumulative damage upon exposure to Zn, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity.

  7. Hydrogen Sulfide Promotes Wheat Seed Germination and Alleviates Oxidative Damage against Copper Stress

    Institute of Scientific and Technical Information of China (English)

    Hua Zhang; Lan-Ying Hu; Kang-Di Hu; Yun-Dong He; Song-Hua Wang; Jian-Ping Luo

    2008-01-01

    With the enhancement of copper (Cu) stress, the germination percentage of wheat seeds decreased gradually. Pretreatment with sodium hydrosulfide (NaHS), hydrogen sulfide (H2S) donor alleviated the inhibitory effect of Cu stress in a dose-dependent manner; whereas little visible symptom was observed in germinating seeds and radicle tips cultured in NaHs solutions. It was verified that H2S or HS- rather than other sulfur-containing components derived from NaHs attribute to the potential role in promoting seed germination against Cu stress. Further studies showed that NaHS could promote amylase and esterase activities, reduce Cu-induced disturbance of plasma membrane integrity in the radicle tips, and sustain lower levels of malondialdehyde and H2O2 in germinating seeds. Furthermore, NaHs pretreatment increased activities of superoxide dismutase and catalase and decreased that of lipoxygenase, but showed no significant effect on ascorbate peroxidase. Alternatively, NaHs prevented uptake of Cu and promoted the accumulation of free amino acids in seeds exposed to Cu. In addition, a rapid accumulation of endogenous H2S in seeds was observed at the early stags of germination, and higher level of H2S in NaHS-pretreated seeds. These data indicated that H2S was involved in the mechanism of germinating seeds' responses to Cu stress.

  8. Cannabinoids alleviate experimentally induced intestinal inflammation by acting at central and peripheral receptors.

    Directory of Open Access Journals (Sweden)

    Jakub Fichna

    Full Text Available In an attempt to further investigate the role of cannabinoid (CB system in the pathogenesis of inflammatory bowel diseases, we employed two recently developed ligands, AM841 (a covalently acting CB agonist and CB13 (a peripherally-restricted CB agonist to establish whether central and peripheral CB sites are involved in the anti-inflammatory action in the intestine.AM841 (0.01, 0.1 and 1 mg/kg, i.p. significantly decreased inflammation scores in dextran sulfate sodium (DSS- and 2,4,6-trinitrobenzene sulfonic acid (TNBS-treated mice when administered before induction of colitis or as a treatment of existing intestinal inflammation. The effect was absent in CB1, CB2 and CB(1/2-deficient mice. A peripherally-restricted agonist CB13 did not alleviate colitis when given i.p. (0.1 mg/kg, but significantly decreased inflammation score after central administration (0.1 µg/animal.This is the first evidence that central and peripheral CB receptors are responsible for the protective and therapeutic action of cannabinoids in mouse models of colitis. Our observations provide new insight to CB pharmacology and validate the use of novel ligands AM841 and CB13 as potent tools in CB-related research.

  9. Precultivation of Bacillus coagulans DSM2314 in the presence of furfural decreases inhibitory effects of lignocellulosic by-products during L(+)-lactic acid fermentation.

    Science.gov (United States)

    van der Pol, Edwin; Springer, Jan; Vriesendorp, Bastienne; Weusthuis, Ruud; Eggink, Gerrit

    2016-12-01

    By-products resulting from thermo-chemical pretreatment of lignocellulose can inhibit fermentation of lignocellulosic sugars to lactic acid. Furfural is such a by-product, which is formed during acid pretreatment of lignocellulose. pH-controlled fermentations with 1 L starting volume, containing YP medium and a mixture of lignocellulosic by-products, were inoculated with precultures of Bacillus coagulans DSM2314 to which 1 g/L furfural was added. The addition of furfural to precultures resulted in an increase in L(+)-lactic acid productivity by a factor 2 to 1.39 g/L/h, an increase in lactic acid production from 54 to 71 g and an increase in conversion yields of sugar to lactic acid from 68 to 88 % W/W in subsequent fermentations. The improved performance was not caused by furfural consumption or conversion, indicating that the cells acquired a higher tolerance towards this by-product. The improvement coincided with a significant elongation of B. coagulans cells. Via RNA-Seq analysis, an upregulation of pathways involved in the synthesis of cell wall components such as bacillosamine, peptidoglycan and spermidine was observed in elongated cells. Furthermore, the gene SigB and genes promoted by SigB, such as NhaX and YsnF, were upregulated in the presence of furfural. These genes are involved in stress responses in bacilli.

  10. Escitalopram alleviate depression in rats after stroke by decreasing serum levels of interleukin-18%艾司西酞普兰通过降低血清白细胞介素-18水平减轻大鼠卒中后抑郁

    Institute of Scientific and Technical Information of China (English)

    杨玲俐; 叶冬青; 林代华

    2014-01-01

    Objective To investigate the effect of escitalopram on the levels of serum proinflammatory cytokine interleukin-6 (IL-6),tumor necrosis factor-α (TNF-α),and IL-18 in a rat model of poststroke depression (PSD).Methods Twenty-four male Sprague-Dawley rats were randomly allocated into sham operation,middle cerebral artery occlusion (MCAO),PSD and escitalopram groups (n =6 in each group).A model of MCAO was induced by the intraluminal suture method,and on this basis,a PSD model was induced by combining with chronic unpredictable mild stress (CUMS) plus lonely upbringing.The rats of both the sham operation group and the MCAO group were neither CUMS nor lonely upbringing,and in the PSD group they were both CUMS and lonely upbringing.The escitalopram group was given escitalopram intervention (10 mg/kg · d,intraperitoneal injection for 3 weeks) at the beginning of CUMS and lonely upbringing.At baseline and on day 7,14 and 21 after CUMS,sucrose solution consumption and wilderness trials were used to assess depression-like behavior.Enzyme-linked immunosorbent assay was used to detect the levels of serum proinflammatory cytokines IL-6,TNF-α and IL-18 on day 21 after CUMS.Results On day 21 after CUMS,the scores of weight,sucrose solution consumption,vertical test and the distance of horizontal activities were all significantly decreased and shortened compared to those of the sham operation group and the MCAO group (all P<0.01).The weight,sucrose solution consumption,and the distance of horizontal activities of the escitalopram group were significantly increased compared to those of the PSD group (P <0.05 or P <0.01).On day 22 after CUMS,the serum IL-18 level of the PSD group was increased significantly compared to that of the sham operation group and the MCAO group (P < 0.05 or P < 0.01).The serum IL-18 level of the escitalopram group was decreased significantly compared to that of the PSD group (P <0.05).However,there were no significant differences in the

  11. 外源水杨酸对重金属Pb毒害迷迭香挥发物释放的缓解效应%Alleviate effect of exogenous salicylic acid on volatiles release from Rosmarinus of ficinalis L.under heavy metal Pb stress

    Institute of Scientific and Technical Information of China (English)

    求红波; 王丹; 周示玉; 高建荣; 李祖光

    2012-01-01

    The volatile compounds emitted from Rosmarinus officinalis L. were determined by headspace solid-phase microextraction ( HS-SPME) combined with gas chromatography-mass spectrometry(GC-MS), mainly included terpenes(17. 32 %), esters(13. 25%), ketones(27. 09%) and alcohols(38. 79%). In this study, we investigated the effects of plumbum(Pb) stress for the volatiles emit from Rosmarinus officinalis L. and alleviate effect of exogenous salicylic acid(SA) by using Pb, SA and their combined application SA + Pb) stress Rosmarinus of ficinalis L. The experimental results showed that heavy metal Pb had great effects on release of plant volatiles, and SA had obvious relieve or alleviate, function for plant volatiles release under heavy metal stress. These results suggest that exogenous SA could be used as a potential growth regulator to improve the tolerance of the plant to the Pb toxicity. This provides significant ecological value for resistance and defense research in plant.%利用顶空固相微萃取-气相色谱-质谱(HSSPME-GC-MS)联用技术测定了迷迭香的挥发性化合物,主要成分为萜烯类(17.32%),酯类(13.25%),酮类(27.09%)和醇类(38.79%);并用重金属铅(Pb),水杨酸(SA)以及铅与水杨酸的混合物(SA+Pb)胁迫处理迷迭香,探讨重金属Pb对迷迭香植物挥发物释放的影响以及SA对Pb毒害迷迭香挥发物释放的缓解效应.结果表明:重金属Pb对植物挥发物释放产生了较大的影响,外源水杨酸的参与对重金属胁迫下的植物挥发物释放具有明显的减轻或缓解效用,这为防止Pb对植物伤害以及植物的抗性防御和生态研究提供科学依据.

  12. Major liver resection results in a changed plasma amino acid pattern as reflected by a decreased Fischer ratio which improves by bactericidal/permeability increasing protein

    NARCIS (Netherlands)

    Nijveldt, RJ; Wiezer, MJ; Meijer, C; Prins, HA; Muller, MGS; Gouma, DJ; Teerlink, T; van Gulik, TM; Rinkes, IHMB; Tilanus, HW; van de Velde, CJH; Wiggers, T; Zoetmulder, FAN; Scotte, M; Cuesta, MA; Meijer, S; van Leeuwen, PAM

    2001-01-01

    Background/Aims: Major liver resection results in a high morbidity and mortality, and endotoxin plays a role in post-resection hepatic failure. Severe hepatic failure as seen in hepatitis and cirrhosis may be accompanied by hepatic encephalopathy and is characterized by a typical plasma amino acid p

  13. Alleviative Effect and Its Evaluation of LaCl3 Treatment on Acid Rain Stresses for Capsicum Seed Germination%LaCl3对辣椒种子酸雨胁迫的缓解效应及其评价

    Institute of Scientific and Technical Information of China (English)

    边才苗; 王锦文

    2011-01-01

    Alleviative effects of LaCl3 on acid rain (AR) stresses for capsicum seed were analyzed using two evaluation systems. The results showed that the damage of AR (pH 3.5, 3.0 and 2.0) were alleviatedby treating the seeds with LaCl3 solution ( 10 mg·L-1 ).The alleviative effects were 14.48%, 19.24%,15.14% and 13.48% as a relative rate of vigor index. However, the vigor index in seeds treated with LaCl3 and AR (pH 3.5 and 3.0 ) was significantly higher than with only AR as its increment. Meanwhile, the destructions of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) reduced notably, and accumulation of malondialdehyde (MDA) reduced at pH ≤ 2.5; whereas these indexes did not change obviously at pH ≥ 3.0. This indicated that LaCl3 probably alleviated AR damage by improving the seed resistance at pH ≤2.5 and the seed tolerance at pH ≥3.0. The growth index was an indirect indicator of the resistance, so should not be used as main evaluation system. The activate oxygen metabolic indices had their threshold values, but should be evaluated based on possibility which the index felt within its threshold value range. This method just gave an approximate threshold values, but could show inner causes for improving growth of crop species.%采用两种评价系统分析了镧对酸雨胁迫下辣椒种子萌发的影响.结果表明,经10 mg·L-1的LaCl3浸种,可显著缓解酸雨(pH 3.5,3.0,2.5和2.0)对辣椒种子的伤害,以活力指数的增幅为标准,缓解能力依次为14.48%,19.24%,15.14%和13.48%;以指标值的增量为标准,只有pH 3.5和3.0时显著提高.同时,镧处理可提高酸雨胁迫下超氧化物歧化酶、过氧化氢酶和过氧化酶的活性,减少丙二醛的积累,在pH≤2.5时,与酸雨处理差异显著,而pH≥3.0时没有明显变化,说明镧处理分别提高种子的抗性和耐受性.基于生长指标是间接的抗逆性指标,不宜作为评价的主体.活性氧代谢指标都有一个阈值,可依据

  14. Alleviating effects of exogenous NO on tomato seedlings under combined Cu and Cd stress.

    Science.gov (United States)

    Wang, Yi-Jun; Dong, Yu-Xiu; Wang, Juan; Cui, Xiu-Min

    2016-03-01

    To investigate the effect of NO on the different origin and regulation of oxidative stress of Cu and/or Cd, tomato seedlings were treated with Cu, Cd, or Cu + Cd in a nutrient solution culture system. The main effect of Cu(2+) was a significant reduction in root activity and nitrate reductase (NR) activity, which was similar to that under 50 μM Cd treatment, but promoted Cu accumulation. The supply of Cu under Cd treatment decreased Cd concentration, while not altered Cu concentration by contrast with Cu treatment, which is suggestive of a replacement of Cu(2+) with Cd(2+) and effective decrease in the boiotoxicity of 50 μM Cd(2+) to tomato seedlings. However, NO alleviated the restriction to NR activity significantly and made the biomass of tomato seedlings recover under Cd treatment, and also increased root activity under Cu and Cu + Cd treatment. Exogenous NO markedly reduced the absorption and transportation of Cu but did not obviously change the translocation of Cd to the aboveground parts under Cu + Cd treatment. Both metals induced lipid peroxidation via the decreasing activation of antioxidant enzymes. The antioxidant enzyme system worked differently under Cu, Cd, or Cu + Cd stress. The activities of peroxidase (POD) and catalase (CAT) were higher under single Cd stress than under the control. Meanwhile, Cu + Cd treatment decreased the activities of POD, superoxide dismutase (SOD), and ascorbic acid peroxidase (APX). Exogenous NO increased POD and SOD activities in the leaves and roots, and CAT activity in the roots under combined Cu and Cd stress. These results suggest that a different response and regulation mechanism that involves exogenous NO is present in tomato seedlings under Cu and Cd stress.

  15. Gynura procumbens Extract Alleviates Postprandial Hyperglycemia in Diabetic Mice

    Science.gov (United States)

    Choi, Sung-In; Park, Mi Hwa; Han, Ji-Sook

    2016-01-01

    This study was designed to investigate the inhibitory effect of Gynura procumbens extract against carbohydrate digesting enzymes and its ability to ameliorate postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. G. procumbens extract showed prominent α-glucosidase and α-amylase inhibitory effects. The half-maximal inhibitory concentration (IC50) of G. procumbens extract against α-glucosidase and α-amylase was 0.092±0.018 and 0.084±0.027 mg/mL, respectively, suggesting that the α-amylase inhibition activity of the G. procumbens extract was more effective than that of the positive control, acarbose (IC50=0.164 mg/mL). The increase in postprandial blood glucose levels was more significantly alleviated in the G. procumbens extract group than in the control group of STZ-induced diabetic mice. Moreover, the area under the curve significantly decreased with G. procumbens extract administration in STZ-induced diabetic mice. These results suggest that G. procumbens extract may help alleviate postprandial hyperglycemia by inhibiting carbohydrate digesting enzymes. PMID:27752493

  16. Lysosomal pH Decrease in Inflammatory Cells Used To Enable Activatable Imaging of Inflammation with a Sialic Acid Conjugated Profluorophore.

    Science.gov (United States)

    Yu, Mingzhu; Wu, Xuanjun; Lin, Bijuan; Han, Jiahuai; Yang, Liu; Han, Shoufa

    2015-07-07

    Inflammation causes significant morbidity and mortality, necessitating effective in vivo imaging of inflammation. Prior approaches often rely on combination of optical agents with entities specific for proteinaceous biomarkers overexpressed in inflammatory tissues. We herein report a fundamentally new approach to image inflammation by targeting lysosomes undergoing acidification in inflammatory cells with a sialic acid (Sia) conjugated near-infrared profluorophore (pNIR). Sia-pNIR contains a sialic acid domain for in vivo targeting of inflamed tissues and a pNIR domain which isomerizes into fluorescent and optoacoustic species in acidic lysosomes. Sia-pNIR displays high inflammation-to-healthy tissue signal contrasts in mice treated with Escherichia coli, Staphylococcus aureus, or lipopolysaccharide. In addition, inflammation-associated fluorescence is switched off upon antibiotics treatment in mice. This report shows the potentials of Sia-pNIR for activatable dual-modality inflammation imaging, and particularly the use of lysosomes of inflamed cells as a previously unappreciated biomarker for inflammation imaging.

  17. Adjunct therapy of n-3 fatty acids to 5-ASA ameliorates inflammatory score and decreases NF-κB in rats with TNBS-induced colitis.

    Science.gov (United States)

    Mbodji, Khaly; Charpentier, Cloé; Guérin, Charlène; Querec, Coraline; Bole-Feysot, Christine; Aziz, Moutaz; Savoye, Guillaume; Déchelotte, Pierre; Marion-Letellier, Rachel

    2013-04-01

    5-aminosalicylic acid (5-ASA) is widely used for the treatment of inflammatory bowel disease (IBD). Recent studies have evaluated the potential of nutritional intervention as adjunct therapy to 5-ASA in IBD. N-3 polyunsaturated fatty acids (PUFA) have shown potent anti-inflammatory properties in gut inflammation. Therefore, we aimed to evaluate the efficacy of the dual therapy (n-3 PUFA plus 5-ASA) in rats with 2, 4, 6-trinitrobenzen sulfonic acid (TNBS)-induced colitis. Colitis was induced by intrarectal injection of TNBS while control rats received the vehicle. Rats received by gavage a fish oil-rich formula (n-3 groups) or an isocaloric and isolipidic oil formula supplemented with 5-ASA for 14 days. A dose response of 5-ASA (5-75 mg. suppression mg kg(-1) d(-1)) was tested. Colitis was evaluated and several inflammatory markers were quantified in the colon. COX-2 expression (Pinducing peroxisome proliferator-activated receptor-γ (PPARγ) expression (Pinduce PPARγ. By contrast, the dual therapy did not improve the effects of individual treatments on eicosanoids or cytokine production. Use of n-3 PUFA in addition to 5-ASA may reduce dose of standard therapy.

  18. Adipose tissue stearoyl-CoA desaturase 1 index is increased and linoleic acid is decreased in obesity-prone rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Cedernaes Jonathan

    2013-01-01

    Full Text Available Abstract Background Fatty acid (FA composition and desaturase indices are associated with obesity and related metabolic conditions. However, it is unclear to what extent desaturase activity in different lipid fractions contribute to obesity susceptibility. Our aim was to test whether desaturase activity and FA composition are linked to an obese phenotype in rats that are either obesity prone (OP or resistant (OR on a high-fat diet (HFD. Methods Two groups of Sprague–Dawley rats were given ad libitum (AL-HFD or calorically restricted (HFD-paired; pair fed to calories consumed by chow-fed rats access to a HFD. The AL-HFD group was categorized into OP and OR sub-groups based on weight gain over 5 weeks. Five different lipid fractions were examined in OP and OR rats with regard to proportions of essential and very long-chain polyunsaturated FAs: linoleic acid (LA, alpha-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid and the stearoyl-CoA desaturase 1 (SCD-1 product 16:1n-7. FA ratios were used to estimate activities of the delta-5-desaturase (20:4n-6/20:3n-6, delta-6-desaturase (18:3n-6/18:2n-6, stearoyl-CoA desaturase 1 (SCD-1; 16:1n-7/16:0, SCD-16 and 18:1n-9/18:0, SCD-18, de novo lipogenesis (16:0/18:2n-6 and FA elongation (18:0/16:0. Fasting insulin, glucose, adiponectin and leptin concentrations were measured in plasma. Results After AL-HFD access, OP rats had a significantly higher SCD-16 index and 16:1n-7 proportion, but a significantly lower LA proportion, in subcutaneous adipose tissue (SAT triacylglycerols, as well as significantly higher insulin and leptin concentrations, compared with OR rats. No differences were found between the two phenotypes in liver (phospholipids; triacylglycerols or plasma (cholesterol esters; phospholipids lipid fractions or for plasma glucose or adiponectin concentrations. For the desaturase indices of the HFD-paired rats, the only significant differences compared with the OP or OR rats were higher

  19. Alanine or aspartic acid substitutions at serine23/24 of cardiac troponin I decrease thin filament activation, with no effect on crossbridge detachment kinetics

    Science.gov (United States)

    Mamidi, Ranganath; Gollapudi, Sampath K.; Mallampalli, Sri Lakshmi; Chandra, Murali

    2012-01-01

    Ala/Asp substitutions at Ser23/24 have been employed to investigate the functional impact of cardiac troponin I (cTnI) phosphorylation by protein kinase A (PKA). Some limitations of previous studies include the use of heterologous proteins and confounding effects arising from phosphorylation of cardiac myosin binding protein-C. Our goal was to probe the effects of cTnI phosphorylation using a homologous assay, so that altered function could be solely attributed to changes in cTnI. We reconstituted detergent-skinned rat cardiac papillary fibers with homologous rat cardiac troponin subunits to study the impact of Ala and Asp substitutions at Ser23/24 of rat cTnI (RcTnI S23A/24A and RcTnI S23D/24D). Both RcTnI S23A/24A and RcTnI S23D/24D showed a ~36% decrease in Ca2+-activated maximal tension. Both RcTnI S23A/24A and RcTnI S23D/24D showed a ~18% decrease in ATPase activity. Muscle fiber stiffness measurements suggested that the decrease in thin filament activation observed in RcTnI S23A/24A and RcTnI S23D/24D was due to a decrease in the number of strongly-bound crossbridges. Another major finding was that Ala and Asp substitutions in cTnI did not affect crossbridge detachment kinetics. PMID:22684024

  20. Autophagy Alleviates Melamine-Induced Cell Death in PC12 Cells Via Decreasing ROS Level.

    Science.gov (United States)

    Wang, Hui; Gao, Na; Li, Zhigui; Yang, Zhuo; Zhang, Tao

    2016-04-01

    Since melamine was illegally added to raw milk for increasing the apparent protein content, such a scandal has not been quite blown out. Previous studies showed that melamine induced apoptosis and oxidative damage in both in vivo and in vitro experiments. It is well known that autophagy is closely related to oxidative stress. In the present study, we examined whether autophagy played an important role in protecting PC12 cells, which were damaged by melamine. Immunofluorescence assay showed that melamine enhanced the number of punctuate dot, indicating the increase of autophagosomes. Western blot assay presented that melamine significantly elevated the expression level of autophagy markers including LC3-II/LC3-I ratio, beclin-1, and Atg 7. Rapamycin further enhanced the effect, whereas 3-methyadenine (3-MA) inhibited it. MTT assay exhibited that rapamycin significantly enhanced the cell viability (P melamine-treated PC12 cells (P melamine-treated PC12 cells (P melamine-induced cell death via inhibiting the excessive generation of ROS. Regulating autophagy may become a new targeted therapy to relieve the damage induced by melamine.

  1. Disruption of BASIGIN decreases lactic acid export and sensitizes non-small cell lung cancer to biguanides independently of the LKB1 status.

    Science.gov (United States)

    Granja, Sara; Marchiq, Ibtissam; Le Floch, Renaud; Moura, Conceição Souto; Baltazar, Fátima; Pouysségur, Jacques

    2015-03-30

    Most cancers rely on aerobic glycolysis to generate energy and metabolic intermediates. To maintain a high glycolytic rate, cells must efficiently export lactic acid through the proton-coupled monocarboxylate transporters (MCT1/4). These transporters require a chaperone, CD147/BASIGIN (BSG) for trafficking to the plasma membrane and function.To validate the key role of these transporters in lung cancer, we first analysed the expression of MCT1/4 and BSG in 50 non-small lung cancer (NSCLC) cases. These proteins were specifically upregulated in tumour tissues. We then disrupted BSG in three NSCLC cell lines (A549, H1975 and H292) via 'Zinc-Finger Nucleases'. The three homozygous BSG-/- cell lines displayed a low MCT activity (10- to 5-fold reduction, for MCT1 and MCT4, respectively) compared to wild-type cells. Consequently, the rate of glycolysis, compared to the wild-type counterpart, was reduced by 2.0- to 3.5-fold, whereas the rate of respiration was stimulated in BSG-/- cell lines. Both wild-type and BSG-null cells were extremely sensitive to the mitochondria inhibitor metformin/phenformin in normoxia. However, only BSG-null cells, independently of their LKB1 status, remained sensitive to biguanides in hypoxia in vitro and tumour growth in nude mice. Our results demonstrate that inhibiting glycolysis by targeting lactic acid export sensitizes NSCLC to phenformin.

  2. Hydrothermal treatment of Novelose 330 results in high yield of resistant starch type 3 with beneficial prebiotic properties and decreased secondary bile acid formation in rats.

    Science.gov (United States)

    Jacobasch, Gisela; Dongowski, Gerhard; Schmiedl, Detlef; Müller-Schmehl, Katrin

    2006-06-01

    Annealing and heat-moisture treatment (HMT) are shown to be suitable methods to increase the yield of resistant starch type 3 (RS3) from Novelose 330 by up to 75%. Peak temperatures of approximately 121 degrees C were used to produce to a sufficiently high thermal stability of the hydrothermal modified RS3 products for a wide range of applications. HMT significantly increased the crystallinity up to 40%. An in vivo feeding experiment with Wistar rats showed that fermentation of Novelose 330 dominated in the proximal colon, but degradation of HMT-Novelose was more dominant in the distal colon, leading to higher butyrate concentrations in this segment of the large bowel. Large-bowel surface and crypt length increased in the proximal colon in rats fed the Novelose 330-containing diet. In contrast, after the intake of HMT-Novelose, maximal values were found in the distal segment. The lower pH and higher butyrate concentration of the caecal and colonic contents significantly suppressed the formation of secondary bile acids in RS3-fed rats. The formation of secondary bile acids was inhibited more strongly by HMT-Novelose than by Novelose 330. The Ki-67-immunopositive epithelial cells in the colon of RS3-fed rats indicated the establishment of an optimal balance in the dynamic process of mucosal regeneration. HMT provides a method for the economical production of a high-quality RS3 with dominating prebiotic properties in the distal colon for health-promoting applications.

  3. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water.

    Science.gov (United States)

    Cui, Weiti; Gao, Cunyi; Fang, Peng; Lin, Guoqing; Shen, Wenbiao

    2013-09-15

    Hydrogen gas (H₂) induces plant tolerance to several abiotic stresses, including salinity and paraquat exposure. However, the role of H₂ in cadmium (Cd)-induced stress amelioration is largely unknown. Here, pretreatment with hydrogen-rich water (HRW) was used to characterize physiological roles and molecular mechanisms of H₂ in the alleviation of Cd toxicity in alfalfa plants. Our results showed that the addition of HRW at 10% saturation significantly decreased contents of thiobarbituric acid reactive substances (TBARS) caused by Cd, and inhibited the appearance of Cd toxicity symptoms, including the improvement of root elongation and seedling growth. These responses were related to a significant increase in the total or isozymatic activities of representative antioxidant enzymes, or their corresponding transcripts. In vivo imaging of reactive oxygen species (ROS), and the detection of lipid peroxidation and the loss of plasma membrane integrity provided further evidence for the ability of HRW to improve Cd tolerance significantly, which was consistent with a significant enhancement of the ratio of reduced/oxidized (homo)glutathione ((h)GSH). Additionally, plants pretreated with HRW accumulated less amounts of Cd. Together, this study suggested that the usage of HRW could be an effective approach for Cd detoxification and could be explored in agricultural production systems.

  4. Partial liquid ventilation decreases tissue and serum tumor necrosis factor-α concentrations in acute lung injury model of immature piglet induced by oleic acid

    Institute of Scientific and Technical Information of China (English)

    ZHU Yao-bin; FAN Xiang-ming; LI Xiao-feng; LI Zhi-qiang; WANG Qiang; SUN Li-zhong; LIU Ying-long

    2012-01-01

    Background Pediatric patients are susceptible to lung injury.Acute lung injury in children often results in high mortality.Partial liquid ventilation (PLV) has been shown to markedly improve oxygenation and reduce histologic evidence of injury in a number of lung injury models.This study was designed to examine the hypothesis that PLV would attenuate the production of local and systemic tumor necrosis factor (TNF)-α in an immature piglet model of acute lung injury induced by oleic acid (OA).Methods Twelve Chinese immature piglets were induced acute lung injury by OA.The animals were randomly assigned to two groups of six animals,(1) conventional mechanical ventilation (MV) group and (2) PLV with 10 ml/kg FC-77 group.Results Compared with MV group,the PLV group had better cardiopulmonary variables (P <0.05).These variables included heart rate,mean blood pressure,blood pH,partial pressure of arterial oxygen (PaO2),PaO2/inspired O2 fraction (FiO2) and partial pressure of arterial carbon dioxide (PaCO2).PLV reduced TNF-α levels both in plasma and tissue compared with MV group (P <0.05).Conclusion PLV provides protective effects against TNF-a response in OA-induced acute lung injury in immature piglets.

  5. Neuronal degeneration and a decrease in laminin-like immunoreactivity is associated with elevated tissue-type plasminogen activator in the rat hippocampus after kainic acid injection.

    Science.gov (United States)

    Nagai, N; Urano, T; Endo, A; Takahashi, H; Takada, Y; Takada, A

    1999-02-01

    Tissue-type plasminogen activator (tPA) is a serine protease that converts the inactive precursor plasminogen to the active protease plasmin. In the central nervous system, tPA has been suggested to participate in plasticity, memory and the neuronal degeneration caused by excitotoxins, but its precise functions during these processes are still unclear. We show in this report that tPA antigen level and extracellular tPA activity increased in the hippocampus during the early stages of neuronal degeneration in the CA3 region following the injection of kainic acid (KA) into the lateral cerebral ventricles. The increase in tPA antigen level was transient and its peak was at 4 h after the injection. tPA activity was also increased 4 h after the injection, but it remained at a high level for more than 8 h. Histological zymography showed that the increase in tPA activity was mainly localized in the CA3 region. In the same region, the disappearance of interneuronal laminin-like immunoreactivity and atrophic changes in pyramidal neurons were observed 4 h after the injection of KA. These results suggested that such focal and transient increases in tPA synthesis and release, which result in the proteolysis of laminin through plasminogen activation, could be involved in the neuronal degeneration in the CA3 region after the injection of KA.

  6. Statins alleviate experimental nerve injury-induced neuropathic pain.

    Science.gov (United States)

    Shi, Xiang Qun; Lim, Tony K Y; Lee, Seunghwan; Zhao, Yuan Qing; Zhang, Ji

    2011-05-01

    The statins are a well-established class of drugs that lower plasma cholesterol levels by inhibiting HMG-CoA (3-hydroxy-3-methyl-glutaryl-coenzyme A) reductase. They are widely used for the treatment of hypercholesterolemia and for the prevention of coronary heart disease. Recent studies suggest that statins have anti-inflammatory effects beyond their lipid-lowering properties. We sought to investigate whether statins could affect neuropathic pain by mediating nerve injury-associated inflammatory responses. The effects of hydrophilic rosuvastatin and lipophilic simvastatin were examined in the mouse partial sciatic nerve ligation model. Systemic daily administration of either statin from days 0 to 14 completely prevented the development of mechanical allodynia and thermal hyperalgesia. When administered from days 8 to 14 after injury, both statins dose-dependently reduced established hypersensitivity. After treatment, the effects of the statins were washed out within 2 to 7 days, depending on dose. Effects of both statins in alleviating mechanical allodynia were further confirmed in a different injury-associated neuropathic pain model, mental nerve chronic constriction, in rats. Both statins were able to abolish interleukin-1β expression in sciatic nerve triggered by nerve ligation. Additionally, quantitative analysis with Iba-1 and glial fibrillary acid protein immunoreactivity demonstrated that rosuvastatin and simvastatin significantly reduced the spinal microglial and astrocyte activation produced by sciatic nerve injury. The increase of interleukin-1β mRNA in the ipsilateral side of spinal cords was also reduced by the treatment of either statin. We identified a potential new application of statins in the treatment of neuropathic pain. The pain-alleviating effects of statins are likely attributable to their immunomodulatory effects.

  7. Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves.

    Directory of Open Access Journals (Sweden)

    Guoxian Zhang

    Full Text Available The effect of exogenous CaCl2 on photosystem I and II (PSI and PSII activities, cyclic electron flow (CEF, and proton motive force of tomato leaves under low night temperature (LNT was investigated. LNT stress decreased the net photosynthetic rate (Pn, effective quantum yield of PSII [Y(II], and photochemical quenching (qP, whereas CaCl2 pretreatment improved Pn, Y(II, and qP under LNT stress. LNT stress significantly increased the non-regulatory quantum yield of energy dissipation [Y(NO], whereas CaCl2 alleviated this increase. Exogenous Ca2+ enhanced stimulation of CEF by LNT stress. Inhibition of oxidized PQ pools caused by LNT stress was alleviated by CaCl2 pretreatment. LNT stress reduced zeaxanthin formation and ATPase activity, but CaCl2 pretreatment reversed both of these effects. LNT stress caused excess formation of a proton gradient across the thylakoid membrane, whereas CaCl2 pretreatment decreased the said factor under LNT. Thus, our results showed that photoinhibition of LNT-stressed plants could be alleviated by CaCl2 pretreatment. Our findings further revealed that this alleviation was mediated in part by improvements in carbon fixation capacity, PQ pools, linear and cyclic electron transports, xanthophyll cycles, and ATPase activity.

  8. Immunity decreases, antioxidant system damages and tight junction changes in the intestine of grass carp (Ctenopharyngodon idella) during folic acid deficiency: Regulation of NF-κB, Nrf2 and MLCK mRNA levels.

    Science.gov (United States)

    Shi, Lei; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-04-01

    This investigation used the same growth trial as the previous study, which showed that folic acid deficiency retarded growth in young grass carp (the percent weight gain of Groups 1-6 were 102.32 ± 3.41%, 137.25 ± 10.48%, 179.78 ± 3.95%, 164.33 ± 3.21%, 143.35 ± 8.12% and 115.28 ± 2.66%) [1]. In the present study, we investigated the effects of dietary folic acid on the immune response, antioxidant status and tight junctions in the intestine of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp were fed diets containing graded levels of folic acid at 0.10, 0.47, 1.03, 1.48, 1.88 and 3.12 mg kg(-1) diet for 8 weeks. The results indicated that acid phosphatase and lysozyme activities, and the complement component 3 content in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) were decreased with folic acid deficiency (0.1 mg kg(-1)) (P Folic acid deficiency (0.1 mg kg(-1)) up-regulated interleukin 1β, interleukin 8, tumor necrosis factor α, nuclear factor κB p65 (NF-κB p65), IκB kinase α (IKK-α), IKK-β and IKK-γ gene expression, meanwhile down-regulated interleukin 10, transforming growth factor β, IκB and target of rapamycin gene expression in the PI, MI and DI (P folic acid deficiency decreased fish intestinal innate immune function may be partly contributed to the regulation of NF-κB p65 pathway. Moreover, the activities and corresponding gene expression of glutathione content, Cu/Zn superoxide dismutase, catalase, glutathione peroxidase, glutathione s-transferases and glutathione reductase in fish intestine were depressed by deficient folic acid diet (0.1 mg kg(-1)) (P folic acid deficiency (0.1 mg kg(-1)) down-regulated NF-E2-related factor 2 (Nrf2) gene expression, up-regulated Kelch-like-ECH-associated protein 1a (Keap1a) and Keap1b gene expression in fish intestine (P folic acid diet damaged fish intestinal antioxidant capacity partly by regulating Nrf2/Keap1 pathway

  9. Bioaccessibility of folic acid and (6S)-5-methyltetrahydrofolate decreases after the addition of folate-binding protein to yogurt as studied in a dynamic in vitro gastrointestinal model.

    Science.gov (United States)

    Arkbåge, Karin; Verwei, Miriam; Havenaar, Robert; Witthöft, Cornelia

    2003-11-01

    Milk products are only moderate sources of folate. Nevertheless, they are of interest due to their content of folate-binding proteins (FBP), which in some studies have been reported to increase folate bioavailability. The effect of FBP on folate bioavailability has been widely discussed. The aim of this study was to investigate the bioaccessibility of folic acid and (6S)-5-methyltetrahydrofolate (5-CH3-H4folate) from fortified yogurt using a dynamic in vitro gastrointestinal model (TIM). In addition, the effect of FBP on folate bioaccessibility and the stability of FBP added to yogurt during gastrointestinal passage were investigated. Folate bioaccessibility was 82% from yogurt fortified with folic acid and 5-CH3-H4folate. The addition of FBP to yogurt decreased (P folic acid (34% folate bioaccessibility) than from yogurt fortified with 5-CH3-H4folate (57% folate bioaccessibility). After gastrointestinal passage, 17% of the FBP in yogurt fortified with 5-CH3-H4folate and 34% of the FBP in yogurt fortified with folic acid were recovered. No difference in folate bioaccessibility was found between folate-fortified yogurt and folate-fortified pasteurized milk (P = 0.10), whereas the lowering effect of FBP was (P folic acid and 5-CH3-H4folate, yogurt without active FBP can be considered to be an appropriate food matrix for folate fortification.

  10. Fatty acid composition in major depression: decreased omega 3 fractions in cholesteryl esters and increased C20: 4 omega 6/C20:5 omega 3 ratio in cholesteryl esters and phospholipids.

    Science.gov (United States)

    Maes, M; Smith, R; Christophe, A; Cosyns, P; Desnyder, R; Meltzer, H

    1996-04-26

    Recently, there were some reports that major depression may be accompanied by alterations in serum total cholesterol, cholesterol ester and omega 3 essential fatty acid levels and by an increased C20: 4 omega 6/C20: 5 omega 3, i.e., arachidonic acid/eicosapentaenoic, ratio. The present study aimed to examine fatty acid composition of serum cholesteryl esters and phospholipids in 36 major depressed, 14 minor depressed and 24 normal subjects. Individual saturated (e.g., C14:0; C16:0, C18:0) and unsaturated (e.g., C18:1, C18:2, C20:4) fatty acids in phospholipid and cholesteryl ester fractions were assayed and the sums of the percentages of omega 6 and omega 3, saturated, branched chain and odd chain fatty acids, monoenes as well as the ratios omega 6/omega 3 and C20:4 omega 6/C20:5 omega 3 were calculated. Major depressed subjects had significantly higher C20:4 omega 6/C20:5 omega 3 ratio in both serum cholesteryl esters and phospholipids and a significantly increased omega 6/omega 3 ratio in cholesteryl ester fraction than healthy volunteers and minor depressed subjects. Major depressed subjects had significantly lower C18:3 omega 3 in cholesteryl esters than normal controls. Major depressed subjects showed significantly lower total omega 3 polyunsaturated fatty acids in cholesteryl esters and significantly lower C20:5 omega 3 in serum cholesteryl esters and phospholipids than minor depressed subjects and healthy controls. These findings suggest an abnormal intake or metabolism of essential fatty acids in conjunction with decreased formation of cholesteryl esters in major depression.

  11. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.

    Science.gov (United States)

    Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin

    2015-01-01

    Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings.

  12. Sulfur Dioxide Enhances Endogenous Hydrogen Sulfide Accumulation and Alleviates Oxidative Stress Induced by Aluminum Stress in Germinating Wheat Seeds

    Directory of Open Access Journals (Sweden)

    Dong-Bo Zhu

    2015-01-01

    Full Text Available Aluminum ions are especially toxic to plants in acidic soils. Here we present evidences that SO2 protects germinating wheat grains against aluminum stress. SO2 donor (NaHSO3/Na2SO3 pretreatment at 1.2 mM reduced the accumulation of superoxide anion, hydrogen peroxide, and malondialdehyde, enhanced the activities of guaiacol peroxidase, catalase, and ascorbate peroxidase, and decreased the activity of lipoxygenase in germinating wheat grains exposed to Al stress. We also observed higher accumulation of hydrogen sulfide (H2S in SO2-pretreated grain, suggesting the tight relation between sulfite and sulfide. Wheat grains geminated in water for 36 h were pretreated with or without 1 mM SO2 donor for 12 h prior to exposure to Al stress for 48 h and the ameliorating effects of SO2 on wheat radicles were studied. SO2 donor pretreatment reduced the content of reactive oxygen species, protected membrane integrity, and reduced Al accumulation in wheat radicles. Gene expression analysis showed that SO2 donor pretreatment decreased the expression of Al-responsive genes TaWali1, TaWali2, TaWali3, TaWali5, TaWali6, and TaALMT1 in radicles exposed to Al stress. These results suggested that SO2 could increase endogenous H2S accumulation and the antioxidant capability and decrease endogenous Al content in wheat grains to alleviate Al stress.

  13. Trans-1O,12,not cis-9,trans-11,conjugated linoleic acid decreases ErbB3 expression in HT-29 human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Han Jin Cho; Woo Kyoung Kim; Jae In Jung; Eun Ji Kim; Soon Sung Lim; Dae Young Kwon; Jung Han Yoon Park

    2005-01-01

    AIM: To examine whether trans-10, cis-12 CLA (t10c12)or cis-9, trans-11 CLA (c9 t11) inhibits heregulin (H RG)-β-stimulated cell growth and HRG-β-ErbB3 signaling in HT-29 cells.METHODS: We cultured HT-29 cells in the absence or presence of the CLA isomers and/or the ErbB3 ligand HRG-β. MTT assay, [3H]thymidine incorporation, Annexin V staining, RT-PCR, Western blotting, immunoprecipitation,and in vitro kinase assay were performed.RESULTS: HRG-β increased cell growth, but did not prevent t10c12-induced growth inhibition. T10c12 inhibited DNA synthesis and induced apoptosis of HT-29 cells, whereas c9t11 had no effect. T10c12 decreased the levels of ErbB1,ErbB2, and ErbB3 proteins and transcripts in a dose-dependent manner, whereas cgt11 had no effect. Immunoprecipitation/Western blot studies revealed that t10c12 inhibited HRG-β-stimulated phosphorylation of ErbB3, recruitment of the p85 subunit of phosphoinositide 3-kinase (PI3K) to ErbB3, ErbB3-associated PI3K activities, and phosphorylation ofAkt. However, c9t11 had no effect on phospho Akt levels.Neither t10c12 nor c9t11 had any effect on HRG-β-induced phosphorylation of ERK-1/2.CONCLUSION: These results indicate that the inhibition of HT-29 cell growth by t10c12 may be induced via its modulation of ErbB3 signaling leading to inhibition of Akt activation.

  14. Alleviating Media Bias Through Intelligent Agent Blogging

    CERN Document Server

    Diaz-Aviles, Ernesto

    2009-01-01

    Consumers of mass media must have a comprehensive, balanced and plural selection of news to get an unbiased perspective; but achieving this goal can be very challenging, laborious and time consuming. News stories development over time, its (in)consistency, and different level of coverage across the media outlets are challenges that a conscientious reader has to overcome in order to alleviate bias. In this paper we present an intelligent agent framework currently facilitating analysis of the main sources of on-line news in El Salvador. We show how prior tools of text analysis and Web 2.0 technologies can be combined with minimal manual intervention to help individuals on their rational decision process, while holding media outlets accountable for their work.

  15. Alleviate Cellular Congestion Through Opportunistic Trough Filling

    Directory of Open Access Journals (Sweden)

    Yichuan Wang

    2014-04-01

    Full Text Available The demand for cellular data service has been skyrocketing since the debut of data-intensive smart phones and touchpads. However, not all data are created equal. Many popular applications on mobile devices, such as email synchronization and social network updates, are delay tolerant. In addition, cellular load varies significantly in both large and small time scales. To alleviate network congestion and improve network performance, we present a set of opportunistic trough filling schemes that leverage the time-variation of network congestion and delay-tolerance of certain traffic in this paper. We consider average delay, deadline, and clearance time as the performance metrics. Simulation results show promising performance improvement over the standard schemes. The work shed lights on addressing the pressing issue of cellular overload.

  16. Probucol alleviates atherosclerosis and improves high density lipoprotein function

    Directory of Open Access Journals (Sweden)

    Zhong Jian-Kai

    2011-11-01

    Full Text Available Abstract Background Probucol is a unique hypolipidemic agent that decreases high density lipoprotein cholesterol (HDL-C. However, it is not definite that whether probucol hinders the progression of atherosclerosis by improving HDL function. Methods Eighteen New Zealand White rabbits were randomly divided into the control, atherosclerosis and probucol groups. Control group were fed a regular diet; the atherosclerosis group received a high fat diet, and the probucol group received the high fat diet plus probucol. Hepatocytes and peritoneal macrophages were isolated for [3H] labeled cholesterol efflux rates and expression of ABCA1 and SR-B1 at gene and protein levels; venous blood was collected for serum paraoxonase 1, myeloperoxidase activity and lipid analysis. Aorta were prepared for morphologic and immunohistochemical analysis after 12 weeks. Results Compared to the atherosclerosis group, the paraoxonase 1 activity, cholesterol efflux rates, expression of ABCA1 and SR-BI in hepatocytes and peritoneal macrophages, and the level of ABCA1 and SR-BI in aortic lesions were remarkably improved in the probucol group, But the serum HDL cholesterol concentration, myeloperoxidase activity, the IMT and the percentage plaque area of aorta were significantly decreased. Conclusion Probucol alleviated atherosclerosis by improving HDL function. The mechanisms include accelerating the process of reverse cholesterol transport, improving the anti-inflammatory and anti-oxidant functions.

  17. Alleviation Effect of Lanthanum on Cadmium Stress in Seedling Hydroponic Culture of Kidney Bean and Corn

    Institute of Scientific and Technical Information of China (English)

    Huang Xiaohua; Zhou Qing

    2006-01-01

    The seedling hydroponic culture experiment of kidney bean (Phaseolus vulgaris) and corn (Zea mays) was conducted to investigate the alleviation effect of lanthanum on Cd stress.It is found that growth is seriously inhibited and metabolism is maladjusted in the two crops under 30 and 300 μmol·L-1 Cd2+ stress.Plant height, taproot length, leaf area, and fresh or dry weight of root, stem, and leaf are all obviously decreased.Further, chlorophyll content decreases, membrane permeability, malonydialdehyde (MDA) content, activities of catalase (CAT) and peroxidase (POD) increases under Cd stress, as compared with the control.The damage to these two crops becomes more conspicuous with the prolongation of Cd stress.It is suggested that lanthanum might help kidney bean and corn seedlings alleviate Cd stress by improving the photosynthetic capacity, reducing membrane permeability and MDA content, and maintaining the activities of CAT and POD of these two crops.

  18. Scientific Opinion on the substantiation of a health claim related to coffee C21, a coffee standardised by its content of caffeoylquinic acids, trigonelline and N-methylpyridinium, and reduction of DNA damage by decreasing spontaneous DNA strand breaks

    DEFF Research Database (Denmark)

    Tetens, Inge

    on the scientific substantiation of a health claim related to coffee C21 and reduction of DNA damage by decreasing spontaneous DNA strand breaks. The scope of the application was proposed to fall under a health claim based on newly developed scientific evidence. Coffee C21, a coffee standardised by its content...... intervention study showed that daily consumption of coffee C21 (750 ml/day) for four weeks decreased spontaneous DNA strand breaks in habitual coffee drinkers after coffee withdrawal over the previous four weeks, but that no other human studies in which these results have been replicated were provided......, and that no evidence was provided for a mechanism by which coffee (including coffee C21) could exert the claimed effect. The Panel concludes that a cause and effect relationship has not been established between the consumption of coffee C21, a coffee standardised by its content of caffeoylquinic acids, trigonelline...

  19. Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plants.

    Science.gov (United States)

    Li, X; Ahammed, G J; Zhang, Y Q; Zhang, G Q; Sun, Z H; Zhou, J; Zhou, Y H; Xia, X J; Yu, J Q; Shi, K

    2015-01-01

    Plant responses to elevated CO₂ and high temperature are critically regulated through a complex network of phytohormones and redox homeostasis. However, the involvement of abscisic acid (ABA) in plant adaptation to heat stress under elevated CO₂ conditions has not been thoroughly studied. This study investigated the interactive effects of elevated CO₂ (800 μmol·mol(-1) ) and heat stress (42 °C for 24 h) on the endogenous level of ABA and the cellular redox state of two genotypes of tomato with different ABA biosynthesis capacities. Heat stress significantly decreased maximum photochemical efficiency of PSII (Fv/Fm) and leaf water potential, but also increased levels of malondialdehyde (MDA) and electrolyte leakage (EL) in both genotypes. Heat-induced damage was more severe in the ABA-deficient mutant notabilis (not) than in its parental cultivar Ailsa Craig (Ailsa), suggesting that a certain level of endogenous ABA is required to minimise the heat-induced oxidative damage to the photosynthetic apparatus. Irrespective of genotype, the enrichment of CO₂ remarkably stimulated Fv/Fm, MDA and EL in heat-stressed plants towards enhanced tolerance. In addition, elevated CO₂ significantly strengthened the antioxidant capacity of heat-stressed tomato seedlings towards a reduced cellular redox state for a prolonged period, thereby mitigating oxidative stress. However, elevated CO₂ and heat stress did not alter the endogenous level of ABA or the expression of its biosynthetic gene NCED2 in either genotype, indicating that ABA is not involved in elevated CO₂ -induced heat stress alleviation. The results of this study suggest that elevated CO₂ alleviated heat stress through efficient regulation of the cellular redox poise in an ABA-independent manner in tomato plants.

  20. Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles

    OpenAIRE

    Borišev, Milan; Borišev, Ivana; Župunski, Milan; Arsenov, Danijela; Pajević, Slobodanka; Ćurčić, Živko; Vasin, Jovica; Djordjevic, Aleksandar

    2016-01-01

    Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C60(OH)24) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in pla...

  1. Decreasing Fires in Mediterranean Europe.

    Directory of Open Access Journals (Sweden)

    Marco Turco

    Full Text Available Forest fires are a serious environmental hazard in southern Europe. Quantitative assessment of recent trends in fire statistics is important for assessing the possible shifts induced by climate and other environmental/socioeconomic changes in this area. Here we analyse recent fire trends in Portugal, Spain, southern France, Italy and Greece, building on a homogenized fire database integrating official fire statistics provided by several national/EU agencies. During the period 1985-2011, the total annual burned area (BA displayed a general decreasing trend, with the exception of Portugal, where a heterogeneous signal was found. Considering all countries globally, we found that BA decreased by about 3020 km2 over the 27-year-long study period (i.e. about -66% of the mean historical value. These results are consistent with those obtained on longer time scales when data were available, also yielding predominantly negative trends in Spain and France (1974-2011 and a mixed trend in Portugal (1980-2011. Similar overall results were found for the annual number of fires (NF, which globally decreased by about 12600 in the study period (about -59%, except for Spain where, excluding the provinces along the Mediterranean coast, an upward trend was found for the longer period. We argue that the negative trends can be explained, at least in part, by an increased effort in fire management and prevention after the big fires of the 1980's, while positive trends may be related to recent socioeconomic transformations leading to more hazardous landscape configurations, as well as to the observed warming of recent decades. We stress the importance of fire data homogenization prior to analysis, in order to alleviate spurious effects associated with non-stationarities in the data due to temporal variations in fire detection efforts.

  2. Alleviation of harmful effect in stillage reflux in food waste ethanol fermentation based on metabolic and side-product accumulation regulation.

    Science.gov (United States)

    Ma, Hongzhi; Yang, Jian; Jia, Yan; Wang, Qunhui; Ma, Xiaoyu; Sonomoto, Kenji

    2016-10-01

    Stillage reflux fermentation in food waste ethanol fermentation could reduce sewage discharge but exert a harmful effect because of side-product accumulation. In this study, regulation methods based on metabolic regulation and side-product alleviation were conducted. Result demonstrated that controlling the proper oxidation-reduction potential value (-150mV to -250mV) could reduce the harmful effect, improve ethanol yield by 21%, and reduce fermentation time by 20%. The methods of adding calcium carbonate to adjust the accumulated lactic acid showed that ethanol yield increased by 17.3%, and fermentation time decreased by 20%. The accumulated glyceal also shows that these two methods can reduce the harmful effect. Fermentation time lasted for seven times without effect, and metabolic regulation had a better effect than side-product regulation.

  3. Wakeful rest alleviates interference-based forgetting.

    Science.gov (United States)

    Mercer, Tom

    2015-01-01

    Retroactive interference (RI)--the disruptive influence of events occurring after the formation of a new memory--is one of the primary causes of forgetting. Placing individuals within an environment that postpones interference should, therefore, greatly reduce the likelihood of information being lost from memory. For example, a short period of wakeful rest should diminish interference-based forgetting. To test this hypothesis, participants took part in a foreign language learning activity and were shown English translations of 20 Icelandic words for immediate recall. Half of the participants were then given an 8-min rest before completing a similar or dissimilar interfering distractor task. The other half did not receive a rest until after the distractor task, at which point interference had already taken place. All participants were then asked to translate the Icelandic words for a second time. Results revealed that retention was significantly worse at the second recall test, but being allowed a brief rest before completing the distractor task helped reduce the amount of forgetting. Taking a short, passive break can shield new memories from RI and alleviate forgetting.

  4. An Online Alternative to Alleviate Communication Apprehension

    Directory of Open Access Journals (Sweden)

    Seyit Ahmet Çapan

    2013-05-01

    Full Text Available Anxiety is an affective factor commonly associated with one’s overall performance in a foreign language. As a component of foreign language anxiety, communication apprehension specifically correlates with successful oral production. A plethora of research (Bailey, Onwuegbuzie & Daley, 2003; Foss & Reitzel, 1988 has indicated that high levels of communication apprehension negatively affects one’s L2 communication abilities. Thus, this study intends to remedy negative effects of communication apprehension on EFL learners by virtual meetings held through computer-mediated communication. The participants (N: 18 in this study were selected through purposive sampling. The study employed both quantitative and qualitative techniques. To analyze the data collected, a non-parametric test, Wilcoxon Signed Rank Test, was utilized. The results indicated that computer-mediated communication via voice over IP tools made a significant contribution to alleviate communication apprehension levels in the participants with varying degrees of apprehension levels. The study yielded the most drastic reduction in the high apprehension group, since the participants in this group made a significant progress and ended up with moderate levels of communication apprehension. Also, the participants’ self-reports revealed that computer-mediated communication yielded remarkably positive changes in their attitudes towards communicating in the target language. Moreover, the study revealed that computer-mediated communication helped to increase their intercultural awareness. Finally, participants provided a bunch of practical suggestions as possible solutions for reducing communication apprehension. Keywords: apprehension, communication, computer-mediated, attitudes

  5. Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs.

    Science.gov (United States)

    Stoltz, David A; Rokhlina, Tatiana; Ernst, Sarah E; Pezzulo, Alejandro A; Ostedgaard, Lynda S; Karp, Philip H; Samuel, Melissa S; Reznikov, Leah R; Rector, Michael V; Gansemer, Nicholas D; Bouzek, Drake C; Abou Alaiwa, Mahmoud H; Hoegger, Mark J; Ludwig, Paula S; Taft, Peter J; Wallen, Tanner J; Wohlford-Lenane, Christine; McMenimen, James D; Chen, Jeng-Haur; Bogan, Katrina L; Adam, Ryan J; Hornick, Emma E; Nelson, George A; Hoffman, Eric A; Chang, Eugene H; Zabner, Joseph; McCray, Paul B; Prather, Randall S; Meyerholz, David K; Welsh, Michael J

    2013-06-01

    Cystic fibrosis (CF) pigs develop disease with features remarkably similar to those in people with CF, including exocrine pancreatic destruction, focal biliary cirrhosis, micro-gallbladder, vas deferens loss, airway disease, and meconium ileus. Whereas meconium ileus occurs in 15% of babies with CF, the penetrance is 100% in newborn CF pigs. We hypothesized that transgenic expression of porcine CF transmembrane conductance regulator (pCFTR) cDNA under control of the intestinal fatty acid-binding protein (iFABP) promoter would alleviate the meconium ileus. We produced 5 CFTR-/-;TgFABP>pCFTR lines. In 3 lines, intestinal expression of CFTR at least partially restored CFTR-mediated anion transport and improved the intestinal phenotype. In contrast, these pigs still had pancreatic destruction, liver disease, and reduced weight gain, and within weeks of birth, they developed sinus and lung disease, the severity of which varied over time. These data indicate that expressing CFTR in intestine without pancreatic or hepatic correction is sufficient to rescue meconium ileus. Comparing CFTR expression in different lines revealed that approximately 20% of wild-type CFTR mRNA largely prevented meconium ileus. This model may be of value for understanding CF pathophysiology and testing new preventions and therapies.

  6. Coumarin pretreatment alleviates salinity stress in wheat seedlings.

    Science.gov (United States)

    Saleh, Ahmed Mahmoud; Madany, M M Y

    2015-03-01

    The potentiality of COU to improve plant tolerance to salinity was investigated. Wheat grains were primed with COU (50 ppm) and then grown under different levels of NaCl (50, 100, 150 mM) for two weeks. COU pretreatment improved the growth of wheat seedling under salinity, relative to COU-untreated seedlings, due to the accumulation of osmolytes such as soluble sugars and proline. Moreover, COU treatment significantly improved K(+)/Na(+) ratio in the shoots of both salt stressed and un-stressed seedlings. However, in the roots, this ratio increased only under non-salinity. In consistent with phenylalanine ammonia lyase (PAL), phenolics and flavonoids were accumulated in COU-pretreated seedlings under the higher doses of salinity, relative to COU-untreated seedlings. COU primed seedlings showed higher content of the coumarin derivative, scopoletin, and salicylic, chlorogenic, syringic, vanillic, gallic and ferulic acids, under both salinity and non-salinity conditions. Salinity stress significantly improved the activity of peroxidase (POD) in COU-pretreated seedlings. However, the effect of COU on the total antioxidant capacity (TAC) was only obtained at the highest dose of NaCl (150 mM). The present results suggest that COU pretreatment could alleviate the adverse effect of salinity on the growth of wheat seedlings through enhancing, at least partly, the osmoregulation process and antioxidant defense system.

  7. Nesfatin-1 alleviates extrahepatic cholestatic damage of liver in rats

    Directory of Open Access Journals (Sweden)

    Ali Solmaz

    2016-11-01

    Full Text Available Obstructive jaundice (OJ can be defined as cessation of bile flow into the small intestine due to benign or malignant changes. Nesfatin-1, recently discovered anorexigenic peptide derived from nucleobindin-2 in hypothalamic nuclei, was shown to have anti-inflammatory and antiapoptotic effects. This study is aimed to investigate the therapeutic effects of nesfatin-1 on OJ in rats. Twenty-four adult male Wistar-Hannover rats were randomly assigned to three groups: sham (n = 8, control (n = 8, and nesfatin (n = 8. After bile duct ligation, the study groups were treated with saline or nesfatin-1, for 10 days. Afterward, blood and liver tissue samples were obtained for biochemical analyses, measurement of cytokines, determination of the oxidative DNA damage, DNA fragmentation, and histopathologic analyses. Alanine aminotransferase and gamma-glutamyl transferase levels were decreased after the nesfatin treatment; however, these drops were statistically non-significant compared to control group (p = 0.345, p = 0.114. Malondialdehyde levels decreased significantly in nesfatin group compared to control group (p = 0.032. Decreases in interleukin-6 and tumor necrosis factor-α levels from the liver tissue samples were not statistically significant in nesfatin group compared to control group. The level of oxidative DNA damage was lower in nesfatin group, however this result was not statistically significant (p = 0.75. DNA fragmentation results of all groups were similar. Histopathological examination revealed that there was less neutrophil infiltration, edema, bile duct proliferation, hepatocyte necrosis, basement membrane damage, and parenchymal necrosis in nesfatin compared to control group. The nesfatin-1 treatment could alleviate cholestatic liver damage caused by OJ due to its anti-inflammatory and antioxidant effects.

  8. Agent Reward Shaping for Alleviating Traffic Congestion

    Science.gov (United States)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.

  9. Arctigenin alleviates ER stress via activating AMPK

    Institute of Scientific and Technical Information of China (English)

    Yuan GU; Xiao-xiao SUN; Ji-ming YE; Li HE; Shou-sheng YAN; Hao-hao ZHANG; Li-hong HU; Jun-ying YUAN; Qiang YU

    2012-01-01

    Aim:To investigate the protective effects of arctigenin (ATG),a phenylpropanoid dibenzylbutyrolactone lignan from Arctium lappa L (Compositae),against ER stress in vitro and the underlying mechanisms.Methods:A cell-based screening assay for ER stress regulators was established.Cell viability was measured using MTT assay.PCR and Western blotting were used to analyze gene and protein expression.Silencing of the CaMKKβ,LKB1,and AMPKα1 genes was achieved by RNA interference (RNAi).An ATP bioluminescent assay kit was employed to measure the intracellular ATP levels.Results:ATG (2.5,5,and 10 μmol/L) inhibited cell death and unfolded protein response (UPR) in a concentration-dependent manner in cells treated with the ER stress inducer brefeldin A (100 nmol/L).ATG (1,5,and 10 μmol/L) significantly attenuated protein synthesis in cells through inhibiting mTOR-p7OS6K signaling and eEF2 activity,which were partially reversed by silencing AMPKα1 with RNAi.ATG (1-50 μmol/L) reduced intracellular ATP level and activated AMPK through inhibiting complex I-mediated respiration.Pretreatment of cells with the AMPK inhibitor compound C (25 μmol/L) rescued the inhibitory effects of ATG on ER stress.Furthermore,ATG (2.5 and 5μmol/L) efficiently activated AMPK and reduced the ER stress and cell death induced by palmitate (2 mmol/L) in INS-1 β cells.Conclusion:ATG is an effective ER stress alleviator,which protects cells against ER stress through activating AMPK,thus attenuating protein translation and reducing ER load.

  10. Effectiveness of Zakah Targeting in Alleviating Poverty in Indonesia

    Directory of Open Access Journals (Sweden)

    Rahmatina A Kasri

    2016-07-01

    Full Text Available Zakah is a unique Islamic institution targeted to eight groups of recipients with the aim to redistribute income, reduce poverty and achieve social welfare. However, the impacts and effectiveness of zakah targeting in reducing poverty is rarely measured. This is the main objective of the study. To achieve it, a survey was conducted to collect primary data from zakah recipients in Greater Jakarta Indonesia. The data were subsequently analysed by using descriptive and poverty index analyses. The main results suggest that the incidence, depth and severity of poverty amongst the recipients have decreased due to the contributions from zakah organizations. There are also indications that zakah has been distributed to the most disadvantaged people such as the uneducated and unemployed. The findings provide empirical evidence regarding positive contribution and effectiveness of zakah targeting in reducing poverty in Indonesia. Some policy implications of the findings are also highlighted to enrich discourses on the role of zakah in alleviating poverty in Muslim societies.DOI: 10.15408/aiq.v8i2.3005

  11. Alleviation of podophyllotoxin toxicity using coexisting flavonoids from Dysosma versipellis.

    Directory of Open Access Journals (Sweden)

    Juan Li

    Full Text Available Podophyllotoxin (POD is a lignan-type toxin existing in many herbs used in folk medicine. Until now, no effective strategy is available for the management of POD intoxication. This study aims to determine the protective effects of flavonoids (quercetin and kaempferol on POD-induced toxicity. In Vero cells, both flavonoids protected POD-induced cytotoxicity by recovering alleviating G2/M arrest, decreasing ROS generation and changes of membrane potential, and recovering microtubule structure. In Swiss mice, the group given both POD and flavonoids group had significantly lower mortality rate and showed less damages in the liver and kidney than the group given POD alone. As compared to the POD group, the POD plus flavonoids group exhibited decreases in plasma transaminases, alkaline phosphatase, lactate dehydrogenase, plasma urea, creatinine and malondialdehyde levels, and increases in superoxide dismutase and glutathione levels. Histological examination of the liver and kidney showed less pathological changes in the treatment of POD plus flavonoids group. The protective mechanisms were due to the antioxidant activity of flavonoids against the oxidative stress induced by POD and the competitive binding of flavonoids against POD for the same colchicines-binding sites. The latter binding was confirmed by the tubulin assembly assay in combination with molecular docking analyses. In conclusion, this study for the first time demonstrated that the coexisting flavonoids have great protective effects against the POD toxicity, and results of this study highlighted the great potential of searching for effective antidotes against toxins based on the pharmacological clues.

  12. Stratification requirements for seed dormancy alleviation in a wetland weed.

    Science.gov (United States)

    Boddy, Louis G; Bradford, Kent J; Fischer, Albert J

    2013-01-01

    Echinochloaoryzicola(syn.E. phyllopogon) is an exotic weed of California rice paddies that has evolved resistance to multiple herbicides. Elimination of seedlingsthroughcertain weed control methods can limit the spread of this weed, but is contingent on accurate predictions of germination and emergence timing, which are influenced by seed dormancy levels.In summer annuals, dormancy can often be relieved through stratification, a period of prolonged exposure to cold and moist conditions.We used population-based threshold models to quantify the effects of stratification on seed germination of four E. Oryzicola populations at a range of water potential (Ψ) and oxygen levels. We also determined how stratification temperatures, moisture levels and durations contributed to dormancy release. Stratification released dormancy by decreasing base Ψ and hydrotimerequired for germination and by eliminating any germination sensitivity to oxygen. Stratification also increased average germination rates (GR), which were used as a proxy for relative dormancy levels. Alternating temperatures nearly doubled GR in all populations, indicating that seeds could be partially dormant despite achieving high final germination percentages. Stratification at Ψ = 0 MPa increased GR compared to stratification at lower water potentials, demonstrating that Ψ contributed to regulating dormancy release. Maximum GR occurred after 2-4 weeks of stratification at 0 MPa; GR were often more rapid for herbicide-resistant than for herbicide-susceptible seeds, implying greater dormancy in the latter. Manipulation of field conditions to promote dormancy alleviation of E. oryzicola seeds might improve the rate and uniformity of germination for seed bank depletion through seedling weed control. Our results suggest field soil saturation in winter would contribute towards E. oryzicola dormancy release and decrease the time to seedling emergence.

  13. The World Shares Chinese Experience of Poverty Alleviation

    Institute of Scientific and Technical Information of China (English)

    Wang Rengui

    2015-01-01

    As the 2nd China Poverty Alleviation Day and the 23rd International Day for the Eradication of Poverty is approaching,Chinese President Xi Jinping delivered a keynote speech at the 2015 Global Poverty Reduction and Development Forum in Beijing on October 16th and elaborated Chinese Government’s resolute measures on comprehensively promoting poverty alleviation campaign in the process of building a moderately prosperous society in an all suspects,showing China’s

  14. EFFECTS OF SILICON ON ALLEVIATING ARSENIC TOXICITY IN MAIZE PLANTS

    OpenAIRE

    Airon José da Silva; Clístenes Williams Nascimento; Artur da Silva Gouveia Neto; Elias Arcanjo Silva Junior

    2015-01-01

    Arsenic is a metalloid highly toxic to plants and animals, causing reduced plant growth and various health problems for humans and animals. Silicon, however, has excelled in alleviating stress caused by toxic elements in plants. The aim of this study was to investigate the effects of Si in alleviating As stress in maize plants grown in a nutrient solution and evaluate the potential of the spectral emission parameters and the red fluorescence (Fr) and far-red fluorescence (FFr) ratio obtained ...

  15. Entrepreneurship Development and Poverty Alleviation: An Empirical Review

    OpenAIRE

    Mohammad Delwar Hussain; Rosni Bakar; Abul Bashar Bhuiyan

    2014-01-01

    The main purpose of this paper is to corroborate the relationship between entrepreneurship development and poverty alleviation constructed on empirical reviews. In this study, we conducted general search to accumulate empirical literatures by the name of entrepreneurship development and poverty alleviation in different online database sources such as Google Scholars, Springer Link, Wiley, Science Direct, JSTOR, Emerald full text, Scopus, and EBSCO HOST etc. We found innovation, entrepreneursh...

  16. Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus domestica Borkh.) embryos.

    Science.gov (United States)

    Krasuska, Urszula; Ciacka, Katarzyna; Dębska, Karolina; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-08-15

    Deep dormancy of apple (Malus domestica Borkh.) embryos can be overcome by short-term pre-treatment with nitric oxide (NO) or hydrogen cyanide (HCN). Dormancy alleviation of embryos modulated by NO or HCN and the first step of germination depend on temporary increased production of reactive oxygen species (ROS). Direct oxidative attack on some amino acid residues or secondary reactions via reactive carbohydrates and lipids can lead to the formation of protein carbonyl derivatives. Protein carbonylation is a widely accepted covalent and irreversible modification resulting in inhibition or alteration of enzyme/protein activities. It also increases the susceptibility of proteins to proteolytic degradation. The aim of this work was to investigate protein carbonylation in germinating apple embryos, the dormancy of which was removed by pre-treatment with NO or HCN donors. It was performed using a quantitative spectrophotometric method, while patterns of carbonylated protein in embryo axes were analyzed by immunochemical techniques. The highest concentration of protein carbonyl groups was observed in dormant embryos. It declined in germinating embryos pre-treated with NO or HCN, suggesting elevated degradation of modified proteins during seedling formation. A decrease in the concentration of carbonylated proteins was accompanied by modification in proteolytic activity in germinating apple embryos. A strict correlation between the level of protein carbonyl groups and cotyledon growth and greening was detected. Moreover, direct in vitro carbonylation of BSA treated with NO or HCN donors was analyzed, showing action of both signaling molecules as protein oxidation agents.

  17. A suplementação com ácido linoléico conjugado reduziu a gordura corporal em ratos Wistar Conjugated linoleic acid suplementation decreased the body fat in Wistar rats

    Directory of Open Access Journals (Sweden)

    Adriana Prais Botelho

    2005-08-01

    animals were supplemented via a stomach tube. For the body composition analyses, the gut contents were removed to obtain the empty carcass weight. The carcasses were then frozen in liquid nitrogen, chopped, dried, ground and stored at -25ºC, until analyzed for water, ash, protein and fat. The AE1 group showed higher feed intake and weight gain, but did not differ in food efficiency from the other groups (p< 0.05. In terms of body composition, body fat reduced in groups AE2 (11.2% and AE4 (11.6%, as compared to the control (13.9%. Conjugated linoleic acid supplementation at a rate of 2.0% and 4.0% with respect to the daily feed intake, decreased body fat by 18.0% in Wistar rats.

  18. [Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar].

    Science.gov (United States)

    Zhao, Ying; Yang, Ke-jun; Li, Zuo-tong; Zhao, Chang-jiang; Xu, Jing-yu; Hu, Xue- wei; Shi, Xin-xin; Ma, Li-feng

    2015-09-01

    The maize variety Kenyu 6 was used to study the effects of exogenous glucose (Glc) and sucrose (Suc) on salt tolerance of maize seeds at germination stage under 150 mmol · L(-1) NaCl treatment. Results showed that under salt stress condition, 0.5 mmol · L(-1) exogenous Glc and Suc presoaking could promote seed germination and early seedling growth. Compared with the salt treatment, Glc presoaking increased the shoot length, radicle length and corresponding dry mass up to 1.5, 1.3, 2.1 and 1.8 times, and those of the Suc presoaking treatment increased up to 1.7, 1.3. 2.7 and 1.9 times, respectively. Exogenous Glc and Suc presoaking resulted in decreased levels of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content of maize shoot under salt stress, which were lowered by 24.9% and 20.6% respectively. Exogenous Glc and Suc presoaking could increase the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and induce glucose-6-phosphate dehydrogenase (G6PDH) activity of maize shoot under salt stress. Compared with the salt treatment. Glc presoaking increased the activity of SOD, APX, GPX, GR and G6PDH by 66.2%, 62.9%, 32.0%, 38.5% and 50.5%, and those of the Suc presoaking increased by 67.5%, 59.8%, 30.0%, 38.5% and 50.4%, respectively. Glc and Suc presoaking also significantly increased the contents of ascorbic acid (ASA) and glutathione (GSH), ASA/DHA and GSH/GSSG. The G6PDH activity was found closely related with the strong antioxidation capacity induced by exogenous sugars. In addition, Glc and Suc presoaking enhanced K+/Na+ in maize shoot by 1.3 and 1.4 times of water soaking salt treatment, respectively. These results indicated that exogenous Glc and Suc presoaking could improve antioxidation capacity of maize seeds and maintain the in vivo K+/Na+ ion balance to alleviate the inhibitory effect of salt stress on maize seed germination.

  19. Decreasing relative risk premium

    DEFF Research Database (Denmark)

    Hansen, Frank

    2007-01-01

    such that the corresponding relative risk premium is a decreasing function of present wealth, and we determine the set of associated utility functions. We find a new characterization of risk vulnerability and determine a large set of utility functions, closed under summation and composition, which are both risk vulnerable...... and have decreasing relative risk premium. We finally introduce the notion of partial risk neutral preferences on binary lotteries and show that partial risk neutrality is equivalent to preferences with decreasing relative risk premium...

  20. PARP-1 inhibition alleviates diabetic cardiac complications in experimental animals.

    Science.gov (United States)

    Zakaria, Esraa M; El-Bassossy, Hany M; El-Maraghy, Nabila N; Ahmed, Ahmed F; Ali, Abdelmoneim A

    2016-11-15

    Cardiovascular complications are the major causes of mortality among diabetic population. Poly(ADP-ribose) polymerase-1 enzyme (PARP-1) is activated by oxidative stress leading to cellular damage. We investigated the implication of PARP-1 in diabetic cardiac complications. Type 2 diabetes was induced in rats by high fructose-high fat diet and low streptozotocin dose. PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for ten weeks after diabetes induction. At the end of study, surface ECG, blood pressure and vascular reactivity were studied. PARP-1 activity, reduced glutathione (GSH) and nitrite contents were assessed in heart muscle. Fasting glucose, fructosamine, insulin, and tumor necrosis factor alpha (TNF-α) levels were measured in serum. Finally, histological examination and collagen deposition detection in rat ventricular and aortic sections were carried out. Hearts isolated from diabetic animals showed increased PARP-1 enzyme activity compared to control animals while significantly reduced by 4-AB administration. PARP-1 inhibition by 4-AB alleviated cardiac ischemia in diabetic animals as indicated by ECG changes. PARP-1 inhibition also reduced cardiac inflammation in diabetic animals as evidenced by histopathological changes. In addition, 4-AB administration improved the elevated blood pressure and the associated exaggerated vascular contractility, endothelial destruction and vascular inflammation seen in diabetic animals. Moreover, PARP-1 inhibition decreased serum levels of TNF-α and cardiac nitrite but increased cardiac GSH contents in diabetic animals. However, PARP-1 inhibition did not significantly affect the developed hyperglycemia. Our findings prove that PARP-1 enzyme plays an important role in diabetic cardiac complications through combining inflammation, oxidative stress, and fibrosis mechanisms.

  1. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    Science.gov (United States)

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  2. Research Progress of Tourism-oriented Poverty Alleviation in China

    Institute of Scientific and Technical Information of China (English)

    Guoqing; HUANG; Pengfei; XIE

    2013-01-01

    Through systematic summary of domestic research documents about China’s tourism-oriented poverty alleviation in recent 10 years,it is found that researches mainly focus on 5 aspects:effect of tourism-oriented poverty alleviation,model and development strategy,benefit of poverty stricken people,practice of tourism-oriented poverty alleviation in specific region,and other related problems.At present,academic circle mainly has weak points of research content,method,object and region in tourism-oriented poverty alleviation.Finally,it points out key research interests:(1)Strengthening combination of qualitative and quantitative researches;(2)Expanding research fields and scope and promoting in-depth researches;(3)Analyzing benefiting mechanism of poverty-stricken people participating in tourism development in depth with poverty-stricken people as research objects;(4)Increasing scale development of perception research on effect of tourism-oriented poverty alleviation and research on measurement testing,to make subsequent research have reliability and comparability.

  3. Priming of seeds with nitric oxide donor sodium nitroprusside (SNP) alleviates the inhibition on wheat seed germination by salt stress.

    Science.gov (United States)

    Duan, Pei; Ding, Feng; Wang, Fang; Wang, Bao-Shan

    2007-06-01

    The effect of SNP, an NO donor, on seed germination of wheat (Triticum aestivum L. cv. 'DK961') under salt stress was studied. The results showed that priming of seeds with 0.06 mmol/L SNP for 24 h markedly alleviated the decrease of the germination percentage, germination index, vigor index and imbibition rate of wheat seeds under salt stress. SNP significantly alleviated the decrease of the beta-amylase activity but almost did not affect the alpha-amylase activity of wheat seeds under salt stress. SNP slightly increased the alpha-amylase isoenzymes (especially isoenzyme 3) and significantly increased the beta-amylase isoenzymes (especially isoenzyme d, e, f and g). SNP pretreatment decreased Na(+) content, but increased the K(+) content, resulting in a mark increase of K(+)/Na(+) ratio of wheat seedlings under salt stress. These results suggested that NO is involved in promoting wheat seed germination under salt stress by increasing the beta-amylase activity.

  4. Sensor comparison study for load alleviating wind turbine pitch control

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig; Henriksen, Lars Christian

    2014-01-01

    measurement types yield similar load reductions, but for varying inflow conditions, the LiDAR sensor-based controller yields larger load reductions than the two others. The results also show that the performance of the LiDAR sensor-based controller is very sensitive to uncertainties relating to the inflow......As the size of wind turbines increases, the load alleviating capabilities of the turbine controller are becoming increasingly important. Load alleviating control schemes have traditionally been based on feedback from load sensor; however, recent developments of measurement technologies have enabled...... root loads. In many existing studies, the performance of an advanced controller is compared with the performance of a simpler controller. In this study, the effect of three measurement types on the load alleviating performance of the same cyclic pitch control design is studied. By using a baseline...

  5. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings.

    Science.gov (United States)

    Wang, Shihua; Wang, Fayuan; Gao, Shuangcheng

    2015-02-01

    Nanofertilizers may be more effective than regular fertilizers in improving plant nutrition, enhancing nutrition use efficiency, and protecting plants from environmental stress. A hydroponic pot experiment was conducted to study the role of foliar application with 2.5 mM nano-silicon in alleviating Cd stress in rice seedlings (Oryza sativa L. cv Youyou 128) grown in solution added with or without 20 μM CdCl2. The results showed that Cd treatment decreased the growth and the contents of Mg, Fe, Zn, chlorophyll a, and glutathione (GSH), accompanied by a significant increase in Cd accumulation. However, foliar application with nano-Si improved the growth, Mg, Fe, and Zn nutrition, and the contents of chlorophyll a of the rice seedlings under Cd stress and decreased Cd accumulation and translocation of Cd from root to shoot. Cd treatment produced oxidative stress to rice seedlings indicated by a higher lipid peroxidation level (as malondialdehyde (MDA)) and higher activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and a lower GSH content. However, those nano-Si-treated plants had lower MDA but higher GSH content and different antioxidant enzyme activities, indicating a higher Cd tolerance in them. The results suggested that nano-Si application alleviated Cd toxicity in rice by decreasing Cd accumulation, Cd partitioning in shoot and MDA level and by increasing content of some mineral elements (Mg, Fe, and Zn) and antioxidant capacity.

  6. Decreasing Relative Risk Premium

    DEFF Research Database (Denmark)

    Hansen, Frank

    We consider the risk premium demanded by a decision maker with wealth x in order to be indifferent between obtaining a new level of wealth y1 with certainty, or to participate in a lottery which either results in unchanged present wealth or a level of wealth y2 > y1. We define the relative risk...... premium as the quotient between the risk premium and the increase in wealth y1–x which the decision maker puts on the line by choosing the lottery in place of receiving y1 with certainty. We study preferences such that the relative risk premium is a decreasing function of present wealth, and we determine...... relative risk premium in the small implies decreasing relative risk premium in the large, and decreasing relative risk premium everywhere implies risk aversion. We finally show that preferences with decreasing relative risk premium may be equivalently expressed in terms of certain preferences on risky...

  7. Decreasing Serial Cost Sharing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter

    The increasing serial cost sharing rule of Moulin and Shenker [Econometrica 60 (1992) 1009] and the decreasing serial rule of de Frutos [Journal of Economic Theory 79 (1998) 245] have attracted attention due to their intuitive appeal and striking incentive properties. An axiomatic characterization...... of the increasing serial rule was provided by Moulin and Shenker [Journal of Economic Theory 64 (1994) 178]. This paper gives an axiomatic characterization of the decreasing serial rule...

  8. Dynamic decoupling nonlinear control method for aircraft gust alleviation

    Science.gov (United States)

    Lv, Yang; Wan, Xiaopeng; Li, Aijun

    2008-10-01

    A dynamic decoupling nonlinear control method for MIMO system is presented in this paper. The dynamic inversion method is used to decouple the multivariable system. The nonlinear control method is used to overcome the poor decoupling effect when the system model is inaccurate. The nonlinear control method has correcting function and is expressed in analytic form, it is easy to adjust the parameters of the controller and optimize the design of the control system. The method is used to design vertical transition mode of active control aircraft for gust alleviation. Simulation results show that the designed vertical transition mode improves the gust alleviation effect about 34% comparing with the normal aircraft.

  9. Poverty alleviation committee considers population among major issues.

    Science.gov (United States)

    1998-01-01

    This article presents a meeting of the Committee on Socioeconomic Measures in Poverty Alleviation, whose main purpose is to review and analyze global and regional trends and developments concerning poverty and to recommend policy options and program strategies to improve the situation. The Committee urged the Economic and Social Commission for Asia and the Pacific (ESCAP) secretariat to play a catalytic role in formulating approaches to the alleviation of poverty by conducting research, collecting information, providing training, organizing workshops, and maintaining professional and institutional networks. They also encouraged ESCAP to continue helping countries formulate and implement their population and development programs, including those related to reproductive health.

  10. Decreasing strabismus surgery

    Science.gov (United States)

    Arora, A; Williams, B; Arora, A K; McNamara, R; Yates, J; Fielder, A

    2005-01-01

    Aim: To determine whether there has been a consistent change across countries and healthcare systems in the frequency of strabismus surgery in children over the past decade. Methods: Retrospective analysis of data on all strabismus surgery performed in NHS hospitals in England and Wales, on children aged 0–16 years between 1989 and 2000, and between 1994 and 2000 in Ontario (Canada) hospitals. These were compared with published data for Scotland, 1989–2000. Results: Between 1989 and 1999–2000 the number of strabismus procedures performed on children, 0–16 years, in England decreased by 41.2% from 15 083 to 8869. Combined medial rectus recession with lateral rectus resection decreased from 5538 to 3013 (45.6%) in the same period. Bimedial recessions increased from 489 to 762, oblique tenotomies from 43 to 121, and the use of adjustable sutures from 29 to 44, in 2000. In Ontario, operations for squint decreased from 2280 to 1685 (26.1%) among 0–16 year olds between 1994 and 2000. Conclusion: The clinical impression of decrease in the frequency of paediatric strabismus surgery is confirmed. In the authors’ opinion this cannot be fully explained by a decrease in births or by the method of healthcare funding. Two factors that might have contributed are better conservative strabismus management and increased subspecialisation that has improved the quality of surgery and the need for re-operation. This finding has a significant impact upon surgical services and also on the training of ophthalmologists. PMID:15774914

  11. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Lee, Sun-Mi

    2016-12-01

    The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production.

  12. Periodontal Probe Improves Exams, Alleviates Pain

    Science.gov (United States)

    2008-01-01

    Dentists, comedian Bill Cosby memorably mused, tell you not to pick your teeth with any sharp metal object. Then you sit in their chair, and the first thing they grab is an iron hook!" Conventional periodontal probing is indeed invasive, uncomfortable for the patient, and the results can vary greatly between dentists and even for repeated measurements by the same dentist. It is a necessary procedure, though, as periodontal disease is the most common dental disease, involving the loss of teeth by the gradual destruction of ligaments that hold teeth in their sockets in the jawbone. The disease usually results from an increased concentration of bacteria in the pocket, or sulcus, between the gums and teeth. These bacteria produce acids and other byproducts, which enlarge the sulcus by eroding the gums and the periodontal ligaments. The sulcus normally has a depth of 1 to 2 millimeters, but in patients with early stages of periodontal disease, it has a depth of 3 to 5 millimeters. By measuring the depth of the sulcus, periodontists can have a good assessment of the disease s progress. Presently, there are no reliable clinical indicators of periodontal disease activity, and the best available diagnostic aid, periodontal probing, can only measure what has already been lost. A method for detecting small increments of periodontal ligament breakdown would permit earlier diagnosis and intervention with less costly and time-consuming therapy, while overcoming the problems associated with conventional probing. The painful, conventional method for probing may be destined for the archives of dental history, thanks to the development of ultrasound probing technologies. The roots of ultrasound probes are in an ultrasound-based time-of-flight technique routinely used to measure material thickness and length in the Nondestructive Evaluation Sciences Laboratory at Langley Research Center. The primary applications of that technology have been for corrosion detection and bolt tension

  13. Does a sorghum-cowpea composite porridge hold promise for contributing to alleviating oxidative stress?

    Science.gov (United States)

    Apea-Bah, Franklin B; Minnaar, Amanda; Bester, Megan J; Duodu, Kwaku G

    2014-08-15

    The effect of compositing red non-tannin sorghum with cream-coloured cowpea and porridge preparation on phenolic profile and radical scavenging activity was studied. A maize-soybean composite porridge representing a similar product on the South African market was used as reference sample. UPLC-QToF-MS-ESI was used to determine phenolic composition of the grain flours, their composites and porridges. Total phenolic content was determined using Folin-Ciocalteu method while radical scavenging activity was determined using the ABTS, DPPH and NO radical scavenging assays. Four benzoic acid derivatives and five cinnamic acid derivatives were identified in the samples. The predominant flavonoid subclasses identified in sorghum were flavan-3-ols, flavanones and flavones while cowpea had mainly flavan-3-ols and flavonols with soybean having mainly isoflavones. Compositing the cereals with legumes significantly (pporridge showed better promise in contributing to alleviating radical induced oxidative stress than maize-soybean composite porridge.

  14. Antidepressants alleviate the impact of reinforcer downshift.

    Science.gov (United States)

    Nikiforuk, Agnieszka; Popik, Piotr

    2009-01-01

    Depressive disorder is associated with problems of coping with life's difficulties, including episodes of frustration and disappointment, operationally defined as an unexpected reinforcer omission or a reduction of reinforcer magnitude. In a novel model aimed at detecting potential antidepressants, rats were trained in the operant task under progressive ratio schedule of reinforcement with the break point (BP, the value of the last completed response ratio) as a behavioral endpoint. In the main experiment, a 32% sucrose solution was initially used as the reinforcer. Once the stable responding was achieved, for the following 5 days animals were treated once daily with the experimental drugs, and were offered a 4% sucrose solution instead. In vehicle-treated controls, the reduction of sucrose concentration resulted in a decrease in responding from a BP of about 40 (totaling 166 responses) to a BP of about 9 (totaling 22 responses). Chlordiazepoxide (4 and 8 mg/kg), fluoxetine (3 mg/kg), citalopram (6 mg/kg) and cocaine (2.5 and 5 mg/kg) markedly inhibited this response decrement, while fluoxetine (6 mg/kg) augmented it. Neither desipramine (1-6 mg/kg) nor morphine (1-5 mg/kg) affected responding under the reduced sucrose concentration condition. In the control experiment, the rats have never been offered 32% sucrose solution but their responding was always maintained by 4% sucrose. Under these unchanged conditions, only cocaine (5 mg/kg) affected (increased) responding. The present results suggest that the antidepressants selectively inhibiting serotonin reuptake and a benzodiazepine anxiolytic but not psychostimulant cocaine may specifically protect animals from the effects of a reinforcer downshift.

  15. Cervicogenic headache alleviation after cervical coblation nucleoplasty

    Science.gov (United States)

    He, Liangliang; Yue, Jianning; Yang, Liqiang; Wu, Baishan; Cao, Guoqing; Guo, Yuna; Lai, Guanghui; Tang, Yuanzhang; Ni, Jiaxiang

    2016-01-01

    Abstract A degenerative cervical disc is a pain generator for headaches, and headaches can benefit from cervical prolapse surgery. However, as an alternative intervention for open cervical surgery, no study has reported whether headaches can benefit from cervical nucleoplasty. The objective of this study was to evaluate the efficacy of cervical coblation nucleoplasty in the treatment of cervicogenic headaches. In a prospective cohort study performed between December 2013 and August 2015, 20 patients with cervicogenic headaches undergoing cervical nucleoplasty for shoulder-arm pain were recruited into group C, and 20 patients with cervicogenic headaches undergoing lumbar nucleoplasty for low back pain, matched for age and sex, were recruited into group L. Cervicogenic pain was diagnosed according to the International Headache Society criteria. During the 24-month follow-up, pain visual analog scale (VAS) scores were collected as the primary outcomes, and significant pain relief rate, Neck Disability Index (NDI) headache scores, and Patients Satisfaction Index (PSI) scores were recorded as secondary outcomes to evaluate headache severity and physical function postoperatively. During the 24-month follow-up, a significant decrease in headache VAS scores was observed in group C but not in group L. NDI and PSI scores in group C were better than those in group L. In comparison with the final follow-up, no significant differences in the NDI and PSI scores were found in all observations after surgery. In comparison to group L, ≥50% pain relief was significantly better in group C. No serious complications were observed except for ≤20% of ecchymoma at the needle insertion site. This prospective study indicated that cervicogenic headaches may benefit from nucleoplasty. PMID:27684803

  16. A congestion alleviated scheme in optical burst switching network

    Institute of Scientific and Technical Information of China (English)

    Gang Wang; Hongxiang Wang; Yuefeng Ji

    2008-01-01

    An optical burst switching (OBS) network platform is established with a ring topology of three nodes. A congestion alleviated scheme using advanced token protocol and wavelength tunable receivers is demonstrated to optimize the network platform. Experimental results testify that this scheme can resist collision at the level of 0.1% congestion rate.

  17. Training Teachers as Key Players in Poverty Alleviation

    Science.gov (United States)

    Benavente, Ana; Ralambomanana, Stangeline; Mbanze, Jorge

    2008-01-01

    This article presents several questions, reflections and suggestions on pre-service and in-service teacher training that arose during the project "Curricular innovation and poverty alleviation in sub-Saharan Africa". While recognizing that the situation in the nine countries taking part in the project, and in many other countries in the southern…

  18. The Role of NGOsin Poverty Alleviation in China

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    正Editor's Note: CAFIU's Secretary-General Ni Jian took part in the UN Sustainable Development Conference (Rio+20) held in Rio de Janeiro, Brazil from June 16 to 21. During the Conference, he also attended and addressed a side meeting of "Poverty-Alleviation and Sustainable Development: Chinese NGOs in Action" hosted by China NGO Network for International Exchanges.

  19. Helping Alleviate Statistical Anxiety with Computer Aided Statistical Classes

    Science.gov (United States)

    Stickels, John W.; Dobbs, Rhonda R.

    2007-01-01

    This study, Helping Alleviate Statistical Anxiety with Computer Aided Statistics Classes, investigated whether undergraduate students' anxiety about statistics changed when statistics is taught using computers compared to the traditional method. Two groups of students were questioned concerning their anxiety about statistics. One group was taught…

  20. Ganokendra: An Innovative Model for Poverty Alleviation in Bangladesh

    Science.gov (United States)

    Alam, Kazi Rafiqul

    2006-01-01

    Ganokendras (people's learning centers) employ a literacy-based approach to alleviating poverty in Bangladesh. They give special attention to empowering rural women, among whom poverty is widespread. The present study reviews the Ganokendra-approach to facilitating increased political and economic awareness and improving community conditions in…

  1. Urban agriculture and urban poverty alleviation: South African debates

    OpenAIRE

    Christian M. Rogerson

    1998-01-01

    Growing international attention has focussed on the potential role of urban agriculture in poverty alleviation. The aim in this paper is to analyse the existing challenge of urban poverty in South Africa and examine the potential role of urban agriculture as a component of a pro-poor urban development strategy.

  2. Decreasing serial cost sharing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter Raahave

    2009-01-01

    The increasing serial cost sharing rule of Moulin and Shenker (Econometrica 60:1009-1037, 1992) and the decreasing serial rule of de Frutos (J Econ Theory 79:245-275, 1998) are known by their intuitive appeal and striking incentive properties. An axiomatic characterization of the increasing serial...

  3. Decreasing Serial Cost Sharing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter

    The increasing serial cost sharing rule of Moulin and Shenker [Econometrica 60 (1992) 1009] and the decreasing serial rule of de Frutos [Journal of Economic Theory 79 (1998) 245] have attracted attention due to their intuitive appeal and striking incentive properties. An axiomatic characterization...

  4. Effects of exogenous salicylic acid on growth characteristics and biochemical content of wheat seeds under arsenic stress.

    Science.gov (United States)

    Zengin, Fikriye

    2015-01-01

    The present study illustrates the phytotoxic effect of As on wheat seedlings and pre-application of salicylic acid in alleviating toxic effect of arsenic. Wheat seedlings treated with different concentrations (50-400 μM) of arsenic decreased the germination rate (34.7% and 86.9%), root and coleptile length, fresh and dry weight of roots and coleoptile, chlorophyll (67%) and protein content (27.1%), while increased proline and MDA content. However, pretreatment with 1mM saliycilic acid partially alleviated the toxic effect of arsenic on germination parameters and significantly reduced the proline (181.2%) and MDA (80%) content thereby increasing chlorophyll and protein content in As stressed wheat plants (p arsenic toxicity.

  5. Overexpression of violaxanthin de-epoxidase gene alleviates photoinhibition of PSII and PSI in tomato during high light and chilling stress.

    Science.gov (United States)

    Han, Han; Gao, Shan; Li, Bin; Dong, Xin-Chun; Feng, Hai-Long; Meng, Qing-Wei

    2010-02-15

    A tomato (Lycopersicon esculentum) violaxanthin de-epoxidase gene (LeVDE) was isolated. The deduced amino acid sequence of LeVDE showed high identities with violaxanthin de-epoxidase in other plant species. RNA gel blot analysis showed that the mRNA accumulation of LeVDE in the wild-type (WT) was regulated by diurnal rhythm and temperature. RNA and protein gel blot analyses confirmed that the sense LeVDE was transferred into the tomato genome and overexpressed under the control of 35S-CaMV. The ratio of (A+Z)/(V+A+Z) and the values of non-photochemical quenching (NPQ) were higher in transgenic plants than those in WT under high light and chilling stress (4 degrees C). The net photosynthetic rate (Pn) decreased markedly in WT compared to transgenic lines under high light stress. The maximum quantum yield of primary photochemistry of PSII (Fv/Fm) in transgenic plants decreased more slowly during stresses and recovered faster than that in WT under optimal conditions. The oxidizable P700 in transgenic plants was higher than that in WT under chilling stress. These results suggest that overexpression of LeVDE increased the function of the xanthophyll cycle and alleviated photoinhibition of PSII and PSI in tomato during high light and chilling stress with low irradiance.

  6. Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin

    Directory of Open Access Journals (Sweden)

    Mona Gergis Dawood

    2014-12-01

    Full Text Available Melatonin is an environmentally friendly-molecule with a potent free radical scavenger and antioxidant capacity. Two pot experiments were conducted during two successive winter seasons (2011/2012 and 2012/2013 at the wire-house of the National Research Centre, Dokki, Cairo, Egypt to study the potentiality of melatonin (100 mM and 500 mM in alleviating the harmful effect of diluted sea water at a relatively low and high concentrations (3.85 dS/m and 7.69 dS/m, respectively on the performance of faba bean plant. The results revealed that irrigation of faba bean plants with diluted sea water reduced growth parameters (plant height, leaves number/plant, fresh and dry weights /plant, relative water content (RWC, photosynthetic pigments (chlorophylls a, b and carotenoids, indole acetic acid, total carbohydrate, K+,Ca+2, as well as the ratios of K+/Na+ and Ca+2/Na+ .Thiswasaccompanied by significant increases in phenolic content, compatible solutes (total soluble carbohydrate, free amino acids, proline, Na+ and Cl- , relative to the control plants (untreated plants. On the other hand, melatonin treatments improved growth parameters, RWC, photosynthetic pigments, total carbohydrate, total phenolic content, indole acetic acid, K+,Ca+2 as well as K+/Na+ and Ca+2/Na+ ratios, either in the plants irrigated with tap water or with diluted sea water, as compared with corresponding controls. Meanwhile, melatonin treatments reduced the levels of compatible solutes, as well as Na+ and Cl-  contents, relative to those of corresponding controls. Salinity stress and/ or melatonin treatments induced the production of new protein bands that did not occur in the control plants. Melatonin at 500 mM had a more pronounced effect in alleviating the adverse effects of the two salinity levels under study on the performance of faba bean plants than 100 mM melatonin.

  7. Lutein alleviates arsenic-induced reproductive toxicity in male mice via Nrf2 signaling.

    Science.gov (United States)

    Li, S G; Xu, S Z; Niu, Q; Ding, Y S; Pang, L J; Ma, R L; Jing, M X; Wang, K; Ma, X M; Feng, G L; Liu, J M; Zhang, X F; Xiang, H L; Li, F

    2016-05-01

    This study aims to investigate the mechanisms involved in the action of lutein (LU) alleviating arsenic-induced reproductive toxicity using mice model. Forty male Kunming mice were received following treatments by gavage: normal saline solution (control), arsenic trioxide (ATO; 5 mg/kg/day), LU (40 mg/kg/day), and ATO + LU (5 mg/kg/day + 40 mg/kg/day). At the end, the mice were killed by cervical dislocation and weighed. Pathological examination was done on the testis. The biomedical parameters including superoxide dismutase (SOD), glutathione (GSH), total antioxidative capability, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), and reproductive indexes were analyzed. The messenger RNA (mRNA) and protein expression of Nrf2, heme oxygenase 1 (HO-1), glutathione S-transferase (GST), nicotinamide adenine dinucleotide phosphate dehydrogenase, quinone 1 (NQO1) in testis were detected by real-time polymerase chain reaction and Western blot. We found that there was a decrease in sperm count; testis somatic index; the activities of SOD, GSH, total antioxidative capacity (p treated mice, while there was an increase in the levels of sperm abnormalities, MDA, and 8-OHdG than control (p treated with ATO + LU showed recovery of the measured parameters between those of ATO or saline-treated group. The antagonized interaction between ATO and LU was statistically significant (p treated with ATO + LU also showed greater mRNA expression of Nrf2, HO-1, NQO1, and GST than ATO or saline-treated groups. These findings suggest that LU alleviates reproductive toxicity induced by arsenic in male mice via Nrf2 signaling, which implicates a possible mechanism of LU in preventing the reproductive injury, and elucidates that consuming the rich plant sources of LU will alleviate the reproductive toxicity induced by chemicals.

  8. Decreased Expression of Stable RNA Can Alleviate the Lethality Associated with RNase E Deficiency in Escherichia coli.

    Science.gov (United States)

    Himabindu, P; Anupama, K

    2017-04-15

    The endoribonuclease RNase E participates in mRNA degradation, rRNA processing, and tRNA maturation in Escherichia coli, but the precise reasons for its essentiality are unclear and much debated. The enzyme is most active on RNA substrates with a 5'-terminal monophosphate, which is sensed by a domain in the enzyme that includes residue R169; E. coli also possesses a 5'-pyrophosphohydrolase, RppH, that catalyzes conversion of 5'-terminal triphosphate to 5'-terminal monophosphate on RNAs. Although the C-terminal half (CTH), beyond residue approximately 500, of RNase E is dispensable for viability, deletion of the CTH is lethal when combined with an R169Q mutation or with deletion of rppH In this work, we show that both these lethalities can be rescued in derivatives in which four or five of the seven rrn operons in the genome have been deleted. We hypothesize that the reduced stable RNA levels under these conditions minimize the need of RNase E to process them, thereby allowing for its diversion for mRNA degradation. In support of this hypothesis, we have found that other conditions that are known to reduce stable RNA levels also suppress one or both lethalities: (i) alterations in relA and spoT, which are expected to lead to increased basal ppGpp levels; (ii) stringent rpoB mutations, which mimic high intracellular ppGpp levels; and (iii) overexpression of DksA. Lethality suppression by these perturbations was RNase R dependent. Our work therefore suggests that its actions on the various substrates (mRNA, rRNA, and tRNA) jointly contribute to the essentiality of RNase E in E. coliIMPORTANCE The endoribonuclease RNase E is essential for viability in many Gram-negative bacteria, including Escherichia coli Different explanations have been offered for its essentiality, including its roles in global mRNA degradation or in the processing of several tRNA and rRNA species. Our work suggests that, rather than its role in the processing of any one particular substrate, its distributed functions on all the different substrates (mRNA, rRNA, and tRNA) are responsible for the essentiality of RNase E in E. coli.

  9. The Role of Forests in Poverty Alleviation: Dealing with Multiple Millennium Development Goals

    NARCIS (Netherlands)

    Wiersum, K.F.; Ros-Tonen, Mirjam A.F.

    2005-01-01

    This policy brief summarises the present state of scientific understanding of the potential contribution of tropical forests to poverty alleviation and highlights the implications of this knowledge for forest-based poverty alleviation policies

  10. FISHERMEN ALLEVIATION POVERTY MODEL IN THE NORTH COASTAL EAST JAVA

    Directory of Open Access Journals (Sweden)

    Roziana Ainul Hidayati

    2011-12-01

    Full Text Available Poverty is a multidimensional problem that the approach to eradicate poverty must also be multidimensional. The study aims to formulate a model of poverty alleviation in coastal fishing in the North Coast of East Java. Grounded research approach used to determine the causes, impacts and implications of poverty fishermen. The results showed that the main cause of poverty that occurred in the three districts in East Java's north coast is different from one another. In Gresik district, the major cause of poverty is law enforcements that do not support fishermen and overfishing. While Lamongan more due to low fish prices and capital problems. While in Tuban fishermen due to limited infrastructure and lazy and extravagant lifestyle of the fishermen. These differences lead to different coping strategies so that later can form a concept model of poverty alleviation North Coast fishermen in East Java.

  11. Alleviating alpha quenching by solar wind and meridional flow

    CERN Document Server

    Mitra, Dhrubaditya; Tavakol, Reza; Brandenburg, Axel

    2010-01-01

    We study the ability of magnetic helicity expulsion to alleviate catastrophic $\\alpha$-quenching in mean field dynamos in two--dimensional spherical wedge domains. Motivated by the physical state of the outer regions of the Sun, we consider $\\alpha^2\\Omega$ mean field models with a dynamical $\\alpha$ quenching. We include two mechanisms which have the potential to facilitate helicity expulsion, namely advection by a mean flow (``solar wind'') and meridional circulation. We find that a wind alone can prevent catastrophic quenching, with the field saturating at finite amplitude. In certain parameter ranges, the presence of a large-scale meridional circulation can reinforce this alleviation. However, the saturated field strengths are typically below the equipartition field strength. We discuss possible mechanisms that might increase the saturated field.

  12. Alleviating α quenching by solar wind and meridional flows

    Science.gov (United States)

    Mitra, D.; Moss, D.; Tavakol, R.; Brandenburg, A.

    2011-02-01

    Aims: We study the ability of magnetic helicity expulsion to alleviate catastrophic α-quenching in mean field dynamos in two-dimensional spherical wedge domains. Methods: Motivated by the physical state of the outer regions of the Sun, we consider α^2Ω mean field models with a dynamical α quenching. We include two mechanisms which have the potential to facilitate helicity expulsion, namely advection by a mean flow ("solar wind") and meridional circulation. Results: We find that a wind alone can prevent catastrophic quenching, with the field saturating at finite amplitude. In certain parameter ranges, the presence of a large-scale meridional circulation can reinforce this alleviation. However, the saturated field strengths are typically below the equipartition field strength. We discuss possible mechanisms that might increase the saturated field.

  13. Islamic Microfinance: an Interest free Microfinance Model for Poverty Alleviation

    Directory of Open Access Journals (Sweden)

    Amit Kumar Chakrabarty

    2015-01-01

    Full Text Available This theoretical paper deals with Islamic microfinance and its rationality in Indian context as a panacea of Muslim poverty. Conventional microfinance system is very effective to alleviate poverty of developing countries. But it could not touch all community of people because of ‘interest’ component in debt and high degree of interest. Muslims dislike that microfinance which is based on ‘interest’ as it is strictly prohibited in Islam. Therefore the motto of financial inclusion is out of reach through conventional microfinance. An alternative interest free microfinance model has been developed in some part of world to include all Muslim poor people within the banking system. India is yet to adopt Islamic microfinance though 20% of total population is Muslim. The author strongly opines that India should adopt Islamic microfinance as a tool for poverty alleviation of Muslims as well as other communities.

  14. Alleviation of high-fat diet-induced fatty liver damage in group IVA phospholipase A2-knockout mice.

    Science.gov (United States)

    Ii, Hiromi; Yokoyama, Naoki; Yoshida, Shintaro; Tsutsumi, Kae; Hatakeyama, Shinji; Sato, Takashi; Ishihara, Keiichi; Akiba, Satoshi

    2009-12-01

    Hepatic fat deposition with hepatocellular damage, a feature of non-alcoholic fatty liver disease, is mediated by several putative factors including prostaglandins. In the present study, we examined whether group IVA phospholipase A(2) (IVA-PLA(2)), which catalyzes the first step in prostanoid biosynthesis, is involved in the development of fatty liver, using IVA-PLA(2)-knockout mice. Male wild-type mice on high-fat diets (20% fat and 1.25% cholesterol) developed hepatocellular vacuolation and liver hypertrophy with an increase in the serum levels of liver damage marker aminotransferases when compared with wild-type mice fed normal diets. These high-fat diet-induced alterations were markedly decreased in IVA-PLA(2)-knockout mice. Hepatic triacylglycerol content was lower in IVA-PLA(2)-knockout mice than in wild-type mice under normal dietary conditions. Although high-fat diets increased hepatic triacylglycerol content in both genotypes, the degree was lower in IVA-PLA(2)-knockout mice than in wild-type mice. Under the high-fat dietary conditions, IVA-PLA(2)-knockout mice had lower epididymal fat pad weight and smaller adipocytes than wild-type mice. The serum level of prostaglandin E(2), which has a fat storage effect, was lower in IVA-PLA(2)-knockout mice than in wild-type mice, irrespective of the kind of diet. In both genotypes, high-fat diets increased serum leptin levels equally between the two groups, but did not affect the serum levels of adiponectin, resistin, free fatty acid, triacylglycerol, glucose, or insulin. Our findings suggest that a deficiency of IVA-PLA(2) alleviates fatty liver damage caused by high-fat diets, probably because of the lower generation of IVA-PLA(2) metabolites, such as prostaglandin E(2). IVA-PLA(2) could be a promising therapeutic target for obesity-related diseases including non-alcoholic fatty liver disease.

  15. FISHERMEN ALLEVIATION POVERTY MODEL IN THE NORTH COASTAL EAST JAVA

    OpenAIRE

    Roziana Ainul Hidayati; Mu'minatus Sholichah

    2011-01-01

    Poverty is a multidimensional problem that the approach to eradicate poverty must also be multidimensional. The study aims to formulate a model of poverty alleviation in coastal fishing in the North Coast of East Java. Grounded research approach used to determine the causes, impacts and implications of poverty fishermen. The results showed that the main cause of poverty that occurred in the three districts in East Java's north coast is different from one another. In Gresik district, the major...

  16. Non-farm wages and poverty alleviation in developing countries

    OpenAIRE

    Jatta, Sylvester

    2013-01-01

    Abstract This paper is about rural non-farm income and poverty alleviation in sub-Saharan Africa and the determinants of differentials access to rural non-farm incomes, with an overview of trends in the magnitude, and location of rural poverty. It also offers evidence that advances our understanding of rural poverty, by presenting quantitative analysis of the determinants of rural income from farm and non-farm sources, drawing on data from Rural Income Generating Activities data b...

  17. Staircase effect alleviation based on multiscale analysis of Laplacian Pyramid

    Science.gov (United States)

    Chen, Wenjie; Ye, Yutang; Huang, Yonglin

    2012-01-01

    Image denoising with second order partial differential equations (PDEs) often leads to undesirable staircase effect, namely, the transformation of smooth regions into piecewise constant regions. In this paper, staircase effect is analyzed in spatial frequency domain which is different from previous studies. A method of nonlinear diffusion based on Laplacian Pyramid is proposed. The experimental results show that the proposed method alleviates the staircase effect and leads to more natural restored images.

  18. Application of Active Flow Control Technique for Gust Load Alleviation

    Institute of Scientific and Technical Information of China (English)

    XU Xiaoping; ZHU Xiaoping; ZHOU Zhou; FAN Ruijun

    2011-01-01

    A new gust load alleviation technique is presented in this paper based on active flow control.Numerical studies are conducted to investigate the beneficial effects on the aerodynamic characteristics of the quasi “Global Hawk” airfoil using arrays of jets during the gust process.Based on unsteady Navier-Stokes equations,the grid-velocity method is introduced to simulate the gust influence,and dynamic response in vertical gust flow perturbation is investigated for the airfoil as well.An unsteady surface transpiration boundary condition is enforced over a user specified portion of the airfoil's surface to emulate the time dependent velocity boundary conditions.Firstly,after applying this method to simulate typical NACA0006 airfoil gust response to a step change in the angle of attack,it shows that the indicial responses of the airfoil make good agreement with the exact theoretical values and the calculated values in references.Furthermore,gust response characteristic for the quasi “Global Hawk” airfoil is analyzed.Five kinds of flow control techniques are introduced as steady blowing,steady suction,unsteady blowing,unsteady suction and synthetic jets.The physical analysis of the influence on the effects of gust load alleviation is proposed to provide some guidelines for practice.Numerical results have indicated that active flow control technique,as a new technology of gust load alleviation,can affect and suppress the fluid disturbances caused by gust so as to achieve the purpose of gust load alleviation.

  19. EFFECTS OF SILICON ON ALLEVIATING ARSENIC TOXICITY IN MAIZE PLANTS

    Directory of Open Access Journals (Sweden)

    Airon José da Silva

    2015-02-01

    Full Text Available Arsenic is a metalloid highly toxic to plants and animals, causing reduced plant growth and various health problems for humans and animals. Silicon, however, has excelled in alleviating stress caused by toxic elements in plants. The aim of this study was to investigate the effects of Si in alleviating As stress in maize plants grown in a nutrient solution and evaluate the potential of the spectral emission parameters and the red fluorescence (Fr and far-red fluorescence (FFr ratio obtained in analysis of chlorophyll fluorescence in determination of this interaction. An experiment was carried out in a nutrient solution containing a toxic rate of As (68 μmol L-1 and six increasing rates of Si (0, 0.25, 0.5, 1.0, 1.5, and 2.0 mmol L-1. Dry matter production and concentrations of As, Si, and photosynthetic pigments were then evaluated. Chlorophyll fluorescence was also measured throughout plant growth. Si has positive effects in alleviating As stress in maize plants, evidenced by the increase in photosynthetic pigments. Silicon application resulted in higher As levels in plant tissue; therefore, using Si for soil phytoremediation may be a promising choice. Chlorophyll fluorescence analysis proved to be a sensitive tool, and it can be successfully used in the study of the ameliorating effects of Si in plant protection, with the Fr/FFr ratio as the variable recommended for identification of temporal changes in plants.

  20. B vitamins alleviate indices of neuropathic pain in diabetic rats.

    Science.gov (United States)

    Jolivalt, Corinne G; Mizisin, Leah M; Nelson, Austin; Cunha, Joice M; Ramos, Khara M; Bonke, Dieter; Calcutt, Nigel A

    2009-06-10

    There are sporadic reports that assorted combinations of B vitamins can alleviate pain in diabetic patients, but there is neither agreement on the relative efficacy of individual B vitamins nor understanding of the mechanisms involved. We therefore investigated the efficacy of a cocktail of the vitamins B1, B6 and B12 in alleviating behavioral indices of sensory dysfunction such as allodynia and hyperalgesia in diabetic rats and also the relative contribution of individual components of the cocktail. Repeated daily treatment with the cocktail of B vitamins for 7-9 days ameliorated tactile allodynia and formalin-evoked hyperalgesia in a dose-dependent manner and also improved sensory nerve conduction velocity in diabetic rats. Investigation of the contribution of individual B vitamins suggested that all three participated with variable efficacy in the alleviation of allodynia after protracted, but not single dose treatment. Only vitamin B6 improved sensory nerve conduction velocity slowing in diabetic rats when given alone. To address potential mechanisms of action, we measured markers of oxidative stress (lipid and protein oxidation) and inflammation (cyclooxygenase-2 (COX-2) and TNFalpha protein) in the nerve but treatment with the vitamin B cocktail did not significantly affect any of these parameters. The positive effects of B vitamins on functional and behavioral disorders of diabetic rats suggest a potential for use in treating painful diabetic neuropathy.

  1. Poverty alleviation programmes in India: a social audit.

    Science.gov (United States)

    K Yesudian, C A

    2007-10-01

    The review highlights the poverty alleviation programmes of the government in the post-economic reform era to evaluate the contribution of these programmes towards reducing poverty in the country. The poverty alleviation programmes are classified into (i) self-employment programmes; (ii) wage employment programmes; (iii) food security programmes; (iv) social security programmes; and (v) urban poverty alleviation programmes. The parameter used for evaluation included utilization of allocated funds, change in poverty level, employment generation and number or proportion of beneficiaries. The paper attempts to go beyond the economic benefit of the programmes and analyzes the social impact of these programmes on the communities where the poor live, and concludes that too much of government involvement is actually an impediment. On the other hand, involvement of the community, especially the poor has led to better achievement of the goals of the programmes. Such endeavours not only reduced poverty but also empowered the poor to find their own solutions to their economic problems. There is a need for decentralization of the programmes by strengthening the panchayat raj institutions as poverty is not merely economic deprivation but also social marginalization that affects the poor most.

  2. Alleviation of chromium toxicity by hydrogen sulfide in barley.

    Science.gov (United States)

    Ali, Shafaqat; Farooq, Muhammad Ahsan; Hussain, Sabir; Yasmeen, Tahira; Abbasi, G H; Zhang, Guoping

    2013-10-01

    A hydroponic experiment was carried out to examine the effect of hydrogen sulfide (H2 S) in alleviating chromium (Cr) stress in barley. A 2-factorial design with 6 replications was selected, including 3 levels of NaHS (0 μM, 100 μM, and 200 μM) and 2 levels of Cr (0 μM and 100 μM) as treatments. The results showed that NaHS addition enhances plant growth and photosynthesis slightly compared with the control. Moreover, NaHS alleviated the inhibition in plant growth and photosynthesis by Cr stress. Higher levels of NaHS exhibited more pronounced effects in reducing Cr concentrations in roots, shoots, and leaves. Ultrastructural examination of plant cells supported the facts by indication of visible alleviation of cell disorders in both root and leaf with exogenous application of NaHS. An increased number of plastoglobuli, disintegration, and disappearance of thylakoid membranes and starch granules were visualized inside the chloroplast of Cr-stressed plants. Starch accumulation in the chloroplasts was also noticed in the Cr-treated cells, with the effect being much less in Cr + NaHS-treated plants. Hence, it is concluded that H2 S produced from NaHS can improve plant tolerance under Cr stress.

  3. Factors Influencing Poverty Alleviation amongst Microfinance Adopting Households in Zambia

    Directory of Open Access Journals (Sweden)

    Mavhungu Abel Mafukata

    2016-01-01

    Full Text Available The main objective of this paper is to investigate the factors having the most influence on the alleviation of poverty amongst the households adopting microfinance in Zambia. Ninety nine (n=99 respondents were randomly and purposively selected from amongst 340 microfinance adopters of the so-called Micro Bankers Trust programme operating a microfinance business in the Makululu Compound of Kabwe, Zambia. Socio-demographic primary data were collected through face-to-face interviews based on a semi-structured questionnaire instrument. The data were entered into an excel spreadsheet for analysis. The descriptive data were thereafter exported and fitted to an empirical model. The descriptive results revealed that the majority of the respondents were married, unemployed, fairly educated younger women from larger-sized poor households who drew their household income mainly from microfinance activities. The majority of the respondents thought microfinance had improved their well-being in some crucial areas. The results of the empirical model found that some respondents were indeed alleviated from poverty through microfinance. Conclusion drawn in this paper is that microfinance does alleviate poverty of the poor.

  4. Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe?

    Science.gov (United States)

    2017-01-01

    There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease. PMID:28261376

  5. Pre-exposure to gamma rays alleviates the harmful effect of salinity on cowpea plants

    Directory of Open Access Journals (Sweden)

    Mohammed A. H. M. A.

    2012-11-01

    Full Text Available Soil salinity is one of the most severe factors limiting growth and physiological response in cowpea plants. In this study, the low concentrations of NaCl (25mM increased plant growth, photosynthetic pigments content, total soluble protein content, nucleic acids contents (DNA and RNA, lipid peroxidation, non enzymatic antioxidants (anthocyanin, ascorbic acids and α-tocopherol, number of legumes per plant, number of seeds per legume, number of seeds per plants, legume length, fresh and dry weight of legumes and weight of 1000 seeds and total soluble proteins and carbohydrate contents in harvested seeds as compared to control. On the other hand, the high concentrations of NaCl (50, 100 and 200 mM caused reduction in plant growth, photosynthetic pigments content, total soluble protein content, nucleic acids contents (DNA and RNA, all yield attributes and harvested seeds components but increased lipid peroxidation and non enzymatic antioxidants (anthocyanin, ascorbic acids and α-tocopherol. Electrophoretic studies of proteins showed three types of modifications are observed in the protein patterns of cowpea seeds, some protein bands were disappeared, other proteins were selectively increased and synthesis of new set of protein was induced. Some of these responses were observed under gamma rays and salinity treatments, while others were induced by either gamma rays or salinity. Seeds irradiation with gamma rays alleviates the adverse effect of salt stress compared to non irradiated seeds.

  6. Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles

    Science.gov (United States)

    Borišev, Milan; Borišev, Ivana; Župunski, Milan; Arsenov, Danijela; Pajević, Slobodanka; Ćurčić, Živko; Vasin, Jovica; Djordjevic, Aleksandar

    2016-01-01

    Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C60(OH)24) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in plants. The aim of the present study was to analyse the influence of FNPs on sugar beet plants exposed to drought stress. Our results indicate that intracellular water metabolism can be modified by foliar application of FNPs in drought exposed plants. Drought stress induced a significant increase in the compatible osmolyte proline in both the leaves and roots of control plants, but not in FNP treated plants. These results indicate that FNPs could act as intracellular binders of water, creating an additional water reserve, and enabling adaptation to drought stress. Moreover, analysis of plant antioxidant enzyme activities (CAT, APx and GPx), MDA and GSH content indicate that fullerenol foliar application could have some beneficial effect on alleviating oxidative effects of drought stress, depending on the concentration of nanoparticles applied. Although further studies are necessary to elucidate the biochemical impact of FNPs on plants; the present results could directly impact agricultural practice, where available water supplies are often a limiting factor in plant bioproductivity. PMID:27832171

  7. Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles.

    Science.gov (United States)

    Borišev, Milan; Borišev, Ivana; Župunski, Milan; Arsenov, Danijela; Pajević, Slobodanka; Ćurčić, Živko; Vasin, Jovica; Djordjevic, Aleksandar

    2016-01-01

    Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C60(OH)24) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in plants. The aim of the present study was to analyse the influence of FNPs on sugar beet plants exposed to drought stress. Our results indicate that intracellular water metabolism can be modified by foliar application of FNPs in drought exposed plants. Drought stress induced a significant increase in the compatible osmolyte proline in both the leaves and roots of control plants, but not in FNP treated plants. These results indicate that FNPs could act as intracellular binders of water, creating an additional water reserve, and enabling adaptation to drought stress. Moreover, analysis of plant antioxidant enzyme activities (CAT, APx and GPx), MDA and GSH content indicate that fullerenol foliar application could have some beneficial effect on alleviating oxidative effects of drought stress, depending on the concentration of nanoparticles applied. Although further studies are necessary to elucidate the biochemical impact of FNPs on plants; the present results could directly impact agricultural practice, where available water supplies are often a limiting factor in plant bioproductivity.

  8. Grape Seed Proanthocyanidin Extract Alleviates Arsenic-induced Oxidative Reproductive Toxicity in Male Mice

    Institute of Scientific and Technical Information of China (English)

    LI Shu Gang; GUO Shu Xia; DING Yu Song; NIU Qiang; XU Shang Zhi; PANG Li Juan; MA Ru Lin; JING Ming Xia; FENG Gang Ling; LIU Jia Ming

    2015-01-01

    Objective To determine the ability of grape seed proanthocyanidin extract (GSPE) in alleviating arsenic-induced reproductive toxicity. Methods Sixty male Kunming mice received the following treatments by gavage: normal saline solution (control); arsenic trioxide (ATO; 4 mg/kg); GSPE (400 mg/kg); ATO+GSPE (100 mg/kg);ATO+GSPE (200 mg/kg) and ATO+GSPE (400 mg/kg). Thereafter, the mice were sacrificed and weighed, and the testis was examined for pathological changes. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase 1 (HO1), glutathione S-transferase (GST), NAD(P)H dehydrogenase, and quinone 1 (NQO1) expression in the testis was detected by real-time PCR. Superoxide dismutase (SOD), glutathione (GSH), total antioxidative capability (T-AOC), malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), and reproductive indexes were analyzed. Results ATO-treated mice showed a significantly decreased sperm count and testis somatic index and activity levels of SOD, GSH, and T-AOC than control group. Compared to the ATO-treated group, ATO+GSPE group showed recovery of the measured parameters. Mice treated with ATO+high-dose GSPE showed the highest level of mRNA expression of Nrf2, HO, NQO1, and GST. Conclusion GSPE alleviates oxidative stress damage in mouse testis by activating Nrf2 signaling, thus counteracting arsenic-induced reproductive toxicity.

  9. Trichoderma spp. alleviate phytotoxicity in lettuce plants (Lactuca sativa L.) irrigated with arsenic-contaminated water.

    Science.gov (United States)

    Caporale, Antonio G; Sommella, Alessia; Lorito, Matteo; Lombardi, Nadia; Azam, Shah M G G; Pigna, Massimo; Ruocco, Michelina

    2014-09-15

    The influence of two strains of Trichoderma (T. harzianum strain T22 and T. atroviride strain P1) on the growth of lettuce plants (Lactuca sativa L.) irrigated with As-contaminated water, and their effect on the uptake and accumulation of the contaminant in the plant roots and leaves, were studied. Accumulation of this non-essential element occurred mainly into the root system and reduced both biomass development and net photosynthesis rate (while altering the plant P status). Plant growth-promoting fungi (PGPF) of both Trichoderma species alleviated, at least in part, the phytotoxicity of As, essentially by decreasing its accumulation in the tissues and enhancing plant growth, P status and net photosynthesis rate. Our results indicate that inoculation of lettuce with selected Trichoderma strains may be helpful, beside the classical biocontrol application, in alleviating abiotic stresses such as that caused by irrigation with As-contaminated water, and in reducing the concentration of this metalloid in the edible part of the plant.

  10. Traditional Chinese medicine "Qing Yi Tang" alleviates oxygen free radical injury in acute necrotizing pancreatitis

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    AIM To observe the changes in oxygen free radical (OFR) and the curative effect of traditional Chinese medicine "Qing Yi Tang" in acute necrotizing pancreatitis (ANP).METHODS After induction of ANP by injection of sodium taurocholate into pancreatic duct, 16 dogs were randomly divided into control group and Chinese medicine group. Serum amylase, SOD and MDA were determined on postoperative day 1, 2, 4 and 7. The animals were sacrificed on day 7. SOD and MDA in organs were determined, and pathological changes in pancreas were observed.RESULTS As compared with control group, the serum level of amylase (734U/L vs 2783U/L) and MDA (7.8nmol/ml vs 14.8nmol/ml) in Chinese medicine group were decreased on day 7 (P<0.05), while SOD increased significantly (281nU/ml vs 55nU/ml, P<0.01), and similar changes occurred in MDA and SOD in organs, especially in the pancreas; the pathological changes in the pancreas were alleviated as well.CONCLUSION "Qing Yi Tang" is effective in clearing OFRs and alleviating pathological changes in ANP.

  11. Both decrease in ACL1 gene expression and increase in ICL1 gene expression in marine-derived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin.

    Science.gov (United States)

    Liu, Xiao-Yan; Chi, Zhe; Liu, Guang-Lei; Madzak, Catherine; Chi, Zhen-Ming

    2013-02-01

    In this study, some of the ATP-citrate lyase genes (ACL1) were deleted and the copy number of the iso-citrate lyase gene (ICL1) was increased in the marine-derived yeast Yarrowia lipolytica SWJ-1b displaying the recombinant inulinase. It was found that lipid content and iso-citric acid in the transformant 30 obtained were greatly reduced and citric acid production was greatly enhanced. It was also found that the ACL1 gene expression and ATP-citrate lyase activity in the transformant 30 were declined and the ICL1 gene expression and iso-citrate lyase activity were promoted. During the 2-l fermentation, 84.0 g/l of citric acid and 1.8 g/l of iso-citric acid in the fermented medium were attained from 10.0 % of inulin by the transformant 30 within 214 h. The results showed that only 0.36 % of the residual reducing sugar and 1.0 % of the residual total sugar were left in the fermented medium, suggesting that 89.6 % of the total sugar was used for citric acid production and cell growth by the transformant 30.

  12. VPA alleviates neurological deficits and restores gene expression in a mouse model of Rett syndrome.

    Directory of Open Access Journals (Sweden)

    Weixiang Guo

    Full Text Available Rett syndrome (RTT is a devastating neurodevelopmental disorder that occurs once in every 10,000-15,000 live female births. Despite intensive research, no effective cure is yet available. Valproic acid (VPA has been used widely to treat mood disorder, epilepsy, and a growing number of other disorders. In limited clinical studies, VPA has also been used to control seizure in RTT patients with promising albeit somewhat unclear efficacy. In this study we tested the effect of VPA on the neurological symptoms of RTT and discovered that short-term VPA treatment during the symptomatic period could reduce neurological symptoms in RTT mice. We found that VPA restores the expression of a subset of genes in RTT mouse brains, and these genes clustered in neurological disease and developmental disorder networks. Our data suggest that VPA could be used as a drug to alleviate RTT symptoms.

  13. Putrescine Alleviates Iron Deficiency via NO-Dependent Reutilization of Root Cell-Wall Fe in Arabidopsis.

    Science.gov (United States)

    Zhu, Xiao Fang; Wang, Bin; Song, Wen Feng; Zheng, Shao Jian; Shen, Ren Fang

    2016-01-01

    Plants challenged with abiotic stress show enhanced polyamines levels. Here, we show that the polyamine putrescine (Put) plays an important role to alleviate Fe deficiency. The adc2-1 mutant, which is defective in Put biosynthesis, was hypersensitive to Fe deficiency compared with wild type (Col-1 of Arabidopsis [Arabidopsis thaliana]). Exogenous Put decreased the Fe bound to root cell wall, especially to hemicellulose, and increased root and shoot soluble Fe content, thus alleviating the Fe deficiency-induced chlorosis. Intriguingly, exogenous Put induced the accumulation of nitric oxide (NO) under both Fe-sufficient (+Fe) and Fe-deficient (-Fe) conditions, although the ferric-chelate reductase (FCR) activity and the expression of genes related to Fe uptake were induced only under -Fe treatment. The alleviation of Fe deficiency by Put was diminished in the hemicellulose-level decreased mutant-xth31 and in the noa1 and nia1nia2 mutants, in which the endogenous NO levels are reduced, indicating that both NO and hemicellulose are involved in Put-mediated alleviation of Fe deficiency. However, the FCR activity and the expression of genes related to Fe uptake were still up-regulated under -Fe+Put treatment compared with -Fe treatment in xth31, and Put-induced cell wall Fe remobilization was abolished in noa1 and nia1nia2, indicating that Put-regulated cell wall Fe reutilization is dependent on NO. From our results, we conclude that Put is involved in the remobilization of Fe from root cell wall hemicellulose in a process dependent on NO accumulation under Fe-deficient condition in Arabidopsis.

  14. Kinetin applications alleviate salt stress and improve the antioxidant composition of leaf extracts in Salvia officinalis.

    Science.gov (United States)

    Tounekti, Taïeb; Hernández, Iker; Müller, Maren; Khemira, Habib; Munné-Bosch, Sergi

    2011-10-01

    A pot experiment was carried out under glasshouse conditions with common sage (Salvia officinalis L.) to investigate the interactive effects of salt stress and kinetin on growth attributes and the abundance of pigments, ions, phenolic diterpenes and α-tocopherol in leaf extracts of this species. The plants were subjected to the following four treatments: (i) control (nutrient solution), (ii) control + 10 μM kinetin, (iii) salt stress (nutrient solution + 100 mM NaCl), and (iv) salt stress + 10 μM kinetin. Kinetin was applied as a foliar fertilizer. Salt stress reduced water contents, photosynthetic activity and pigment contents of sage leaves. In addition, it increased Na(+) contents, and reduced those of Ca(2+) and K(+) in leaves. Salt stress reduced carnosic acid and 12-O-methyl carnosic acid contents in leaves, while it did not affect carnosol and α-tocopherol contents. Foliar applications of kinetin seemed to counterbalance or alleviate the stress symptoms induced by salinity, improving ion and pigment contents, while leaf phenolic diterpene (mainly carnosol) and α-tocopherol contents also increased in both control and NaCl-treated plants; still this effect was much more obvious in salt-treated plants. A similar effect was also obtained when plants were sprayed with KNO(3) or Ca(NO(3))(2), thus suggesting that kinetin effects were at least partly due to an improvement of ion homeostasis. Kinetin applications resulted in increased transcript levels of the isoprenoid and tocopherol biosynthetic genes, DXPRI and VTE2 and VTE4 in control plants, but not in NaCl-treated plants. We conclude that kinetin can alleviate the negative impact of salt on sage plants cultivated under arid environments with salinity problems.

  15. Does supplemental 18:0 alleviate fish oil-induced milk fat depression in dairy ewes?

    Science.gov (United States)

    Toral, P G; Hervás, G; Carreño, D; Frutos, P

    2016-02-01

    Supplementation of dairy ewe diet with marine lipids may be an effective strategy for modulating milk fatty acid composition but induces milk fat depression (MFD). This syndrome has been associated with a shortage of 18:0 for uptake and Δ(9)-desaturation that may impair the capacity of the mammary gland to achieve an adequate fluidity for milk fat secretion. On this basis, it was suggested that supplemental 18:0 may contribute to alleviate marine lipid-induced MFD in sheep. To test this hypothesis, 12 lactating ewes were allocated to 1 of 3 lots and used in a 3×3 Latin square design with 3 periods of 28 d each and 3 experimental treatments: a total mixed ration without lipid supplementation (control) or supplemented with 20 g/kg of DM of fish oil alone (FO) or in combination with 20 g/kg of DM of 18:0 (FOSA). Diets were offered ad libitum, and animal performance and rumen and milk fatty acid composition were studied at the end of each period. After completing the Latin square trial and following a change-over design, the in vivo digestibility of supplemental 18:0 was estimated using 6 lactating sheep. As expected, diet supplementation with fish oil increased the milk content of some potentially health-promoting fatty acids (e.g., cis-9,trans-11 18:2, trans-11 18:1, 20:5n-3, 22:5n-3, and 22:6n-3), but reduced milk fat concentration and yield (-20% in both FO and FOSA treatments). Thus, although reductions in milk 18:0 and cis-9 18:1 output caused by FO (-81 and -51%, respectively) were partially reversed with FOSA diet (-49 and -27%, respectively), the addition of 18:0 to the diet did not prove useful to alleviate MFD. This response, which could not be fully accounted for by the low digestibility coefficient of supplemental 18:0, may challenge the theory of a shortage of this fatty acid as a mechanism to explain fish oil-induced MFD in sheep. Effects of FO and FOSA on rumen and milk fatty acid composition would support that increases in the concentration of some

  16. Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L. under drought

    Directory of Open Access Journals (Sweden)

    Samina Malik and Muhammad Ashraf

    2012-05-01

    Full Text Available Drought causes considerable reduction in plant growth. A hydroponic experiment was conducted to appraise the potential role of exogenously applied ascorbic acid in alleviating the effect of drought on wheat. Two contrasting wheat genotypes, a drought tolerant cultivar Chakwal-86 and a drought sensitive strain 6544-6 were used in the study. Drought was induced by dissolving 20% Polyethylene glycol (PEG8000 in the nutrient solution producing -0.6MPa osmotic stress. Drought caused a significant decrease in chlorophyll pigments and net photosynthesis resulting in growth reduction of both wheat genotypes. However, this decrease was more severe in the genotype 6544-6 compared to Chakwal-86. Ascorbic acid (AsA was applied through rooting medium, as a foliar spray and seed soaking treatment. Ascorbic acid treated seedlings of both genotypes maintained higher chlorophyll contents, net photosynthesis and growth compared to the non-treated plants. Of the three different modes of ascorbic acid application, rooting medium was more effective in alleviating the adversities of drought in wheat. `

  17. Poverty Alleviation and Sustainable Development: The Role of Social Capital

    Directory of Open Access Journals (Sweden)

    Ali Asadi

    2008-01-01

    Full Text Available Developing countries are facing dilemmas such as un-sustainability, and poverty, (especially rural poverty. Poor people are often seen as compelled to exploit their surrounding for short-term survival and are assumed to be the ones most exposed to natural resources degradation. In order that at the first; we review the extensive theoretical literature on social capital, poverty and sustainability and demonstrate the nuanced treatment these concepts have received in this literature. Problem Statement: Current research and observations indicate that (these dilemmas un-sustainability and rural poverty are linked. The only feasible way out of current crisis is to integrate resources. The linkage among environment/agriculture, poverty and social capital are complex and in many cases, poorly understood. The developing countries have been criticized for their inability to reduce poverty and contribute to sustainable agricultural development. Approach: there is a need for improving of social capital to integrate environment and people to alleviate poverty and receive to sustainable development. Social capital has come to be defined in a variety of ways, all of which have been linked to collective norms, values and relationships reflecting the involvement of human individuals in a common life based on family and community. Results: This study argue that social capital as a concept has over the last decade or more been gaining significance in relation to a number of linked fields of analyses, including the identification of factors influencing educational attainment, explanations of differing levels of participation, rural development and poverty alleviation. Conclusions/Recommendations: social capital enhancement appears to have direct links with farmer education in that community development is generally defined as a social learning process which serves to empower people and to involve them as citizens in collective activities aimed at socio- economic

  18. Hesperidin alleviates acetaminophen induced toxicity in Wistar rats by abrogation of oxidative stress, apoptosis and inflammation.

    Science.gov (United States)

    Ahmad, Shiekh Tanveer; Arjumand, Wani; Nafees, Sana; Seth, Amlesh; Ali, Nemat; Rashid, Summya; Sultana, Sarwat

    2012-01-25

    Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, but at high dose it leads to undesirable side effects, such as hepatotoxicity and nephrotoxicity. The present study demonstrates the comparative hepatoprotective and nephroprotective activity of hesperidin (HD), a naturally occurring bioflavonoid against APAP induced toxicity. APAP induces hepatotoxicity and nephrotoxicity as was evident by abnormal deviation in the levels of antioxidant enzymes. Moreover, APAP induced renal damage by inducing apoptotic death and inflammation in renal tubular cells, manifested by an increase in the expression of caspase-3, caspase-9, NFkB, iNOS, Kim-1 and decrease in Bcl-2 expression. These results were further supported by the histopathological examination of kidney. All these features of APAP toxicity were reversed by the co-administration of HD. Therefore, our study favors the view that HD may be a useful modulator in alleviating APAP induced oxidative stress and toxicity.

  19. Low molecular weight fucoidan modulates P-selectin and alleviates diabetic nephropathy.

    Science.gov (United States)

    Xu, Yingjie; Zhang, Quanbin; Luo, Dali; Wang, Jing; Duan, Delin

    2016-10-01

    Diabetic nephropathy (DN) is a serious microvascular complication that can lead to chronic and end-stage renal failure. It is understood that inflammation is associated with the onset and process of DN. Low molecular weight fucoidan (LMWF) isolated from Saccharina japonica has anti-inflammatory properties. Therefore, this study aimed to explore the mechanism of LMWF in DN model induced by streptozotocin. The biochemical indices levels showed LMWF reduced the DN diagnostic indices to protect renal function. The HE stained sections exhibited LMWF protected normal morphological structures and reduced inflammatory cell infiltration in the kidneys of DN rats. Furthermore, the levels of P-selectin and selectin-dependent inflammatory cytokines resulting from LMWF were obviously decreased at both the transcriptional and protein levels. Thus, our results found that LMWF protected the renal function in DN rats and alleviated inflammation through the modulation of P-selectin and inflammatory cytokines. LMWF may have therapeutic potential against DN.

  20. Toxic Effect of Cd2+ on Potamogeton crispus Alleviated by Exogenous Nd3+

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The mitigation of toxic effect of Cd2 + on Potamogeton crispus L. by exogenous Nd3 + was studied. The result shows that activity of antioxidase (SOD, CAT, POD) is decreased, and the content of MDA increased. The content of different concentrations of Nd3 + for 5 d significantly improved the activity of SOD, POD and CAT in comparison with toxicity of Cd2+ , and ranged from 14.0% ~ 30.0%, 8.8% ~ 47.3%, 4.6% ~ 15.1% respectively. The degradation of chlorophyll and protein is alleviated, and generation of MDA reduced . But with the higher concentration of Nd3 + , such ability of Nd3+ is weakened. The optimum concentration of Nd3+ is 10 ~ 15 mg·L-1.

  1. Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipid-metabolism-related genes and transcription factor expression.

    Science.gov (United States)

    Huang, Jinbao; Zhang, Yong; Zhou, Yibin; Zhang, Zhengzhu; Xie, Zhongwen; Zhang, Jinsong; Wan, Xiaochun

    2013-09-11

    The current study investigated the effects of green tea polyphenols (GTPs) on lipid metabolism and its mechanisms using broiler chickens (Gallus gallus domesticus). A total of 36 male chickens (35 days old) had been subjected to an oral administration of GTPs at a dosage of 0, 50 (low), and 100 (high) mg/kg of body weight for 20 days. Our results showed that GTPs significantly decreased the abdominal and subcutaneous fat masses of broilers and reduced the serum triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels compared to those of the control. Furthermore, the expression levels for lipid anabolism genes were significantly downregulated, while the expression levels of fat transportation and catabolism-related genes, carnitine palmitoyl transferase I (CPT-I), acyl-CoA oxidase 1 (ACOX1), and peroxisome proliferator-activated receptor-α (PPARα) in liver, adipose triglyceride lipase (ATGL) in abdominal fat, and lipoprotein lipase (LPL) in skeletal muscles, were notably upregulated. Our data have revealed that GTPs alleviate obesity and serum lipid levels in broiler chickens by suppressing fatty acid synthesis and stimulating lipolysis.

  2. Alleviating stress in the workplace: advice for nurses.

    Science.gov (United States)

    Wright, Kerri

    Stress is an inherent and arguably essential aspect of the nurse's role, with ongoing challenges associated with providing care for patients and their families. However, the level of stress currently being experienced in health care exceeds the capacity of many nurses, resulting in ill health and burnout. This stress can undermine the care and compassion nurses are able to give, a vital concern in health care which was highlighted by the Francis inquiry. This article explores the factors that contribute to stress and the strategies that can be used to alleviate the stresses inherent in nursing.

  3. Folic acid supplementation attenuates hyperhomocysteinemia-induced preeclampsia-like symptoms in rats

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Yan Cui; Jing Ge; Meijing Ma

    2012-01-01

    Folic acid participates in the metabolism of homocysteine and lowers plasma homocysteine levels directly or indirectly. To establish a hyperhomocysteinemic pregnant rat model, 2 mL of DL-homocysteine was administered daily by intraperitoneal injection at a dose of 200 mg/kg from day 10 to day 19 of gestation. Folic acid was administered by intragastric administration at a dose of 20 mg/kg during the period of preeclampsia induction. Results showed that systolic blood pressure, proteinuria/creatinine ratio, and plasma homocysteine levels in the hyperhomocysteinemic pregnant rats increased significantly, and that body weight and brain weight of rat pups significantly decreased. Folic acid supplementation markedly reversed the above-mentioned abnormal changes of hyperhomocysteinemic pregnant rats and rat pups. These findings suggest that folic acid can alleviate the symptoms of hyperhomocysteinemia- induced preeclampsia in pregnant rats without influencing brain development of rat pups.

  4. Alleviating effects of morin against experimentally-induced diabetic osteopenia

    Directory of Open Access Journals (Sweden)

    Abuohashish Hatem M

    2013-02-01

    Full Text Available Abstract Background Plant flavonoids are emerging as potent therapeutic drugs effective against a wide range of aging diseases particularly bone metabolic disorders. Morin (3,5,7,20,40-pentahydroxyflavone, a member of flavonols, is an important bioactive compound by interacting with nucleic acids, enzymes and protein. The present study was designed to investigate the putative beneficial effect of morin on diabetic osteopenia in rats. Methods Streptozotocin (STZ-induced diabetic model was used by considering 300 mg/dl fasting glucose level as diabetic. Morin (15 and 30 mg/kg was treated for five consecutive weeks to diabetic rats. Serum levels of glucose, insulin, deoxypyridinoline cross links (DPD, osteocalcin (OC, bone specific alkaline phosphatase (BALP, telopeptides of collagen type I (CTX, interleukin 1 beta (IL-1β, interleukin 6 (IL-6, tumor necrosis factor alpha (TNF-α, thiobarbituric acid reactive substance (TBARS and reduced glutathione (GSH were estimated. Femoral bones were taken for micro CT scan to measure trabecular bone mineral density (BMD and other morphometric parameters. Results Significant bone loss was documented as the level of bone turnover parameters including DPD, OC, BALP and CTX were increased in serum of diabetic rats. Morin treatment significantly attenuated these elevated levels. Bone micro-CT scan of diabetic rats showed a significant impairment in trabecular bone microarchitecture, density and other morphometric parameters. These impairments were significantly ameliorated by morin administration. Serum levels of glucose, TBARS, IL-1β, IL-6 and TNF-α were significantly elevated, while the level of insulin and GSH was decreased in diabetic rats. These serum changes in diabetic rats were bring back to normal values after 5 weeks morin treatment. Conclusion These findings revealed the protective effect of morin against diabetic induced osteopenia. We believed that this effect is through its both the anti

  5. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize.

    Science.gov (United States)

    Vaculík, Marek; Pavlovič, Andrej; Lux, Alexander

    2015-10-01

    Silicon was shown to alleviate the negative effects of various biotic and abiotic stresses on plant growth. Although the positive role of Si on toxic and heavy metal Cd has been already described, the mechanisms have been explained only partially and still remain unclear. In the present study we investigated the effect of Si on photosynthetic-related processes in maize exposed to two different levels of Cd via measurements of net photosynthetic rate (AN), chlorophyll a fluorescence and pigment analysis, as well as studies of leaf tissue anatomy and cell ultrastructure using bright-field and transmission electron microscopy. We found that Si actively alleviated the toxic syndromes of Cd by increasing AN, effective photochemical quantum yield of photosystem II (ϕPSII) and content of assimilation pigments, although did not decrease the concentration of Cd in leaf tissues. Cadmium did not affect the leaf anatomy and ultrastructure of leaf mesophyll's cell chloroplasts; however, Cd negatively affected thylakoid formation in chloroplasts of bundle sheath cells, and this was alleviated by Si. Improved thylakoid formation in bundle sheath's cell chloroplasts may contribute to Si-induced enhancement of photosynthesis and related increase in biomass production in C4 plant maize.

  6. Alleviation of Al Toxicity in Barley by Addition of Calcium

    Institute of Scientific and Technical Information of China (English)

    GUO Tian-rong; CHEN Ying; ZHANG Yan-hua; JIN Ye-fei

    2006-01-01

    The potential mechanism by which Ca alleviates Al toxicity was investigated in barley seedlings. It was found that 100 μM Al-alone treatment inhibited barley plant growth and thereby reduced shoot height and root length, and dry weights of root, shoot and leaf; promoted Al accumulation but inhibited Ca absorption in plant tissues; and induced an increase in the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) and in the level of lipid peroxidation (MDA content) in leaves. Except for the increase in Ca concentration in plant tissues, treatment with 0.5 mM Ca in the absence of Al had less effect on the above-mentioned parameters, compared with the control. Addition of Ca efficiently reduced Al toxicity, which is reflected by the promotion of plant growth, reduction in Al concentration and MDA content,increase in Ca concentration and in SOD, POD, and CAT activities compared with the Al-alone-treatment; with increase in Ca level (3.0 mM), the ameliorative effect became more dominant. This indicated that the alleviation of aluminum toxicity in barley seedlings with Ca supplementation could be associated with less absorption of Al and the enhancement of the protective ability of the cell because of increased activity of the antioxidative enzyme.

  7. Puerarin Alleviates Neuropathic Pain by Inhibiting Neuroinflammation in Spinal Cord

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2014-01-01

    Full Text Available Neuropathic pain responds poorly to drug treatments, and partial relief is achieved in only about half of the patients. Puerarin, the main constituent of Puerariae Lobatae Radix, has been used extensively in China to treat hypertension and tumor. The current study examined the effects of puerarin on neuropathic pain using two most commonly used animal models: chronic constriction injury (CCI and diabetic neuropathy. We found that consecutive intrathecal administration of puerarin (4–100 nM for 7 days inhibited the mechanical and thermal nociceptive response induced by CCI and diabetes without interfering with the normal pain response. Meanwhile, in both models puerarin inhibited the activation of microglia and astroglia in the spinal dorsal horn. Puerarin also reduced the upregulated levels of nuclear factor-κB (NF-κB and other proinflammatory cytokines, such as IL-6, IL-1β, and TNF-α, in the spinal cord. In summary, puerarin alleviated CCI- and diabetes-induced neuropathic pain, and its effectiveness might be due to the inhibition of neuroinflammation in the spinal cord. The anti-inflammation effect of puerarin might be related to the suppression of spinal NF-κB activation and/or cytokines upregulation. We conclude that puerarin has a significant effect on alleviating neuropathic pain and thus may serve as a therapeutic approach for neuropathic pain.

  8. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    Science.gov (United States)

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis.

  9. Omega-3 fatty acids for breast cancer prevention and survivorship.

    Science.gov (United States)

    Fabian, Carol J; Kimler, Bruce F; Hursting, Stephen D

    2015-05-04

    Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case-control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship.

  10. Nitric oxide alleviates arsenic-induced toxic effects in ridged Luffa seedlings.

    Science.gov (United States)

    Singh, Vijay Pratap; Srivastava, Prabhat Kumar; Prasad, Sheo Mohan

    2013-10-01

    Hydroponic experiments were conducted to investigate whether exogenous addition of nitric oxide (NO) as sodium nitroprusside (SNP) alleviates arsenic (As) toxicity in Luffa acutangula (L.) Roxb. seedlings. Arsenic (5 and 50 μM) declined growth of Luffa seedlings which was accompanied by significant accumulation of As. SNP (100 μM) protected Luffa seedlings against As toxicity as it declined As accumulation significantly. The photosynthetic pigments and chlorophyll fluorescence parameters such as Fv/Fm, Fv/F0, Fm/F0 and qP were decreased while NPQ was raised by As. However, the toxic effects of As on photosynthesis were significantly ameliorated by SNP. The oxidative stress markers such as superoxide radical, hydrogen peroxide and malondialdehyde (lipid peroxidation) contents were enhanced by As, however, these oxidative indices were diminished significantly in the presence of SNP. As treatment stimulated the activities of SOD and CAT while the activities of APX and GST, and AsA content and AsA/DHA ratio were decreased. Upon SNP addition, along with further rise in SOD and CAT activity, APX and GST activity, and levels of AsA and AsA/DHA ratio were restored considerably. Overall results revealed that significant accumulation of As suppressed growth, photosynthesis, APX and GST activities and decreased AsA content, hence led to the oxidative stress. However, the addition of SNP protected seedlings against As stress by regulating As accumulation, oxidative stress and antioxidant defense system.

  11. Emodin alleviates jejunum injury in rats with sepsis by inhibiting inflammation response.

    Science.gov (United States)

    Chen, Yi-Kun; Xu, Ying-Kun; Zhang, Hao; Yin, Jiang-Tao; Fan, Xin; Liu, Da-Dong; Fu, Hai-Yan; Wan, Bing

    2016-12-01

    Emodin is an anthraquinone derived from Chinese herb that exerts anti-inflammation effects. This study aimed to investigate whether emodin provides the protection for jejunum injury by inhibiting inflammation. We established a model of sepsis caused by cecal ligation and puncture. Forty-eight male Wistar rats were divided into four groups (n=12). Jejunum injury was assessed by pathological examination. The activity of pJAK1/pSTAT3 and protein levels of Bcl-2 and Bax were detected by Western blot analysis. Inflammatory factors IL-6, TNF-α and procalcitonin were detected by ELISA. Apoptosis was detected by TUNEL. We found that emodin alleviated jejunum damage and apoptosis induced by sepsis and decreased the levels of IL-6, TNF-α and procalcitonin in septic rats. Furthermore, we observed that emodin increased the levels of pJAK1 and of pSTAT3, which were decreased in rats with sepsis. In addition, emodin enhanced the expression of Bcl-2 which was downregulated by sepsis and decreased the expression of Bax which was upregulated by sepsis. In conclusion, these results indicate that emodin suppresses inflammatory response induced by sepsis. Emodin activates JAK1/STAT3 signaling pathway and regulates Bcl-2 and Bax expression to protect the jejunum in rats with sepsis.

  12. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice

    Science.gov (United States)

    Dong, Qian; Li, Jing; Wu, Qiong-feng; Zhao, Ning; Qian, Cheng; Ding, Dan; Wang, Bin-bin; Chen, Lei; Guo, Ke-Fang; Fu, Dehao; Han, Bing; Liao, Yu-Hua; Du, Yi-Mei

    2017-01-01

    Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable nonselective cation channel and can be activated during ischemia/reperfusion (I/R). This study tested whether blockade of TRPV4 can alleviate myocardial I/R injury in mice. TRPV4 expression began to increase at 1 h, reached statistically at 4 h, and peaked at 24–72 h. Treatment with the selective TRPV4 antagonist HC-067047 or TRPV4 knockout markedly ameliorated myocardial I/R injury as demonstrated by reduced infarct size, decreased troponin T levels and improved cardiac function at 24 h after reperfusion. Importantly, the therapeutic window for HC-067047 lasts for at least 12 h following reperfusion. Furthermore, treatment with HC-067047 reduced apoptosis, as evidenced by the decrease in TUNEL-positive myocytes, Bax/Bcl-2 ratio, and caspase-3 activation. Meanwhile, treatment with HC-067047 attenuated the decrease in the activation of reperfusion injury salvage kinase (RISK) pathway (phosphorylation of Akt, ERK1/2, and GSK-3β), while the activation of survival activating factor enhancement (SAFE) pathway (phosphorylation of STAT3) remained unchanged. In addition, the anti-apoptotic effects of HC-067047 were abolished by the RISK pathway inhibitors. We conclude that blockade of TRPV4 reduces apoptosis via the activation of RISK pathway, and therefore might be a promising strategy to prevent myocardial I/R injury. PMID:28205608

  13. Glutamine treatment decreases plasma and lymph cytotoxicity during sepsis in rats

    Institute of Scientific and Technical Information of China (English)

    Xuemin Wang; Ying Xue; Menfan Liang; Wei Jiang

    2012-01-01

    Glutamine (Gin) is considered as a conditionally essential amino acid.Pharmacological supplementation of Gln helps to maintain the intestinal mucosal barrier,modulate cytokine production,and prevent organ injury during sepsis.Our previous study demonstrated the different effects of Gln on macrophage cytokine production in vitro or in vivo.The purpose of this study was to investigate the potential mechanism of Gln treatment to protect cells and modulate inflammation during sepsis in vivo.The results showed that administration of Gln significantly attenuated plasma-induced macrophage cytokine production and endothelial cell necrosis after cecal ligation and puncture in rats.In addition,it preserved human umbilical vein endothelial cell (HUVEC) viability and migration ability. Gln treatment also reduced lymph cytotoxicity by restoring macrophage tumor necrosis factor-α production, maintainingHUVEC viability,and decreasing endothelial cell necrosis.Mesenteric lymph duct ligation did not alleviate plasma cytotoxicity. Plasma lipopolysaccharide and D-lactate levels were suppressed after Gln treatment.Taken together,these results indicated that Gin administration can protect cells by attenuating the cytotoxicity of plasma and mesenteric lymph during sepsis.

  14. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds

    Directory of Open Access Journals (Sweden)

    Nigel V. Gale

    2016-08-01

    Full Text Available Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME–gas chromatography–mass spectrometry (GC-MS to qualitatively describe organic compounds in both biochar (through headspace extraction, and in the water leachates (through direct injection. Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species

  15. Cerebellar Fastigial Nucleus Electrical Stimulation Alleviates Depressive-Like Behaviors in Post-Stroke Depression Rat Model and Potential Mechanisms

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-03-01

    Full Text Available Objective: To identify the molecular mechanism of post-stroke depression (PSD, and observe the therapeutic effects of cerebellar fastigial nucleus electrical stimulation (FNS on the behaviors and regional cerebral blood flow (rCBF in a PSD rat model. Methods: Healthy SD rats were randomly divided into four groups (sham, stroke, post-stroke depress and FNS group. Sham group (n = 6 underwent sham operation. The other three groups (n = 6*3 underwent MCAO. Rats were examined twice a week in open filed test. Moreover, neuroprotective effect on cerebellar Purkinje cells and expression of cytokines in hippocampal tissue were examined. Results: The PSD group showed a significant weight loss, decreased consumption of sucrose water, reduced rearing and locomotor activities. The FNS significantly alleviates the body weight loss and sucrose preference, locomotor and rearing activities. The bilateral rCBF was also restored after FNS treatment. Moreover, FNS improved the neuroprotection via suppressing apoptosis of cerebellar Purkinje cells. And the inflammatory cytokines mRNA level in hippocampus was significantly decreased. Conclusion: FNS treatment alleviates depressive-like behaviors and rCBF in PSD rats model, which could be attributed to its ability to protect cerebellar Purkinje cells and decrease the mRNA level of inflammatory cytokines.

  16. Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Zhao, Z.G.; Zhang, L.M.; Li, S.G.; Niu, C.Y. [Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou (China)

    2015-04-28

    Posthemorrhagic shock mesenteric lymph (PHSML) is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H{sub 2}S) in PHSML drainage in alleviating acute kidney injury (AKI) by administering D,L-propargylglycine (PPG) and sodium hydrosulfide hydrate (NaHS) to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage), and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage). Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H{sub 2}S, cystathionine-γ-lyase (CSE), Toll-like receptor 4 (TLR4), interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H{sub 2}S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H{sub 2}S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H{sub 2}S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H{sub 2}S and H{sub 2}S-mediated inflammation.

  17. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora.

    Science.gov (United States)

    Mateos-Naranjo, Enrique; Andrades-Moreno, Luis; Davy, Anthony J

    2013-02-01

    The non-essential element silicon is known to improve plant fitness by alleviating the effects of biotic and abiotic stresses, particularly in crops. However, its possible role in the exceptional tolerance of halophytes to salinity has not been investigated. This study reports the effect of Si supply on the salinity tolerance of the halophytic grass Spartina densiflora; plants were treated with NaCl (0-680 mM), with or without silicon addition of 500 μM, in a glasshouse experiment. Plant responses were examined using growth analysis, combined with measurements of gas exchange, chlorophyll fluorescence and photosynthetic pigment concentrations. In addition, tissue concentrations of aluminium, calcium, copper, iron, potassium, magnesium, sodium, phosphorus and silicon were determined. Although high salinity decreased growth, this effect was alleviated by treatment with Si. Improved growth was associated with higher net photosynthetic rate (A), and greater water-use efficiency (WUE). Enhanced A at high salinity could be explained by beneficial effects of Si on the photochemical apparatus, and on chlorophyll concentrations. Ameliorative effects of Si were correlated with reduced sodium uptake, which was unrelated to a reduction in the transpiration rate, since Si-supplemented plants had higher stomatal conductances (G(s)). These plants also had higher tissue concentrations of essential nutrients, suggesting that Si had a positive effect on the mineral nutrient balance in salt-stressed plants. Si appears to play a significant role in salinity tolerance even in a halophyte, which has other, specific salt-tolerance mechanisms, through diverse protective effects on the photosynthetic apparatus, water-use efficiency and mineral nutrient balance.

  18. Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats.

    Science.gov (United States)

    Han, B; Zhao, Z G; Zhang, L M; Li, S G; Niu, C Y

    2015-07-01

    Posthemorrhagic shock mesenteric lymph (PHSML) is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H2S) in PHSML drainage in alleviating acute kidney injury (AKI) by administering D,L-propargylglycine (PPG) and sodium hydrosulfide hydrate (NaHS) to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage), and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage). Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H2S, cystathionine-γ-lyase (CSE), Toll-like receptor 4 (TLR4), interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H2S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H2S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H2S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H2S and H2S-mediated inflammation.

  19. Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats

    Directory of Open Access Journals (Sweden)

    B. Han

    2015-07-01

    Full Text Available Posthemorrhagic shock mesenteric lymph (PHSML is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H2S in PHSML drainage in alleviating acute kidney injury (AKI by administering D,L-propargylglycine (PPG and sodium hydrosulfide hydrate (NaHS to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage, and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage. Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H2S, cystathionine-γ-lyase (CSE, Toll-like receptor 4 (TLR4, interleukin (IL-10, IL-12, and tumor necrosis factor (TNF-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H2S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H2S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H2S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H2S and H2S-mediated inflammation.

  20. Significant alleviation of Darier's disease with fractional CO2 laser.

    Science.gov (United States)

    Benmously, Rym; Litaiem, Noureddine; Hammami, Houda; Badri, Talel; Fenniche, Samy

    2015-04-01

    Darier's disease (DD) is a dominantly inherited genodermatosis with highly variable expression. It is characterized by symmetrical hyperkeratotic papules affecting seborrheic areas and extremities. The existence of unsightly lesions could lead to discomfort and social handicap. Conventional treatment consists of topical and systemic steroids and/or retinoids alleviating DD. Ablative lasers also have been used to treat these conditions with variable results and side effects. To the best of our knowledge, fractional CO2 laser has never been used to treat DD. We present a case of a 36-year-old woman with verrucous and hyperkeratotic plaques of the forehead significantly improved after two sessions of fractional CO2 laser treatment. Neither scars nor pigmentary disorders were noted.

  1. Gust Load Alleviation with Robust Control for a Flexible Wing

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    2016-01-01

    Full Text Available Traditional methods for gust alleviation of aircraft are mostly proposed based on a specific flight condition. In this paper, robust control laws are designed for a large flexible wing with uncertainty in Mach number and dynamic pressure. To accurately describe the aeroelastic model over a large flight envelope, a nonlinear parameter-varying model is developed which is a function of both Mach number and dynamic pressure. Then a linear fractional transformation is established accordingly and a modified model order reduction technique is applied to reduce the size of the uncertainty block. The developed model, in which the statistic nature of the gust is considered by using the Dryden power spectral density function, enables the use of μ-synthesis procedures for controller design. The simulations show that the μ controller can always effectively reduce the wing root shear force and bending moment at a given range of Mach number and dynamic pressure.

  2. Personality and Coping in Peruvian volunteers for poverty alleviation

    Directory of Open Access Journals (Sweden)

    Camila Gastelumendi Gonçalves

    2013-06-01

    Full Text Available This study explores the relationship between coping styles and strategies, and personality styles in a sample of 41 young volunteers of an institution that alleviates poverty in Lima. Peruvian adaptations of COPE and MIPS scales were administered. The results show that volunteers have higher scores on adaptive coping strategies. High scores in some particular personality styles were reported, which allowed to establish a personality profile of this group. According with theoretical framework, most coping strategies correlated with most personality styles, revealing four particular tendencies in these volunteers: they wish to have contact with other people, they usually see positive aspects of situations, they look forward for challenges, and they developed adaptive coping strategies.

  3. Non-pharmacological approaches to alleviate distress in dementia care.

    Science.gov (United States)

    Mitchell, Gary; Agnelli, Joanne

    2015-11-25

    Distress is one of the most common clinical manifestations associated with dementia. Pharmacological intervention may be appropriate in managing distress in some people. However, best practice guidelines advocate non-pharmacological interventions as the preferred first-line treatment. The use of non-pharmacological interventions encourages healthcare professionals to be more person-centred in their approach, while considering the causes of distress. This article provides healthcare professionals with an overview of some of the non-pharmacological approaches that can assist in alleviating distress for people living with dementia including: reminiscence therapy, reality orientation, validation therapy, music therapy, horticultural therapy, doll therapy and pet therapy. It provides a summary of their use in clinical practice and links to the relevant literature.

  4. Decreased Degradation of Internalized Follicle-Stimulating Hormone Caused by Mutation of Aspartic Acid 6.30550 in a Protein Kinase-CK2 Consensus Sequence in the Third Intracellular Loop of Human Follicle-Stimulating Hormone Receptor1

    Science.gov (United States)

    Kluetzman, Kerri S.; Thomas, Richard M.; Nechamen, Cheryl A.; Dias, James A.

    2011-01-01

    A naturally occurring mutation in follicle-stimulating hormone receptor (FSHR) gene has been reported: an amino acid change to glycine occurs at a conserved aspartic acid 550 (D550, D567, D6.30567). This residue is contained in a protein kinase-CK2 consensus site present in human FSHR (hFSHR) intracellular loop 3 (iL3). Because CK2 has been reported to play a role in trafficking of some receptors, the potential roles for CK2 and D550 in FSHR function were evaluated by generating a D550A mutation in the hFSHR. The hFSHR-D550A binds hormone similarly to WT-hFSHR when expressed in HEK293T cells. Western blot analyses showed lower levels of mature hFSHR-D550A. Maximal cAMP production of both hFSHR-D550A as well as the naturally occurring mutation hFSHR-D550G was diminished, but constitutive activity was not observed. Unexpectedly, when 125I-hFSH bound to hFSHR-D550A or hFSHR-D550G, intracellular accumulation of radiolabeled FSH was observed. Both sucrose and dominant-negative dynamin blocked internalization of radiolabeled FSH and its commensurate intracellular accumulation. Accumulation of radiolabeled FSH in cells transfected with hFSHR-D550A is due to a defect in degradation of hFSH as measured in pulse chase studies, and confocal microscopy imaging revealed that FSH accumulated in large intracellular structures. CK2 kinase activity is not required for proper degradation of internalized FSH because inhibition of CK2 kinase activity in cells expressing hFSHR did not uncouple degradation of internalized radiolabeled FSH. Additionally, the CK2 consensus site in FSHR iL3 is not required for binding because CK2alpha coimmunoprecipitated with hFSHR-D550A. Thus, mutation of D550 uncouples the link between internalization and degradation of hFSH. PMID:21270425

  5. Expression and/or activity of the SVCT2 ascorbate transporter may be decreased in many aggressive cancers, suggesting potential utility for sodium bicarbonate and dehydroascorbic acid in cancer therapy.

    Science.gov (United States)

    McCarty, Mark F

    2013-10-01

    Hypoxia-inducible factor-1 (HIF-1) is a heterodimer transcription factor whose elevated activity in many cancers helps them to survive under hypoxic conditions and enhances their capacity to grow invasively, establish metastases, and survive chemo- or radiotherapy. Optimal intracellular levels of ascorbate suppress the level and transcriptional activity of HIF-1under normoxic or mildly hypoxic conditions by supporting the activity of proly and asparagyl hydroxylases that target HIF-1alpha. High intracellular ascorbate can also work in various ways to down-regulate activation of NF-kappaB which, like HIF-1 is constitutively active in many cancers and promotes aggressive behavior - in part by promoting transcription of HIF-1alpha. Yet recent evidence suggests that, even in the context of adequate ascorbate nutrition, the intracellular ascorbate content of many aggressive cancers may be supoptimal for effective HIF-1 control. This likely reflects low expression or activity of the SVCT2 ascorbate transporter. The expression of SVCT2 in cancers has so far received little study; but the extracellular acidity characteristic of many tumors would be expected to reduce the activity of this transporter, which has a mildly alkaline pH optimum. Unfortunately, since SVCT2 has a high affinity for ascorbate, and its activity is nearly saturated at normal healthy serum levels of this vitamin, increased oral administration of ascorbate would be unlikely to have much impact on the intracellular ascorbate content of tumors. However, cancers in which HIF-1 is active express high levels of glucose transporters such as GLUT-1, and these transporters can promote influx of dehydroascorbic acid (DHA) via facilitated diffusion; once inside the cell, DHA is rapidly reduced to ascorbate, which effectively is "trapped" within the cell. Hence, episodic intravenous infusions of modest doses of DHA may have potential for optimizing the intracellular ascorbate content of cancers, potentially

  6. Wake vortex alleviation using rapidly actuated segmented Gurney flaps

    Science.gov (United States)

    Matalanis, Claude G.

    All bodies that generate lift also generate circulation. The circulation generated by large commercial aircraft remains in their wake in the form of trailing vortices. These vortices can be hazardous to following aircraft due to their strength and persistence. To account for this, airports abide by spacing rules which govern the frequency with which aircraft can use their runways when operating in instrument flight rules. These spacing rules are the limiting factor on increasing airport capacity. We conducted an experimental and computational study to assess the potential for using rapidly actuated segmented Gurney flaps, also known as Miniature Trailing Edge Effectors (MiTEs), for active wake vortex alleviation. Wind tunnel tests were performed on a half-span model NACA 0012 wing equipped with an array of 13 independent MITE pairs. The chord-based Reynolds number was around 350,000. Each MiTE could extend 0.015 chord lengths perpendicular to the freestream on the pressure side of the wing. Pressure profiles and a five-hole probe survey in the near wake were used to examine the influence that the MiTEs had upon the wing aerodynamics and the vortex rollup process. Particle image velocimetry was used to measure the static and time-dependent response of the vortex in the intermediate wake to various MiTE actuation schemes. These results were used to form complete initial conditions for vortex filament computations of the far wake evolution. Results from these computations showed that the perturbations created by MiTEs could be used to excite a variety of three-dimensional inviscid vortex instabilities. Finally, the research performed on MiTEs led to the invention of a more practical wake alleviation device: the spanwise actuating Gurney flap. Prototype tests showed that this device could produce similar perturbations to the MiTEs.

  7. The branched-chain amino acid aminotransferase encoded by ilvE is involved in acid tolerance in Streptococcus mutans.

    Science.gov (United States)

    Santiago, Brendaliz; MacGilvray, Matthew; Faustoferri, Roberta C; Quivey, Robert G

    2012-04-01

    The ability of Streptococcus mutans to produce and tolerate organic acids from carbohydrate metabolism represents a major virulence factor responsible for the formation of carious lesions. Pyruvate is a key metabolic intermediate that, when rerouted to other metabolic pathways such as amino acid biosynthesis, results in the alleviation of acid stress by reducing acid end products and aiding in maintenance of intracellular pH. Amino acid biosynthetic genes such as ilvC and ilvE were identified as being upregulated in a proteome analysis of Streptococcus mutans under acid stress conditions (A. C. Len, D. W. Harty, and N. A. Jacques, Microbiology 150:1353-1366, 2004). In Lactococcus lactis and Staphylococcus carnosus, the ilvE gene product is involved with biosynthesis and degradation of branched-chain amino acids, as well as in the production of branched-chain fatty acids (B. Ganesan and B. C. Weimer, Appl. Environ. Microbiol. 70:638-641, 2004; S. M. Madsen et al., Appl. Environ. Microbiol. 68:4007-4014, 2002; and M. Yvon, S. Thirouin, L. Rijnen, D. Fromentier, and J. C. Gripon, Appl. Environ. Microbiol. 63:414-419, 1997). Here we constructed and characterized an ilvE deletion mutant of S. mutans UA159. Growth experiments revealed that the ilvE mutant strain has a lag in growth when nutritionally limited for branched-chain amino acids. We further demonstrated that the loss of ilvE causes a decrease in acid tolerance. The ilvE strain exhibits a defect in F(1)-F(o) ATPase activity and has reduced catabolic activity for isoleucine and valine. Results from transcriptional studies showed that the ilvE promoter is upregulated during growth at low pH. Collectively, the results of this investigation show that amino acid metabolism is a component of the acid-adaptive repertoire of S. mutans.

  8. Sublethal concentrations of salicylic acid decrease the formation of reactive oxygen species but maintain an increased nitric oxide production in the root apex of the ethylene-insensitive never ripe tomato mutants.

    Science.gov (United States)

    Tari, Irma; Poór, Péter; Gémes, Katalin

    2011-09-01

    The pattern of salicylic acid (SA)-induced production of reactive oxygen species (ROS) and nitric oxide (NO) were different in the apex of adventitious roots in wild-type and in the ethylene-insensitive never ripe (Nr) mutants of tomato (Solanum lycopersicum L. cv Ailsa Craig). ROS were upregulated, while NO remained at the control level in apical root tissues of wildtype plants exposed to sublethal concentrations of SA. In contrast, Nr plants expressing a defective ethylene receptor displayed a reduced level of RO S and a higher NO content in the apical root cells. In wild-type plants NO production seems to be RO S(H2O2)-dependent at cell death-inducing concentrations of SA, indicating that ROS and NO may interact to trigger oxidative cell death. In the absence of significant RO S accumulation, the increased NO production caused moderate reduction in cell viability in root apex of Nr plants exposed to 10(-3) M SA. This suggests that a functional ethylene signaling pathway is necessary for the control of ROS and NO production induced by SA.

  9. Rapid ion-exchange matrix removal for a decrease of detection limits in the analysis of salt-rich reservoir waters for fluorobenzoic acids by liquid chromatography coupled with tandem mass spectrometry.

    Science.gov (United States)

    Kubica, Paweł; Vacchina, Véronique; Wasilewski, Tomasz; Reynaud, Stéphanie; Szpunar, Joanna; Lobinski, Ryszard

    2017-02-01

    A matrix removal procedure with ion-exchange resin prior to analysis for 18 fluorinated benzoic acids (FBAs) tracers in saline (>25% salt) reservoir water was optimized. The elimination of >98% of salt and the simultaneous matrix sample cleanup allowed the direct analysis using the supernatant by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). This resulted in a gain in detection limits for most of the tracers in comparison with the reference method (direct analysis after minimum required dilution). The limits of detection (LODs) were in the range of 0.01-0.15 ng/ml and compared to other studies the developed method provided comparable limits of detection and advantage of simplified and shorter sample preparation. The presented method offers a considerable gain in simplicity and analysis time. Recoveries for all the tracers reached 80-100%, except for 2-FBA and 2,6-dFBA for which they were ca. 60%. The low recoveries were corrected by the use of five isotopically labeled internal standards. The method was validated by the analysis of spiked samples and by an independent comparison of the results with those obtained by solid-phase extraction LC-MS/MS method.

  10. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Dong, Fang; Lei, Gui Jie [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2013-12-15

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd{sup 2+}) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd{sup 2+} concentration and rescued Cd{sup 2+}-induced chlorosis in Arabidopsis thaliana. Under Cd{sup 2+} stress conditions, NAA increased Cd{sup 2+} retention in the roots and most Cd{sup 2+} in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd{sup 2+}, whereas it significantly increased the content of hemicellulose 1 and the amount of Cd{sup 2+} retained in it. There were highly significant correlations between Cd{sup 2+} concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd{sup 2+} or NAA + Cd{sup 2+} treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd{sup 2+} in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd{sup 2+} toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd{sup 2+} fixation in the root, thus reducing the translocation of Cd{sup 2+} from roots to shoots.

  11. Cobalt Alleviates GA-Induced Programmed Cell Death in Wheat Aleurone Layers via the Regulation of H2O2 Production and Heme Oxygenase-1 Expression

    Directory of Open Access Journals (Sweden)

    Mingzhu Wu

    2014-11-01

    Full Text Available Heme oxygenase-1 (HO-1 and hydrogen peroxide (H2O2 are key signaling molecules that are produced in response to various environmental stimuli. Here, we demonstrate that cobalt is able to delay gibberellic acid (GA-induced programmed cell death (PCD in wheat aleurone layers. A similar response was observed when samples were pretreated with carbon monoxide (CO or bilirubin (BR, two end-products of HO catalysis. We further observed that increased HO-1 expression played a role in the cobalt-induced alleviation of PCD. The application of HO-1-specific inhibitor, zinc protoporphyrin-IX (ZnPPIX, substantially prevented the increases of HO-1 activity and the alleviation of PCD triggered by cobalt. The stimulation of HO-1 expression, and alleviation of PCD might be caused by the initial H2O2 production induced by cobalt. qRT-PCR and enzymatic assays revealed that cobalt-induced gene expression and the corresponding activities of superoxide dismutase (SOD, catalase (CAT and ascorbate peroxidase (APX, three enzymes that metabolize reactive oxygen species, were consistent with the H2O2 accumulation during GA treatment. These cobalt responses were differentially blocked by co-treatment with ZnPPIX. We therefore suggest that HO-1 functions in the cobalt-triggered alleviation of PCD in wheat aleurone layers, which is also dependent on the enhancement of the activities of antioxidant enzymes.

  12. Cobalt alleviates GA-induced programmed cell death in wheat aleurone layers via the regulation of H2O2 production and heme oxygenase-1 expression.

    Science.gov (United States)

    Wu, Mingzhu; Li, Jiale; Wang, Fangquan; Li, Feng; Yang, Jun; Shen, Wenbiao

    2014-11-14

    Heme oxygenase-1 (HO-1) and hydrogen peroxide (H2O2) are key signaling molecules that are produced in response to various environmental stimuli. Here, we demonstrate that cobalt is able to delay gibber