WorldWideScience

Sample records for acid adenylating enzymes

  1. Structure of the d-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes

    International Nuclear Information System (INIS)

    Bera, Asim K.; Atanasova, Vesna; Gamage, Swarna; Robinson, Howard; Parsons, James F.

    2010-01-01

    The structure of EhpF from P. agglomerans has been solved alone and in complex with phenazine-1,6-dicarboxylate. Apo EhpF was solved and refined in two different space groups at 1.95 and 2.3 Å resolution and the EhpF–phenazine-1,6-dicarboxylate complex structure was determined at 2.8 Å resolution. The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound d-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion of chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate

  2. Natural separation of the acyl-CoA ligase reaction results in a non-adenylating enzyme.

    Science.gov (United States)

    Wang, Nan; Rudolf, Jeffrey D; Dong, Liao-Bin; Osipiuk, Jerzy; Hatzos-Skintges, Catherine; Endres, Michael; Chang, Chin-Yuan; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2018-06-04

    Acyl-coenzyme A (CoA) ligases catalyze the activation of carboxylic acids via a two-step reaction of adenylation followed by thioesterification. Here, we report the discovery of a non-adenylating acyl-CoA ligase PtmA2 and the functional separation of an acyl-CoA ligase reaction. Both PtmA1 and PtmA2, two acyl-CoA ligases from the biosynthetic pathway of platensimycin and platencin, are necessary for the two steps of CoA activation. Gene inactivation of ptmA1 and ptmA2 resulted in the accumulation of free acid and adenylate intermediates, respectively. Enzymatic and structural characterization of PtmA2 confirmed its ability to only catalyze thioesterification. Structural characterization of PtmA2 revealed it binds both free acid and adenylate substrates and undergoes the established mechanism of domain alternation. Finally, site-directed mutagenesis restored both the adenylation and complete CoA activation reactions. This study challenges the currently accepted paradigm of adenylating enzymes and inspires future investigations on functionally separated acyl-CoA ligases and their ramifications in biology.

  3. Structural basis of the interaction of MbtH-like proteins, putative regulators of nonribosomal peptide biosynthesis, with adenylating enzymes.

    Science.gov (United States)

    Herbst, Dominik A; Boll, Björn; Zocher, Georg; Stehle, Thilo; Heide, Lutz

    2013-01-18

    The biosynthesis of nonribosomally formed peptides (NRPs), which include important antibiotics such as vancomycin, requires the activation of amino acids through adenylate formation. The biosynthetic gene clusters of NRPs frequently contain genes for small, so-called MbtH-like proteins. Recently, it was discovered that these MbtH-like proteins are required for some of the adenylation reactions in NRP biosynthesis, but the mechanism of their interaction with the adenylating enzymes has remained unknown. In this study, we determined the structure of SlgN1, a 3-methylaspartate-adenylating enzyme involved in the biosynthesis of the hybrid polyketide/NRP antibiotic streptolydigin. SlgN1 contains an MbtH-like domain at its N terminus, and our analysis defines the parameters required for an interaction between MbtH-like domains and an adenylating enzyme. Highly conserved tryptophan residues of the MbtH-like domain critically contribute to this interaction. Trp-25 and Trp-35 form a cleft on the surface of the MbtH-like domain, which accommodates the alanine side chain of Ala-433 of the adenylating domain. Mutation of Ala-433 to glutamate abolished the activity of SlgN1. Mutation of Ser-23 of the MbtH-like domain to tyrosine resulted in strongly reduced activity. However, the activity of this S23Y mutant could be completely restored by addition of the intact MbtH-like protein CloY from another organism. This suggests that the interface found in the structure of SlgN1 is the genuine interface between MbtH-like proteins and adenylating enzymes.

  4. Radiation inactivation of multimeric enzymes: application to subunit interactions of adenylate cyclase

    International Nuclear Information System (INIS)

    Verkman, A.S.; Skorecki, K.L.; Ausiello, D.A.

    1986-01-01

    Radiation inactivation has been applied extensively to determine the molecular weight of soluble enzyme and receptor systems from the slope of a linear ln (activity) vs. dose curve. Complex nonlinear inactivation curves are predicted for multimeric enzyme systems, composed of distinct subunits in equilibrium with multimeric complexes. For the system A1 + A2----A1A2, with an active A1A2 complex (associative model), the ln (activity) vs. dose curve is linear for high dissociation constant, K. If a monomer, A1, has all the enzyme activity (dissociative model), the ln (activity) vs. dose curve has an activation hump at low radiation dose if the inactive subunit, A2, has a higher molecular weight than A1 and has upward concavity when A2 is smaller than A1. In general, a radiation inactivation model for a multistep mechanism for enzyme activation fulfills the characteristics of an associative or dissociative model if the reaction step forming active enzyme is an associative or dissociative reaction. Target theory gives the molecular weight of the active enzyme subunit or complex from the limiting slope of the ln (activity) vs. dose curve at high radiation dose. If energy transfer occurs among subunits in the multimer, the ln (activity) vs. dose curve is linear for a single active component and is concave upward for two or more active components. The use of radiation inactivation as a method to determine enzyme size and multimeric subunit assembly is discussed with specific application to the hormone-sensitive adenylate cyclase system. It is shown that the complex inactivation curves presented in the accompanying paper can be used select the best mechanism out of a series of seven proposed mechanisms for the activation of adenylate cyclase by hormone

  5. Interactions between lysergic acid diethylamide and dopamine-sensitive adenylate cyclase systems in rat brain.

    Science.gov (United States)

    Hungen, K V; Roberts, S; Hill, D F

    1975-08-22

    Investigations were carried out on the interactions of the hallucinogenic drug, D-lysergic acid diethylamide (D-LSD), and other serotonin antagonists with catecholamine-sensitive adenylate cyclase systems in cell-free preparations from different regions of rat brain. In equimolar concentration, D-LSD, 2-brono-D-lysergic acid diethylamide (BOL), or methysergide (UML) strongly blocked maximal stimulation of adenylate cyclase activity by either norepinephrine or dopamine in particulate preparations from cerebral cortices of young adult rats. D-LSD also eliminated the stimulation of adenylate cyclase activity of equimolar concentrations of norepinephrine or dopamine in particulate preparations from rat hippocampus. The effects of this hallucinogenic agent on adenylate cyclase activity were most striking in particulate preparations from corpus striatum. Thus, in 10 muM concentration, D-LSD not only completely eradicated the response to 10 muM dopamine in these preparations but also consistently stimulated adenylate cyclase activity. L-LSD (80 muM) was without effect. Significant activation of striatal adenylate cyclase was produced by 0.1 muM D-LSD. Activation of striatal adenylate cyclase of either D-LSD or dopamine was strongly blocked by the dopamine-blocking agents trifluoperazine, thioridazine, chlorpromazine, and haloperidol. The stimulatory effects of D-LSD and dopamine were also inhibited by the serotonin-blocking agents, BOL, 1-methyl-D-lysergic acid diethylamide (MLD), and cyproheptadine, but not by the beta-adrenergic-blocking agent, propranolol. However, these serotonin antagonists by themselves were incapable of stimulating adenylate cyclase activity in the striatal preparations. Several other hallucinogens, which were structurally related to serotonin, were also inactive in this regard, e.g., mescaline, N,N-dimethyltryptamine, psilocin and bufotenine. Serotonin itself produced a small stimulation of adenylate cyclase activity in striatal preparations and

  6. Selective splitting of 3'-adenylated dinucleoside polyphosphates by specific enzymes degrading dinucleoside polyphosphates.

    Science.gov (United States)

    Guranowski, Andrzej; Sillero, Antonio; Günther Sillero, María Antonia

    2003-01-01

    Several 3'-[(32)P]adenylated dinucleoside polyphosphates (Np(n)N'p*As) were synthesized by the use of poly(A) polymerase (Sillero MAG et al., 2001, Eur J Biochem.; 268: 3605-11) and three of them, ApppA[(32)P]A or ApppAp*A, AppppAp*A and GppppGp*A, were tested as potential substrates of different dinucleoside polyphosphate degrading enzymes. Human (asymmetrical) dinucleoside tetraphosphatase (EC 3.6.1.17) acted almost randomly on both AppppAp*A, yielding approximately equal amounts of pppA + pAp*A and pA + pppAp*A, and GppppGp*, yielding pppG + pGp*A and pG + pppGp*A. Narrow-leafed lupin (Lupinus angustifolius) tetraphosphatase acted preferentially on the dinucleotide unmodified end of both AppppAp*A (yielding 90% of pppA + pAp*A and 10 % of pA + pppAp*A) and GppppGp*A (yielding 89% pppG + pGp*A and 11% of pG + pppGp*A). (Symmetrical) dinucleoside tetraphosphatase (EC 3.6.1.41) from Escherichia coli hydrolyzed AppppAp*A and GppppGp*A producing equal amounts of ppA + ppAp*A and ppG + ppGp*A, respectively, and, to a lesser extent, ApppAp*A producing pA + ppAp*A. Two dinucleoside triphosphatases (EC 3.6.1.29) (the human Fhit protein and the enzyme from yellow lupin (Lupinus luteus)) and dinucleoside tetraphosphate phosphorylase (EC 2.7.7.53) from Saccharomyces cerevisiae did not degrade the three 3'-adenylated dinucleoside polyphosphates tested.

  7. The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Paola; Manandhar, Miglena; Dong, Shi-Hui; Deveryshetty, Jaigeeth; Agarwal, Vinayak; Cronan, John E.; Nair, Satish K.

    2017-04-17

    Reactions that activate carboxylates through acyl-adenylate intermediates are found throughout biology and include acyl- and aryl-CoA synthetases and tRNA synthetases. Here we describe the characterization of Aquifex aeolicus BioW, which represents a new protein fold within the superfamily of adenylating enzymes. Substrate-bound structures identified the enzyme active site and elucidated the mechanistic strategy for conjugating CoA to the seven-carbon α,ω-dicarboxylate pimelate, a biotin precursor. Proper position of reactive groups for the two half-reactions is achieved solely through movements of active site residues, as confirmed by site-directed mutational analysis. The ability of BioW to hydrolyze adenylates of noncognate substrates is reminiscent of pre-transfer proofreading observed in some tRNA synthetases, and we show that this activity can be abolished by mutation of a single residue. These studies illustrate how BioW can carry out three different biologically prevalent chemical reactions (adenylation, thioesterification, and proofreading) in the context of a new protein fold.

  8. Pressure stabilization is not a general property of thermophilic enzymes: the adenylate kinases of Methanococcus voltae, Methanococcus maripaludis, Methanococcus thermolithotrophicus, and Methanococcus jannaschii.

    OpenAIRE

    Konisky, J; Michels, P C; Clark, D S

    1995-01-01

    The application of 50-MPa pressure did not increase the thermostabilities of adenylate kinases purified from four related mesophilic and thermophilic marine methanogens. Thus, while it has been reported that some thermophilic enzymes are stabilized by pressure (D. J. Hei and D. S. Clark, Appl. Environ. Microbiol. 60:932-939, 1994), hyperbaric stabilization is not an intrinsic property of all enzymes from deep-sea thermophiles.

  9. Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme

    Czech Academy of Sciences Publication Activity Database

    Mašín, Jiří; Osička, Radim; Bumba, Ladislav; Šebo, Peter

    2015-01-01

    Roč. 73, č. 8 (2015) ISSN 2049-632X R&D Projects: GA ČR GAP302/12/0460; GA ČR GA15-09157S; GA ČR(CZ) GA15-11851S Institutional support: RVO:61388971 Keywords : adenylate cyclase toxin * membrane penetration * pore-formation Subject RIV: EE - Microbiology, Virology Impact factor: 2.483, year: 2015

  10. Docosahexaenoic acid alters Gsα localization in lipid raft and potentiates adenylate cyclase.

    Science.gov (United States)

    Zhu, Zhuoran; Tan, Zhoubin; Li, Yan; Luo, Hongyan; Hu, Xinwu; Tang, Ming; Hescheler, Jürgen; Mu, Yangling; Zhang, Lanqiu

    2015-01-01

    Supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA), recently has become popular for the amelioration of depression; however the molecular mechanism of DHA action remains unclear. The aim of this study was to investigate the mechanism underlying the antidepressant effect of DHA by evaluating Gsα localization in lipid raft and the activity of adenylate cyclase in an in vitro glioma cell model. Lipid raft fractions from C6 glioma cells treated chronically with DHA were isolated by sucrose gradient ultracentrifugation. The content of Gsα in lipid raft was analyzed by immunoblotting and colocalization of Gsα with lipid raft was subjected to confocal microscopic analysis. The intracellular cyclic adenosine monophosphate (cAMP) level was determined by cAMP immunoassay kit. DHA decreased the amount of Gsα in lipid raft, whereas whole cell lysate Gsα was not changed. Confocal microscopic analysis demonstrated that colocalization of Gsα with lipid raft was decreased, whereas DHA increased intracellular cAMP accumulation in a dose-dependent manner. Interestingly, we found that DHA increased the lipid raft level, instead of disrupting it. The results of this study suggest that DHA may exert its antidepressant effect by translocating Gsα from lipid raft and potentiating the activity of adenylate cyclase. Importantly, the reduced Gsα in lipid raft by DHA is independent of disruption of lipid raft. Overall, the study provides partial preclinical evidence supporting a safe and effective therapy using DHA for depression. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Biosynthesis of quinoxaline antibiotics: Purification and characterization of the quinoxaline-2-carboxylic acid activating enzyme from Streptomyces triostinicus

    International Nuclear Information System (INIS)

    Glund, K.; Schlumbohm, W.; Bapat, M.; Keller, U.

    1990-01-01

    A quinoxaline-2-carboxylic acid activating enzyme was purified to homogeneity from triostin-producing Streptomyces triostinicus. It could also be purified from quinomycin-producing Streptomyces echinatus. Triostins and quinomycins are peptide lactones that contain quinoxaline-2-carboxylic acid as chromophoric moiety. The enzyme catalyzes the ATP-pyrophosphate exchange reaction dependent on quinoxaline-2-carboxylic acid and the formation of the corresponding adenylate. Besides quinoxaline-2-carboxylic acid, the enzyme also catalyzes the formation of adenylates from quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid. No adenylates were seen from quinoline-3-carboxylic acid, quinoline-4-carboxylic acid, pyridine-2-carboxylic acid, and 2-pyrazinecarboxylic acid. Previous work revealed that quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid became efficiently incorporated into the corresponding quinoxaline antibiotic analogues in vivo. Together with the data described here, this suggests that the enzyme is part of the quinoxaline antibiotics synthesizing enzyme system. The enzyme displays a native molecular weight of 42,000, whereas in its denatured form it is a polypeptide of Mr 52,000-53,000. It resembles in its behavior actinomycin synthetase I, the chromophore activating enzyme involved in actinomycin biosynthesis

  12. Measurement of Nonribosomal Peptide Synthetase Adenylation Domain Activity Using a Continuous Hydroxylamine Release Assay.

    Science.gov (United States)

    Duckworth, Benjamin P; Wilson, Daniel J; Aldrich, Courtney C

    2016-01-01

    Adenylation is a crucial enzymatic process in the biosynthesis of nonribosomal peptide synthetase (NRPS) derived natural products. Adenylation domains are considered the gatekeepers of NRPSs since they select, activate, and load the carboxylic acid substrate onto a downstream peptidyl carrier protein (PCP) domain of the NRPS. We describe a coupled continuous kinetic assay for NRPS adenylation domains that substitutes the PCP domain with hydroxylamine as the acceptor molecule. The pyrophosphate released from the first-half reaction is then measured using a two-enzyme coupling system, which detects conversion of the chromogenic substrate 7-methylthioguanosine (MesG) to 7-methylthioguanine. From profiling substrate specificity of unknown or engineered adenylation domains to studying chemical inhibition of adenylating enzymes, this robust assay will be of widespread utility in the broad field NRPS enzymology.

  13. Effect of tributyltin on adenylate content and enzyme activities of teleost sperm: a biochemical approach to study the mechanisms of toxicant reduced spermatozoa motility.

    Science.gov (United States)

    Rurangwa, E; Biegniewska, A; Slominska, E; Skorkowski, E F; Ollevier, F

    2002-03-01

    The effects of tributyltin (TBT) on the energy metabolism and motility of fish spermatozoa were investigated in vitro in African catfish and common carp. A significant (PTBT for 24 h. Exposure of catfish spermatozoa to 2.7-27 microg/l TBT caused an instant decrease in ATP content. In the presence of 27 microg/l TBT approximately 55% of the initial ATP concentration in catfish semen was lost after 60 min incubation while AMP concentrations increased and the total adenine nucleotide (TAN) pool remained unchanged. The reduction in sperm ATP levels could not be attributed to cell death since viability decreased only slightly over the period of exposure. In carp by contrast, none of the adenylates concentrations studied (ATP, ADP and AMP) were affected by TBT exposure at any experimental condition. However, carp sperm motility was significantly reduced by exposure to 2.7 microg/l TBT. Among the enzymes investigated only lactate dehydrogenase (LDH) in catfish sperm was significantly (PTBT treatment with a reduction in activity of approximately 75%. Compared with carp sperm before TBT exposure, that of catfish had lower adenylate contents and overall lower enzymatic activities; this explains its slower sperm velocity and shorter duration of movement as measured by computer assisted sperm analysis (CASA). The present in vitro study shows that catfish spermatozoa are more sensitive to TBT exposure (and probably to other toxicants) than those of carp.

  14. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster

    Directory of Open Access Journals (Sweden)

    Laakso Kati

    2007-10-01

    Full Text Available Abstract Background Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of mcyB (mcyB1 and mcyC in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus Microcystis. Results Here we undertook a phylogenetic study to investigate the order and timing of recombination between the mcyB1 and mcyC genes in a diverse selection of microcystin producing cyanobacteria. Our results provide support for complex evolutionary processes taking place at the mcyB1 and mcyC adenylation domains which recognize and activate the amino acids found at X and Z positions. We find evidence for recent recombination between mcyB1 and mcyC in strains of the genera Anabaena, Microcystis, and Hapalosiphon. We also find clear evidence for independent adenylation domain conversion of mcyB1 by unrelated peptide synthetase modules in strains of the genera Nostoc and Microcystis. The recombination events replace only the adenylation domain in each case and the condensation domains of mcyB1 and mcyC are not transferred together with the adenylation domain. Our findings demonstrate that the mcyB1 and mcyC adenylation domains are recombination hotspots in the microcystin synthetase gene cluster. Conclusion Recombination is thought to be one of the main mechanisms driving the diversification of NRPSs. However, there is very little information on how recombination takes place in nature. This study demonstrates that functional peptide synthetases are created in nature through transfer of adenylation domains without the concomitant transfer of condensation domains.

  15. Kynurenic Acid Inhibits the Electrical Stimulation Induced Elevated Pituitary Adenylate Cyclase-Activating Polypeptide Expression in the TNC

    Directory of Open Access Journals (Sweden)

    Tamás Körtési

    2018-01-01

    Full Text Available BackgroundMigraine is a primary headache of imprecisely known mechanism, but activation of the trigeminovascular system (TS appears to be essential during the attack. Intensive research has recently focused on pituitary adenylate cyclase-activating polypeptide (PACAP and the kynurenine systems as potential pathogenic factors.AimWe investigated the link between these important mediators and the effects of kynurenic acid (KYNA and its synthetic analog (KYNA-a on PACAP expression in the rat trigeminal nucleus caudalis (TNC in a TS stimulation model related to migraine mechanisms.MethodsAdult male Sprague-Dawley rats were pretreated with KYNA, KYNA-a, the NMDA receptor antagonist MK-801, or saline (vehicle. Next, the trigeminal ganglion (TRG was electrically stimulated, the animals were transcardially perfused following 180 min, and the TNC was removed. In the TNC samples, 38 amino acid form of PACAP (PACAP1–38-like radioimmunoactivity was measured by radioimmunoassay, the relative optical density of preproPACAP was assessed by Western blot analysis, and PACAP1–38 mRNA was detected by real-time PCR.Results and conclusionElectrical TRG stimulation resulted in significant increases of PACAP1–38-LI, preproPACAP, and PACAP1–38 mRNA in the TNC. These increases were prevented by the pretreatments with KYNA, KYNA-a, and MK-801. This is the first study to provide evidence for a direct link between PACAP and the kynurenine system during TS activation.

  16. Regulation of brain adenylate cyclase by calmodulin

    International Nuclear Information System (INIS)

    Harrison, J.K.

    1988-01-01

    This thesis examined the interaction between the Ca 2+ -binding protein, calmodulin (CaM), and the cAMP synthesizing enzyme, adenylate cyclase. The regulation of guanyl nucleotide-dependent adenylate cyclase by CaM was examined in a particulate fraction from bovine striatum. CaM stimulated basal adenylate cyclase activity and enhanced the stimulation of the enzyme by GTP and dopamine (DA). The potentiation of GTP- and DA-stimulated adenylate cyclase activities by CaM was more sensitive to the concentration of CaM than was the stimulation of basal activity. A photoreactive CaM derivative was developed in order to probe the interactions between CaM and the adenylate cyclase components of bovine brain. Iodo-[ 125 I]-CaM-diazopyruvamide ( 125 I-CAM-DAP) behaved like native CaM with respect to Ca 2+ -enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and Ca 2+ -dependent stimulation of adenylate cyclase. 125 I-CaM-DAP cross-linked to CaM-binding proteins in a Ca 2+ -dependent, concentration-dependent, and CaM-specific manner. Photolysis of 125 I-CaM-DAP and forskolin-agarose purified CaM-sensitive adenylate cyclase produced an adduct with a molecular weight of 140,000

  17. Role of MbtH-like Proteins in the Adenylation of Tyrosine during Aminocoumarin and Vancomycin Biosynthesis*

    Science.gov (United States)

    Boll, Björn; Taubitz, Tatjana; Heide, Lutz

    2011-01-01

    MbtH-like proteins consist of ∼70 amino acids and are encoded in the biosynthetic gene clusters of non-ribosomally formed peptides and other secondary metabolites derived from amino acids. Recently, several MbtH-like proteins have been shown to be required for the adenylation of amino acid in non-ribosomal peptide synthesis. We now investigated the role of MbtH-like proteins in the biosynthesis of the aminocoumarin antibiotics novobiocin, clorobiocin, and simocyclinone D8 and of the glycopeptide antibiotic vancomycin. The tyrosine-adenylating enzymes CloH, SimH, and Pcza361.18, involved in the biosynthesis of clorobiocin, simocyclinone D8, and vancomycin, respectively, required the presence of MbtH-like proteins in a 1:1 molar ratio, forming heterotetrameric complexes. In contrast, NovH, involved in novobiocin biosynthesis, showed activity in the absence of MbtH-like proteins. Comparison of the active centers of CloH and NovH showed only one amino acid to be different, i.e. Leu-383 versus Met-383. Mutation of this amino acid in CloH (L383M) indeed led to MbtH-independent adenylating activity. All investigated tyrosine-adenylating enzymes exhibited remarkable promiscuity for MbtH-like proteins from different pathways and organisms. YbdZ, the MbtH-like protein from the expression host Escherichia coli, was found to bind to adenylating enzymes during expression and to influence their biochemical properties markedly. Therefore, the use of ybdZ-deficient expression hosts is important in biochemical studies of adenylating enzymes. PMID:21890635

  18. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    International Nuclear Information System (INIS)

    Murayama, T.; Ui, M.

    1985-01-01

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased 45 Ca 2+ uptake into the cell monolayer, and (f) increased 86 Rb + uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca 2+ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca 2+ -mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca 2+ gating

  19. A Single Enzyme Transforms a Carboxylic Acid into a Nitrile through an Amide Intermediate.

    Science.gov (United States)

    Nelp, Micah T; Bandarian, Vahe

    2015-09-01

    The biosynthesis of nitriles is known to occur through specialized pathways involving multiple enzymes; however, in bacterial and archeal biosynthesis of 7-deazapurines, a single enzyme, ToyM, catalyzes the conversion of the carboxylic acid containing 7-carboxy-7-deazaguanine (CDG) into its corresponding nitrile, 7-cyano-7-deazaguanine (preQ0 ). The mechanism of this unusual direct transformation was shown to proceed via the adenylation of CDG, which activates it to form the newly discovered amide intermediate 7-amido-7-deazaguanine (ADG). This is subsequently dehydrated to form the nitrile in a process that consumes a second equivalent of ATP. The authentic amide intermediate is shown to be chemically and kinetically competent. The ability of ToyM to activate two different substrates, an acid and an amide, accounts for this unprecedented one-enzyme catalysis of nitrile synthesis, and the differential rates of these two half reactions suggest that this catalytic ability is derived from an amide synthetase that gained a new function. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The central regulation of plant physiology by adenylates.

    Science.gov (United States)

    Geigenberger, Peter; Riewe, David; Fernie, Alisdair R

    2010-02-01

    There have been many recent developments concerning the metabolic, transport and signalling functions of adenylates in plants, suggesting new roles for these compounds as central regulators of plant physiology. For example, altering the expression levels of enzymes involved in the equilibration, salvaging, synthesis and transport of adenylates leads to perturbations in storage, growth and stress responses, implying a role for adenylates as important signals. Furthermore, sensing of the internal energy status involves SNF1-related kinases, which control the expression and phosphorylation of key metabolic enzymes. ATP also acts as an apoplastic signalling molecule to control cell growth and pathogen responses. These new results could shed light on the emerging question of whether energy homeostasis in plant cells differs from mechanisms found in microbes and mammals. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. [Adenylate cyclase from rabbit heart: substrate binding site].

    Science.gov (United States)

    Perfil'eva, E A; Khropov, Iu V; Khachatrian, L; Bulargina, T V; Baranova, L A

    1981-08-01

    The effects of 17 ATP analogs on the solubilized rabbit heart adenylate cyclase were studied. The triphosphate chain, position 8 of the adenine base and the ribose residue of the ATP molecule were modified. Despite the presence of the alkylating groups in two former types of the analogs tested, no covalent blocking of the active site of the enzyme was observed. Most of the compounds appeared to be competitive reversible inhibitors. The kinetic data confirmed the importance of the triphosphate chain for substrate binding in the active site of adenylate cyclase. (Formula: See Text) The inhibitors with different substituents in position 8 of the adenine base had a low affinity for the enzyme. The possible orientation of the triphosphate chain and the advantages of anti-conformation of the ATP molecule for their binding in the active site of adenylate cyclase are discussed.

  2. The preparation of nucleotides uniformly labelled with carbon-14 by biosynthetic methods. Isolation of adenylic, uridylic, cytidylic,and guanylic acids, from the alkaline hydrolysate of escherichia coli RNA

    International Nuclear Information System (INIS)

    Garcia Pineda, M. D.; Pacheco Lopez, J.

    1978-01-01

    A method is described for the preparation and analysis of adenylic, uri dilic, cytidi- 11c and guanylic acids, labelled with 14 C . Escherichia coli cells have been labelled by growing them in a medi dia containing glucose-14 C as their only source of carbon. RNA is isolated from the cells, and after hydrolysis of the molecule the resulting nucleotides are separated by gel filtration and exchange chromatography. Chemical and radiochemical purity of the Isolated nucleotides is determined, and also its specific radioactivity. (Author) 30 refs

  3. Ethosuximide: liver enzyme induction and D-glucaric acid excretion.

    Science.gov (United States)

    Gilbert, J C; Scott, A K; Galloway, D B; Petrie, J C

    1974-06-01

    1 A study has been carried out to determine if ethosuximide induces liver enzymes. 2 Ethosuximide did not affect the urinary excretion of D-glucaric acid by healthy adult subjects nor was the mean daily D-glucaric acid excretion of three epileptic children on long term ethosuximide therapy different from that of three matched controls. 3 Ethosuximide (10 mg/kg or 50 mg/kg daily) did not influence D-glucaric acid excretion or liver microsomal protein and cytochrome P450 contents of guinea pigs but at a dose of 100 mg/kg daily in rats it increased liver microsomal protein and cytochrome P450 without altering D-glucaric acid excretion. 4 These results suggest that at anticonvulsant doses ethosuximide is unlikely to induce liver enzymes. The precise relationship between D-glucaric acid excretion and liver enzyme induction remains in doubt.

  4. The Roles of Acids and Bases in Enzyme Catalysis

    Science.gov (United States)

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  5. Proteolytic enzymes of lactic acid bacteria

    NARCIS (Netherlands)

    Law, J; Haandrikman, A

    The proteolytic system of lactic acid bacteria is essential for their growth in milk and contributes significantly to flavour development in fermented milk products where these microorganisms are used as starter cultures. The proteolytic system is composed of proteinases which initially cleave the

  6. Food restriction modulates β-adrenergic-sensitive adenylate cyclase in rat liver during aging

    International Nuclear Information System (INIS)

    Katz, M.S.

    1988-01-01

    Adenylate cyclase activities were studied in rat liver during postmaturational aging of male Fischer 344 rats fed ad libitum or restricted to 60% of the ad libitum intake. Catecholamine-stimulated adenylate cyclase activity increased by 200-300% between 6 and 24-27 mo of age in ad libitum-fed rats, whereas in food-restricted rats catecholamine response increased by only 58-84% between 6 and 30 mo. In ad libitum-fed rats, glucagon-stimulated enzyme activity also increased by 40% between 6 and 12 mo and in restricted rats a similar age-related increase was delayed until 18 mo. β-Adrenergic receptor density increased by 50% between 6 and 24 mo in livers from ad libitum-fed but not food-restricted rats and showed a highly significant correlation with maximal isoproterenol-stimulated adenylate cyclase activity over the postmaturational life span. Age-related increases in unstimulated (basal) adenylate cyclase activity and nonreceptor-mediated enzyme activation were retarded by food restriction. The results demonstrate that food restriction diminishes a marked age-related increase in β-adrenergic-sensitive adenylate cyclase activity of rat liver. Alterations of adrenergic-responsive adenylate cyclase with age and the modulatory effects of food restriction appear to be mediated by changes in both receptor and nonreceptor components of adenylate cyclase

  7. Structural studies of Schistosoma mansoni adenylate kinases

    International Nuclear Information System (INIS)

    Marques, I.A.; Pereira, H.M.; Garrat, R.C.

    2012-01-01

    Full text: Parasitic diseases are a major cause of death in developing countries, however receive little or no attention from pharmaceutical companies for the development of novel therapies. In this respect, the Center for Structural Molecular Biology (CBME) of the Institute of Physics of Sao Carlos (IFSC / USP) has developed expertise in all stages of the development of active compounds against target enzymes from parasitic diseases. The present work focuses on the adenylate kinase enzymes (ADK's) from Schistosoma mansoni. These enzymes are widely distributed and catalyze the reaction of phosphoryl exchange between nucleotides in the reaction 2ADP to ATP + AMP, which is critical for the cells life cycle. Due to the particular property of the reaction catalyzed, the ADK's are recognized as reporters of the cells energetic state, translating small changes in the balance between ATP and ADP into a large change in concentration of AMP. The genome of S. mansoni was recently sequenced by the Sanger Center in England. On performing searches for genes encoding adenylate kinases we found two such genes. The corresponding gene products were named ADK1 (197 residues) and ADK2 (239 residues), and the two sequences share only 28 percent identity. Both have been cloned into the pET-28a(+)vector, expressed in E. coli and purified. Preliminary tests of activity have been performed only for ADK1 showing it to be catalytically active. Crystallization trials were performed for both proteins and thus far, crystals of ADK1 have been obtained which diffract to 2.05 at the LNLS beamline MX2 and the structure solved by molecular replacement. Understanding, at the atomic level, the function of these enzymes may help in the development of specific inhibitors and may provide tools for developing diagnostic tests for schistosomiasis. (author)

  8. Influence of enzymes and ascorbic acid on dough rheology and ...

    African Journals Online (AJOL)

    Influence of enzymes and ascorbic acid on dough rheology and wheat bread quality. ... Journal Home > Vol 15, No 3 (2016) >. Log in or ... Seven bread formulations containing different concentrations of these ... The rheological properties of each dough formulation were determined by moisture, gluten and farinograph tests.

  9. Accelerated evolution of the pituitary adenylate cyclase-activating polypeptide precursor gene during human origin

    DEFF Research Database (Denmark)

    Wang, Yin-Qiu; Qian, Ya-Ping; Yang, Su

    2005-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide abundantly expressed in the central nervous system and involved in regulating neurogenesis and neuronal signal transduction. The amino acid sequence of PACAP is extremely conserved across vertebrate species, indicating a...

  10. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities.

    Directory of Open Access Journals (Sweden)

    Fiona Karen Harlan

    Full Text Available Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson's Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research

  11. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120.

    Science.gov (United States)

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants.

  12. Structural Studies of Archaealthermophilic Adenylate Kinase; TOPICAL

    International Nuclear Information System (INIS)

    Konisky, J.

    2002-01-01

    Through this DOE-sponsored program Konisky has studied the evolution and molecular biology of microbes that live in extreme environments. The emphasis of this work has been the determination of the structural features of thermophilic enzymes that allow them to function optimally at near 100 C. The laboratory has focused on a comparative study of adenylate kinase (ADK), an enzyme that functions to interconvert adenine nucleotides. Because of the close phylogenetic relatedness of members of the Methanococci, differences in the structure of their ADKs will be dominated by structural features that reflect contributions to their optimal temperature for activity, rather than differences due to phylogenetic divergence. We have cloned, sequenced and modeled the secondary structure for several methanococcal ADKs. Using molecular modeling threading approaches that are based on the solved structure for the porcine ADK, we have also proposed a general low resolution three dimensional structure for each of the methanococcal enzymes. These analyses have allowed us to propose structural features that confer hyperthermoactivity to those enzymes functioning in the hyperthermophilic members of the Methanococci. Using protein engineering methodologies, we have tested our hypotheses by examining the effects of selective structural changes on thermoactivity. Despite possessing between 68-81% sequence identity, the methanococcal AKs had significantly different stability against thermal denaturation, with melting points ranging from 69-103 C. The construction of several chimerical AKs by linking regions of the MVO and MJA AKs demonstrated the importance of cooperative interactions between amino- and carboxyl-terminal regions in influencing thermostability. Addition of MJA terminal fragments to the MVO AK increased thermal stability approximately 20 C while maintaining 88% of the mesophilic sequence. Further analysis using structural models suggested that hydrophobic interactions are

  13. A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness

    OpenAIRE

    Burroughs, A. Maxwell; Ando, Yoshinari; de Hoon, Michiel J.L.; Tomaru, Yasuhiro; Nishibu, Takahiro; Ukekawa, Ryo; Funakoshi, Taku; Kurokawa, Tsutomu; Suzuki, Harukazu; Hayashizaki, Yoshihide; Daub, Carsten O.

    2010-01-01

    Animal microRNA sequences are subject to 3′ nucleotide addition. Through detailed analysis of deep-sequenced short RNA data sets, we show adenylation and uridylation of miRNA is globally present and conserved across Drosophila and vertebrates. To better understand 3′ adenylation function, we deep-sequenced RNA after knockdown of nucleotidyltransferase enzymes. The PAPD4 nucleotidyltransferase adenylates a wide range of miRNA loci, but adenylation does not appear to affect miRNA stability on a...

  14. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Science.gov (United States)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  15. Developmental changes of beta-adrenergic receptor-linked adenylate cyclase of rat liver

    International Nuclear Information System (INIS)

    Katz, M.S.; Boland, S.R.; Schmidt, S.J.

    1985-01-01

    beta-Adrenergic agonist-sensitive adenylate cyclase activity and binding of the beta-adrenergic antagonist(-)-[ 125 I]iodopindolol were studied in rat liver during development of male Fischer 344 rats ages 6-60 days. In liver homogenates maximum adenylate cyclase response to beta-adrenergic agonist (10(-5) M isoproterenol or epinephrine) decreased by 73% (P less than 0.01) between 6 and 60 days, with most of the decrease (56%; P less than 0.01) occurring by 20 days. beta-adrenergic receptor density (Bmax) showed a corresponding decrease of 66% (P less than 0.01) by 20 days without subsequent change. Binding characteristics of stereospecificity, pharmacological specificity, saturability with time, and reversibility were unchanged with age. GTP-, fluoride-, forskolin-, and Mn2+-stimulated adenylate cyclase activities also decreased during development, suggesting a decrease of activity of the catalytic component and/or guanine nucleotide regulatory component of adenylate cyclase. These results indicate that the developmental decrease of beta-adrenergic agonist-sensitive adenylate cyclase activity may result from decreased numbers of beta-adrenergic receptors. Developmental alterations of nonreceptor components of the enzyme may also contribute to changes of catecholamine-sensitive adenylate cyclase

  16. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  17. Determination of glutamine and glutamic acid in mammalian cell cultures using tetrathiafulvalene modified enzyme electrodes.

    Science.gov (United States)

    Mulchandani, A; Bassi, A S

    1996-01-01

    Tetrathiafulvalene (TTF) mediated amperometric enzyme electrodes have been developed for the monitoring of L-glutamine and L-glutamic acid in growing mammalian cell cultures. The detection of glutamine was accomplished by a coupled enzyme system comprised of glutaminase plus glutamate oxidase, while the detection of glutamic acid was carried out by a single enzyme, glutamate oxidase. The appropriate enzyme(s) were immoblized on the Triton-X treated surface of tetrathiafulvalene modified carbon paste electrodes by adsorption, in conjunction with entrapment by an electrochemically deposited copolymer film of 1,3-phenylenediamine and resorcinol. Operating conditions for the glutamine enzyme electrode were optimized with respect to the amount of enzymes immoblized, pH, temperature and mobile phase flow rate for operation in a flow injection (FIA) system. When applied to glutamine and glutamic acid measurements in mammalian cell culture in FIA, the results obtained with enzyme electrodes were in excellent agreement with those determined by enzymatic analysis.

  18. A modern mode of activation for nucleic acid enzymes.

    Directory of Open Access Journals (Sweden)

    Dominique Lévesque

    2007-07-01

    Full Text Available Through evolution, enzymes have developed subtle modes of activation in order to ensure the sufficiently high substrate specificity required by modern cellular metabolism. One of these modes is the use of a target-dependent module (i.e. a docking domain such as those found in signalling kinases. Upon the binding of the target to a docking domain, the substrate is positioned within the catalytic site. The prodomain acts as a target-dependent module switching the kinase from an off state to an on state. As compared to the allosteric mode of activation, there is no need for the presence of a third partner. None of the ribozymes discovered to date have such a mode of activation, nor does any other known RNA. Starting from a specific on/off adaptor for the hepatitis delta virus ribozyme, that differs but has a mechanism reminiscent of this signalling kinase, we have adapted this mode of activation, using the techniques of molecular engineering, to both catalytic RNAs and DNAs exhibiting various activities. Specifically, we adapted three cleaving ribozymes (hepatitis delta virus, hammerhead and hairpin ribozymes, a cleaving 10-23 deoxyribozyme, a ligating hairpin ribozyme and an artificially selected capping ribozyme. In each case, there was a significant gain in terms of substrate specificity. Even if this mode of control is unreported for natural catalytic nucleic acids, its use needs not be limited to proteinous enzymes. We suggest that the complexity of the modern cellular metabolism might have been an important selective pressure in this evolutionary process.

  19. Development of a novel ultrasensitive enzyme immunoassay for human glutamic acid decarboxylase 65 antibody.

    Science.gov (United States)

    Numata, Satoshi; Katakami, Hideki; Inoue, Shinobu; Sawada, Hirotake; Hashida, Seiichi

    2016-07-01

    We developed a novel, ultrasensitive enzyme immunoassay (immune complex transfer enzyme immunoassay) for determination of glutamic acid decarboxylase autoantibody concentrations in serum samples from patients with type 2 diabetes. We developed an immune complex transfer enzyme immunoassay for glutamic acid decarboxylase autoantibody and measured glutamic acid decarboxylase autoantibody from 22 patients with type 1 diabetes, 29 patients with type 2 diabetes, and 32 healthy controls. A conventional ELISA kit identified 10 patients with type 1 diabetes and one patient with type 2 diabetes as glutamic acid decarboxylase autoantibody positive, whereas 15 patients with type 1 diabetes and six patients with type 2 diabetes were identified as glutamic acid decarboxylase autoantibody positive using immune complex transfer enzyme immunoassay. Immune complex transfer enzyme immunoassay is a highly sensitive and specific assay for glutamic acid decarboxylase autoantibody and might be clinically useful for diabetic onset prediction and early diagnosis. © The Author(s) 2016.

  20. Pituitary adenylate cyclase activating polypeptide and migraine

    DEFF Research Database (Denmark)

    Zagami, Alessandro S; Edvinsson, Lars; Goadsby, Peter J

    2014-01-01

    Pituitary adenylate cyclase activating peptide (PACAP) is found in human trigeminocervical complex and can trigger migraine. PACAP levels were measured using a sensitive radioimmunoassay. Stimulation of the superior sagittal sinus (SSS) in cat elevated PACAP levels in cranial blood. Patients...

  1. Adenyl cyclase activator forskolin protects against Huntington's disease-like neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Sidharth Mehan

    2017-01-01

    Full Text Available Long term suppression of succinate dehydrogenase by selective inhibitor 3-nitropropionic acid has been used in rodents to model Huntington's disease where mitochondrial dysfunction and oxidative damages are primary pathological hallmarks for neuronal damage. Improvements in learning and memory abilities, recovery of energy levels, and reduction of excitotoxicity damage can be achieved through activation of Adenyl cyclase enzyme by a specific phytochemical forskolin. In this study, intraperitoneal administration of 10 mg/kg 3-nitropropionic acid for 15 days in rats notably reduced body weight, worsened motor cocordination (grip strength, beam crossing task, locomotor activity, resulted in learning and memory deficits, greatly increased acetylcholinesterase, lactate dehydrogenase, nitrite, and malondialdehyde levels, obviously decreased adenosine triphosphate, succinate dehydrogenase, superoxide dismutase, catalase, and reduced glutathione levels in the striatum, cortex and hippocampus. Intragastric administration of forskolin at 10, 20, 30 mg/kg dose-dependently reversed these behavioral, biochemical and pathological changes caused by 3-nitropropionic acid. These results suggest that forskolin exhibits neuroprotective effects on 3-nitropropionic acid-induced Huntington's disease-like neurodegeneration.

  2. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    International Nuclear Information System (INIS)

    Niles, L.P.; Hashemi, F.

    1990-01-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, [ 125 I]iodomelatonin, was examined using an incubation temperature (30 degree C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing [ 125 I]iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus

  3. Hepatic fatty acid oxidation : activity, localization and function of some enzymes involved

    NARCIS (Netherlands)

    A. van Tol (Arie)

    1971-01-01

    textabstractFatty acid oxidation is an important pathway for energy production in mammals and birds. In animal tissues the enzymes of fatty acid oxidation are located in the mitochondrion. Recent reports suggest that this is not the case in Castor bean endosperm. In this tissue the enzymes of

  4. Effect of citric acid and microbial phytase on serum enzyme activities ...

    African Journals Online (AJOL)

    Effect of citric acid and microbial phytase on serum enzyme activities and plasma minerals retention in broiler chicks. ... African Journal of Biotechnology ... An experiment was conducted to study the effect of microbial phytase supplementation and citric acid in broiler chicks fed corn-soybean meal base diets on enzyme ...

  5. Mechanistic Insights from the Crystal Structure of Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase Complexed with the Adenylate Intermediate.

    Science.gov (United States)

    Chen, Yaozong; Jiang, Yiping; Guo, Zhihong

    2016-12-06

    o-Succinylbenzoyl-CoA (OSB-CoA) synthetase, or MenE, catalyzes an essential step in vitamin K biosynthesis and is a valuable drug target. Like many other adenylating enzymes, it changes its structure to accommodate substrate binding, catalysis, and product release along the path of a domain alternation catalytic mechanism. We have determined the crystal structure of its complex with the adenylation product, o-succinylbenzoyl-adenosine monophosphate (OSB-AMP), and captured a new postadenylation state. This structure presents unique features such as a strained conformation for the bound adenylate intermediate to indicate that it represents the enzyme state after completion of the adenylation reaction but before release of the C domain in its transition to the thioesterification conformation. By comparison to the ATP-bound preadenylation conformation, structural changes are identified in both the reactants and the active site to allow inference about how these changes accommodate and facilitate the adenylation reaction and to directly support an in-line backside attack nucleophilic substitution mechanism for the first half-reaction. Mutational analysis suggests that the conserved His196 plays an important role in desolvation of the active site rather than stabilizing the transition state of the adenylation reaction. In addition, comparison of the new structure with a previously determined OSB-AMP-bound structure of the same enzyme allows us to propose a release mechanism of the C domain in its alteration to form the thioesterification conformation. These findings allow us to better understand the domain alternation catalytic mechanism of MenE as well as many other adenylating enzymes.

  6. The preparation of nucleotides uniformly labelled with carbon-14 by biosynthetic methods. Isolation of adenylic, uridylic, cytidylic,and guanylic acids, from the alkaline hydrolysate of escherichia coli RNA; Preparacion de nucleiotidos uniformemente marcados con 14{sup C}, por via biosintetica. Aislamiento de los acidos adenilico, uridilico, citidilico y guanilico, procedentes de la hidrolisis alcalina de RNA de escherichia Coli.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Pineda, M D; Pacheco Lopez, J

    1978-07-01

    A method is described for the preparation and analysis of adenylic, uri dilic, cytidi- 11c and guanylic acids, labelled with 14{sup C}. Escherichia coli cells have been labelled by growing them in a medi dia containing glucose-14{sup C} as their only source of carbon. RNA is isolated from the cells, and after hydrolysis of the molecule the resulting nucleotides are separated by gel filtration and exchange chromatography. Chemical and radiochemical purity of the Isolated nucleotides is determined, and also its specific radioactivity. (Author) 30 refs.

  7. Incorporation of adenylate cyclase into membranes of giant liposomes using membrane fusion with recombinant baculovirus-budded virus particles.

    Science.gov (United States)

    Mori, Takaaki; Kamiya, Koki; Tomita, Masahiro; Yoshimura, Tetsuro; Tsumoto, Kanta

    2014-06-01

    Recombinant transmembrane adenylate cyclase (AC) was incorporated into membranes of giant liposomes using membrane fusion between liposomes and baculovirus-budded virus (BV). AC genes were constructed into transfer vectors in a form fused with fluorescent protein or polyhistidine at the C-terminus. The recombinant BVs were collected by ultracentrifugation and AC expression was verified using western blotting. The BVs and giant liposomes generated using gentle hydration were fused under acidic conditions; the incorporation of AC into giant liposomes was demonstrated by confocal laser scanning microscopy through the emission of fluorescence from their membranes. The AC-expressing BVs were also fused with liposomes containing the substrate (ATP) with/without a specific inhibitor (SQ 22536). An enzyme immunoassay on extracts of the sample demonstrated that cAMP was produced inside the liposomes. This procedure facilitates direct introduction of large transmembrane proteins into artificial membranes without solubilization.

  8. The role of the C8 proton of ATP in the catalysis of shikimate kinase and adenylate kinase

    Directory of Open Access Journals (Sweden)

    Kenyon Colin P

    2012-08-01

    Full Text Available Abstract Background It has been demonstrated that the adenyl moiety of ATP plays a direct role in the regulation of ATP binding and/or phosphoryl transfer within a range of kinase and synthetase enzymes. The role of the C8-H of ATP in the binding and/or phosphoryl transfer on the enzyme activity of a number of kinase and synthetase enzymes has been elucidated. The intrinsic catalysis rate mediated by each kinase enzyme is complex, yielding apparent KM values ranging from less than 0.4 μM to more than 1 mM for ATP in the various kinases. Using a combination of ATP deuterated at the C8 position (C8D-ATP as a molecular probe with site directed mutagenesis (SDM of conserved amino acid residues in shikimate kinase and adenylate kinase active sites, we have elucidated a mechanism by which the ATP C8-H is induced to be labile in the broader kinase family. We have demonstrated the direct role of the C8-H in the rate of ATP consumption, and the direct role played by conserved Thr residues interacting with the C8-H. The mechanism by which the vast range in KM might be achieved is also suggested by these findings. Results We have demonstrated the mechanism by which the enzyme activities of Group 2 kinases, shikimate kinase (SK and adenylate kinase 1 (AK1, are controlled by the C8-H of ATP. Mutations of the conserved threonine residues associated with the labile C8-H cause the enzymes to lose their saturation kinetics over the concentration range tested. The relationship between the role C8-H of ATP in the reaction mechanism and the ATP concentration as they influence the saturation kinetics of the enzyme activity is also shown. The SDM clearly identified the amino acid residues involved in both the catalysis and regulation of phosphoryl transfer in SK and AK1 as mediated by C8H-ATP. Conclusions The data outlined serves to demonstrate the “push” mechanism associated with the control of the saturation kinetics of Group 2 kinases mediated by ATP C8-H. It

  9. Vitamin B2 content determination in liver paste by using acid and acid-enzyme hydrolysis

    Directory of Open Access Journals (Sweden)

    Basić Zorica

    2007-01-01

    the samples (r = 0.9994, and r = 0.99987. Hydrolysis procedures make a sample suitable for vitamin B2 determination. In the liver paste samples a high content of vitamin B2 was determined: 0.83 mg/100 g after acid hydrolysis, and 0.909 mg/100 g after acid-enzyme hydrolysis. There were statistically significantly higher values determined after the acid-enzyme hydrolysis (p < 0.05. Conclusion. Using acid-enzyme hydrolysis and separation instrument technique (liquid chromatography with a fluorescent detector as detection system, statistically significantly greater vitamin B2 quantities were determined than after using acid hydrolysis procedure. Vitamin B2 content determined in ten liver paste samples was high (0.881 − 0.936 mg/100g indicating that this meat product is a good vitamin B2 source.

  10. Non-enzymic beta-decarboxylation of aspartic acid.

    Science.gov (United States)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  11. Activation of the pacidamycin PacL adenylation domain by MbtH-like proteins.

    Science.gov (United States)

    Zhang, Wenjun; Heemstra, John R; Walsh, Christopher T; Imker, Heidi J

    2010-11-23

    Nonribosomal peptide synthetase (NRPS) assembly lines are major avenues for the biosynthesis of a vast array of peptidyl natural products. Several hundred bacterial NRPS gene clusters contain a small (∼70-residue) protein belonging to the MbtH family for which no function has been defined. Here we show that two strictly conserved Trp residues in MbtH-like proteins contribute to stimulation of amino acid adenylation in some NRPS modules. We also demonstrate that adenylation can be stimulated not only by cognate MbtH-like proteins but also by homologues from disparate natural product pathways.

  12. Cadmium Phytoavailability and Enzyme Activity under Humic Acid Treatment in Fluvo-aquic Soil

    Science.gov (United States)

    Liu, Borui; Huang, Qing; Su, Yuefeng

    2018-01-01

    A pot experiment was conducted to investigate the cadmium (Cd) availability to pakchois (Brassica chinensis L.) as well as the enzyme activities in fluvo-aquic soil under humic acid treatment. The results showed that the phytoavailability of Cd in soil decreased gradually as humic acid concentration rose (0 to 12 g·kg-1), while the activities of urease (UE), alkaline phosphatase (ALP) and catalase (CAT) kept increasing (P enzymes due to the Cd pollution. In conclusion, humic acid is effective for the reduction of both Cd phytoavailability and the damage to enzyme activities due to Cd pollution in fluvo-aquic soil

  13. Design and Synthesis of Fluorescent Acyclic Nucleoside Phosphonates as Potent Inhibitors of Bacterial Adenylate Cyclases

    Czech Academy of Sciences Publication Activity Database

    Břehová, Petra; Šmídková, Markéta; Skácel, Jan; Dračínský, Martin; Mertlíková-Kaiserová, Helena; Velasquez, M. P. S.; Watts, V. J.; Janeba, Zlatko

    2016-01-01

    Roč. 11, č. 22 (2016), s. 2534-2546 ISSN 1860-7179 R&D Projects: GA MV VG20102015046; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : adenylate cyclase toxin * acyclic nucleoside phosphonates * anthranilic acid Subject RIV: CC - Organic Chemistry Impact factor: 3.225, year: 2016

  14. Kinetic characteristics of polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Science.gov (United States)

    Polygalacturonase enzymes hydrolyze the polygalacturonic acid chains found in pectin. Interest in polygalacturonase enzymes continues as they are useful in a number of industrial processes and conversely, detrimental, as they are involved in maceration of economically important crops. While a good...

  15. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    Science.gov (United States)

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Human adenylate kinases – classification, structure, physiological and pathological importance

    Directory of Open Access Journals (Sweden)

    Magdalena Wujak

    2015-01-01

    Full Text Available Adenylate kinase (AK, EC 2.7.4.3 is a ubiquitous phosphotransferase which catalyzes the reversible transfer of high-energy β – and γ-phosphate groups between nucleotides. All classified AKs show a similar structure: they contain a large central CORE region, nucleoside monophosphate and triphosphate binding domains (NMPbd and NTPbd and the LID domain. Analysis of amino acid sequence similarity revealed the presence of as many as nine human AK isoenzymes, which demonstrate different organ-tissue and intercellular localization. Among these kinases, only two, AK1 and AK2, fulfill the structural and functional criterion by the highest affinity for adenine nucleotides and the utilization of only AMP or dAMP as phosphate acceptors. Human AK isoenzymes are involved in nucleotide homeostasis and monitor disturbances of cell energy charge. Participating in large regulatory protein complexes, AK supplies high energy substrates for controlling the functions of channels and transporters as well as ligands for extracellular P2 nucleotide receptors. In pathological conditions AK can take over the function of other kinases, such as creatine kinase in oxygen-depleted myocardium. Directed mutagenesis and genetic studies of diseases (such as aleukocytosis, hemolytic anemia, primary ciliary dyskinesia (PCD link the presence and activity of AK with etiology of these disturbances. Moreover, AK participates in regulation of differentiation and maturation of cells as well as in apoptosis and oncogenesis. Involvement of AK in a wide range of processes and the correlation between AK and etiology of diseases support the medical potential for the use of adenylate kinases in the diagnosis and treatment of certain diseases. This paper summarizes the current knowledge on the structure, properties and functions of human adenylate kinase.

  17. Secretion of acid phosphatase by axenic Entamoeba histolytica NIH-200 and properties of the extracellular enzyme.

    Science.gov (United States)

    Agrawal, A; Pandey, V C; Kumar, S; Sagar, P

    1989-01-01

    Entamoeba histolytica (NIH-200) secreted large amounts of acid phosphatase in its external environment when grown axenically in modified TPS-II medium. Fractionation by DEAE-cellulose chromatography of the precipitate obtained from the cell-free medium at 60% ammonium sulfate saturation yielded 3 distinct peaks of enzyme activity. The enzyme in all the peaks showed resistance to tartrate but was inhibited by fluoride, cupric chloride, ethylene diamine-tetra acetic acid, ammonium molybdate and cysteine; however, enzyme associated with different peaks differed in its polyacrylamide gel electrophoretic profiles and behavior towards concanavalin A.

  18. Effect of thuringiensin on adenylate cyclase in rat cerebral cortex

    International Nuclear Information System (INIS)

    Tsai, S.-F.; Yang Chi; Wang, S.-C.; Wang, J.-S.; Hwang, J.-S.; Ho, S.-P.

    2004-01-01

    The purpose of this work is to evaluate the effect of thuringiensin on the adenylate cyclase activity in rat cerebral cortex. The cyclic adenosine 3'5'-monophosphate (cAMP) levels were shown to be dose-dependently elevated 17-450% or 54-377% by thuringiensin at concentrations of 10 μM-100 mM or 0.5-4 mM, due to the activation of basal adenylate cyclase activity of rat cerebral cortical membrane preparation. Thuringiensin also activated basal activity of a commercial adenylate cyclase from Escherichia coli. However, the forskolin-stimulated adenylate cyclase activity in rat cerebral cortex was inhibited by thuringiensin at concentrations of 1-100 μM, thus cAMP production decreased. Furthermore, thuringiensin or adenylate cyclase inhibitor (MDL-12330A) reduced the forskolin (10 μM)-stimulated adenylate cyclase activity at concentrations of 10 μM, 49% or 43% inhibition, respectively. In conclusion, this study demonstrated that thuringiensin could activate basal adenylate cyclase activity and increase cAMP concentrations in rat cerebral cortex or in a commercial adenylate cyclase. Comparing the dose-dependent effects of thuringiensin on the basal and forskolin-stimulated adenylate cyclase activity, thuringiensin can be regarded as a weak activator of adenylate cyclase or an inhibitor of forskolin-stimulated adenylate cyclase

  19. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides.

    Science.gov (United States)

    Cravatt, B F; Giang, D K; Mayfield, S P; Boger, D L; Lerner, R A; Gilula, N B

    1996-11-07

    Endogenous neuromodulatory molecules are commonly coupled to specific metabolic enzymes to ensure rapid signal inactivation. Thus, acetylcholine is hydrolysed by acetylcholine esterase and tryptamine neurotransmitters like serotonin are degraded by monoamine oxidases. Previously, we reported the structure and sleep-inducing properties of cis-9-octadecenamide, a lipid isolated from the cerebrospinal fluid of sleep-deprived cats. cis-9-Octadecenamide, or oleamide, has since been shown to affect serotonergic systems and block gap-junction communication in glial cells (our unpublished results). We also identified a membrane-bound enzyme activity that hydrolyses oleamide to its inactive acid, oleic acid. We now report the mechanism-based isolation, cloning and expression of this enzyme activity, originally named oleamide hydrolase, from rat liver plasma membranes. We also show that oleamide hydrolase converts anandamide, a fatty-acid amide identified as the endogenous ligand for the cannabinoid receptor, to arachidonic acid, indicating that oleamide hydrolase may serve as the general inactivating enzyme for a growing family of bioactive signalling molecules, the fatty-acid amides. Therefore we will hereafter refer to oleamide hydrolase as fatty-acid amide hydrolase, in recognition of the plurality of fatty-acid amides that the enzyme can accept as substrates.

  20. Kinetics of leather dyeing pretreated with enzymes: role of acid protease.

    Science.gov (United States)

    Kanth, Swarna Vinodh; Venba, Rajangam; Jayakumar, Gladstone Christopher; Chandrababu, Narasimhan Kannan

    2009-04-01

    In the present investigation, kinetics of dyeing involving pretreatment with acid protease has been presented. Application of acid protease in dyeing process resulted in increased absorption and diffusion of dye into the leather matrix. Enzyme treatment at 1% concentration, 60 min duration and 50 degrees C resulted in maximum of 98% dye exhaustion and increased absorption rate constants. The final exhaustion (C(infinity)) for the best fit of CI Acid Black 194 dye has been 98.5% with K and r2 values from the modified Cegarra-Puente isotherm as 0.1033 and 0.0631. CI Acid Black 194 being a 2:1 metal complex acid dye exhibited higher absorption rate than the acid dye CI Acid Black 210. A reduction in 50% activation energy calculated from Arrhenius equation has been observed in enzyme assisted dyeing process of both the dyes that substantiates enhanced dye absorption. The absorption rate constant calculated with modified Cegarra-Puente equation confirm higher rate constants and faster kinetics for enzyme assisted dyeing process. Enzyme treated leather exhibited richness of color and shade when compared with control. The present study substantiates the essential role of enzyme pretreatment as an eco-friendly leather dyeing process.

  1. Role of water in the enzymatic catalysis: study of ATP + AMP → 2ADP conversion by adenylate kinase.

    Science.gov (United States)

    Adkar, Bharat V; Jana, Biman; Bagchi, Biman

    2011-04-28

    The catalytic conversion ATP + AMP → 2ADP by the enzyme adenylate kinase (ADK) involves the binding of one ATP molecule to the LID domain and one AMP molecule to the NMP domain. The latter is followed by a phosphate transfer and then the release of two ADP molecules. We have computed a novel two-dimensional configurational free energy surface (2DCFES), with one reaction coordinate each for the LID and the NMP domain motions, while considering explicit water interactions. Our computed 2DCFES clearly reveals the existence of a stable half-open half-closed (HOHC) intermediate state of the enzyme. Cycling of the enzyme through the HOHC state reduces the conformational free energy barrier for the reaction by about 20 kJ/mol. We find that the stability of the HOHC state (missed in all earlier studies with implicit solvent model) is largely because of the increase of specific interactions of the polar amino acid side chains with water, particularly with the arginine and the histidine residues. Free energy surface of the LID domain is rather rugged, which can conveniently slow down LID's conformational motion, thus facilitating a new substrate capture after the product release in the catalytic cycle.

  2. Adenyl cyclases and cAMP in plant signaling - Past and present

    KAUST Repository

    Gehring, Christoph A.

    2010-06-25

    In lower eukaryotes and animals 3\\'-5\\'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins. 2010 Gehring; licensee BioMed Central Ltd.

  3. Adenyl cyclases and cAMP in plant signaling - Past and present

    KAUST Repository

    Gehring, Christoph A

    2010-01-01

    In lower eukaryotes and animals 3'-5'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins. 2010 Gehring; licensee BioMed Central Ltd.

  4. Influence of enzymes and ascorbic acid on dough rheology and ...

    African Journals Online (AJOL)

    The combined action of ascorbic acid and two commercial enzymatic complexes containing amylase and xylanase/amylase was analyzed to determine their effects on dough rheology and bread quality. Seven bread formulations containing different concentrations of these improvers were used in the analysis.

  5. Stereospecific Synthesis of threo- and erythro-β-Hydroxyglutamic Acid During Kutzneride Biosynthesis

    Science.gov (United States)

    Strieker, Matthias; Nolan, Elizabeth M.; Walsh, Christopher T.; Marahiel, Mohamed A.

    2009-01-01

    The antifungal and antimicrobial kutznerides, hexadepsipeptides comprised of one α-hydroxy acid and five non-proteinogenic amino acids, are remarkable examples of the structural diversity found in nonribosomally-produced natural products. They contain D-3-hydroxyglutamic acid, which is found in the threo and erythro isomers in mature kutznerides. In this study, two putative non-heme iron oxygenase enzymes, KtzO and KtzP, were recombinantly expressed, characterized biochemically in vitro, and found to stereospecifically hydroxylate the β-position of glutamic acid. KtzO generates threo-L-hydroxyglutamic acid and KtzP catalyzes the formation of the erythro-isomer bound to the peptidyl carrier protein of the third module of the nonribosomal peptide synthetase KtzH. This module has a truncated adenylation domain and is unable to activate and incorporate glutamic acid. The lack of a functional adenylation domain in the third KtzH module is compensated in trans by the stand-alone adenylation domain KtzN, which activates and transfers glutamic acid onto the carrier of KtzH in the presence of the truncated adenylation domain and either KtzO or KtzP. A method that employs non-hydrolyzable coenzyme A analogs was developed and used to determine the kinetic parameters for KtzO- and KtzP-catalyzed hydroxylation of glutamic acid bound to the carrier protein. A detailed mechanism for the in trans compensation of the truncated adenylation domain and the stereospecific hydroxyglutamic acid generation and incorporation is presented. These insights may guide the use of KtzO/KtzP and KtzN or other in trans modification/restoration tools in biocombinatorial engineering approaches. PMID:19722489

  6. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Swaminathan, S.; Zhou, R.; Sauder, J. M.; Tonge, P. J.; Burley, S. K.

    2011-02-18

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.

  7. Effect of acidic treatment on carbon nano tubes for immobilization of cellulase enzyme

    International Nuclear Information System (INIS)

    Al-Khatib, M.F.R.; Mohd Zahangir Alam; Rasha Mohammed

    2009-01-01

    Full text: The effect of acidic treatment on MWCNTs functionalization was studied by mixing different ratios (1:1, 1:2, and 1:3 v/v %) of nitric acid and sulphuric acid, respectively. The effect of these treatments on the structure of MWCNTs was characterized by Fourier transform infrared spectroscopy (FTIR) and Filed emission scanning electron microscopy (FESEM). Results showed that the optimum ratio 1:3 (v/v %) is best suitable in imparting carboxylic acid and hydroxyl groups which are required for immobilization of cellulase enzyme on functionalized CNTs. (author)

  8. In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli

    International Nuclear Information System (INIS)

    Chatterjee, A.; Bhattacharya, A.K.

    1988-01-01

    The incorporation of [ 14 C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60 Co γ-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of γ-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after high doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m -2 ) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as γ-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells. (author)

  9. In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli.

    Science.gov (United States)

    Chatterjee, A; Bhattacharya, A K

    1988-06-01

    The incorporation of [14C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60Co gamma-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of gamma-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after higher doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m-2) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as gamma-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.

  10. Production of Biodiesel from High Acid Value Waste Cooking Oil Using an Optimized Lipase Enzyme/Acid-Catalyzed Hybrid Process

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2009-01-01

    Full Text Available The present study is aimed at developing an enzymatic/acid-catalyzed hybrid process for biodiesel production using waste cooking oil with high acid value (poor quality as feedstock. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes. Further enhancement was achieved by three phase partitioning (TPP method. The results on the lipase enzyme which was subjected to pH tuning and TPP, indicated remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. The optimized enzyme was used for hydrolysis and 88% of the oil taken initially was hydrolyzed by the lipase. The hydrolysate was further used in acid-catalyzed esterification for biodiesel production. By using a feedstock to methanol molar ratio of 1:15 and a sulphuric acid concentration of 2.5%, a biodiesel conversion of 88% was obtained at 50 °C for an hour reaction time. This hybrid process may open a way for biodiesel production using unrefined and used oil with high acid value as feedstock.

  11. Enzyme-assisted extraction enhancing the umami taste amino acids recovery from several cultivated mushrooms

    DEFF Research Database (Denmark)

    Poojary, Mahesha Manjunatha; Orlien, Vibeke; Passamonti, Paolo

    2017-01-01

    In this study, enzyme-assisted extraction was performed to extract umami taste and total free amino acids (FAAs) from the six different mushrooms including shiitake (Lentinus edodes), oyster (Pleurotus ostreatus), tea tree (Agrocybe aegerita) and, white, brown and portobello champignons (Agaricus...

  12. Chlorophyll-derived fatty acids regulate expression of lipid metabolizing enzymes in liver - a nutritional opportunity

    Directory of Open Access Journals (Sweden)

    Wolfrum Christian

    2001-01-01

    Full Text Available Nutritional values of fatty acid classes are normally discussed on the basis of their saturated, monounsaturated and polyunsaturated structures with implicit understanding that they are straight-chain. Here we focus on chlorophyll-derived phytanic and pristanic acids that are minor isoprenoid branched-chain lipid constituents in food, but of unknown nutritional value. After describing the enzyme machinery that degrades these nutrient fatty acids in the peroxisome, we show by the criteria of a mouse model and of a human cell culture model that they induce with high potency expression of enzymes responsible for beta-oxidation of straight-chain fatty acids in the peroxisome. We summarize present mechanistic knowledge on fatty acid signaling to the nucleus, which involves protein/protein contacts between peroxisome proliferator activated receptor (PPAR and fatty acid binding protein (FABP. In this signaling event the branched-chain fatty acids are the most effective ones. Finally, on the basis of this nutrient-gene interaction we discuss nutritional opportunities and therapeutic aspects of the chlorophyll-derived fatty acids.

  13. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    International Nuclear Information System (INIS)

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C. K.

    2010-01-01

    The crystal structure of phenolic acid decarboxylase from B. pumilus strain UI-670 has been determined and refined at 1.69 Å resolution. The enzyme is a dimer, with each subunit adopting a β-barrel structure belonging to the lipocalin fold. The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavouring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a β-barrel structure and two α-helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the β-barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site

  14. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tingting; Sui, Xiaoyu, E-mail: suixiaoyu@outlook.com; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-15

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. - Highlights: • An ionic liquid based enzyme-assisted extraction method of natural product was explored. • ILEAE utilizes enzymatic treatment to improve permeability of ionic liquids solution. • Enzyme incubation and solvent extraction process were ongoing simultaneously. • ILEAE process simplified operating process and suitable for more complete extraction.

  15. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves

    International Nuclear Information System (INIS)

    Liu, Tingting; Sui, Xiaoyu; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-01

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. - Highlights: • An ionic liquid based enzyme-assisted extraction method of natural product was explored. • ILEAE utilizes enzymatic treatment to improve permeability of ionic liquids solution. • Enzyme incubation and solvent extraction process were ongoing simultaneously. • ILEAE process simplified operating process and suitable for more complete extraction.

  16. Adaptation of an L-proline adenylation domain to use 4-propyl-L-proline in the evolution of lincosamide biosynthesis.

    Directory of Open Access Journals (Sweden)

    Stanislav Kadlčík

    Full Text Available Clinically used lincosamide antibiotic lincomycin incorporates in its structure 4-propyl-L-proline (PPL, an unusual amino acid, while celesticetin, a less efficient related compound, makes use of proteinogenic L-proline. Biochemical characterization, as well as phylogenetic analysis and homology modelling combined with the molecular dynamics simulation were employed for complex comparative analysis of the orthologous protein pair LmbC and CcbC from the biosynthesis of lincomycin and celesticetin, respectively. The analysis proved the compared proteins to be the stand-alone adenylation domains strictly preferring their own natural substrate, PPL or L-proline. The LmbC substrate binding pocket is adapted to accommodate a rare PPL precursor. When compared with L-proline specific ones, several large amino acid residues were replaced by smaller ones opening a channel which allowed the alkyl side chain of PPL to be accommodated. One of the most important differences, that of the residue corresponding to V306 in CcbC changing to G308 in LmbC, was investigated in vitro and in silico. Moreover, the substrate binding pocket rearrangement also allowed LmbC to effectively adenylate 4-butyl-L-proline and 4-pentyl-L-proline, substrates with even longer alkyl side chains, producing more potent lincosamides. A shift of LmbC substrate specificity appears to be an integral part of biosynthetic pathway adaptation to the PPL acquisition. A set of genes presumably coding for the PPL biosynthesis is present in the lincomycin--but not in the celesticetin cluster; their homologs are found in biosynthetic clusters of some pyrrolobenzodiazepines (PBD and hormaomycin. Whereas in the PBD and hormaomycin pathways the arising precursors are condensed to another amino acid moiety, the LmbC protein is the first functionally proved part of a unique condensation enzyme connecting PPL to the specialized amino sugar building unit.

  17. Molecular dynamics simulations of deoxyribonucleic acids and repair enzyme T4 endonuclease V

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    1999-01-01

    This report describes the results of molecular dynamics (MD) simulation of deoxyribonucleic acids (DNA) and specific repair enzyme T4 endonuclease V. Namely research described here is focused on the examination of specific recognition process, in which this repair enzyme recognizes the damaged site on the DNA molecule-thymine dimer (TD). TD is frequent DNA damage induced by UV radiation in sun light and unless properly repaired it may be mutagenic or lethal for cell, and is also considered among the major causes of skin cancer. T4 endonuclease V is a DNA specific repair enzyme from bacteriophage T4 that catalyzes the first reaction step of TD repair pathway. MD simulations of three molecules - native DNA dodecamer (12 base pairs), DNA of the same sequence of nucleotides as native one but with TD, and repair enzyme T4 endonuclease V - were performed for 1 ns individually for each molecule. Simulations were analyzed to determine the role of electrostatic interaction in the recognition process. It is found that electrostatic energies calculated for amino acids of the enzyme have positive values of around +15 kcal/mol. The electrostatic energy of TD site has negative value of approximately -9 kcal/mol, different from the nearly neutral value of the respective thymines site of the native DNA. The electrostatic interaction of TD site with surrounding water environment differs from the electrostatic interaction of other nucleotides. Differences found between TD site and respective thymines site of native DNA indicate that the electrostatic energy is an important factor contributing to proper recognition of TD site during scanning process in which enzyme scans the DNA. In addition to the electrostatic energy, the important factor in recognition process might be structural complementarity of enzyme and bent DNA with TD. There is significant kink formed around TD site, that is not observed in native DNA. (author)

  18. Age-associated alterations in hepatic β-adrenergic receptor/adenylate cyclase complex

    International Nuclear Information System (INIS)

    Graham, S.M.; Herring, P.A.; Arinze, I.J.

    1987-01-01

    The effect of age on catecholamine regulation of hepatic glycogenolysis and on hepatic adenylate cyclase was studied in male rats up to 24 mo of age. Epinephrine and norepinephrine stimulated glycogenolysis in isolated hepatocytes at all age groups studied. Isoproterenol, however, stimulated glycogenolysis only at 24 mo. In isolated liver membranes, usual activators of adenylate cyclase increased the activity of the enzyme considerably more in membranes from 24-mo-old rats than in membranes from either 3- or 22-mo-old rats. The Mn 2+ -dependent activity of the cyclase was increased by 2.9-fold in 3-mo-old animals and ∼ 5.7-fold in 24-mo-old rats, indicating a substantial age-dependent increase in the intrinsic activity of the catalytic unit. The density of the β-adrenergic receptor, as measured by the binding of [ 125 I]-iodocyanopindolol to plasma membranes, was 5-8 fmol/mg protein in rats aged 3-12 mo but increased to 19 fmol/mg protein in 24-mo-old rats. Computer-aided analysis of isoproterenol competition of the binding indicated a small age-dependent increase in the proportion of β-receptors in the high-affinity state. These observations suggest that β-receptor-mediated hepatic glycogenolysis in the aged rat is predicated upon increases in the density of β-receptors as well as increased intrinsic activity of the catalytic unit of adenylate cyclase

  19. Production of L-lactic Acid from Biomass Wastes Using Scallop Crude Enzymes and Novel Lactic Acid Bacterium

    Science.gov (United States)

    Yanagisawa, Mitsunori; Nakamura, Kanami; Nakasaki, Kiyohiko

    In the present study, biomass waste raw materials including paper mill sludge, bamboo, sea lettuce, and shochu residue (from a distiller) and crude enzymes derived from inedible and discarded scallop parts were used to produce L-lactic acid for the raw material of biodegradable plastic poly-lactic acid. The activities of cellulase and amylase in the crude enzymes were 22 and 170units/L, respectively, and L-lactic acid was produced from every of the above mentioned biomass wastes, by the method of liquid-state simultaneous saccharification and fermentation (SSF) . The L-lactic acid concentrations produced from sea lettuce and shochu residue, which contain high concentration of starch were 3.6 and 9.3g/L, respectively, and corresponded to greater than 25% of the conversion of glucans contained in these biomass wastes. Furthermore, using the solid state SSF method, concentrations as high as 13g/L of L-lactic acid were obtained from sea lettuce and 26g/L were obtained from shochu residue.

  20. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    Science.gov (United States)

    Gallage, Nethaji J.; Hansen, Esben H.; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

  1. A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness.

    Science.gov (United States)

    Burroughs, A Maxwell; Ando, Yoshinari; de Hoon, Michiel J L; Tomaru, Yasuhiro; Nishibu, Takahiro; Ukekawa, Ryo; Funakoshi, Taku; Kurokawa, Tsutomu; Suzuki, Harukazu; Hayashizaki, Yoshihide; Daub, Carsten O

    2010-10-01

    Animal microRNA sequences are subject to 3' nucleotide addition. Through detailed analysis of deep-sequenced short RNA data sets, we show adenylation and uridylation of miRNA is globally present and conserved across Drosophila and vertebrates. To better understand 3' adenylation function, we deep-sequenced RNA after knockdown of nucleotidyltransferase enzymes. The PAPD4 nucleotidyltransferase adenylates a wide range of miRNA loci, but adenylation does not appear to affect miRNA stability on a genome-wide scale. Adenine addition appears to reduce effectiveness of miRNA targeting of mRNA transcripts while deep-sequencing of RNA bound to immunoprecipitated Argonaute (AGO) subfamily proteins EIF2C1-EIF2C3 revealed substantial reduction of adenine addition in miRNA associated with EIF2C2 and EIF2C3. Our findings show 3' addition events are widespread and conserved across animals, PAPD4 is a primary miRNA adenylating enzyme, and suggest a role for 3' adenine addition in modulating miRNA effectiveness, possibly through interfering with incorporation into the RNA-induced silencing complex (RISC), a regulatory role that would complement the role of miRNA uridylation in blocking DICER1 uptake.

  2. A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness

    Science.gov (United States)

    Burroughs, A. Maxwell; Ando, Yoshinari; de Hoon, Michiel J.L.; Tomaru, Yasuhiro; Nishibu, Takahiro; Ukekawa, Ryo; Funakoshi, Taku; Kurokawa, Tsutomu; Suzuki, Harukazu; Hayashizaki, Yoshihide; Daub, Carsten O.

    2010-01-01

    Animal microRNA sequences are subject to 3′ nucleotide addition. Through detailed analysis of deep-sequenced short RNA data sets, we show adenylation and uridylation of miRNA is globally present and conserved across Drosophila and vertebrates. To better understand 3′ adenylation function, we deep-sequenced RNA after knockdown of nucleotidyltransferase enzymes. The PAPD4 nucleotidyltransferase adenylates a wide range of miRNA loci, but adenylation does not appear to affect miRNA stability on a genome-wide scale. Adenine addition appears to reduce effectiveness of miRNA targeting of mRNA transcripts while deep-sequencing of RNA bound to immunoprecipitated Argonaute (AGO) subfamily proteins EIF2C1–EIF2C3 revealed substantial reduction of adenine addition in miRNA associated with EIF2C2 and EIF2C3. Our findings show 3′ addition events are widespread and conserved across animals, PAPD4 is a primary miRNA adenylating enzyme, and suggest a role for 3′ adenine addition in modulating miRNA effectiveness, possibly through interfering with incorporation into the RNA-induced silencing complex (RISC), a regulatory role that would complement the role of miRNA uridylation in blocking DICER1 uptake. PMID:20719920

  3. Heterologous desensitization of adenylate cyclase from pigeon erythrocytes under the action of the catalytic subunit of cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Popov, K.M.; Bulargina, T.V.; Severin, E.S.

    1985-01-01

    Preincubation of the plasma membranes from pigeon erythrocytes with the catalytic subunit of cAMP-dependent protein kinase leads to desensitization of adenylate cyclase of the erythrocytes. The adenylate cyclase activity, measured in the presence of 10 μM isoproterenol and 50 μM GTP-γ-S, is decreased by 40% in 10 min of incubation, while the activity in the presence of 50 μM GTP-γ-S is decreased by 35% in 20 min. The decrease in the adenylate cyclase activity is due to an increase in the lag phase of activation of the enzyme in the presence of a GTP analog stable to hydrolysis and a decrease in the activity in the steady-state phase of activation. Heterologous desensitization of adenylate cyclase under the action of cAMP-dependent protein kinase is coupled with a decrease in the number of β-adrenoreceptors capable of passing into a state of high affinity for antagonists in the absence of guanylic nucleotides. The influence of the catalytic subunit on adenylate cyclase entirely models the process of desensitization of the enzyme absorbed in the influence of isoproterenol or cAMP on erythrocytes

  4. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    Science.gov (United States)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.

  5. Mechanism of MenE inhibition by acyl-adenylate analogues and discovery of novel antibacterial agents.

    Science.gov (United States)

    Matarlo, Joe S; Evans, Christopher E; Sharma, Indrajeet; Lavaud, Lubens J; Ngo, Stephen C; Shek, Roger; Rajashankar, Kanagalaghatta R; French, Jarrod B; Tan, Derek S; Tonge, Peter J

    2015-10-27

    MenE is an o-succinylbenzoyl-CoA (OSB-CoA) synthetase in the bacterial menaquinone biosynthesis pathway and is a promising target for the development of novel antibacterial agents. The enzyme catalyzes CoA ligation via an acyl-adenylate intermediate, and we have previously reported tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogues of this intermediate, including OSB-AMS (1), which has an IC50 value of ≤25 nM for Escherichia coli MenE. Herein, we show that OSB-AMS reduces menaquinone levels in Staphylococcus aureus, consistent with its proposed mechanism of action, despite the observation that the antibacterial activity of OSB-AMS is ∼1000-fold lower than the IC50 for enzyme inhibition. To inform the synthesis of MenE inhibitors with improved antibacterial activity, we have undertaken a structure-activity relationship (SAR) study stimulated by the knowledge that OSB-AMS can adopt two isomeric forms in which the OSB side chain exists either as an open-chain keto acid or a cyclic lactol. These studies revealed that negatively charged analogues of the keto acid form bind, while neutral analogues do not, consistent with the hypothesis that the negatively charged keto acid form of OSB-AMS is the active isomer. X-ray crystallography and site-directed mutagenesis confirm the importance of a conserved arginine for binding the OSB carboxylate. Although most lactol isomers tested were inactive, a novel difluoroindanediol inhibitor (11) with improved antibacterial activity was discovered, providing a pathway toward the development of optimized MenE inhibitors in the future.

  6. Genipin Cross-Linked Glucose Oxidase and Catalase Multi-enzyme for Gluconic Acid Synthesis.

    Science.gov (United States)

    Cui, Caixia; Chen, Haibin; Chen, Biqiang; Tan, Tianwei

    2017-02-01

    In this work, glucose oxidase (GOD) and catalase (CAT) were used simultaneously to produce gluconic acid from glucose. In order to reduce the distance between the two enzymes, and therefore improve efficiency, GOD and CAT were cross-linked together using genipin. Improvements in gluconic acid production were due to quick removal of harmful intermediate hydrogen peroxide by CAT. GOD activity was significantly affected by the proportion of CAT in the system, with GOD activity in the cross-linked multi-enzyme (CLME) being 10 times higher than that in an un-cross-linked GOD/CAT mixture. The glucose conversion rate after 15 h using 15 % glucose was also 10 % higher using the CLME than was measured using a GOD/CAT mixture.

  7. mRNA levels of enzymes and receptors implicated in arachidonic acid metabolism in gliomas.

    Science.gov (United States)

    De Armas, Rafael; Durand, Karine; Guillaudeau, Angélique; Weinbreck, Nicolas; Robert, Sandrine; Moreau, Jean-Jacques; Caire, François; Acosta, Gisela; Pebet, Matias; Chaunavel, Alain; Marin, Benoît; Labrousse, François; Denizot, Yves

    2010-07-01

    Gliomas are tumors of the central nervous system derived from glial cells. They show cellular heterogeneity and lack specific diagnostic markers. Although a possible role for the eicosanoid cascade has been suggested in glioma tumorigenesis, the relationship between enzymes and receptors implicated in arachidonic acid metabolism, with histological tumor type has not yet been determined. Quantitative real-time reverse transcription-polymerase chain reaction was performed to measure and compare transcript levels of enzymes and receptors implicated in both lipoxygenase and cyclooxygenase pathways between oligodendrogliomas, astrocytomas, glioblastomas and mixed oligoastrocytomas. Arachidonic acid metabolism-related enzymes and receptor transcripts (i) were underexpressed in classical oligodendrogliomas compared to astrocytomas and/or glioblastomas, (ii) differed between astrocytomas and glioblastomas and (iii) had an intermediate expression in mixed oligoastrocytomas. mRNA levels of enzymes and receptors implicated both in lipoxygenase and cyclooxygenase pathways differed significantly in gliomas according to the histological type. Copyright 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  8. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content

    OpenAIRE

    Chung Myung; Shin Hea; Lee Kyung; Kim Mi; Baek Eun; Jang Seok; Lee Do; Kim Jin; Lee Kang; Ha Nam

    2009-01-01

    Abstract Background Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. Methods In vitro culture experiments were performed to ...

  9. Correlation of secretory phospholipase-A2 activity and fatty acids in cerebrospinal fluid with liver enzymes tests

    Directory of Open Access Journals (Sweden)

    Sepideh Ghodoosifar

    2016-02-01

    Full Text Available Introduction: The aim was to determine whether secretory phospholipase-A2 (sPLA2 activity and fatty acids in cerebrospinal fluid (CSF are correlated with liver enzymes tests. Methods: CSF and serum samples were collected from 49 patients (age 18-65 as part of routine diagnostic testing. Along with serum liver enzymes aspartate aminotransferase (AST, alanine aminotransferase (ALT and alkaline phosphatase (ALP, the fatty acid composition of CSF was measured by gas liquid chromatography. CSF enzyme activities of sPLA2 were measured using the standard assay with diheptanoyl thio-phosphatidylcholin as substrate. Results: The saturated fatty acids (SFAs including palmitic acid and stearic acid were positively, and the unsaturated fatty acids including oleic acid and linoleic acid were negatively correlated with liver enzymes tests. In regression analysis with adjustment for body mass index (BMI, the elevated liver enzymes tests were positively associated with activity of sPLA2 (β > 0.31, P 0.38, P < 0.010 and negatively with total monounsaturated fatty acids (MUFAs (β < -0.40, P < 0.001 contents of CSF. Conclusion: CSF activity of sPLA2 and fatty acids may be linked to peripheral markers of liver function, suggesting an indirect impact of central fatty acids on hepatocytes function and metabolism.

  10. Transcriptome mining and in silico structural and functional analysis of ascorbic acid and tartaric acid biosynthesis pathway enzymes in rose-scanted geranium.

    Science.gov (United States)

    Narnoliya, Lokesh K; Sangwan, Rajender S; Singh, Sudhir P

    2018-06-01

    Rose-scented geranium (Pelargonium sp.) is widely known as aromatic and medicinal herb, accumulating specialized metabolites of high economic importance, such as essential oils, ascorbic acid, and tartaric acid. Ascorbic acid and tartaric acid are multifunctional metabolites of human value to be used as vital antioxidants and flavor enhancing agents in food products. No information is available related to the structural and functional properties of the enzymes involved in ascorbic acid and tartaric acid biosynthesis in rose-scented geranium. In the present study, transcriptome mining was done to identify full-length genes, followed by their bioinformatic and molecular modeling investigations and understanding of in silico structural and functional properties of these enzymes. Evolutionary conserved domains were identified in the pathway enzymes. In silico physicochemical characterization of the catalytic enzymes revealed isoelectric point (pI), instability index, aliphatic index, and grand average hydropathy (GRAVY) values of the enzymes. Secondary structural prediction revealed abundant proportion of alpha helix and random coil confirmations in the pathway enzymes. Three-dimensional homology models were developed for these enzymes. The predicted structures showed significant structural similarity with their respective templates in root mean square deviation analysis. Ramachandran plot analysis of the modeled enzymes revealed that more than 84% of the amino acid residues were within the favored regions. Further, functionally important residues were identified corresponding to catalytic sites located in the enzymes. To, our best knowledge, this is the first report which provides a foundation on functional annotation and structural determination of ascorbic acid and tartaric acid pathway enzymes in rose-scanted geranium.

  11. Irradiation inactivation studies of the dopamine D1 receptor and dopamine-stimulated adenylate cyclase in rat striatum

    International Nuclear Information System (INIS)

    Anderson, P.H.; Nielson, M.

    1987-01-01

    In frozen rat striatal tissue, exposed to 10 MeV electrons from a linear accelerator, the sizes of the dopamine (DA) D 1 receptor and the DA sensitive adenylate cyclase complex were determined using target size analysis. The number of D 1 receptors (labelled by [ 3 H]SCH 23390)declined monoexponentially with increasing radiation intensity, yielding a molecular weight (mol. wt.) of 80kDa. Also the activity of the catalytic unit (C) of the adenylate cyclase (as measured by forskolin stimulation), decreased monoexponentially however with a mol. wt. of 145 kDa. Both basal, DA- and flouride (F - ) stimulated activity declined in a concave downward fashion with a limiting mol. wt. of 134, 138 and 228 kDa respectively. It was estimated that the basal and DA - stimulated activity originated from an enzyme complex with a mol. wt. of 325 kDa a value close to the combined size of R G S + C. These data suggest that F - stimulation of the adenylate cyclase, which occurs by a G S activation, does not cause disassociation of G S into the α S and βγ subunits. Further, the AA-regulated adenylate cyclase apparently exists as a complex consisting of RG S and C; the mechanisms of hormonal activation is dissociation of C from this complex

  12. Cytosolic adenylate changes during exercise in prawn muscle

    International Nuclear Information System (INIS)

    Thebault, M.T.; Raffin, J.P.; Pichon, R.

    1994-01-01

    31 P NMR and biochemical analysis were used to assess the effect of heavy exercise on cytosolic adenylate levels in Palaemon serratus abdominal muscle. At rest, the MgATP level corresponded to 85.5% of the total ATP content. The cytosolic adenylate concentrations of the prawn muscle are considerably different from that of vertebrates. The percentage of ADP bound to myofilaments was lower in the prawn muscle. Consequently, the level of free cytosolic AMP was greatly higher (thirty fold higher) than in vertebrate muscle. During vigorous work, the concentration of MgATP dropped and the cytosolic AMP accumulated, while the cytosolic adenine nucleotide pool decreased significantly. The phosphorylation potential value and the ATP/ADP ratio, calculated from the cytosolic adenylate, dropped acutely during the whole period of muscular contractions. On the contrary, the adenylate energy charge calculated from the cytosolic adenylate decreased slightly. Therefore, even in muscle displaying no AMP deamination, the adenylate charge is stabilized during exercise by the dynamic changes between cytosolic and bound adenylate species. (author). 21 refs., 2 tabs

  13. Effects of PTH and Ca2+ on renal adenyl cyclase

    International Nuclear Information System (INIS)

    Nielsen, S.T.; Neuman, W.F.

    1978-01-01

    The effects of calcium ion on the adenylate cyclase system was studied in isolated, renal basal-lateral plasma membranes of the rat. Bovine parathyroid hormone (bPTH) and a guanyl triphosphate analogue, Gpp(NH)p were used to stimulate cyclase activity. Under conditions of maximal stimulation, calcium ions inhibited cyclic adenosine monophosphate (cAMP) formation, the formation rate falling exponentially with the calcium concentration. Fifty percent inhibition of either bPTH- or Gpp(NH)p-stimulated activity was given by approximately 50 μM Ca 2+ . Also the Hill coefficient for the inhibition was close to unity in both cases. The concentration of bPTH giving half-maximal stimulation of cAMP formation (1.8 x 10 -8 M) was unchanged by the presence of calcium. These data suggest that calcium acts at some point other than the initial hormone-receptor interaction, presumably decreasing the catalytic efficiency of the enzymic moiety of the membrane complex

  14. Overproduction, Purification and Characterization of Adenylate Deaminase from Aspergillus oryzae.

    Science.gov (United States)

    Li, Shubo; Qian, Yi; Liang, Yunlong; Chen, Xinkuan; Zhao, Mouming; Guo, Yuan; Pang, Zongwen

    2016-12-01

    Adenylate deaminase (AMPD, EC 3.5.4.6) is an aminohydrolase that widely used in the food and medicine industries. In this study, the gene encoding Aspergillus oryzae AMPD was cloned and expressed in Escherichia coli. Induction with 0.75 mM isopropyl β-D-l-thiogalactopyranoside resulted in an enzyme activity of 1773.9 U/mL. Recombinant AMPD was purified to electrophoretic homogeneity using nickel affinity chromatography, and its molecular weight was calculated as 78.6 kDa. Purified AMPD exhibited maximal activity at 35 °C, pH 6.0 and 30 mM K + , with apparent K m and V max values of 2.7 × 10 -4  M and 77.5 μmol/mg/min under these conditions. HPLC revealed that recombinant AMPD could effectively catalyse the synthesis of inosine-5'-monophosphate (IMP) with minimal by-products, indicating high specificity and suggesting that it could prove useful for IMP production.

  15. A simple assay method for omega-oxidation of lauric acid by hepatic enzymes

    International Nuclear Information System (INIS)

    Giera, D.D.; van Lier, R.B.L.

    1990-01-01

    Routine assessment of hepatic ω-oxidation of fatty acids in toxicology studies requires a simpler method of enzymatic analysis than HPLC or TLC. A method depending upon selective solvent separation of 14 C-lauric acid and 14 C-11/12-hydroxy lauric acid was developed. Following enzymatic incubation and addition of 15% methanol to the acidified incubation mixtures, partitioning with an alkane solvent such as iso-octane, cyclohexane, or n-hexane separated the lauric acid substrate and ω-hydroxylated products into two immiscible phases. Approximately 98% of the substrate partitioned into the organic phase, and approximately 83% of the hydroxylated products partitioned into the aqueous phase. Subsequent quantitation of the enzymatic activity required only liquid scintillation counting of the aqueous phase. Hepatic homogenates from male rats treated with 0.01, 0.05, 0.125, and 0.25% clofibrate in the diet for 7 days had enzyme levels 1.3, 6.1, 11.1, and 15.9 times control values, respectively, when assayed by conventional TLC methods, and 1.3, 5.3, 12.3, and 15.3 times control values when assayed by the solvent extraction method. The data indicate that the selective solvent partitioning yields comparable precision and sensitivity to the more conventional TLC method when studying induction of hepatic microsomal enzymes

  16. Regulation of follitropin-sensitive adenylate cyclase by stimulatory and inhibitory forms of the guanine nucleotide regulatory protein in immature rat Sertoli cells

    International Nuclear Information System (INIS)

    Johnson, G.P.

    1987-01-01

    Studies have been designed to examine the role of guanine nucleotides in mediating FSH-sensitive adenylate cyclase activity in Sertoli cell plasma membranes. Analysis of [ 3 H]GDP binding to plasma membranes suggested a single high affinity site with a K d = 0.24 uM. Competition studies indicated that GTP γ S was 7-fold more potent than GDP β S. Bound GDP could be released by FSH in the presence of GTP γ S, but not by FSH alone. Adenylate cyclase activity was enhanced 5-fold by FSH in the presence of GTP. Addition of GDP β S to the activated enzyme (FSH plus GTP) resulted in a time-dependent decay to basal activity within 20 sec. GDP β S competitively inhibited GTP γ S-stimulated adenylate cyclase activity with a K i = 0.18 uM. Adenylate cyclase activity was also demonstrated to be sensitive to the nucleotide bound state. In the presence of FSH, only the GTP γ S-bound form persisted even if GDP β S previously occupied all available binding sites. Two membrane proteins, M r = 43,000 and 48,000, were ADP·ribosylated using cholera toxin and labeling was enhanced 2 to 4-fold by GTP γ S but not by GDP β S. The M r = 43,000 and 48,000 proteins represented variant forms of G S . A single protein of M r = 40,000 (G i ) was ADP-ribosylated by pertussis toxin in vitro. GTP inhibited forskolin-stimulated adenylate cyclase activity with an IC 50 = 0.1 uM. The adenosine analog, N 6 ·phenylisopropyl adenosine enhanced GTP inhibition of forskolin-stimulated adenylate cyclase activity by an additional 15%. GTP-dependent inhibition of forskolin-sensitive adenylate cyclase activity was abolished in membranes prepared from Sertoli cells treated in culture with pertussis toxin

  17. Reversible switching of fluorophore property based on intrinsic conformational transition of adenylate kinase during its catalytic cycle.

    Science.gov (United States)

    Fujii, Akira; Hirota, Shun; Matsuo, Takashi

    2013-07-17

    Adenylate kinase shows a conformational transition (OPEN and CLOSED forms) during substrate binding and product release to mediate the phosphoryl transfer between ADP and ATP/AMP. The protein motional characteristics will be useful to construct switching systems of fluorophore properties caused by the catalytic cycle of the enzyme. This paper demonstrates in situ reversible switching of a fluorophore property driven by the conformational transition of the enzyme. The pyrene-conjugated mutant adenylate kinase is able to switch the monomer/excimer emission property of pyrene on addition of ADP or P(1)P(5)-di(adenosine-5')pentaphosphate (Ap5A, a transition state analog). The observation under the dilute condition (~0.1 μM) indicates that the emission spectral change was caused by the motion of a protein molecule and not led by protein-protein interactions through π-π stacking of pyrene rings. The switching can be reversibly conducted by using hexokinase-coupling reaction. The fashion of the changes in emission intensities at various ligand concentrations is different between ADP, Mg(2+)-bound ADP, and Mg(2+)-bound Ap5A. The emission property switching is repeatable by a sequential addition of a substrate in a one-pot process. It is proposed that the property of a synthetic molecule on the enzyme surface is switchable in response to the catalytic cycle of adenylate kinase.

  18. Engineering the Substrate Specificity of the DhbE Adenylation Domain by Yeast Cell Surface Display

    OpenAIRE

    Zhang, Keya; Nelson, Kathryn M.; Bhuripanyo, Karan; Grimes, Kimberly D.; Zhao, Bo; Aldrich, Courtney C.; Yin, Jun

    2013-01-01

    The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in kcat/Km with nonnative sub...

  19. Human triose-phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme.

    Science.gov (United States)

    Daar, I O; Artymiuk, P J; Phillips, D C; Maquat, L E

    1986-10-01

    Triose-phosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1) deficiency is a recessive disorder that results in hemolytic anemia and neuromuscular dysfunction. To determine the molecular basis of this disorder, a TPI allele from two unrelated patients homozygous for TPI deficiency was compared with an allele from a normal individual. Each disease-associated sequence harbors a G X C----C X G transversion in the codon for amino acid-104 and specifies a structurally altered protein in which a glutamate residue is replaced by an aspartate residue. The importance of glutamate-104 to enzyme structure and function is implicated by its conservation in the TPI protein of all species that have been characterized to date. The glutamate-to-aspartate substitution results in a thermolabile enzyme as demonstrated by assays of TPI activity in cultured fibroblasts of each patient and cultured Chinese hamster ovary (CHO) cells that were stably transformed with the mutant alleles. Although this substitution conserves the overall charge of amino acid-104, the x-ray crystal structure of chicken TPI indicates that the loss of a side-chain methylene group (-CH2CH2COO- ---- -CH2COO-) is sufficient to disrupt the counterbalancing of charges that normally exists within a hydrophobic pocket of the native enzyme.

  20. Nitrile-hydrolyzing enzyme from Meyerozyma guilliermondii and its potential in biosynthesis of 3-hydroxypropionic acid.

    Science.gov (United States)

    Zhang, Qiang; Gong, Jin-Song; Dong, Ting-Ting; Liu, Ting-Ting; Li, Heng; Dou, Wen-Fang; Lu, Zhen-Ming; Shi, Jin-Song; Xu, Zheng-Hong

    2017-06-01

    3-Hydroxypropionic acid (3-HP) is an important platform chemical in organic synthesis. Traditionally, 3-HP was produced by chemical methods and fermentation process. In this work, a novel enzymatic method was developed for green synthesis of 3-HP. A yeast strain harboring nitrile-hydrolyzing enzyme was newly isolated from environmental samples using 3-hydroxypropionitrile (3-HPN) as the sole nitrogen source. It was identified to be Meyerozyma guilliermondii CGMCC12935 by sequencing of the 18S ribosomal DNA and internal transcribed spacer, together with analysis of the morphology characteristics. The catalytic properties of M. guilliermondii CGMCC12935 resting cells were determined, and the optimum activity was achieved at 55 °C and pH 7.5. The enzyme showed broad substrate specificity towards nitriles, especially 3-HPN, aminoacetonitrile and 3-cyanopyridine. The presence of Ag + , Pb 2+ and excess substrate inhibited the enzyme activity, whereas 5% (v/v) ethyl acetate had a positive effect on the enzyme activity. M. guilliermondii CGMCC12935 resting cells by addition of 3% glucose could thoroughly hydrolyze 500 mM 3-HPN into 3-HP within 100 h and the maximal accumulative production of 3-HP reached 216.33 mM, which was over twofolds than the control group with no additional glucose. And this work would lay the foundation for biological production of 3-HP in industry.

  1. Improving a natural enzyme activity through incorporation of unnatural amino acids.

    Science.gov (United States)

    Ugwumba, Isaac N; Ozawa, Kiyoshi; Xu, Zhi-Qiang; Ely, Fernanda; Foo, Jee-Loon; Herlt, Anthony J; Coppin, Chris; Brown, Sue; Taylor, Matthew C; Ollis, David L; Mander, Lewis N; Schenk, Gerhard; Dixon, Nicholas E; Otting, Gottfried; Oakeshott, John G; Jackson, Colin J

    2011-01-19

    The bacterial phosphotriesterases catalyze hydrolysis of the pesticide paraoxon with very fast turnover rates and are thought to be near to their evolutionary limit for this activity. To test whether the naturally evolved turnover rate could be improved through the incorporation of unnatural amino acids and to probe the role of peripheral active site residues in nonchemical steps of the catalytic cycle (substrate binding and product release), we replaced the naturally occurring tyrosine amino acid at position 309 with unnatural L-(7-hydroxycoumarin-4-yl)ethylglycine (Hco) and L-(7-methylcoumarin-4-yl)ethylglycine amino acids, as well as leucine, phenylalanine, and tryptophan. Kinetic analysis suggests that the 7-hydroxyl group of Hco, particularly in its deprotonated state, contributes to an increase in the rate-limiting product release step of substrate turnover as a result of its electrostatic repulsion of the negatively charged 4-nitrophenolate product of paraoxon hydrolysis. The 8-11-fold improvement of this already highly efficient catalyst through a single rationally designed mutation using an unnatural amino acid stands in contrast to the difficulty in improving this native activity through screening hundreds of thousands of mutants with natural amino acids. These results demonstrate that designer amino acids provide easy access to new and valuable sequence and functional space for the engineering and evolution of existing enzyme functions.

  2. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.E.; McKay, D.M. [Cleansorb Limited, Surrey (United Kingdom); Moses, V. [King`s College, London (United Kingdom)

    1995-12-31

    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  3. In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum.

    Science.gov (United States)

    Ikeda, Masato; Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki

    2017-10-01

    For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis , which use an individual nonaggregating type II fatty acid synthase

  4. Subcellular location of the enzymes of purine breakdown in the yeast Candida famata grown on uric acid

    NARCIS (Netherlands)

    Large, Peter J.; Waterham, Hans R.; Veenhuis, Marten

    1990-01-01

    The subcellular location of the enzymes of purine breakdown in the yeast Candida famata, which grows on uric acid as sole carbon and nitrogen source, has been examined by subcellular fractionation methods. Uricase was confirmed as being peroxisomal, but the other three enzymes, allantoinase,

  5. Enzyme active site mimics based on TriAzaCyclophane (TAC)-scaffolded peptides and amino acid residues

    NARCIS (Netherlands)

    Albada, H.B.

    2009-01-01

    This thesis describes the scope and limitations of the application of TriAzaCyclophane (TAC)-scaffolded peptides or amino acid residues as enzyme active site mimics, as ligands in asymmetric catalysis and as hydrolysis catalysts attached to vancomycin. For the mimicry of functional group enzymes, of

  6. Acetobacter turbidans α-Amino Acid Ester Hydrolase. How a Single Mutation Improves an Antibiotic-Producing Enzyme

    NARCIS (Netherlands)

    Barends, Thomas R.M.; Polderman-Tijmes, Jolanda J.; Jekel, Peter A.; Williams, Christopher; Wybenga, Gjalt; Janssen, Dick B.; Dijkstra, Bauke W.

    2006-01-01

    The α-amino acid ester hydrolase (AEH) from Acetobacter turbidans is a bacterial enzyme catalyzing the hydrolysis and synthesis of β-lactam antibiotics. The crystal structures of the native enzyme, both unliganded and in complex with the hydrolysis product D-phenylglycine are reported, as well as

  7. 31P NMR Spectroscopy Revealed Adenylate kinase-like Activity and Phosphotransferase-like Activity from F1-ATPase of Escherichia coli

    International Nuclear Information System (INIS)

    Kim, Hyun Won

    2011-01-01

    Adenylate kinase-like activity and phosphotransferase-like activity from F 1 -ATPase of Escherichia coli was revealed by 31 P NMR spectroscopy. Incubation of F 1 -ATPase with ADP in the presence of Mg 2+ shows the appearance of 31 P resonances from AMP and Pi, suggesting generation of AMP and ATP by adenylate kinase-like activity and the subsequent hydrolysis to Pi. Incubation of F1-ATPase with ADP in the presence of methanol shows additional peak from methyl phosphate, suggesting phosphotransferase-like activity of F 1 -ATPase. Both adenylate kinase-like activity and phosphotransferase-like activity has not been reported from F 1 -ATPase of Escherichia coli. 31 P NMR could be a valuable tool for the investigation of phosphorous related enzyme

  8. Increased serum levels of hyaluronic acid in pregnancies complicated by preeclampsia or hemolysis, elevated liver enzymes, and low platelets syndrome.

    Science.gov (United States)

    Osmers, R G; Schütz, E; Diedrich, F; Wehry, B; Krauss, T; Oellerich, M; Kuhn, W

    1998-02-01

    Fifteen percent of patients who later have hemolysis, elevated liver enzymes, and low platelets syndrome develop initially have nonspecific symptoms. Early diagnosis could ensure adequate obstetric management; however, prognostic biochemical tests are lacking. We hypothesized that elevated hyaluronic acid serum levels might be an early indicator of hemolysis, elevated liver enzymes, and low platelets syndrome because it is known to be a sensitive marker of liver cell function. Hyaluronic acid in serum was measured in patients with normal pregnancies (n = 109) and in those patients with pregnancies complicated by preeclampsia (n = 14) or hemolysis, elevated liver enzymes, and low platelets syndrome (n = 11). A significant increase in hyaluronic acid serum concentrations was observed in patients with hemolysis, elevated liver enzymes, and low platelets syndrome or with preeclampsia (p hyaluronic acid serum levels in hemolysis, elevated liver enzymes, and low platelets syndrome correlated with the clinical severity of the individual course of disease as measured by intensive care unit time (r = 0.72; p hyaluronic acid in preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome are significantly elevated and might play an important diagnostic and prognostic role in patients with hemolysis, elevated liver enzymes, and low platelets syndrome.

  9. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin.

    Directory of Open Access Journals (Sweden)

    Wenwen Yang

    Full Text Available Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent Km, kcat, and Vmax values to be 0.35 mM, 67.7 s(-1, and 78.2 U mg(-1, respectively. The catalytic efficiency (kcat/Km value of Fcs was 193.4 mM(-1 s(-1 for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation.

  10. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin.

    Science.gov (United States)

    Yang, Wenwen; Tang, Hongzhi; Ni, Jun; Wu, Qiulin; Hua, Dongliang; Tao, Fei; Xu, Ping

    2013-01-01

    Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent Km, kcat, and Vmax values to be 0.35 mM, 67.7 s(-1), and 78.2 U mg(-1), respectively. The catalytic efficiency (kcat/Km) value of Fcs was 193.4 mM(-1) s(-1) for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation.

  11. Characterization of Two Streptomyces Enzymes That Convert Ferulic Acid to Vanillin

    Science.gov (United States)

    Yang, Wenwen; Tang, Hongzhi; Ni, Jun; Wu, Qiulin; Hua, Dongliang; Tao, Fei; Xu, Ping

    2013-01-01

    Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent K m, k cat, and V max values to be 0.35 mM, 67.7 s−1, and 78.2 U mg−1, respectively. The catalytic efficiency (k cat/K m) value of Fcs was 193.4 mM−1 s−1 for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation. PMID:23840666

  12. Bioaccessibility and inhibitory effects on digestive enzymes of carnosic acid in sage and rosemary.

    Science.gov (United States)

    Ercan, Pınar; El, Sedef Nehir

    2018-04-28

    In this study, the aim was to determine the bioaccessibilities of carnosic acid in sage and rosemary and in vitro inhibitory effects of these samples on lipid and starch digestive enzymes by evaluating the lipase, α-amylase and α-glucosidase enzyme inhibition activities. The content of carnosic acid in rosemary (18.72 ± 0.33 mg/g) was found to be higher than that content of that in sage (3.76 ± 0.13 mg/g) (p sage and rosemary, respectively. The tested sage and rosemary showed inhibitory activity against α-glucosidase (Concentration of inhibitor required to produce a 50% inhibition of the initial rate of reaction - IC 50 88.49 ± 2.35, 76.80 ± 1.68 μg/mL, respectively), α-amylase (IC 50 107.65 ± 12.64, 95.65 ± 2.73 μg/mL, respectively) and lipase (IC 50 6.20 ± 0.63, 4.31 ± 0.62 μg/mL, respectively). Furthermore, to the best of our knowledge, this is the first work that carnosic acid standard equivalent inhibition capacities (CAEIC 50 ) for these food samples were determined and these values were in agreement with the IC 50 values. These results show that sage and rosemary are potent inhibitors of lipase, α-amylase and α-glucosidase digestive enzymes. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco

    Directory of Open Access Journals (Sweden)

    Kapralov Maxim V

    2011-09-01

    Full Text Available Abstract Background One of the key forces shaping proteins is coevolution of amino acid residues. Knowing which residues coevolve in a particular protein may facilitate our understanding of protein evolution, structure and function, and help to identify substitutions that may lead to desired changes in enzyme kinetics. Rubisco, the most abundant enzyme in biosphere, plays an essential role in the process of carbon fixation through photosynthesis, thus facilitating life on Earth. This makes Rubisco an important model system for studying the dynamics of protein fitness optimization on the evolutionary landscape. In this study we investigated the selective and coevolutionary forces acting on large subunit of land plants Rubisco using Markov models of codon substitution and clustering approaches applied to amino acid substitution histories. Results We found that both selection and coevolution shape Rubisco, and that positively selected and coevolving residues have their specifically favored amino acid composition and pairing preference. The mapping of these residues on the known Rubisco tertiary structures showed that the coevolving residues tend to be in closer proximity with each other compared to the background, while positively selected residues tend to be further away from each other. This study also reveals that the residues under positive selection or coevolutionary force are located within functionally important regions and that some residues are targets of both positive selection and coevolution at the same time. Conclusion Our results demonstrate that coevolution of residues is common in Rubisco of land plants and that there is an overlap between coevolving and positively selected residues. Knowledge of which Rubisco residues are coevolving and positively selected could be used for further work on structural modeling and identification of substitutions that may be changed in order to improve efficiency of this important enzyme in crops.

  14. Inactivation of thiol-dependent enzymes by hypothiocyanous acid: role of sulfenyl thiocyanate and sulfenic acid intermediates

    Science.gov (United States)

    Barrett, Tessa J.; Pattison, David I.; Leonard, Stephen E.; Carroll, Kate S.; Davies, Michael J.; Hawkins, Clare L.

    2012-01-01

    Myeloperoxidase (MPO) forms reactive oxidants including hypochlorous and hypothiocyanous acids (HOCl and HOSCN) under inflammatory conditions. HOCl causes extensive tissue damage and plays a role in the progression of many inflammatory-based diseases. Although HOSCN is a major MPO oxidant, particularly in smokers, who have elevated plasma thiocyanate, the role of this oxidant in disease is poorly characterized. HOSCN induces cellular damage by targeting thiols. However, the specific targets and mechanisms involved in this process are not well defined. We show that exposure of macrophages to HOSCN results in the inactivation of intracellular enzymes, including creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In each case, the active-site thiol residue is particularly sensitive to oxidation, with evidence for reversible inactivation and the formation of sulfenyl thiocyanate and sulfenic acid intermediates, on treatment with HOSCN (less than fivefold molar excess). Experiments with DAz-2, a cell-permeable chemical trap for sulfenic acids, demonstrate that these intermediates are formed on many cellular proteins, including GAPDH and CK, in macrophages exposed to HOSCN. This is the first direct evidence for the formation of protein sulfenic acids in HOSCN-treated cells and highlights the potential of this oxidant to perturb redox signaling processes. PMID:22248862

  15. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    DEFF Research Database (Denmark)

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside...... to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP...

  16. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells.

    Science.gov (United States)

    Martín, César; Etxaniz, Asier; Uribe, Kepa B; Etxebarria, Aitor; González-Bullón, David; Arlucea, Jon; Goñi, Félix M; Aréchaga, Juan; Ostolaza, Helena

    2015-09-08

    Bordetella pertussis causes whooping cough, a respiratory infectious disease that is the fifth largest cause of vaccine-preventable death in infants. Though historically considered an extracellular pathogen, this bacterium has been detected both in vitro and in vivo inside phagocytic and non-phagocytic cells. However the precise mechanism used by B. pertussis for cell entry, or the putative bacterial factors involved, are not fully elucidated. Here we find that adenylate cyclase toxin (ACT), one of the important toxins of B. pertussis, is sufficient to promote bacterial internalisation into non-phagocytic cells. After characterization of the entry route we show that uptake of "toxin-coated bacteria" proceeds via a clathrin-independent, caveolae-dependent entry pathway, allowing the internalised bacteria to survive within the cells. Intracellular bacteria were found inside non-acidic endosomes with high sphingomyelin and cholesterol content, or "free" in the cytosol of the invaded cells, suggesting that the ACT-induced bacterial uptake may not proceed through formation of late endolysosomes. Activation of Tyr kinases and toxin-induced Ca(2+)-influx are essential for the entry process. We hypothesize that B. pertussis might use ACT to activate the endocytic machinery of non-phagocytic cells and gain entry into these cells, in this way evading the host immune system.

  17. Adenylate cyclase regulation in the spermatogenic cell plasma membrane: Modulating effects of TPA and TCDD

    International Nuclear Information System (INIS)

    Beebe, L.E.

    1989-01-01

    This research was designed to compare the effects of TPA, a phorbol ester, and TCDD in a spermatogenic cell population, a target of TCDD toxicity. Membrane-bound adenylate cyclase activity was used an index of membrane function, and was quantified by the amount of 32 P-cAMP formed from 32 P-ATP following chromatographic separation. Exposure to male germ cells in-vitro to TPA and TCDD followed by direct measurement of enzyme activity was used to investigate the potential of each agent to perturb membrane function. TPA and TCDD consistently inhibited adenylate cyclase activity at the levels of G s -catalytic unit coupling and hormone-receptor activation, as measured by the stimulation of enzyme activity by concomitant addition of forskolin and GTP and FSH and GTP, respectively. The effect on coupling required at least 60 minutes of exposure to TPA or TCDD. Concentration-response curves demonstrated a progressive desensitization with increasing TPA concentration, while TCDD exhibited consistent inhibition over the same concentration range

  18. Identification of Adenyl Cyclase Activity in a Disease Resistance Protein in Arabidopsis thaliana

    KAUST Repository

    Hussein, Rana

    2012-11-01

    Cyclic nucleotide, cAMP, is an important signaling molecule in animals and plants. However, in plants the enzymes that synthesize this second messenger, adenyl cyclases (ACs), remain elusive. Given the physiological importance of cAMP in signaling, particularly in response to biotic and abiotic stresses, it is thus important to identify and characterize ACs in higher plants. Using computational approaches, a disease resistance protein from Arabidopsis thaliana, At3g04220 was found to have an AC catalytic center motif. In an attempt to prove that this candidate has adenyl cyclases activity in vitro, the coding sequence of the putative AC catalytic domain of this protein was cloned and expressed in E. coli and the recombinant protein was purified. The nucleotide cyclase activity of the recombinant protein was examined using cyclic nucleotide enzyme immunoassays. In parallel, the expression of At3g04220 was measured in leaves under three different stress conditions in order to determine under which conditions the disease resistance protein could function. Results show that the purified recombinant protein has Mn2+ dependent AC activity in vitro, and the expression analysis supports a role for At3g04220 and cAMP in plant defense.

  19. Angiotensin-converting enzyme inhibition improves cardiac fatty acid metabolism in patients with congestive heart failure.

    Science.gov (United States)

    Yamauchi, S; Takeishi, Y; Minamihaba, O; Arimoto, T; Hirono, O; Takahashi, H; Miyamoto, T; Nitobe, J; Nozaki, N; Tachibana, H; Watanabe, T; Fukui, A; Kubota, I

    2003-08-01

    This study aimed to examine whether angiotensin-converting enzyme (ACE) inhibition improved cardiac fatty acid metabolism in patients with congestive heart failure (CHF). Myocardial 123I-beta-methyl-iodophenylpentadecanoic acid (123I-BMIPP) imaging was performed in 25 patients with CHF and in 10 control subjects. Myocardial 123I-BMIPP images were obtained 30 min and 4 h after tracer injection. The heart-to-mediastinum (H/M) ratio of 123I-BMIPP uptake and the washout rate of 123I-BMIPP from the myocardium were calculated. Patients were given enalapril for 6 months, and 123I-BMIPP imaging was repeated. H/M ratios on early and delayed images were lower in CHF patients than in normal controls (Pacid metabolism by ACE inhibition may represent a new mechanism for the beneficial effect of this therapy in heart failure.

  20. Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria

    Directory of Open Access Journals (Sweden)

    Lu Thea

    2012-06-01

    Full Text Available Abstract Background Fatty acid modifying enzyme (FAME has been shown to modify free fatty acids to alleviate their bactericidal effect by esterifying fatty acids to cholesterol or alcohols. Although it has been shown in previous studies that FAME is required for Staphylococcus aureus survival in skin abscesses, FAME is poorly studied compared to other virulence factors. FAME activity had also been detected in coagulase-negative staphylococci (CNS. However, FAME activity was only surveyed after a bacterial culture was grown for 24 h. Therefore if FAME activity was earlier in the growth phase, it would not have been detected by the assay and those strains would have been labeled as FAME negative. Results Fifty CNS bovine mastitis isolates and several S. aureus, Escherichia coli, and Streptococcus uberis strains were assayed for FAME activity over 24 h. FAME activity was detected in 54% of CNS and 80% S. aureus strains surveyed but none in E. coli or S. uberis. While some CNS strains produced FAME activity comparable to the lab strain of S. aureus, the pattern of FAME activity varied among strains and across species of staphylococci. All CNS that produced FAME activity also exhibited lipase activity. Lipase activity relative to colony forming units of these CNS decreased over the 24 h growth period. No relationship was observed between somatic cell count in the milk and FAME activity in CNS. Conclusions Some staphylococcal species surveyed produced FAME activity, but E. coli and S. uberis strains did not. All FAME producing CNS exhibited lipase activity which may indicate that both these enzymes work in concert to alter fatty acids in the bacterial environment.

  1. Direct evidence for the inactivation of branched-chain oxo-acid dehydrogenase by enzyme phosphorylation

    International Nuclear Information System (INIS)

    Odessey, R.

    1980-01-01

    The branched-chain 2-oxo-acid dehydrogenase (BCOAD) from mitochondria of several different rat tissues is inactivated by ATP and can be reactivated by incubation in Mg 2+ -containing buffers. Work carried out on the system from skeletal muscle mitochondria has shown that inactivation requires the cleavage of the γ-phosphate group of ATP and that modification is covalent. The non-metabolized ATP analog, p[NH]ppA, can block the inhibitory effect of ATP when added prior to ATP addition, but cannot reverse the inhibition of the inactivated dehydrogenase. These and other data raise the possibility that BCOAD may be regulated by enzyme phosphorylation. This hypothesis is supported by the finding that various procedures which separate the enzyme from its mitochondrial environment (e.g. detergent treatment, ammonium sulfate precipitation and freeze-thawing) do not alter the degree of inhibition induced by ATP in the mitochondrial preincubation. These experiments suggested the feasibility of labelling the enzyme with 32 P and purifying it. (Auth.)

  2. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content.

    Science.gov (United States)

    Lee, Do Kyung; Jang, Seok; Baek, Eun Hye; Kim, Mi Jin; Lee, Kyung Soon; Shin, Hea Soon; Chung, Myung Jun; Kim, Jin Eung; Lee, Kang Oh; Ha, Nam Joo

    2009-06-11

    Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20 approximately 30 years old) to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108 approximately 109 CFU/ml) were orally administered to SD rats (fed a high-cholesterol diet) every day for 2 weeks. B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p water content, and reduced body weight and harmful intestinal enzyme activities. Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation.

  3. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content

    Directory of Open Access Journals (Sweden)

    Chung Myung

    2009-06-01

    Full Text Available Abstract Background Lactic acid bacteria (LAB are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. Methods In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20~30 years old to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108~109 CFU/ml were orally administered to SD rats (fed a high-cholesterol diet every day for 2 weeks. Results B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p B. longum SPM1207 also increased fecal LAB levels and fecal water content, and reduced body weight and harmful intestinal enzyme activities. Conclusion Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation.

  4. In vivo examination of the effects of hydroxycinnamic acid on xenobiotic metabolizing and antioxidant enzymes

    Directory of Open Access Journals (Sweden)

    Semiz Asli

    2017-01-01

    Full Text Available In the last decade, hydroxycinnamic acids (HCA have gained increasing attention from researchers due to their antioxidant potential. The aim of this study was to examine in detail the impact of dietary HCA on particular types of P450 and also selected phase II and antioxidant enzymes in Wistar rat. HCA (10 mM/kg/day, i.p. was administered for ten continuous days. Examination of the activities and mRNA and protein levels revealed that CYP2B, 2C6 and 3A enzyme activities were not altered significantly, with Western blot and qRT-PCR results corroborating this result. While treatment with HCA led to a significant reduction in CYP1A1/CYP1A2-associated enzyme activities, CYP1A1 protein, and mRNA levels were found to be unchanged. Aromatase (CYP19 activity, as well as protein and mRNA levels, were significantly reduced with HCA treatment. On the other hand, the NAD(PH:quinone oxidoreductase 1 (NQO1, catalase (CAT, glutathione peroxidase (GPx and glutathione S-transferases (GSTs activities were increased significantly. Also, HCA treatment significantly increased the GST-mu and GST-theta mRNA levels. These observations may be of importance given the potential use of HCA as a chemopreventive and as an anticancer agent.

  5. The feasibility of enzyme targeted activation for amino acid/dipeptide monoester prodrugs of floxuridine; cathepsin D as a potential targeted enzyme.

    Science.gov (United States)

    Tsume, Yasuhiro; Amidon, Gordon L

    2012-03-26

    The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5'-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0-105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5'-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5'-O-L-phenylalanyl-L-tyrosylfloxuridine and 5'-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enzymes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5'-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  6. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes.

    Science.gov (United States)

    Greenough, Lucia; Schermerhorn, Kelly M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E; Gardner, Andrew F

    2016-01-29

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3'-5' exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Exponential isothermal amplification of nucleic acids and amplified assays for proteins, cells, and enzyme activities.

    Science.gov (United States)

    Reid, Michael S; Le, X Chris; Zhang, Hongquan

    2018-04-27

    Isothermal exponential amplification techniques, such as strand-displacement amplification (SDA), rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on-site, point-of-care, and in-situ assay applications. These amplification techniques eliminate the need for temperature cycling required for polymerase chain reaction (PCR) while achieving comparable amplification yield. We highlight here recent advances in exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. We discuss design strategies, enzyme reactions, detection techniques, and key features. Incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from non-specific template interactions, must be addressed to further improve isothermal and exponential amplification techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Short-Chain Fatty Acids Enhance the Lipid Accumulation of 3T3-L1 Cells by Modulating the Expression of Enzymes of Fatty Acid Metabolism.

    Science.gov (United States)

    Yu, Haining; Li, Ran; Huang, Haiyong; Yao, Ru; Shen, Shengrong

    2018-01-01

    Short-chain fatty acids (SCFA) such as acetic acid, propionic acid, and butyric acid are produced by fermentation by gut microbiota. In this paper, we investigate the effects of SCFA on 3T3-L1 cells and the underlying molecular mechanisms. The cells were treated with acetic acid, propionic acid, or butyric acid when cells were induced to differentiate into adipocytes. MTT assay was employed to detect the viability of 3T3-L1 cells. Oil Red O staining was used to visualize the lipid content in 3T3-L1 cells. A triglyceride assay kit was used to detect the triacylglycerol content in 3T3-L1 cells. qRT-PCR and Western blot were used to evaluate the expression of metabolic enzymes. MTT results showed that safe concentrations of acetic acid, propionic acid, and butyric acid were less than 6.4, 3.2, and 0.8 mM, respectively. Oil Red O staining and triacylglycerols detection results showed that treatment with acetic acid, propionic acid, and butyric acid accelerated the 3T3-L1 adipocyte differentiation. qRT-PCR and Western blot results showed that the expressions of lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4), fatty acid transporter protein 4 (FATP4), and fatty acid synthase (FAS) were significantly increased by acetic acid, propionic acid, and butyric acid treatment during adipose differentiation (p fatty acid metabolism. © 2018 AOCS.

  9. Involvement of a Lipoxygenase-Like Enzyme in Abscisic Acid Biosynthesis 1

    Science.gov (United States)

    Creelman, Robert A.; Bell, Erin; Mullet, John E.

    1992-01-01

    Several lines of evidence indicate that abscisic acid (ABA) is derived from 9′-cis-neoxanthin or 9′-cis-violaxanthin with xanthoxin as an intermediate. 18O-labeling experiments show incorporation primarily into the side chain carboxyl group of ABA, suggesting that oxidative cleavage occurs at the 11, 12 (11′, 12′) double bond of xanthophylls. Carbon monoxide, a strong inhibitor of heme-containing P-450 monooxygenases, did not inhibit ABA accumulation, suggesting that the oxygenase catalyzing the carotenoid cleavage step did not contain heme. This observation, plus the ability of lipoxygenase to make xanthoxin from violaxanthin, suggested that a lipoxygenase-like enzyme is involved in ABA biosynthesis. To test this idea, the ability of several soybean (Glycine max L.) lipoxygenase inhibitors (5,8,11-eicosatriynoic acid, 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and naproxen) to inhibit stress-induced ABA accumulation in soybean cell culture and soybean seedlings was determined. All lipoxygenase inhibitors significantly inhibited ABA accumulation in response to stress. These results suggest that the in vivo oxidative cleavage reaction involved in ABA biosynthesis requires activity of a nonheme oxygenase having lipoxygenase-like properties. PMID:16668998

  10. Involvement of a lipoxygenase-like enzyme in abscisic Acid biosynthesis.

    Science.gov (United States)

    Creelman, R A; Bell, E; Mullet, J E

    1992-07-01

    Several lines of evidence indicate that abscisic acid (ABA) is derived from 9'-cis-neoxanthin or 9'-cis-violaxanthin with xanthoxin as an intermediate. (18)O-labeling experiments show incorporation primarily into the side chain carboxyl group of ABA, suggesting that oxidative cleavage occurs at the 11, 12 (11', 12') double bond of xanthophylls. Carbon monoxide, a strong inhibitor of heme-containing P-450 monooxygenases, did not inhibit ABA accumulation, suggesting that the oxygenase catalyzing the carotenoid cleavage step did not contain heme. This observation, plus the ability of lipoxygenase to make xanthoxin from violaxanthin, suggested that a lipoxygenase-like enzyme is involved in ABA biosynthesis. To test this idea, the ability of several soybean (Glycine max L.) lipoxygenase inhibitors (5,8,11-eicosatriynoic acid, 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and naproxen) to inhibit stress-induced ABA accumulation in soybean cell culture and soybean seedlings was determined. All lipoxygenase inhibitors significantly inhibited ABA accumulation in response to stress. These results suggest that the in vivo oxidative cleavage reaction involved in ABA biosynthesis requires activity of a nonheme oxygenase having lipoxygenase-like properties.

  11. Association of canalicular membrane enzymes with bile acid micelles and lipid aggregates in human and rat bile.

    Science.gov (United States)

    Accatino, L; Pizarro, M; Solís, N; Koenig, C S

    1995-01-18

    This study was undertaken to gain insights into the characteristics of the polymolecular association between canalicular membrane enzymes, bile acids, cholesterol and phospholipids in bile and into the celular mechanisms whereby the enzymes are secreted into bile. With this purpose, we studied the distribution of bile acids, cholesterol, phospholipids, proteins and representative canalicular membrane enzymes (alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase), which can be considered specific marker constituents, in bile fractions enriched in phospholipid-cholesterol lamellar structures (multilamellar and unilamellar vesicles) and bile acid-mixed micelles. These fractions were isolated by ultracentrifugation from human hepatic bile, normal rat bile and bile of rats treated with diosgenin, a steroid that induces a marked increase in biliary cholesterol secretion, and were characterized by density, lipid composition and transmission electron microscopy. These studies demonstrate that alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase are secreted into both human and rat bile where they are preferentially associated with bile acid-mixed micelles, suggesting a role for bile acids in both release of these enzymes and lipids from the canalicular membrane and solubilization in bile. In addition, heterogeneous association of these enzymes with nonmicellar, lamellar structures in human and rat bile is consistent with the hypothesis that processes independent of the detergent effects of bile acids might also result in the release of specific intrinsic membrane proteins into bile.

  12. ATP-consuming and ATP-generating enzymes secreted by pancreas

    DEFF Research Database (Denmark)

    Yegutkin, Gennady G; Samburski, Sergei S; Jalkanen, Sirpa

    2006-01-01

    -generating enzymes in pancreatic juice, adenylate kinase, and NDP kinase, capable of sequentially phosphorylating AMP via ADP to ATP. Activities of nonspecific phosphatases, nucleotide pyrophosphatase/phosphodiesterases, and adenosine deaminase were negligible. Taken together, CCK-8 stimulation of pancreas causes...

  13. Formation of conjugated delta8,delta10-double bonds by delta12-oleic-acid desaturase-related enzymes: biosynthetic origin of calendic acid.

    Science.gov (United States)

    Cahoon, E B; Ripp, K G; Hall, S E; Kinney, A J

    2001-01-26

    Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.

  14. OVER-EXPRESSION OF GENE ENCODING FATTY ACID METABOLIC ENZYMES IN FISH

    Directory of Open Access Journals (Sweden)

    Alimuddin Alimuddin

    2008-12-01

    Full Text Available Eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3 have important nutritional benefits in humans. EPA and DHA are mainly derived from fish, but the decline in the stocks of major marine capture fishes could result in these fatty acids being consumed less. Farmed fish could serve as promising sources of EPA and DHA, but they need these fatty acids in their diets. Generation of fish strains that are capable of synthesizing enough amounts of EPA/DHA from the conversion of α-linolenic acid (LNA, 18:3n-3 rich oils can supply a new EPA/DHA source. This may be achieved by over-expression of genes encoding enzymes involved in HUFA biosynthesis. In aquaculture, the successful of this technique would open the possibility to reduce the enrichment of live food with fish oils for marine fish larvae, and to completely substitute fish oils with plant oils without reducing the quality of flesh in terms of EPA and DHA contents. Here, three genes, i.e. Δ6-desaturase-like (OmΔ6FAD, Δ5-desaturase-like (OmΔ5FAD and elongase-like (MELO encoding EPA/DHA metabolic enzymes derived from masu salmon (Oncorhynchus masou were individually transferred into zebrafish (Danio rerio as a model to increase its ability for synthesizing EPA and DHA. Fatty acid analysis showed that EPA content in whole body of the second transgenic fish generation over-expressing OmΔ6FAD gene was 1.4 fold and that of DHA was 2.1 fold higher (P<0.05 than those in non-transgenic fish. The EPA content in whole body of transgenic fish over-expressing OmΔ5FAD gene was 1.21-fold, and that of DHA was 1.24-fold higher (P<0.05 than those in nontransgenic fish. The same patterns were obtained in transgenic fish over-expressing MELO gene. EPA content was increased by 1.30-fold and DHA content by 1.33-fold higher (P<0.05 than those in non-transgenic fish. The results of studies demonstrated that fatty acid content of fish can be enhanced by over

  15. Mesophilic and hyperthermophilic adenylate kinases differ in their tolerance to random fragmentation.

    Science.gov (United States)

    Segall-Shapiro, Thomas H; Nguyen, Peter Q; Dos Santos, Edgardo D; Subedi, Saurav; Judd, Justin; Suh, Junghae; Silberg, Jonathan J

    2011-02-11

    The extent to which thermostability influences the location of protein fragmentation sites that allow retention of function is not known. To evaluate this, we used a novel transposase-based approach to create libraries of vectors that express structurally-related fragments of Bacillus subtilis adenylate kinase (BsAK) and Thermotoga neapolitana adenylate kinase (TnAK) with identical modifications at their termini, and we selected for variants in each library that complement the growth of Escherichia coli with a temperature-sensitive adenylate kinase (AK). Mutants created using the hyperthermophilic TnAK were found to support growth with a higher frequency (44%) than those generated from the mesophilic BsAK (6%), and selected TnAK mutants complemented E. coli growth more strongly than homologous BsAK variants. Sequencing of functional clones from each library also identified a greater dispersion of fragmentation sites within TnAK. Nondisruptive fission sites were observed within the AMP binding and core domains of both AK homologs. However, only TnAK contained sites within the lid domain, which undergoes dynamic fluctuations that are critical for catalysis. These findings implicate the flexible lid domain as having an increased sensitivity to fission events at physiological temperatures. In addition, they provide evidence that comparisons of nondisruptive fission sites in homologous proteins could be useful for finding dynamic regions whose conformational fluctuations are important for function, and they show that the discovery of protein fragments that cooperatively function in mesophiles can be aided by the use of thermophilic enzymes as starting points for protein design. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Monospecific antibody against Bordetella pertussis Adenylate Cyclase protects from Pertussis

    Directory of Open Access Journals (Sweden)

    Yasmeen Faiz Kazi

    2012-06-01

    Full Text Available Objectives: Acellular pertussis vaccines has been largely accepted world-wide however, there are reports about limitedantibody response against these vaccines suggesting that multiple antigens should be included in acellular vaccinesto attain full protection. The aim of present study was to evaluate the role of Bordetella pertussis adenylate cyclase as aprotective antigen.Materials and methods: Highly mono-specific antibody against adenylate cyclase (AC was raised in rabbits usingnitrocellulose bound adenylate cyclase and the specificity was assessed by immuoblotting. B.pertussis 18-323, wasincubated with the mono-specific serum and without serum as a control. Mice were challenged intra-nasally and pathophysiolgicalresponses were recorded.Results: The production of B.pertussis adenylate cyclase monospecific antibody that successfully recognized on immunoblotand gave protection against fatality (p< 0.01 and lung consolidation (p <0.01. Mouse weight gain showedsignificant difference (p< 0.05.Conclusion: These preliminary results highlight the role of the B.pertussis adenylate cyclase as a potential pertussisvaccine candidate. B.pertussis AC exhibited significant protection against pertussis in murine model. J Microbiol InfectDis 2012; 2(2: 36-43Key words: Pertussis; monospecific; antibody; passive-protection

  17. The Feasibility of Enzyme Targeted Activation for Amino Acid/Dipeptide Monoester Prodrugs of Floxuridine; Cathepsin D as a Potential Targeted Enzyme

    Directory of Open Access Journals (Sweden)

    Gordon L. Amidon

    2012-03-01

    Full Text Available The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5¢-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0–105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5¢-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine and 5¢-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enyzmes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  18. Photoperiodism and enzyme rhythms: Kinetic characteristics of the photoperiodic induction of Crassulacean acid metabolism.

    Science.gov (United States)

    Brulfert, J; Guerrier, D; Queiroz, O

    1975-01-01

    The effect of photoperiod on Crassulacean acid metabolism (CAM) in Kalanchoe blossfeldiana Poellniz, cv. Tom Thumb, has characteristics similar to its effect on flowering in this plant (although these two phenomena are not causally related). The photoperiodic control of CAM is based on (a) dependance on phytochrome, (b) an endogenous circadian rhythm of sensitivity to photoperiodic signals, (c) a balance between specific positive (increase in enzyme capacity) and negative (inhibitory substances) effects of the photoperiod. Variations in malate content, capacity of phosphoenolpyruvate (PEP) carboxylase, and capacity of CAM inhibitors in young leaves were measured under photoperiodic conditions noninductive for CAM and after transfer into photoperiodic conditions inductive for CAM. Essential characteristics of the photoperiodic induction of CAM are: 1) lag time for malate accumulation; 2) after-effect of the inductive photoperiod on the malate accumulation, on the increase in PEP carboxylase capacity, and on the decrease in the level of long-day produced inhibitors; final levels of malate, enzyme capacity and inhibitor are proportional to the number of inductive day-night cycles; 3) cireadian rhythm in PEP carboxylase capacity with a fixed phase under noninductive photoperiods and a continuously shifting phase under inductive photoperiods, after complex advancing and delaying transients. Kinetic similarities indicate that photoperiodic control of different physiological functions, namely, CAM and flowering, may be achieved through similar mechanisms. Preliminary results with species of Bryophyllum and Sedum support this hypothesis. Phase relationships suggest different degrees of coupling between endogenous enzymic rhythm and photoperiod, depending on whether the plants are under long days or short days.

  19. Influence of fine grinding on the hydrolysis of cellulosic materials - acid vs enzymic

    Energy Technology Data Exchange (ETDEWEB)

    Millet, M A; Effland, M J; Caulfield, D F

    1979-01-01

    The effect of vibratory milling on the enzymic and dilute H/sub 2/SO/sub 4/ hydrolysis of cotton linters, newsprint, Douglas fir, and red oak was investigated by determining the rate and degree of hydrolysis, maximum yield of reducing sugars, and cellulose crystallinity index. Linters were totally hydrolyzed in 10 days after 60 min milling; oak carbohydrates were 93% convertible to sugar in the same period after 240 min milling. Vibratory milling substantially increased the rates of acid hydrolysis of all 4 substrates, nearly 9- and 5-fold for linters and other lignocellulosic materials, respectively. Increases in maximum sugar yields under batch conditions were 60 to 140% higher than those for unmilled materials.

  20. Aptamer- and nucleic acid enzyme-based systems for simultaneous detection of multiple analytes

    Science.gov (United States)

    Lu, Yi [Champaign, IL; Liu, Juewen [Albuquerque, NM

    2011-11-15

    The present invention provides aptamer- and nucleic acid enzyme-based systems for simultaneously determining the presence and optionally the concentration of multiple analytes in a sample. Methods of utilizing the system and kits that include the sensor components are also provided. The system includes a first reactive polynucleotide that reacts to a first analyte; a second reactive polynucleotide that reacts to a second analyte; a third polynucleotide; a fourth polynucleotide; a first particle, coupled to the third polynucleotide; a second particle, coupled to the fourth polynucleotide; and at least one quencher, for quenching emissions of the first and second quantum dots, coupled to the first and second reactive polynucleotides. The first particle includes a quantum dot having a first emission wavelength. The second particle includes a second quantum dot having a second emission wavelength different from the first emission wavelength. The third polynucleotide and the fourth polynucleotide are different.

  1. Preparation of crosslinked enzyme aggregates (CLEAs) of acid urease with urethanase activity and their application.

    Science.gov (United States)

    Zhang, Qian; Zha, Xiaohong; Zhou, Nandi; Tian, Yaping

    2016-04-01

    An acid urease from Providencia rettgeri JN-B815 was purified via ultrasonication, ethanol precipitation, and DEAE ion-exchange column chromatography. It was found that the enzyme exhibits not only urease activity, but also urethanase activity, which made it possible to reduce EC already existed or would produce and its precursor urea at the same time. Then, crosslinked enzyme aggregates of P. rettgeri urease (PRU-CLEAs) were prepared using genipin as crosslinking agent. The purification process of acid urease, the effects of genipin concentration, and crosslinking time on PRU-CLEAs activity were investigated. The crosslinking was performed at pH 4.5 for 2.5 h, using 0.3% genipin as crosslinking agent, and 0.3 g · L(-1) bovine serum albumin as protein feeder. Using the obtained PRU-CLEAs, the removal rate of urea was up to 9.31 mg · L(-1) · h(-1). The removal rate of urea was still up to 7.56 mg · L(-1) · h(-1) after PRU-CLEAs was re-used for 6 times. When PRU-CLEAs were applied in a batch stirred and membrane reactor, the removal rate of urea in rice wine reached 5.16 mg · L(-1) · h(-1) and the removal rate of EC was 9.21 μg · L(-1) · h(-1). Furthermore, the treatment with PRU-CLEAs revealed no significant change of volatile flavor substances in Chinese rice wine. Thus PRU-CLEAs have great potential in the elimination of EC in Chinese rice wine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Effects of Subacute Exposure of Peracetic Acid on Lipid Peroxidation and Hepatic Enzymes in Wistar Rats

    Science.gov (United States)

    Marjani, Abdoljalal; Golalipour, Mohammad J.; Gharravi, Anneh M.

    2010-01-01

    Objectives This study was undertaken to determine the effect of subacute exposure of peracetic acid on lipid peroxidation and hepatic enzymes in Wistar rats. Methods 48 male animals in Treatment Group I, II and III received 0.2%, 2% and 20% peracetic acid daily for 2 and 4 weeks. Results Serum malondialdehyde increased and Alanine Transaminase and Aspartate Transaminase decreased significantly in groups 2 and 3, compared to the control group. The malondialdehyde, Alanine Transaminase and Aspartate Transaminase with 0.2% and 2% doses of peracetic acid for 2 weeks do not lead to the alteration of malondialdehyde and enzyme activities. Conclusion This study demonstrated that the enhancement of malondialdehyde could provide an oxidative damage induced by disinfectant peroxidation at 20% and 2% doses at 2 and 4 weeks. The consumption of peroxidation with 20% for 2 weeks and 2% for 4 weeks can cause the increase of malondialdehyde and the decrease of enzyme activities, respectively. PMID:22043353

  3. Enzyme-linked immunosorbent assay (ELISA) for the anthropogenic marker isolithocholic acid in water.

    Science.gov (United States)

    Baldofski, Stefanie; Hoffmann, Holger; Lehmann, Andreas; Breitfeld, Stefan; Garbe, Leif-Alexander; Schneider, Rudolf J

    2016-11-01

    Bile acids are promising chemical markers to assess the pollution of water samples with fecal material. This study describes the optimization and validation of a direct competitive enzyme-linked immunosorbent assay for the bile acid isolithocholic acid (ILA). The quantification range of the optimized assay was between 0.09 and 15 μg/L. The assay was applied to environmental water samples. Most studies until now were focused on bile acid fractions in the particulate phase of water samples. In order to avoid tedious sample preparation, we undertook to evaluate the dynamics and significance of ILA levels in the aqueous phase. Very low concentrations in tap and surface water samples made a pre-concentration step necessary for this matrix as well as for wastewater treatment plant (WWTP) effluent. Mean recoveries for spiked water samples were between 97% and 109% for tap water and WWTP influent samples and between 102% and 136% for WWTP effluent samples. 90th percentiles of intra-plate and inter-plate coefficients of variation were below 10% for influents and below 20% for effluents and surface water. ILA concentrations were quantified in the range of 33-72 μg/L in influent, 21-49 ng/L in effluent and 18-48 ng/L in surface water samples. During wastewater treatment the ILA levels were reduced by more than 99%. ILA concentrations of influents determined by ELISA and LC-MS/MS were in good agreement. However, findings in LC-ELISA experiments suggest that the true ILA levels in concentrated samples are lower due to interfering effects of matrix compounds and/or cross-reactants. Yet, the ELISA will be a valuable tool for the performance check and comparison of WWTPs and the localization of fecal matter input into surface waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, A; Bhattacharya, A K

    1988-06-01

    The incorporation of (/sup 14/C)adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with /sup 60/Co ..gamma..-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of ..gamma..-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after high doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m/sup -2/) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as ..gamma..-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.

  5. Adenylate cyclase activity in fish gills in relation to salt adaptation

    International Nuclear Information System (INIS)

    Guibbolini, M.E.; Lahlou, B.

    1987-01-01

    The influence of salt adaptation on specific adenylate cyclase activity (measured by conversion of [α- 32 P] - ATP into [α- 32 P] - cAMP) was investigated in gill plasma membranes of rainbow trout (Salmo gairdneri) adapted to various salinities (deionized water, DW; fresh water, FW; 3/4 sea water, 3/4 SW; sea water, SW) and in sea water adapted- mullet (Mugil sp.). Basal activity declined by a factor of 2 in trout with increasing external salinity (pmoles cAMP/mg protein/10 min: 530 in DW, 440 in FW, 340 in 3/4 SW; 250 in SW) and was very low in SW adapted-mullet: 35. The Km for ATP was similar (0.5 mM) in both FW adapted- and SW adapted- trout in either the absence (basal activity) or in the presence of stimulating agents (isoproterenol; NaF) while the Vm varied. Analysis of stimulation ratios with respect to basal levels of the enzyme showed that hormones and pharmacological substances (isoproterenol, NaF) display a greater potency in high salt than in low salt adapted- fish gills. In contrast, salt adaptation did not have any effect on the regulation of adenylate cyclase by PGE 1 . These results are interpreted in relation to the general process of osmoregulation. 27 references, 6 figures

  6. Mechanism of adenylate kinase: Site-directed mutagenesis versus x-ray and NMR

    International Nuclear Information System (INIS)

    Tsai, Mingdaw; Yan, Honggao

    1991-01-01

    Controversy is an integral part of scientific research and is often a precursor to the truth. However, this lesson has been learned in a very hard way in the case of the structure-function relationship of adenylate kinase (AK), which catalyzes the interconversion between MgATP+AMP and MgADP+ADP. While this small kinase has been considered a model kinase and the enzyme-substrate interaction of AK was among the first investigated by X-ray crystallography and NMR the substrate binding sites deduced from the early studies by these two powerful techniques (termed the X-ray model and the NMR model, respectively) were dramatically different. Ironically, both models have had substantial impact on researchers in related fields. The problems have finally been dealt with since 1987 by the interplay between site-directed mutagenesis, X-ray, and NMR. The purpose of this review is not only to summarize the current knowledge in the structure-function relationship of adenylate kinase but also to accurately document and critically analyze historical developments in the hope that history will not be repeated

  7. Effects of sexually dimorphic growth hormone secretory patterns on arachidonic acid metabolizing enzymes in rodent heart

    International Nuclear Information System (INIS)

    Zhang, Furong; Yu, Xuming; He, Chunyan; Ouyang, Xiufang; Wu, Jinhua; Li, Jie; Zhang, Junjie; Duan, Xuejiao; Wan, Yu; Yue, Jiang

    2015-01-01

    The arachidonic acid (AA) metabolizing enzymes are the potential therapeutic targets of cardiovascular diseases (CVDs). As sex differences have been shown in the risk and outcome of CVDs, we investigated the regulation of heart AA metabolizing enzymes (COXs, LOXs, and CYPs) by sex-dependent growth hormone (GH) secretory patterns. The pulsatile (masculine) GH secretion at a physiological concentration decreased CYP1A1 and CYP2J3 mRNA levels more efficiently in the H9c2 cells compared with the constant (feminine) GH secretion; however, CYP1B1 mRNA levels were higher following the pulsatile GH secretion. Sex differences in CYP1A1, CYP1B1, and CYP2J11 mRNA levels were observed in both the wild-type and GHR deficient mice. No sex differences in the mRNA levels of COXs, LOXs, or CYP2E1 were observed in the wild-type mice. The constant GH infusion induced heart CYP1A1 and CYP2J11, and decreased CYP1B1 in the male C57/B6 mice constantly infused with GH (0.4 μg/h, 7 days). The activity of rat Cyp2j3 promoter was inhibited by the STAT5B protein, but was activated by C/EBPα (CEBPA). Compared with the constant GH administration, the levels of the nuclear phosphorylated STAT5B protein and its binding to the rat Cyp2j3 promoter were higher following the pulsatile GH administration. The constant GH infusion decreased the binding of the nuclear phosphorylated STAT5B protein to the mouse Cyp2j11 promoter. The data suggest the sexually dimorphic transcription of heart AA metabolizing enzymes, which might alter the risk and outcome of CVDs. GHR-STAT5B signal transduction pathway may be involved in the sex difference in heart CYP2J levels. - Highlights: • The transcription of heart Cyp1a1, Cyp1b1 and Cyp2j genes is sexually dimorphic. • There are no sex differences in the mRNA levels of heart COXs, LOXs, or CYP2E1. • GHR-STAT5B pathway is involved in sexually dimorphic transcription of heart Cpy2j genes. • Heart CYPs-mediated metabolism pathway of arachidonic acid may be sex

  8. Effects of sexually dimorphic growth hormone secretory patterns on arachidonic acid metabolizing enzymes in rodent heart

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Furong; Yu, Xuming [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); He, Chunyan [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Ouyang, Xiufang; Wu, Jinhua; Li, Jie; Zhang, Junjie; Duan, Xuejiao [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Wan, Yu [Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yue, Jiang, E-mail: yuejiang@whu.edu.cn [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-12-15

    The arachidonic acid (AA) metabolizing enzymes are the potential therapeutic targets of cardiovascular diseases (CVDs). As sex differences have been shown in the risk and outcome of CVDs, we investigated the regulation of heart AA metabolizing enzymes (COXs, LOXs, and CYPs) by sex-dependent growth hormone (GH) secretory patterns. The pulsatile (masculine) GH secretion at a physiological concentration decreased CYP1A1 and CYP2J3 mRNA levels more efficiently in the H9c2 cells compared with the constant (feminine) GH secretion; however, CYP1B1 mRNA levels were higher following the pulsatile GH secretion. Sex differences in CYP1A1, CYP1B1, and CYP2J11 mRNA levels were observed in both the wild-type and GHR deficient mice. No sex differences in the mRNA levels of COXs, LOXs, or CYP2E1 were observed in the wild-type mice. The constant GH infusion induced heart CYP1A1 and CYP2J11, and decreased CYP1B1 in the male C57/B6 mice constantly infused with GH (0.4 μg/h, 7 days). The activity of rat Cyp2j3 promoter was inhibited by the STAT5B protein, but was activated by C/EBPα (CEBPA). Compared with the constant GH administration, the levels of the nuclear phosphorylated STAT5B protein and its binding to the rat Cyp2j3 promoter were higher following the pulsatile GH administration. The constant GH infusion decreased the binding of the nuclear phosphorylated STAT5B protein to the mouse Cyp2j11 promoter. The data suggest the sexually dimorphic transcription of heart AA metabolizing enzymes, which might alter the risk and outcome of CVDs. GHR-STAT5B signal transduction pathway may be involved in the sex difference in heart CYP2J levels. - Highlights: • The transcription of heart Cyp1a1, Cyp1b1 and Cyp2j genes is sexually dimorphic. • There are no sex differences in the mRNA levels of heart COXs, LOXs, or CYP2E1. • GHR-STAT5B pathway is involved in sexually dimorphic transcription of heart Cpy2j genes. • Heart CYPs-mediated metabolism pathway of arachidonic acid may be sex

  9. Adenylate control contributes to thermal acclimation of sugar maple fine-root respiration in experimentally warmed soil.

    Science.gov (United States)

    Jarvi, Mickey P; Burton, Andrew J

    2018-03-01

    We investigated the occurrence of and mechanisms responsible for acclimation of fine-root respiration of mature sugar maple (Acer saccharum) after 3+ years of experimental soil warming (+4 to 5 °C) in a factorial combination with soil moisture addition. Potential mechanisms for thermal respiratory acclimation included changes in enzymatic capacity, as indicated by root N concentration; substrate limitation, assessed by examining nonstructural carbohydrates and effects of exogenous sugar additions; and adenylate control, examined as responses of root respiration to a respiratory uncoupling agent. Partial acclimation of fine-root respiration occurred in response to soil warming, causing specific root respiration to increase to a much lesser degree (14% to 26%) than would be expected for a 4 to 5 °C temperature increase (approximately 55%). Acclimation was greatest when ambient soil temperature was warmer or soil moisture availability was low. We found no evidence that enzyme or substrate limitation caused acclimation but did find evidence supporting adenylate control. The uncoupling agent caused a 1.4 times greater stimulation of respiration in roots from warmed soil. Sugar maple fine-root respiration in warmed soil was at least partially constrained by adenylate use, helping constrain respiration to that needed to support work being performed by the roots. © 2017 John Wiley & Sons Ltd.

  10. Effect of inhibition of microsomal Ca(2+)-ATPase on cytoplasmic calcium and enzyme secretion in pancreatic acini.

    Science.gov (United States)

    Metz, D C; Pradhan, T K; Mrozinski, J E; Jensen, R T; Turner, R J; Patto, R J; Gardner, J D

    1994-01-13

    We used thapsigargin (TG), 2,5-di-tert-butyl-1,4-benzohydroquinone (BHQ) and cyclopiazonic acid (CPA), each of which inhibits microsomal Ca(2+)-ATPase, to evaluate the effects of this inhibition on cytoplasmic free calcium ([Ca2+]i) and secretagogue-stimulated enzyme secretion in rat pancreatic acini. Using single-cell microspectrofluorimetry of fura-2-loaded acini we found that all three agents caused a sustained increase in [Ca2+]i by mobilizing calcium from inositol-(1,4,5)-trisphosphate-sensitive intracellular calcium stores and by promoting influx of extracellular calcium. Concentrations of all three agents that increased [Ca2+]i potentiated the stimulation of enzyme secretion caused by secretagogues that activate adenylate cyclase but inhibited the stimulation of enzyme secretion caused by secretagogues that activate phospholipase C. With BHQ, potentiation of adenylate cyclase-mediated enzyme secretion occurred immediately whereas inhibition of phospholipase C-mediated enzyme secretion occurred only after several min of incubation. In addition, the effects of BHQ and CPA on both [Ca2+]i and secretagogue-stimulated enzyme secretion were reversed completely by washing whereas the actions of TG could not be reversed by washing. Concentrations of BHQ in excess of those that caused maximal changes in [Ca2+]i inhibited all modes of stimulated enzyme secretion by a mechanism that was apparently unrelated to changes in [Ca2+]i. Finally, in contrast to the findings with TG and BHQ, CPA inhibited bombesin-stimulated enzyme secretion over a range of concentrations that was at least 10-fold lower than the range of concentrations over which CPA potentiated VIP-stimulated enzyme secretion.

  11. Acidic-alkaline ferulic acid esterase from Chaetomium thermophilum var. dissitum: Molecular cloning and characterization of recombinant enzyme expressed in Pichia pastoris

    DEFF Research Database (Denmark)

    Dotsenko, Gleb; Tong, Xiaoxue; Pilgaard, Bo

    2016-01-01

    A novel ferulic acid esterase encoding gene CtFae, was successfully cloned from a highly esterase active strain of the thermophile ascomycetous fungus Chaetomium thermophilum var. dissitum; the gene was heterologously expressed in Pichia pastoris KM71H. The recombinant enzyme (CtFae) was purified...... to homogeneity and subsequently characterized. CtFae was active towards synthetic esters of ferulic, p-coumaric, and caffeic acids, as well as towards wide range of p-nitrophenyl substrates. Its temperature and pH optima were 55 °C and pH 6.0, respectively. Enzyme rare features were broad pH optimum, high...

  12. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2017-08-15

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  13. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2016-03-22

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  14. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Science.gov (United States)

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2013-07-23

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  15. Current concepts on the physiology and genetics of neurotransmitters-mediating enzyme-aromatic L-amino acid decarboxylase

    International Nuclear Information System (INIS)

    Rahman, M.K.

    1993-03-01

    Two most important neurotransmitters, dopamine and serotonin are mediated by the enzyme aromatic L-amino acid decarboxylase (AADC). Because of their importance in the regulation of neuronal functions, behaviour and emotion of higher animals, many researchers are working on this enzyme to elucidate its physiological properties, structure and genetic aspects. We have discovered this enzyme in the mammalian blood, we established sensitive assay methods for the assay of the activities of this enzyme. We have made systematic studies on this enzyme in the tissues and brains of rats, and human subjects. We have found an endogenous inhibitor of this enzyme in the monkey's blood. The amino acid sequences of human AADC has been compared to rat or bovine. A full-length cDNA clone encoding human AADC has been isolated. Very recently the structure of human AADC gene including 5'-flaking region has been characterized and the transcriptional starting point has been determined. The human AADC gene assigned to chromosome 7. Up-to-date research data have shown that AADC is encoded by a single gene. Recently two patients with AADC deficiency were reported. This paper describes the systematic up-to-date review studies on AADC. (author). 62 refs, 5 figs, 8 tabs

  16. Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase .

    Science.gov (United States)

    Dey, Sanghamitra; Lane, James M; Lee, Richard E; Rubin, Eric J; Sacchettini, James C

    2010-08-10

    Mycobacterium tuberculosis (Mtb) depends on biotin synthesis for survival during infection. In the absence of biotin, disruption of the biotin biosynthesis pathway results in cell death rather than growth arrest, an unusual phenotype for an Mtb auxotroph. Humans lack the enzymes for biotin production, making the proteins of this essential Mtb pathway promising drug targets. To this end, we have determined the crystal structures of the second and third enzymes of the Mtb biotin biosynthetic pathway, 7,8-diaminopelargonic acid synthase (DAPAS) and dethiobiotin synthetase (DTBS), at respective resolutions of 2.2 and 1.85 A. Superimposition of the DAPAS structures bound either to the SAM analogue sinefungin or to 7-keto-8-aminopelargonic acid (KAPA) allowed us to map the putative binding site for the substrates and to propose a mechanism by which the enzyme accommodates their disparate structures. Comparison of the DTBS structures bound to the substrate 7,8-diaminopelargonic acid (DAPA) or to ADP and the product dethiobiotin (DTB) permitted derivation of an enzyme mechanism. There are significant differences between the Mtb enzymes and those of other organisms; the Bacillus subtilis DAPAS, presented here at a high resolution of 2.2 A, has active site variations and the Escherichia coli and Helicobacter pylori DTBS have alterations in their overall folds. We have begun to exploit the unique characteristics of the Mtb structures to design specific inhibitors against the biotin biosynthesis pathway in Mtb.

  17. Cyclic fatty acid monomers from dietary heated fats affect rat liver enzyme activity.

    Science.gov (United States)

    Lamboni, C; Sébédio, J L; Perkins, E G

    1998-07-01

    This study was conducted to investigate the effects of dietary cyclic fatty acid monomers (CFAM), contained in heated fat from a commercial deep-fat frying operation, on rat liver enzyme activity. A partially hydrogenated soybean oil (PHSBO) used 7 d (7-DH) for frying foodstuffs, or 0.15% methylated CFAM diets was fed to male weanling rats in comparison to a control group fed a nonheated PHSBO (NH) diet in a 10-wk experiment. All diets were isocaloric with 15% fat. Animals fed either CFAM or 7-DH diets showed increased hepatic content of cytochrome (cyt.) b5 and P450 and increased activity of (E.C. 1.6.2.4) NADPH-cyt. P450 reductase in comparison to the control rats. In addition, the activities of (E.C. 2.3.1.21) carnitine palmitoyltransferase-I and (E.C. 1.1.1.42) isocitrate dehydrogenase were significantly decreased when compared to that of rats fed the NH diet. A significantly depressed activity of (E.C. 1.1.1.49) glucose 6-phosphate dehydrogenase was also observed for these animals compared to the control rats fed NH diet. Moreover, liver and microsomal proteins were significantly increased when CFAM or 7-DH diets were fed to animals in comparison to controls while liver glycogen was decreased significantly in experimental groups of rats. The results obtained in this study indicate that the CFAM in the diet from either synthetic sources or used fats increase the activity of liver enzyme systems that detoxify them.

  18. In Silico Phylogenetic Analysis and Molecular Modelling Study of 2-Haloalkanoic Acid Dehalogenase Enzymes from Bacterial and Fungal Origin

    Directory of Open Access Journals (Sweden)

    Raghunath Satpathy

    2016-01-01

    Full Text Available 2-Haloalkanoic acid dehalogenase enzymes have broad range of applications, starting from bioremediation to chemical synthesis of useful compounds that are widely distributed in fungi and bacteria. In the present study, a total of 81 full-length protein sequences of 2-haloalkanoic acid dehalogenase from bacteria and fungi were retrieved from NCBI database. Sequence analysis such as multiple sequence alignment (MSA, conserved motif identification, computation of amino acid composition, and phylogenetic tree construction were performed on these primary sequences. From MSA analysis, it was observed that the sequences share conserved lysine (K and aspartate (D residues in them. Also, phylogenetic tree indicated a subcluster comprised of both fungal and bacterial species. Due to nonavailability of experimental 3D structure for fungal 2-haloalkanoic acid dehalogenase in the PDB, molecular modelling study was performed for both fungal and bacterial sources of enzymes present in the subcluster. Further structural analysis revealed a common evolutionary topology shared between both fungal and bacterial enzymes. Studies on the buried amino acids showed highly conserved Leu and Ser in the core, despite variation in their amino acid percentage. Additionally, a surface exposed tryptophan was conserved in all of these selected models.

  19. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Science.gov (United States)

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could

  20. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    Full Text Available Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%, Chaetomiaceae (17.6%, Incertae sadis (29.5%, Aureobasidiaceae (17.6%, Nectriaceae (5.9% and Sporomiaceae (17.6% from the phylloplane (leaf and caulosphere (stem of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33% than the stem (0.262%. The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583 than in the stem (0.416. Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL and cellulases (62.11±1.6 μM-1min-1mL, whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL and phosphatases (3.46±0.31μM-1min-1mL compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways. Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  1. Synthesis and study on biological activity of nitrogen-containing heterocyclic compounds – regulators of enzymes of nucleic acid biosynthesis

    Directory of Open Access Journals (Sweden)

    Alexeeva I. V.

    2013-07-01

    Full Text Available Results of investigations on the development of new regulators of functional activity of nucleic acid biosynthesis enzymes based on polycyclic nitrogen-containing heterosystems are summarized. Computer design and molecular docking in the catalytic site of target enzyme (T7pol allowed to perform the directed optimization of basic structures. Several series of compounds were obtained and efficient inhibitors of herpes family (simple herpes virus type 2, Epstein-Barr virus, influenza A and hepatitis C viruses were identified, as well as compounds with potent antitumor, antibacterial and antifungal activity. It was established that the use of model test systems based on enzymes participating in nucleic acids synthesis is a promising approach to the primary screening of potential inhibitors in vitro.

  2. Rate-limiting reaction in papain action as derived from the reaction of the enzyme with chloroacetic acid

    NARCIS (Netherlands)

    Sluyterman, L.A.A.E.

    1968-01-01

    Chloroacetic acid reacts with the essential thiol group of papain (EC 3.4.4.10) and inactivates the enzyme. The rate of inactivation, k, at pH 6.0, 25°, was determined in the absence and presence of the substrates benzoylarginine ethyl ester (BAEE) and benzoylglycine ethyl ester (BGEE). The rate was

  3. Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo

    DEFF Research Database (Denmark)

    Fuglsang, Anders; Rattray, Fergal; Nilsson, Dan

    2003-01-01

    A total of 26 strains of wild-type lactic acid bacteria, mainly belonging to Lactococcus lactis and Lactobacillus helveticus , were assayed in vitro for their ability to produce a milk fermentate with inhibitory activity towards angiotensin converting enzyme (ACE). It was clear that the test stra...

  4. EVALUATION OF AN ENZYME-LINKED IMMUNOSORBENT ASSAY FOR BIOLOGICAL MONITORING OF 3-PHENOXYBENZOIC ACID IN URINE

    Science.gov (United States)

    Abstract describes the development of an enzyme-linked immunosorbent assay (ELISA) method for monitoring 2,4-dichlorophenoxyacetic acid (2,4-D exposures). The ELISA is compared with a gas chromatograhy/mass spectrometry procedure. ELISA method development steps and comparative ...

  5. Effect of hypolipidemic drugs on basal and stimulated adenylate cyclase activity in tumor cells

    International Nuclear Information System (INIS)

    Bershtein, L.M.; Kovaleva, I.G.; Rozenberg, O.A.

    1986-01-01

    This paper studies adenylate cyclase acticvity in Ehrlich's ascites carcinoma (EAC) cells during administration of drugs with a hypolipidemic action. Seven to eight days before they were killed, male mice ingested the antidiabetic biguanide phenformin, and the phospholipid-containing preparation Essentiale in drinking water. The cAMP formed was isolated by chromatography on Silufol plates after incubation of the enzyme preparation with tritium-ATP, or was determined by the competitive binding method with protein. It is shown that despite the possible differences in the concrete mechanism of action of the hypolipidemic agents chosen for study on the cyclase system, the use of such agents, offers definite prospects for oriented modification of the hormone sensitivity of tumor cells

  6. Expression of the neurotransmitter-synthesizing enzyme glutamic acid decarboxylase in male germ cells.

    Science.gov (United States)

    Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M

    1990-09-01

    The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility.

  7. Involvement of the lysophosphatidic acid-generating enzyme autotaxin in lymphocyte-endothelial cell interactions.

    Science.gov (United States)

    Nakasaki, Tae; Tanaka, Toshiyuki; Okudaira, Shinichi; Hirosawa, Michi; Umemoto, Eiji; Otani, Kazuhiro; Jin, Soojung; Bai, Zhongbin; Hayasaka, Haruko; Fukui, Yoshinori; Aozasa, Katsuyuki; Fujita, Naoya; Tsuruo, Takashi; Ozono, Keiichi; Aoki, Junken; Miyasaka, Masayuki

    2008-11-01

    Autotaxin (ATX) is a secreted protein with lysophospholipase D activity that generates lysophosphatidic acid (LPA) from lysophosphatidylcholine. Here we report that functional ATX is selectively expressed in high endothelial venules (HEVs) of both lymph nodes and Peyer's patches. ATX expression was developmentally regulated and coincided with lymphocyte recruitment to the lymph nodes. In adults, ATX expression was independent of HEV-expressed chemokines such as CCL21 and CXCL13, innate immunity signals including those via TLR4 or MyD88, and of the extent of lymphocyte trafficking across the HEVs. ATX expression was induced in venules at sites of chronic inflammation. Receptors for the ATX enzyme product LPA were constitutively expressed in HEV endothelial cells (ECs). In vitro, LPA induced strong morphological changes in HEV ECs. Forced ATX expression caused cultured ECs to respond to lysophosphatidylcholine, up-regulating lymphocyte binding to the ECs in a LPA receptor-dependent manner under both static and flow conditions. Although in vivo depletion of circulating ATX did not affect lymphocyte trafficking into the lymph nodes, we surmise, based on the above data, that ATX expressed by HEVs acts on HEVs in situ to facilitate lymphocyte binding to ECs and that ATX in the general circulation does not play a major role in this process. Tissue-specific inactivation of ATX will verify this hypothesis in future studies of its mechanism of action.

  8. Degradation of Perfluorooctanoic Acid and Perfluoroctane Sulfonate by Enzyme Catalyzed Oxidative Humification Reactions

    Science.gov (United States)

    Huang, Q.

    2016-12-01

    Poly- and perfluoroalkyl substances (PFASs) are alkyl based chemicals having multiple or all hydrogens replaced by fluorine atoms, and thus exhibit high thermal and chemical stability and other unusual characteristics. PFASs have been widely used in a wide variety of industrial and consumer products, and tend to be environmentally persistent. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative PFASs that have drawn particular attention because of their ubiquitous presence in the environment, resistance to degradation and toxicity to animals. This study examined the decomposition of PFOA and PFOS in enzyme catalyzed oxidative humification reactions (ECOHR), a class of reactions that are ubiquitous in the environment involved in natural organic humification. Reaction rates and influential factors were examined, and high-resolution mass spectrometry was used to identify possible products. Fluorides and partially fluorinated compounds were identified as likely products from PFOA and PFOS degradation, which were possibly formed via a combination of free radical decomposition, rearrangements and coupling processes. The findings suggest that PFOA and PFOS may be transformed during humification, and ECOHR can potentially be used for the remediation of these chemicals.

  9. Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo.

    Science.gov (United States)

    Fuglsang, Anders; Rattray, Fergal P; Nilsson, Dan; Nyborg, Niels C B

    2003-01-01

    A total of 26 strains of wild-type lactic acid bacteria, mainly belonging to Lactococcus lactis and Lactobacillus helveticus, were assayed in vitro for their ability to produce a milk fermentate with inhibitory activity towards angiotensin converting enzyme (ACE). It was clear that the test strains in this study, in general, produce inhibitory substances in varying amounts. Using a spectrophotometric assay based on amino group derivatization with ortho-phthaldialdehyde as a measure of relative peptide content, it was shown that there is a significant correlation between peptide formation and ACE inhibition, indicating that peptide measurement constitutes a convenient selection method. The effect of active fermentates on in vivo ACE activity was demonstrated in normotensive rats. The pressor effect of angiotensin I (0.3 microg/kg) upon intravenous injection was significantly lower when rats were pre-fed with milks fermented using two strains of Lactobacillus helveticus. An increased response to bradykinin (10 microg/kg, intravenously injected) was observed using one of these fermented milks. It is concluded that Lactobacillus helveticus produces substances which in vivo can give rise to an inhibition of ACE. The inhibition in vivo was low compared to what can be achieved with classical ACE inhibitors. The clinical relevance of this finding is discussed. This work is the first in which an effect of fermented milk on ACE in vivo has been demonstrated, measured as decreased ability to convert angiotensin I to angiotensin II.

  10. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme.

    Science.gov (United States)

    Brown, Breann L; Kardon, Julia R; Sauer, Robert T; Baker, Tania A

    2018-04-03

    5-Aminolevulinic acid synthase (ALAS) catalyzes the first step in heme biosynthesis. We present the crystal structure of a eukaryotic ALAS from Saccharomyces cerevisiae. In this homodimeric structure, one ALAS subunit contains covalently bound cofactor, pyridoxal 5'-phosphate (PLP), whereas the second is PLP free. Comparison between the subunits reveals PLP-coupled reordering of the active site and of additional regions to achieve the active conformation of the enzyme. The eukaryotic C-terminal extension, a region altered in multiple human disease alleles, wraps around the dimer and contacts active-site-proximal residues. Mutational analysis demonstrates that this C-terminal region that engages the active site is important for ALAS activity. Our discovery of structural elements that change conformation upon PLP binding and of direct contact between the C-terminal extension and the active site thus provides a structural basis for investigation of disruptions in the first step of heme biosynthesis and resulting human disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Alteration of Fatty-Acid-Metabolizing Enzymes Affects Mitochondrial Form and Function in Hereditary Spastic Paraplegia

    Science.gov (United States)

    Tesson, Christelle; Nawara, Magdalena; Salih, Mustafa A.M.; Rossignol, Rodrigue; Zaki, Maha S.; Al Balwi, Mohammed; Schule, Rebecca; Mignot, Cyril; Obre, Emilie; Bouhouche, Ahmed; Santorelli, Filippo M.; Durand, Christelle M.; Oteyza, Andrés Caballero; El-Hachimi, Khalid H.; Al Drees, Abdulmajeed; Bouslam, Naima; Lamari, Foudil; Elmalik, Salah A.; Kabiraj, Mohammad M.; Seidahmed, Mohammed Z.; Esteves, Typhaine; Gaussen, Marion; Monin, Marie-Lorraine; Gyapay, Gabor; Lechner, Doris; Gonzalez, Michael; Depienne, Christel; Mochel, Fanny; Lavie, Julie; Schols, Ludger; Lacombe, Didier; Yahyaoui, Mohamed; Al Abdulkareem, Ibrahim; Zuchner, Stephan; Yamashita, Atsushi; Benomar, Ali; Goizet, Cyril; Durr, Alexandra; Gleeson, Joseph G.; Darios, Frederic; Brice, Alexis; Stevanin, Giovanni

    2012-01-01

    Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function. PMID:23176821

  12. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    Energy Technology Data Exchange (ETDEWEB)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  13. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB.20

    International Nuclear Information System (INIS)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT 1C receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing [ 3 H]serotonin, [ 3 H]lysergic acid diethylamide or [ 3 H]dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor

  14. Effects of ionizing radiation on the activity of the major hepatic enzymes implicated in bile acid biosynthesis in the rat

    International Nuclear Information System (INIS)

    Souidi, M.; Scanff, P.; Grison, St.; Gourmelon, P.; Aigueperse, J.

    2007-01-01

    In the days following high-dose radiation exposure, damage to small intestinal mucosa is aggravated by changes in the bile acid pool reaching the gut. Intestinal bile acid malabsorption, as described classically, may be associated with altered hepatic bile acid biosynthesis, which was the objective of this work. The activity of the main rate-limiting enzymes implicated in the bile acid biosynthesis were evaluated in the days following an 8-Gy γ Co 60 total body irradiation of rats, with concomitant determination of biliary bile acid profiles and intestinal bile acid content. Modifications of biliary bile acid profiles, observed as early as the first post-irradiation day, were most marked at the third and fourth day, and resulted in an increased hydrophobicity index. In parallel, the intestinal bile acids' content was enhanced and hepatic enzymatic activities leading to bile acids were changed. A marked increase of sterol 12-hydroxylase and decrease of oxy-sterol 7-hydroxylase activity was observed at day 3, whereas both cholesterol 7-hydroxylase and oxy-sterol 7-hydroxylase activities were decreased at day 4 after irradiation. These results show, for the first time, radiation-induced modifications of hepatic enzymatic activities implicated in bile acid biosynthesis and suggest that they are mainly a consequence of radiation-altered intestinal absorption, which induces a physiological response of the entero-hepatic bile acid recirculation. (authors)

  15. Comparison of the effects of gemfibrozil and clofibric acid on peroxisomal enzymes and cholesterol synthesis of rat hepatocytes.

    Science.gov (United States)

    Hashimoto, F; Taira, S; Hayashi, H

    1998-11-01

    We studied whether the peroxisomal proliferation, induction of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and activation of cholesterol synthesis by gemfibrozil shown in whole body (Hashimoto F., Ishikawa T., Hamada S. and Hayashi H., Biochemical. Pharm., 49, 1213-1221 (1995)) is also detected at a culture cell level, and we made a comparative analysis of the effects of clofibric acid. Gemfibrozil at 0.25 mM increased the activity of some peroxisomal enzymes (catalase and the cyanide-insensitive fatty acyl-CoA oxidizing system) after incubation for 72 h. However, contrary to whole body experiments, gemfibrozil decreased the activity of HMG-CoA reductase and cholesterol synthesis from [14C]acetate. At 1 mM, gemfibrozil decreased not only the activity of HMG-CoA reductase and cholesterol synthesis, but also the protein content of the cells and peroxisomal enzyme activity, indicating nonspecific inhibition at this concentration. Clofibric acid (0.25 and 1 mM) increased the activity of peroxisomal enzymes, but decreased the activity of HMG-CoA reductase and cholesterol synthesis. With respect to the direct effect on HMG-CoA reductase in the cell homogenate, gemfibrozil at 0.25 mm did not affect the activity, but it clearly inhibited the activity at 2 mM and above. Clofibric acid at 2 mM hardly affected the activity, but it clearly decreased the activity at 5 mM and over. That is, gemfibrozil directly inhibited the activity more strongly than clofibric acid. The direct inhibition of the enzyme itself required higher concentrations of both agents than did inhibition at the culture cell level. These results suggest that the cytotoxicity of gemfibrozil is greater than that of clofibric acid, and that gemfibrozil, as well as clofibric acid, can induce peroxisomal enzymes in the culture cell level. In contrast to whole body results, gemfibrozil may suppress cholesterol synthesis from [14C]acetate through the inhibition of HMG-CoA reductase at the culture

  16. Immbolization of uricase enzyme in Langmuir and Langmuir-Blodgett films of fatty acids: possible use as a uric acid sensor.

    Science.gov (United States)

    Zanon, Nathaly C M; Oliveira, Osvaldo N; Caseli, Luciano

    2012-05-01

    Preserving the enzyme structure in solid films is key for producing various bioelectronic devices, including biosensors, which has normally been performed with nanostructured films that allow for control of molecular architectures. In this paper, we investigate the adsorption of uricase onto Langmuir monolayers of stearic acid (SA), and their transfer to solid supports as Langmuir-Blodgett (LB) films. Structuring of the enzyme in β-sheets was preserved in the form of 1-layer LB film, which was corroborated with a higher catalytic activity than for other uricase-containing LB film architectures where the β-sheets structuring was not preserved. The optimized architecture was also used to detect uric acid within a range covering typical concentrations in the human blood. The approach presented here not only allows for an optimized catalytic activity toward uric acid but also permits one to explain why some film architectures exhibit a superior performance. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Salazar, Margarita Pena; Schaap, Peter J.

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme......-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15...

  18. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    Directory of Open Access Journals (Sweden)

    Jin Sun

    2010-11-01

    Full Text Available This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid. The highest degree of hydrolysis (DH was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain, with an optimum condition of: (1 ratio of enzyme and substrate, 4760 U/g; (2 concentration of substrate, 4%; (3 reaction temperature, 55 °C and (4 pH 7.0. At 4 h, DH increased significantly (P < 0.01 under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen.

  19. Production of N-acetyl-D-neuraminic acid using two sequential enzymes overexpressed as double-tagged fusion proteins

    Directory of Open Access Journals (Sweden)

    Cheng Chung-Hsien

    2009-07-01

    Full Text Available Abstract Background Two sequential enzymes in the production of sialic acids, N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase and N-acetyl-D-neuraminic acid aldolase (Neu5Ac aldolase, were overexpressed as double-tagged gene fusions. Both were tagged with glutathione S-transferase (GST at the N-terminus, but at the C-terminus, one was tagged with five contiguous aspartate residues (5D, and the other with five contiguous arginine residues (5R. Results Both fusion proteins were overexpressed in Escherichia coli and retained enzymatic activity. The fusions were designed so their surfaces were charged under enzyme reaction conditions, which allowed isolation and immobilization in a single step, through a simple capture with either an anionic or a cationic exchanger (Sepharose Q or Sepharose SP that electrostatically bound the 5D or 5R tag. The introduction of double tags only marginally altered the affinity of the enzymes for their substrates, and the double-tagged proteins were enzymatically active in both soluble and immobilized forms. Combined use of the fusion proteins led to the production of N-acetyl-D-neuraminic acid (Neu5Ac from N-acetyl-D-glucosamine (GlcNAc. Conclusion Double-tagged gene fusions were overexpressed to yield two enzymes that perform sequential steps in sialic acid synthesis. The proteins were easily immobilized via ionic tags onto ionic exchange resins and could thus be purified by direct capture from crude protein extracts. The immobilized, double-tagged proteins were effective for one-pot enzymatic production of sialic acid.

  20. 2-Hexadecynoic acid inhibits plasmodial FAS-II enzymes and arrests erythrocytic and liver stage Plasmodium infections.

    Science.gov (United States)

    Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H; Brun, Reto; Carballeira, Néstor M

    2010-11-01

    Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of Plasmodium yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC(50) value 6.6 μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC(50) value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescence analysis (IC(50) 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory activity against the PfFAS-II enzymes PfFabI and PfFabZ with IC(50) values of 0.38 and 0.58 μg/ml (IC(50) control drugs 14 and 30 ng/ml), respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC(50) values 3.7-31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC(50) 20.2 μg/ml), and Leishmania donovani (IC(50) values 4.1-13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature, and calculated pharmacokinetic properties suggests that 2-HDA could be a useful compound to

  1. 2-Hexadecynoic Acid Inhibits Plasmodial FAS-II Enzymes and Arrest Erythrocytic and Liver Stage Plasmodium Infections

    Science.gov (United States)

    Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L.; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H.; Brun, Reto; Carballeira, Néstor M.

    2010-01-01

    Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of P. yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC50 value 6.6. μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC50 value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescense analysis (IC50 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory against the PfFAS-II enzymes PfFabI and PfFabZ with IC50 values of 0.38 and 0.58 μg/ml (IC50 control drugs 14 and 30 ng/ml) respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC50 values 3.7–31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC50 20.2 μg/ml), and Leishmania donovani (IC50 values 4.1–13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature and calculated pharmacokinetic properties suggest that 2-HDA could be a useful compound to study the interaction of fatty

  2. The Cell Wall Teichuronic Acid Synthetase (TUAS Is an Enzyme Complex Located in the Cytoplasmic Membrane of Micrococcus luteus

    Directory of Open Access Journals (Sweden)

    Lingyi Lynn Deng

    2010-01-01

    composed of disaccharide repeating units [-4-β-D-ManNAcAp-(1→6α-D-Glcp−1-]n, which is covalently anchored to the peptidoglycan on the inner cell wall and extended to the outer surface of the cell envelope. An enzyme complex responsible for the TUA chain biosynthesis was purified and characterized. The 440 kDa enzyme complex, named teichuronic acid synthetase (TUAS, is an octomer composed of two kinds of glycosyltransferases, Glucosyltransferase, and ManNAcA-transferase, which is capable of catalyzing the transfer of disaccharide glycosyl residues containing both glucose and the N-acetylmannosaminuronic acid residues. TUAS displays hydrophobic properties and is found primarily associated with the cytoplasmic membrane. The purified TUAS contains carotinoids and lipids. TUAS activity is diminished by phospholipase digestion. We propose that TUAS serves as a multitasking polysaccharide assembling station on the bacterial membrane.

  3. Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines

    Czech Academy of Sciences Publication Activity Database

    Šebo, Peter; Osička, Radim; Mašín, Jiří

    2014-01-01

    Roč. 13, č. 10 (2014), s. 1215-1227 ISSN 1476-0584 R&D Projects: GA ČR GA13-14547S; GA ČR(CZ) GAP302/11/0580; GA ČR GAP302/12/0460 Institutional support: RVO:61388971 Keywords : adenylate cyclase toxin * antigen delivery * Bordetella pertussis Subject RIV: EE - Microbiology, Virology Impact factor: 4.210, year: 2014

  4. An Additional Method for Analyzing the Reversible Inhibition of an ?Enzyme Using Acid Phosphatase as a Model

    OpenAIRE

    Baumhardt, Jordan M.; Dorsey, Benjamin M.; McLauchlan, Craig C.; Jones, Marjorie A.

    2015-01-01

    Using wheat germ acid phosphatase and sodium orthovanadate as a competitive inhibitor, a novel method for analyzing reversible inhibition was carried out. Our alternative approach involves plotting the initial velocity at which product is formed as a function of the ratio of substrate concentration to inhibitor concentration at a constant enzyme concentration and constant assay conditions. The concept of initial concentrations driving equilibrium leads to the chosen axes. Three apparent const...

  5. THE COORDINATION COMPOUNDS OF COBALT (II, III) WITH DITHIOCARBAMIC ACID DERIVATIVES — MODIFICATORS OF HYDROLYTIC ENZYMES ACTIVITY

    OpenAIRE

    L. D. Varbanets; О. V. Matselyukh; N. А. Nidyalkova; Е. V. Аvdiyuk; А. V. Gudzenko; I. I. Seifullina; G. N. Маsаnоvets; N. V. Khitrich

    2013-01-01

    Chloride, bromide and isothiocyanate complexes of cobalt(II) with N-substituted thiocarbamoyl-N?-pentamethylenesulfenamides (1)–(12), and also complexes of cobalt(II, Ш) with derivatives of morpholine-4-carbodithioic acid (13)–(18) have been used as modificators of enzymes of hydrolytic action — Bacillus thurin-giensis ІМВ В-7324 peptidases, Bacillus subtilis 147 and Aspergillus flavus var. oryzae 80428 amylases, Eupenicillium erubescens 248 and Cryptococcus albidus 1001 rhamnosidases. It was...

  6. Modeling and simulation of enzymatic gluconic acid production using immobilized enzyme and CSTR-PFTR circulation reaction system.

    Science.gov (United States)

    Li, Can; Lin, Jianqun; Gao, Ling; Lin, Huibin; Lin, Jianqiang

    2018-04-01

    Production of gluconic acid by using immobilized enzyme and continuous stirred tank reactor-plug flow tubular reactor (CSTR-PFTR) circulation reaction system. A production system is constructed for gluconic acid production, which consists of a continuous stirred tank reactor (CSTR) for pH control and liquid storage and a plug flow tubular reactor (PFTR) filled with immobilized glucose oxidase (GOD) for gluconic acid production. Mathematical model is developed for this production system and simulation is made for the enzymatic reaction process. The pH inhibition effect on GOD is modeled by using a bell-type curve. Gluconic acid can be efficiently produced by using the reaction system and the mathematical model developed for this system can simulate and predict the process well.

  7. Salinity and Salicylic Acid Interactions in Affecting Nitrogen Assimilation, Enzyme Activity, Ions Content and Translocation Rate of Maize Plants

    International Nuclear Information System (INIS)

    Khodary, S.E.A.; Moussa, H.R.

    2002-01-01

    This study was carried out to establish the relationship between nitrogen metabolism, enzyme activity, ions concentration as well as the translocation rate (TR) of carbohydrates and salicylic acid (SA) in salt-stressed maize (Zea mays L). Salicylic acid plus salinity treatment highly significantly increased: nucleic acids (DNA and RNA), protein content, phosphoenolpyruvate carboxylase (PEPCase) and nitrate reductase (NR) and inhibited nucleases (DNase and RNase) activities compared with Na CI-treated plants. In addition, the ionic levels of potassium (K), phosphorus (P), nitrate (NO 3 ) and the translocation rate of the labelled photo assimilates have also been stimulated while sodium (Na) ions content was decreased. It is concluded that, salinazid maize plants might show an enhancement in their growth pattern upon salicylic acid application

  8. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    Science.gov (United States)

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil.

  9. Effect of calcium and salicylic acid on quality retention in relation to antioxidative enzymes in radish stored under refrigerated conditions.

    Science.gov (United States)

    Devi, Jomika; Bhatia, Surekha; Alam, M S; Dhillon, Tarsem Singh

    2018-03-01

    Effect of post harvest treatments with calcium chloride (CaCl 2 ) and salicylic acid (SA) on physiological and biochemical parameters in relation to activities of antioxidative enzymes were investigated in radish. Radish of variety Punjab Safed Mooli 2 was harvested, washed and treated with CaCl 2 (1, 1.5 and 2%) or SA (1, 1.5 and 2 mM). Treated as well as untreated radish were placed in open trays and stored under refrigerated (5 ± 1 °C, 90% RH) conditions for 42 days. Treatment of radish with CaCl 2 and SA slowed down changes in physiological weight, colour, total soluble solids, ascorbic acid, titrable acidity, total phenolics and antioxidant activity. Treated samples exhibited higher enhancement in activities of antioxidant enzymes viz. catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), peroxidase (POD), dehydroascorbate reductase (DHAR) and monodehydro-ascorbate reductase (MDHAR) than untreated samples. However SA was found to be more effective in slowing down the metabolic activities of radish as compared to CaCl 2 treatment. Among all the treatments, 1.5 mM SA maintained the quality parameters to greater extent probably by reducing the oxidative stress to larger extent due to highest activities of antioxidative enzymes and can be used to enhance the shelf life of radish during refrigerated storage.

  10. The Effects of Subacute Exposure of Peracetic Acid on Lipid Peroxidation and Hepatic Enzymes in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Abdoljalal Marjani

    2010-10-01

    Full Text Available Objectives: This study was undertaken to determine the effect of subacute exposure of peracetic acid on lipid peroxidation and hepatic enzymes in Wistar rats.Methods: 48 male animals in Treatment Group I, II and III received 0.2%, 2% and 20% peracetic acid daily for 2 and 4 weeks.Results: Serum malondialdehyde increased and Alanine Transaminase and Aspartate Transaminase decreased significantly in groups 2 and 3, compared to the control group. The malondialdehyde, Alanine Transaminase and Aspartate Transaminase with 0.2% and 2% doses of peracetic acid for 2 weeks do not lead to the alteration of malondialdehyde and enzyme activities.Conclusion: This study demonstrated that the enhancement of malondialdehyde could provide an oxidative damage induced by disinfectant peroxidation at 20% and 2% doses at 2 and 4 weeks. The consumption of peroxidation with 20% for 2 weeks and 2% for 4 weeks can cause the increase of malondialdehyde and the decrease of enzyme activities, respectively.

  11. Metabolomics of prematurity: analysis of patterns of amino acids, enzymes, and endocrine markers by categories of gestational age.

    Science.gov (United States)

    Wilson, Kumanan; Hawken, Steven; Ducharme, Robin; Potter, Beth K; Little, Julian; Thébaud, Bernard; Chakraborty, Pranesh

    2014-02-01

    Prematurity may influence the levels of amino acids, enzymes, and endocrine markers obtained through newborn screening. Identifying which analytes are the most affected by degree of prematurity could provide insight into how prematurity impacts metabolism. Analytes from blood spots assayed by Newborn Screening Ontario between March 2006 and April 2009 were used in this analysis. We examined the associations between the degree of prematurity and the levels of amino acids, enzymes, and endocrine markers in all newborns with and without adjustment for birth weight, feeding status, sample timing, transfusion, and sex. Our analysis included the following cohorts: 373,819 children born at term (>36 wk gestation), 26,483 near-term children (33-36 wk gestation), 4,354 very premature children (28-32 wk gestation), and 1,146 extremely premature children (prematurity, the levels of three amino acids (arginine, leucine, and valine) were at least 50% different between the cohorts of extremely premature and term children. The levels of 17-hydroxyprogesterone increased with increasing prematurity, while thyrotropin-stimulating hormone values consistently decreased with increasing prematurity. None of the three enzyme markers we examined showed a trend in levels across categories of prematurity. This study demonstrates that children at different stages of prematurity are metabolically distinct. Future research should focus on the mechanism by which specific analytes are influenced by prematurity.

  12. The shikimate pathway: review of amino acid sequence, function and three-dimensional structures of the enzymes.

    Science.gov (United States)

    Mir, Rafia; Jallu, Shais; Singh, T P

    2015-06-01

    The aromatic compounds such as aromatic amino acids, vitamin K and ubiquinone are important prerequisites for the metabolism of an organism. All organisms can synthesize these aromatic metabolites through shikimate pathway, except for mammals which are dependent on their diet for these compounds. The pathway converts phosphoenolpyruvate and erythrose 4-phosphate to chorismate through seven enzymatically catalyzed steps and chorismate serves as a precursor for the synthesis of variety of aromatic compounds. These enzymes have shown to play a vital role for the viability of microorganisms and thus are suggested to present attractive molecular targets for the design of novel antimicrobial drugs. This review focuses on the seven enzymes of the shikimate pathway, highlighting their primary sequences, functions and three-dimensional structures. The understanding of their active site amino acid maps, functions and three-dimensional structures will provide a framework on which the rational design of antimicrobial drugs would be based. Comparing the full length amino acid sequences and the X-ray crystal structures of these enzymes from bacteria, fungi and plant sources would contribute in designing a specific drug and/or in developing broad-spectrum compounds with efficacy against a variety of pathogens.

  13. The synthesis of glutamic acid in the absence of enzymes: Implications for biogenesis

    Science.gov (United States)

    Morowitz, Harold; Peterson, Eta; Chang, Sherwood

    1995-01-01

    This paper reports on the non-enzymatic aqueous phase synthesis of amino acids from keto acids, ammonia and reducing agents. The facile synthesis of key metabolic intermediates, particularly in the glycolytic pathway, the citric acid cycle, and the first step of amino acid synthesis, lead to new ways of looking at the problem of biogenesis.

  14. Distribution and protective function of pituitary adenylate cyclase-activating polypeptide (PACAP in the retina

    Directory of Open Access Journals (Sweden)

    Tomoya eNakamachi

    2012-11-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP, which is found in 27- or 38-amino acid forms, belongs to the VIP/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert a protective effect against several types of neural damage. The retina is considered to be part of the central nervous system, and retinopathy is a common cause of profound and intractable loss of vision. This review will examine the expression and morphological distribution of PACAP and its receptors in the retina, and will summarize the current state of knowledge regarding the protective effect of PACAP against different kinds of retinal damage, such as that identified in association with diabetes, ultraviolet light, hypoxia, optic nerve transection, and toxins. This article will also address PACAP-mediated protective pathways involving retinal glial cells.

  15. Celluloytic enzymes, nucleic acids encoding them and methods for making and using them

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Kevin A; Zhao, Lishan; Cayouette, Michelle H

    2015-11-04

    The invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  16. Celluloytic enzymes, nucleic acids encoding them and methods for making and using them

    Science.gov (United States)

    Gray, Kevin A.; Zhao, Lishan; Cayouette, Michelle H.

    2015-09-08

    The invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  17. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation

    NARCIS (Netherlands)

    Molven, Anders; Matre, Guri E.; Duran, Marinus; Wanders, Ronald J.; Rishaug, Unni; Njølstad, Pål R.; Jellum, Egil; Søvik, Oddmund

    2004-01-01

    Inappropriately elevated insulin secretion is the hallmark of persistent hyperinsulinemic hypoglycemia of infancy (PHHI), also denoted congenital hyperinsulinism. Causal mutations have been uncovered in genes coding for the beta-cell's ATP-sensitive potassium channel and the metabolic enzymes

  18. THE COORDINATION COMPOUNDS OF COBALT (II, III WITH DITHIOCARBAMIC ACID DERIVATIVES — MODIFICATORS OF HYDROLYTIC ENZYMES ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. D. Varbanets

    2013-02-01

    Full Text Available Chloride, bromide and isothiocyanate complexes of cobalt(II with N-substituted thiocarbamoyl-N?-pentamethylenesulfenamides (1–(12, and also complexes of cobalt(II, Ш with derivatives of morpholine-4-carbodithioic acid (13–(18 have been used as modificators of enzymes of hydrolytic action — Bacillus thurin-giensis ІМВ В-7324 peptidases, Bacillus subtilis 147 and Aspergillus flavus var. oryzae 80428 amylases, Eupenicillium erubescens 248 and Cryptococcus albidus 1001 rhamnosidases. It was shown that cobalt (II, Ш compounds influence differently on the activity of enzymes tested, exerted both inhibitory and stimulatory action. It gives a possibility to expect that manifestation of activity by complex molecule depends on ligand and anion presence — Cl–, Br– or NCS–. The high activating action of cobalt(II complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides (1–(12 on elastase and fibrinolytic activity of peptidases compared to tris(4-morpholinecarbodithioatocobalt(ІІІ (14 and products of its interaction with halogens (15–(17, causes inhibitory effect that is probably due to presence of a weekly S–N link, which is easy subjected to homolytic breaking. The studies of influences of cobalt(II complexes on activity of C. аlbidus and E. еrubescens ?-Lrhamnosidases showed, that majority of compounds inhibits of its activity, at that the most inhibitory effect exerts to C. аlbidus enzyme.To sum up, it is possible to state that character of influence of cobalt(II complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides, and also cobalt(II, Ш complexes with derivatives of morpholine-4-carbodithioic acid varies depending on both strain producer and enzyme tested. The difference in complex effects on enzymes tested are due to peculiarities of building and functional groups of their active centers, which are also responsible for binding with modificators.

  19. The Peroxisomal Enzyme L-PBE Is Required to Prevent the Dietary Toxicity of Medium-Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2013-10-01

    Full Text Available Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe−/− mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.

  20. The role of axial chirality in Schiff bases of pyridoxal phosphate and amino acids in the mechanism of racemase enzyme : a quantum-chemical study

    NARCIS (Netherlands)

    Genderen, van M.H.P.; Buck, H.M.

    1989-01-01

    In the enzymatic racemization of L and D amino acids, the coenzyme pyridoxal phosphate (PLP) forms a Schiff base with the amino acid. In the first step of the isomerization reaction, both the L and D PLP-amino acid compounds are deprotonated by a single basic site in the enzyme, which is normally

  1. Genome-wide identification of bahd acyltransferases and in vivo characterization of HQT-like enzymes involved in caffeoylquinic acid synthesis in globe artichoke

    NARCIS (Netherlands)

    Moglia, Andrea; Acquadro, Alberto; Eljounaidi, Kaouthar; Milani, Anna M.; Cagliero, Cecilia; Rubiolo, Patrizia; Genre, Andrea; Cankar, Katarina; Beekwilder, Jules; Comino, Cinzia

    2016-01-01

    Globe artichoke (Cynara cardunculus L. var. scolymus) is a rich source of compounds promoting human health (phytonutrients), among them caffeoylquinic acids (CQAs), mainly represented by chlorogenic acid (CGA), and dicaffeoylquinic acids (diCQAs). The enzymes involved in their biosynthesis belong

  2. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle.

    Science.gov (United States)

    Terada, Shin; Tabata, Izumi; Higuchi, Mitsuru

    2004-02-01

    We previously reported that high-intensity exercise training significantly increased citrate synthase (CS) activity, a marker of oxidative enzyme, in rat skeletal muscle to a level equaling that attained after low-intensity prolonged exercise training (Terada et al., J Appl Physiol 90: 2019-2024, 2001). Since mitochondrial oxidative enzymes and fatty acid oxidation (FAO) enzymes are often increased simultaneously, we assessed the effect of high-intensity intermittent swimming training on FAO enzyme activity in rat skeletal muscle. Male Sprague-Dawley rats (3 to 4 weeks old) were assigned to a 10-day period of high-intensity intermittent exercise training (HIT), low-intensity prolonged exercise training (LIT), or sedentary control conditions. In the HIT group, the rats repeated fourteen 20 s swimming sessions with a weight equivalent to 14-16% of their body weight. Between the exercise sessions, a 10 s pause was allowed. Rats in the LIT group swam 6 h/day in two 3 h sessions separated by 45 min of rest. CS activity in the triceps muscle of rats in the HIT and LIT groups was significantly higher than that in the control rats by 36 and 39%, respectively. Furthermore, 3-beta hydroxyacyl-CoA dehydrogenase (HAD) activity, an important enzyme in the FAO pathway in skeletal muscle, was higher in the two training groups than in the control rats (HIT: 100%, LIT: 88%). No significant difference in HAD activity was observed between the two training groups. In conclusion, the present investigation demonstrated that high-intensity intermittent swimming training elevated FAO enzyme activity in rat skeletal muscle to a level similar to that attained after 6 h of low-intensity prolonged swimming exercise training.

  3. Fatty acid biosynthesis. VIII. The fate of malonyl-CoA in fatty acid biosynthesis by purified enzymes from lactating-rabbit mammary gland

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1971-01-01

    - 1. We have investigated the formation and utilization of malonyl-CoA in fatty acid synthesis catalysed by preparations of partially purified acetyl-CoA carboxylase and purified fatty acid synthetase from lactating-rabbit mammary gland. - 2. Carboxylation of [1-14C]acetyl-CoA was linked to fatty...... acid synthesis by the presence of fatty acid synthetase and NADPH. The rate of fatty acid formation was equal to that of acetyl-CoA carboxylation, without the accumulation of free malonyl-CoA to a concentration required to obtain the same rate of fatty acid synthesis from added [1,3-14C2]malonyl......-CoA. - 3. The preparations of acetyl-CoA carboxylase and fatty acid synthetase were each able to decarboxylate [1,3-14C2]malonyl-CoA. - 4. Both enzyme preparations acted as competitive inhibitors of 14CO2 fixation into acetyl-CoA catalysed by acetyl-CoA carboxylase in the absence of NADPH...

  4. Decarboxylation of Malate in the Crassulacean Acid Metabolism Plant Bryophyllum (Kalanchoe) fedtschenkoi (Role of NAD-Malic Enzyme).

    Science.gov (United States)

    Cook, R. M.; Lindsay, J. G.; Wilkins, M. B.; Nimmo, H. G.

    1995-01-01

    The role of NAD-malic enzyme (NAD-ME) in the Crassulacean acid metabolism plant Bryophyllum (Kalanchoe) fedtschenkoi was investigated using preparations of intact and solubilized mitochondria from fully expanded leaves. Intact, coupled mitochondria isolated during the day or night did not differ in their ability to take up [14C]malic acid from the surrounding medium or to respire using malate or succinate as substrate. However, intact mitochondria isolated from plants during the day decarboxylated added malate to pyruvate significantly faster than mitochondria isolated from plants at night. NAD-ME activity in solubilized mitochondrial extracts showed hysteretic kinetics and was stimulated by a number of activators, including acetyl-coenzyme A, fructose-1,6-bisphosphate, and sulfate ions. In the absence of these effectors, reaction progress curves were nonlinear, with a pronounced acceleration phase. The lag period before a steady-state rate was reached in assays of mitochondrial extracts decreased during the photoperiod and increased slowly during the period of darkness. However, these changes in the kinetic properties of the enzyme could not account for the changes in the rate of decarboxylation of malate by intact mitochondria. Gel-filtration experiments showed that mitochondrial extracts contained three forms of NAD-ME with different molecular weights. The relative proportions of the three forms varied somewhat throughout the light/dark cycle, but this did not account for the changes in the kinetics behavior of the enzyme during the diurnal cycle. PMID:12228671

  5. Engineering the substrate specificity of the DhbE adenylation domain by yeast cell surface display.

    Science.gov (United States)

    Zhang, Keya; Nelson, Kathryn M; Bhuripanyo, Karan; Grimes, Kimberly D; Zhao, Bo; Aldrich, Courtney C; Yin, Jun

    2013-01-24

    The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in k(cat)/K(m) with nonnative substrates 3-hydroxybenzoic acid and 2-aminobenzoic acid, respectively and corresponding 3- and 33-fold decreases in k(cat)/K(m) values with the native substrate 2,3-dihydroxybenzoic acid, resulting in a dramatic switch in substrate specificity of up to 200-fold. Our study demonstrates that yeast display can be used as a high throughput selection platform to reprogram the "nonribosomal code" of A-domains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Nucleic acids digestion by enzymes in the stomach of snakehead (Channa argus) and banded grouper (Epinephelus awoara).

    Science.gov (United States)

    Liu, Yu; Zhang, Yanfang; Jiang, Wei; Wang, Jing; Pan, Xiaoming; Wu, Wei; Cao, Minjie; Dong, Ping; Liang, Xingguo

    2017-02-01

    Dietary nucleic acids (NAs) were important nutrients. However, the digestion of NAs in stomach has not been studied. In this study, the digestion of NAs by enzymes from fish stomach was investigated. The snakehead pepsins (SP) which were the main enzymes in stomach were extracted and purified. The purity of SP was evaluated by SDS-PAGE and HPLC. The snakehead pepsin 2 (SP2) which was the main component in the extracts was used for investigating the protein and NAs digestion activity. SP2 could digest NAs, including λ DNA and salmon sperm DNA. Interestingly, the digestion could be inhibited by treatment of alkaline solution at pH 8.0 and pepstatin A, and the digestion could happen either in the presence or absence of hemoglobin (Hb) and BSA as the protein substrates. Similarly, the stomach enzymes of banded grouper also showed the NAs digestion activity. NAs could be digested by the stomach enzymes of snakehead and banded grouper. It may be helpful for understanding both animal nutrition and NAs metabolic pathway.

  7. An Additional Method for Analyzing the Reversible Inhibition of an 
Enzyme Using Acid Phosphatase as a Model.

    Science.gov (United States)

    Baumhardt, Jordan M; Dorsey, Benjamin M; McLauchlan, Craig C; Jones, Marjorie A

    2015-08-01

    Using wheat germ acid phosphatase and sodium orthovanadate as a competitive inhibitor, a novel method for analyzing reversible inhibition was carried out. Our alternative approach involves plotting the initial velocity at which product is formed as a function of the ratio of substrate concentration to inhibitor concentration at a constant enzyme concentration and constant assay conditions. The concept of initial concentrations driving equilibrium leads to the chosen axes. Three apparent constants can be derived from this plot: K max , K min , and K inflect . K max and K min represent the substrate to inhibitor concentration ratio for complete inhibition and minimal inhibition, respectively. K inflect represents the substrate to inhibitor concentration ratio at which the enzyme-substrate complex is equal to the inhibitory complex. These constants can be interpolated from the graph or calculated using the first and second derivative of the plot. We conclude that a steeper slope and a shift of the line to the right (increased x-axis values) would indicate a better inhibitor. Since initial velocity is not a linear function of the substrate/inhibitor ratio, this means that inhibition changes more quickly with the change in the [S]/ [I] ratio. When preincubating the enzyme with substrate before the addition of inhibitor, preincubating the enzyme with inhibitor before the addition of substrate or with concurrent addition of both substrate and inhibitor, modest changes in the slopes and y-intercepts were obtained. This plot appears useful for known competitive and non-competitive inhibitors and may have general applicability.

  8. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  9. Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them

    Science.gov (United States)

    Gray, Kevin A [San Diego, CA; Zhao, Lishan [Emeryville, CA; Cayouette, Michelle H [San Diego, CA

    2012-01-24

    The invention provides polypeptides having any cellulolytic activity, e.g., a cellulase activity, a endoglucanase, a cellobiohydrolase, a beta-glucosidase, a xylanase, a mannanse, a .beta.-xylosidase, an arabinofuranosidase, and/or an oligomerase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. In one aspect, the invention provides polypeptides having an oligomerase activity, e.g., enzymes that convert recalcitrant soluble oligomers to fermentable sugars in the saccharification of biomass. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  10. Third Acivity of Bordetella Adenylate Cyclase (AC) Toxin-Hemolysin

    Czech Academy of Sciences Publication Activity Database

    Fišer, Radovan; Mašín, Jiří; Basler, Marek; Krůšek, Jan; Špuláková, V.; Konopásek, Ivo; Šebo, Peter

    2007-01-01

    Roč. 282, č. 5 (2007), s. 2808-2820 ISSN 0021-9258 R&D Projects: GA MŠk 1M0506; GA AV ČR IAA5020406 Grant - others:XE(XE) LSHB-CT-2003-503582; Univerzita Karlova(CZ) 146/2005/B-BIO Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50110509 Source of funding: R - rámcový projekt EK ; V - iné verejné zdroje Keywords : bordetella * adenylate cyclase toxin * enzymatic aktivity Subject RIV: EE - Microbiology, Virology Impact factor: 5.581, year: 2007

  11. Renal uptake of dimercaptosuccinic acid and glomerular filtration rate in chronic nephropathy at angiotensin converting enzyme inhibition

    International Nuclear Information System (INIS)

    Kamper, A.L.; Thomsen, H.S.; Nielsen, S.L.; Strandgaard, S.; Herlev Hospital

    1990-01-01

    Glomerular filtration rate (GFR) and renal uptake of dimercaptosuccinic acid (DMSA) were measured in 31 patients with progressive chronic nephropathy before and immediately after the start of treatment with angiotensin converting enzyme (ACE) inhibitor in order to control adverse effects on kidney function. Scintigrams of the kidneys showed an unaltered distribution of DMSA during treatment. GFR estimated by 51 Cr-EDTA plasma clearance fell by 14% (P 99m Tc-DMSA increased by 10% (P<0.01). It is concluded that DMSA in chronic renal failure is mainly taken up by the tubular cells from the peritubular capillaries since the uptake was unaffected by the acute decrease in GFR. (orig.)

  12. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes.

    Science.gov (United States)

    Panda, Sandeep K; Mishra, Swati S; Kayitesi, Eugenie; Ray, Ramesh C

    2016-04-01

    Wastes generated from fruits and vegetables are organic in nature and contribute a major share in soil and water pollution. Also, green house gas emission caused by fruit and vegetable wastes (FVWs) is a matter of serious environmental concern. This review addresses the developments over the last one decade on microbial processing technologies for production of enzymes and organic acids from FVWs. The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Renal uptake of dimercaptosuccinic acid and glomerular filtration rate in chronic nephropathy at angiotensin converting enzyme inhibition

    DEFF Research Database (Denmark)

    Kamper, A L; Thomsen, H S; Nielsen, S L

    1990-01-01

    function. Scintigrams of the kidneys showed an unaltered distribution of DMSA during treatment. GFR estimated by 51Cr-EDTA plasma clearance fell by 14% (P less than 0.01), but renal uptake of 99mTc-DMSA increased by 10% (P less than 0.01). It is concluded that DMSA in chronic renal failure is mainly taken......Glomerular filtration rate (GFR) and renal uptake of dimercaptosuccinic acid (DMSA) were measured in 31 patients with progressive chronic nephropathy before and immediately after the start of treatment with angiotensin converting enzyme (ACE) inhibitor in order to control adverse effects on kidney...

  14. Localization and Interactions of Teichoic Acid Synthetic Enzymes in Bacillus subtilis

    NARCIS (Netherlands)

    Formstone, Alex; Carballido-López, Rut; Noirot, Philippe; Errington, Jeffery; Scheffers, Dirk-Jan

    2008-01-01

    The thick wall of gram-positive bacteria is a polymer meshwork composed predominantly of peptidoglycan (PG) and teichoic acids, both of which have a critical function in maintenance of the structural integrity and the shape of the cell. In Bacillus subtilis 168 the major teichoic acid is covalently

  15. Influence of salicylic and succinic acids on antioxidant enzymes activity, heat resistance and productivity of Panicum miliaceum L.

    Directory of Open Access Journals (Sweden)

    Miroshnichenko N.N.

    2011-05-01

    Full Text Available The influence of treatment of millet (Panicum miliaceum L. seeds with the solutions of salicylic and succinic acids on the heat resistance of plantlets and activity of antioxidant enzymes – superoxide dismutase (SOD, catalase and peroxidase – in them have been investigated. In the micro-field experiment the influence of these acids on the millet yield was estimated. The action of salicylic (10 μM and succinic (1 mM acids caused the increase of plantlets resistance to the damaging heating that expressed in the rise of relative quantity of survived plantlets in 5 days after heating at the temperature of 47°С and in the reduced content of lipid peroxidation product malonic dialdehyde during the poststress period. The increase of activity of SOD, catalase and peroxidase took place in millet plantlets under the influence of salicylic and succinic acids. The increase of productivity of millet grain under the action of salicylic and succinic acids on 13,3-52,0 and 6,4-38,8% respectively depending on weather conditions in the field experiments was noted.

  16. Nucleic Acids and Enzymes at Electrodes: Electrochemical Nanomedical Biosensors and Biofuel Cell Development

    DEFF Research Database (Denmark)

    Ferapontova, Elena

    Starting from the development of the first electrochemical biosensor for glucose, as far as in 1962, the electrochemical biosensor research area underwent a dramatic evolution both in scientific and commercial directions. At present, electrochemical biosensors are widely used in medical practice,...... perspectives of the biosensor research and such biotechnological applications as enzyme electrodes for sustainable energy production (6) will be discussed.......Starting from the development of the first electrochemical biosensor for glucose, as far as in 1962, the electrochemical biosensor research area underwent a dramatic evolution both in scientific and commercial directions. At present, electrochemical biosensors are widely used in medical practice......, by offering extremely sensitive and accurate yet simple, rapid, and inexpensive biosensing platforms (1). In this talk, I will discuss the developed at iNANO reagentless enzymatic biosensors, in which the enzyme is directly electronically coupled to the electrode (1-3), and advanced genosensor platforms...

  17. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors

    Science.gov (United States)

    Gabris, Christina; Bengelsdorf, Frank R; Dürre, Peter

    2015-01-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23–0.99 U mg−1 protein), butyrate kinase (Buk, biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH3 and NH4+-N), and a negative dependency can be postulated. Thus, high concentrations of NH3 and NH4+-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. PMID:26086956

  18. Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme.

    Science.gov (United States)

    Pellegrini, Vanessa O A; Serpa, Viviane Isabel; Godoy, Andre S; Camilo, Cesar M; Bernardes, Amanda; Rezende, Camila A; Junior, Nei Pereira; Franco Cairo, João Paulo L; Squina, Fabio M; Polikarpov, Igor

    2015-11-01

    Trichoderma filamentous fungi have been investigated due to their ability to secrete cellulases which find various biotechnological applications such as biomass hydrolysis and cellulosic ethanol production. Previous studies demonstrated that Trichoderma harzianum IOC-3844 has a high degree of cellulolytic activity and potential for biomass hydrolysis. However, enzymatic, biochemical, and structural studies of cellulases from T. harzianum are scarce. This work reports biochemical characterization of the recombinant endoglucanase I from T. harzianum, ThCel7B, and its catalytic core domain. The constructs display optimum activity at 55 °C and a surprisingly acidic pH optimum of 3.0. The full-length enzyme is able to hydrolyze a variety of substrates, with high specific activity: 75 U/mg for β-glucan, 46 U/mg toward xyloglucan, 39 U/mg for lichenan, 26 U/mg for carboxymethyl cellulose, 18 U/mg for 4-nitrophenyl β-D-cellobioside, 16 U/mg for rye arabinoxylan, and 12 U/mg toward xylan. The enzyme also hydrolyzed filter paper, phosphoric acid swollen cellulose, Sigmacell 20, Avicel PH-101, and cellulose, albeit with lower efficiency. The ThCel7B catalytic domain displays similar substrate diversity. Fluorescence-based thermal shift assays showed that thermal stability is highest at pH 5.0. We determined kinetic parameters and analyzed a pattern of oligosaccharide substrates hydrolysis, revealing cellobiose as a final product of C6 degradation. Finally, we visualized effects of ThCel7B on oat spelt using scanning electron microscopy, demonstrating the morphological changes of the substrate during the hydrolysis. The acidic behavior of ThCel7B and its considerable thermostability hold a promise of its industrial applications and other biotechnological uses under extremely acidic conditions.

  19. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Science.gov (United States)

    Ryan, Veronica H; Primiani, Christopher T; Rao, Jagadeesh S; Ahn, Kwangmi; Rapoport, Stanley I; Blanchard, Helene

    2014-01-01

    The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  20. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Directory of Open Access Journals (Sweden)

    Veronica H Ryan

    Full Text Available The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades.AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging.The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism.Expression patterns were split into Development (0 to 20 years and Aging (21 to 78 years intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2, cyclooxygenases (COX-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA and PTGS2 (COX-2 genes at 1q25, highly inter-correlated genes were at distant chromosomal loci.Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  1. Eucalyptus ESTs involved in the production of 9-cis epoxycarotenoid dioxygenase, a regulatory enzyme of abscisic acid production

    Directory of Open Access Journals (Sweden)

    Iraê A. Guerrini

    2005-01-01

    Full Text Available Abscisic acid (ABA regulates stress responses in plants, and genomic tools can help us to understand the mechanisms involved in that process. FAPESP, a Brazilian research foundation, in association with four private forestry companies, has established the FORESTs database (https://forests.esalq.usp.br. A search was carried out in the Eucalyptus expressed sequence tag database to find ESTs involved with 9-cis epoxycarotenoid dioxygenase (NCED, the regulatory enzyme for ABA biosynthesis, using the basic local BLAST alignment tool. We found four clusters (EGEZLV2206B11.g, EGJMWD2252H08.g, EGBFRT3107F10.g, and EGEQFB1200H10.g, which represent similar sequences of the gene that produces NCED. Data showed that the EGBFRT3107F10.g cluster was similar to the maize (Zea mays NCED enzyme, while EGEZLV2206B11.g and EGJMWD2252H08.g clusters were similar to the avocado (Persea americana NCED enzyme. All Eucalyptus clusters were expressed in several tissues, especially in flower buds, where ABA has a special participation during the floral development process.

  2. Regulation of adipose branched chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes. One possibility is that under these conditions there is a reduced cellular utilization and/or lower complete oxidation of BCAAs. White adipose tissue (WAT) has become appreciated as a...

  3. Adenylate cyclase regulation in intact cultured myocardial cells

    International Nuclear Information System (INIS)

    Marsh, J.D.; Roberts, D.J.

    1987-01-01

    To examine the coupling of cardiac cell-surface β-adrenergic receptors to adenylate cyclase activation and contractile response, the authors studied this receptor-effector response system in monolayers of spontaneously contracting chick embryo ventricular cells under physiological conditions. The hydrophilic ligand 3 H-CGP12177 identified uniformly high-agonist affinity β-adrenergic receptors. Isoproterenol-stimulated cyclic AMP (cAMP) accumulation with 50% effective concentration at (EC 50 ) = 12.1 nM and augmented contractile response with EC 50 = 6 nM under identical conditions. One micromolar isoproterenol induced receptor loss from the cell surface with t/sub 1/2/ = 13.2 min; under identical conditions cAMP content declined with t/sub 1/2/ = 13.5 min and contractile response with t/sub 1/2/ = 20.7 min. After agonist removal cAMP response recovered with t/sub 1/2/ = 15.7 min and receptors with t/sub 1/2/ = 24.7 min. Sixty minutes after agonist removal there was recovery of 52% of maximal cAMP responsiveness and 82% of the initial number of receptors; receptor occupancy was associated with 78% of initial contractile response. Agonist affinity for cell-surface receptors was changed only modestly by agonist exposure. They conclude that for this system there is relatively close coupling between high-affinity receptors, adenylate cyclase stimulation, and contractile response

  4. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Directory of Open Access Journals (Sweden)

    Ramin Lotfi

    2015-10-01

    Full Text Available The ameliorative effect of fulvic acid (0, 300, and 600 mg L− 1 on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L. plant under water stress (60, 100, and 140 mm evaporation from class A pan was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA improved the maximum quantum efficiency of PSII (Fv/Fm and performance index (PI of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  5. Biosynthesis of acid phosphatase of baker's yeast . Characterization of a protoplast-bound fraction containing precursors of the exo-enzyme

    NARCIS (Netherlands)

    Boer, Pieter; Rijn, Herman J.M. van; Reinking, A.; Steyn-Parvé, Elizabeth P.

    1975-01-01

    1. 1.|Yest protoplasts, secreting acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum) EC 3.1.3.2) contain a small amount of firmly bound enzyme, even after lysis (Van Rijn, H.J.M.; Boer, P. and Steyn-Parvé, E.P. (1972) Biochim. Biophys. Acta 268, 431–441). The major part

  6. Contribution of the microbial and meat endogenous enzymes to the free amino acid and amine contents of dry fermented sausages.

    Science.gov (United States)

    Hierro, E; de La Hoz, L; Ordóñez, J A

    1999-03-01

    The role of the starter culture and meat endogenous enzymes on the free amino acid and amine contents of dry fermented sausages was studied. Five batches of sausages were prepared. The control batch was manufactured with aseptic ingredients without microbial inoculation. The other four experimental batches were manufactured with aseptic ingredients inoculated with Lactobacillus plantarum 4045 or Micrococcus-12 or L. plantarum 4045 and Micrococcus-12 or L. plantarum 4045 and Staphylococcus sp. Their effects on pH, a(w), myofibrillar proteins, and free amino acid and amine contents were studied. Sausages inoculated only with L. plantarum 4045 or with this starter combined with a Micrococcaceae had the lowest pH as a result of carbohydrate fermentation. In all batches similar patterns were observed for myofibrillar proteins and free amino acids which could indicate that meat endogenous proteases play an important role in proteolytic phenomena. No changes were observed in the amine fraction, indicating that the strains used as starter cultures did not show amino acid decarboxylase activity.

  7. Formation and action of lignin-modifying enzymes in cultures of Phlebia radiata supplemented with veratric acid

    International Nuclear Information System (INIS)

    Lundell, T.; Hatakka, A.; Leonowicz, A.; Rogalski, J.

    1990-01-01

    Transformation of veratric (3,4-dimethoxybenzoic) acid by the white rot fungus Phlebia radiata was studied to elucidate the role of ligninolytic, reductive, and demeth(ox)ylating enzymes. Under both air and a 100% O 2 atmosphere, with nitrogen limitation and glucose as a carbon source, reducing activity resulted in the accumulation of veratryl alcohol in the medium. When the fungus was cultivated under air, veratric acid caused a rapid increase in laccase (benzenediol:oxygen oxidoreductase; EC 1.10.3.2) production, which indicated that veratic acid was first demethylated, thus providing phenolic compounds for laccase. After a rapid decline in laccase activity, elevated lignin peroxidase (ligninase) activity and manganese-dependent peroxidase production were detected simultaneously with extracellular release of methanol. This indicated apparent demethoxylation. When the fungus was cultivated under a continuous 100% O 2 flow and in the presence of veratric acid, laccase production was markedly repressed, whereas production of lignin peroxidase and degradation of veratryl compounds were clearly enhanced. In all cultures, the increases in lignin peroxidase titers were directly related to veratryl alcohol accumulation. Evolution of 14 CO 2 from 3-O 14 CH 3 -and 4-O 14 CH 3 -labeled veratric acids showed that the position of the methoxyl substituent in the aromatic ring only slightly affected demeth(ox)ylation activity. In both cases, more than 60% of the total 14 C was converted to 14 CO 2 under air in 4 weeks, and oxygen flux increased the degradation rate of the 14 C-labeled veratric acids just as it did with unlabeled cultures

  8. Structure, function, and regulation of enzymes involved in amino acid metabolism of bacteria and archaea.

    Science.gov (United States)

    Tomita, Takeo

    2017-11-01

    Amino acids are essential components in all organisms because they are building blocks of proteins. They are also produced industrially and used for various purposes. For example, L-glutamate is used as the component of "umami" taste and lysine has been used as livestock feed. Recently, many kinds of amino acids have attracted attention as biological regulators and are used for a healthy life. Thus, to clarify the mechanism of how amino acids are biosynthesized and how they work as biological regulators will lead to further effective utilization of them. Here, I review the leucine-induced-allosteric activation of glutamate dehydrogenase (GDH) from Thermus thermophilus and the relationship with the allosteric regulation of GDH from mammals. Next, I describe structural insights into the efficient production of L-glutamate by GDH from an excellent L-glutamate producer, Corynebacterium glutamicum. Finally, I review the structural biology of lysine biosynthesis of thermophilic bacterium and archaea.

  9. Interrelationship of dietary lipids and ascorbic acid with hepatic enzymes of cholesterol metabolic pathway.

    Science.gov (United States)

    Sen, S; Mukherjee, S

    1997-01-01

    Effect of unsaturated and saturated fats on cholesterol metabolism was studied in ascorbate sufficient and deficient guineapigs. Experimental animals were made chronic ascorbic acid deficient by allowing oral intake of 0.5 mg ascorbic acid/day/animal. Elevation in serum and liver cholesterol and triglyceride along with depression in cholesterol oxidation and 7 alpha-hydroxylation in liver was observed in unsaturated fat fed guineapigs with ascorbate deficiency. Liver microsomal cytochrome P-450 level was found to be low in ascorbate deficient animals. Polyunsaturated fat intake could not lower the serum cholesterol level in ascorbate deficiency. Today polyunsaturated fat in the diet is encouraged all over the world for its hypocholesterolemic effect. This study indicates that polyunsaturated fat intake with ascorbic acid deficiency may produce hypercholesterolemia.

  10. Differential effects of valproic acid and enzyme-inducing anticonvulsants on nimodipine pharmacokinetics in epileptic patients

    Science.gov (United States)

    Tartara, A.; Galimberti, C.A.; Manni, R.; Parietti, L.; Zucca, C.; Baasch, H.; Caresia, L.; Mück, W.; Barzaghi, N.; Gatti, G.; Perucca, E.

    1991-01-01

    1 The single dose pharmacokinetics of orally administered nimodipine (60 mg) were investigated in normal subjects and in two groups of epileptic patients receiving chronic treatment with hepatic microsomal enzyme-inducing anticonvulsants (carbamazepine, phenobarbitone or phenytoin) and sodium valproate, respectively. 2 Compared with the values found in the control group, mean areas under the plasma nimodipine concentration curve were lowered by about seven-fold (P anticonvulsants and increased by about 50% (P < 0.05) in patients taking sodium valproate. 3 Nimodipine half-lives were shorter in enzyme-induced patients than in controls (3.9 ± 2.0 h vs 9.1 ± 3.4 h, means ± s.d., P < 0.01), but this difference could be artifactual since in the patients drug concentrations declined rapidly below the limit of assay, thus preventing identification of a possible slower terminal phase. In valproate-treated patients, half-lives (8.2 ± 1.8 h) were similar to those found in controls. PMID:1777370

  11. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Mikael R.; Salazar, Margarita; Schaap, Peter; van de Vondervoort, Peter; Culley, David E.; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy; Braus, Gerhard; Braus-Stromeyer, Susanna A.; Corrochano, Luis; Dai, Ziyu; van Dijck, Piet; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert; Pel, Herman J.; Poulsen, Lars; Samson, Rob; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; ATkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noel; Roubos, Johannes A.; Nielsen, Jens B.; Baker, Scott E.

    2011-06-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases and protein transporters.

  12. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    Science.gov (United States)

    Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; van de Vondervoort, Peter J.I.; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; van Dijck, Piet W.M.; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert J.J.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noël N.M.E.; Roubos, Johannes A.; Nielsen, Jens; Baker, Scott E.

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi. PMID:21543515

  13. High activity of fatty acid oxidation enzymes in human placenta: implications for fetal-maternal disease

    NARCIS (Netherlands)

    Oey, N. A.; den Boer, M. E. J.; Ruiter, J. P. N.; Wanders, R. J. A.; Duran, M.; Waterham, H. R.; Boer, K.; van der Post, J. A. M.; Wijburg, F. A.

    2003-01-01

    As the human fetus and placenta are considered to be primarily dependent on glucose oxidation for energy metabolism, the cause of the remarkable association between severe maternal pregnancy complications and the carriage of a fetus with an inborn error of mitochondrial long-chain fatty acid

  14. The Arabidopsis thalianaK+-uptake permease 7 (AtKUP7) contains a functional cytosolic adenylate cyclase catalytic centre

    KAUST Repository

    Al-Younis, Inas

    2015-11-27

    Adenylate Cyclases (ACs) catalyze the formation of the second messenger cyclic adenosine 3′, 5′-monophosphate (cAMP) from adenosine 5’-triphosphate (ATP). Although cAMP is increasingly recognized as an important signaling molecule in higher plants, ACs have remained somewhat elusive. Here we used a search motif derived from experimentally tested guanylyl cyclases (GCs), substituted the residues essential for substrate specificity and identified the Arabidopsis thaliana K+-uptake permease 7 (AtKUP7) as one of several candidate ACs. Firstly, we show that a recombinant N-terminal, cytosolic domain of AtKUP71-100 is able to complement the AC-deficient mutant cyaA in Escherichia coli and thus restoring the fermentation of lactose, and secondly, we demonstrate with both enzyme immunoassays and mass spectrometry that a recombinant AtKUP71-100 generates cAMP in vitro.

  15. Glomerular Podocytes Express Type 1 Adenylate Cyclase: Inactivation Results in Susceptibility to Proteinuria

    Science.gov (United States)

    Xiao, Zhijie; He, Liqun; Takemoto, Minoru; Jalanko, Hannu; Chan, Guy C.; Storm, Daniel R.; Betsholtz, Christer; Tryggvason, Karl; Patrakka, Jaakko

    2011-01-01

    Background/Aims The organization of actin cytoskeleton in podocyte foot processes plays a critical role in the maintenance of the glomerular filtration barrier. The cAMP pathway is an important regulator of the actin network assembly in cells. However, the role of the cAMP pathway in podocytes is not well understood. Type 1 adenylate cyclase (Adcy1), previously thought to be specific for neuronal tissue, is a member of the family of enzymes that catalyses the formation of cAMP. In this study, we characterized the expression and role of Adcy1 in the kidney. Methods Expression of Adcy1 was studied by RT-PCR, Northern blotting and in situ hybridization. The role of Adcy1 in podocytes was investigated by analyzing Adcy1 knockout mice (Adcy1–/–). Results and Conclusion: Adcy1 is expressed in the kidney specifically by podocytes. In the kidney, Adcy1 does not have a critical role in normal physiological functioning as kidney histology and function are normal in Adcy1–/– mice. However, albumin overload resulted in severe albuminuria in Adcy1–/– mice, whereas wild-type control mice showed only mild albumin leakage to urine. In conclusion, we have identified Adcy1 as a novel podocyte signaling protein that seems to have a role in compensatory physiological processes in the glomerulus. PMID:21196775

  16. Recombinant adenylate kinase 3 from liver fluke Clonorchis sinensis for histochemical analysis and serodiagnosis of clonorchiasis.

    Science.gov (United States)

    Kwon, Soon Bin; Kim, Paul; Woo, Hae Sun; Kim, Tae Yun; Kim, Ju Yeong; Lee, Hye Min; Jang, Yun Soo; Kim, Eun-Min; Yong, Tai-Soon; Seong, Baik Lin

    2018-03-27

    Due to the lack of an effective prophylactic intervention and diagnosis, human liver fluke Clonorchis sinensis continues to afflict a large human population, causing a chronic inflammatory bile duct disease. With an aim to identify target antigens for sensitive serodiagnosis, adenylate kinase 3 of C. sinensis (CsAK3) was successfully expressed in soluble form in Escherichia coli by fusion to an RNA-interacting domain derived from human Lys-tRNA synthetase and purified by Ni2+-affinity chromatography. Anti-CsAK3 serum was raised by immunization of mice, and Western blotting confirmed that CsAK3 was expressed in adult-stage C. sinensis. Histochemical analysis showed that CsAK3 was localized to the subtegumental tissue of C. sinensis and was excreted into the bile duct of the host. When tested against sera from various parasite-infected patients by enzyme-linked immunosorbent assay, the recombinant CsAK3 elicited a specific response to C. sinensis-infected sera. The results suggest that CsAK3, either alone or in combination with other antigens, could be used for improving the clinical diagnosis of clonorchiasis.

  17. Effect of active acidity on the stability of amylolytic enzymes in fermentation of corn mash

    Energy Technology Data Exchange (ETDEWEB)

    Zherebtsov, N A; Mal' tsev, P M

    1957-01-01

    The effect of pH between 6.5 and 3.5 on the activity of ..cap alpha..- and ..beta..-amylases, dextrinase, and on the yield of alcohol in the fermentation of corn mash were investigated. The minimum of unfermented maltose and maximum activity of amylolytic enzymes were found from fermentations between pH 5.5 and 4.9. Under these conditions ..beta..-amylase and dextrinase were unaffected, while ..cap alpha..-amylase activity was reduced to 59.1% initial activity. Considerable inactivation of ..beta..-amylase and dextrinase set in at pH 4.0 and ..cap alpha..-amylase at pH 4.5. The highest yield of alcohol was produced from mash with initial pH 6.0 obtained by addition of sodium hydroxide.

  18. Acid Glycohydrolases in Rat Spermatocytes, Spermatids and Spermatozoa: Enzyme Activities, Biosynthesis and Immunolocalization

    Directory of Open Access Journals (Sweden)

    Abou-Haila Aida

    2001-01-01

    Full Text Available Mammalian sperm acrosome contains several glycohydrolases thought to aid in the dispersion and digestion of vestments surrounding the egg. In this study, we have used multiple approaches to examine the origin of acrosome-associated glycohdyrdolases. Mixed spermatogenic cells, prepared from rat testis, were separated by unit gravity sedimentation. The purified germ cells (spermatocytes [SP], round spermatids [RS], and elongated/condensed spermatids [E/CS] contained several glycohydrolase activities. Metabolic labeling in the cell culture, immunoprecipitation, and autoradiographic approaches revealed that &bgr;-D-galactosidase was synthesized in SP and RS in 88/90 kDa forms which undergo processing in a cell-specific manner. Immunohistochemical approaches demonstrated that the enzyme was localized in Golgi membranes/vesicles, and lysosome-like structures in SP and RS, and forming/formed acrosome of E/CS.

  19. Amylolytic Enzymes Acquired from L-Lactic Acid Producing Enterococcus faecium K-1 and Improvement of Direct Lactic Acid Production from Cassava Starch.

    Science.gov (United States)

    Unban, Kridsada; Kanpiengjai, Apinun; Takata, Goro; Uechi, Keiko; Lee, Wen-Chien; Khanongnuch, Chartchai

    2017-09-01

    An amylolytic lactic acid bacterium isolate K-1 was isolated from the wastewater of a cassava starch manufacturing factory and identified as Entercoccus faecium based on 16S rRNA gene sequence analysis. An extracellular α-amylase was purified to homogeneity and the molecular weight of the purified enzyme was approximately 112 kDa with optimal pH value and temperature measured of 7.0 and 40 °C, respectively. It was stable at a pH range of 6.0-7.0, but was markedly sensitive to high temperatures and low pH conditions, even at a pH value of 5. Ba 2+ , Al 3+ , and Co 2+ activated enzyme activity. This bacterium was capable of producing 99.2% high optically pure L-lactic acid of 4.3 and 8.2 g/L under uncontrolled and controlled pH at 6.5 conditions, respectively, in the MRS broth containing 10 g/L cassava starch as the sole carbon source when cultivated at 37 °C for 48 h. A control pH condition of 6.5 improved and stabilized the yield of L-lactic acid production directly from starch even at a high concentration of starch at up to 150 g/L. This paper is the first report describing the properties of purified α-amylase from E. faecium. Additionally, pullulanase and cyclodextrinase activities were also firstly recorded from E. faecium K-1.

  20. Annotating Enzymes of Uncertain Function: The Deacylation of d-Amino Acids by Members of the Amidohydrolase Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Fedorov, A; Xu, C; Brown, S; Fedorov, E; Babbitt, P; Almo, S; Raushel, F

    2009-01-01

    The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxidans, and Sco4986 from Streptomyces coelicolor are currently annotated as d-aminoacylases or N-acetyl-d-glutamate deacetylases. These three enzymes are 22-34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-d-Xaa, N-acetyl-d-Xaa, N-succinyl-d-Xaa, and l-Xaa-d-Xaa were used to establish the substrate profiles for these enzymes. It was demonstrated that Bb3285 is restricted to the hydrolysis of N-acyl-substituted derivatives of d-glutamate. The best substrates for this enzyme are N-formyl-d-glutamate (k{sub cat}/K{sub m} = 5.8 x 10{sup 6} M{sup -1} s{sup -1}), N-acetyl-d-glutamate (k{sub cat}/K{sub m} = 5.2 x 10{sup 6} M{sup -1} s{sup -1}), and l-methionine-d-glutamate (k{sub cat}/K{sub m} = 3.4 x 10{sup 5} M{sup -1} s{sup -1}). Gox1177 and Sco4986 preferentially hydrolyze N-acyl-substituted derivatives of hydrophobic d-amino acids. The best substrates for Gox1177 are N-acetyl-d-leucine (k{sub cat}/K{sub m} = 3.2 x 104 M{sup -1} s-1), N-acetyl-d-tryptophan (kcat/Km = 4.1 x 104 M-1 s-1), and l-tyrosine-d-leucine (kcat/Km = 1.5 x 104 M-1 s-1). A fourth protein, Bb2785 from B. bronchiseptica, did not have d-aminoacylase activity. The best substrates for Sco4986 are N-acetyl-d-phenylalanine and N-acetyl-d-tryptophan. The three-dimensional structures of Bb3285 in the presence of the product acetate or a potent mimic of the tetrahedral intermediate were determined by X-ray diffraction methods. The side chain of the d-glutamate moiety of the inhibitor is ion-paired to Arg-295, while the {alpha}-carboxylate is ion-paired with Lys-250 and Arg-376. These results have revealed the chemical and structural determinants for substrate specificity in this protein. Bioinformatic analyses of an additional {approx}250

  1. The effect of chaya (Cnidoscolus aconitifolius) leaf meal and of exogenous enzymes on amino acid digestibility in broilers.

    Science.gov (United States)

    Sarmiento-Franco, L; McNab, J M; Pearson, A; Belmar-Casso, R

    2003-07-01

    1. The apparent ileal nitrogen (N) and amino acid digestibilities in chaya leaf meal (CLM) (Cnidoscolus aconitifolius) with added enzymes, and the same variables in diets containing different amounts of CLM were studied in chickens. 2. In the first experiment pectinase, beta-glucanase, and pectinase + beta-glucanase were added to CLM. In the second experiment, there were three diets based on maize and soybean: 0, 150 and 250 g/kg CLM. 3. Pectinase significantly increased both lysine and overall amino acid digestibilities in CLM. 4. In experiment 2, the amino acid digestibility in birds fed on CLM250 was lower than that from birds fed on either control or CLM150. Only the digestibilities of alanine, arginine and proline were lower in birds fed on CLM150 than in those fed on the control diet. Nitrogen digestibility was lower in birds fed on the CLM250 diet than on either control or CLM150 diets. These findings were attributed to the increasing concentration of fibre with increasing dietary CLM.

  2. In vitro mutagenesis studies at the arginine residues of adenylate kinase. A revised binding site for AMP in the X-ray-deduced model

    International Nuclear Information System (INIS)

    Kim, Hyo Joon; Nishikawa, Satoshi; Tokutomi, Yuiko; Uesugi, Seiichi; Takenaka, Hitoshi; Hamada, Minoru; Kuby, S.A.

    1990-01-01

    Although X-ray crystallographic and NMR studies have been made on the adenylate kinases, the substrate-binding sites are not unequivocally established. In an attempt to shed light on the binding sites for MgATP 2- and for AMP 2- in human cytosolic adenylate kinase, the authors have investigated the enzymic effects of replacement of the arginine residues, which had been assumed by Pai et al. to interact with the phosphoryl groups of AMP 2- and MgATP 2- . With use of the site-directed mutagenesis method, point mutations were made in the artificial gene for hAK1 to replace these arginine residues with alanyl residues and yield the mutants R44A hAK1, R132A hAK1, R138A hAK1, and R149A hAK1. The resulting large increases in the K m,app values for AMP 2- of the mutant enzymes, the relatively small increases in the K m,app values for MgATP 2- , and the fact that the R132A, R138A, and R149A mutant enzymes proved to be very poor catalysts are consistent with the idea that the assigned substrate binding sites of Pai et al. have been reversed and that their ATP-binding site may be assigned as the AMP site

  3. Prokaryotic adenylate cyclase toxin stimulates anterior pituitary cells in culture

    International Nuclear Information System (INIS)

    Cronin, M.J.; Evans, W.S.; Rogol, A.D.; Weiss, A.A.; Thorner, M.O.; Orth, D.N.; Nicholson, W.E.; Yasumoto, T.; Hewlett, E.L.

    1986-01-01

    Bordetella pertussis synthesis a variety of virulence factors including a calmodulin-dependent adenylate cyclase (AC) toxin. Treatment of anterior pituitary cells with this AC toxin resulted in an increase in cellular cAMP levels that was associated with accelerated exocytosis of growth hormone (GH), prolactin, adrenocorticotropic hormone (ACTH), and luteinizing hormone (LH). The kinetics of release of these hormones, however, were markedly different; GH and prolactin were rapidly released, while LH and ACTH secretion was more gradually elevated. Neither dopamine agonists nor somatostatin changes the ability of AC toxin to generate cAMP (up to 2 h). Low concentrations of AC toxin amplified the secretory response to hypophysiotrophic hormones. The authors conclude that bacterial AC toxin can rapidly elevate cAMP levels in anterior pituitary cells and that it is the response that explains the subsequent acceleration of hormone release

  4. In vitro dissolution of calcium oxalate stones with ethylenediaminetetraacetic acid and snake venom thrombin-like enzyme.

    Science.gov (United States)

    Zhou, Xiang-Jun; Zhang, Jie; Zhang, Ci; Xu, Chang-Geng

    2014-01-01

    The aim of this study was to determine the feasibility of using snake venom thrombin-like enzyme (SVTLE) and/or ethylenediaminetetraacetic acid (EDTA) to dissolve calcium oxalate stones in vitro. Seven calcium oxalate stones were incubated with various chemolytic agents [EDTA, Tris-HCl/EDTA (TE) buffer or SVTLE diluted in TE buffer]. The pH, calcium concentration, stone weight and stone surface integrity were recorded, as well as related pathological changes to bladder mucosae. Compared to all other solutions, those containing SVTLE and buffered EDTA had higher concentrations of mobilized calcium and caused significantly more stone weight loss, stone fragility and gaps in the calcium crystals. Also, there were no adverse pathological effects on rabbit bladder mucosae from any of the solutions. The data indicate that buffered EDTA and SVTLE can be used to dissolve calcium oxalate stones and, at the concentrations used here, do not damage tissue. 2013 S. Karger AG, Basel.

  5. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2.

    Science.gov (United States)

    Yadav, Rajesh K; Baeg, Jin-Ook; Oh, Gyu Hwan; Park, No-Joong; Kong, Ki-jeong; Kim, Jinheung; Hwang, Dong Won; Biswas, Soumya K

    2012-07-18

    The photocatalyst-enzyme coupled system for artificial photosynthesis process is one of the most promising methods of solar energy conversion for the synthesis of organic chemicals or fuel. Here we report the synthesis of a novel graphene-based visible light active photocatalyst which covalently bonded the chromophore, such as multianthraquinone substituted porphyrin with the chemically converted graphene as a photocatalyst of the artificial photosynthesis system for an efficient photosynthetic production of formic acid from CO(2). The results not only show a benchmark example of the graphene-based material used as a photocatalyst in general artificial photosynthesis but also the benchmark example of the selective production system of solar chemicals/solar fuel directly from CO(2).

  6. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids.

    Science.gov (United States)

    Iyer, Lakshminarayan M; Tahiliani, Mamta; Rao, Anjana; Aravind, L

    2009-06-01

    Modified bases in nucleic acids present a layer of information that directs biological function over and beyond the coding capacity of the conventional bases. While a large number of modified bases have been identified, many of the enzymes generating them still remain to be discovered. Recently, members of the 2-oxoglutarate- and iron(II)-dependent dioxygenase super-family, which modify diverse substrates from small molecules to biopolymers, were predicted and subsequently confirmed to catalyze oxidative modification of bases in nucleic acids. Of these, two distinct families, namely the AlkB and the kinetoplastid base J binding proteins (JBP) catalyze in situ hydroxylation of bases in nucleic acids. Using sensitive computational analysis of sequences, structures and contextual information from genomic structure and protein domain architectures, we report five distinct families of 2-oxoglutarate- and iron(II)-dependent dioxygenase that we predict to be involved in nucleic acid modifications. Among the DNA-modifying families, we show that the dioxygenase domains of the kinetoplastid base J-binding proteins belong to a larger family that includes the Tet proteins, prototyped by the human oncogene Tet1, and proteins from basidiomycete fungi, chlorophyte algae, heterolobosean amoeboflagellates and bacteriophages. We present evidence that some of these proteins are likely to be involved in oxidative modification of the 5-methyl group of cytosine leading to the formation of 5-hydroxymethylcytosine. The Tet/JBP homologs from basidiomycete fungi such as Laccaria and Coprinopsis show large lineage-specific expansions and a tight linkage with genes encoding a novel and distinct family of predicted transposases, and a member of the Maelstrom-like HMG family. We propose that these fungal members are part of a mobile transposon. To the best of our knowledge, this is the first report of a eukaryotic transposable element that encodes its own DNA-modification enzyme with a

  7. Detection scheme for bioassays based on 2,6-pyridinedicarboxylic acid derivatives and enzyme-amplified lanthanide luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, Tanja [Department of Chemical Analysis, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Karst, Uwe [Department of Chemical Analysis, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)]. E-mail: u.karst@utwente.nl

    2004-11-15

    2,6-Pyridinedicarboxylic acid (PDC) and its derivatives are introduced as a new sensitizer system for enzyme-amplified lanthanide luminescence (EALL), a detection scheme for bioassays, which combines enzymatic amplification with time-resolved luminescence measurements of lanthanide chelates. Various PDC esters have been synthesized as esterase substrates that are cleaved to PDC in the presence of the enzyme. PDC forms luminescent complexes with Tb(III) or Eu(III), and the evaluation of the reaction is used for the selective and sensitive detection of esterases. For an esterase from hog liver a limit of detection of 10{sup -3} u/mL (equivalent to 10{sup -9} mol/L) and a limit of quantification of 3 x 10{sup -3} u/mL (equivalent to 3 x 10{sup -9} mol/L) could be achieved. As a second model reaction, xanthine oxidase (XOD) catalyzes the oxidation of 2,6-pyridinedicarboxaldehyde to PDC. Here, the limit of detection was 3 x 10{sup -3} u/mL and the limit of quantification 10{sup -2} u/mL for XOD from microorganisms. Major advantage of the tridentate PDC ligand is the possibility to perform all steps of the assay within or close to the physiological pH range, while the established EALL schemes based on bidentate salicylates or bisphenols have to be carried out at strongly alkaline pH to ensure sufficient complexation with the lanthanides.

  8. Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model

    Directory of Open Access Journals (Sweden)

    Das Undurti N

    2010-10-01

    Full Text Available Abstract Background Nutritional factors play a major role in cancer initiation and development. Dietary polyunsaturated fatty acids (PUFAs have the ability to induce modifications in the activity of lipoxygenase (LOX and cyclooxygenase (COX enzymes that affect tumour growth. We studied the effect of two diets enriched in 6% Walnut and Peanut oils that are rich in ω-3 and ω9 PUFAs respectively on a murine mammary gland adenocarcinoma as compared with the control (C that received commercial diet. Results Peanut oil enriched diet induced an increase in membrane arachidonic acid (AA content and the cyclooxygenase enzyme derived 12-HHT (p Conclusions The results of the present study showed that Peanut oil-enriched diet protects against mammary cancer development by modulating tumour membrane fatty acids composition and LOX and COX enzyme activities.

  9. Assessment of natural sepiolite on cadmium stabilization, microbial communities, and enzyme activities in acidic soil.

    Science.gov (United States)

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Wang, Lin; Liang, Xuefeng; Lin, Dasong; Hu, Fazhi

    2013-05-01

    A pot trial was conducted to assess the efficiency of sepiolite-induced cadmium (Cd) immobilization in ultisoils. Under Cd concentrations of 1.25, 2.5, and 5 mg kg(-1), the available Cd in the soil after the application of 1-10 % sepiolite decreased by a maximum of 44.4, 23.0, and 17.0 %, respectively, compared with no sepiolite treatments. The increase in the values of soil enzyme activities and microbial number proved that a certain metabolic recovery occurred after sepiolite treatment. The dry biomass of spinach (Spinacia oleracea) increased with increasing sepiolite concentration in the soil. However, the concentration (dry weight) of Cd in the spinach shoots decreased with the increase in sepiolite dose, with maximum reduction of 92.2, 90.0, and 84.9 %, respectively, compared with that of unamended soils. Under a Cd level of 1.25 mg kg(-1), the Cd concentration in the edible parts of spinach at 1 % sepiolite amendment was lower than 0.2 mg kg(-1) fresh weight, the maximum permissible concentration (MPC) of Cd in vegetable. Even at higher Cd concentrations (2.5 and 5 mg kg(-1)), safe spinach was produced when the sepiolite treatment was up to 5 %. The results showed that sepiolite-assisted remediation could potentially succeed on a field scale by decreasing Cd entry into the food chain.

  10. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    Science.gov (United States)

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Human triose-phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme.

    OpenAIRE

    Daar, I O; Artymiuk, P J; Phillips, D C; Maquat, L E

    1986-01-01

    Triose-phosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1) deficiency is a recessive disorder that results in hemolytic anemia and neuromuscular dysfunction. To determine the molecular basis of this disorder, a TPI allele from two unrelated patients homozygous for TPI deficiency was compared with an allele from a normal individual. Each disease-associated sequence harbors a G X C----C X G transversion in the codon for amino acid-104 and specifies a structurally...

  12. O-Alkyl Hydroxamates as Metaphors of Enzyme-Bound Enolate Intermediates in Hydroxy Acid Dehydrogenases. Inhibitors of Isopropylmalate Dehydrogenase, Isocitrate Dehydrogenase, and Tartrate Dehydrogenase(1).

    Science.gov (United States)

    Pirrung, Michael C.; Han, Hyunsoo; Chen, Jrlung

    1996-07-12

    The inhibition of Thermus thermophilus isopropylmalate dehydrogenase by O-methyl oxalohydroxamate was studied for comparison to earlier results of Schloss with the Salmonella enzyme. It is a fairly potent (1.2 &mgr;M), slow-binding, uncompetitive inhibitor against isopropylmalate and is far superior to an oxamide (25 mM K(i) competitive) that is isosteric with the ketoisocaproate product of the enzyme. This improvement in inhibition was attributed to its increased NH acidity, which presumably is due to the inductive effect of the hydroxylamine oxygen. This principle was extended to the structurally homologous enzyme isocitrate dehydrogenase from E. coli, for which the compound O-(carboxymethyl) oxalohydroxamate is a 30 nM inhibitor, uncompetitive against isocitrate. The pH dependence of its inhibition supports the idea that it is bound to the enzyme in the anionic form. Another recently discovered homologous enzyme, tartrate dehydrogenase from Pseudomonas putida, was studied with oxalylhydroxamate. It has a relatively low affinity for the enzyme, though it is superior to tartrate. On the basis of these leads, squaric hydroxamates with increased acidity compared to squaric amides directed toward two of these enzymes were prepared, and they also show increased inhibitory potency, though not approaching the nanomolar levels of the oxalylhydroxamates.

  13. Rosmarinic acid and antioxidant enzyme activities in Lavandula vera MM cell suspension culture: a comparative study.

    Science.gov (United States)

    Georgiev, Milen; Abrashev, Radoslav; Krumova, Ekaterina; Demirevska, Klimentina; Ilieva, Mladenka; Angelova, Maria

    2009-11-01

    The growth and intracellular protein content of lavender (Lavandula vera MM) cell suspension culture was followed along with some antioxidant defense system members-non-enzymatic (rosmarinic acid) and enzymatic [superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6)]. It was found that the media content and the cultivation mode strongly influenced the production of plant defense compounds as well as the ratio between non-enzymatic and enzymatic ones. The bioreactor culture contains about two times more rosmarinic acid, superoxide dismutase, and catalase compared to the shake-flask cultivation. These findings are discussed with respect to the relative stress levels and plant antioxidant orchestra system. It was concluded that investigated defense system components (enzymatic and non-enzymatic) were closely associated in a complex balance. The three isoenzyme forms of SOD (Cu/ZnSOD, FeSOD, and MnSOD) in the cells of Lavandula vera were revealed by polyacrylamide gel electrophoresis analysis, and the FeSOD isoform exhibited highest activity.

  14. Study of the interaction of enzyme Heparanase 1 (HPSE1) active with deoxyribonucleic acids

    International Nuclear Information System (INIS)

    Cid, Gisele da Silva

    2016-01-01

    The human heparanase 1 (HPSE 1) is a protein with multiple functions and has emerged as a promising therapeutic target in the context of antitumor therapy. This fact is due to its clinical relevance in the tumor development and progression, as determined by their enzymatic ability to degrade heparan sulfate (HS), the main constituent of the extracellular matrix, providing a tumor microenvironment to tumor dissemination. In addition, this protein plays a significant role in the increase of tumor cells migration ionizing radiation dose delivery in radiotherapy from the increase in the expression levels of HPSE1. In order to evaluate in more detail the functions of active HPSE1, it has been proposed to characterize the interaction of human heparanase protein 1 with deoxyribonucleic acids. Our results are original and point to a new function of HPSE1 of the endonuclease type. (author)

  15. Differential induction of peroxisomal beta-oxidation enzymes by clofibric acid and aspirin in piglet tissues.

    Science.gov (United States)

    Yu, X X; Odle, J; Drackley, J K

    2001-11-01

    Peroxisomal beta-oxidation (POX) of fatty acids is important in lipid catabolism and thermogenesis. To investigate the effects of peroxisome proliferators on peroxisomal and mitochondrial beta-oxidation in piglet tissues, newborn pigs (1-2 days old) were allowed ad libitum access to milk replacer supplemented with 0.5% clofibric acid (CA) or 1% aspirin for 14 days. CA increased ratios of liver weight to body weight (P < 0.07), kidney weight to body weight (P < 0.05), and heart weight to body weight (P < 0.001). Aspirin decreased daily food intake and final body weight but increased the ratio of heart weight to body weight (P < 0.01). In liver, activities of POX, fatty acyl-CoA oxidase (FAO), total carnitine palmitoyltransferase (CPT), and catalase were 2.7-, 2.2-, 1.5-fold, and 33% greater, respectively, for pigs given CA than for control pigs. In heart, these variables were 2.2-, 4.1-, 1.9-, and 1.8-fold greater, respectively, for pigs given CA than for control pigs. CA did not change these variables in either kidney or muscle, except that CPT activity was increased approximately 110% (P < 0.01) in kidney. Aspirin increased only hepatic FAO and CPT activities. Northern blot analysis revealed that CA increased the abundance of catalase mRNA in heart by approximately 2.2-fold. We conclude that 1) POX and CPT in newborn pigs can be induced by peroxisomal proliferators with tissue specificity and 2) the relatively smaller induction of POX in piglets (compared with that in young or adult rodents) may be related to either age or species differences.

  16. Induction of Shikimic Acid Pathway Enzymes by Light in Suspension Cultured Cells of Parsley (Petroselinum crispum) 1

    Science.gov (United States)

    McCue, Kent F.; Conn, Eric E.

    1990-01-01

    Light treatment of suspension cultured cells of parsley (Petroselinum crispum) was shown to increase the activity of the shikimic acid pathway enzyme, 3-deoxy-d-arabino-heptulosonic acid-7-phosphate (DAHP) synthase (EC 4.1.2.15). DAHP synthase activity was assayed for two isoforms, DS-Mn and DS-Co (RJ Ganson, TA d'Amato, RA Jensen [1986] Plant Physiol 82: 203-210). Light increased the enzymatic activity of the plastidic isoform DS-Mn as much as 2-fold, averaging 1.6-fold with >95% confidence. The cytosolic isoform DS-Co was unaffected. Cycloheximide and actinomycin D, translational and transcriptional inhibitors, respectively, both reversed induction of DS-Mn by light suggesting transcriptional regulation of the gene. Chorismate mutase activity was assayed for the two isoforms CM I and CM II (BK Singh, JA Connelly, EE Conn [1985] Arch Biochem Biophys 243: 374-384). Treatment by light did not significantly affect either chorismate mutase isoform. The ratio of the two chorismate mutase isoforms changed during the growth cycle, with an increase in the ratio of plastidic to cytosolic isoforms occurring towards the end of logarithmic growth. PMID:16667741

  17. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa.

    Science.gov (United States)

    Glonti, T; Chanishvili, N; Taylor, P W

    2010-02-01

    To identify enzymes associated with bacteriophages infecting cystic fibrosis (CF) strains of Pseudomonas aeruginosa that are able to degrade extracellular alginic acids elaborated by the host bacterium. Plaques produced by 21 Ps. aeruginosa-specific phages were screened for the presence of haloes, an indicator of capsule hydrolytic activity. Four phages produced haloed plaques, and one (PT-6) was investigated further. PT-6 was shown by electron microscopy to belong to Podoviridae family C1, to reduce the viscosity of four alginate preparations using a rolling ball viscometer and to release uronic acid-containing fragments from the polymers, as judged by spectrophotometry and thin layer chromatography. The alginase was partially purified by gel filtration chromatography and shown to be a 37 kDa polypeptide. Infection of CF strains of Ps. aeruginosa by phage PT-6 involves hydrolysis of the exopolysaccharide secreted by the host. The alginase produced by PT-6 has the potential to increase the well-being of CF suffers by improving the surface properties of sputum, accelerating phagocytic uptake of bacteria and perturbing bacterial growth in biofilms.

  18. Effects of indole-3-acetic acid on arsenic uptake and antioxidative enzymes in Pteris cretica var. nervosa and Pteris ensiformis.

    Science.gov (United States)

    He, Shujuan; Hu, Yongjun; Wang, Hongbin; Wang, Haijuan; Li, Qinchun

    2017-03-04

    A hydroponic experiment was conducted to investigate the effects of indole-3-acetic acid (IAA) on arsenic (As) uptake and antioxidative enzymes in fronds of Pteris cretica var. nervosa (As hyperaccumulator) and Pteris ensiformis (non-hyperaccumulator). Plants were exposed to 2 mg L -1 As(III), As(V) or dimethylarsinic acid (DMA) and IAA concentrations for 14 d. The biomass and total As in the plants significantly increased at 30 mg L -1 IAA. Superoxide dismutase (SOD) activities significantly increased with IAA addition. Catalase (CAT) activities showed a significant increase in P. ensiformis exposed to three As species at 30 or 50 mg L -1 IAA but varied in P. cretica var. nervosa. Peroxidase (POD) activities were unchanged in P. ensiformis except for a significant decrease at 50 mg L -1 IAA under As(III) treatment. However, a significant increase was observed in P. cretica var. nervosa at 10 mg L -1 IAA under As(III) or DMA treatment and at 50 mg L -1 IAA under As(V) treatment. Under DMA stress, malondialdehyde contents in fronds of P. cretica var. nervosa showed a significant decrease at 10 mg L -1 IAA but remained unchanged in P. ensiformis. Therefore, IAA enhanced As uptake and frond POD activity in P. cretica var. nervosa under As stress.

  19. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2015-01-01

    Full Text Available The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i the supply of ADP and Mg2+, supported by adenylate kinase (AK equilibrium in the intermembrane space, (ii the supply of phosphate via membrane transporter in symport with H+, and (iii the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport and phosphate release and supply.

  20. Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification.

    Science.gov (United States)

    Sun, Li; Lu, Yufang; Kronzucker, Herbert J; Shi, Weiming

    2016-07-01

    Fatty acid amides from plant root exudates, such as oleamide and erucamide, have the ability to participate in strong plant-microbe interactions, stimulating nitrogen metabolism in rhizospheric bacteria. However, mechanisms of secretion of such fatty acid amides, and the nature of their stimulatory activities on microbial metabolism, have not been examined. In the present study, collection, pre-treatment, and determination methods of oleamide and erucamide in duckweed root exudates are compared. The detection limits of oleamide and erucamide by gas chromatography (GC) (10.3ngmL(-1) and 16.1ngmL(-1), respectively) are shown to be much lower than those by liquid chromatography (LC) (1.7 and 5.0μgmL(-1), respectively). Quantitative GC analysis yielded five times larger amounts of oleamide and erucamide in root exudates of Spirodela polyrrhiza when using a continuous collection method (50.20±4.32 and 76.79±13.92μgkg(-1) FW day(-1)), compared to static collection (10.88±0.66 and 15.27±0.58μgkg(-1) FW day(-1)). Furthermore, fatty acid amide secretion was significantly enhanced under elevated nitrogen conditions (>300mgL(-1)), and was negatively correlated with the relative growth rate of duckweed. Mechanistic assays were conducted to show that erucamide stimulates nitrogen removal by enhancing denitrification, targeting two key denitrifying enzymes, nitrate and nitrite reductases, in bacteria. Our findings significantly contribute to our understanding of the regulation of nitrogen dynamics by plant root exudates in natural ecosystems. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes.

    Directory of Open Access Journals (Sweden)

    Fei Xia

    Full Text Available Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17 and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19 are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high

  2. Role of AMACR (α-methylacyl-CoA racemase) and MFE-1 (peroxisomal multifunctional enzyme-1) in bile acid synthesis in mice.

    Science.gov (United States)

    Autio, Kaija J; Schmitz, Werner; Nair, Remya R; Selkälä, Eija M; Sormunen, Raija T; Miinalainen, Ilkka J; Crick, Peter J; Wang, Yuqin; Griffiths, William J; Reddy, Janardan K; Baes, Myriam; Hiltunen, J Kalervo

    2014-07-01

    Cholesterol is catabolized to bile acids by peroxisomal β-oxidation in which the side chain of C27-bile acid intermediates is shortened by three carbon atoms to form mature C24-bile acids. Knockout mouse models deficient in AMACR (α-methylacyl-CoA racemase) or MFE-2 (peroxisomal multifunctional enzyme type 2), in which this β-oxidation pathway is prevented, display a residual C24-bile acid pool which, although greatly reduced, implies the existence of alternative pathways of bile acid synthesis. One alternative pathway could involve Mfe-1 (peroxisomal multifunctional enzyme type 1) either with or without Amacr. To test this hypothesis, we generated a double knockout mouse model lacking both Amacr and Mfe-1 activities and studied the bile acid profiles in wild-type, Mfe-1 and Amacr single knockout mouse line and Mfe-1 and Amacr double knockout mouse lines. The total bile acid pool was decreased in Mfe-1-/- mice compared with wild-type and the levels of mature C24-bile acids were reduced in the double knockout mice when compared with Amacr-deficient mice. These results indicate that Mfe-1 can contribute to the synthesis of mature bile acids in both Amacr-dependent and Amacr-independent pathways.

  3. Interactive Effect of Salicylic Acid on Some Physiological Features and Antioxidant Enzymes Activity in Ginger (Zingiber officinale Roscoe

    Directory of Open Access Journals (Sweden)

    Hawa Z. E. Jaafar

    2013-05-01

    Full Text Available The effect of foliar salicylic acid (SA applications (10−3 and 10−5 M on activities of nitrate reductase, guaiacol peroxidase (POD, superoxide dismutases (SOD, catalase (CAT and proline enzymes and physiological parameters was evaluated in two ginger varieties (Halia Bentong and Halia Bara under greenhouse conditions. In both varieties, tested treatments generally enhanced photosynthetic rate and total dry weight. Photosynthetic rate increases were generally accompanied by increased or unchanged stomatal conductance levels, although intercellular CO2 concentrations of treated plants were typically lower than in controls. Lower SA concentrations were generally more effective in enhancing photosynthetic rate and plant growth. Exogenous application of SA increased antioxidant enzyme activities and proline content; the greatest responses were obtained in plants sprayed with 10–5 M SA, with significant increases observed in CAT (20.1%, POD (45.2%, SOD (44.1% and proline (43.1% activities. Increased CAT activity in leaves is naturally expected to increase photosynthetic efficiency and thus net photosynthesis by maintaining a constant CO2 supply. Our results support the idea that low SA concentrations (10–5 M may induce nitrite reductase synthesis by mobilizing intracellular NO3− and can provide protection to nitrite reductase degradation in vivo in the absence of NO3–. Observed positive correlations among proline, SOD, CAT and POD activities in the studied varieties suggest that increased SOD activity was accompanied by increases in CAT and POD activities because of the high demands of H2O2 quenching.

  4. Toward "stable-on-the-table" enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).

    Science.gov (United States)

    Riccardi, Caterina M; Cole, Kyle S; Benson, Kyle R; Ward, Jessamyn R; Bassett, Kayla M; Zhang, Yiren; Zore, Omkar V; Stromer, Bobbi; Kasi, Rajeswari M; Kumar, Challa V

    2014-08-20

    Several key properties of catalase such as thermal stability, resistance to protease degradation, and resistance to ascorbate inhibition were improved, while retaining its structure and activity, by conjugation to poly(acrylic acid) (PAA, Mw 8000) via carbodiimide chemistry where the amine groups on the protein are appended to the carboxyl groups of the polymer. Catalase conjugation was examined at three different pH values (pH 5.0, 6.0, and 7.0) and at three distinct mole ratios (1:100, 1:500, and 1:1000) of catalase to PAA at each reaction pH. The corresponding products are labeled as Cat-PAA(x)-y, where x is the protein to polymer mole ratio and y is the pH used for the synthesis. The coupling reaction consumed about 60-70% of the primary amines on the catalase; all samples were completely water-soluble and formed nanogels, as evidenced by gel electrophoresis and electron microscopy. The UV circular dichroism (CD) spectra indicated substantial retention of protein secondary structure for all samples, which increased to 100% with increasing pH of the synthesis and polymer mole fraction. Soret CD bands of all samples indicated loss of ∼50% of band intensities, independent of the reaction pH. Catalytic activities of the conjugates increased with increasing synthesis pH, where 55-80% and 90-100% activity was retained for all samples synthesized at pH 5.0 and pH 7.0, respectively, and the Km or Vmax values of Cat-PAA(100)-7 did not differ significantly from those of the free enzyme. All conjugates synthesized at pH 7.0 were thermally stable even when heated to ∼85-90 °C, while native catalase denatured between 55 and 65 °C. All conjugates retained 40-90% of their original activities even after storing for 10 weeks at 8 °C, while unmodified catalase lost all of its activity within 2 weeks, under similar storage conditions. Interestingly, PAA surrounding catalase limited access to the enzyme from large molecules like proteases and significantly increased

  5. Physiological desensitization of carbohydrate permeases and adenylate cyclase to regulation by the phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium. Involvement of adenosine cyclic 3',5'-phosphate and inducer.

    Science.gov (United States)

    Saier, M H; Keeler, D K; Feucht, B U

    1982-03-10

    Adenylate cyclase and a number of carbohydrate transport systems are subject to regulation by the phosphoenolpyruvate:sugar phosphotransferase system. These sensitive carbohydrate transport systems are desensitized to regulation by the phosphotransferase system, and adenylate cyclase is deactivated when cells are grown in medium containing cyclic AMP. These effects are specific for cyclic AMP and are potentiated by the genetic loss of cyclic AMP phosphodiesterase. Inclusion in the growth medium of an inducer of a sensitive transport system also promotes desensitization of that particular transport system. Inducer-promoted desensitization is specific for the particular target transport system, while cyclic AMP-promoted desensitization is general and affects several systems. Desensitization of the permeases to regulation, and inactivation of adenylate cyclase, are slow processes which are blocked by chloramphenicol and are therefore presumably dependent on protein synthesis. Several sugar substrates of the phosphotransferase system are capable of regulating the sensitive carbohydrate transport systems. The evidence suggests that desensitization to this regulation does not result from a direct effect on the functioning of Enzyme I, a small heat-stable protein of the phosphotransferase system, HPr, or an Enzyme II of the phosphotransferase system, but specifically uncouples the permease systems from regulation.

  6. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase.

    Science.gov (United States)

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A

    2014-10-01

    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  7. Recombinant human acid alpha-glucosidase: high level production in mouse milk, biochemical characteristics, correction of enzyme deficiency in GSDII KO mice

    NARCIS (Netherlands)

    A.G.A. Bijvoet (Agnes); M.A. Kroos (Marian); F.R. Pieper (Frank); M. Van der Vliet (Martin); H.A. de Boer (Herman); A.T. van der Ploeg (Ans); M.Ph. Verbeet (Martin); A.J.J. Reuser (Arnold)

    1998-01-01

    textabstractGlycogen storage disease type II (GSDII) is caused by lysosomal acid alpha-glucosidase deficiency. Patients have a rapidly fatal or slowly progressive impairment of muscle function. Enzyme replacement therapy is under investigation. For large-scale, cost-effective

  8. Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Lignos, G.D.; Bakker, R.R.C.; Koukios, E.G.

    2012-01-01

    The objective of this work was to investigate the feasibility of combining low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis for the high production of fermentable substrates and the low release of inhibitory compounds. For most of the pretreatments at 160

  9. AN ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) METHOD FOR THE URINARY BIOMONITORING OF 2,4-DICHLOROPHRENOCYACETIC ACID (2,4-D)

    Science.gov (United States)

    An enzyme-linked immunosorbent assay (ELISA) method was developed to quantitatively measure 2,4-dichlorophenoyacetic acid (2,4-D) in human urine. Samples were diluted (1:5) with phosphate-buffered saline, 0.05% Tween 20, with 0.02% sodium azide, and analyzed by a 96-microwekk pl...

  10. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  11. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D.

    Science.gov (United States)

    Xu, Keming; Narayanan, Karthikeyan; Lee, Fan; Bae, Ki Hyun; Gao, Shujun; Kurisawa, Motoichi

    2015-09-01

    The propagation of human embryonic stem cells (hESCs) in three-dimensional (3D) scaffolds facilitates the cell expansion process and supplies pluripotent cells of high quality for broad-spectrum applications in regenerative medicine. Herein, we report an enzyme-mediated hyaluronic acid-tyramine (HA-Tyr) hydrogel that encapsulated and propagated hESCs in 3D. HA-Tyr hydrogels were formed by crosslinking the tyramine moieties with horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). By changing the HRP and H2O2 concentration, we prepared HA-Tyr hydrogels of different mechanical strength and studied the self-renewal properties of hESCs in these scaffolds. We observed that both the chemical composition and mechanical strength of substrates were important factors affecting cell proliferation and pluripotency. The HA-Tyr hydrogel with a compressive modulus of ∼350Pa supported the proliferation of hESCs at the pluripotent state in both mTeSR1 medium and mouse embryonic fibroblast (MEF)-conditioned medium. Immunohistochemical analyses revealed that hESCs proliferated well and formed spheroid structures in 3D, without undergoing apoptosis. The hESCs cultured in HA-Tyr hydrogels showed high expression of CD44 and pluripotency markers. These cells exhibited the capability to form cell derivatives of all three embryonic germ layers in vitro and in vivo. In addition, the genetic integrity of the hESCs was unaffected in the 3D cultivation system. The scope of this study is to provide a stable 3D cultivation system for the expansion of human embryonic stem cells (hESCs) towards clinical applications. We report an enzyme mediated hyaluronic acid-tyramine (HA-Tyr) hydrogel that encapsulated and propagated hESCs in 3D. Unlike other HA-based photo-crosslinked hydrogel systems reported, we investigated the effects of mechanical strength of hydrogels on the self-renewal properties of hESCs in 3D. Then, we characterized hESCs cultured in hydrogels with lower mechanical strength

  12. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Lackey, Denise E.; Lynch, Christopher J.; Olson, Kristine C.; Mostaedi, Rouzbeh; Ali, Mohamed; Smith, William H.; Karpe, Fredrik; Humphreys, Sandy; Bedinger, Daniel H.; Dunn, Tamara N.; Thomas, Anthony P.; Oort, Pieter J.; Kieffer, Dorothy A.; Amin, Rajesh; Bettaieb, Ahmed; Haj, Fawaz G.; Permana, Paska; Anthony, Tracy G.

    2013-01-01

    Elevated blood branched-chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metabolism. We tested if expression of the mitochondrial BCAA oxidation checkpoint, branched-chain α-ketoacid dehydrogenase (BCKD) complex, is reduced in obese WAT and regulated by metabolic signals. WAT BCKD protein (E1α subunit) was significantly reduced by 35–50% in various obesity models (fa/fa rats, db/db mice, diet-induced obese mice), and BCKD component transcripts significantly lower in subcutaneous (SC) adipocytes from obese vs. lean Pima Indians. Treatment of 3T3-L1 adipocytes or mice with peroxisome proliferator-activated receptor-γ agonists increased WAT BCAA catabolism enzyme mRNAs, whereas the nonmetabolizable glucose analog 2-deoxy-d-glucose had the opposite effect. The results support the hypothesis that suboptimal insulin action and/or perturbed metabolic signals in WAT, as would be seen with insulin resistance/type 2 diabetes, could impair WAT BCAA utilization. However, cross-tissue flux studies comparing lean vs. insulin-sensitive or insulin-resistant obese subjects revealed an unexpected negligible uptake of BCAA from human abdominal SC WAT. This suggests that SC WAT may not be an important contributor to blood BCAA phenotypes associated with insulin resistance in the overnight-fasted state. mRNA abundances for BCAA catabolic enzymes were markedly reduced in omental (but not SC) WAT of obese persons with metabolic syndrome compared with weight-matched healthy obese subjects, raising the possibility that visceral WAT contributes to the BCAA metabolic phenotype of metabolically compromised individuals. PMID:23512805

  13. Jasmonic acid-isoleucine formation in grapevine (Vitis vinifera L.) by two enzymes with distinct transcription profiles.

    Science.gov (United States)

    Böttcher, Christine; Burbidge, Crista A; di Rienzo, Valentina; Boss, Paul K; Davies, Christopher

    2015-07-01

    The plant hormone jasmonic acid (JA) is essential for stress responses and the formation of reproductive organs, but its role in fruit development and ripening is unclear. Conjugation of JA to isoleucine is a crucial step in the JA signaling pathway since only JA-Ile is recognized by the jasmonate receptor. The conjugation reaction is catalyzed by JA-amido synthetases, belonging to the family of Gretchen Hagen3 (GH3) proteins. Here, in vitro studies of two grapevine (Vitis vinifera L. cv Shiraz) GH3 enzymes, VvGH3-7 and VvGH3-9, demonstrated JA-conjugating activities with an overlapping range of amino acid substrates, including isoleucine. Expression studies of the corresponding genes in grape berries combined with JA and JA-Ile measurements suggested a primary role for JA signaling in fruit set and cell division and did not support an involvement of JA in the ripening process. In response to methyl JA (MeJA) treatment, and in wounded and unwounded (distal) leaves, VvGH3-9 transcripts accumulated, indicating a participation in the JA response. In contrast, VvGH3-7 was unresponsive to MeJA and local wounding, demonstrating a differential transcriptional regulation of VvGH3-7 and VvGH3-9. The transient induction of VvGH3-7 in unwounded, distal leaves was suggestive of the involvement of an unknown mobile wound signal. © 2014 Institute of Botany, Chinese Academy of Sciences.

  14. Thermostability promotes the cooperative function of split adenylate kinases.

    Science.gov (United States)

    Nguyen, Peter Q; Liu, Shirley; Thompson, Jeremy C; Silberg, Jonathan J

    2008-05-01

    Proteins can often be cleaved to create inactive polypeptides that associate into functional complexes through non-covalent interactions, but little is known about what influences the cooperative function of the ensuing protein fragments. Here, we examine whether protein thermostability affects protein fragment complementation by characterizing the function of split adenylate kinases from the mesophile Bacillus subtilis (AKBs) and the hyperthermophile Thermotoga neapolitana (AKTn). Complementation studies revealed that the split AKTn supported the growth of Escherichia coli with a temperature-sensitive AK, but not the fragmented AKBs. However, weak complementation occurred when the AKBs fragments were fused to polypeptides that strongly associate, and this was enhanced by a Q16L mutation that thermostabilizes the full-length protein. To examine how the split AK homologs differ in structure and function, their catalytic activity, zinc content, and circular dichroism spectra were characterized. The reconstituted AKTn had higher levels of zinc, greater secondary structure, and >10(3)-fold more activity than the AKBs pair, albeit 17-fold less active than full-length AKTn. These findings provide evidence that the design of protein fragments that cooperatively function can be improved by choosing proteins with the greatest thermostability for bisection, and they suggest that this arises because hyperthermophilic protein fragments exhibit greater residual structure compared to their mesophilic counterparts.

  15. Remediation of an acidic mine spoil: Miscanthus biochar and lime amendment affects metal availability, plant growth, and soil enzyme activity.

    Science.gov (United States)

    Novak, Jeffrey M; Ippolito, James A; Ducey, Thomas F; Watts, Donald W; Spokas, Kurt A; Trippe, Kristin M; Sigua, Gilbert C; Johnson, Mark G

    2018-08-01

    Biochar may be a tool for mine spoil remediation; however, its mechanisms for achieving this goal remain unclear. In this study, Miscanthus (Miscanthus giganteus) biochar was evaluated for its ability to reclaim acidic mine spoils (pH lime/no lime and fertilizer additions. Blue Wildrye (Elymus glaucus cv. 'Elkton') was planted and later the shoots and roots were collected and metal concentrations determined. Afterwards, each pot was leached with deionized water, and the leachate analyzed for pH, electrical conductivity (EC), dissolved organic carbon (DOC) and soluble metal concentrations. After drying, the spoil was extracted with 0.01 M CaCl 2 and Mehlich 3 (M3) to determine extractable Al, Cu, and Zn concentrations. Additionally, microbial activity was measured using a fluorescent β-glucosidase and N-acetyl-β-d-glucosaminidase assay. Spoil treated with lime and biochar had significantly greater pH and EC values. Significantly greater β-glucosidase activity occurred only in the 5% biochar plus lime treatment, while N-acetyl-β-d-glucosaminidase activities were not altered. Metal concentrations in rye shoot and roots were mixed. Lime additions significantly reduced extractable metal concentrations. Increasing biochar rates alone significantly reduced leachate DOC concentrations, and subsequently reduced leachable metal concentrations. Surprisingly, miscanthus biochar, by itself, was limited at mitigation, but when combined with lime, the combination was capable of further reducing extractable metal concentrations and improving β-glucosidase enzyme activity. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine.

    Science.gov (United States)

    Galeano, Belinda; Klootwijk, Riko; Manoli, Irini; Sun, MaoSen; Ciccone, Carla; Darvish, Daniel; Starost, Matthew F; Zerfas, Patricia M; Hoffmann, Victoria J; Hoogstraten-Miller, Shelley; Krasnewich, Donna M; Gahl, William A; Huizing, Marjan

    2007-06-01

    Mutations in the key enzyme of sialic acid biosynthesis, uridine diphospho-N-acetylglucosamine 2-epimerase/N-acetylmannosamine (ManNAc) kinase (GNE/MNK), result in hereditary inclusion body myopathy (HIBM), an adult-onset, progressive neuromuscular disorder. We created knockin mice harboring the M712T Gne/Mnk mutation. Homozygous mutant (Gne(M712T/M712T)) mice did not survive beyond P3. At P2, significantly decreased Gne-epimerase activity was observed in Gne(M712T/M712T) muscle, but no myopathic features were apparent. Rather, homozygous mutant mice had glomerular hematuria, proteinuria, and podocytopathy. Renal findings included segmental splitting of the glomerular basement membrane, effacement of podocyte foot processes, and reduced sialylation of the major podocyte sialoprotein, podocalyxin. ManNAc administration yielded survival beyond P3 in 43% of the Gne(M712T/M712T) pups. Survivors exhibited improved renal histology, increased sialylation of podocalyxin, and increased Gne/Mnk protein expression and Gne-epimerase activities. These findings establish this Gne(M712T/M712T) knockin mouse as what we believe to be the first genetic model of podocyte injury and segmental glomerular basement membrane splitting due to hyposialylation. The results also support evaluation of ManNAc as a treatment not only for HIBM but also for renal disorders involving proteinuria and hematuria due to podocytopathy and/or segmental splitting of the glomerular basement membrane.

  17. Comparisons of blood biochemical parameters, digestive enzyme activities and volatile fatty acid profile between Meishan and Yorkshire piglets

    Directory of Open Access Journals (Sweden)

    Shouqing Ma

    2015-12-01

    Full Text Available This study was conducted to compare physiological characteristics between Meishan and Yorkshire piglets in their early lives. Six healthy purebred Meishan sows and Yorkshire sows with close farrowing dates were used in this research. The piglets sucked their respective sow's milk for 14 days, then they were slaughtered to collect samples of blood, pancreas, contents of stomach, jejunum, cecum, colon as well as feces for analysis of blood biochemical parameters, digestive enzymes, and volatile fatty acid (VFA. The results showed that Yorkshire piglets had higher concentrations of high-density lipoprotein cholesterol (HDL-C and total cholesterol (TC (P < 0.05. Gastric lipase activity was higher in Meishan piglets but Yorkshire piglets had higher lactase activity (P < 0.05. The total VFA together with acetate and propionate in cecum and colon were higher in Meishan piglets than in Yorkshire piglets (P < 0.05, but acetate in jejunum and ratio of acetate to propionate in colon were lower in Meishan piglets than in Yorkshire piglets (P < 0.05. In conclusion, in early suckling period, significant differences exist in host metabolism and intestinal microbial metabolism between Meishan and Yorkshire piglets.

  18. On-line monitoring system of lactic acid fermentation by using integrated enzyme sons ors; Shusekika koso sensa wo mochiita nyusan hakko keisokuyo onrain monitaringu shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masayasu; Kumagi, Takeshi; Nakashima, Yuuichi [Kyushu University, Fukuoka (Japan). Dept. of Biochemical Engineering and Science

    1999-03-10

    An on-line monitoring system for lactic acid fermentation is developed by using integrated micro enzyme sensors, a flow injection analysis system, and a micro dialysis system. The calibration curves of micro glucose, lactose and lactate sensors show good linearity in the concentration range below 70 mM. By combination with the micro dialysis system, the enzyme sensors can measure the whole concentration range of lactic acid fermentation, and interference by the medium can not be observed. The on-line sensor system is then applied to lactic acid fermentation of Lactobacillus delbrueckii. The sensor system can monitor the glucose and lactate concentrations simultaneously during 24-h fermentation, and the measurements show good agreement with those of the conventional colorimetric method. The sensor system can also be applied to on-line monitoring of lactose and lactate during Lactobacillus lactis fermentation. (author)

  19. Transient changes of enzyme activity of five acid hydrolases in the supernatants of homogenates of hearts of mice due to ultraviolet irradiation

    International Nuclear Information System (INIS)

    Droba, B.; Jagiellonian Univ., Krakow

    1977-01-01

    Enzymatic activity of five lysosomal hydrolases: acid p-nitrophenyl phosphatase (EC 3.1.3.2), acid β-glycerophosphatase (EC 3.1.3.2), arylsulphatase (EC 3.1.6.1), β-galactosidase (EC 3.2.1.23) and β-N-acetylhexoaminidase (EC 3.2.1.30) was studied in the supernatants of homogenates of hearts of unirradiated mice, serving as controls, and a group of UV-irradiated mice. In the control group, determinations made at 6-hr intervals showed rhythmic diurnal changes in activities of three acid hydrolases. These changes were statistically significant in the case of acid p-nitrophenyl phosphatase, acid β-glycerophosphatase, and β-N-acetylhexosaminidase. The effect of UV-irradiation was manifested mainly by depression of enzyme activities of the acid hydrolases during the first few hours after exposure. Depression of activities of arylsulphatase and β-N-acetylhexosaminidase by UV light was statistically significant. Presumably, the fall in enzyme activities of the acid hydrolases was due to chemical mediators formed in the skin under the influence of UV-radiation and adrenal corticoids secreted into the blood

  20. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  1. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  2. Effect of age and posture on human lymphocyte adenylate cyclase activity.

    Science.gov (United States)

    Mader, S L; Robbins, A S; Rubenstein, L Z; Tuck, M L; Scarpace, P J

    1988-03-01

    1. A number of age-related changes have been reported in the catecholamine-adrenoceptor-adenylate cyclase system. Most of the data available on these alterations come from resting subjects; the response to acute stress may provide additional insights into the age effect on these responses. 2. We measured supine and 10 min upright plasma noradrenaline and lymphocyte adenylate cyclase activity in ten healthy elderly subjects (age 66-80 years) and seven healthy young subjects (age 27-34 years). 3. Isoprenaline stimulation of lymphocyte adenylate cyclase activity was not significantly different between supine and upright positions or between elderly and young subjects. There was a marked increase in forskolin-stimulated adenylate cyclase activity in the upright posture in both elderly and young subjects. The increment over supine levels was 70% in the elderly (P less than 0.025) and 73% in the young (P less than 0.05). This enhanced forskolin activity was not seen in two young subjects who became syncopal. 4. These data suggest that enhanced forskolin-stimulated adenylate cyclase activity occurs after 10 min of upright posture in both elderly and young subjects, and may be relevant to immediate blood pressure regulation. We were unable to demonstrate any age-related differences in these acute adrenergic responses.

  3. Mechanisms of Enzyme-Catalyzed Reduction of Two Carcinogenic Nitro-Aromatics, 3-Nitrobenzanthrone and Aristolochic Acid I: Experimental and Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Marie Stiborová

    2014-06-01

    Full Text Available This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI, to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why human NAD(PH:quinone oxidoreductase (NQO1 and cytochromes P450 (CYP 1A1 and 1A2 have the potential to reductively activate both nitro-aromatics. The results also contributed to the elucidation of the molecular mechanisms of these reactions. The contribution of conjugation enzymes such as N,O-acetyltransferases (NATs and sulfotransferases (SULTs to the activation of 3-NBA and AAI was also examined. The results indicated differences in the abilities of 3-NBA and AAI metabolites to be further activated by these conjugation enzymes. The formation of DNA adducts generated by both carcinogens during their reductive activation by the NOQ1 and CYP1A1/2 enzymes was investigated with pure enzymes, enzymes present in subcellular cytosolic and microsomal fractions, selective inhibitors, and animal models (including knock-out and humanized animals. For the theoretical approaches, flexible in silico docking methods as well as ab initio calculations were employed. The results summarized in this review demonstrate that a combination of experimental and theoretical approaches is a useful tool to study the enzyme-mediated reaction mechanisms of 3-NBA and AAI reduction.

  4. Mechanisms of Enzyme-Catalyzed Reduction of Two Carcinogenic Nitro-Aromatics, 3-Nitrobenzanthrone and Aristolochic Acid I: Experimental and Theoretical Approaches

    Science.gov (United States)

    Stiborová, Marie; Frei, Eva; Schmeiser, Heinz H.; Arlt, Volker M.; Martínek, Václav

    2014-01-01

    This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA) and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI), to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why human NAD(P)H:quinone oxidoreductase (NQO1) and cytochromes P450 (CYP) 1A1 and 1A2 have the potential to reductively activate both nitro-aromatics. The results also contributed to the elucidation of the molecular mechanisms of these reactions. The contribution of conjugation enzymes such as N,O-acetyltransferases (NATs) and sulfotransferases (SULTs) to the activation of 3-NBA and AAI was also examined. The results indicated differences in the abilities of 3-NBA and AAI metabolites to be further activated by these conjugation enzymes. The formation of DNA adducts generated by both carcinogens during their reductive activation by the NOQ1 and CYP1A1/2 enzymes was investigated with pure enzymes, enzymes present in subcellular cytosolic and microsomal fractions, selective inhibitors, and animal models (including knock-out and humanized animals). For the theoretical approaches, flexible in silico docking methods as well as ab initio calculations were employed. The results summarized in this review demonstrate that a combination of experimental and theoretical approaches is a useful tool to study the enzyme-mediated reaction mechanisms of 3-NBA and AAI reduction. PMID:24918288

  5. Jasmonic acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity and Gene Expression in Glycine max under Nickel Toxicity

    Directory of Open Access Journals (Sweden)

    Geetika eSirhindi

    2016-05-01

    Full Text Available In present study, we evaluated the effects of Jasmonic acid (JA on physio-biochemical attributes, antioxidant enzyme activity and gene expression in soybean (Glycine max L. plants subjected to nickel (Ni stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23%, 38.31% and 39.21% respectively over the control. However, application of JA was found to improve the chlorophyll content and growth of Ni-stressed seedlings in terms of root and shoot length. Plants supplemented with Jasmonate restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein and total soluble sugar (TSS by 33.09%, 51.26%, 22.58% and 49.15% respectively under Ni toxicity as compared to control. Supplementation of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2 by 68.49%, lipid peroxidation (MDA by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD, peroxidase (POD, catalase (CAT and ascorbate peroxidase (APX increases by 40.04%, 28.22%, 48.53% and 56.79% respectively over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62%, CAT by 15.25%, POD by 58.33% and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes and osmoprotectants, antioxidant enzyme activity and gene expression.

  6. Expression of Genes Encoding Enzymes Involved in the One Carbon Cycle in Rat Placenta is Determined by Maternal Micronutrients (Folic Acid, Vitamin B12 and Omega-3 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Vinita Khot

    2014-01-01

    Full Text Available We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR and methionine synthase , but higher cystathionine b-synthase (CBS and Phosphatidylethanolamine-N-methyltransferase (PEMT as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE, phosphatidylcholine (PC, in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes.

  7. Adenylate cyclase regulates elongation of mammalian primary cilia

    International Nuclear Information System (INIS)

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J.; Rattner, Jerome B.; Hoorn, Frans A. van der

    2009-01-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3β by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  8. Adenylate cyclase regulates elongation of mammalian primary cilia

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J. [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Rattner, Jerome B. [Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Hoorn, Frans A. van der, E-mail: fvdhoorn@ucalgary.ca [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada)

    2009-10-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3{beta} by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  9. Oleanolic acid acetate inhibits rheumatoid arthritis by modulating T cell immune responses and matrix-degrading enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Kyeong [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Kim, Sung-Wan; Kim, Duk-Sil [Department of Thoracic and Cardiovascular Surgery, CHA Gumi Medical Center, CHA University, Gumi 730-040 (Korea, Republic of); Lee, Jong Yeong [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Lee, Soyoung [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Oh, Hyun-Mee [Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Ha, Yeong Su; Yoo, Jeongsoo [Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Park, Pil-Hoon [College of Pharmacy, Yeungnam University, Gyeongbuk 712-749 (Korea, Republic of); Shin, Tae-Yong [College of Pharmacy, Woosuk University, Jeonju 565-701 (Korea, Republic of); Kwon, Taeg Kyu [Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701 (Korea, Republic of); Rho, Mun-Chual, E-mail: rho-m@kribb.re.kr [Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Kim, Sang-Hyun, E-mail: shkim72@knu.ac.kr [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2016-01-01

    ABSTRACT: Rheumatoid arthritis (RA) is a chronic autoimmune disease associated with a combination of synovium joint inflammation, synovium hyperplasia, and destruction of cartilage and bone. Oleanolic acid acetate (OAA), a compound isolated from Vigna angularis, has been known to possess pharmacological activities, including anti-inflammation and anti-bone destruction. In this study, we investigated the effects of OAA on RA and the underlying mechanisms of action by using a type-II collagen-induced arthritis (CIA) mouse model and tumor necrosis factor (TNF)-α-stimulated RA synovial fibroblasts. Oral administration of OAA decreased the clinical arthritis symptoms, paw thickness, histologic and radiologic changes, and serum total and anti-type II collagen IgG, IgG1, and IgG2a levels. OAA administration reduced Th1/Th17 phenotype CD4{sup +} T lymphocyte expansions and inflammatory cytokine productions in T cell activated draining lymph nodes and spleen. OAA reduced the expression and production of inflammatory mediators, such as cytokines and matrix metalloproteinase (MMP)-1/3, in the ankle joint tissue and RA synovial fibroblasts by down-regulating Akt, mitogen-activated protein kinases, and nuclear factor-κB. Our results clearly support that OAA plays a therapeutic role in RA pathogenesis by modulating helper T cell immune responses and matrix-degrading enzymes. The immunosuppressive effects of OAA were comparable to dexamethasone and ketoprofen. We provide evidences that OAA could be a potential therapeutic candidate for RA. - Highlights: • OAA attenuated chronic CIA symptoms. • OAA had a regulating effect on the T helper cell immune reaction for CIA. • The effect of OAA on the RA was comparable to the dexamethasone or ketoprofen. • OAA might be a candidate for the treatment of arthritic diseases.

  10. Castasterone confers copper stress tolerance by regulating antioxidant enzyme responses, antioxidants, and amino acid balance in B. juncea seedlings.

    Science.gov (United States)

    Yadav, Poonam; Kaur, Ravdeep; Kanwar, Mukesh Kumar; Sharma, Anket; Verma, Vinod; Sirhindi, Geetika; Bhardwaj, Renu

    2018-01-01

    The aim of the present study was to explore the effect of exogenous application of castasterone (CS) on physiologic and biochemical responses in Brassica juncea seedlings under copper (Cu) stress. Seeds were pre-soaked in different concentrations of CS and grown for 7 days under various levels of Cu. The exposure of B. juncea to higher levels of Cu led to decrease of morphologic parameters, with partial recovery of length and fresh weight in the CS pre-treated seedlings. Metal content was high in both roots and shoots under Cu exposure while the CS pre-treatment reduced the metal uptake. Accumulation of hydrogen peroxide (H 2 O 2 ) and superoxide anion radical (O 2 - ) were chosen as stress biomarker and higher levels of H 2 O 2 (88.89%) and O 2 - (62.11%) showed the oxidative stress in metal treated B. juncea seedlings, however, CS pre-treatment reduced ROS accumulation in Cu-exposed seedlings. The Cu exposures lead to enhance the plant's enzymatic and non-enzymatic antioxidant system. It was observed that enzymatic activities of ascorbate peroxidase (APOX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), glutathione perxoidase (GPOX) and gultrathione-s-transferase increased while activity of monodehydroascorbate reductase (MDHAR) decreased under Cu stress. The pre-treatment with CS positively affected the activities of enzymes. RT-PCR analysis showed that mRNA transcript levels were correlated with total enzymatic activity of DHAR, GR, GST and GSH. Increase in the gene expression of DHAR (1.85 folds), GR (3.24 folds), GST-1 (2.00 folds) and GSH-S (3.18 folds) was noticed with CS pre-treatment. Overall, the present study shows that Cu exposure induced severe oxidative stress in B. juncea plants and exogenous application of CS improved antioxidative defense system by modulating the ascorbate-glutathione cycle and amino acid metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Influence of baking enzymes on antimicrobial activity of five bacteriocin-like inhibitory substances produced by lactic acid bacteria isolated from Lithuanian sourdoughs.

    Science.gov (United States)

    Narbutaite, V; Fernandez, A; Horn, N; Juodeikiene, G; Narbad, A

    2008-12-01

    To evaluate the effect of four different baking enzymes on the inhibitory activity of five bacteriocin-like inhibitory substances (BLIS) produced by lactic acid bacteria (LAB) isolated from Lithuanian sourdoughs. The overlay assay and the Bioscreen methods revealed that the five BLIS exhibited an inhibitory effect against spore germination and vegetative outgrowth of Bacillus subtilis, the predominant species causing ropiness in bread. The possibility that the observed antibacterial activity of BLIS might be lost after treatment with enzymes used for baking purposes was also examined. The enzymes tested; hemicellulase, lipase, amyloglucosidase and amylase had little or no effect on the majority of the antimicrobial activities associated with the five BLIS studied. This study suggests a potential application in the sourdough baking industry for these antimicrobial producing LAB strains in the control of B. subtilis spore germination and vegetative outgrowth.

  12. Dietary fatty acids and membrane protein function.

    Science.gov (United States)

    Murphy, M G

    1990-02-01

    In recent years, there has been growing public awareness of the potential health benefits of dietary fatty acids, and of the distinction between the effects of the omega6 and omega3 polyunsaturated fatty acids that are concentrated in vegetable and fish oils, respectively. A part of the biologic effectiveness of the two families of polyunsaturated fatty acids resides in their relative roles as precursors of the eicosanoids. However, we are also beginning to appreciate that as the major components of the hydrophobic core of the membrane bilayer, they can interact with and directly influence the functioning of select integral membrane proteins. Among the most important of these are the enzymes, receptors, and ion channels that are situated in the plasma membrane of the cell, since they carry out the communication and homeostatic processes that are necessary for normal cell function. This review examines current information regarding the effects of diet-induced changes in plasma membrane fatty acid composition on several specific enzymes (adenylate cyclase, 5'-nucleotidase, Na(+)/K(+)-ATPase) and cell-surface receptors (opiate, adrenergic, insulin). Dietary manipulation studies have demonstrated a sensitivity of each to a fatty acid environment that is variably dependent on the nature of the fatty acid(s) and/or source of the membrane. The molecular mechanisms appear to involve fatty acid-dependent effects on protein conformation, on the "fluidity" and/or thickness of the membrane, or on protein synthesis. Together, the results of these studies reinforce the concept that dietary fats have the potential to regulate physiologic function and to further our understanding of how this occurs at a membrane level.

  13. Experiment K-6-21. Effect of microgravity on 1) metabolic enzymes of type 1 and type 2 muscle fibers and on 2) metabolic enzymes, neutransmitter amino acids, and neurotransmitter associated enzymes in motor and somatosensory cerebral cortex. Part 1: Metabolic enzymes of individual muscle fibers; part 2: metabolic enzymes of hippocampus and spinal cord

    Science.gov (United States)

    Lowry, O.; Mcdougal, D., Jr.; Nemeth, Patti M.; Maggie, M.-Y. Chi; Pusateri, M.; Carter, J.; Manchester, J.; Norris, Beverly; Krasnov, I.

    1990-01-01

    The individual fibers of any individual muscle vary greatly in enzyme composition, a fact which is obscured when enzyme levels of a whole muscle are measured. The purpose of this study was therefore to assess the changes due to weightless on the enzyme patterns composed by the individual fibers within the flight muscles. In spite of the limitation in numbers of muscles examined, it is apparent that: (1) that the size of individual fibers (i.e., their dry weight) was reduced about a third, (2) that this loss in dry mass was accompanied by changes in the eight enzymes studied, and (3) that these changes were different for the two muscles, and different for the two enzyme groups. In the soleus muscle the absolute amounts of the three enzymes of oxidative metabolism decreased about in proportion to the dry weight loss, so that their concentration in the atrophic fibers was almost unchanged. In contrast, there was little loss among the four enzymes of glycogenolysis - glycolysis so that their concentrations were substantially increased in the atrophic fibers. In the TA muscle, these seven enzymes were affected in just the opposite direction. There appeared to be no absolute loss among the oxidative enzymes, whereas the glycogenolytic enzymes were reduced by nearly half, so that the concentrations of the first metabolic group were increased within the atrophic fibers and the concentrations of the second group were only marginally decreased. The behavior of hexokinase was exceptional in that it did not decrease in absolute terms in either type of muscle and probably increased as much as 50 percent in soleus. Thus, their was a large increase in concentration of this enzyme in the atrophied fibers of both muscles. Another clear-cut finding was the large increase in the range of activities of the glycolytic enzymes among individual fibers of TA muscles. This was due to the emergence of TA fibers with activities for enzymes of this group extending down to levels as low as

  14. Molecular docking and molecular dynamics simulation studies on Thermus thermophilus leucyl-tRNA synthetase complexed with different amino acids and pre-transfer editing substrates

    Directory of Open Access Journals (Sweden)

    Rayevsky A. V.

    2016-02-01

    Full Text Available Aim. To investigate the structural bases for the amino acid selectivity of the Thermus thermophilus leucyl-tRNA synthetase (LeuRSTT aminoacylation site and to disclose the binding pattern of pre-transfer editing substrates. Methods. Eight amino acids proposed as semi-cognate substrates for aminoacylation and eight aminoacyl-adenylates (formed from AMP and eight amino acids were prepared in zwitterions form. The protein structure with a co-crystallized substrate in the aminoacylation site [PDBID: 1OBH] was taken from RCSB. Docking settings and evaluation of substrate efficiency were followed by twofold docking function analysis for each conformation with Gold CCDC. The molecular dynamics simulation was performed using Gromacs. The procedures of relaxation and binding study were separated in two different subsequent simulations for 50ns and 5ns. Results. The evaluation of substrate efficiency for 8 amino acids by twofold docking function analysis, based on score values,has shown that the ligands of LeuRSTT can be positioned in the following order: Leu>Nva>Hcy>Nle>Met>Cys>Ile >Val. MD simulation has revealed lower electrostatic interactions of isoleucine with the active site of the enzyme compared with those for norvaline and leucine. In the case of aminoacyl-adenylates no significant differences were found based on score values for both GoldScore and Asp functions. Molecular dynamics of leucyl-, isoleucyl- and norvalyl-adenylates showed that the most stable and conformationally favorable is leucine, then follow norvaline and isoleucine. It has been also found that the TYR43 of the active site covers carboxyl group of leucine and norvaline like a shield and deflected towards isoleucine, allowing water molecules to come closer. Conclusions. In this study we revealed some structural basis for screening unfavorable substrates by shape, size and flexibility of a radical. The results obtained for different amino acids by molecular docking and MD studies

  15. Dopamine inhibition of anterior pituitary adenylate cyclase is mediated through the high-affinity state of the D2 receptor

    International Nuclear Information System (INIS)

    Borgundvaag, B.; George, S.R.

    1985-01-01

    The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of [ 3 H]-ATP to [ 3 H]-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC 50 values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC 50 values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D 2 dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity. 12 references, 4 figures, 1 table

  16. The Effect of Salicylic Acid and Gibberellin on Seed Reserve Utilization, Germination and Enzyme Activity of Sorghum (Sorghum bicolor L. Seeds Under Drought Stress

    Directory of Open Access Journals (Sweden)

    Roghayyeh Sheykhbaglou

    2014-03-01

    Full Text Available Seed priming methods have been used to increases germination characteristics under stress conditions. The study aimed was to determine the effect of salicylic acid and gibberellin on seed reserve utilization, germination and enzyme activity of sorghum (Sorghum bicolor L. seeds under drought stress. Factorial experiment was carried out in completely randomized design with three replications. The first factor was the seed treatments (unpriming, salicylic acid and gibberellin and the second factor was drought stress (0, -4, -8 and -12 bar. The results indicated that for these traits: germination percentage, germination index, weight of utilized (mobilized seed, seed reserve utilization efficiency, seedling dry weight and seed reserve depletion percentage was a significant treatment Ч drought interaction. Thus priming improved study traits in Sorghum (Sorghum bicolor L. seeds under drought stress. Also, priming improves enzyme activity as compared to the unprimed seeds.

  17. Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Kladova, A. V.; Gavel, O. Yu.; Mukhopaadhyay, A.; Boer, D. R.; Teixeira, S.; Shnyrov, V. L.; Moura, I.; Moura, J. J. G.; Romão, M. J.; Trincão, J.; Bursakov, S. A.

    2009-01-01

    Adenylate kinase (AK) from D. gigas was purified and crystallized in three different metal-bound forms: Zn 2+ –AK, Co 2+ –AK and Fe 2+ –AK. Adenylate kinase (AK; ATP:AMP phosphotransferase; EC 2.7.4.3) is involved in the reversible transfer of the terminal phosphate group from ATP to AMP. AKs contribute to the maintenance of a constant level of cellular adenine nucleotides, which is necessary for the energetic metabolism of the cell. Three metal ions, cobalt, zinc and iron(II), have been reported to be present in AKs from some Gram-negative bacteria. Native zinc-containing AK from Desulfovibrio gigas was purified to homogeneity and crystallized. The crystals diffracted to beyond 1.8 Å resolution. Furthermore, cobalt- and iron-containing crystal forms of recombinant AK were also obtained and diffracted to 2.0 and 3.0 Å resolution, respectively. Zn 2+ –AK and Fe 2+ –AK crystallized in space group I222 with similar unit-cell parameters, whereas Co 2+ –AK crystallized in space group C2; a monomer was present in the asymmetric unit for both the Zn 2+ –AK and Fe 2+ –AK forms and a dimer was present for the Co 2+ –AK form. The structures of the three metal-bound forms of AK will provide new insights into the role and selectivity of the metal in these enzymes

  18. Angiotensin II potentiates prostaglandin stimulation of cyclic AMP levels in intact bovine adrenal medulla cells but not adenylate cyclase in permeabilized cells.

    Science.gov (United States)

    Boarder, M R; Plevin, R; Marriott, D B

    1988-10-25

    The level of cyclic AMP in primary cultures of bovine adrenal medulla cells is elevated by prostaglandin E1. Angiotensin II is commonly reported to act on receptors linked to phosphoinositide metabolism or to inhibition of adenylate cyclase. We have investigated the effect of angiotensin II on prostaglandin E1-stimulated cyclic AMP levels in these primary cultures. Rather than reducing cyclic AMP levels, we have found that angiotensin II powerfully potentiates prostaglandin E1-stimulated cyclic AMP accumulation in intact cells, both in the presence and absence of phosphodiesterase inhibitors. The 50% maximal response was similar to that for stimulation of phosphoinositide breakdown by angiotensin II in these cultures. The potentiation of stimulated cyclic AMP levels was seen, although to a smaller maximum, with the protein kinase C (Ca2+/phospholipid-dependent enzyme) activating phorbol ester tetradecanoyl phorbolacetate and with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol; pretreatment (24 h) with active phorbol ester, which would be expected to diminish protein kinase C levels, attenuated the angiotensin II potentiation of cyclic AMP. Using digitonin-permeabilized cells we showed that adenylate cyclase activity was stimulated by prostaglandin E1 with the same dose-response relationship as was cyclic AMP accumulation in intact cells, but the permeabilized cells showed no response to angiotensin II. The results are discussed with respect to the hypothesis that the angiotensin II influence on cyclic AMP levels is mediated, in part, by diacylglycerol stimulation of protein kinase C.

  19. Adenylate Nucleotides and 2,3-Biphosphoglycerate Concentration in Erythrocytes of Growing Wielkopolska Stallions

    OpenAIRE

    M. Suska; E. Skotnicka; W. Dudzińska; W. Orowicz; M. Brzezinska

    2006-01-01

    The aim of this study was to examine the relationships between the concentrations of adenylate nucleotides (ATP, ADP, AMP), total nucleotide pool (TAN), adenylate energy charge (AEC) and 2,3-biphosphoglycerate (2,3-BPG) in the erythrocytes of young horses in the period of their rapid growth and development. The studies were conducted on 10 young Wielkopolska breed stallions for two years; Group A: 1-month-old, Group B: 3-month-old, Group C: 6-month-old, Group D: 1-year-old, and Group E: 2-yea...

  20. Adenylate kinase amplification of ATP bioluminescence for hygiene monitoring in the food and beverage industry.

    Science.gov (United States)

    Corbitt, A J; Bennion, N; Forsythe, S J

    2000-06-01

    Fourteen food residues, Escherichia coli O157:H7 and Staphylococcus aureus on stainless steel surfaces were detected using a combined assay with adenylate kinase as a cellular marker and ATP bioluminescence. The limit of sensitivity ranged from 0.02 to 708 microg for minced meat and broccoli, respectively. Both methods gave the same detection limit (105 cfu) for E. coli and Staph. aureus on stainless steel surfaces. The combined adenylate kinase-ATP assay is applicable to monitor the hygiene of work surfaces, especially those prone to contamination by meat and vegetable residues.

  1. Effects of ionizing radiation and cysteamine (MEA) on activity of mouse spleen adenyl cyclase

    International Nuclear Information System (INIS)

    Soltysiak-Pawluczuk, D.; Bitny-Szlachto, S.

    1976-01-01

    In mice X-irradiated with doses of 200 R and 400 R, there was a substantial increase in spleen adenyl cyclase activity; there was similar activation by MEA. In mice given MEA before irradiation, an additive effect of radiation and the radioprotective drug was observed. On the other hand, a dose of 800 R given either alone or after pre-treatment with MEA failed to elicit any change in cyclase activity. The results indicate the importance of the adenyl cyclase system in the response of cells to irradiation and action of MEA. (author)

  2. Structure of Human cGAS Reveals a Conserved Family of Second-Messenger Enzymes in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Philip J. Kranzusch

    2013-05-01

    Full Text Available Innate immune recognition of foreign nucleic acids induces protective interferon responses. Detection of cytosolic DNA triggers downstream immune signaling through activation of cyclic GMP-AMP synthase (cGAS. We report here the crystal structure of human cGAS, revealing an unanticipated zinc-ribbon DNA-binding domain appended to a core enzymatic nucleotidyltransferase scaffold. The catalytic core of cGAS is structurally homologous to the RNA-sensing enzyme, 2′-5′ oligo-adenylate synthase (OAS, and divergent C-terminal domains account for specific ligand-activation requirements of each enzyme. We show that the cGAS zinc ribbon is essential for STING-dependent induction of the interferon response and that conserved amino acids displayed within the intervening loops are required for efficient cytosolic DNA recognition. These results demonstrate that cGAS and OAS define a family of innate immunity sensors and that structural divergence from a core nucleotidyltransferase enables second-messenger responses to distinct foreign nucleic acids.

  3. Clostridium difficile Testing Algorithm: Is There a Difference in Patients Who Test Positive by Enzyme Immunoassay vs. Those Who Only Test Positive by Nucleic Acid Amplification Methodology?

    OpenAIRE

    Polak, Jonathan; Odili, Ogheneruona; Craver, Mary Ashleigh; Mayen, Anthony; Purrman, Kyle; Rahman, Asem; Sang, Charlie Joseph; Cook, Paul P

    2017-01-01

    Abstract Background Testing for Clostridium difficile infection (CDI) commonly involves checking for the presence of toxins A and B by enzyme immunoassay (EIA) or nucleic acid amplification (NAA). The former is very specific, but not very sensitive. The latter is very sensitive. Beginning in 2011, our hospital incorporated an algorithm that involved testing liquid stool specimens for glutamate dehydrogenase (GDH) and toxin by EIA. For discrepant results, the stool specimen was tested for the ...

  4. Gene polymorphisms of desaturase enzymes of polyunsaturated fatty acid metabolism and adiponutrin and the increased risk of nonalcoholic fatty liver disease

    OpenAIRE

    Manvi Vernekar; Deepak Amarapurkar; Kalpana Joshi; Rekha Singhal

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is considered to be the hepatic manifestation of the metabolic syndrome (MetS). Adiponutrin gene polymorphisms have been associated with NAFLD worldwide. Polyunsaturated fatty acids (PUFAs) have been studied to have anti-inflammatory effects and plasma lipid lowering properties. PUFAs are endogenously synthesized with the help of delta-6-desaturase and delta-5-desaturase enzymes. They are encoded by FADS2 and FADS1 genes respectively. Polymorphisms in ...

  5. Mono-N-acyl-2,6-diaminopimelic acid derivatives: Analysis by electromigration and spectroscopic methods and examination of enzyme inhibitory activity

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Jan; Vítovcová, M.; Sázelová, Petra; Pícha, Jan; Vaněk, Václav; Buděšínský, Miloš; Jiráček, Jiří; Gillner, D. M.; Holz, R. C.; Mikšík, Ivan; Kašička, Václav

    2014-01-01

    Roč. 467, Dec 15 (2014), s. 4-13 ISSN 0003-2697 R&D Projects: GA ČR(CZ) GAP206/12/0453; GA ČR(CZ) GA13-17224S; GA AV ČR IAA400550614 Institutional support: RVO:61388963 ; RVO:67985823 Keywords : 2,6-diaminopimelic acid derivatives * capillary zone electrophoresis * micellar electrokinetic chromatography * enzyme inhibition Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.219, year: 2014

  6. Synthesis of Na-acetyl-ornithine and N-succinyl-diaminopimelic acid analogs as potential inhibitors of bacterial enzymes ArgE and DapE

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Jan; Pícha, Jan; Jiráček, Jiří; Vaněk, Václav; Gilner, D.; Slaninová, Jiřina; Fučík, Vladimír; Holz, R. C.

    2009-01-01

    Roč. 103, č. 11 (2009), s. 952-952 ISSN 0009-2770. [Pokroky v organické, bioorganické a farmaceutické chemii /44./. 27.11.2009-29.11.2009, Liblice] R&D Projects: GA AV ČR IAA400550614 Institutional research plan: CEZ:AV0Z40550506 Keywords : amino acid derivatives * bacterial enzymes * inhibition Subject RIV: CC - Organic Chemistry

  7. Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Vavitsas, Konstantinos; Andersen-Ranberg, Johan

    2015-01-01

    in the infiltrated leaves. Furthermore, we demonstrated that a modified membrane anchor is a prerequisite for a functional CYP720B4 enzyme when the chloroplast targeting peptide is added. We report the accumulation of 45-55 μg/g plant dry weight of isopimaric acid four days after the infiltration with the modified...... in the chloroplast and subsequently oxidized by a cytochrome P450, CYP720B4. RESULTS: We transiently expressed the isopimaric acid pathway in Nicotiana benthamiana leaves and enhanced its productivity by the expression of two rate-limiting steps in the pathway (providing the general precursor of diterpenes). This co...

  8. Enzyme-mediated bacterial biodegradation of an azo dye (C.I. Acid blue 113): reuse of treated dye wastewater in post-tanning operations.

    Science.gov (United States)

    Senthilvelan, T; Kanagaraj, J; Panda, R C

    2014-11-01

    "Dyeing" is a common practice used to color the hides during the post-tanning operations in leather processing generating plenty of wastewater. The waste stream containing dye as pollutant is severely harmful to living beings. An azo dye (C.I. Acid Blue 113) has been biodegraded effectively by bacterial culture mediated with azoreductase enzyme to reduce the pollution load in the present investigation. The maximum rate of dye degradation was found to be 96 ± 4 and 92 ± 4 % for the initial concentrations of 100 and 200 mg/l, respectively. The enzyme activity was measured using NADH as a substrate. Fourier transform infrared spectroscopy (FT-IR) analysis was confirmed that the transformation of azo linkage could be transformed into N2 or NH3 or incorporated into complete biomass. Breaking down of dye molecules to various metabolites (such as aniline, naphthalene-1,4-diamine, 3-aminobenzenesulfonic acid, naphthalene-1-sulfonic acid, 8-aminonaphthalene-1-sulfonic acid, 5,8-diaminonaphthalene-1-sulfonic acid) was confirmed by gas chromatography and mass spectra (GC-MS) and mass (electrospray ionization (ESI)) spectra analysis. The treated wastewater could be reused for dyeing operation in the leather processing, and the properties of produced leather were evaluated by conventional methods that revealed to have improved dye penetration into the grain layer of experimental leather sample and resulted in high levelness of dyeing, which helps to obtain the desired smoothness and soft leather properties.

  9. Histological changes and antioxidant enzyme activity in signal crayfish (Pacifastacus leniusculus) associated with sub-acute peracetic acid exposure.

    Science.gov (United States)

    Chupani, Latifeh; Zuskova, Eliska; Stara, Alzbeta; Velisek, Josef; Kouba, Antonin

    2016-01-01

    Peracetic acid (PAA) is a powerful disinfectant recently adopted as a therapeutic agent in aquaculture. A concentration of 10 mg L(-1) PAA effectively suppresses zoospores of Aphanomyces astaci, the agent of crayfish plague. To aid in establishing safe therapeutic guideline, the effects of PAA on treated crayfish were investigated through assessment of histological changes and oxidative damage. Adult female signal crayfish Pacifastacus leniusculus (n = 135) were exposed to 2 mg L(-1) and 10 mg L(-1) of PAA for 7 days followed by a 7 day recovery period in clean water. Superoxide dismutase activity was significantly lower in gill and hepatopancreas after three days exposure to 10 mg L(1) PAA than in the group treated with 2 mg L(-1) PAA and a control in only clean water. Catalase activity in gill and hepatopancreas remained unaffected by both exposures. Glutathione reductase was significantly decreased in gill of 10 mg L(-1) PAA treated crayfish and increased in group exposed to 2 mg L(-1) compared to control after 7 days exposure. Antioxidant enzyme activity in exposed groups returned to control values after recovery period. Gill, hepatopancreas, and antennal gland showed slight damage in crayfish treated with 2 mg L(-1) of PAA compared to the control group. The extent and frequency of histological alterations were more pronounced in animals exposed to 10 mg L(-1). The gill was the most affected organ, infiltrated by granular hemocytes and displaying malformations of lamella tips and disorganization of epithelial cells. After a 7 day recovery period, the infiltrating cells in affected tissues of the exposed crayfish began to return to normal levels. Results suggested that the given concentrations could be applied to signal crayfish against crayfish plague agent in aquaculture; however, further studies are required for safe use. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Inhibition of hydrolytic enzymes by gold compounds. I. beta-Glucuronidase and acid phosphatase by sodium tetrachloroaurate (III) and potassium tetrabromoaurate (III).

    Science.gov (United States)

    Lee, M T; Ahmed, T; Friedman, M E

    1989-01-01

    Purified bovine liver beta-glucuronidase (beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32) and wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) were inhibited with freshly dissolved and 24 h aquated tetrahaloaurate (III) compounds. Rate and equilibrium inhibition constants were measured. From this data two acid phosphatases species were observed. Equilibrium inhibition constants ranged from 1 to 12.5 microM for the various gold compounds toward both enzymes. The first order rate constants ranged between 0.005 and 0.04 min.-1 for most reactions with the exception of the fast reacting acid phosphatase which had values as high as 2.6 and 2.8 min.-1. It is observed that the beta-glucuronidase is rapidly inhibited during the equilibrium phase before the more slower reaction covalent bond formation takes place. The acid phosphatases form the covalent bonds more rapidly, especially the faster reacting species suggesting a unique difference in the active site geometry to that of the more slowly reacting species. The tightly bonded gold (III)-enzyme complex is probably the reason for its toxicity and non-anti-inflammatory use as a drug.

  11. The Key Enzyme of the Sialic Acid Metabolism Is Involved in Embryoid Body Formation and Expression of Marker Genes of Germ Layer Formation

    Directory of Open Access Journals (Sweden)

    Annett Thate

    2013-10-01

    Full Text Available The bi-functional enzyme UDP-N-acetyl-2-epimerase/N-acetylmannosamine kinase (GNE is the key enzyme of the sialic acid biosynthesis. Sialic acids are negatively charged nine carbon amino sugars and are found on most glycoproteins and many glycolipids in terminal positions, where they are involved in a variety of biological important molecular interactions. Inactivation of the GNE by homologous recombination results in early embryonic lethality in mice. Here, we report that GNE-deficient embryonic stem cells express less differentiation markers compared to wild-type embryonic stem cells. As a result, GNE-deficient embryonic stem cells fail to form proper embryoid bodies (EB within the first day of culture. However, when culturing these cells in the presence of sialic acids for three days, also GNE-deficient embryonic stem cells form normal EBs. In contrast, when culturing these cells in sialic acid reduced medium, GNE-deficient embryonic stem cells proliferate faster and form larger EBs without any change in the expression of markers of the germ layers.

  12. Ser/Thr Phosphorylation Regulates the Fatty Acyl-AMP Ligase Activity of FadD32, an Essential Enzyme in Mycolic Acid Biosynthesis*

    Science.gov (United States)

    Le, Nguyen-Hung; Molle, Virginie; Eynard, Nathalie; Miras, Mathieu; Stella, Alexandre; Bardou, Fabienne; Galandrin, Ségolène; Guillet, Valérie; André-Leroux, Gwenaëlle; Bellinzoni, Marco; Alzari, Pedro; Mourey, Lionel; Burlet-Schiltz, Odile; Daffé, Mamadou; Marrakchi, Hedia

    2016-01-01

    Mycolic acids are essential components of the mycobacterial cell envelope, and their biosynthetic pathway is a well known source of antituberculous drug targets. Among the promising new targets in the pathway, FadD32 is an essential enzyme required for the activation of the long meromycolic chain of mycolic acids and is essential for mycobacterial growth. Following the in-depth biochemical, biophysical, and structural characterization of FadD32, we investigated its putative regulation via post-translational modifications. Comparison of the fatty acyl-AMP ligase activity between phosphorylated and dephosphorylated FadD32 isoforms showed that the native protein is phosphorylated by serine/threonine protein kinases and that this phosphorylation induced a significant loss of activity. Mass spectrometry analysis of the native protein confirmed the post-translational modifications and identified Thr-552 as the phosphosite. Phosphoablative and phosphomimetic FadD32 mutant proteins confirmed both the position and the importance of the modification and its correlation with the negative regulation of FadD32 activity. Investigation of the mycolic acid condensation reaction catalyzed by Pks13, involving FadD32 as a partner, showed that FadD32 phosphorylation also impacts the condensation activity. Altogether, our results bring to light FadD32 phosphorylation by serine/threonine protein kinases and its correlation with the enzyme-negative regulation, thus shedding a new horizon on the mycolic acid biosynthesis modulation and possible inhibition strategies for this promising drug target. PMID:27590338

  13. Identification of Adenyl Cyclase Activity in a Disease Resistance Protein in Arabidopsis thaliana

    KAUST Repository

    Hussein, Rana

    2012-01-01

    center motif. In an attempt to prove that this candidate has adenyl cyclases activity in vitro, the coding sequence of the putative AC catalytic domain of this protein was cloned and expressed in E. coli and the recombinant protein was purified

  14. Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions.

    NARCIS (Netherlands)

    Bruin, W.C.C. de; Oerlemans, F.T.J.J.; Wieringa, B.

    2004-01-01

    Adenylate kinase (AK)-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy in cells of fully differentiated tissues with highly variable energy demand, such as muscle and brain. To investigate if AK isoenzymes have a comparable function in the energy-demand

  15. Pituitary adenylate cyclase-activating polypeptide stimulates renin secretion via activation of PAC1 receptors

    DEFF Research Database (Denmark)

    Hautmann, Matthias; Friis, Ulla G; Desch, Michael

    2007-01-01

    Besides of its functional role in the nervous system, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in the regulation of cardiovascular function. Therefore, PACAP is a potent vasodilator in several vascular beds, including the renal vasculature. Because...

  16. LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.

    Science.gov (United States)

    Clayton, R N; Shakespear, R A; Marshall, J C

    1978-06-01

    Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.

  17. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    International Nuclear Information System (INIS)

    Scarpace, P.J.; Baresi, L.A.; Morley, J.E.

    1987-01-01

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the β-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the β-adrenergic pathway, adenylate cyclase activity and β-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. β-Adrenergic receptors were identified in BAT using [ 125 I]iodocyanopindolol. Binding sites had the characteristics of mixed β 1 - and β 2 -type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in β-adrenergic receptor density due to a loss of the β 1 -adrenergic subtype. This BAT β-adrenergic receptor downregulation was tissue specific, since myocardial β-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of β-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability

  18. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons.

    Science.gov (United States)

    Han, P; Lucero, M T

    2005-01-01

    Pituitary adenylate cyclase activating polypeptide has been shown to reduce apoptosis in neonatal cerebellar and olfactory receptor neurons, however the underlying mechanisms have not been elucidated. In addition, the neuroprotective effects of pituitary adenylate cyclase activating polypeptide have not been examined in adult tissues. To study the effects of pituitary adenylate cyclase activating polypeptide on neurons in apoptosis, we measured caspase activation in adult olfactory receptor neurons in vitro. Interestingly, we found that the protective effects of pituitary adenylate cyclase activating polypeptide were related to the absence of a 4-aminopyridine (IC50=144 microM) sensitive rapidly inactivating potassium current often referred to as A-type current. In the presence of 40 nM pituitary adenylate cyclase activating polypeptide 38, both A-type current and activated caspases were significantly reduced. A-type current reduction by pituitary adenylate cyclase activating polypeptide was blocked by inhibiting the phospholipase C pathway, but not the adenylyl cyclase pathway. Our observation that 5 mM 4-aminopyridine mimicked the caspase inhibiting effects of pituitary adenylate cyclase activating polypeptide indicates that A-type current is involved in apoptosis. This work contributes to our growing understanding that potassium currents are involved with the activation of caspases to affect the balance between cell life and death.

  19. Co-ordinate changes in enzymes of fatty acid synthesis, activation and esterification in rabbit mammary gland druing pregnancy and lactation.

    Science.gov (United States)

    Short, V J; Brindley, D N; Dils, R

    1977-01-01

    1. The activities of fatty acid synthetase, acyl-CoA synthetase, glycerol phosphate acyltransferase and phosphatidate phosphatase were measured in the mammary glands of rabbits from day 16 of pregnancy to day 15 of post partum. 2. There were significant correlations between the increases in activities of these enzymes during this period. This was the case whether the activities were expressed per mg of homogenate protein, per g wet wt. of tissue or per total wet weight of the whole glands. The only exception was the lack of correlation between the activities of fatty acid synthetase and of phosphatidate phosphatase per g wet wt. of tissue. 3. These co-ordinate increases are discussed in relation to the changes which occur in fatty acid metabolism in the mammary gland during pregnancy and lactation. PMID:192226

  20. ω-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin

    Directory of Open Access Journals (Sweden)

    O'Shea Karen M

    2010-09-01

    Full Text Available Abstract Background Pathological left ventricular (LV hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1 assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2 evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart. Methods Wild type (WT and adiponectin-/- mice underwent transverse aortic constriction (TAC and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated. Results TAC induced similar pathological LV hypertrophy compared to sham mice in both strains on both diets. In WT mice TAC increased LV systolic and diastolic volumes and reduced mitochondrial enzyme activities, which were attenuated by ω-3 PUFA without increasing adiponectin. In contrast, adiponectin-/- mice displayed no increase in LV end diastolic and systolic volumes or decrease in mitochondrial enzymes with TAC, and did not respond to ω-3 PUFA. Conclusion These findings suggest ω-3 PUFA attenuates cardiac pathology in response to pressure overload independent of an elevation in adiponectin.

  1. The Pseudomonas aeruginosa Chp Chemosensory System Regulates Intracellular cAMP Levels by Modulating Adenylate Cyclase Activity

    Science.gov (United States)

    Fulcher, Nanette B.; Holliday, Phillip M.; Klem, Erich; Cann, Martin J.; Wolfgang, Matthew C.

    2010-01-01

    Summary Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signaling molecule adenosine 3’, 5’-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems. PMID:20345659

  2. Complexes of Escherichia coli adenylate kinase and nucleotides: 1H NMR studies of the nucleotide sites in solution

    International Nuclear Information System (INIS)

    Vetter, I.R.; Reinstein, J.; Roesch, P.

    1990-01-01

    One- and two-dimensional nuclear magnetic resonance (NMR) studies, in particular substrate-protein nuclear Overhauser effect (NOESY) measurements, as well as nucleotide and P 1 ,P 5 -bis-(5'-adenosyl) pentaphosphate (AP 5 A) titrations and studies of the temperature-dependent unfolding of the tertiary structure of Escherichia coli adenylate kinase (AK EC ) were performed. These experiments and comparison with the same type of experiments performed with the porcine enzyme led them to the following conclusions: (1) at pH 8 and concentrations of approximately 2.5-3 mM, AK EC is partially unfolded at 318 K; (2) ATP·Mg 2+ binds to the ATP site with a dissociation constant of approximately 40 μM under the assumption that ATP binds to one nucleotide site only; (3) AP 5 A·Mg 2+ binds to both nucleotide sites and thus simulates the active complex; (4) the ATP·Mg 2+ adenine in the AK EC ·AP 5 A·Mg 2+ complex is located close to His 134 and Phe 19 ; (5) the AK EC G-loop with bound ATP·Mg 2+ is structurally highly homologous to the loop region in the oncogene product p21 with bound GTP·Mg 2+

  3. Snf1 Phosphorylates Adenylate Cyclase and Negatively Regulates Protein Kinase A-dependent Transcription in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nicastro, Raffaele; Tripodi, Farida; Gaggini, Marco; Castoldi, Andrea; Reghellin, Veronica; Nonnis, Simona; Tedeschi, Gabriella; Coccetti, Paola

    2015-10-09

    In eukaryotes, nutrient availability and metabolism are coordinated by sensing mechanisms and signaling pathways, which influence a broad set of cellular functions such as transcription and metabolic pathways to match environmental conditions. In yeast, PKA is activated in the presence of high glucose concentrations, favoring fast nutrient utilization, shutting down stress responses, and boosting growth. On the contrary, Snf1/AMPK is activated in the presence of low glucose or alternative carbon sources, thus promoting an energy saving program through transcriptional activation and phosphorylation of metabolic enzymes. The PKA and Snf1/AMPK pathways share common downstream targets. Moreover, PKA has been reported to negatively influence the activation of Snf1/AMPK. We report a new cross-talk mechanism with a Snf1-dependent regulation of the PKA pathway. We show that Snf1 and adenylate cyclase (Cyr1) interact in a nutrient-independent manner. Moreover, we identify Cyr1 as a Snf1 substrate and show that Snf1 activation state influences Cyr1 phosphorylation pattern, cAMP intracellular levels, and PKA-dependent transcription. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. A minor conformation of a lanthanide tag on adenylate kinase characterized by paramagnetic relaxation dispersion NMR spectroscopy

    International Nuclear Information System (INIS)

    Hass, Mathias A. S.; Liu, Wei-Min; Agafonov, Roman V.; Otten, Renee; Phung, Lien A.; Schilder, Jesika T.; Kern, Dorothee; Ubbink, Marcellus

    2015-01-01

    NMR relaxation dispersion techniques provide a powerful method to study protein dynamics by characterizing lowly populated conformations that are in dynamic exchange with the major state. Paramagnetic NMR is a versatile tool for investigating the structures and dynamics of proteins. These two techniques were combined here to measure accurate and precise pseudocontact shifts of a lowly populated conformation. This method delivers valuable long-range structural restraints for higher energy conformations of macromolecules in solution. Another advantage of combining pseudocontact shifts with relaxation dispersion is the increase in the amplitude of dispersion profiles. Lowly populated states are often involved in functional processes, such as enzyme catalysis, signaling, and protein/protein interactions. The presented results also unveil a critical problem with the lanthanide tag used to generate paramagnetic relaxation dispersion effects in proteins, namely that the motions of the tag can interfere severely with the observation of protein dynamics. The two-point attached CLaNP-5 lanthanide tag was linked to adenylate kinase. From the paramagnetic relaxation dispersion only motion of the tag is observed. The data can be described accurately by a two-state model in which the protein-attached tag undergoes a 23° tilting motion on a timescale of milliseconds. The work demonstrates the large potential of paramagnetic relaxation dispersion and the challenge to improve current tags to minimize relaxation dispersion from tag movements

  5. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  6. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    International Nuclear Information System (INIS)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B.

    1991-01-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipase A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism

  7. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B. (Univ. of Missouri-Columbia (USA))

    1991-02-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipase A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism.

  8. Comparative analysis for the production of fatty acid alkyl esterase using whole cell biocatalyst and purified enzyme from Rhizopus oryzae on waste cooking oil (sunflower oil).

    Science.gov (United States)

    Balasubramaniam, Bharathiraja; Sudalaiyadum Perumal, Ayyappasamy; Jayaraman, Jayamuthunagai; Mani, Jayakumar; Ramanujam, Praveenkumar

    2012-08-01

    The petroleum fuel is nearing the line of extinction. Recent research and technology have provided promising outcomes to rely on biodiesel as the alternative and conventional source of fuel. The use of renewable source - vegetable oil constitutes the main stream of research. In this preliminary study, Waste Cooking Oil (WCO) was used as the substrate for biodiesel production. Lipase enzyme producing fungi Rhizopus oryzae 262 and commercially available pure lipase enzyme were used for comparative study in the production of Fatty Acid Alkyl Esters (FAAE). The whole cell (RO 262) and pure lipase enzyme (PE) were immobilized using calcium alginate beads. Calcium alginate was prepared by optimizing with different molar ratios of calcium chloride and different per cent sodium alginate. Entrapment immobilization was done for whole cell biocatalyst (WCB). PE was also immobilized by entrapment for the transesterification reaction. Seven different solvents - methanol, ethanol, n-propanol, n-butanol, iso-propanol, iso-butanol and iso-amyl alcohol were used as the acyl acceptors. The reaction parameters like temperature (30°C), molar ratio (1:3 - oil:solvent), reaction time (24 h), and amount of enzyme (10% mass ratio to oil) were also optimized for methanol alone. The same parameters were adopted for the other acyl acceptors too. Among the different acyl acceptors - methanol, whose reaction parameters were optimized showed maximum conversion of triglycerides to FAAE-94% with PE and 84% with WCB. On the whole, PE showed better catalytic converting ability with all the acyl acceptor compared to WCB. Gas chromatography analysis (GC) was done to determine the fatty acid composition of WCO (sunflower oil) and FAAE production with different acyl acceptors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Gene polymorphisms as risk factors for predicting the cardiovascular manifestations in Marfan syndrome. Role of folic acid metabolism enzyme gene polymorphisms in Marfan syndrome.

    Science.gov (United States)

    Benke, Kálmán; Ágg, Bence; Mátyás, Gábor; Szokolai, Viola; Harsányi, Gergely; Szilveszter, Bálint; Odler, Balázs; Pólos, Miklós; Maurovich-Horvat, Pál; Radovits, Tamás; Merkely, Béla; Nagy, Zsolt B; Szabolcs, Zoltán

    2015-10-01

    Folic acid metabolism enzyme polymorphisms are believed to be responsible for the elevation of homocysteine (HCY) concentration in the blood plasma, correlating with the pathogenesis of aortic aneurysms and aortic dissection. We studied 71 Marfan patients divided into groups based on the severity of cardiovascular involvement: no intervention required (n=27, Group A); mild involvement requiring intervention (n=17, Group B); severe involvement (n=27, Group C) subdivided into aortic dilatation (n=14, Group C1) and aortic dissection (n=13, Group C2), as well as 117 control subjects. We evaluated HCY, folate, vitamin B12 and the polymorphisms of methylenetetrahydrofolate reductase (MTHFR;c.665C>T and c.1286A>C), methionine synthase (MTR;c.2756A>G) and methionine synthase reductase (MTRR;c.66A>G). Multiple comparisons showed significantly higher levels of HCY in Group C2 compared to Groups A, B, C1 and control group (pMarfan patients, and especially aortic dissection, is associated with higher HCY plasma levels and prevalence of homozygous genotypes of folic acid metabolism enzymes than mild or no cardiovascular involvement. These results suggest that impaired folic acid metabolism has an important role in the development and remodelling of the extracellular matrix of the aorta.

  10. Photoperiodism and enzyme activity: towards a model for the control of circadian metabolic rhythms in the crassulacean Acid metabolism.

    Science.gov (United States)

    Queiroz, O; Morel, C

    1974-04-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system.

  11. Quantification of urinary 5-hydroxyindoleacetic acid by in-house nitrosonaphthol reaction compared with nitrosonaphthol micro column chromatography and enzyme-linked immunosorbent assay

    Directory of Open Access Journals (Sweden)

    Joyce Matie Kinoshita da Silva

    2014-06-01

    Full Text Available The aim of this study was to compare the colorimetric "kit" and enzyme-linked immunosorbent assay (ELISA methods to quantify urinary 5-hydroxyindoleacetic acid through the Goldenberg's technique, exploring the potential of replacing it. 24-hour urine samples were tested by Goldenberg's assay and compared with kits. The agreement was almost perfect for the comparison of Goldenberg's assay with both colorimetric kit, and with ELISA kit, considering ≤ 7.5 mg/24h normal cutoff value. Therefore, both "kits" would be good alternatives to Goldenberg's technique due to practicality and agreement between values.

  12. The Effect of EDTA and Citric acid on Soil Enzymes Activity, Substrate Induced Respiration and Pb Availability in a Contaminated Soil

    Directory of Open Access Journals (Sweden)

    seyed sajjad hosseini

    2017-03-01

    Full Text Available Introduction: Application of EDTA may increase the heavy metal availability and phytoextraction efficiency in contaminated soils. In spite of that, it might also have some adverse effects on soil biological properties. Metals as freeions are considered to be severely toxic, whereas the complexed form of these metalswith organic compounds or Fe/Mn oxides may be less available to soil microbes. However, apart from this fact, some of these compounds like EDTA and EDTA-metal complexes have low bio- chemo- and photo-degradablity and high solubility in their own characteristics andable to cause toxicity in soil environment. So more attentions have been paid to use of low molecular weight organic acids (LMWOAs such as Citric acid because of having less unfavorable effects to the environment. Citric acid increases heavy metals solubility in soils and it also improves soil microbial activity indirectly. Soil enzymes activity is a good indicator of soil quality, and it is more suitable for monitoring the soil quality compared to physical or chemical indicators. The aims of this research were to evaluate the changes of dehydrogenase, urease and alkaline phosphomonoesterase activities, substrate-induced respiration (SIR and Pb availability after EDTA and citric acid addition into a contaminated soil with PbCl2. Materials and Methods: An experiment was conducted in a completely randomized design with factorial arrangement and three replications in greenhouse condition. The soil samples collected from surface horizon (0-20 cm of the Typic haplocalsids, located in Mashhad, Iran. Soil samples were artificially contaminated with PbCl2 (500 mg Pb per kg of soil and incubated for one months in 70 % of water holding capacity at room temperature. The experimental treatments included control, 3 and 5 mmol EDTA (EDTA3 and EDTA5 and Citric acid (CA3 and CA5 per kg of soil. Soil enzymes activity, substrate-induced respiration and Pb availability of soil samples were

  13. Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme

    DEFF Research Database (Denmark)

    Madsen, Søren M; Beck, Hans Christian; Ravn, Peter

    2002-01-01

    Staphylococcus carnosus and Staphylococcus xylosus are widely used as aroma producers in the manufacture of dried fermented sausages. Catabolism of branched-chain amino acids (BCAAs) by these strains contributes to aroma formation by production of methyl-branched aldehydes and carboxy acids. The ...

  14. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Schytz, Henrik W

    2014-01-01

    Pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) and vasoactive intestinal polypeptide are structurally and functionally closely related but show differences in migraine-inducing properties. Mechanisms responsible for the difference in migraine induction are unknown. Here, for the ...

  15. Synthesis of 1- and 3-11C-labelled L-lactic acid using multi-enzyme catalysis

    International Nuclear Information System (INIS)

    Bjurling, P.; Laangstroem, B.

    1990-01-01

    The synthesis of 1- and 3- 11 C-labelled L-lactic acid from the corresponding racemic 1- or 3- 11 C-labelled alanine using a multi-enzymatic reaction route, is presented. DL-[1- 11 C]Alanine was synthesised by reacting sodium 1-hydroxy-ethyl sulfite with hydrogen [ 11 C]cyanide, obtained from [ 11 C]carbon dioxide, and ammonia followed by acid hydrolysis. DL-[3- 11 C]-Alanine was synthesised by a methylation of a glycine derivative, N-(diphenylmethylene)-glycine tert-butyl ester, with [ 11 C]methyl iodide, obtained from [ 11 C]carbon dioxide, and subsequent hydrolysis. The racemic 1- or 3- 11 C-labelled alanine was then converted to pyruvic acid, by D-amino acid oxidase/catalase and glutamic-pyruvic transaminase, which was directly reduced to L-lactic acid by L-lactic dehydrogenase in a one-pot procedure. The total synthesis time was 40 minutes, counted from release of [ 11 C]carbon dioxide. The decay corrected radiochemical yields were ca. 80% for L-[1- 11 C]lactic acid, based on hydrogen cyanide, and ca. 60% for L-[3- 11 C]lactic acid, based on carbon dioxide. The radiochemical purities were higher than 99% analysed by HPLC. (author)

  16. Kinetics of adenylate metabolism in human and rat myocardium

    OpenAIRE

    Tavenier, M.; Skladanowski, A.C.; Abreu, R.A. de; Jong, J.W. de

    1995-01-01

    textabstractPathways producing and converting adenosine have hardly been investigated in human heart, contrasting work in other species. We compared the kinetics of enzymes associated with purine degradation and salvage in human and rat heart cytoplasm assaying for adenosine deaminase, nucleoside phosphorylase, xanthine oxidoreductase, AMP deaminase, AMP- and IMP-specific 5′-nucleotidases, adenosine kinase and hypoxanthine guanine phosphoribosyltransferase (HGPRT). Xanthine oxidoreductase was...

  17. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  18. Gallic acid formation from gallotannins-rich agricultural wastes using Aspergillus niger AUMC 4301 or its tannase enzyme

    International Nuclear Information System (INIS)

    El-Fouly, M.Z.; Shahin, A.A.M.; El-Bialy, H.A.; El-Saeed, Gh.E.; El-Awamry, Z.; Naeem, E.

    2012-01-01

    Gallic acid is used in many fields including dye-making, leather and chemical industries. Seven agricultural wastes were chosen for their high gallotannin content. They were apple baggages, green tea waste, mango seed kernel, olive mill, palm kernel cake, peat moss and tamarind. Each waste was used as a carbon source instead of tannic acid in the fermentation medium. Some agricultural wastes under investigation were already contain free gallic acid especially mango seed kernel followed by green tea waste, while olive mill, peat moss and tamarind were found to be free from gallic acid. The highest concentration of liberated gallic acid from wastes fermented by A. niger AUMC 4301 was occurred at the third day of fermentation. After 72 h, a sharp decrease in gallic acid accumulation was noticed. To overcome this sharp decrease, agricultural wastes were treated with extracellular crude A. niger tannase directly in stead of tannase producer. The concentration of gallic acid increased gradually and reached its maximum at 18 h incubation in case of apple baggages, green tea waste and palm kernel cake. On the other hand, gallic acid production was delayed for a lag period (12-18) h depends on the complexity of used agriculture waste. To increase the tannase productivity by A. niger AUMC 4301, the producer fungus was irradiated by different doses of γ rays, D10 value was 0.81 kGy. Radiation dose 0.5 kGy shows a positive effect on tannase productivity. An experiment examined the change in amino acid profile between irradiated and unirradiated A. niger AUMC 4301 was also conducted.

  19. Importance of the Long-Chain Fatty Acid Beta-Hydroxylating Cytochrome P450 Enzyme YbdT for Lipopeptide Biosynthesis in Bacillus subtilis Strain OKB105

    Directory of Open Access Journals (Sweden)

    Michael J. McInerney

    2011-03-01

    Full Text Available Bacillus species produce extracellular, surface-active lipopeptides such as surfactin that have wide applications in industry and medicine. The steps involved in the synthesis of 3-hydroxyacyl-coenzyme A (CoA substrates needed for surfactin biosynthesis are not understood. Cell-free extracts of Bacillus subtilis strain OKB105 synthesized lipopeptide biosurfactants in presence of L-amino acids, myristic acid, coenzyme A, ATP, and H2O2, which suggested that 3-hydroxylation occurs prior to CoA ligation of the long chain fatty acids (LCFAs. We hypothesized that YbdT, a cytochrome P450 enzyme known to beta-hydroxylate LCFAs, functions to form 3-hydroxy fatty acids for lipopeptide biosynthesis. An in-frame mutation of ybdT was constructed and the resulting mutant strain (NHY1 produced predominantly non-hydroxylated lipopeptide with diminished biosurfactant and beta-hemolytic activities. Mass spectrometry showed that 95.6% of the fatty acids in the NHY1 biosurfactant were non-hydroxylated compared to only ~61% in the OKB105 biosurfactant. Cell-free extracts of the NHY1 synthesized surfactin containing 3-hydroxymyristic acid from 3-hydroxymyristoyl-CoA at a specific activity similar to that of the wild type (17 ± 2 versus 17.4 ± 6 ng biosurfactant min−1·ng·protein−1, respectively. These results showed that the mutation did not affect any function needed to synthesize surfactin once the 3-hydroxyacyl-CoA substrate was formed and that YbdT functions to supply 3-hydroxy fatty acid for surfactin biosynthesis. The fact that YbdT is a peroxidase could explain why biosurfactant production is rarely observed in anaerobically grown Bacillus species. Manipulation of LCFA specificity of YbdT could provide a new route to produce biosurfactants with activities tailored to specific functions.

  20. STUDY ON THE SUGAR-ACID RATIO AND RELEVANT METABOLIZING ENZYME ACTIVITIES IN NAVEL ORANGE FRUITS FROM DIFFERENT ECO-REGIONS

    Directory of Open Access Journals (Sweden)

    GONG RONGGAO

    2015-12-01

    Full Text Available ABSTRACT The flavor quality of citrus fruits is largely determined by the sugar-acid ratio, but it remains uncertain how sugar- and/or acid-metabolizing enzymes regulate the sugar-acid ratio of navel oranges and further affect the fruit quality. In the present study, Robertson navel oranges (Citrus sinesis Osb. were collected from six representative habitats in three eco-regions of Sichuan, China. The changes in the sugar-acid ratio and the activities of sucrose phosphate synthase (SPS, sucrose synthase (SS, cytosolic cio-aconitase (ACO, and isocitrate dehydrogenase (IDH were examined in navel oranges during fruit development. The results indicated that the sugar-acid ratio of fruits in different eco-regions changed significantly from 150 days after full bloom. The SPS and cytosolic ACO fruit activities had minor changes among different ecoregions throughout the experimental periods, whereas the activities of SS and IDH changed significantly in fruits among three eco-regions. Furthermore, the sugar-acid ratio and the activities of SS in the synthetic direction and IDH were the highest in south subtropics and the lowest in north mid-subtropics, probably due to the effects of climate conditions and/or other relevant eco-factors. It demonstrated that SS in the synthetic direction and IDH were of greater importance in regulating the sugar-acid ratio of navel oranges in different eco-regions, which provided new insights into the factors that determine the flavor quality of navel oranges and valuable data for guiding relevant agricultural practices.

  1. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. [Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of {alpha}-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for {beta}-amylase. (author)

  2. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. (Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering)

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of [alpha]-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for [beta]-amylase. (author)

  3. Enzymatic characterization and gene identification of aconitate isomerase, an enzyme involved in assimilation of trans-aconitic acid, from Pseudomonas sp. WU-0701.

    Science.gov (United States)

    Yuhara, Kahori; Yonehara, Hiromi; Hattori, Takasumi; Kobayashi, Keiichi; Kirimura, Kohtaro

    2015-11-01

    trans-Aconitic acid is an unsaturated organic acid that is present in some plants such as soybean and wheat; however, it remains unclear how trans-aconitic acid is degraded and/or assimilated by living cells in nature. From soil, we isolated Pseudomonas sp. WU-0701 assimilating trans-aconitic acid as a sole carbon source. In the cell-free extract of Pseudomonas sp. WU-0701, aconitate isomerase (AI; EC 5.3.3.7) activity was detected. Therefore, it seems likely that strain Pseudomonas sp. WU-0701 converts trans-aconitic acid to cis-aconitic acid with AI, and assimilates this via the tricarboxylic acid cycle. For the characterization of AI from Pseudomonas sp. WU-0701, we performed purification, determination of enzymatic properties and gene identification of AI. The molecular mass of AI purified from cell-free extract was estimated to be ~ 25 kDa by both SDS/PAGE and gel filtration analyses, indicating that AI is a monomeric enzyme. The optimal pH and temperature of purified AI for the reaction were 6.0 °C and 37 °C, respectively. The gene ais encoding AI was cloned on the basis of the N-terminal amino acid sequence of the protein, and Southern blot analysis revealed that only one copy of ais is located on the bacterial genome. The gene ais contains an ORF of 786 bp, encoding a polypeptide of 262 amino acids, including the N-terminal 22 amino acids as a putative periplasm-targeting signal peptide. It is noteworthy that the amino acid sequence of AI shows 90% and 74% identity with molybdenum ABC transporter substrate-binding proteins of Pseudomonas psychrotolerans and Xanthomonas albilineans, respectively. This is the first report on purification to homogeneity, characterization and gene identification of AI. The nucleotide sequence of ais described in this article is available in the DDBJ/EMBL/GenBank nucleotide sequence databases under the Accession No. LC010980. © 2015 FEBS.

  4. Acinetobacter calcoaceticus CSY-P13 Mitigates Stress of Ferulic and p-Hydroxybenzoic Acids in Cucumber by Affecting Antioxidant Enzyme Activity and Soil Bacterial Community

    Directory of Open Access Journals (Sweden)

    Fenghui Wu

    2018-06-01

    Full Text Available Ferulic acid (FA and p-hydroxybenzoic acid (PHBA are main phenolic compounds accumulated in rhizosphere of continuously cropped cucumber, causing stress in plants. Microbial degradation of a mixture of FA and PHBA is not well understood in soil. We isolated a strain CSY-P13 of Acinetobacter calcoaceticus, inoculated it into soil to protect cucumber from FA and PHBA stress, and explored a mechanism underlying the protection. CSY-P13 effectively degraded a mixture of FA and PHBA in culture solution under conditions of 39.37°C, pH 6.97, and 21.59 g L-1 potassium dihydrogen phosphate, giving rise to 4-vinyl guaiacol, vanillin, vanillic acid, and protocatechuic acid. During FA and PHBA degradation, activities of superoxide dismutase (SOD, catalase, ascorbate peroxidase, and dehydroascorbate reductase in CSY-P13 were induced. Inoculated into cucumber-planted soil containing 220 μg g-1 mixture of FA and PHBA, CSY-P13 degraded FA and PHBA in soil, increased plant height, and decreased malonaldehyde, superoxide radical, and hydrogen peroxide levels in leaves. CSY-P13 also enhanced SOD, guaiacol peroxidase, catalase, glutathione peroxidase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase activities; increased ascorbate and glutathione contents; and elevated transcript levels of copper/zinc SOD, manganese SOD, and catalase in leaves under FA and PHBA. Moreover, CSY-P13 increased phosphatase, catalase, urease, and sucrase activities and changed bacterial richness, diversity, and community composition by high throughput sequencing in cucumber-planted soil supplemented with the mixture of FA and PHBA. So CSY-P13 degrades the mixture of FA and PHBA in soil and mitigates stress from the two phenolic compounds in cucumber by activating antioxidant enzymes, changing soil bacterial community, and inducing soil enzymes.

  5. Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice

    Directory of Open Access Journals (Sweden)

    Rongli Sun

    2016-10-01

    Full Text Available Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC, red blood cell (RBC, platelet (Pit counts, and hemoglobin (Hgb concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS, hydrogen peroxide (H2O2, and malondialdehyde (MDA levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity.

  6. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases

    Directory of Open Access Journals (Sweden)

    Anthony Samsel

    2013-04-01

    Full Text Available Glyphosate, the active ingredient in Roundup®, is the most popular herbicide used worldwide. The industry asserts it is minimally toxic to humans, but here we argue otherwise. Residues are found in the main foods of the Western diet, comprised primarily of sugar, corn, soy and wheat. Glyphosate's inhibition of cytochrome P450 (CYP enzymes is an overlooked component of its toxicity to mammals. CYP enzymes play crucial roles in biology, one of which is to detoxify xenobiotics. Thus, glyphosate enhances the damaging effects of other food borne chemical residues and environmental toxins. Negative impact on the body is insidious and manifests slowly over time as inflammation damages cellular systems throughout the body. Here, we show how interference with CYP enzymes acts synergistically with disruption of the biosynthesis of aromatic amino acids by gut bacteria, as well as impairment in serum sulfate transport. Consequences are most of the diseases and conditions associated with a Western diet, which include gastrointestinal disorders, obesity, diabetes, heart disease, depression, autism, infertility, cancer and Alzheimer’s disease. We explain the documented effects of glyphosate and its ability to induce disease, and we show that glyphosate is the “textbook example” of exogenous semiotic entropy: the disruption of homeostasis by environmental toxins.

  7. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan; Liu, Qi; Sun, Hui-jun; Sun, Peng-yuan; Huo, Xiao-kui; Liu, Zhi-hao; Yao, Ji-hong; Liu, Ke-xin, E-mail: kexinliu@dlmedu.edu.cn

    2015-03-15

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved

  8. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

    International Nuclear Information System (INIS)

    Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan; Liu, Qi; Sun, Hui-jun; Sun, Peng-yuan; Huo, Xiao-kui; Liu, Zhi-hao; Yao, Ji-hong; Liu, Ke-xin

    2015-01-01

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved

  9. Detection of Ganoderic Acid A in Ganoderma lingzhi by an Indirect Competitive Enzyme-Linked Immunosorbent Assay.

    Science.gov (United States)

    Sakamoto, Seiichi; Kohno, Toshitaka; Shimizu, Kuniyoshi; Tanaka, Hiroyuki; Morimoto, Satoshi

    2016-05-01

    Ganoderma is a genus of medicinal mushroom traditionally used for treating various diseases. Ganoderic acid A is one of the major bioactive Ganoderma triterpenoids isolated from Ganoderma species. Herein, we produced a highly specific monoclonal antibody against ganoderic acid A (MAb 12 A) and developed an indirect competitive ELISA for the highly sensitive detection of ganoderic acid A in Ganoderma lingzhi, with a limit of detection of 6.10 ng/mL. Several validation analyses support the accuracy and reliability of the developed indirect competitive ELISA for use in the quality control of Ganoderma based on ganoderic acid A content. Furthermore, quantitative analysis of ganoderic acid A in G. lingzhi revealed that the pileus exhibits the highest ganoderic acid A content compared with the stipe and spore of the fruiting body; the best extraction efficiency was found when 50 % ethanol was used, which suggests the use of a strong liquor to completely harness the potential of Ganoderma triterpenoids in daily life. Georg Thieme Verlag KG Stuttgart · New York.

  10. Chitosan–Collagen Coated Magnetic Nanoparticles for Lipase Immobilization—New Type of “Enzyme Friendly” Polymer Shell Crosslinking with Squaric Acid

    Directory of Open Access Journals (Sweden)

    Marta Ziegler-Borowska

    2017-01-01

    Full Text Available This article presents a novel route for crosslinking a polysaccharide and polysaccharide/protein shell coated on magnetic nanoparticles (MNPs surface via condensation reaction with squaric acid (SqA. The syntheses of four new types of collagen-, chitosan-, and chitosan–collagen coated magnetic nanoparticles as supports for enzyme immobilization have been done. Structure and morphology of prepared new materials were characterized by attenuated total reflectance Fourier-transform infrared (ATR-FTIR, XRD, and TEM analysis. Next, the immobilization of lipase from Candida rugosa was performed on the nanoparticles surface via N-(3-dimethylaminopropyl-N′-ethylcarbodiimide hydrochloride (EDC/N-hydroxy-succinimide (NHS mechanism. The best results of lipase activity recovery and specific activities were observed for nanoparticles with polymer shell crosslinked via a novel procedure with squaric acid. The specific activity for lipase immobilized on materials crosslinked with SqA (52 U/mg lipase was about 2-fold higher than for enzyme immobilized on MNPs with glutaraldehyde addition (26 U/mg lipase. Moreover, a little hyperactivation of lipase immobilized on nanoparticles with SqA was observed (104% and 112%.

  11. An amperometric enzyme electrode and its biofuel cell based on a glucose oxidase-poly(3-anilineboronic acid)-Pd nanoparticles bionanocomposite for glucose biosensing.

    Science.gov (United States)

    Sun, Lingen; Ma, Yixuan; Zhang, Pei; Chao, Long; Huang, Ting; Xie, Qingji; Chen, Chao; Yao, Shouzhuo

    2015-06-01

    A new amperometric enzyme electrode and its biofuel cell were fabricated based on a glucose oxidase (GOx)-poly(3-anilineboronic acid) (PABA)-Pd nanoparticles (PdNPs) bionanocomposite for biosensing of glucose. Briefly, Pd was electroplated on a multiwalled carbon nanotubes (MWCNTs)-modified Au electrode, and the GOx-PABA-PdNPs bionanocomposite was prepared on the Pd(plate)/MWCNTs/Au electrode through the chemical oxidation of a GOx-3-anilineboronic acid adduct by Na2PdCl4, followed by electrode-modification with an outer-layer chitosan (CS) film. The thus-prepared CS/GOx-PABA-PdNPs/Pd(plate)/MWCNTs/Au electrode exhibited a linear amperometric response to glucose concentration from 2.0 μM to 4.5 mM with a sensitivity of 160 μA/mM/cm(2), sub-μM detection limit, and excellent operation/storage stability in the first-generation biosensing mode, as well as excellent analytical performance in the second-generation biosensing mode. The good recoveries of glucose obtained from spiked urine samples revealed the application potential of our amperometric enzyme electrode. In addition, a glucose/O2 biofuel cell was constructed using this enzyme electrode as the anode and a Pt/MWCNTs/Au electrode as the cathode, and this biofuel cell as a self-powered biosensing device showed a linear voltage response to glucose concentration from 100 μM to 13.5 mM with a sensitivity of 43.5 mV/mM/cm(2) and excellent operation/storage stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Short-term hepatic effects of depleted uranium on xenobiotic and bile acid metabolizing cytochrome P450 enzymes in the rat

    International Nuclear Information System (INIS)

    Gueguen, Y.; Souidi, M.; Baudelin, C.; Dudoignon, N.; Grison, S.; Dublineau, I.; Marquette, C.; Voisin, P.; Gourmelon, P.; Aigueperse, J.

    2006-01-01

    The toxicity of uranium has been demonstrated in different organs, including the kidneys, skeleton, central nervous system, and liver. However, few works have investigated the biological effects of uranium contamination on important metabolic function in the liver. In vivo studies were conducted to evaluate its effects on cytochrome P450 (CYP) enzymes involved in the metabolism of cholesterol and xenobiotics in the rat liver. The effects of depleted uranium (DU) contamination on Sprague-Dawley were measured at 1 and 3 days after exposure. Biochemical indicators characterizing liver and kidney functions were measured in the plasma. The DU affected bile acid CYP activity: 7α-hydroxycholesterol plasma level decreased by 52% at day 3 whereas microsomal CYP7A1 activity in the liver did not change significantly and mitochondrial CYP27A1 activity quintupled at day 1. Gene expression of the nuclear receptors related to lipid metabolism (FXR and LXR) also changed, while PPARα mRNA levels did not. The increased mRNA levels of the xenobiotic-metabolizing CYP3A enzyme at day 3 may be caused by feedback up-regulation due to the decreased CYP3A activity at day 1. CAR mRNA levels, which tripled on day 1, may be involved in this up-regulation, while mRNA levels of PXR did not change. These results indicate that high levels of depleted uranium, acting through modulation of the CYP enzymes and some of their nuclear receptors, affect the hepatic metabolism of bile acids and xenobiotics. (orig.)

  13. Localisation of gluconeogenesis and tricarboxylic acid (TCA)-cycle enzymes and first functional analysis of the TCA cycle in Toxoplasma gondii.

    Science.gov (United States)

    Fleige, Tobias; Pfaff, Nils; Gross, Uwe; Bohne, Wolfgang

    2008-08-01

    The apicomplexan parasite Toxoplasma gondii displays some unusual localisations of carbohydrate converting enzymes, which is due to the presence of a vestigial, non-photosynthetic plastid, referred to as the apicoplast. It was recently demonstrated that the single pyruvate dehydrogenase complex (PDH) in T. gondii is exclusively localised inside the apicoplast but absent in the mitochondrion. This raises the question about expression, localisation and function of enzymes for the tricarboxylic acid (TCA)-cycle, which normally depends on PDH generated acetyl-CoA. Based on the expression and localisation of epitope-tagged fusion proteins, we show that all analysed TCA cycle enzymes are localised in the mitochondrion, including both isoforms of malate dehydrogenase. The absence of a cytosolic malate dehydrogenase suggests that a typical malate-aspartate shuttle for transfer of reduction equivalents is missing in T. gondii. We also localised various enzymes which catalyse the irreversible steps in gluconeogenesis to a cellular compartment and examined mRNA expression levels for gluconeogenesis and TCA cycle genes between tachyzoites and in vitro bradyzoites. In order to get functional information on the TCA cycle for the parasite energy metabolism, we created a conditional knock-out mutant for the succinyl-CoA synthetase. Disruption of the sixth step in the TCA cycle should leave the biosynthetic parts of the cycle intact, but prevent FADH2 production. The succinyl-CoA synthetase depletion mutant displayed a 30% reduction in growth rate, which could be restored by supplementation with 2 microM succinate in the tissue culture medium. The mitochondrial membrane potential in these parasites was found to be unaltered. The lack of a more severe phenotype suggests that a functional TCA cycle is not essential for T. gondii replication and for maintenance of the mitochondrial membrane potential.

  14. Steric and thermodynamic limits of design for the incorporation of large unnatural amino acids in aminoacyl-tRNA synthetase enzymes.

    Science.gov (United States)

    Armen, Roger S; Schiller, Stefan M; Brooks, Charles L

    2010-06-01

    Orthogonal aminoacyl-tRNA synthetase/tRNA pairs from archaea have been evolved to facilitate site specific in vivo incorporation of unnatural amino acids into proteins in Escherichia coli. Using this approach, unnatural amino acids have been successfully incorporated with high translational efficiency and fidelity. In this study, CHARMM-based molecular docking and free energy calculations were used to evaluate rational design of specific protein-ligand interactions for aminoacyl-tRNA synthetases. A series of novel unnatural amino acid ligands were docked into the p-benzoyl-L-phenylalanine tRNA synthetase, which revealed that the binding pocket of the enzyme does not provide sufficient space for significantly larger ligands. Specific binding site residues were mutated to alanine to create additional space to accommodate larger target ligands, and then mutations were introduced to improve binding free energy. This approach was used to redesign binding sites for several different target ligands, which were then tested against the standard 20 amino acids to verify target specificity. Only the synthetase designed to bind Man-alpha-O-Tyr was predicted to be sufficiently selective for the target ligand and also thermodynamically stable. Our study suggests that extensive redesign of the tRNA synthatase binding pocket for large bulky ligands may be quite thermodynamically unfavorable.

  15. Interaction of Bordetella adenylate cyclase toxin with complement receptor 3 involves multivalent glycan binding

    Czech Academy of Sciences Publication Activity Database

    Hasan, Shakir; Osičková, Adriana; Bumba, Ladislav; Novák, Petr; Šebo, Peter; Osička, Radim

    2015-01-01

    Roč. 589, č. 3 (2015), s. 374-379 ISSN 0014-5793 R&D Projects: GA ČR(CZ) GAP302/11/0580; GA ČR(CZ) GA15-09157S; GA ČR(CZ) GA15-11851S Institutional support: RVO:61388971 Keywords : Adenylate cyclase toxin * CD11b/CD18 * Complement receptor type 3 Subject RIV: CE - Biochemistry Impact factor: 3.519, year: 2015

  16. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3

    Czech Academy of Sciences Publication Activity Database

    Osička, Radim; Osičková, Adriana; Hasan, Shakir; Bumba, Ladislav; Černý, Jiří; Šebo, Peter

    2015-01-01

    Roč. 4, DEC 9 (2015) ISSN 2050-084X R&D Projects: GA ČR(CZ) GAP302/11/0580; GA ČR(CZ) GA15-11851S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 ; RVO:86652036 Keywords : E. coli * adenylate cyclase toxin * biochemistry Subject RIV: CE - Biochemistry Impact factor: 8.282, year: 2015

  17. Adenylate Cyclase Toxin Subverts Phagocyte Function by RhoA Inhibition and Unproductive Ruffling

    Czech Academy of Sciences Publication Activity Database

    Kamanová, Jana; Kofroňová, Olga; Mašín, Jiří; Genth, H.; Vojtová, Jana; Linhartová, Irena; Benada, Oldřich; Just, I.; Šebo, Peter

    2008-01-01

    Roč. 181, č. 8 (2008), s. 5587-5597 ISSN 0022-1767 R&D Projects: GA MŠk 1M0506; GA MŠk 2B06161; GA ČR GA310/08/0447 Grant - others:XE(XE) LSHB-CT-2003-503582 Institutional research plan: CEZ:AV0Z50200510 Keywords : bordetella * adenylate cyclase toxin * rhoa Subject RIV: EC - Immunology Impact factor: 6.000, year: 2008

  18. Synthesis of alpha-Branched Acyclic Nucleoside Phosphonates as Potential Inhibitors of Bacterial Adenylate Cyclases

    Czech Academy of Sciences Publication Activity Database

    Frydrych, Jan; Skácel, Jan; Šmídková, Markéta; Mertlíková-Kaiserová, Helena; Dračínský, Martin; Gnanasekaran, Ramachandran; Lepšík, Martin; Soto-Velasquez, M.; Watts, V. J.; Janeba, Zlatko

    2018-01-01

    Roč. 13, č. 2 (2018), s. 199-206 ISSN 1860-7179 R&D Projects: GA MV VG20102015046; GA ČR(CZ) GBP208/12/G016; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonates * adenylate cyclase toxin * bisamidates * Bordetella pertussis * prodrugs Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 3.225, year: 2016

  19. Quantification of potassium levels in cells treated with Bordetella adenylate cyclase toxin

    Czech Academy of Sciences Publication Activity Database

    Wald, Tomáš; Petry-Podgorska, Inga; Fišer, Radovan; Matoušek, Tomáš; Dědina, Jiří; Osička, Radim; Šebo, Peter; Mašín, Jiří

    2014-01-01

    Roč. 450, APR 2014 (2014), s. 57-62 ISSN 0003-2697 R&D Projects: GA ČR(CZ) GAP302/11/0580; GA ČR GA13-14547S; GA ČR GAP302/12/0460 Institutional support: RVO:61388971 ; RVO:68081715 Keywords : Potassium * Adenylate cyclase toxin * RTX Subject RIV: CE - Biochemistry Impact factor: 2.219, year: 2014

  20. Different strictuctural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes

    Czech Academy of Sciences Publication Activity Database

    Mašín, Jiří; Konopásek, I.; Svobodová, J.; Šebo, Peter

    2004-01-01

    Roč. 1660, - (2004), s. 144-154 ISSN 0005-2736 R&D Projects: GA AV ČR IPP1050128; GA AV ČR IAA5020907 Grant - others:GA Howard Hughes Medical Institut(US) 55000334; GA(XE) QLK2-CT-1999-00556 Institutional research plan: CEZ:AV0Z5020903 Keywords : bordetella pertussis * adenylate cyclase toxin * membrane interaction Subject RIV: EE - Microbiology, Virology Impact factor: 3.441, year: 2004

  1. Presence and Effects of Pituitary Adenylate Cyclase Activating Polypeptide Under Physiological and Pathological Conditions in the Stomach

    Directory of Open Access Journals (Sweden)

    Dora Reglodi

    2018-03-01

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a multifunctional neuropeptide with widespread occurrence throughout the body including the gastrointestinal system. In the small and large intestine, effects of PACAP on cell proliferation, secretion, motility, gut immunology and blood flow, as well as its importance in bowel inflammatory reactions and cancer development have been shown and reviewed earlier. However, no current review is available on the actions of PACAP in the stomach in spite of numerous data published on the gastric presence and actions of the peptide. Therefore, the aim of the present review is to summarize currently available data on the distribution and effects of PACAP in the stomach. We review data on the localization of PACAP and its receptors in the stomach wall of various mammalian and non-mammalian species, we then give an overview on PACAP’s effects on secretion of gastric acid and various hormones. Effects on cell proliferation, differentiation, blood flow and gastric motility are also reviewed. Finally, we outline PACAP’s involvement and changes in various human pathological conditions.

  2. The effects of sex and neonatal stress on pituitary adenylate cyclase-activating peptide expression.

    Science.gov (United States)

    Mosca, E V; Rousseau, J P; Gulemetova, R; Kinkead, R; Wilson, R J A

    2015-02-01

    What is the central question of this study? Does sex or neonatal stress affect the expression of pituitary adenylate cyclase-activating peptide or its receptors? What is the main finding and its importance? Neonatal-maternal separation stress has little long-lasting effect on the expression of pituitary adenylate cyclase-activating peptide or its receptors, but sex differences exist in these genes between males and females at baseline. Sex differences in classic stress hormones have been studied in depth, but pituitary adenylate cyclase-activating peptide (PACAP), recently identified as playing a critical role in the stress axes, has not. Here we studied whether baseline levels of PACAP differ between sexes in various stress-related tissues and whether neonatal-maternal separation stress has a sex-dependent effect on PACAP gene expression in stress pathways. Using quantitative RT-PCR, we found sex differences in PACAP and PACAP receptor gene expression in several respiratory and/or stress-related tissues, while neonatal-maternal separation stress did little to affect PACAP signalling in adult animals. We propose that sex differences in PACAP expression are likely to contribute to differences between males and females in responses to stress. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  3. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity

    Directory of Open Access Journals (Sweden)

    Ma’ayan Israeli

    2016-08-01

    Full Text Available Edema Factor (EF, the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP, and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules.

  4. Adenylate cyclase toxin promotes internalisation of integrins and raft components and decreases macrophage adhesion capacity.

    Directory of Open Access Journals (Sweden)

    César Martín

    Full Text Available Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.

  5. Adenylate cyclase toxin promotes internalisation of integrins and raft components and decreases macrophage adhesion capacity.

    Science.gov (United States)

    Martín, César; Uribe, Kepa B; Gómez-Bilbao, Geraxane; Ostolaza, Helena

    2011-02-23

    Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT) that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin) family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.

  6. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens)

    International Nuclear Information System (INIS)

    Fadhlaoui, Mariem; Couture, Patrice

    2016-01-01

    Highlights: • The fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated and polyunsaturated fatty acids compared to fish maintained at 28 °C. • The thermal adjustment of muscle phospholipid fatty acid profiles is likely due to modifications of desaturase and elongase activities. • Exposure to Ni and Cd modified muscle phospholipid fatty acid composition in a temperature-dependent manner. • The higher fatty polyinsaturation in cold-acclimated fish did not increase their vulnerability to peroxidation. • Lower concentrations of malondialdehyde were measured in warm-acclimated, Ni-exposed fish, suggesting an overcompensation of antioxidant mechanisms that could explain their lower condition. - Abstract: The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9 °C and 28 °C) and exposed either to Cd or Ni (respectively 4 μg/L and 600 μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28 °C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is

  7. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens)

    Energy Technology Data Exchange (ETDEWEB)

    Fadhlaoui, Mariem; Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca

    2016-11-15

    Highlights: • The fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated and polyunsaturated fatty acids compared to fish maintained at 28 °C. • The thermal adjustment of muscle phospholipid fatty acid profiles is likely due to modifications of desaturase and elongase activities. • Exposure to Ni and Cd modified muscle phospholipid fatty acid composition in a temperature-dependent manner. • The higher fatty polyinsaturation in cold-acclimated fish did not increase their vulnerability to peroxidation. • Lower concentrations of malondialdehyde were measured in warm-acclimated, Ni-exposed fish, suggesting an overcompensation of antioxidant mechanisms that could explain their lower condition. - Abstract: The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9 °C and 28 °C) and exposed either to Cd or Ni (respectively 4 μg/L and 600 μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28 °C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is

  8. Correction of acid beta-galactosidase deficiency in GM1 gangliosidosis human fibroblasts by retrovirus vector-mediated gene transfer: higher efficiency of release and cross-correction by the murine enzyme.

    Science.gov (United States)

    Sena-Esteves, M; Camp, S M; Alroy, J; Breakefield, X O; Kaye, E M

    2000-03-20

    Mutations in the lysosomal acid beta-galactosidase (EC 3.2.1.23) underlie two different disorders: GM1 gangliosidosis, which involves the nervous system and visceral organs to varying extents, and Morquio's syndrome type B (Morquio B disease), which is a skeletal-connective tissue disease without any CNS symptoms. This article shows that transduction of human GM1 gangliosidosis fibroblasts with retrovirus vectors encoding the human acid beta-galactosidase cDNA leads to complete correction of the enzymatic deficiency. The newly synthesized enzyme is correctly processed and targeted to the lysosomes in transduced cells. Cross-correction experiments using retrovirus-modified cells as enzyme donors showed, however, that the human enzyme is transferred at low efficiencies. Experiments using a different retrovirus vector carrying the human cDNA confirmed this observation. Transduction of human GM1 fibroblasts and mouse NIH 3T3 cells with a retrovirus vector encoding the mouse beta-galactosidase cDNA resulted in high levels of enzymatic activity. Furthermore, the mouse enzyme was found to be transferred to human cells at high efficiency. Enzyme activity measurements in medium conditioned by genetically modified cells suggest that the human beta-galactosidase enzyme is less efficiently released to the extracellular space than its mouse counterpart. This study suggests that lysosomal enzymes, contrary to the generalized perception in the field of gene therapy, may differ significantly in their properties and provides insights for design of future gene therapy interventions in acid beta-galactosidase deficiency.

  9. Genome-Wide Identification of BAHD Acyltransferases and In vivo Characterization of HQT-like Enzymes Involved in Caffeoylquinic Acid Synthesis in Globe Artichoke

    Science.gov (United States)

    Moglia, Andrea; Acquadro, Alberto; Eljounaidi, Kaouthar; Milani, Anna M.; Cagliero, Cecilia; Rubiolo, Patrizia; Genre, Andrea; Cankar, Katarina; Beekwilder, Jules; Comino, Cinzia

    2016-01-01

    Globe artichoke (Cynara cardunculus L. var. scolymus) is a rich source of compounds promoting human health (phytonutrients), among them caffeoylquinic acids (CQAs), mainly represented by chlorogenic acid (CGA), and dicaffeoylquinic acids (diCQAs). The enzymes involved in their biosynthesis belong to the large family of BAHD acyltransferases. Following a survey of the globe artichoke genome, we identified 69 BAHD proteins carrying the catalytic site (HXXXD). Their phylogenetic analysis together with another 43 proteins, from 21 species, representative of the BAHD family, highlighted their grouping in seven major clades. Nine globe artichoke acyltransferases clustered in a sub-group of Clade V, with 3 belonging to hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase (HQT) and 2 to hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) like proteins. We focused our attention on the former, HQT1, HQT2, and HQT3, as they are known to play a key role in CGA biosynthesis. The expression of genes coding for the three HQTs and correlation of expression with the CQA content is reported for different globe artichoke tissues. For the first time in the globe artichoke, we developed and applied the virus-induced gene silencing approach with the goal of assessing in vivo the effect of HQT1 silencing, which resulted in a marked reduction of both CGA and diCQAs. On the other hand, when the role of the three HQTs was assessed in leaves of Nicotiana benthamiana through their transient overexpression, significant increases in mono- and diCQAs content were observed. Using transient GFP fusion proteins expressed in N. benthamiana leaves we also established the sub-cellular localization of these three enzymes. PMID:27721818

  10. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes.

    Science.gov (United States)

    Rosenblat, Mira; Rom, Oren; Volkova, Nina; Aviram, Michael

    2016-08-01

    Nitro-fatty acids possess anti-atherogenic properties, but their effects on macrophage oxidative status and lipid metabolism that play important roles in atherosclerosis development are unclear. This study compared the effects of nitro-oleic acid (OLA-NO2) with those of native oleic acid (OLA) on intracellular reactive oxygen species (ROS) generation, anti-oxidants and metabolism of triglycerides and cholesterol in J774A.1 macrophages. Upon incubating the cells with physiological concentrations of OLA-NO2 (0-1 µM) or with equivalent levels of OLA, ROS levels measured by 2, 7-dichlorofluorescein diacetate, decreased dose-dependently, but the anti-oxidative effects of OLA-NO2 were significantly augmented. Copper ion addition increased ROS generation in OLA treated macrophages without affecting OLA-NO2 treated cells. These effects could be attributed to elevated glutathione levels and to increased activity and expression of paraoxonase2 that were observed in OLA-NO2 vs OLA treated cells. Beneficial effects on triglyceride metabolism were noted in OLA-NO2 vs OLA treated macrophages in which cellular triglycerides were reduced due to attenuated biosynthesis and accelerated hydrolysis of triglycerides. Accordingly, OLA-NO2 treated cells demonstrated down-regulation of diacylglycerol acyltransferase1, the key enzyme in triglyceride biosynthesis, and increased expression of hormone-sensitive lipase and adipose triglyceride lipase that regulate triglyceride hydrolysis. Finally, OLA-NO2 vs OLA treatment resulted in modest but significant beneficial effects on macrophage cholesterol metabolism, reducing cholesterol biosynthesis rate and low density lipoprotein influx into the cells, while increasing high density lipoprotein-mediated cholesterol efflux from the macrophages. Collectively, compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride

  11. Solution structure of the 45-residue MgATP-binding peptide of adenylate kinase as examined by 2-D NMR, FTIR, and CD spectroscopy

    International Nuclear Information System (INIS)

    Fry, D.C.; Byler, D.M.; Susi, H.; Brown, M.; Kuby, S.A.; Mildvan, A.S.

    1988-01-01

    The structure of a synthetic peptide corresponding to residues 1-45 of rabbit muscle adenylate kinase has been studied in aqueous solution by two-dimensional NMR, FTIR, and CD spectroscopy. This peptide, which binds MgATP and is believed to represent most of the MgATP-binding site of the enzyme, appears to maintain a conformation similar to that of residues 1-45 in the X-ray structure of intact porcine adenylate kinase, with 42% of the residues of the peptide showing NOEs indicative of phi and psi angles corresponding to those found in the protein. The NMR studies suggest that the peptide is composed of two helical regions of residues 4-7 and 23-29, and three stretches of β-strand at residues 8-15, 30-32, and 35-40, yielding an overall secondary structure consisting of 24% α-helix, 38% β-structure, and 38% aperiodic. Although the resolution-enhanced amide I band of the peptide FTIR spectrum is broad and rather featureless, possible due to disorder, it can be fit by using methods developed on well-characterized globular proteins. The CD spectrum is best fit by assuming the presence of at most 13% α-helix in the peptide, 24 +/- 2% β-structure, and 66 +/- 4% aperiodic. The inability of the high-frequency FTIR and CD methods to detect helices in the amount found by NMR may result from the short helical lengths as well as from static and dynamic disorder in the peptide. Upon binding of MgATP, numerous conformation changes in the backbone of the peptide are detected by NMR, with smaller alterations in the overall secondary structure as assess by CD

  12. Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme

    DEFF Research Database (Denmark)

    Madsen, Søren M; Beck, Hans Christian; Ravn, Peter

    2002-01-01

    . The first step in the catabolism is most likely a transamination reaction catalyzed by BCAA aminotransferases (IlvE proteins). In this study, we cloned the ilvE gene from S. carnosus by using degenerate oligonucleotides and PCR. We found that the deduced amino acid sequence was 80% identical...... were essential for optimal cell growth....

  13. Kinetic properties of two Rhizopus exo-polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Science.gov (United States)

    The kinetic characteristics of two Rhizopus oryzae exo-polygalacturonases acting on galacturonic acid oligomers (GalpA) were determined using isothermal titration calorimetry (ITC). RPG15 hydrolyzing (GalpA)2 demonstrated a Km of 55 uM and kcat of 10.3 s^-1^ while RPG16 was shown to have greater af...

  14. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    OpenAIRE

    Kuhn, H; Fietzek, P P; Lampen, J O

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  15. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  16. Phytochemical composition and effects of commercial enzymes on the hydrolysis of gallic acid glycosides in mango (Mangifera indica L. cv. 'Keitt') pulp.

    Science.gov (United States)

    Krenek, Kimberly A; Barnes, Ryan C; Talcott, Stephen T

    2014-10-01

    A detailed characterization of mango pulp polyphenols and other minor phytochemicals was accomplished for the first time in the cultivar 'Keitt' whereby the identification and semiquantification of five hydroxybenzoic acids, four cinnamic acids, two flavonoids, and six apocarotenoids was accomplished. Among the most abundant compounds were two monogalloyl glucosides (MGG) identified as having an ester- or ether-linked glucose, with the ester-linked moiety present in the highest concentration among nontannin polyphenolics. Additionally, the impact of side activities of three commercial cell-wall degrading enzymes during 'Keitt' mango pulp processing was evaluated to determine their role on the hydrolysis of ester- and ether-linked phenolic acids. The use of Crystalzyme 200XL reduced the concentration of ester-linked MGG by 66%, and the use of Rapidase AR 2000 and Validase TRL completely hydrolyzed ether-linked MGG after 4 h of treatment at 50 °C. Fruit quality, in vivo absorption rate, and bioactivity of mango phytochemicals rely on their chemical characterization, and characterizing changes in composition is critical for a complete understanding of in vivo mechanisms.

  17. Regulation of adipose branched-chain amin acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched-chain amin acids (BCAA)are often assoicated with insulin resistance and type2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metaboli...

  18. Targeting the expression of glutathione- and sulfate-dependent detoxification enzymes in HepG2 cells by oxygen in minimal and amino acid enriched medium.

    Science.gov (United States)

    Usarek, Ewa; Graboń, Wojciech; Kaźmierczak, Beata; Barańczyk-Kuźma, Anna

    2016-02-01

    Cancer cells exhibit specific metabolism allowing them to survive and proliferate in various oxygen conditions and nutrients' availability. Hepatocytes are highly active metabolically and thus very sensitive to hypoxia. The purpose of the study was to investigate the effect of oxygen on the expression of phase II detoxification enzymes in hepatocellular carcinoma cells (HepG2) cultured in minimal and rich media (with nonessential amino acids and GSH). The cells were cultured at 1% hypoxia, 10% tissue normoxia, and 21% atmospheric normoxia. The total cell count was determined by trypan blue exclusion dye and the expression on mRNA level by RT-PCR. The result indicated that the expression of glutathione-dependent enzymes (GSTA, M, P, and GPX2) was sensitive to oxygen and medium type. At 1% hypoxia the enzyme expression (with the exception of GSTA) was higher in minimal compared to rich medium, whereas at 10% normoxia it was higher in the rich medium. The expression was oxygen-dependent in both types of medium. Among phenol sulfotransferase SULT1A1 was not sensitive to studied factors, whereas the expression of SULT1A3 was depended on oxygen only in minimal medium. It can be concluded that in HepG2 cells, the detoxification by conjugation with glutathione and, to a lower extent with sulfate, may be affected by hypoxia and/or limited nutrients' availability. Besides, because the data obtained at 10% oxygen significantly differ from those at 21%, the comparative studies on hypoxia should be performed in relation to 10% but not 21% oxygen. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effect of pulsed electric field treatment on enzyme kinetics and thermostability of endogenous ascorbic acid oxidase in carrots (Daucus carota cv. Nantes).

    Science.gov (United States)

    Leong, Sze Ying; Oey, Indrawati

    2014-03-01

    The objective of this research was to study the enzyme kinetics and thermostability of endogenous ascorbic acid oxidase (AAO) in carrot purée (Daucus carota cv. Nantes) after being treated with pulsed electric field (PEF) processing. Various PEF treatments using electric field strength between 0.2 and 1.2kV/cm and pulsed electrical energy between 1 and 520kJ/kg were conducted. The enzyme kinetics and the kinetics of AAO thermal inactivation (55-70°C) were described using Michaelis-Menten model and first order reaction model, respectively. Overall, the estimated Vmax and KM values were situated in the same order of magnitude as the untreated carrot purée after being exposed to pulsed electrical energy between 1 and 400kJ/kg, but slightly changed at pulsed electrical energy above 500kJ/kg. However, AAO presented different thermostability depending on the electric field strength applied. After PEF treatment at the electric field strength between 0.2 and 0.5kV/cm, AAO became thermolabile (i.e. increase in inactivation rate (k value) at reference temperature) but the temperature dependence of k value (Ea value) for AAO inactivation in carrot purée decreased, indicating that the changes in k values were less temperature dependent. It is obvious that PEF treatment affects the temperature stability of endogenous AAO. The changes in enzyme kinetics and thermostability of AAO in carrot purée could be related to the resulting carrot purée composition, alteration in intracellular environment and the effective concentration of AAO released after being subjected to PEF treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Synthesis and Characterization of New Amino Acid-Schiff Bases and Studies their Effects on the Activity of ACP, PAP and NPA Enzymes (In Vitro

    Directory of Open Access Journals (Sweden)

    Zahraa Salim M. Al-Garawi

    2012-01-01

    Full Text Available In this study, two new Schiff base compounds derived from the condensation reaction of L-glycine and L-tryptophan with 4-methylbenzal-dehyde have been synthesized. The Schiff base compounds were characterized by FT-IR, UV and 1H NMR spectroscopy. Their effects on the activity of total (ACP, prostatic (PAP and non prostatic (NPA acid phosphatase enzymes were studied. The Schiff base derived from L-glycine (A demonstrated inhibition effect on the ACP and NPA activities and activation effect on PAP activity. The Schiff base derived from L-tryptophan (B demonstrated semi fixed inhibition effects on the ACP and NPA activities at high concentrations (5.5×10-2, 5.5×10-3 and 5.5×10-4 M and activator effect at low concentration (5.5×10-5 M while it was exhibits as activator on PAP activity.

  1. Nicotine-mediated suppression of the retinoic acid metabolizing enzyme CYP26A1 limits the oncogenic potential of breast cancer.

    Science.gov (United States)

    Osanai, Makoto; Lee, Gang-Hong

    2011-06-01

    Tobacco smoke influences cancer development in tissues that are not directly exposed, and epidemiological studies have indicated that smoking women might experience decreased risk of breast cancer as a result of antiestrogenic effects. However, it remains to be clarified whether nicotine, one of the major addictive and best-investigated constituents of tobacco smoke, has any effect on breast cancer. Our recent work demonstrated that the retinoic acid metabolizing enzyme CYP26A1 enhances oncogenic and cell survival properties of breast carcinoma cells, implying a role as an oncogene. Here, we present evidence that nicotine significantly suppresses constitutive expression of CYP26A1, and that cells treated with nicotine exhibit enhanced sensitivity to apoptosis. In addition, nicotine may inhibit anchorage independent growth, cellular invasiveness and motility. These data show that nicotine can limit CYP26A1-mediated oncogenic characteristics, and suggest mechanisms by which nicotine might inhibit breast cancer development. © 2011 Japanese Cancer Association.

  2. Inhibition of several enzymes by gold compounds. II. beta-Glucuronidase, acid phosphatase and L-malate dehydrogenase by sodium thiomalatoraurate (I), sodium thiosulfatoaurate (I) and thioglucosoaurate (I).

    Science.gov (United States)

    Lee, M T; Ahmed, T; Haddad, R; Friedman, M E

    1989-01-01

    Bovine liver beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32), wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) and bovine liver L-malate dehydrogenase (L-malate: NAD oxidoreductase, EC 1.1.1.37) were inhibited by a series of gold (I) complexes that have been used as anti-inflammatory drugs. Both sodium thiosulfatoaurate (I) (Na AuTs) and sodium thiomalatoraurate (NaAuTM) effectively inhibited all three enzymes, while thioglucosoaurate (I) (AuTG) only inhibited L-malate dehydrogenase. The equilibrium constants (K1) ranged from nearly 4000 microM for the NaAuTM-beta-glucuronidase interaction to 24 microM for the NaAuTS-beta-glucuronidase interaction. The rate of covalent bond formation (kp) ranged from 0.00032 min-1 for NaAuTM-beta-glucuronidase formation to 1.7 min-1 for AuTG-L-malate dehydrogenase formation. The equilibrium data shows that the gold (I) drugs bind by several orders lower than the gold (III) compounds, suggesting a significantly stronger interaction between the more highly charged gold ion and the enzyme. Yet the rate of covalent bond formation depends as much on the structure of the active site as upon the lability of the gold-ligand bond. It was also observed that the more effective the gold inhibition the more toxic the compound.

  3. Rhodotorulaglutinis phenylalanine/tyrosine ammonia lyase enzyme catalyzed synthesis of the methyl ester of para-hydroxycinnamic acid and its potential antibacterial activity

    Directory of Open Access Journals (Sweden)

    Marybeth C MacDonald

    2016-03-01

    Full Text Available Biotransformation of L-tyrosine methyl ester (L-TM to the methyl ester of para- hydroxycinnamic acid (p-HCAM using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26 enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5, temperature (37 C, speed of agitation (50 rpm, enzyme concentration (0.080 µM, and substrate concentration (0.50 mM. Under these conditions, the yield of the reaction was ~15% in 1 h incubation period and ~63% after an overnight (~18 h incubation period. The product (p-HCAM of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR. Fourier Transform Infra-Red spectroscopy (FTIR was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram positive and Gram negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications.

  4. Identification of human cytochrome P450 and UGT enzymes involved in the metabolism of ferulic acid, a major bioactive component in traditional Chinese medicines.

    Science.gov (United States)

    Zhuang, Xiao-Mei; Chen, Lin; Tan, Yan; Yang, Hai-Ying; Lu, Chuang; Gao, Yue; Li, Hua

    2017-09-01

    Ferulic acid (FA) is an active component of herbal medicines. One of the best documented activities of FA is its antioxidant property. Moreover, FA exerts antiallergic, anti-inflammatory, and hepatoprotective effects. However, the metabolic pathways of FA in humans remain unclear. To identify whether human CYP or UGT enzymes are involved in the metabolism of FA, reaction phenotyping of FA was conducted using major CYP-selective chemical inhibitors together with individual CYP and UGT Supersomes. The CYP- and/or UGT-mediated metabolism kinetics were examined simultaneously or individually. Relative activity factor and total normalized rate approaches were used to assess the relative contributions of each major human CYPs towards the FA metabolism. Incubations of FA with human liver microsomes (HLM) displayed NADPH- and UDPGA-dependent metabolism with multiple CYP and UGT isoforms involved. CYPs and UGTs contributed equally to the metabolism of FA in HLM. Although CYP1A2 and CYP3A4 appeared to be the major contributors in the CYP-mediated clearance, their contributions to the overall clearance are still minor (medicines because multiple phase I and phase II enzymes are involved in its metabolism. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  5. Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes.

    Science.gov (United States)

    Douiri, Salma; Bahdoudi, Seyma; Hamdi, Yosra; Cubì, Roger; Basille, Magali; Fournier, Alain; Vaudry, Hubert; Tonon, Marie-Christine; Amri, Mohamed; Vaudry, David; Masmoudi-Kouki, Olfa

    2016-06-01

    Astroglial cells possess an array of cellular defense mechanisms, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damages caused by oxidative stress. Nevertheless, astroglial cell viability and functionality can be affected by significant oxidative stress. We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent glioprotective agent that prevents hydrogen peroxide (H2 O2 )-induced apoptosis in cultured astrocytes. The purpose of this study was to investigate the potential protective effect of PACAP against oxidative-generated alteration of astrocytic antioxidant systems. Incubation of cells with subnanomolar concentrations of PACAP inhibited H2 O2 -evoked reactive oxygen species accumulation, mitochondrial respiratory burst, and caspase-3 mRNA level increase. PACAP also stimulated SOD and catalase activities in a concentration-dependent manner, and counteracted the inhibitory effect of H2 O2 on the activity of these two antioxidant enzymes. The protective action of PACAP against H2 O2 -evoked inhibition of antioxidant systems in astrocytes was protein kinase A, PKC, and MAP-kinase dependent. In the presence of H2 O2 , the SOD blocker NaCN and the catalase inhibitor 3-aminotriazole, both suppressed the protective effects of PACAP on SOD and catalase activities, mitochondrial function, and cell survival. Taken together, these results indicate that the anti-apoptotic effect of PACAP on astroglial cells can account for the activation of endogenous antioxidant enzymes and reduction in respiration rate, thus preserving mitochondrial integrity and preventing caspase-3 expression provoked by oxidative stress. Considering its powerful anti-apoptotic and anti-oxidative properties, the PACAPergic signaling system should thus be considered for the development of new therapeutical approaches to cure various pathologies involving oxidative neurodegeneration. We propose the following cascade for the

  6. Inhibition of Procarcinogen Activating Enzyme CYP1A2 Activity and Free Radical Formation by Caffeic Acid and its Amide Analogues.

    Science.gov (United States)

    Narongchai, Paitoon; Niwatananun, Kanokporn; Narongchai, Siripun; Kusirisin, Winthana; Jaikang, Churdsak

    2016-01-01

    Caffeic acid (CAF) and its amide analogues, ethyl 1-(3',4'-dihydroxyphenyl) propen amide (EDPA), phenethyl 1-(3',4'-dihydroxyphenyl) propen amide (PEDPA), phenmethyl 1- (3',4'-dihydroxyphenyl) propen amide (PMDPA) and octyl 1-(3',4'-dihydroxyphenyl) propen amide (ODPA) were investigated for the inhibition of procarcinogen activating enzyme. CYP1A2 and scavenging activity on formation of nitric oxide, superoxide anion, DPPH radical and hydroxyl radical. It was found that they inhibited CYP1A2 enzyme by uncompetitive inhibition. Apparent Ki values of CAF, EDPA, PEDPA, PMDPA and ODPA were 0.59, 0.39, 0.45, 0.75 and 0.80 µM, respectively suggesting potent inhibitors of CYP1A2. Moreover, they potentially scavenged nitric oxide radical with IC 50 values of 0.12, 0.22, 0.28, 0.22 and 0.51 mM, respectively. The IC50 values of superoxide anion scavenging were 0.20, 0.22, 0.44, 2.18 and 2.50 mM, respectively. 1, 1- diphenyl-2- picrylhydrazyl (DPPH) radical-scavenging ability, shown as IC50 values, were 0.41, 0.29, 0.30, 0.89 and 0.84 mM, respectively. Moreover, the hydroxyl radical scavenging in vitro model was shown as IC50 values of 23.22, 21.06, 17.10, 17.21 and 15.81 µM, respectively. From our results, caffeic acid and its amide analogues are in vitro inhibitors of human CYP1A2 catalytic activity and free radical formation. They may be useful to be developed as potential chemopreventive agents that block CYP1A2-mediated chemical carcinogenesis.

  7. Testosterone suppresses the expression of regulatory enzymes of fatty acid synthesis and protects against hepatic steatosis in cholesterol-fed androgen deficient mice.

    Science.gov (United States)

    Kelly, Daniel M; Nettleship, Joanne E; Akhtar, Samia; Muraleedharan, Vakkat; Sellers, Donna J; Brooke, Jonathan C; McLaren, David S; Channer, Kevin S; Jones, T Hugh

    2014-07-30

    Non-alcoholic fatty liver disease and its precursor hepatic steatosis is common in obesity and type-2 diabetes and is associated with cardiovascular disease (CVD). Men with type-2 diabetes and/or CVD have a high prevalence of testosterone deficiency. Testosterone replacement improves key cardiovascular risk factors. The effects of testosterone on hepatic steatosis are not fully understood. Testicular feminised (Tfm) mice, which have a non-functional androgen receptor (AR) and very low serum testosterone levels, were used to investigate testosterone effects on high-cholesterol diet-induced hepatic steatosis. Hepatic lipid deposition was increased in Tfm mice and orchidectomised wild-type littermates versus intact wild-type littermate controls with normal androgen physiology. Lipid deposition was reduced in Tfm mice receiving testosterone treatment compared to placebo. Oestrogen receptor blockade significantly, but only partially, reduced the beneficial effects of testosterone treatment on hepatic lipid accumulation. Expression of key regulatory enzymes of fatty acid synthesis, acetyl-CoA carboxylase alpha (ACACA) and fatty acid synthase (FASN) were elevated in placebo-treated Tfm mice versus placebo-treated littermates and Tfm mice receiving testosterone treatment. Tfm mice on normal diet had increased lipid accumulation compared to littermates but significantly less than cholesterol-fed Tfm mice and demonstrated increased gene expression of hormone sensitive lipase, stearyl-CoA desaturase-1 and peroxisome proliferator-activated receptor-gamma but FASN and ACACA were not altered. An action of testosterone on hepatic lipid deposition which is independent of the classic AR is implicated. Testosterone may act in part via an effect on the key regulatory lipogenic enzymes to protect against hepatic steatosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: Coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding

    International Nuclear Information System (INIS)

    Liang, B.T.

    1989-01-01

    Adenosine receptors in a spontaneously contracting atrial myocyte culture from 14-day chick embryos were characterized by radioligand binding studies and by examining the involvement of G-protein in coupling these receptors to a high-affinity state and to the adenylate cyclase and the myocyte contractility. Binding of the antagonist radioligand [3H]-8-cyclopentyl-1,3-diproylxanthine ([3H]CPX) was rapid, reversible and saturable and was to a homogeneous population of sites with a Kd value of 2.1 +/- 0.2 nM and an apparent maximum binding of 26.2 +/- 3 fmol/mg of protein (n = 10, +/- S.E.). Guanyl-5-yl-(beta, gamma-imido)diphosphate had no effect on either the Kd or the maximum binding and CPX reversed the N6-R-phenyl-2-propyladenosine-induced inhibition of adenylate cyclase activity and contractility, indicating that [3H] CPX is an antagonist radioligand. Competition curves for [3H] CPX binding by a series of reference adenosine agonists were consistent with labeling of an A1 adenosine receptor and were better fit by a two-site model than by a one-site model. ADP-ribosylation of the G-protein by the endogenous NAD+ in the presence of pertussis toxin shifted the competition curves from bi to monophasic with Ki values similar to those of the KL observed in the absence of prior pertussis intoxication. The adenosine agonists were capable of inhibiting both the adenylate cyclase activity and myocyte contractility in either the absence or the presence of isoproterenol. The A1 adenosine receptor-selective antagonist CPX reversed these agonist effects. The order of ability of the reference adenosine receptor agonists in causing these inhibitory effects was similar to the order of potency of the same agonists in inhibiting the specific [3H]CPX binding (N6-R-phenyl-2-propyladenosine greater than N6-S-phenyl-2-propyladenosine or N-ethyladenosine-5'-uronic acid)

  9. Polymorphism in the retinoic acid metabolizing enzyme CYP26B1 and the development of Crohn's Disease.

    Directory of Open Access Journals (Sweden)

    Karin Fransén

    Full Text Available Several studies suggest that Vitamin A may be involved in the pathogenesis of inflammatory bowel disease (IBD, but the mechanism is still unknown. Cytochrome P450 26 B1 (CYP26B1 is involved in the degradation of retinoic acid and the polymorphism rs2241057 has an elevated catabolic function of retinoic acid, why we hypothesized that the rs2241057 polymorphism may affect the risk of Crohn's disease (CD and Ulcerative Colitis (UC. DNA from 1378 IBD patients, divided into 871 patients with CD and 507 with UC, and 1205 healthy controls collected at Örebro University Hospital and Karolinska University Hospital were analyzed for the CYP26B1 rs2241057 polymorphism with TaqMan® SNP Genotyping Assay followed by allelic discrimination analysis. A higher frequency of patients homozygous for the major (T allele was associated with CD but not UC compared to the frequency found in healthy controls. A significant association between the major allele and non-stricturing, non-penetrating phenotype was evident for CD. However, the observed associations reached borderline significance only, after correcting for multiple testing. We suggest that homozygous carriers of the major (T allele, relative to homozygous carriers of the minor (C allele, of the CYP26B1 polymorphism rs2241057 may have an increased risk for the development of CD, which possibly may be due to elevated levels of retinoic acid. Our data may support the role of Vitamin A in the pathophysiology of CD, but the exact mechanisms remain to be elucidated.

  10. Hepatic necro-inflammation and elevated liver enzymes: Evaluation with MRI perfusion imaging with gadoxetic acid in chronic hepatitis patients

    International Nuclear Information System (INIS)

    Chen, B.-B.; Hsu, C.-Y.; Yu, C.-W.; Kao, J.-H.; Lee, H.-S.; Liang, P.-C.; Wei, S.-Y.; Hwang, R.-M.; Shih, T.T.-F.

    2014-01-01

    Aim: To evaluate liver necro-inflammation and function by using gadoxetic acid-enhanced dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), with histological analysis as the reference standard. Materials and methods: Seventy-nine subjects (21 healthy subjects; 58 chronic hepatitis patients) who received gadoxetic acid-enhanced DCE-MRI were divided into three subgroups: no (A0, n = 31), mild (A1, n = 27), and moderate–severe (A2–A3, n = 21) activities. Two DCE-MRI models were measured: (1) a dual-input single-compartment model to obtain absolute arterial, portal venous, and total blood flow, arterial fraction (ART), distribution volume, and mean transit time; (2) a curve analysis method to obtain peak, slope, and AUC (area under curve). The serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels also obtained. Statistical testing included Kruskal–Wallis tests for continuous data, Pearson's correlation tests, and multiple linear regression analyses. Results: Hepatic necro-inflammatory activity grades were significantly correlated with fibrotic stages, serum ALT level, ART and AUC. ART was helpful to predict the mild activity (≤A1 versus >A1; Az = 0.728), whereas AUC could differentiate no activity from any activity (A0 versus >A0; Az = 0.703). Peak, slope and AUC were all associated with AST and ALT (p < 0.05). Conclusion: Gadoxetic acid-enhanced DCE-MRI parameters may be used to evaluate the severity of hepatic necro-inflammation and function

  11. Alterations in the fatty acid profile, antioxidant enzymes and protein pattern of Biomphalaria alexandrina snails exposed to the pesticides diazinon and profenfos.

    Science.gov (United States)

    Bakry, Fayez A; El-Hommossany, Karem; Abd El-Atti, Mahmoud; Ismail, Somaya M

    2016-04-01

    The use of pesticides is widespread in agricultural activities. These pesticides may contaminate the irrigation and drainage systems during agriculture activities and pests' control and then negatively affect the biotic and a biotic component of the polluted water courses. The present study aimed to evaluate the effect of the pesticides diazinon and profenfos on some biological activities of Biomphalaria alexandrina snails such as fatty acid profile, some antioxidant enzymes (thioredoxin reductase (TrxR), sorbitol dehydrogenase (SDH), superoxide dismutase (SOD), catalase (CAT) as well as glutathione reductase (GR) and lipid peroxidation (LP)) and protein patterns in snails' tissues exposed for 4 weeks to LC10 of diazinon and profenfos. The results showed that the two pesticides caused considerable reduction in survival rates and egg production of treated snails. Identification of fatty acid composition in snail tissues treated with diazinon and profenfos pesticides was carried out using gas-liquid chromatography (GLC). The results declared alteration in fatty acid profile, fluctuation in percentage of long chain and short chain fatty acid contributions either saturated or unsaturated ones, and a decrease in total lipid content in tissues of snails treated with these pesticides. The data demonstrate that there was a significant inhibition in the activities of tissues SOD, CAT, glutathione reductase (GR), TrxR, and SDH in tissues of treated snails, while a significant elevation was detected in LP as compared to the normal control. On the other hand, the electrophoretic pattern of total protein showed differences in number and molecular weights of protein bands due to the treatment of snails. It was concluded that the residues of diazinon and profenfos pesticides in aquatic environments have toxic effects onB. alexandrina snails. © The Author(s) 2013.

  12. Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Glycocholic Acid Based on Chicken Single-Chain Variable Fragment Antibodies.

    Science.gov (United States)

    Cui, Xiping; Vasylieva, Natalia; Wu, Panpan; Barnych, Bogdan; Yang, Jun; Shen, Ding; He, Qiyi; Gee, Shirley J; Zhao, Suqing; Hammock, Bruce D

    2017-10-17

    Glycocholic acid (GCA) is an important metabolite of bile acids, whose urine levels are expected to be a specific diagnostic biomarker for hepatocellular carcinoma (HCC). A high-throughput immunoassay for determination of GCA would be of significant advantage and useful for primary diagnosis, surveillance, and early detection of HCC. Single-chain variable fragment (scFv) antibodies have several desirable characteristics and are an attractive alternative to traditional antibodies for the immunoassay. Because chicken antibodies possess single heavy and light variable functional domains, they are an ideal framework for simplified generation of recombinant antibodies for GCA detection. However, chicken scFvs have rarely been used to detect GCA. In this study, a scFv library was generated from chickens immunized with a GCA hapten coupled to bovine serum albumin (BSA), and anti-GCA scFvs were isolated by a phage-displayed method. Compared to the homologous coating antigen, use of a heterologous coating antigen resulted in about an 85-fold improvement in sensitivity of the immunoassay. This assay, under optimized conditions, had a linear range of 0.02-0.18 μg/mL, with an IC 50 of 0.06 μg/mL. The assay showed negligible cross-reactivity with various related bile acids, except for taurocholic acid. The detection of GCA from spiked human urine samples ranged from 86.7% to 123.3%. These results, combined with the advantages of scFv antibodies, indicated that a chicken scFv-based enzyme-linked immunosorbent assay is a suitable method for high-throughput screening of GCA in human urine.

  13. The Fatty Acid Biosynthesis Enzyme FabI Plays a Key Role In the Development of Liver Stage Malarial Parasites

    Science.gov (United States)

    Yu, Min; Santha Kumar, T. R.; Nkrumah, Louis J.; Coppi, Alida; Retzlaff, Silke; Li, Celeste D.; Kelly, Brendan J.; Moura, Pedro A.; Lakshmanan, Viswanathan; Freundlich, Joel S.; Valderramos, Juan-Carlos; Vilcheze, Catherine; Siedner, Mark; Tsai, Jennifer H.-C.; Falkard, Brie; Sidhu, Amar bir Singh; Purcell, Lisa A.; Gratraud, Paul; Kremer, Laurent; Waters, Andy P.; Schiehser, Guy; Jacobus, David P.; Janse, Chris J.; Ager, Arba; Jacobs, William R.; Sacchettini, James C.; Heussler, Volker; Sinnis, Photini; Fidock, David A.

    2008-01-01

    SUMMARY Fatty acid biosynthesis has been viewed as an important biological function of and therapeutic target for Plasmodium falciparum asexual blood stage infection. This apicoplast-resident type II pathway, distinct from the mammalian type I process, includes FabI. Here, we report synthetic chemistry and transfection studies concluding that Plasmodium FabI is not the target of the antimalarial activity of the bacterial FabI inhibitor triclosan. Disruption of fabI in P. falciparum or the rodent parasite P. berghei does not impede blood stage growth. In contrast, mosquito-derived fabI-deficient P. berghei sporozoites are markedly less infective for mice and typically fail to complete liver stage development in vitro. This is characterized by an inability to form intra-hepatic merosomes that normally initiate blood stage infections. These data illuminate key differences between liver and blood stage parasites in their requirements for host versus de novo synthesized fatty acids, and create new prospects for stage-specific antimalarial interventions. PMID:19064257

  14. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes.

    Science.gov (United States)

    Yu, Dan; Hornung, Ellen; Iven, Tim; Feussner, Ivo

    2018-01-01

    overall yields and the compositions of wax esters can be strongly affected by the availability of acyl-CoA substrates and to a lesser extent, by the characteristics of wax ester synthesis enzymes. For synthesis of oleyl oleate in plant seed oil, appropriate wax ester synthesis enzymes with high catalytic efficiency and desired substrate specificity should be expressed in plant cells; meanwhile, high levels of oleic acid-derived substrates need to be supplied to these enzymes by modifying the fatty acid profile of developing seeds.

  15. A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition

    Directory of Open Access Journals (Sweden)

    Hiromi Daiyasu

    2005-01-01

    Full Text Available Cellular membrane lipids, of which phospholipids are the major constituents, form one of the characteristic features that distinguish Archaea from other organisms. In this study, we focused on the steps in archaeal phospholipid synthetic pathways that generate polar lipids such as archaetidylserine, archaetidylglycerol, and archaetidylinositol. Only archaetidylserine synthase (ASS, from Methanothermobacter thermautotrophicus, has been experimentally identified. Other enzymes have not been fully examined. Through database searching, we detected many archaeal hypothetical proteins that show sequence similarity to members of the CDP alcohol phosphatidyltransferase family, such as phosphatidylserine synthase (PSS, phosphatidylglycerol synthase (PGS and phosphatidylinositol synthase (PIS derived from Bacteria and Eukarya. The archaeal hypothetical proteins were classified into two groups, based on the sequence similarity. Members of the first group, including ASS from M. thermautotrophicus, were closely related to PSS. The rough agreement between PSS homologue distribution within Archaea and the experimentally identified distribution of archaetidylserine suggested that the hypothetical proteins are ASSs. We found that an open reading frame (ORF tends to be adjacent to that of ASS in the genome, and that the order of the two ORFs is conserved. The sequence similarity of phosphatidylserine decarboxylase to the product of the ORF next to the ASS gene, together with the genomic context conservation, suggests that the ORF encodes archaetidylserine decarboxylase, which may transform archaetidylserine to archaetidylethanolamine. The second group of archaeal hypothetical proteins was related to PGS and PIS. The members of this group were subjected to molecular phylogenetic analysis, together with PGSs and PISs and it was found that they formed two distinct clusters in the molecular phylogenetic tree. The distribution of members of each cluster within Archaea

  16. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  17. Evaluation and Comparison of Enzyme Immunoassay (Eia and Acid Fast Staining with Confirmation by Immunofluorescent Antibody Assay for Detection of Cryptosporidium Species in Infants and Young Children.

    Directory of Open Access Journals (Sweden)

    D Dorostcar Moghaddam

    2005-01-01

    Full Text Available Introduction: Cryptosporidiosis is prevalent world wide, causing a variety of problems ranging from acute, self-limiting diarrhea to fatal cases in immunocompromised persons, particulary those with acquired immunodeficiency (AIDS. Diagnosis of Cryptosporidium is made by identification of oocysts in stool specimens. The detection is most commonly made by the acid-fast staining method followed by microscopic examination which has low specificity and sensitivity. Material and Methods: In the present study, we evaluated diagnostic utility of a commercially available enzyme immunoassay (EIA, which detects Cryptosporidium-Specific antigen (CSA in 204 unprocessed stool specimens obtained from patients less than 3 years of age. Results: When compared with the routine screening procedure applied in this field study (screening by acid-fast staining and microscopy after concentration of positive results by IFA, both sensitivity and specificity were 98%. Of the 139 specimens negative by microscopy, 13 (9.3% were positive by EIA, 11 of which were confirmed by inhibition with antibody to Cryptosporidia-specific antigen. Conclusion: The EIA is an important tool for identifying Cryptosporidium in fecal specimens in field studies since it is sensitive, specific, simple to use and unaffected by the presence of a preservative.

  18. Investigation and characterization of receptors for pituitary adenylate cyclase-activating polypeptide in human brain by radioligand binding and chemical cross-linking

    International Nuclear Information System (INIS)

    Suda, K.; Smith, D.M.; Ghatei, M.A.; Murphy, J.K.; Bloom, S.R.

    1991-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a novel peptide of hypothalamic origin which increases adenylate cyclase activity in rat anterior pituitary cell cultures. The 38-amino acid peptide shows a close sequence homology to vasoactive intestinal peptide (VIP). Binding sites for PACAP in membranes from postmortem human brain tissue were studied using [ 125 I]PACAP27 as the radioligand. High specific binding sites (amount of specific binding measured at 0.25 nM [ 125 I]PACAP27 in femtomoles per mg protein +/- SEM; n = 4) were present in hypothalamus (344.5 +/- 13.0), brain stem (343.0 +/- 29.3), cerebellum (292.0 +/- 21.1), cortex (259.6 +/- 19.8), and basal ganglia (259.2 +/- 50.3). Specific binding sites in pituitary, although present, were less abundant (35.0 +/- 8.9). Binding of [ 125 I]PACAP27 was reversible and time, pH, and temperature dependent. Despite the homology with VIP, VIP was a poor inhibitor of [ 125 I]PACAP27 binding (IC50, greater than 1 microM) compared with PACAP27 (IC50, 0.5-1.3 nM) and PACAP38 (IC50, 0.2-1.3 nM). Scatchard plots of [ 125 I]PACAP27 binding showed the presence of both high and lower affinity sites. Chemical cross-linking of PACAP-binding sites revealed that [ 125 I]PACAP27 was bound to polypeptide chains of 67,000 and 48,000 mol wt. Thus, we have demonstrated the presence of PACAP-specific receptors in human brain which are not VIP receptors. This opens the possibility of PACAP functioning as a novel neurotransmitter/neuromodulator in human brain

  19. Effect of prolonged intravenous glucose and essential amino acid infusion on nitrogen balance, muscle protein degradation and ubiquitin-conjugating enzyme gene expression in calves

    Directory of Open Access Journals (Sweden)

    Scaife Jes R

    2008-02-01

    Full Text Available Abstract Background Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose (to stimulate insulin and essential amino acids (EAA would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of

  20. High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved.

    Directory of Open Access Journals (Sweden)

    Gregory Kohn

    Full Text Available BACKGROUND: We recently characterized a specific inorganic triphosphatase (PPPase from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPP(i is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPP(i but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. CONCLUSIONS AND GENERAL SIGNIFICANCE: We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPP(i in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPP(i, which could be cytotoxic because of its high affinity for Ca(2+, thereby interfering with Ca(2+ signaling.

  1. Alteration in adenylate cyclase response to aminergic stimulation following neonatal x-irradiation

    International Nuclear Information System (INIS)

    Chronister, R.B.; Palmer, G.C.; Gerbrandt, L.

    1980-01-01

    X-irradiation of the rat neonatal hippocampus produces severe alterations in the architectonic features of the mature hippocampus. The most prominent alteration is a marked depletion of the granule cells of the dentate gyrus, with a subsequent realignment of CA 4 cells. The present data also show that norepinephrine (NE), dopamine and histamine stimulation of adenylate cyclase activity is severely attenuated in the hippocampi of irradiated animals. This failure suggests that the NE fibers of irradiated subjects, although normal in content of NE, are not functional in some of their NE-effector actions

  2. Pituitary adenylate cyclase-activating polypeptide: occurrence and relaxant effect in female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Alm, P; Hannibal, J

    1995-01-01

    The distribution, localization, and smooth muscle effects of pituitary adenylate cyclase-activating polypeptide (PACAP) were studied in the human female genital tract. The concentrations of PACAP-38 and PACAP-27 were measured by radioimmunoassays, and both peptides were found throughout the genital...... was observed. The findings suggest a smooth muscle regulatory role of PACAP in the human female reproductive tract....... tract. The highest concentrations of PACAP-38 were detected in the ovary, the upper part of vagina, and the perineum. The concentrations of PACAP-27 were generally low, in some regions below the detection limit and in other regions 1 to 5% of the PACAP-38 concentrations. Immunocytochemistry revealed...

  3. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes

    Czech Academy of Sciences Publication Activity Database

    Novák, Jakub; Černý, Ondřej; Osičková, Adriana; Linhartová, Irena; Mašín, Jiří; Bumba, Ladislav; Šebo, Peter; Osička, Radim

    2017-01-01

    Roč. 9, č. 10 (2017), s. 1-28, č. článku 300. E-ISSN 2072-6651 R&D Projects: GA ČR GA15-09157S; GA ČR(CZ) GA16-05919S; GA MŠk(CZ) LM2015064; GA MZd(CZ) NV16-28126A Institutional support: RVO:61388971 Keywords : adenylate cyclase toxin * Bordetella * cAMP Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.030, year: 2016

  4. Segments Crucial for Membrane Translocation and Pore-forming Activity of Bordetella Adenylate Cyclase Toxin

    Czech Academy of Sciences Publication Activity Database

    Basler, Marek; Knapp, O.; Mašín, Jiří; Fišer, R.; Maier, E.; Benz, R.; Šebo, Peter; Osička, Radim

    2007-01-01

    Roč. 282, č. 17 (2007), s. 12419-12429 ISSN 0021-9258 R&D Projects: GA MŠk 1M0506; GA AV ČR IAA5020406 Grant - others:XE(XE) European Union 6th FP contract LSHB-CT-2003-503582 THERAVAC Institutional research plan: CEZ:AV0Z50200510 Source of funding: R - rámcový projekt EK Keywords : bordetella * adenylate cyclase toxin * ac membrane translocation Subject RIV: EE - Microbiology, Virology Impact factor: 5.581, year: 2007

  5. Comparison of the in vivo and in vitro activities of adenylate cyclase from Mycobacterium tuberculosis H37Ra(NCTC 7417)

    International Nuclear Information System (INIS)

    Padh, Harish; Venkitsubramanian, T.A.

    1979-01-01

    The incorporation of [ 14 C] adenine into the adenosine 3', 5'-monophosphate (cyclic AMP) fraction by whole cells of Mycobacterium tuberculosis was taken as a measure of the in vivo activity of adenylate cyclase. The in vivo activity of adenylate cyclase was significantly inhibited by glucose, thus suggesting that the low level of cyclic AMP in the presence of glucose is due to the inhibited synthesis of cyclic AMP. In vitro activity of adenylate cyclase had optimum pH of 8.5 and Km of 1.33 mM for ATP. Glucose and other sugars did not show significant inhibition of in vitro activity. The results suggest that the adenylate cyclase activity becomes less sensitive to glucose when the bacterial cells are disrupted, an analogy with eukaryotic adenylate cyclase which loses sensitivity to hormones when the cells are disrupted. (auth.)

  6. Diagnostic accuracy of the anti-glutamic acid decarboxylase antibody in type 1 diabetes mellitus: Comparison between radioimmunoassay and enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Murata, Takashi; Tsuzaki, Kokoro; Nirengi, Shinsuke; Watanabe, Tomokazu; Mizutani, Yukako; Okada, Hayami; Tsukamoto, Masami; Odori, Shinji; Nakagawachi, Reiko; Kawaguchi, Yaeko; Yoshioka, Fumi; Yamada, Kazunori; Shimatsu, Akira; Kotani, Kazuhiko; Satoh-Asahara, Noriko; Sakane, Naoki

    2017-07-01

    The distributer of the anti-glutamic acid decarboxylase antibody assay kit using radioimmunoassay (RIA) recently announced its discontinuation, and proposed an alternative kit using enzyme-linked immunosorbent assay (ELISA). The aim of the present study was to investigate the diagnostic values of the anti-glutamic acid decarboxylase antibody by RIA and ELISA among type 1 diabetes mellitus patients and control participants. A total of 79 type 1 diabetes mellitus patients and 79 age-matched controls were enrolled and assessed using RIA and ELISA. Sensitivity, specificity, positive predictive values and negative predictive values were calculated for cut-off values (RIA = 1.5 U/mL and ELISA = 5.0 U/mL, respectively). Kappa coefficients were used to test for agreements between the RIA and ELISA methods regarding the diagnosis of type 1 diabetes mellitus. The sensitivity, specificity, positive predictive values, and negative predictive values for diagnosing type 1 diabetes mellitus were 57.0, 97.5, 95.7, and 69.4% by RIA, and 60.8, 100.0, 100.0 and 71.8% by ELISA, respectively. The diagnosis of type 1 diabetes mellitus using the RIA and ELISA methods showed substantial agreement with the kappa values of 0.74 for all participants, and of 0.64 for the acute type; however, there was moderate agreement with the kappa value of 0.56 for the slowly progressive type. The present study suggests that both anti-glutamic acid decarboxylase antibody by RIA and ELISA was useful for diagnosing type 1 diabetes mellitus. However, in the slowly progressive type, the degree of agreement of these two kits was poorer compared with those in all participants or in the acute type. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  7. The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats.

    Science.gov (United States)

    Tsiplakou, E; Abdullah, M A M; Skliros, D; Chatzikonstantinou, M; Flemetakis, E; Labrou, N; Zervas, G

    2017-04-01

    Microalgae might be considered as an alternative source of fat and/or protein for ruminant's diets. However, changes in populations of ruminal micro-organisms associated with biohydrogenation process, methane and ammonia production in response to microalgae dietary supplementation have not been well characterized. Thus, 16 cross-bred goats were divided into two groups. Each goat of both groups was fed individually with alfalfa hay and concentrates separately. The concentrates of the control group had no microalgae while those of the treated group were supplemented with 10 g lyophilized Chlorella vulgaris/kg concentrate (chlor). On the 30th experimental day, samples of rumen fluid were collected for microbial DNA extraction, fatty acid profile and enzyme activity analyses. The results showed that the chlor diet compared with the control increased significantly the populations of Methanosphaera stadtmanae, Methanobrevibacter ruminantium and Methanogens bacteria and protozoa in the rumen of goats. A significant reduction in the cellulase activity and in the abundance of Ruminococcus albus, and a significant increase in the protease activity and in the abundance of Clostridium sticklandii in the rumen liquid of goats fed with the chlor diet, compared with the control, were found. Chlorella vulgaris supplementation promoted the formation of trans C 18:1 , trans-11 C 18:1 and monounsaturated fatty acids (MUFA), while the proportions of C 18:0 and long-chain fatty acids (LCFA) reduced significantly in the rumen liquid of goats. This shift in ruminal biohydrogenation pathway was accompanied by a significant increase in Butyrivibrio fibrisolvens trans C 18:1 -producing bacteria. In conclusion, the supplementation of diets with microalgae needs further investigation because it enhances the populations of methane-producing bacteria and protozoa. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  8. Functional and biochemical analysis of Chlamydia trachomatis MurC, an enzyme displaying UDP-N-acetylmuramate:amino acid ligase activity.

    Science.gov (United States)

    Hesse, Lars; Bostock, Julieanne; Dementin, Sebastien; Blanot, Didier; Mengin-Lecreulx, Dominique; Chopra, Ian

    2003-11-01

    Chlamydiae are unusual obligate intracellular bacteria that cause serious infections in humans. Chlamydiae contain genes that appear to encode products with peptidoglycan biosynthetic activity. The organisms are also susceptible to antibiotics that inhibit peptidoglycan synthesis. However, chlamydiae do not synthesize detectable peptidoglycan. The paradox created by these observations is known as the chlamydial anomaly. The MurC enzyme of chlamydiae, which is synthesized as a bifunctional MurC-Ddl product, is expected to possess UDP-N-acetylmuramate (UDP-MurNAc):L-alanine ligase activity. In this paper we demonstrate that the MurC domain of the Chlamydia trachomatis bifunctional protein is functionally expressed in Escherichia coli, since it complements a conditional lethal E. coli mutant possessing a temperature-sensitive lesion in MurC. The recombinant MurC domain was overexpressed in and purified from E. coli. It displayed in vitro ATP-dependent UDP-MurNAc:L-alanine ligase activity, with a pH optimum of 8.0 and dependence upon magnesium ions (optimum concentration, 20 mM). Its substrate specificity was studied with three amino acids (L-alanine, L-serine, and glycine); comparable Vmax/Km values were obtained. Our results are consistent with the synthesis of a muramic acid-containing polymer in chlamydiae with UDP-MurNAc-pentapeptide as a precursor molecule. However, due to the lack of specificity of MurC activity in vitro, it is not obvious which amino acid is present in the first position of the pentapeptide.

  9. Purification, properties, and N-terminal amino acid sequence of homogeneous Escherichia coli 2-amino-3-ketobutyrate CoA ligase, a pyridoxal phosphate-dependent enzyme.

    Science.gov (United States)

    Mukherjee, J J; Dekker, E E

    1987-10-25

    Starting with 100 g (wet weight) of a mutant of Escherichia coli K-12 forced to grow on L-threonine as sole carbon source, we developed a 6-step procedure that provides 30-40 mg of homogeneous 2-amino-3-ketobutyrate CoA ligase (also called aminoacetone synthetase or synthase). This ligase, which catalyzes the cleavage/condensation reaction between 2-amino-3-ketobutyrate (the presumed product of the L-threonine dehydrogenase-catalyzed reaction) and glycine + acetyl-CoA, has an apparent molecular weight approximately equal to 85,000 and consists of two identical (or nearly identical) subunits with Mr = 42,000. Computer analysis of amino acid composition data, which gives the best fit nearest integer ratio for each residue, indicates a total of 387 amino acids/subunit with a calculated Mr = 42,093. Stepwise Edman degradation provided the N-terminal sequence of the first 21 amino acids. It is a pyridoxal phosphate-dependent enzyme since (a) several carbonyl reagents caused greater than 90% loss of activity, (b) dialysis against buffer containing hydroxylamine resulted in 89% loss of activity coincident with an 86% decrease in absorptivity at 428 nm, (c) incubation of the apoenzyme with 20 microM pyridoxal phosphate showed a parallel recovery (greater than 90%) of activity and 428-nm absorptivity, and (d) reduction of the holoenzyme with NaBH4 resulted in complete inactivation, disappearance of a new absorption maximum at 333 nm. Strict specificity for glycine is shown but acetyl-CoA (100%), n-propionyl-CoA (127%), or n-butyryl-CoA (16%) is utilized in the condensation reaction. Apparent Km values for acetyl-CoA, n-propionyl-CoA, and glycine are 59 microM, 80 microM, and 12 mM, respectively; the pH optimum = 7.5. Added divalent metal ions or sulfhydryl compounds inhibited catalysis of the condensation reaction.

  10. Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Teresa A Figueiredo

    2012-01-01

    Full Text Available The glutamic acid residues of the peptidoglycan of Staphylococcus aureus and many other bacteria become amidated by an as yet unknown mechanism. In this communication we describe the identification, in the genome of S. aureus strain COL, of two co-transcribed genes, murT and gatD, which are responsible for peptidoglycan amidation. MurT and GatD have sequence similarity to substrate-binding domains in Mur ligases (MurT and to the catalytic domain in CobB/CobQ-like glutamine amidotransferases (GatD. The amidation of glutamate residues in the stem peptide of S. aureus peptidoglycan takes place in a later step than the cytoplasmic phase--presumably the lipid phase--of the biosynthesis of the S. aureus cell wall precursor. Inhibition of amidation caused reduced growth rate, reduced resistance to beta-lactam antibiotics and increased sensitivity to lysozyme which inhibited culture growth and caused degradation of the peptidoglycan.

  11. Pituitary adenylate cyclase-activating polypeptide precursor is processed solely by prohormone convertase 4 in the gonads.

    Science.gov (United States)

    Li, M; Mbikay, M; Arimura, A

    2000-10-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is abundant not only in the brain, but also in the testis. Immunohistochemical studies have shown that PACAP-LI in rat testis is expressed stage specifically in spermatids. This suggests that testicular PACAP participates in the regulatory mechanism of spermatogenesis. Additionally, the ovary contains a relatively small amount of PACAP, conceivably involved in the regulation of folliculogenesis. PACAP is synthesized as a preprohormone and is processed by prohormone convertases, such as PC1, PC2, and PC4. PC4 is expressed only in the testis and ovary, where neither PC1 nor PC2 is expressed. However, whether PC4 is the sole endoprotease for the PACAP precursor in the gonads remains unknown. Recent studies using PC4-transgenic mice revealed that male PC4-null mice exhibited severely impaired fertility, although spermatogenesis appeared to be normal. The female PC4-null mice exhibited delayed folliculogenesis in the ovaries. To examine whether PC4 is the sole processing enzyme for the PACAP precursor in the gonads, we analyzed testicular and ovarian extracts from the PC4-null and wild-type mice for PACAP (PACAP38 and PACAP27) and its messenger RNA using reverse phase HPLC combined with specific RIAs and ribonuclease protection assay, respectively. For RIAs, three different polyclonal antisera with different recognition sites were used to identify PACAP38, PACAP27, and its precursor. Neither the testis nor the ovary from the PC4-null mice expressed PACAP38 or PACAP27, but the levels of PACAP transcripts in the testis and ovary of homozygous PC4-deficient mice were considerably elevated compared with those of the wild-type and heterozygous animals. The findings indicate that PC4 is the sole processing enzyme for the precursor of PACAP in the testis and ovary of mice. The possibility that the absence of bioactive PACAP in the testis and ovary of PC4-null mice caused severely impaired fertility in the males and

  12. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  13. In vitro modulatory effects of Terminalia arjuna, arjunic acid, arjunetin and arjungenin on CYP3A4, CYP2D6 and CYP2C9 enzyme activity in human liver microsomes

    Directory of Open Access Journals (Sweden)

    Alice Varghese

    2015-01-01

    Full Text Available Terminalia arjuna is a tree having an extensive medicinal potential in cardiovascular disorders. Triterpenoids are mainly responsible for cardiovascular properties. Alcoholic and aqueous bark extracts of T. arjuna, arjunic acid, arjunetin and arjungenin were evaluated for their potential to inhibit CYP3A4, CYP2D6 and CYP2C9 enzymes in human liver microsomes. We have demonstrated that alcoholic and aqueous bark extract of T. arjuna showed potent inhibition of all three enzymes in human liver microsomes with IC50 values less than 50 μg/mL. Arjunic acid, arjunetin and arjungenin did not show significant inhibition of CYP enzymes in human liver microsomes. Enzyme kinetics studies suggested that the extracts of arjuna showed reversible non-competitive inhibition of all the three enzymes in human liver microsomes. Our findings suggest strongly that arjuna extracts significantly inhibit the activity of CYP3A4, CYP2D6 and CYP2C9 enzymes, which is likely to cause clinically significant drug–drug interactions mediated via inhibition of the major CYP isozymes.

  14. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  15. Abscisic Acid Induced Changes in Production of Primary and Secondary Metabolites, Photosynthetic Capacity, Antioxidant Capability, Antioxidant Enzymes and Lipoxygenase Inhibitory Activity of Orthosiphon stamineus Benth.

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Ibrahim

    2013-07-01

    Full Text Available An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2−, phenylalanine ammonia lyase (PAL activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX, catalase (CAT, superoxide dismutase (SOD and Lipoxygenase inhibitory activity (LOX] under four levels of foliar abscisic acid (ABA application (0, 2, 4, 6 µM for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2−, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05 and O2− (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05. This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.

  16. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato.

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp).

  17. Suppression of 9-cis-Epoxycarotenoid Dioxygenase, Which Encodes a Key Enzyme in Abscisic Acid Biosynthesis, Alters Fruit Texture in Transgenic Tomato1[W][OA

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp). PMID:22108525

  18. Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice[S

    Science.gov (United States)

    Fu, Zidong Donna; Cui, Julia Yue; Klaassen, Curtis D.

    2014-01-01

    Statins are effective cholesterol-lowering drugs to treat CVDs. Bile acids (BAs), the end products of cholesterol metabolism in the liver, are important nutrient and energy regulators. The present study aims to investigate how statins affect BA homeostasis in the enterohepatic circulation. Male C57BL/6 mice were treated with atorvastatin (100 mg/kg/day po) for 1 week, followed by BA profiling by ultra-performance LC-MS/MS. Atorvastatin decreased BA pool size, mainly due to less BA in the intestine. Surprisingly, atorvastatin did not alter total BAs in the serum or liver. Atorvastatin increased the ratio of 12α-OH/non12α-OH BAs. Atorvastatin increased the mRNAs of the BA-synthetic enzymes cholesterol 7α-hydroxylase (Cyp7a1) (over 10-fold) and cytochrome P450 27a1, the BA uptake transporters Na+/taurocholate cotransporting polypeptide and organic anion transporting polypeptide 1b2, and the efflux transporter multidrug resistance-associated protein 2 in the liver. Noticeably, atorvastatin suppressed the expression of BA nuclear receptor farnesoid X receptor (FXR) target genes, namely small heterodimer partner (liver) and fibroblast growth factor 15 (ileum). Furthermore, atorvastatin increased the mRNAs of the organic cation uptake transporter 1 and cholesterol efflux transporters Abcg5 and Abcg8 in the liver. The increased expression of BA-synthetic enzymes and BA transporters appear to be a compensatory response to maintain BA homeostasis after atorvastatin treatment. The Cyp7a1 induction by atorvastatin appears to be due to suppressed FXR signaling in both the liver and intestine. PMID:25278499

  19. The activity of the endocannabinoid metabolising enzyme fatty acid amide hydrolase in subcutaneous adipocytes correlates with BMI in metabolically healthy humans

    Directory of Open Access Journals (Sweden)

    Alexander Stephen PH

    2011-08-01

    Full Text Available Abstract Background The endocannabinoid system (ECS is a ubiquitously expressed signalling system, with involvement in lipid metabolism and obesity. There are reported changes in obesity of blood concentrations of the endocannabinoids anandamide (AEA and 2-arachidonoylglcyerol (2-AG, and of adipose tissue expression levels of the two key catabolic enzymes of the ECS, fatty acid amide hydrolase (FAAH and monoacylglycerol lipase (MGL. Surprisingly, however, the activities of these enzymes have not been assayed in conditions of increasing adiposity. The aim of the current study was to investigate whether FAAH and MGL activities in human subcutaneous adipocytes are affected by body mass index (BMI, or other markers of adiposity and metabolism. Methods Subcutaneous abdominal mature adipocytes, fasting blood samples and anthropometric measurements were obtained from 28 metabolically healthy subjects representing a range of BMIs. FAAH and MGL activities were assayed in mature adipocytes using radiolabelled substrates. Serum glucose, insulin and adipokines were determined using ELISAs. Results MGL activity showed no relationship with BMI or other adiposity indices, metabolic markers (fasting serum insulin or glucose or serum adipokine levels (adiponectin, leptin or resistin. In contrast, FAAH activity in subcutaneous adipocytes correlated positively with BMI and waist circumference, but not with skinfold thickness, metabolic markers or serum adipokine levels. Conclusions In this study, novel evidence is provided that FAAH activity in subcutaneous mature adipocytes increases with BMI, whereas MGL activity does not. These findings support the hypothesis that some components of the ECS are upregulated with increasing adiposity in humans, and that AEA and 2-AG may be regulated differently.

  20. Pasture, multi-enzymes, benzoic acid and essential oils positively influence performance, intestinal organ weight and egg quality in free-range laying hens.

    Science.gov (United States)

    Iqbal, Z; Roberts, J; Perez-Maldonado, R A; Goodarzi Boroojeni, F; Swick, R A; Ruhnke, I

    2018-04-01

    1. The objective of this study was to investigate the effect of range type, multi-enzyme applications, and a combination of benzoic acid (BA) and essential oils (EO) on the productive performance, organ weight and egg quality of free-range laying hens. 2. Three hundred laying hens were evaluated for the short-term (6 weeks) and long-term (12 weeks) effects of range type (G = no pasture, P = pasture) and feed additives (T1 = control; T2 = betaglucanase/pectinase/protease; T3 = BA/EO). Body weight, feed intake (FI), feed conversion ratio (FCR), egg production (EP), digestive organ weight, and egg quality (EQ) were evaluated. Data were analysed using SPSS 2.2 in a 2×2×3 factorial arrangement. 3. Hens that ranged on pasture were significantly heavier (2043 g vs. 1996 g; p ranged on gravel. Hens fed T2 were significantly heavier (2050 g) compared to hens fed T1 (2005 g) or T3 (2008 g). Organ weights (gizzard, liver and pancreas) were significantly heavier in hens ranged on pasture (16.8 g/kg BW, 22.3 g/kg BW and 1.89 g/kg BW, respectively) compared to hens ranged on gravel (14.2 g/kg BW, 21.7 g/kg BW and 1.83 g/kg BW, respectively). Over time, body weight (1970-2070 g; p < 0.001) and egg weight (59.5-62.8 g; p < 0.001) increased, FI (123-120 g; p = 0.024) was reduced and FCR (2.36-2.10; p = 0.002) improved 4. In conclusion, hens housed on pasture and fed multi-enzyme supplemented diets had significantly heavier body weight and produced heavier eggs with darker yolk colour. Pasture intake and enzyme supplementation increased digestive organ weight significantly.

  1. Evolution-guided adaptation of an adenylation domain substrate specificity to an unusual amino acid

    Czech Academy of Sciences Publication Activity Database

    Vobruba, Šimon; Kadlčík, Stanislav; Gažák, Radek; Janata, Jiří

    2017-01-01

    Roč. 12, č. 12 (2017), č. článku e0189684. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GJ17-13436Y; GA MŠk(CZ) LQ1604 Institutional support: RVO:61388971 Keywords : NONRIBOSOMAL PEPTIDE SYNTHETASES * BIOSYNTHETIC GENE-CLUSTER * LINCOSAMIDE ANTIBIOTICS Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.806, year: 2016

  2. Application of adenylate energy charge to problems of environmental impact assessment in aquatic organisms

    Science.gov (United States)

    Ivanovici, A. M.

    1980-03-01

    Various physiological and biochemical methods have been proposed for assessing the effects of environmental perturbation on aquatic organisms. The success of these methods as diagnostic tools has, however, been limited. This paper proposes that adenylate energy charge overcomes some of these limitations. The adenylate energy charge (AEC) is calculated from concentrations of adenine nucleotides ([ATP+½ADP]/[ATP+ADP+AMP]), and is a reflection of metabolic potential available to an organism. Several features of this method are: correlation of specific values with physiological condition or growth state, a defined range of values, fast response times and high precision. Several examples from laboratory and field experiments are given to demonstrate these features. The test organisms used (mollusc species) were exposed to a variety of environmental perturbations, including salinity reduction, hydrocarbons and low doses of heavy metal. The studies performed indicate that the energy charge may be a useful measure in the assessment of environmental impact. Its use is restricted, however, as several limitations exist which need to be fully evaluated. Further work relating values to population characteristics of multicellular organisms needs to be completed before the method can become a predictive tool for management.

  3. Effects of sevoflurane on adenylate cyclase and phosphodiesterases activity in brain of rats

    International Nuclear Information System (INIS)

    Feng Changdong; Yang Jianping; Dai Tijun

    2009-01-01

    Objective: To investigate the effects of sevoflurane on c adenylate cyclase (AC) and phosphodiesterases (PDE) activity in the cerebrocortex, hippocampus and brain stem of rats, and to examine the role of cAMP in sevoflurane anesthesia. Methods: Fourty SD rats were delaminately designed and allocated randomly to 5 groups inhaling 1.5% sevoflurane i.e., no recovery (recovery group, n=8) and one hour after righting reflexrecovery (aware group, n=8). The brain tissues were rapidly dissected into cerebrocortex and hippocampus and brain stem.Then the adenylate cyclase and phosphodiesterases activity were assessed. Results: So far as the activity of AC is concerned, compared with the control group, the activity of AC in the cerebrocortex, hippocampus and brain stem brain stem of induction group and anesthesia group, the cerebrocortex, and hippocampus in the recovery group were significantly increased; compared with those in the anesthesia group, the activity of AC in the cerebrocortex, hippocampus and brain stem of aware group were significantly decreased (P<0.05); For the activity of PDE, compared with the control group, the activity of PDE in the cerebrocortex, hippocampus and brain stem in the induction group and anesthesia group was significantly decreased, compared with that in anesthesia group, the activity of PDE in the cerebrocortex, hippocampus and brain stem of recovery group and aware group was significantly increased (P<0.05). Conclusion: cAMP may play an important role in sevoflurane anesthesia. (authors)

  4. The role of transcriptional regulation in maintaining the availability of mycobacterial adenylate cyclases

    Directory of Open Access Journals (Sweden)

    Sarah J. Casey

    2014-03-01

    Full Text Available Mycobacterium species have a complex cAMP regulatory network indicated by the high number of adenylate cyclases annotated in their genomes. However the need for a high level of redundancy in adenylate cyclase genes remains unknown. We have used semiquantitiative RT-PCR to examine the expression of eight Mycobacterium smegmatis cyclases with orthologs in the human pathogen Mycobacterium tuberculosis, where cAMP has recently been shown to be important for virulence. All eight cyclases were transcribed in all environments tested, and only four demonstrated environmental-mediated changes in transcription. M. smegmatis genes MSMEG_0545 and MSMEG_4279 were upregulated during starvation conditions while MSMEG_0545 and MSMEG_4924 were downregulated in H2O2 and MSMEG_3780 was downregulated in low pH and starvation. Promoter fusion constructs containing M. tuberculosis H37Rv promoters showed consistent regulation compared to their M. smegmatis orthologs. Overall our findings indicate that while low levels of transcriptional regulation occur, regulation at the mRNA level does not play a major role in controlling cellular cyclase availability in a given environment.

  5. Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits.

    Science.gov (United States)

    Zhang, Mei; Leng, Ping; Zhang, Guanglian; Li, Xiangxin

    2009-08-15

    Ripening and senescence are generally controlled by ethylene in climacteric fruits like peaches, and the ripening process of grape, a non-climacteric fruit, may have some relationship to abscisic acid (ABA) function. In order to better understand the role of ABA in ripening and senescence of these two types of fruits, we cloned the 9-cis-epoxycarotenoid dioxygenase (NCED) gene that encodes a key enzyme in ABA biosynthesis from peaches and grapes using an RT-PCR approach. The NCED gene fragments were cloned from peaches (PpNCED1and PpNCED2, each 740bp) and grapes (VVNCED1, 741bp) using degenerate primers designed based on the conserved amino acids sequence of NCEDs in other plants. PpNCED1 showed 78.54% homology with PpNCED2, 74.90% homology with VVNCED1, and both showed high homology to NCEDs from other plants. The expression patterns of PpNCED1 and VVNCED1 were very similar. Both were highly expressed at the beginning of ripening when ABA content becomes high. The maximum ABA preceded ethylene production in peach fruit. ABA in the grape gradually increased from the beginning of ripening and reached the highest level at 20d before the harvest stage. However, ethylene remained at low levels during the entire process of fruit development, including ripening and senescence. ABA content, and ripening and softening of both types of fruits, were promoted or delayed by exogenous ABA or Fluridone (or NDGA) treatment. The roles of ABA and ethylene in the later ripening of fruit are complex. Based on results obtained in this study, we concluded that PpNCED1 and VVNCED1 initiate ABA biosynthesis at the beginning of fruit ripening, and that ABA accumulation might play a key role in the regulation of ripeness and senescence of both peach and grape fruits.

  6. The effect of dietary Chlorella vulgaris inclusion on goat's milk chemical composition, fatty acids profile and enzymes activities related to oxidation.

    Science.gov (United States)

    Tsiplakou, E; Abdullah, M A M; Mavrommatis, A; Chatzikonstantinou, M; Skliros, D; Sotirakoglou, K; Flemetakis, E; Labrou, N E; Zervas, G

    2018-02-01

    The impact of dietary supplementation with microalgae on goat's milk chemical composition, fatty acids (FA) profile and enzymes activities related to antioxidant mechanism has not been well documented. Thus, this study aimed to investigate the effects of dietary inclusion of Chlorella vulgaris on the following: (i) milk yield, chemical composition and FA profile, (ii) the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione transferase (GST) and glutathione peroxidase (GSH-Px) in blood plasma and (iii) the activities of SOD, GR and lactoperoxidase (LPO) in milk of goats. Furthermore, the oxidative stress indicators for measuring total antioxidant and free radical scavenging activity [ferric reducing ability of plasma (FRAP) and 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays] and oxidative stress biomarkers [malondialdehyde (MDA) and protein carbonyls (PC)] were also determined in blood plasma and milk of the animals. For this purpose, 16 cross-bred goats were divided into two homogenous groups. Each goat of both groups was fed individually with alfalfa hay and concentrates separately. The concentrates of the control group (Control) had no microalgae, while those of the Chlorella group were supplemented with 10 g lyophilized Chlorella vulgaris/kg concentrates (Chlorella). Thus, the average intake was 5.15 g Chlorella vulgaris/kg DM. The results showed that the dietary inclusion of Chlorella vulgaris had not noticeable impact on goat's milk yield, chemical composition and FA profile. Significantly higher SOD (by 10.31%) and CAT (by 18.66%) activities in the blood plasma of goats fed with Chlorella vulgaris compared with the control were found. Moreover, the dietary supplementation with Chlorella vulgaris caused a significant increase in SOD (by 68.84%) activity and a reduction in PC (by 24.07%) content in goat's milk. In conclusion, the Chlorella vulgaris inclusion in goat's diets improved the

  7. Study of the protective effect of ascorbic acid against the toxicity of stannous chloride on oxidative damage, antioxidant enzymes and biochemical parameters in rabbits.

    Science.gov (United States)

    Yousef, M I; Awad, T I; Elhag, F A; Khaled, F A

    2007-06-25

    Stannous chloride (SnCl2) is a reducing chemical agent used in several man-made products. SnCl2 can generate reactive oxygen species (ROS). Therefore, the present study has been carried out to investigate the antioxidant action of l-ascorbic acid (AA) in minimizing SnCl2 toxicity on lipid peroxidation, antioxidant enzyme, and biochemical parameters in male New Zealand white rabbits. Animals were assigned to one of four treatment groups: 0mg AA and 0mg SnCl2/kg BW (control); 40 mg AA/kg BW; 20mg SnCl2/kg BW; 20mg SnCl2 plus 40 mg AA/kg BW. Rabbits were orally administered the respective doses every other day for 12 weeks. Results obtained showed that SnCl2 significantly (Pacid-reactive substances (TBARS; the marker of lipid peroxidation) in plasma, while the activities of glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT), and the level of sulfhydryl groups (SH-group) were decreased (Pacid phosphatase (AcP) and lactate dehydrogenase (LDH) activities were decreased (Pcholesterol, triglyceride (TG), low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL), glucose, urea and total bilirubin. On the other hand, the level of plasma high-density lipoprotein (HDL), total protein (TP), albumin (A) and globulin (G) were significantly (PAscorbic acid alone significantly decreased the levels of TBARS, lipids and urea, and increased the activities of GST, SOD and CAT, and the levels of SH-group and proteins. While the rest of the tested parameters were not affected. Also, the presence of AA with SnCl2 alleviated its harmful effects on most of the tested parameters. Therefore, the present results revealed that treatment with AA could minimize the toxic effects of stannous chloride.

  8. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J J; Brand, J C

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  9. Enzyme with rhamnogalacturonase activity.

    NARCIS (Netherlands)

    Kofod, L.V.; Andersen, L.N.; Dalboge, H.; Kauppinen, M.S.; Christgau, S.; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A.G.J.; Schols, H.A.

    1998-01-01

    An enzyme exhibiting rhamnogalacturonase activity, capable of cleaving a rhamnogalacturonan backbone in such a manner that galacturonic acids are left as the non-reducing ends, and which exhibits activity on hairy regions from a soy bean material and/or on saponified hairy regions from a sugar beet

  10. Investigation of lactic acid bacterial strains for meat fermentation and the product's antioxidant and angiotensin-I-converting-enzyme inhibitory activities.

    Science.gov (United States)

    Takeda, Shiro; Matsufuji, Hisashi; Nakade, Koji; Takenoyama, Shin-Ichi; Ahhmed, Abdulatef; Sakata, Ryoichi; Kawahara, Satoshi; Muguruma, Michio

    2017-03-01

    In the lactic acid bacteria (LAB) strains screened from our LAB collection, Lactobacillus (L.) sakei strain no. 23 and L. curvatus strain no. 28 degraded meat protein and tolerated salt and nitrite in vitro. Fermented sausages inoculated strains no. 23 and no. 28 showed not only favorable increases in viable LAB counts and reduced pH, but also the degradation of meat protein. The sausages fermented with these strains showed significantly higher antioxidant activity than those without LAB or fermented by each LAB type strain. Angiotensin-I-converting-enzyme (ACE) inhibitory activity was also significantly higher in the sausages fermented with strain no. 23 than in those fermented with the type strain. Higher ACE inhibitory activity was also observed in the sausages fermented with strain no. 28, but did not differ significantly from those with the type strain. An analysis of the proteolysis and degradation products formed by each LAB in sausages suggested that those bioactivities yielded fermentation products such as peptides. Therefore, LAB starters that can adequately ferment meat, such as strains no. 23 and no. 28, should contribute to the production of bioactive compounds in meat products. © 2016 Japanese Society of Animal Science.

  11. Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes.

    Science.gov (United States)

    Ko, Hyun-Sun; Jin, Rong-De; Krishnan, Hari B; Lee, Sang-Bog; Kim, Kil-Yong

    2009-12-01

    Several rhizobacteria play a vital role in plant protection, plant growth promotion and the improvement of soil health. In this study, we have isolated a strain of Lysobacter antibioticus HS124 from rhizosphere and demonstrate its antifungal activity against various pathogens including Phytophthora capsici, a destructive pathogen of pepper plants. L. antibioticus HS124 produced lytic enzymes such as chitinase, beta-1,3-glucanase, lipase, protease, and an antibiotic compound. This antibiotic compound was purified by diaion HP-20, silica gel, sephadex LH-20 column chromatography and high performance liquid chromatography. The purified compound was identified as 4-hydroxyphenylacetic acid by gas chromatography-electron ionization (GC-EI) and gas chromatography-chemical ionization (GC-CI) mass spectrometry. This antibiotic exhibited destructive activity toward P. capsici hyphae. In vivo experiments utilizing green house grown pepper plants demonstrated the protective effect of L. antibioticus HS124 against P. capsici. The growth of pepper plants treated with L. antibioticus culture was enhanced, resulting in greater protection from fungal disease. Optimum growth and protection was found when cultures were grown in presence of Fe(III). Additionally, the activities of pathogenesis-related proteins such as chitinase and beta-1,3-glucanase decreased in roots, but increased in leaves with time after treatment compared to controls. Our results demonstrate L. antibioticus HS124 as a promising candidate for biocontrol of P. capsici in pepper plants.

  12. Structure–activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Charton, Julie; Gauriot, Marion; Totobenazara, Jane; Hennuyer, Nathalie; Dumont, Julie; Bosc, Damien; Marechal, Xavier; Elbakali, Jamal; Herledan, Adrien; Wen, Xiaoan; Ronco, Cyril; Gras-Masse, Helene; Heninot, Antoine; Pottiez, Virginie; Landry, Valerie; Staels, Bart; Liang, Wenguang G.; Leroux, Florence; Tang, Wei-Jen; Deprez, Benoit (INSRM-France); (UC); (IP-France)

    2015-10-30

    Insulin degrading enzyme (IDE) is a zinc metalloprotease that degrades small amyloid peptides such as amyloid-â and insulin. So far the dearth of IDE-specific pharmacological inhibitors impacts the understanding of its role in the physiopathology of Alzheimer's disease, amyloid-â clearance, and its validation as a potential therapeutic target. Hit 1 was previously discovered by high-throughput screening. Here we describe the structure-activity study, that required the synthesis of 48 analogues. We found that while the carboxylic acid, the imidazole and the tertiary amine were critical for activity, the methyl ester was successfully optimized to an amide or a 1,2,4-oxadiazole. Along with improving their activity, compounds were optimized for solubility, lipophilicity and stability in plasma and microsomes. The docking or co-crystallization of some compounds at the exosite or the catalytic site of IDE provided the structural basis for IDE inhibition. The pharmacokinetic properties of best compounds 44 and 46 were measured in vivo. As a result, 44 (BDM43079) and its methyl ester precursor 48 (BDM43124) are useful chemical probes for the exploration of IDE's role.

  13. Molecular detection of genotype II grass carp reovirus based on nucleic acid sequence-based amplification combined with enzyme-linked immunosorbent assay (NASBA-ELISA).

    Science.gov (United States)

    Zeng, Weiwei; Yao, Wei; Wang, Yingying; Li, Yingying; Bermann, Sven M; Ren, Yan; Shi, Cunbin; Song, Xinjian; Huang, Qiwen; Zheng, Shuchen; Wang, Qing

    2017-05-01

    Grass carp reovirus (GCRV) is the causative agent of the grass carp hemorrhagic disease that has resulted in severe economic losses in the grass carp (Ctenopharyngodon idella) farming industry in China. Early diagnosis and vaccine administration are important priorities for GCRV control. In this study, a nucleic acid sequence-based amplification with enzyme-linked immunosorbent assay (NASBA-ELISA) was developed for to detect genotype II GCRV (GCRV- II). Primers specifically targeting viral RNA genome segment 6 were utilized for amplification in an isothermal digoxigenin-labeling NASBA process, resulting in DIG-labeled RNA amplicons. The amplicons were hybridized to specific biotinylated DNA probes and the products were detected colorimetrically using horseradish peroxidase and a microplate reader. The new method is able to detect GCRV at 14 copies/μL within 5h and had a diagnostic sensitivity and a specificity of 100% when GCRV-II and non-target virus were tested. This NASBA-ELISA was evaluated using a panel of clinical samples (n=103) to demonstrate that it is a rapid, effective and sensitive method for GCRV detection in grass carp aquaculture. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Theoretical investigation of the reaction mechanism for the phosphate diester hydrolysis using an asymmetric dinuclear metal complex as a biomimetic model of the purple acid phosphatase enzyme.

    Science.gov (United States)

    Ferreira, Dalva E C; De Almeida, Wagner B; Neves, Ademir; Rocha, Willian R

    2008-12-14

    In this work we have applied quantum mechanical calculations, at the density functional theory level, to investigate the phosphate diester hydrolysis promoted by a cationic heterodinuclear Fe(III)...Zn(II) complex that mimics the structural and functional properties of the purple acid phosphatase (PAP) enzymes. The hydrolysis of the dimethyl phosphate diester was investigated in the gas phase and in solution by means of the continuum PCM model, using the B3LYP hybrid exchange-correlation functional. Our computed results showed that the hydrolysis of the dimethyl phosphate ester takes place in two steps. The first step corresponds to a slow P-O bond formation through nucleophilic attack of the coordinated (Fe(III))-OH group. The second step consists of a proton transfer process followed by the release of a methanol molecule. The first step is rate determining with activation free energy of 12.3 kcal mol(-1), which is about 3 times lower than the activation free energy for the uncatalyzed reaction. We also show that the heterodinuclear site plays an important role favoring an associative mechanism for the phosphate diester hydrolysis, favoring the formation of a high energy intermediate phosphorane, and orienting the phosphate group to the nucleophilic attack.

  15. Pituitary adenylate cyclase-activating polypeptide (PACAP has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models

    Directory of Open Access Journals (Sweden)

    Gabor Maasz

    2017-02-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin, metabolic enzyme (S-COMT, MB-COMT and MAO-B and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP.

  16. Effect of drugs on lipid methylation, receptor-adenylate cyclase coupling and cyclic AMP secretion in Dictyostelium discoideum

    NARCIS (Netherlands)

    Van Waarde, Aren; Van Haastert, P.J.M.

    1986-01-01

    Intercellular communication in Dictyostelium discoldeum takes place by means of cyclic AMP-induced cyclic AMP-synthesis and secretion. Since phospholipid methylation has been suggested to play a role in receptor-adenylate cyclase coupling, we examined the effects of transmethylation inhibitors on

  17. Amidate Prodrugs of 9-[2-(Phosphonomethoxy)Ethyl]Adenine as Inhibitors of Adenylate Cyclase Toxin from Bordetella pertussis

    Czech Academy of Sciences Publication Activity Database

    Šmídková, Markéta; Dvořáková, Alexandra; Tloušťová, Eva; Česnek, Michal; Janeba, Zlatko; Mertlíková-Kaiserová, Helena

    2014-01-01

    Roč. 58, č. 2 (2014), s. 664-671 ISSN 0066-4804 R&D Projects: GA MV VG20102015046 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24016 Institutional support: RVO:61388963 Keywords : Bordetella pertussis * adenylate cyclase toxin * ACT * inhibitors * PMEA * amidate prodrugs Subject RIV: CC - Organic Chemistry Impact factor: 4.476, year: 2014

  18. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    dimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity. [Trehan K S ... The present study has been carried on acid phosphatase .... enzyme activity over mid parent value (table 3, col. 13),.

  19. Biochemical and Structural Characterization of WlbA from Bordetella pertussis and Chromobacterium violaceum: Enzymes Required for the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Thoden, James B.; Holden, Hazel M. (UW)

    2011-12-22

    The unusual sugar 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, or ManNAc3NAcA, has been observed in the lipopolysaccharides of both pathogenic and nonpathogenic Gram-negative bacteria. It is added to the lipopolysaccharides of these organisms by glycosyltransferases that use as substrates UDP-ManNAc3NAcA. Five enzymes are ultimately required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetylglucosamine. The second enzyme in the pathway, encoded by the wlba gene and referred to as WlbA, catalyzes the NAD-dependent oxidation of the C-3' hydroxyl group of the UDP-linked sugar. Here we describe a combined structural and functional investigation of the WlbA enzymes from Bordetella pertussis and Chromobacterium violaceum. For this investigation, ternary structures were determined in the presence of NAD(H) and substrate to 2.13 and 1.5 {angstrom} resolution, respectively. Both of the enzymes display octameric quaternary structures with their active sites positioned far apart. The octamers can be envisioned as tetramers of dimers. Kinetic studies demonstrate that the reaction mechanisms for these enzymes are sequential and that they do not require {alpha}-ketoglutarate for activity. These results are in sharp contrast to those recently reported for the WlbA enzymes from Pseudomonas aeruginosa and Thermus thermophilus, which function via ping-pong mechanisms that involve {alpha}-ketoglutarate. Taken together, the results reported here demonstrate that there are two distinct families of WlbA enzymes, which differ with respect to amino acid sequences, quaternary structures, active site architectures, and kinetic mechanisms.

  20. A High Throughput Screening Assay for Anti-Mycobacterial Small Molecules Based on Adenylate Kinase Release as a Reporter of Cell Lysis.

    Directory of Open Access Journals (Sweden)

    Lauren Forbes

    Full Text Available Mycobacterium tuberculosis (Mtb is well-established to be one of the most important bacterial pathogens for which new antimicrobial therapies are needed. Herein, we describe the development of a high throughput screening assay for the identification of molecules that are bactericidal against Mycobacteria. The assay utilizes the release of the intracellular enzyme adenylate kinase into the culture medium as a reporter of mycobacterial cell death. We demonstrate that the assay is selective for mycobactericidal molecules and detects anti-mycobacterial activity at concentrations below the minimum inhibitory concentration of many molecules. Thus, the AK assay is more sensitive than traditional growth assays. We have validated the AK assay in the HTS setting using the Mtb surrogate organism M. smegmatis and libraries of FDA approved drugs as well as a commercially available Diversity set. The screen of the FDA-approved library demonstrated that the AK assay is able to identify the vast majority of drugs with known mycobactericidal activity. Importantly, our screen of the Diversity set revealed that the increased sensitivity of the AK assay increases the ability of M. smegmatis-based screens to detect molecules with relatively poor activity against M. smegmatis but good to excellent activity against Mtb.

  1. Solution structure of the 45-residue ATP-binding peptide of adenylate kinase as determined by 2-D NMR, FTIR, and CD spectroscopy

    International Nuclear Information System (INIS)

    Fry, D.C.; Byler, D.M.; Susi, H.; Brown, E.M.; Kuby, S.A.; Mildyan, A.S.

    1986-01-01

    In the X-ray structure of adenylate kinase residues 1-45 exist as 47% α-helix, 29% β-structure (strands and turns) and 24% coil. The solution structure of a synthetic peptide corresponding to residues 1-45, which constitutes the MgATP binding site was studied by 3 independent spectroscopic methods. Globularity of the peptide was shown by its broad NMR resonances which narrow upon denaturation, and by its ability to bind MgATP with similar affinity and conformation as the intact enzyme does. COSY and NOESY NMR methods at 250 and 500 MHz reveal proximities among NH, Cα, and Cβ protons indicative of >20% α-helix, and >20% β-structure. Correlation of regions of secondary structure with the primary sequence by 2D NMR indicates at least one α-helix (res. 23 to 29) and two β-strands (res. 12 to 15 and 34 to 38). The broad amide I band in the deconvoluted FTIR spectrum could be fit as the sum of 4 peaks due to specific secondary structures, yielding ≤=45% α-helix, ≤=40% β-structure and ≥=15% coil. The CD spectrum, from 185-250 nm, interpreted with a 3-parameter basis set, yielded 20 +/- 5% α=helix, and ≤=20% β-structure. The solution structure of peptide 1-45 thus approximates that of residues 1-45 in the crystal

  2. Mechanism of adenylate kinase. Demonstration of a functional relationship between aspartate 93 and Mg2+ by site-directed mutagenesis and proton, phosphorus-31, and magnesium-25 NMR

    International Nuclear Information System (INIS)

    Yan, Honggao; Tsai, Mingdaw

    1991-01-01

    Earlier magnetic resonance studies suggested no direct interaction between Mg 2+ ions and adenylate kinase (AK) in the AK·MgATP (adenosine 5'-triphosphate) complex. However, recent NMR studies concluded that the carboxylate of aspartate 119 accepts a hydrogen bond from a water ligand of the bound Mg 2+ ion in the muscle AK · MgATP complex. On the other hand, in the 2.6-angstrom crystal structure of the yeast AK·MgAP 5 A [P 1 , P 5 -bis(5'-adenosyl)pentaphosphate] complex, the Mg 2+ ion is in proximity to aspartate 93. Substitution of Asp-93 with alanine resulted in no change in dissociation constants, 4-fold increases in K m , and a 650-fold decrease in k cat . Notable changes have been observed in the chemical shifts of the aromatic protons of histidine 36 and a few other aromatic residues. However, the results of detailed analyses of the free enzymes and the AK·MgAP 5 A complexes by one- and two-dimensional NMR suggested that the changes are due to localized perturbations. Thus it is concluded that Asp-93 stabilizes the transition state by ca. 3.9 kcal/mol. Other results raised the question of whether Mg 2+ could bind to D93A·nucleotide complexes, which was then probed by 25 MgNMR. The results suggest that Mg 2+ does bind to the D93A·AP 5 A complex, but possibly only weakly

  3. Angiotensin I-Converting Enzyme (ACE Inhibitory Activity, Antioxidant Properties, Phenolic Content and Amino Acid Profiles of Fucus spiralis L. Protein Hydrolysate Fractions

    Directory of Open Access Journals (Sweden)

    Lisete Paiva

    2017-10-01

    Full Text Available Food protein-derived hydrolysates with multi-bioactivities such as antihypertensive and antioxidant properties have recently received special attention since both activities can play significant roles in preventing cardiovascular diseases. This study reports, for the first time, the angiotensin I-converting enzyme (ACE-inhibition and antioxidant properties of ultrafiltrate fractions (UF with different molecular weight ranges (<1, 1–3 and ≥3 kDa obtained from Fucus spiralis protein hydrolysate (FSPH digested with cellulase–bromelain. The amino acids profile, recovery yield, protein, peptide and total phenolic contents of these FSPH-UF, and the in vitro digestibility of F. spiralis crude protein were also investigated. FSPH-UF ≥3 kDa presented remarkably higher ACE-inhibition, yield, peptide and polyphenolic (phlorotannins contents. Antioxidant analysis showed that FSPH-UF <1 kDa and ≥3 kDa exhibited significantly higher scavenging of 2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion-chelating (FIC activity. FSPH-UF ≥3 kDa had also notably higher ferric reducing antioxidant power (FRAP. Strong correlations were observed between ACE-inhibition and antioxidant activities (FIC and FRAP. The results suggest that ACE-inhibition and antioxidant properties of FSPH-UF may be due to the bioactive peptides and polyphenols released during the enzymatic hydrolysis. In conclusion, this study shows the potential use of defined size FSPH-UF for the prevention/treatment of hypertension and/or oxidative stress-related diseases.

  4. Phenylalanine ammonia lyase from Arabidopsis thaliana (AtPAL2): A potent MIO-enzyme for the synthesis of non-canonical aromatic alpha-amino acids: Part I: Comparative characterization to the enzymes from Petroselinum crispum (PcPAL1) and Rhodosporidium toruloides (RtPAL).

    Science.gov (United States)

    Dreßen, Alana; Hilberath, Thomas; Mackfeld, Ursula; Billmeier, Arne; Rudat, Jens; Pohl, Martina

    2017-09-20

    Phenylalanine ammonia lyase (PAL) from Arabidopsis thaliana (AtPAL2) was comparatively characterized to the well-studied enzyme from parsley (PcPAL1) and Rhodosporidium toruloides (RtPAL) with respect to kinetic parameters for the deamination and the amination reaction, pH- and temperature optima and the substrate range of the amination reaction. Whereas both plant enzymes are specific for phenylalanine, the bifunctional enzyme from Rhodosporidium toruloides shows K M -values for L-Phe and L-Tyr in the same order of magnitude and, compared to both plant enzymes, a 10-15-fold higher activity. At 30°C all enzymes were sufficiently stable with half-lives of 3.4days (PcPAL1), 4.6days (AtPAL2) and 9.7days (RtPAL/TAL). Very good results for the amination of various trans-cinnamic acid derivatives were obtained using E. coli cells as whole cell biocatalysts in ammonium carbonate buffer. Investigation of the substrate ranges gave interesting results for the newly tested enzymes from A. thaliana and R. toruloides. Only the latter accepts besides 4-hydroxy-CA also 3-methoxy-4-hydroxy-CA as a substrate, which is an interesting intermediate for the formation of pharmaceutically relevant L-Dopa. AtPAL2 is a very good catalyst for the formation of (S)-3-F-Phe, (S)-4-F-Phe and (S)-2-Cl-Phe. Such non-canonical amino acids are valuable building blocks for the formation of various drug molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Characterization of beta-adrenergic receptors and adenylate cyclase activity in rat brown fat

    International Nuclear Information System (INIS)

    Baresi, L.A.; Morley, J.E.; Scarpace, P.J.

    1986-01-01

    Catecholamines stimulate thermogenesis in rat brown fat through a mechanism which involves binding to the beta-adrenergic receptor (BAR), stimulation of adenylate cyclase (AC) and culminating with uncoupling of mitochondrial respiration from ATP synthesis. The authors characterized BAR, AC and cytochrome (cyt) c oxidase in CDF (F-344) interscapular brown fat. Scatchard analysis of [ 125 ]Iodopindolol binding yields a straight line consistent with a single class of antagonist binding sites with 41.8 +/- 12.0 fmol BAR/mg protein and a K/sub d/ of 118 +/- 15 pM. Binding was both specific and stereospecific. Competition with 1-propranolol (K/sub d/ = 6.7 nM) was 15 times more potent than d-propranolol (K/sub d/ = 103 nM). Competition with isoproterenol (K/sub d/ = 79 nM) was 10 times more potent than epinephrine (K/sub d/ = 820 nM) which was 35 times more potent than norepinephrine (K/sub d/ = 2.9 x 10 -5 M) suggesting predominate beta 2 -type BAR. Cyt c oxidase activity was assessed in brown fat mitochrondrial preparations. The ratio of BAR to cyt c activity was 959 +/- 275 nmol BAR/mol cyc c/min. Isoproterenol (0.1 mM) stimulated AC activity was 24 times GTP (0.1 mM) stimulated AC (98.5 vs 40.7 pmol cAMP/min/mg). NaF-stimulated AC was nine times basal activity (90.5 vs 11.3 pmol cAMP/min/mg). These data demonstrate the presence of a beta- 2 -type BAR coupled to adenylate cyclase in rat brown fat

  6. Mutation for nonsyndromic mental retardation in the trans-2-enoyl-CoA reductase TER gene involved in fatty acid elongation impairs the enzyme activity and stability, leading to change in sphingolipid profile.

    Science.gov (United States)

    Abe, Kensuke; Ohno, Yusuke; Sassa, Takayuki; Taguchi, Ryo; Çalışkan, Minal; Ober, Carole; Kihara, Akio

    2013-12-20

    Very long-chain fatty acids (VLCFAs, chain length >C20) exist in tissues throughout the body and are synthesized by repetition of the fatty acid (FA) elongation cycle composed of four successive enzymatic reactions. In mammals, the TER gene is the only gene encoding trans-2-enoyl-CoA reductase, which catalyzes the fourth reaction in the FA elongation cycle. The TER P182L mutation is the pathogenic mutation for nonsyndromic mental retardation. This mutation substitutes a leucine for a proline residue at amino acid 182 in the TER enzyme. Currently, the mechanism by which the TER P182L mutation causes nonsyndromic mental retardation is unknown. To understand the effect of this mutation on the TER enzyme and VLCFA synthesis, we have biochemically characterized the TER P182L mutant enzyme using yeast and mammalian cells transfected with the TER P182L mutant gene and analyzed the FA elongation cycle in the B-lymphoblastoid cell line with the homozygous TER P182L mutation (TER(P182L/P182L) B-lymphoblastoid cell line). We have found that TER P182L mutant enzyme exhibits reduced trans-2-enoyl-CoA reductase activity and protein stability, thereby impairing VLCFA synthesis and, in turn, altering the sphingolipid profile (i.e. decreased level of C24 sphingomyelin and C24 ceramide) in the TER(P182L/P182L) B-lymphoblastoid cell line. We have also found that in addition to the TER enzyme-catalyzed fourth reaction, the third reaction in the FA elongation cycle is affected by the TER P182L mutation. These findings provide new insight into the biochemical defects associated with this genetic mutation.

  7. Thermostable adenylate kinase technology: a new process indicator and its use as a validation tool for the reprocessing of surgical instruments.

    Science.gov (United States)

    Hesp, J R; Poolman, T M; Budge, C; Batten, L; Alexander, F; McLuckie, G; O'Brien, S; Wells, P; Raven, N D H; Sutton, J M

    2010-02-01

    Adenylate kinase (tAK), a thermostable enzyme, was assessed as a possible means of providing a quantitative measure of cleaning efficacy suitable for validating the performance of an automated washer disinfector (AWD) during routine use. Two indicator formulations were developed using either a commercially available washer disinfector soil or a protein-based soil. Each indicator consisted of 100 microg (in test soil) of tAK dried on to a steel or plastic surface. These indicators were placed in each basket of a washer disinfector and processed alongside soiled surgical instruments during a standard day's operation. After processing, remaining tAK activity was detected using a rapid enzyme assay (2 min detection time) in a handheld hygiene monitor. The amount of tAK remaining on each indictor after a full AWD cycle was found to range from 0.1 to 0.4 ng, which represented a mean log(10) removal of 5.8+/-0.3. There was no statistical difference in the residual tAK activity between individual runs or the position of the indicator in the machine. The tAK indicator was also used to analyse the protein removal within each component of the wash cycle. These results demonstrated that all phases of the wash process contributed to the removal of the protein load, with the main wash alone being responsible for 3.6-4.0 log(10) reductions in protein activity. We propose that a quantitative cleaning index using such rapid readout indicator devices would provide a valuable addition to the methodologies for validating cleaning processes.

  8. Chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats.

    Science.gov (United States)

    Han, Xun; Ran, Ye; Su, Min; Liu, Yinglu; Tang, Wenjing; Dong, Zhao; Yu, Shengyuan

    2017-01-01

    Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeated migraine-like attacks in chronic migraine are not clear. Therefore, the present study investigated chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulations in the rat. Methods A rat model of chronic migraine was established by repeated chemical dural stimulations using an inflammatory soup for a different numbers of days. The pituitary adenylate cyclase-activating polypeptide levels were quantified in plasma, the trigeminal ganglia, and the trigeminal nucleus caudalis using radioimmunoassay and Western blotting in trigeminal ganglia and trigeminal nucleus caudalis tissues. Western blot analysis and real-time polymerase chain reaction were used to measure the protein and mRNA expression of pituitary adenylate cyclase-activating polypeptide-related receptors (PAC1, VPAC1, and VPAC2) in the trigeminal ganglia and trigeminal nucleus caudalis to identify changes associated with repetitive applications of chemical dural stimulations. Results All rats exhibited significantly decreased periorbital nociceptive thresholds to repeated inflammatory soup stimulations. Radioimmunoassay and Western blot analysis demonstrated significantly decreased pituitary adenylate cyclase-activating polypeptide levels in plasma and trigeminal ganglia after repetitive chronic inflammatory soup stimulation. Protein and mRNA analyses of pituitary adenylate cyclase-activating polypeptide-related receptors demonstrated significantly increased PAC1 receptor protein and mRNA expression in the trigeminal ganglia, but not

  9. Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability.

    Science.gov (United States)

    Merriam, Laura A; Baran, Caitlin N; Girard, Beatrice M; Hardwick, Jean C; May, Victor; Parsons, Rodney L

    2013-03-06

    After G-protein-coupled receptor activation and signaling at the plasma membrane, the receptor complex is often rapidly internalized via endocytic vesicles for trafficking into various intracellular compartments and pathways. The formation of signaling endosomes is recognized as a mechanism that produces sustained intracellular signals that may be distinct from those generated at the cell surface for cellular responses including growth, differentiation, and survival. Pituitary adenylate cyclase activating polypeptide (PACAP; Adcyap1) is a potent neurotransmitter/neurotrophic peptide and mediates its diverse cellular functions in part through internalization of its cognate G-protein-coupled PAC1 receptor (PAC1R; Adcyap1r1). In the present study, we examined whether PAC1R endocytosis participates in the regulation of neuronal excitability. Although PACAP increased excitability in 90% of guinea pig cardiac neurons, pretreatment with Pitstop 2 or dynasore to inhibit clathrin and dynamin I/II, respectively, suppressed the PACAP effect. Subsequent addition of inhibitor after the PACAP-induced increase in excitability developed gradually attenuated excitability with no changes in action potential properties. Likewise, the PACAP-induced increase in excitability was markedly decreased at ambient temperature. Receptor trafficking studies with GFP-PAC1 cell lines demonstrated the efficacy of Pitstop 2, dynasore, and low temperatures at suppressing PAC1R endocytosis. In contrast, brefeldin A pretreatments to disrupt Golgi vesicle trafficking did not blunt the PACAP effect, and PACAP/PAC1R signaling still increased neuronal cAMP production even with endocytic blockade. Our results demonstrate that PACAP/PAC1R complex endocytosis is a key step for the PACAP modulation of cardiac neuron excitability.

  10. A Conserved Acidic Motif in the N-Terminal Domain of Nitrate Reductase Is Necessary for the Inactivation of the Enzyme in the Dark by Phosphorylation and 14-3-3 Binding1

    Science.gov (United States)

    Pigaglio, Emmanuelle; Durand, Nathalie; Meyer, Christian

    1999-01-01

    It has previously been shown that the N-terminal domain of tobacco (Nicotiana tabacum) nitrate reductase (NR) is involved in the inactivation of the enzyme by phosphorylation, which occurs in the dark (L. Nussaume, M. Vincentz, C. Meyer, J.P. Boutin, and M. Caboche [1995] Plant Cell 7: 611–621). The activity of a mutant NR protein lacking this N-terminal domain was no longer regulated by light-dark transitions. In this study smaller deletions were performed in the N-terminal domain of tobacco NR that removed protein motifs conserved among higher plant NRs. The resulting truncated NR-coding sequences were then fused to the cauliflower mosaic virus 35S RNA promoter and introduced in NR-deficient mutants of the closely related species Nicotiana plumbaginifolia. We found that the deletion of a conserved stretch of acidic residues led to an active NR protein that was more thermosensitive than the wild-type enzyme, but it was relatively insensitive to the inactivation by phosphorylation in the dark. Therefore, the removal of this acidic stretch seems to have the same effects on NR activation state as the deletion of the N-terminal domain. A hypothetical explanation for these observations is that a specific factor that impedes inactivation remains bound to the truncated enzyme. A synthetic peptide derived from this acidic protein motif was also found to be a good substrate for casein kinase II. PMID:9880364

  11. A cost-effective method for Illumina small RNA-Seq library preparation using T4 RNA ligase 1 adenylated adapters

    Directory of Open Access Journals (Sweden)

    Chen Yun-Ru

    2012-09-01

    Full Text Available Abstract Background Deep sequencing is a powerful tool for novel small RNA discovery. Illumina small RNA sequencing library preparation requires a pre-adenylated 3’ end adapter containing a 5’,5’-adenyl pyrophosphoryl moiety. In the absence of ATP, this adapter can be ligated to the 3’ hydroxyl group of small RNA, while RNA self-ligation and concatenation are repressed. Pre-adenylated adapters are one of the most essential and costly components required for library preparation, and few are commercially available. Results We demonstrate that DNA oligo with 5’ phosphate and 3’ amine groups can be enzymatically adenylated by T4 RNA ligase 1 to generate customized pre-adenylated adapters. We have constructed and sequenced a small RNA library for tomato (Solanum lycopersicum using the T4 RNA ligase 1 adenylated adapter. Conclusion We provide an efficient and low-cost method for small RNA sequencing library preparation, which takes two days to complete and costs around $20 per library. This protocol has been tested in several plant species for small RNA sequencing including sweet potato, pepper, watermelon, and cowpea, and could be readily applied to any RNA samples.

  12. Oligogalacturonide-mediated induction of a gene involved in jasmonic acid synthesis in response to the cell-wall-degrading enzymes of the plant pathogen Erwinia carotovora.

    Science.gov (United States)

    Norman, C; Vidal, S; Palva, E T

    1999-07-01

    Identification of Arabidopsis thaliana genes responsive to plant cell-wall-degrading enzymes of Erwinia carotovora subsp. carotovora led to the isolation of a cDNA clone with high sequence homology to the gene for allene oxide synthase, an enzyme involved in the biosynthesis of jasmonates. Expression of the corresponding gene was induced by the extracellular enzymes from this pathogen as well as by treatment with methyl jasmonate and short oligogalacturonides (OGAs). This suggests that OGAs are involved in the induction of the jasmonate pathway during plant defense response to E. carotovora subsp. carotovora attack.

  13. Initiation of proteolysis of yeast fructose-1,6-bisphosphatase by pH-control of adenylate cyclase

    International Nuclear Information System (INIS)

    Holzer, H.; Purwin, C.; Pohlig, G.; Scheffers, W.A.; Nicolay, K.

    1986-01-01

    Addition of fermentable sugars or uncouplers such as CCCP to resting yeast cells grown on glucose initiates phosphorylation of fructose-1,6-bisphosphatase (FBPase). There is good evidence that phosphorylation marks FBPase for proteolytic degradation. 31 P-NMR measurements of the cytosolic pH of yeast cells demonstrated a decrease of the cytosolic pH from 7.0 to 6.5 after addition of glucose or CCCP to starved yeast. Activity of adenylate cyclase in permeabilized yeast cells increases 2-3-fold when the pH is lowered from 7.0 to 6.5. It is concluded that pH controlled activation of adenylate cyclase causes the previously described increase in cyclic AMP which leads to phosphorylation of FBPase and finally to proteolysis of FBPase

  14. Effect of γ-Aminobutyric Acid-producing Strain on Laying Performance, Egg Quality and Serum Enzyme Activity in Hy-Line Brown Hens under Heat Stress

    Directory of Open Access Journals (Sweden)

    Y. Z. Zhu

    2015-07-01

    Full Text Available Heat-stress remains a costly issue for animal production, especially for poultry as they lack sweat glands, and alleviating heat-stress is necessary for ensuring animal production in hot environment. A high γ-aminobutyric acid (GABA-producer Lactobacillus strain was used to investigate the effect of dietary GABA-producer on laying performance and egg quality in heat-stressed Hy-line brown hens. Hy-Line brown hens (n = 1,164 at 280 days of age were randomly divided into 4 groups based on the amount of freeze-dried GABA-producer added to the basal diet as follows: i 0 mg/kg, ii 25 mg/kg, iii 50 mg/kg, and iv 100 mg/kg. All hens were subjected to heat-stress treatment through maintaining the temperature and the relative humidity at 28.83±3.85°C and 37% to 53.9%, respectively. During the experiment, laying rate, egg weight and feed intake of hens were recorded daily. At the 30th and 60th day after the start of the experiment, biochemical parameters, enzyme activity and immune activity in serum were measured. Egg production, average egg weight, average daily feed intake, feed conversion ratio and percentage of speckled egg, soft shell egg and misshaped egg were significantly improved (p<0.05 by the increasing supplementation of the dietary GABA-producer. Shape index, eggshell thickness, strength and weight were increased linearly with increasing GABA-producer supplementation. The level of calcium, phosphorus, glucose, total protein and albumin in serum of the hens fed GABA-producing strain supplemented diet was significantly higher (p<0.05 than that of the hens fed the basal diet, whereas cholesterol level was decreased. Compared with the basal diet, GABA-producer strain supplementation increased serum level of glutathione peroxidase (p = 0.009 and superoxide dismutase. In conclusion, GABA-producer played an important role in alleviating heat-stress, the isolated GABA-producer strain might be a potential natural and safe probiotic to use to

  15. Effect of γ-Aminobutyric Acid-producing Lactobacillus Strain on Laying Performance, Egg Quality and Serum Enzyme Activity in Hy-Line Brown Hens under Heat Stress.

    Science.gov (United States)

    Zhu, Y Z; Cheng, J L; Ren, M; Yin, L; Piao, X S

    2015-07-01

    Heat-stress remains a costly issue for animal production, especially for poultry as they lack sweat glands, and alleviating heat-stress is necessary for ensuring animal production in hot environment. A high γ-aminobutyric acid (GABA)-producer Lactobacillus strain was used to investigate the effect of dietary GABA-producer on laying performance and egg quality in heat-stressed Hy-line brown hens. Hy-Line brown hens (n = 1,164) at 280 days of age were randomly divided into 4 groups based on the amount of freeze-dried GABA-producer added to the basal diet as follows: i) 0 mg/kg, ii) 25 mg/kg, iii) 50 mg/kg, and iv) 100 mg/kg. All hens were subjected to heat-stress treatment through maintaining the temperature and the relative humidity at 28.83±3.85°C and 37% to 53.9%, respectively. During the experiment, laying rate, egg weight and feed intake of hens were recorded daily. At the 30th and 60th day after the start of the experiment, biochemical parameters, enzyme activity and immune activity in serum were measured. Egg production, average egg weight, average daily feed intake, feed conversion ratio and percentage of speckled egg, soft shell egg and misshaped egg were significantly improved (pGABA-producer. Shape index, eggshell thickness, strength and weight were increased linearly with increasing GABA-producer supplementation. The level of calcium, phosphorus, glucose, total protein and albumin in serum of the hens fed GABA-producing strain supplemented diet was significantly higher (plevel was decreased. Compared with the basal diet, GABA-producer strain supplementation increased serum level of glutathione peroxidase (p = 0.009) and superoxide dismutase. In conclusion, GABA-producer played an important role in alleviating heat-stress, the isolated GABA-producer strain might be a potential natural and safe probiotic to use to improve laying performance and egg quality in heat-stressed hens.

  16. Effect of Functional Bread Rich in Potassium, γ-Aminobutyric Acid and Angiotensin-Converting Enzyme Inhibitors on Blood Pressure, Glucose Metabolism and Endothelial Function

    Science.gov (United States)

    Becerra-Tomás, Nerea; Guasch-Ferré, Marta; Quilez, Joan; Merino, Jordi; Ferré, Raimon; Díaz-López, Andrés; Bulló, Mònica; Hernández-Alonso, Pablo; Palau-Galindo, Antoni; Salas-Salvadó, Jordi

    2015-01-01

    Abstract Because it has been suggested that food rich in γ-aminobutyric acid (GABA) or angiotensin-converting enzyme inhibitor (ACEI) peptides have beneficial effects on blood pressure (BP) and other cardiovascular risk factors, we tested the effects of low-sodium bread, but rich in potassium, GABA, and ACEI peptides on 24-hour BP, glucose metabolism, and endothelial function. A randomized, double-blind, crossover trial was conducted in 30 patients with pre or mild-to-moderate hypertension, comparing three 4-week nutritional interventions separated by 2-week washout periods. Patients were randomly assigned to consume 120 g/day of 1 of the 3 types of bread for each nutritional intervention: conventional wheat bread (CB), low-sodium wheat bread enriched in potassium (LSB), and low-sodium wheat bread rich in potassium, GABA, and ACEI peptides (LSB + G). For each period, 24-hour BP measurements, in vivo endothelial function, and biochemical samples were obtained. After LSB + G consumption, 24-hour ambulatory BP underwent a nonsignificant greater reduction than after the consumption of CB and LSB (0.26 mm Hg in systolic BP and −0.63 mm Hg in diastolic BP for CB; −0.71 mm Hg in systolic BP and −1.08 mm Hg in diastolic BP for LSB; and −0.75 mm Hg in systolic BP and −2.12 mm Hg in diastolic BP for LSB + G, respectively). Diastolic BP at rest decreased significantly during the LSB + G intervention, although there were no significant differences in changes between interventions. There were no significant differences between interventions in terms of changes in in vivo endothelial function, glucose metabolism, and peripheral inflammatory parameters. Compared with the consumption of CB or LSB, no greater beneficial effects on 24-hour BP, endothelial function, or glucose metabolism were demonstrated after the consumption of LSB + G in a population with pre or mild-to-moderate hypertension. Further studies are warranted to clarify the

  17. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases

    OpenAIRE

    Anthony Samsel; Stephanie Seneff

    2013-01-01

    Glyphosate, the active ingredient in Roundup[superscript ®], is the most popular herbicide used worldwide. The industry asserts it is minimally toxic to humans, but here we argue otherwise. Residues are found in the main foods of the Western diet, comprised primarily of sugar, corn, soy and wheat. Glyphosate's inhibition of cytochrome P450 (CYP) enzymes is an overlooked component of its toxicity to mammals. CYP enzymes play crucial roles in biology, one of which is to detoxify xenobiotics. Th...

  18. Heterosubtypic protection against influenza A induced by adenylate cyclase toxoids delivering conserved HA2 subunit of hemagglutinin

    Czech Academy of Sciences Publication Activity Database

    Staneková, Z.; Adkins, Irena; Kosová, Martina; Janulíková, J.; Šebo, Peter; Varečková, E.

    2013-01-01

    Roč. 97, č. 1 (2013), s. 24-35 ISSN 0166-3542 R&D Projects: GA ČR GA310/08/0447; GA ČR GP310/09/P582 Institutional support: RVO:61388971 Keywords : Bordetella adenylate cyclase toxoid * Influenza A infection * Cross-protection Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.434, year: 2013

  19. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the circulation after sumatriptan

    DEFF Research Database (Denmark)

    Hansen, Jakob Møller; Fahrenkrug, Jan; Petersen, Jesper Troensegaard

    2013-01-01

    The origin of migraine pain is still elusive, but increasingly researchers focus on the neuropeptides in the perivascular space of cranial vessels as important mediators of nociceptive input during migraine attacks. The parasympathetic neurotransmitters, pituitary adenylate cyclase activating...... peptide-38 (PACAP38) and vasoactive intestinal peptide (VIP) may be released from parasympathetic fibres and activate sensory nerve fibres during migraine attacks. Triptans are effective and well tolerated in acute migraine management but the exact mechanism of action is still debated. Triptans might...

  20. Activity of adenylate cyclase in plasma membranes of pulmonary tissue remote times following nonlethal gamma-irradiation of rats

    International Nuclear Information System (INIS)

    Slozhenkina, L.V.; Ruda, V.P.; Ushakova, T.E.; Kuzin, A.M.

    1990-01-01

    Basal and stimulated activity of adenylate cyclase (cyclizing ATP-pyrophosphate lyase, E.C. 4.6.1.1., AC) in plasma membranes of pumonary tissye was being studied during a year after fractionated irradiation of rats (2 Gyx3). Basal and hormone-stimulated activity of AC was shown to vary significantly from normal 6 and 12 months after irradiation. The exposed membranes responded differently to AC activation by isoproterenol and F -

  1. Pore formation by the Bordetella adenylate cyclase toxin in lipid bilayer membranes: Role of voltage and pH

    Czech Academy of Sciences Publication Activity Database

    Knapp, O.; Maier, E.; Mašín, Jiří; Šebo, Peter; Benz, R.

    2008-01-01

    Roč. 1778, č. 1 (2008), s. 260-269 ISSN 0005-2736 R&D Projects: GA AV ČR(CZ) IAA5020406 Grant - others:XE(XE) QLK2-CT-1999-00556 Institutional research plan: CEZ:AV0Z50200510 Keywords : adenylate cyclase toxin * act * voltage Subject RIV: EE - Microbiology, Virology Impact factor: 4.180, year: 2008

  2. Bimetallic-organic framework derived porous Co3O4/Fe3O4/C-loaded g-C3N4 nanocomposites as non-enzymic electrocatalysis oxidization toward ascorbic acid, dopamine acid, and uric acid

    Science.gov (United States)

    Hu, Bin; Liu, Yongkang; Wang, Zhuo-Wei; Song, Yingpan; Wang, Minghua; Zhang, Zhihong; Liu, Chun-Sen

    2018-05-01

    We report on the synthesis of Co- and Fe-based bimetallic nanocatalysts embedded in mesoporous carbon and g-C3N4 nanosheets (denoted as Co3O4/Fe3O4/mC@g-C3N4) for selectively simultaneous determination of ascorbic acid (AA), dopamine acid (DA), and uric acid (UA). These electrocatalysts consisting of bimetallic Co-Fe alloy nanoparticles encapsulated in N-doped carbon matrix were prepared via pyrolysis of Co/Fe-MOFs after grinding with high amounts of melamine. Chemical/crystal structures suggest high contents of mesoporous carbon in calcinated Co3O4/Fe3O4/mC nanocomposites, which exhibited enhanced electrocatalytic activity toward small biomolecules. The intrinsic performances of Co/Fe-MOFs with large specific surface area and regular nodes in the two-dimensional nanostructured g-C3N4 nanosheets endowed the as-prepared series of Co3O4/Fe3O4/mC@g-C3N4 nanocomposites with remarkable electrocatalytic activities and high adsorption ability toward oxidation of AA, DA, and UA. The developed biosensors also showed long-term stability and high selectivity for targeted analytes, with satisfactory results on actual samples in human urine. The results indicate that the as-synthesized Co3O4/Fe3O4/mC@g-C3N4 nanostructure exhibits good electrocatalytic activity and potential applications in clinical diagnosis and biosensing.

  3. BIOCHEMISTRY AND BIOENGINEERING ‘‘NEW APPLICATION OF LIPASES IN LIPID TRANSFORMATION’’ Enzyme-catalysed enrichment of n-3 polyunsaturated fatty acids of salmon oil: optimisation of reaction conditions

    Directory of Open Access Journals (Sweden)

    Linder Michel

    2001-01-01

    Full Text Available Extraction and concentration of polyunsaturated fatty acid from salmon oil (Salmo salar by enzymatic hydrolysis were studied. Enzymatic aqueous extraction of oil with Neutrase® 0.5l was applied to the salmon flesh in batch reactor. Reaction kinetics were monitored under nitrogen by measuring the degree of hydrolysis (DH% using the pH-stat method, in order to preserve the functional and nutritional values of hydrolysates. Lipids were separated by centrifugation yielding 14.3% (w/w for the product, compared to 15.2% (w/w obtained using the classical method with solvent. Lipase hydrolysis by Novozym® SP 398, a specific sn-1, sn-3 enzyme, and membrane filtration, were evaluated as means of selectively concentrating polyunsaturated fatty acids (PUFA fractions. A Doehlert matrix was used to study the effect of reaction time, flow and enzyme/protein ratio. Quadratic models were used to generate response surfaces of the liberation of fatty acids during the lipolysis and the composition of major saturated and polyunsaturated fatty acids in the permeate.

  4. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress.

    Science.gov (United States)

    Servant, Géraldine; Pinson, Benoit; Tchalikian-Cosson, Aurélie; Coulpier, Fanny; Lemoine, Sophie; Pennetier, Carole; Bridier-Nahmias, Antoine; Todeschini, Anne Laure; Fayol, Hélène; Daignan-Fornier, Bertrand; Lesage, Pascale

    2012-07-01

    Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages.

  5. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    International Nuclear Information System (INIS)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-01-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the [ 3 H]-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mg protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the [ 3 H]DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the β-adrenergic receptor in rat heart

  6. Salicylic-Acid-Induced Chilling- and Oxidative-Stress Tolerance in Relation to Gibberellin Homeostasis, C-Repeat/Dehydration-Responsive Element Binding Factor Pathway, and Antioxidant Enzyme Systems in Cold-Stored Tomato Fruit.

    Science.gov (United States)

    Ding, Yang; Zhao, Jinhong; Nie, Ying; Fan, Bei; Wu, Shujuan; Zhang, Yu; Sheng, Jiping; Shen, Lin; Zhao, Ruirui; Tang, Xuanming

    2016-11-02

    Effects of salicylic acid (SA) on gibberellin (GA) homeostasis, C-repeat/dehydration-responsive element binding factor (CBF) pathway, and antioxidant enzyme systems linked to chilling- and oxidative-stress tolerance in tomato fruit were investigated. Mature green tomatoes (Solanum lycopersicum L. cv. Moneymaker) were treated with 0, 0.5, and 1 mM SA solution for 15 min before storage at 4 °C for 28 days. In comparison to 0 or 0.5 mM SA, 1 mM SA significantly decreased the chilling injury (CI) index in tomato fruit. In the SA-treated fruit, the upregulation of GA biosynthetic gene (GA3ox1) expression was followed by gibberellic acid (GA 3 ) surge and DELLA protein degradation. CBF1 participated in the SA-modulated tolerance and stimulated the expression of GA catabolic gene (GA2ox1). Furthermore, 1 mM SA enhanced activities of antioxidant enzymes and, thus, reduced reactive oxygen species accumulation. Our findings suggest that SA might protect tomato fruit from CI and oxidative damage through regulating GA metabolism, CBF1 gene expression, and antioxidant enzyme activities.

  7. A Novel Aqueous Two Phase System Composed of a Thermo-Separating Polymer and an Organic Solvent for Purification of Thermo-Acidic Amylase Enzyme from Red Pitaya (Hylocereus polyrhizus Peel

    Directory of Open Access Journals (Sweden)

    Mehrnoush Amid

    2014-05-01

    Full Text Available The purification of thermo-acidic amylase enzyme from red pitaya (Hylocereus polyrhizus peel for the first time was investigated using a novel aqueous two-phase system (ATPS consisting of a thermo-separating copolymer and an organic solvent. The effectiveness of different parameters such as molecular weight of the thermo-separating ethylene oxide-propylene oxide (EOPO copolymer and type and concentration of organic solvent on the partitioning behavior of amylase was investigated. In addition, the effects of phase components, volume ratio (VR, pH and crude load of purification factor and yield of amylase were evaluated to achieve the optimum partition conditions of the enzyme. In the novel ATPS method, the enzyme was satisfactorily partitioned into the polymer-rich top phase in the system composed of 30% (w/w EOPO 2500 and 15% (w/w 2-propanol, at a volume ratio of 1.94 and with a crude load scale of 25% (w/w at pH 5.0. Recovery and recycling of components was also measured in each successive step of the ATPS process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 96.6% and copolymer was also recovered and recycled at a rate above 97%, making the method was more economical than the traditional ATPS method.

  8. Plasma Bile Acids Are Associated with Energy Expenditure and Thyroid Function in Humans

    NARCIS (Netherlands)

    Ockenga, Johann; Valentini, Luzia; Schuetz, Tatjana; Wohlgemuth, Franziska; Glaeser, Silja; Omar, Ajmal; Kasim, Esmatollah; duPlessis, Daniel; Featherstone, Karen; Davis, Julian R.; Tietge, Uwe J. F.; Kroencke, Thomas; Biebermann, Heike; Koehrle, Josef; Brabant, Georg

    Background/Aims: Animal studies implicate a role of bile acids (BA) in thyroid-regulated energy expenditure (EE) via activation of the TGR-5/adenylate cyclase/deiodinase type 2 pathway. Here we investigated these possible associations in humans. Methods: EE, BA, and thyroid hormone status were

  9. The adenylate energy charge as a new and useful indicator of capture stress in chondrichthyans.

    Science.gov (United States)

    Guida, Leonardo; Walker, Terence I; Reina, Richard D

    2016-02-01

    Quantifying the physiological stress response of chondrichthyans to capture has assisted the development of fishing practices conducive to their survival. However, currently used indicators of stress show significant interspecific and intraspecific variation in species' physiological responses and tolerances to capture. To improve our understanding of chondrichthyan stress physiology and potentially reduce variation when quantifying the stress response, we investigated the use of the adenylate energy charge (AEC); a measure of available metabolic energy. To determine tissues sensitive to metabolic stress, we extracted samples of the brain, heart, liver, white muscle and blood from gummy sharks (Mustelus antarcticus) immediately following gillnet capture and after 3 h recovery under laboratory conditions. Capture caused significant declines in liver, white muscle and blood AEC, whereas no decline was detected in the heart and brain AEC. Following 3 h of recovery from capture, the AEC of the liver and blood returned to "unstressed" levels (control values) whereas white muscle AEC was not significantly different to that immediately after capture. Our results show that the liver is most sensitive to metabolic stress and white muscle offers a practical method to sample animals non-lethally for determination of the AEC. The AEC is a highly informative indicator of stress and unlike current indicators, it can directly measure the change in available energy and thus the metabolic stress experienced by a given tissue. Cellular metabolism is highly conserved across organisms and, therefore, we think the AEC can also provide a standardised form of measuring capture stress in many chondrichthyan species.

  10. Deciphering hierarchical features in the energy landscape of adenylate kinase folding/unfolding

    Science.gov (United States)

    Taylor, J. Nicholas; Pirchi, Menahem; Haran, Gilad; Komatsuzaki, Tamiki

    2018-03-01

    Hierarchical features of the energy landscape of the folding/unfolding behavior of adenylate kinase, including its dependence on denaturant concentration, are elucidated in terms of single-molecule fluorescence resonance energy transfer (smFRET) measurements in which the proteins are encapsulated in a lipid vesicle. The core in constructing the energy landscape from single-molecule time-series across different denaturant concentrations is the application of rate-distortion theory (RDT), which naturally considers the effects of measurement noise and sampling error, in combination with change-point detection and the quantification of the FRET efficiency-dependent photobleaching behavior. Energy landscapes are constructed as a function of observation time scale, revealing multiple partially folded conformations at small time scales that are situated in a superbasin. As the time scale increases, these denatured states merge into a single basin, demonstrating the coarse-graining of the energy landscape as observation time increases. Because the photobleaching time scale is dependent on the conformational state of the protein, possible nonequilibrium features are discussed, and a statistical test for violation of the detailed balance condition is developed based on the state sequences arising from the RDT framework.

  11. Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions.

    Science.gov (United States)

    de Bruin, Wieke; Oerlemans, Frank; Wieringa, Bé

    2004-07-01

    Adenylate kinase (AK)-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy in cells of fully differentiated tissues with highly variable energy demand, such as muscle and brain. To investigate if AK isoenzymes have a comparable function in the energy-demand management of proliferating cells, AK1 and AK1beta were expressed in mouse neuroblastoma N2a cells and in human colon carcinoma SW480 cells. Glucose deprivation, galactose feeding, and metabolic inhibitor tests revealed a differential energy dependency for these two cell lines. N2a cells showed a faster proliferation rate and strongest coupling to mitochondrial activity, SW480 proliferation was more dependent on glycolysis. Despite these differences, ectopic expression of AK1 or AK1beta did not affect their growth characteristics under normal conditions. Also, no differential effects were seen under metabolic stress upon treatment with mitochondrial and glycolytic inhibitors in in vitro culture or in solid tumors grown in vivo. Although many intimate connections have been revealed between cell death and metabolism, our results suggest that AK1- or AK1beta-mediated high-energy phosphoryl transfer is not a modulating factor in the survival of tumor cells during episodes of metabolic crisis.

  12. Pituitary adenylate cyclase activating peptide (PACAP participates in adipogenesis by activating ERK signaling pathway.

    Directory of Open Access Journals (Sweden)

    Tatjana Arsenijevic

    Full Text Available Pituitary adenylate cyclase activating peptide (PACAP belongs to the secretin/glucagon/vasoactive intestinal peptide (VIP family. Its action can be mediated by three different receptor subtypes: PAC1, which has exclusive affinity for PACAP, and VPAC1 and VPAC2 which have equal affinity for PACAP and VIP. We showed that all three receptors are expressed in 3T3-L1 cells throughout their differentiation into adipocytes. We established the activity of these receptors by cAMP accumulation upon induction by PACAP. Together with insulin and dexamethasone, PACAP induced adipogenesis in 3T3-L1 cell line. PACAP increased cAMP production within 15 min upon stimulation and targeted the expression and phosphorylation of MAPK (ERK1/2, strengthened by the ERK1/2 phosphorylation being partially or completely abolished by different combinations of PACAP receptors antagonists. We therefore speculate that ERK1/2 activation is crucial for the activation of CCAAT/enhancer- binding protein β (C/EBPβ.

  13. Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase

    International Nuclear Information System (INIS)

    Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.

    1986-01-01

    We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did not alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine

  14. Modulation of the Conformational Dynamics of Apo-Adenylate Kinase through a π-Cation Interaction.

    Science.gov (United States)

    Halder, Ritaban; Manna, Rabindra Nath; Chakraborty, Sandipan; Jana, Biman

    2017-06-15

    Large-scale conformational transition from open to closed state of adenylate kinase (ADK) is essential for its catalytic cycle. Apo-ADK undergoes conformational transition in a way that closely resembles an open-to-closed conformational transition. Here, equilibrium simulations, free-energy simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations in combination with several bioinformatics approaches have been used to explore the molecular origin of this conformational transition in apo-ADK. In addition to its conventional open state, Escherichia coli apo-ADK adopts conformations that resemble a closed-like intermediate, the "half-open-half-closed" (HOHC) state, and a π-cation interaction can account for the stability of this HOHC state. Energetics and the electronic properties of this π-cation interaction have been explored using QM/MM calculations. Upon rescinding the π-cation interaction, the conformational landscape of the apo-ADK changes completely. The apo-ADK population is shifted completely toward the open state. This π-cation interaction is highly conserved in bacterial ADK; the cationic guanidinium moiety of a conserved ARG interacts with the delocalized π-electron cloud of either PHE or TYR. Interestingly, this study demonstrates the modulation of a principal protein dynamics by a conserved specific π-cation interaction across different organisms.

  15. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    Directory of Open Access Journals (Sweden)

    Mounira Tlili

    2015-01-01

    Full Text Available The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP, we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC and cytokines (IL-1α and TNF-α in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders.

  16. Albumin, in the Presence of Calcium, Elicits a Massive Increase in Extracellular Bordetella Adenylate Cyclase Toxin.

    Science.gov (United States)

    Gonyar, Laura A; Gray, Mary C; Christianson, Gregory J; Mehrad, Borna; Hewlett, Erik L

    2017-06-01

    Pertussis (whooping cough), caused by Bordetella pertussis , is resurging in the United States and worldwide. Adenylate cyclase toxin (ACT) is a critical factor in establishing infection with B. pertussis and acts by specifically inhibiting the response of myeloid leukocytes to the pathogen. We report here that serum components, as discovered during growth in fetal bovine serum (FBS), elicit a robust increase in the amount of ACT, and ≥90% of this ACT is localized to the supernatant, unlike growth without FBS, in which ≥90% is associated with the bacterium. We have found that albumin, in the presence of physiological concentrations of calcium, acts specifically to enhance the amount of ACT and its localization to the supernatant. Respiratory secretions, which contain albumin, promote an increase in amount and localization of active ACT that is comparable to that elicited by serum and albumin. The response to albumin is not mediated through regulation of ACT at the transcriptional level or activation of the Bvg two-component system. As further illustration of the specificity of this phenomenon, serum collected from mice that lack albumin does not stimulate an increase in ACT. These data, demonstrating that albumin and calcium act synergistically in the host environment to increase production and release of ACT, strongly suggest that this phenomenon reflects a novel host-pathogen interaction that is central to infection with B. pertussis and other Bordetella species. Copyright © 2017 American Society for Microbiology.

  17. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response.

    Science.gov (United States)

    Salmon, Didier

    2018-04-25

    Trypanosoma brucei , etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva ( Salivaria ). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  18. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Didier Salmon

    2018-04-01

    Full Text Available Trypanosoma brucei, etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva (Salivaria. In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC that are topologically similar to receptor-type guanylate cyclase (GC of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs, rather than the classical protein kinase A cAMP effector (PKA. T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  19. Photoreactivating enzyme from Escherichia coli

    International Nuclear Information System (INIS)

    Snapka, R.M.; Fuselier, C.O.

    1977-01-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm. (author)

  20. Photoreactivating enzyme from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Snapka, R M; Fuselier, C O [California Univ., Irvine (USA)

    1977-05-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm.

  1. Effects of low-molecular-weight organic acids on the acute lethality, accumulation, and enzyme activity of cadmium in Eisenia fetida in a simulated soil solution.

    Science.gov (United States)

    Liu, Hai-Long; Wang, Yu-Jun; Xuan, Liang; Dang, Fei; Zhou, Dong-Mei

    2017-04-01

    In the present study, the effects of low-molecular-weight organic acids (LMWOAs) on the toxicity of cadmium (Cd) to Eisenia fetida were investigated in a simulated soil solution. The LMWOAs protected E. fetida from Cd toxicity, as indicated by the increased median lethal concentration (LC50) values and the increased activity of superoxide dismutase. In addition, Cd concentrations in E. fetida decreased dramatically in the presence of LMWOAs. These results were likely because of the complexation between Cd and LMWOAs, which decreased the bioavailability and consequential toxicity of Cd to E. fetida. Notably, LMWOAs reduced Cd toxicity in decreasing order (ethylenediamine tetraacetic acid [EDTA] > citric acid > oxalic acid > malic acid > acetic acid), which was consistent with the decreasing complexation constants between LMWOAs and Cd. These results advance our understanding of the interactions between Cd and LMWOAs in soil. Environ Toxicol Chem 2017;36:1005-1011. © 2016 SETAC. © 2016 SETAC.

  2. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules

    Directory of Open Access Journals (Sweden)

    Das Undurti N

    2008-10-01

    Full Text Available Abstract Lowering plasma low density lipoprotein-cholesterol (LDL-C, blood pressure, homocysteine, and preventing platelet aggregation using a combination of a statin, three blood pressure lowering drugs such as a thiazide, a β blocker, and an angiotensin converting enzyme (ACE inhibitor each at half standard dose; folic acid; and aspirin-called as polypill- was estimated to reduce cardiovascular events by ~80%. Essential fatty acids (EFAs and their long-chain metabolites: γ-linolenic acid (GLA, dihomo-GLA (DGLA, arachidonic acid, eicosapentaenoic acid (EPA, and docosahexaenoic acid (DHA and other products such as prostaglandins E1 (PGE1, prostacyclin (PGI2, PGI3, lipoxins (LXs, resolvins, protectins including neuroprotectin D1 (NPD1 prevent platelet aggregation, lower blood pressure, have anti-arrhythmic action, reduce LDL-C, ameliorate the adverse actions of homocysteine, show anti-inflammatory actions, activate telomerase, and have cytoprotective properties. Thus, EFAs and their metabolites show all the classic actions expected of the "polypill". Unlike the proposed "polypill", EFAs are endogenous molecules present in almost all