WorldWideScience

Sample records for acid accumulating rice

  1. Influence of cadmium stress on root exudates of high cadmium accumulating rice line (Oryza sativa L.).

    Science.gov (United States)

    Fu, Huijie; Yu, Haiying; Li, Tingxuan; Zhang, Xizhou

    2018-04-15

    A hydroponic experiment with two different cadmium (Cd) accumulating rice lines of Lu527-8 (the high Cd accumulating rice line) and Lu527-4 (the normal rice line) was carried out to explore the links among Cd stress, root exudates and Cd accumulation. The results showed that (1) Cd stress increased quantities of organic acids, but had no effect on composition in root exudates of the two rice lines. In Cd treatments, the contents of every detected organic acid in root exudates of Lu527-8 were 1.76-2.43 times higher than those of Lu527-4. Significant positive correlations between organic acids contents and Cd contents in plants were observed in both rice lines, except that malic acid was only highly relevant to Lu527-8, but not to Lu527-4. (2) Both composition and quantities of amino acids in root exudates changed a lot under Cd stress and this change differed in two rice lines. In control, four amino acids (glutamic acid, glycine, tyrosine and histidine) were detected in two rice lines. Under Cd stress, eight amino acids in Lu527-8 and seven amino acids in Lu527-4 could be detected, among which phenylalanine was only secreted by Lu527-8 and alanine, methionine and lysine were secreted by both rice lines. The contents of those four newly secreted amino acids from Lu527-8 increased significantly with the increase of Cd dose and each had a high-positive correlation with Cd contents, but the same change did not appear in Lu527-4. The difference between two rice lines in secretion of organic acids and amino acids may be related to their different Cd uptake properties. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Molecular Mechanisms Underlying γ-Aminobutyric Acid (GABA) Accumulation in Giant Embryo Rice Seeds.

    Science.gov (United States)

    Zhao, Guo-Chao; Xie, Mi-Xue; Wang, Ying-Cun; Li, Jian-Yue

    2017-06-21

    To uncover the molecular mechanisms underlying GABA accumulation in giant embryo rice seeds, we analyzed the expression levels of GABA metabolism genes and contents of GABA and GABA metabolic intermediates in developing grains and germinated brown rice of giant embryo rice 'Shangshida No. 5' and normal embryo rice 'Chao2-10' respectively. In developing grains, the higher GABA contents in 'Shangshida No. 5' were accompanied with upregulation of gene transcripts and intermediate contents in the polyamine pathway and downregulation of GABA catabolic gene transcripts, as compared with those in 'Chao2-10'. In germinated brown rice, the higher GABA contents in 'Shangshida No. 5' were parallel with upregulation of OsGAD and polyamine pathway gene transcripts and Glu and polyamine pathway intermediate contents and downregulation of GABA catabolic gene transcripts. These results are the first to indicate that polyamine pathway and GABA catabolic genes play a crucial role in GABA accumulation in giant embryo rice seeds.

  3. Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils.

    Science.gov (United States)

    Yang, Yongjie; Chen, Jiangmin; Huang, Qina; Tang, Shaoqing; Wang, Jianlong; Hu, Peisong; Shao, Guosheng

    2018-02-01

    Cadmium (Cd) accumulation in rice is strongly controlled by liming, but information on the use of liming to control Cd accumulation in rice grown in slightly acidic soils is inconsistent. Here, pot experiments were carried out to investigate the mechanisms of liming on Cd accumulation in two rice varieties focusing on two aspects: available/exchangeable Cd content in soils that were highly responsive to liming, and Cd uptake and transport capacity in the roots of rice in terms of Cd accumulation-relative gene expression. The results showed that soil availability and exchangeable iron, manganese, zinc and Cd contents decreased with increased liming, and that genes related to Cd uptake (OsNramp5 and OsIRT1) were sharply up-regulated in the roots of the two rice varieties. Thus, iron, manganese, zinc and Cd contents in rice plants increased under low liming applications but decreased in response to high liming applications. However, yield and rice quantities were only slightly affected. These results indicated that Cd accumulation in rice grown in slightly acidic soils presents a contradictory dynamic equilibrium between Cd uptake capacity by roots and soil Cd immobilisation in response to liming. The enhanced Cd uptake capacity under low liming dosages increases risks to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. High Temperature During Rice Grain Filling Enhances Aspartate Metabolism in Grains and Results in Accumulation of Aspartate-Family Amino Acids and Protein Components

    Directory of Open Access Journals (Sweden)

    Cheng-gang LIANG

    2013-09-01

    Full Text Available Global warming causes the exacerbation of rice growing environment, which seriously affects rice growth and reproduction, and finally results in the decrease of rice yield and quality. We investigated the activities of aspartate metabolism enzymes in grains, and the contents of Aspartate-family amino acids and protein components to further understand the effects of high temperature (HT on rice nutritional quality during rice grain filling. Under HT, the average activities of aspartate aminotransferase (AAT and aspartokinase (AK in grains significantly increased, the amino acid contents of aspartate (Asp, lysine (Lys, threonine (Thr, methionine (Met and isoleucine (Ile and the protein contents of albumin, globulin, prolamin and glutelin also significantly increased. The results indicated that HT enhanced Asp metabolism during rice grain filling and the enhancement of Asp metabolism might play an important role in the increase of Asp-family amino acids and protein components in grains. In case of the partial appraisal of the change of Asp-family amino acids and protein components under HT, we introduced eight indicators (amino acid or protein content, ratio of amino acid or protein, amino acid or protein content per grain and amino acid or protein content per panicle to estimate the effects of HT. It is suggested that HT during rice grain filling was benefit for the accumulation of Asp-family amino acids and protein components. Combined with the improvement of Asp-family amino acid ratio in grains under HT, it is suggested that HT during grain filling may improve the rice nutritional quality. However, the yields of parts of Asp-family amino acids and protein components were decreased under HT during rice grain filling.

  5. Different Phosphorus Supplies Altered the Accumulations and Quantitative Distributions of Phytic Acid, Zinc, and Iron in Rice (Oryza sativa L.) Grains.

    Science.gov (United States)

    Su, Da; Zhou, Lujian; Zhao, Qian; Pan, Gang; Cheng, Fangmin

    2018-02-21

    Development of rice cultivars with low phytic acid (lpa) is considered as a primary strategy for biofortification of zinc (Zn) and iron (Fe). Here, two rice genotypes (XS110 and its lpa mutant) were used to investigate the effect of P supplies on accumulations and distributions of PA, Zn, and Fe in rice grains by using hydroponics and detached panicle culture system. Results showed that higher P level increased grain PA concentration on dry matter basis (g/kg), but it markedly decreased PA accumulation on per grain basis (mg/grain). Meanwhile, more P supply reduced the amounts and bioavailabilities of Zn and Fe both in milled grains and in brown grains. Comparatively, lpa mutant was more susceptive to exogenous P supply than its wild type. Hence, the appropriate P fertilizer application should be highlighted in order to increase grain microelement (Zn and Fe) contents and improve nutritional quality in rice grains.

  6. Genetic manipulation of the γ-aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ-aminobutyric acid transaminase (GABA-T) lead to sustained and high levels of GABA accumulation in rice kernels.

    Science.gov (United States)

    Shimajiri, Yasuka; Oonishi, Takayuki; Ozaki, Kae; Kainou, Kumiko; Akama, Kazuhito

    2013-06-01

    Gamma-aminobutyric acid (GABA) is a non-protein amino acid commonly present in all organisms. Because cellular levels of GABA in plants are mainly regulated by synthesis (glutamate decarboxylase, GAD) and catabolism (GABA-transaminase, GABA-T), we attempted seed-specific manipulation of the GABA shunt to achieve stable GABA accumulation in rice. A truncated GAD2 sequence, one of five GAD genes, controlled by the glutelin (GluB-1) or rice embryo globulin promoters (REG) and GABA-T-based trigger sequences in RNA interference (RNAi) cassettes controlled by one of these promoters as well, was introduced into rice (cv. Koshihikari) to establish stable transgenic lines under herbicide selection using pyriminobac. T₁ and T₂ generations of rice lines displayed high GABA concentrations (2-100 mg/100 g grain). In analyses of two selected lines from the T₃ generation, there was a strong correlation between GABA level and the expression of truncated GAD2, whereas the inhibitory effect of GABA-T expression was relatively weak. In these two lines both with two T-DNA copies, their starch, amylose, and protein levels were slightly lower than non-transformed cv. Koshihikari. Free amino acid analysis of mature kernels of these lines demonstrated elevated levels of GABA (75-350 mg/100 g polished rice) and also high levels of several amino acids, such as Ala, Ser, and Val. Because these lines of seeds could sustain their GABA content after harvest (up to 6 months), the strategy in this study could lead to the accumulation GABA and for these to be sustained in the edible parts. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development.

    Science.gov (United States)

    Iwai, Toru; Takahashi, Michiko; Oda, Koshiro; Terada, Yasuko; Yoshida, Kaoru T

    2012-12-01

    Phytic acid (inositol hexakisphosphate [InsP(6)]) is the storage compound of phosphorus in seeds. As phytic acid binds strongly to metallic cations, it also acts as a storage compound of metals. To understand the mechanisms underlying metal accumulation and localization in relation to phytic acid storage, we applied synchrotron-based x-ray microfluorescence imaging analysis to characterize the simultaneous subcellular distribution of some mineral elements (phosphorus, calcium, potassium, iron, zinc, and copper) in immature and mature rice (Oryza sativa) seeds. This fine-imaging method can reveal whether these elements colocalize. We also determined their accumulation patterns and the changes in phosphate and InsP(6) contents during seed development. While the InsP(6) content in the outer parts of seeds rapidly increased during seed development, the phosphate contents of both the outer and inner parts of seeds remained low. Phosphorus, calcium, potassium, and iron were most abundant in the aleurone layer, and they colocalized throughout seed development. Zinc was broadly distributed from the aleurone layer to the inner endosperm. Copper localized outside the aleurone layer and did not colocalize with phosphorus. From these results, we suggest that phosphorus translocated from source organs was immediately converted to InsP(6) and accumulated in aleurone layer cells and that calcium, potassium, and iron accumulated as phytic acid salt (phytate) in the aleurone layer, whereas zinc bound loosely to InsP(6) and accumulated not only in phytate but also in another storage form. Copper accumulated in the endosperm and may exhibit a storage form other than phytate.

  8. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments.

    Science.gov (United States)

    Lin, Lina; Gao, Minling; Qiu, Weiwen; Wang, Di; Huang, Qing; Song, Zhengguo

    2017-12-01

    The effects of biochar (BC) and ferromanganese oxide biochar composites (FMBC 1 and FMBC 2 ) on As (Arsenic) accumulation in rice were determined using a pot experiment. Treatments with BC or FMBC improved the dry weights of rice roots, stems, leaves, and grains in soils containing different As contamination levels. Compared to BC treatment, FMBC treatments significantly reduced As accumulation in different parts of the rice plants (P rice can be attributed to As(III) to As(V) oxidation by ferro - manganese binary oxide, which increased the As adsorbed by FMBC. Furthermore, Fe and Mn plaques on the rice root surface decreased the transport of As in rice. Taken together, our results demonstrated the applicability of FMBC as a potential measure for reducing As accumulation in rice, improving the amino acid content of rice grains, and effectively remediating As-polluted soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil.

    Science.gov (United States)

    Gu, Hai-Hong; Qiu, Hao; Tian, Tian; Zhan, Shu-Shun; Deng, Teng-Hao-Bo; Chaney, Rufus L; Wang, Shi-Zhong; Tang, Ye-Tao; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-05-01

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40gkg(-1)) and steel slag (3 and 6gkg(-1)) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress

    International Nuclear Information System (INIS)

    Zeng Fanrong; Chen Song; Miao Ying; Wu Feibo; Zhang Guoping

    2008-01-01

    The effect of chromium (Cr) stress on the changes of rhizosphere pH, organic acid exudation, and Cr accumulation in plants was studied using two rice genotypes differing in grain Cr accumulation. The results showed that rhizosphere pH increased with increasing level of Cr in the culture solution and with an extended time of Cr exposure. Among the six organic acids examined in this experiment, oxalic and malic acid contents were relatively higher, and had a significant positive correlation with the rhizosphere pH, indicating that they play an important role in changing rhizosphere pH. The Cr content in roots was significantly higher than that in stems and leaves. Cr accumulation in plants was significantly and positively correlated with rhizosphere pH, and the exudation of oxalic, malic and citric acids, suggesting that an increase in rhizosphere pH, and exudation of oxalic, malic and citric acid enhances Cr accumulation in rice plants. - Rhizosphere pH and organic acid exudation of rice roots are markedly affected by chromium level in culture solution

  11. Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Fan Jianling; Hu Zhengyi; Ziadi, Noura; Xia Xu; Wu Congyanghui

    2010-01-01

    Human activities have resulted in cadmium (Cd) and sulfur (S) accumulation in paddy soils in parts of southern China. A combined soil-sand pot experiment was conducted to investigate the influence of excessive S supply on iron plaque formation and Cd accumulation in rice plants, using two Cd levels (0, 1.5 mg kg -1 ) combined with three S concentrations (0, 60, 120 mg kg -1 ). The results showed that excessive S supply significantly decreased Cd accumulation in brown rice due to the decrease of Cd availability and the increase of glutathione in rice leaves. But excessive S supply obviously increased Cd accumulation in roots due to the decrease of iron plaque formation on the root surface of rice. Therefore, excessive S supply may result in loss of rice yield, but it could effectively reduce Cd accumulation in brown rice exposed to Cd contaminated soils. - Excessive sulfur reduces cadmium accumulation in brown rice.

  12. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice.

    Science.gov (United States)

    Matsuno, Koya; Fujimura, Tatsuhito

    2014-03-01

    A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA accumulation levels increase with ABA concentration. On the other hand, higher concentrations of sucrose or inorganic phosphorus do not affect PA accumulation. Mutations in the genes RINO1, OsMIK, OsIPK1 and OsLPA1 have each been reported to confer low phytic acid phenotypes in seeds. Each of these genes is upregulated in cells cultured with ABA. OsITPK4 and OsITPK6 are upregulated in cells cultured with ABA and in developing seeds. These results suggest that the regulation of PA synthesis is similar between developing seeds and cells in this suspension culture system. This system will be a powerful tool for elucidating the regulation of PA synthesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Effects of alkaline and bioorganic amendments on cadmium, lead, zinc, and nutrient accumulation in brown rice and grain yield in acidic paddy fields contaminated with a mixture of heavy metals.

    Science.gov (United States)

    He, Huaidong; Tam, Nora F Y; Yao, Aijun; Qiu, Rongliang; Li, Wai Chin; Ye, Zhihong

    2016-12-01

    Paddy soils and rice (Oryza sativa L.) contaminated by mixed heavy metals have given rise to great concern. Field experiments were conducted over two cultivation seasons to study the effects of steel slag (SS), fly ash (FA), limestone (LS), bioorganic fertilizer (BF), and the combination of SS and BF (SSBF) on rice grain yield, Cd, Pb, and Zn and nutrient accumulation in brown rice, bioavailability of Cd, Pb, and Zn in soil as well as soil properties (pH and catalase), at two acidic paddy fields contaminated with mixed heavy metals (Cd, Pb, and Zn). Compared to the controls, SS, LS, and SSBF at both low and high additions significantly elevated soil pH over both cultivation seasons. The high treatments of SS and SSBF markedly increased grain yields, the accumulation of P and Ca in brown rice and soil catalase activities in the first cultivation season. The most striking result was from SS application (4.0 t ha -1 ) that consistently and significantly reduced the soil bioavailability of Cd, Pb, and Zn by 38.5-91.2 % and the concentrations of Cd and Pb in brown rice by 20.9-50.9 % in the two soils over both cultivation seasons. LS addition (4.0 t ha -1 ) also markedly reduced the bioavailable Cd, Pb, and Zn in soil and the Cd concentrations in brown rice. BF remobilized soil Cd and Pb leading to more accumulation of these metals in brown rice. The results showed that steel slag was most effective in the remediation of acidic paddy soils contaminated with mixed heavy metals.

  14. Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.).

    Science.gov (United States)

    Fan, Jian-Ling; Hu, Zheng-Yi; Ziadi, Noura; Xia, Xu; Wu, Cong-Yang-Hui

    2010-02-01

    Human activities have resulted in cadmium (Cd) and sulfur (S) accumulation in paddy soils in parts of southern China. A combined soil-sand pot experiment was conducted to investigate the influence of excessive S supply on iron plaque formation and Cd accumulation in rice plants, using two Cd levels (0, 1.5 mg kg(-1)) combined with three S concentrations (0, 60, 120 mg kg(-1)). The results showed that excessive S supply significantly decreased Cd accumulation in brown rice due to the decrease of Cd availability and the increase of glutathione in rice leaves. But excessive S supply obviously increased Cd accumulation in roots due to the decrease of iron plaque formation on the root surface of rice. Therefore, excessive S supply may result in loss of rice yield, but it could effectively reduce Cd accumulation in brown rice exposed to Cd contaminated soils. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  15. Water management practices affect arsenic and cadmium accumulation in rice grains.

    Science.gov (United States)

    Sun, Liming; Zheng, Manman; Liu, Hongyan; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2014-01-01

    Cadmium (Cd) and arsenic (As) accumulation in rice grains is a great threat to its productivity, grain quality, and thus human health. Pot and field studies were carried out to unravel the effect of different water management practices (aerobic, aerobic-flooded, and flooded) on Cd and As accumulation in rice grains of two different varieties. In pot experiment, Cd or As was also added into the soil as treatment. Pots without Cd or As addition were maintained as control. Results indicated that water management practices significantly influenced the Cd and As concentration in rice grains and aerobic cultivation of rice furnished less As concentration in its grains. Nonetheless, Cd concentration in this treatment was higher than the grains of flooded rice. Likewise, in field study, aerobic and flooded rice cultivation recorded higher Cd and As concentration, respectively. However, growing of rice in aerobic-flooded conditions decreased the Cd concentration by 9.38 times on average basis as compared to aerobic rice. Furthermore, this treatment showed 28% less As concentration than that recorded in flooded rice cultivation. The results suggested that aerobic-flooded cultivation may be a promising strategy to reduce the Cd and As accumulations in rice grains simultaneously.

  16. Residues and accumulation of molinate in rice crops and aquatic weeds in the MUDA rice agroecosystem

    International Nuclear Information System (INIS)

    Nashriyah Mat; Sabri Junoh; Nuriati Nurdin; Ramli Ishak

    2002-01-01

    Plant and soil residue levels and its accumulation in rice crops and rice aquatic weed plants were studied. Molinate residue levels in rice, weeds and soil were not significantly different between the recycled and the non-recycled area, even though they were higher in the non-recycled area. In the rice plant, the residue level at 10 DAT (days after treatment) was significantly higher than 30 DAT in the recycled area. In rice aquatic weed plants, the residue level was significantly higher at 10 DAT as compared to 30 DAT in the non-recycled area. Molinate residue levels in soil at 10 DAT and 30 DAT were similar. Molinate accumulated (ratio of molinate concentration in plant over soil) more in the rice crop as compared to rice aquatic weeds at 10 DAT, in both the recycled and the non-recycled areas. (Author)

  17. Arsenic accumulation in rice: Consequences of rice genotypes and management practices to reduce human health risk.

    Science.gov (United States)

    Islam, Shofiqul; Rahman, Mohammad Mahmudur; Islam, M R; Naidu, Ravi

    2016-11-01

    Rice is an essential staple food and feeds over half of the world's population. Consumption of rice has increased from limited intake in Western countries some 50years ago to major dietary intake now. Rice consumption represents a major route for inorganic arsenic (As) exposure in many countries, especially for people with a large proportion of rice in their daily diet as much as 60%. Rice plants are more efficient in assimilating As into its grains than other cereal crops and the accumulation may also adversely affect the quality of rice and their nutrition. Rice is generally grown as a lowland crop in flooded soils under reducing conditions. Under these conditions the bioavailability of As is greatly enhanced leading to excessive As bioaccumulation compared to that under oxidizing upland conditions. Inorganic As species are carcinogenic to humans and even at low levels in the diet pose a considerable risk to humans. There is a substantial genetic variation among the rice genotypes in grain-As accumulation as well as speciation. Identifying the extent of genetic variation in grain-As concentration and speciation of As compounds are crucial to determining the rice varieties which accumulate low inorganic As. Varietal selection, irrigation water management, use of fertilizer and soil amendments, cooking practices etc. play a vital role in reducing As exposure from rice grains. In the meantime assessing the bioavailability of As from rice is crucial to understanding human health exposure and reducing the risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of Aluminium Sulfate on Cadmium Accumulation in Rice

    International Nuclear Information System (INIS)

    Khamvarn, Vararas; Boontanon, Narin; Prapagdee, Benjaphorn; Kumsopa, Acharaporn; Boonsirichai, Kanokporn

    2011-06-01

    Full text: Cadmium accumulation in Pathum Thani 1 and Suphan Buri 60 rice cultivars was investigated upon treatment with aluminium sulfate as a precipitant. Rice was grown hydroponically in a medium containing 4 ppm cadmium nitrate with or without 4 ppm aluminium sulfate. Root, stem with leaves and grain samples were collected and analyzed for cadmium content using atomic absorption spectroscopy and inductively coupled plasma atomic emission spectroscopy. Without the addition of aluminium sulfate, Pathum Thani 1 and Suphan Buri 60 accumulated 24.71∫ 3.14 ppm and 34.43 ∫ 4.51 ppm (dry weight of whole plant) of cadmium, respectively. With aluminium sulfate, cadmium accumulation increased to 40.66 ∫ 2.47 ppm and 62.94 ∫ 10.69 ppm, respectively. The addition of aluminium sulfate to the planting medium did not reduce cadmium accumulation but caused the rice to accumulate more cadmium especially in the shoots and grains. This observation might serve as the basis for future research on the management of agricultural areas that are contaminated with cadmium and aluminium

  19. Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes.

    Science.gov (United States)

    Dwivedi, S; Tripathi, R D; Tripathi, P; Kumar, A; Dave, R; Mishra, S; Singh, R; Sharma, D; Rai, U N; Chakrabarty, D; Trivedi, P K; Adhikari, B; Bag, M K; Dhankher, O P; Tuli, R

    2010-12-15

    Simulated pot experiments were conducted on four rice (Oryza sativa L.) genotypes (Triguna, IR-36, PNR-519, and IET-4786) to examine the effects of As(V) on amino acids and mineral nutrient status in grain along with antioxidant response to arsenic exposure. Rice genotypes responded differentially to As(V) exposure in terms of amino acids and antioxidant profiles. Total amino acid content in grains of all rice genotypes was positively correlated with arsenic accumulation. While, most of the essential amino acids increased in all cultivars except IR-36, glutamic acid and glycine increased in IET-4786 and PNR-519. The level of nonprotein thiols (NPTs) and the activities of superoxide dismutase (SOD; EC 1.15.1.1), glutathione reductase (GR; EC 1.6.4.2) and ascorbate peroxidase (APX; EC 1.11.1.11) increased in all rice cultivars except IET-4786. A significant genotypic variation was also observed in specific arsenic uptake (SAU; mg kg(-1)dw), which was in the order of Triguna (134) > IR-36 (71) > PNR-519 (53) > IET-4786 (29). Further, application of As(V) at lower doses (4 and 8 mg L(-1) As) enhanced the accumulation of selenium (Se) and other nutrients (Fe, P, Zn, and S), however, higher dose (12 mg L(-1) As) limits the nutrient uptake in rice. In conclusion, low As accumulating genotype, IET-4786, which also had significantly induced level of essential amino acids, seems suitable for cultivation in moderately As contaminated soil and would be safe for human consumption.

  20. Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice.

    Science.gov (United States)

    Ye, Nenghui; Zhang, Jianhua

    2012-05-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. In the associated study, we investigated the relationship among ABA, reactive oxygen species (ROS), ascorbic acid (ASC) and GA during rice seed germination. ROS production is reduced by ABA, which hence results in decreasing ASC accumulation during imbibition. GA accumulation was also suppressed by a reduced ROS and ASC level, whereas application of exogenous ASC can partially rescue seed germination from ABA treatment. Further results show that production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. These studies reveal a new role for ASC in mediating the antagonism between ABA and GA during seed germination in rice.

  1. Interplay between Carotenoids, Abscisic Acid and Jasmonate Guides the Compatible Rice-Meloidogyne graminicola Interaction

    Directory of Open Access Journals (Sweden)

    Tina Kyndt

    2017-06-01

    Full Text Available In this study, we have characterized the role of carotenoids and chlorophyll in the compatible interaction between the sedentary root knot nematode (RKN Meloidogyne graminicola and the monocot model plant rice (Oryza sativa. Previous transcriptome data showed a differential expression of carotenoid and chlorophyll biosynthesis genes in nematode-induced giant cells and gall tissue. Metabolite measurement showed that galls indeed accumulate chlorophyll a, b and carotenoids, as well as the hormone abscisic acid (ABA. When ABA was externally applied on rice plants, or when ABA-biosynthesis was inhibited, a significant increase in gall formation and nematode development was found, showing the complex role of ABA in this interaction. ABA application suppressed jasmonic acid (JA levels in the plants, while ABA-biosynthesis inhibition lead to increased JA levels confirming an antagonism between ABA and JA in rice roots. In addition, combined applications of ABA and JA showed that the ABA-effect can overcome JA-induced defense. Based on these observations, we hypothesized that the accumulation of chlorophyll and carotenoid precursors would be beneficial to nematode infection. Indeed, when chemically blocking the carotenoid biosynthesis pathway at different steps, which leads to differential accumulation of carotenoids and chlorophyll in the plants, a positive and clear link between accumulation of carotenoids and chlorophyll and rice susceptibility to RKN was detected.

  2. Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar.

    Science.gov (United States)

    Hu, Pengjie; Ouyang, Younan; Wu, Longhua; Shen, Libo; Luo, Yongming; Christie, Peter

    2015-01-01

    Pot and field experiments were conducted to investigate the effects of water regimes on the speciation and accumulation of arsenic (As) and cadmium (Cd) in Brazilian upland rice growing in soils polluted with both As and Cd. In the pot experiment constant and intermittent flooding treatments gave 3-16 times higher As concentrations in soil solution than did aerobic conditions but Cd showed the opposite trend. Compared to arsenate, there were more marked changes in the arsenite concentrations in the soil solution as water management shifted, and therefore arsenite concentrations dominated the As speciation and bioavailability in the soil. In the field experiment As concentrations in the rice grains increased from 0.14 to 0.21 mg/kg while Cd concentrations decreased from 0.21 to 0.02 mg/kg with increasing irrigation ranging from aerobic to constantly flooding conditions. Among the various water regimes the conventional irrigation treatment produced the highest rice grain yield of 6.29 tons/ha. The As speciation analysis reveals that the accumulation of dimethylarsinic acid (from 11.3% to 61.7%) made a greater contribution to the increase in total As in brown rice in the intermittent and constant flooding treatments compared to the intermittent-aerobic treatment. Thus, water management exerted opposite effects on Cd and As speciation and bioavailability in the soil and consequently on their accumulation in the upland rice. Special care is required when irrigation regime methods are employed to mitigate the accumulation of metal(loid)s in the grain of rice grown in soils polluted with both As and Cd. Copyright © 2014. Published by Elsevier B.V.

  3. Increasing CO2 differentially affects essential and non-essential amino acid concentration of rice grains grown in cadmium-contaminated soils.

    Science.gov (United States)

    Wu, Huibin; Song, Zhengguo; Wang, Xiao; Liu, Zhongqi; Tang, Shirong

    2016-09-01

    Environmental pollution by both ambient CO2 and heavy metals has been steadily increasing, but we do not know how fluctuating CO2 concentrations influence plant nutrients under high Cd pollution, especially in crops. Here, we studied the effects of elevated CO2 and Cd accumulation on proteins and amino acids in rice under Cd stress. In this pot experiment, we analyzed the amino-acid profile of 20 rice cultivars that accumulate Cd differently; the plants were grown in Cd-containing soils under ambient conditions and elevated CO2 levels. We found that although Cd concentrations appeared to be higher in most cultivars under elevated CO2 than under ambient CO2, the effect was significant only in seven cultivars. Combined exposure to Cd and elevated CO2 strongly decreased rice protein and amino acid profiles, including essential and non-essential amino acids. Under elevated CO2, the ratios of specific amino acids were either higher or lower than the optimal ratios provided by FAO/WHO, suggesting that CO2 may flatten the overall amino-acid profile, leading to an excess in some amino acids and deficiencies in others when the rice is consumed. Thus, Cd-tainted rice limits the concentration of essential amino acids in rice-based diets, and the combination with elevated CO2 further exacerbates the problem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Foliar application of two silica sols reduced cadmium accumulation in rice grains

    International Nuclear Information System (INIS)

    Liu Chuanping; Li Fangbai; Luo Chunling; Liu Xinming; Wang Shihua; Liu Tongxu; Li Xiangdong

    2009-01-01

    In the present study, pot experiments were conducted to investigate the effects of foliar application of two silica (Si) sols on the alleviation of cadmium (Cd) toxicity in contaminated soil to rice. Results showed that the foliar application of Si sols significantly increased the dry weight of grains (without husk) and shoots in rice grown in Cd contaminated soil, whereas the Cd concentration in the grains and shoots decreased obviously. The total accumulation of Cd in rice grains also decreased with the application of both of the Si sols, but no significant effect was found on the Cd accumulation in the shoots. For the optimal effect, Si-sol-B should be foliar applied at the tillering-stage during rice growth. The mechanism of Si foliar application to alleviate the toxicity and accumulation of Cd in grains of rice may be related to the probable Cd sequestration in the shoot cell walls

  5. Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari.

    Science.gov (United States)

    Yang, Bo; Ma, Hai-Yan; Wang, Xiao-Mi; Jia, Yong; Hu, Jing; Li, Xia; Dai, Chuan-Chao

    2014-09-01

    The fungal endophyte Phomopsis liquidambari can enhance nitrogen (N) uptake and metabolism of rice plants under hydroponic conditions. To investigate the effects of P. liquidambari on N accumulation and metabolism in rice (Oryza sativa L.) under field conditions during the entire growing season (S1, the seedling stage; S2, the tillering stage; S3, the heading stage; S4, the ripening stage), we utilized pot experiments to examine metabolic and physiological levels in both shoot and root tissues of rice, with endophyte (E+) and without endophyte (E-), in response to three different N levels. We found that under low-N treatment, P. liquidambari symbiosis increased the rice yield and N use efficiency by 12% and by 11.59%, respectively; that the total N contents in E+ rice plants at the four growth stages were separately increased by 29.05%, 14.65%, 21.06% and 18.38%, respectively; and that the activities of nitrate reductase and glutamine synthetase in E+ rice roots and shoots were significantly increased by fungal infection during the S1 to S3 stages. Moreover, P. liquidambari significantly increased the free NH4(+), NO3(-), amino acid and soluble protein contents in infected rice tissues under low-N treatment during the S1 to S3 stages. The obtained results offer novel data concerning the systemic changes induced by P. liquidambari in rice during the entire growth period and confirm the hypothesis that the rice-P. liquidambari interaction improved the N accumulation and metabolism of rice plants, consequently increasing rice N utilization in nutrient-limited soil. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Cadmium Accumulation and Its Toxicity in Brittle Culm 1 (bc1, a Fragile Rice Mutant

    Directory of Open Access Journals (Sweden)

    Guo-sheng SHAO

    2007-09-01

    Full Text Available Cadmium (Cd accumulation and toxicity in rice plants were characterized and identified by using brittle culm 1 (bc1, a fragile rice mutant and its wild type (Shuangkezao, an indica rice as materials by hydroponics. The low Cd level didn't obviously affect the growth parameters in both rice genotypes, but under high Cd levels (1.0 and 5.0 μmol/L, the growth of both rice plants were substantially inhibited. Moreover, bc1 tended to suffer more seriously from Cd toxicity than Shuangkezao. Cd accumulation in both rice plants increased with the increase of Cd levels. There was a significant difference in Cd accumulation between the two rice genotypes with constantly higher Cd concentration in bc1, which also accumulated more Cd at 0, 0.1, and 1.0 μmol/L Cd levels. The same case was found in the two rice plants grown on Cd-contaminated soil. This suggested that cell wall might play an important role in Cd accumulation in rice plants by the physiological mechanisms. The malondialdehyde (MDA content, superoxide dismutase (SOD and peroxidase (POD activities in rice plants were affected differently under Cd treatments, and which implied that POD might play the main role in detoxifying active oxygen free radical. A significant difference in antioxidative system between the two rice genotypes was found with constantly higher MDA content, SOD and POD activities in bc1. In summary, bc1 accumulated more Cd and appeared to be more sensitive to Cd stress compared with its wild type.

  7. Accumulation of total mercury and methylmercury in rice plants collected from different mining areas in China

    International Nuclear Information System (INIS)

    Meng, Mei; Li, Bing; Shao, Jun-juan; Wang, Thanh; He, Bin; Shi, Jian-bo; Ye, Zhi-hong; Jiang, Gui-bin

    2014-01-01

    A total of 155 rice plants were collected from ten mining areas in three provinces of China (Hunan, Guizhou and Guangdong), where most of mercury (Hg) mining takes place in China. During the harvest season, whole rice plants were sampled and divided into root, stalk and leaf, husk and seed (brown rice), together with soil from root zone. Although the degree of Hg contamination varied significantly among different mining areas, rice seed showed the highest ability for methylmercury (MeHg) accumulation. Both concentrations of total mercury (THg) and MeHg in rice plants were significantly correlated with Hg levels in soil, indicating soil is still an important source for both inorganic mercury (IHg) and MeHg in rice plants. The obvious discrepancy between the distribution patterns of THg and MeHg reflected different pathways of IHg and MeHg accumulation. Water soluble Hg may play more important role in MeHg accumulation in rice plants. -- Highlights: • Distribution patterns indicated different pathways of IHg and MeHg accumulation. • Soil is an important source for both THg and MeHg to rice plants. • Water soluble Hg may play more important role in MeHg accumulation in rice plants. -- The distribution patterns indicate different pathways of IHg and MeHg accumulation in rice plants

  8. Extracts of black and brown rice powders improve hepatic lipid accumulation via the activation of PPARα in obese and diabetic model mice.

    Science.gov (United States)

    Felix, Angelina Dr; Takahashi, Nobuyuki; Takahashi, Mami; Katsumata-Tsuboi, Rie; Satoh, Ryo; Soon Hui, Teoh; Miyajima, Katsuhiro; Nakae, Dai; Inoue, Hirofumi; Uehara, Mariko

    2017-11-01

    Rice powder extract (RPE) from black and brown rice (Oryza sativa L. indica) improves hepatic lipid accumulation in obese and diabetic model mice via peroxisomal fatty acid oxidation. RPE showed PPARα agonistic activity which did not differ between black and brown RPE despite a higher anthocyanin content in black RPE.

  9. The Role of Node Restriction on Cadmium Accumulation in the Brown Rice of 12 Chinese Rice (Oryza sativa L.) Cultivars.

    Science.gov (United States)

    Huang, Gaoxiang; Ding, Changfeng; Guo, Fuyu; Li, Xiaogang; Zhou, Zhigao; Zhang, Taolin; Wang, Xingxiang

    2017-11-29

    For selection or breeding of rice (Oryza sativa L.) cultivars with low Cd affinity, the role of node Cd restriction on Cd accumulation in brown rice was studied. A pot experiment was conducted to investigate the concentration of Cd in different sections of 12 Chinese rice cultivars. The results indicated that the Cd accumulation in the brown rice was mainly dependent on the root or shoot Cd concentration. Among the cultivars with nearly equal shoot Cd concentrations, Cd accumulation in brown rice was mainly dependent on the transport of Cd in the shoot. However, the Cd transport in the shoot was significantly restricted by the nodes, especially by the first node. Furthermore, the area of the diffuse vascular bundle in the junctional region of the flag leaf and the first node was a key contributor to the variations in Cd restriction by the nodes.

  10. Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain

    International Nuclear Information System (INIS)

    Liu Jianguo; Qian Min; Cai Guoliang; Yang Jianchang; Zhu Qingsen

    2007-01-01

    The variations among six rice cultivars in cadmium (Cd) uptake and translocation were investigated with pot soil experiments. The results showed that only a very small portion (0.73%) of Cd absorbed by rice plant was transferred into grain. With regard to plant total Cd uptake, Cd concentrations and quantity accumulations in roots, stems and leaves, the differences among the cultivars (between the largest one and the smallest one) were less than one time. But for Cd concentrations and Cd quantity accumulations in the grains, the differences were more than five and eight times, respectively. With respect to Cd distribution portions in plant organs, the diversities among the cultivars were also small in roots, stems and leaves, but much larger in grains. Grain Cd concentrations correlated positively and significantly (P < 0.01) with Cd quantity accumulations in plant, Cd distribution ratios to aboveground parts, and especially with Cd distribution ratios from aboveground parts to the grain. The results indicated that Cd concentration in rice grain was governed somewhat by plant Cd uptake and the transport of Cd from root to shoot, and in a greater extent, by the transport of Cd from shoot to grain. Cd was not distributed evenly in different products after rice grain processing. The average Cd concentration in cortex (embryo) was five times more than that in chaff and polished rice. With regard to Cd quantity accumulation in the products, near 40% in cortex (embryo), 45% in polished rice and 15% in chaff averagely

  11. Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dawei, E-mail: dwxue@hznu.edu.cn [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006 (China); Jiang, Hua [State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, Hangzhou 310021 (China); Deng, Xiangxiong; Zhang, Xiaoqin [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Wang, Hua [State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, Hangzhou 310021 (China); Xu, Xiangbin [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Hu, Jiang; Zeng, Dali [State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006 (China); Guo, Longbiao, E-mail: guolongbiao@caas.cn [State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006 (China); Qian, Qian, E-mail: qianqian188@hotmail.com [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006 (China)

    2014-09-15

    Graphical abstract: - Highlights: • Cd is the most toxic heavy metal and is a major pollutant in rice grains. • The mechanism of Cd accumulation in rice grains has not been well demonstrated. • Proteomics analysis is carried out and the verification is implemented by QPCR. • Proteins associated with ROS and photosynthesis showed large variation in expression. - Abstract: Rice is one of the most important staple crops. During the growth season, rice plants are inevitably subjected to numerous stresses, among which heavy metal stress represented by cadmium contamination not only hindering the yield of rice but also affecting the food safety by Cd accumulating in rice grains. The mechanism of Cd accumulation in rice grains has not been well elucidated. In this study, we compare the proteomic difference between two genotypes with different Cd accumulation ability in grains. Verification of differentially expressed protein-encoding genes was analyzing by quantitative PCR (QPCR) and reanalysis of microarray expression data. Forty-seven proteins in total were successfully identified through proteomic screening. GO and KEGG enrichment analysis showed Cd accumulation triggered stress-related pathways in the cells, and strongly affecting metabolic pathways. Many proteins associated with nutrient reservoir and starch-related enzyme were identified in this study suggesting that a considerably damage on grain quality was caused. The results also implied stress response was initiated by the abnormal cells and the transmission of signals may mediated by reactive oxygen species (ROS). Our research will provide new insights into Cd accumulation in rice grain under Cd stress.

  12. Effect of acetic acid on rice seeds coated with rice husk ash

    Directory of Open Access Journals (Sweden)

    Lizandro Ciciliano Tavares

    2013-06-01

    Full Text Available Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência, five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed and five concentrations of acetic acid (0, 3, 6, 9 and 12 mM, with 4 replications, totaling 50 treatments. The variables first count of germination, germination, shoot and root length, dry weight of shoots and roots were recorded. The results showed that coating rice seeds with rice husk ash up to 5 g kg-1 seed does not influence the performance of rice seeds of cultivars IRGA 424 and BRS Querência when exposed to concentrations of 12 mM acetic acid. The presence of acetic acid in the substrates used for seed germination reduced the vigor and viability of seeds of cultivars IRGA 424 and BRS Querência, as well as seedling development, affecting mainly the roots of BRS Querência.

  13. Impacts of rapeseed dregs on Cd availability in contaminated acid soil and Cd translocation and accumulation in rice plants.

    Science.gov (United States)

    Yang, Wen-Tao; Gu, Jiao-Feng; Zou, Jia-Ling; Zhou, Hang; Zeng, Qing-Ru; Liao, Bo-Han

    2016-10-01

    The objective of the present study was to investigate the effects of rapeseed dregs (RSD, a commonly organic fertilizer in rural China) at application rates of 0, 0.75, 1.5, and 3.0 % on Cd availability in soil and its accumulation in rice plants (Oryza sativa L., Xiangwanxian 12 # , and Weiyou 46 # ) by means of a pot experiment. The results showed that application of RSD resulted in a sharp decrease in the soil TCLP-extractable Cd content. However, the soil TCLP-extractable Cd content in amended soil gradually increased during the rice growing period. Application of RSD significantly increased Cd transport from root to shoot and the amount of Cd accumulated in the aerial part. RSD was an effective organic additive for increasing rice grain yield, but total Cd content in rice grain was also increased. At an application rate of 1.5-3.0 % RSD, the total Cd content in Weiyou 46 # brown rice was 0.27-0.31 mg kg -1 , which exceeded the standard safe limit (0.2 mg kg -1 ) and was also higher than that of Xiangwanxian 12 # (0.04-0.14 mg kg -1 ). Therefore, Weiyou 46 # had a higher dietary risk than Xiangwanxian 12 # with RSD application. We do not recommend planting Weiyou 46 # and applying more than 0.75 % RSD in Cd-contaminated paddy fields.

  14. Silicon Decreases Dimethylarsinic Acid Concentration in Rice Grain and Mitigates Straighthead Disorder.

    Science.gov (United States)

    Limmer, Matthew Alan; Wise, Patrick; Dykes, Gretchen E; Seyfferth, Angelia L

    2018-04-17

    While root Si transporters play a role in the uptake of arsenite and organic As species dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) in rice ( Oryza sativa L.), the impact of Si addition on the accumulation of DMA and MMA in reproductive tissues has not been directly evaluated, particularly in isolation from inorganic As species. Furthermore, DMA and MMA are suspected causal agents of straighthead disorder. We performed a hydroponic study to disentangle the impact of Si on accumulation of DMA and MMA in rice grain. At 5 μM, MMA was toxic to rice, regardless of Si addition, although Si significantly decreased root MMA concentrations. Plants dosed with 5 μM DMA grew well vegetatively but exhibited straighthead disorder at the lowest Si dose, and this DMA-induced yield loss reversed with increasing solution Si. Increasing Si also significantly decreased DMA concentrations in roots, straw, husk, and grain, particularly in mature plants. Si restricted grain DMA through competition for root uptake and downregulation of root Si transporters particularly at later stages of growth when Si uptake was greatest. Our finding that DMA causes straighthead disorder under low Si availability but not under high Si availability suggests Si as a straighthead management strategy.

  15. Water Management Practices Affect Arsenic and Cadmium Accumulation in Rice Grains

    OpenAIRE

    Sun, Liming; Zheng, Manman; Liu, Hongyan; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2014-01-01

    Cadmium (Cd) and arsenic (As) accumulation in rice grains is a great threat to its productivity, grain quality, and thus human health. Pot and field studies were carried out to unravel the effect of different water management practices (aerobic, aerobic-flooded, and flooded) on Cd and As accumulation in rice grains of two different varieties. In pot experiment, Cd or As was also added into the soil as treatment. Pots without Cd or As addition were maintained as control. Results indicated that...

  16. Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management.

    Science.gov (United States)

    Wan, Yanan; Camara, Aboubacar Younoussa; Huang, Qingqing; Yu, Yao; Wang, Qi; Li, Huafen

    2018-07-30

    The accumulation of arsenic (As) in rice grain is a potential threat to human health. Our study investigated the possible mediatory role of selenite fertilization on As uptake and accumulation by rice (Oryza sativa L.) under different water management regimes (aerobic or flooded) in a pot experiment. Soil solutions were also extracted during the growing season to monitor As dynamics. Results showed that As contents in the soil solutions, seedlings, and mature rice were higher under flooded than under aerobic water management. Under aerobic conditions, selenite additions slightly increased As concentrations in soil solutions (in the last two samplings), but decreased As levels in rice plants. Relative to the control, 0.5 mg kg -1 selenite decreased rice grain As by 27.5%. Under flooded conditions, however, selenite additions decreased As in soil solutions, while increased As in rice grain. Tendencies also showed that selenite additions decreased the proportion of As in rice shoots both at the seedling stage and maturity, and were more effective in aerobic soil. Our results demonstrate that the effect of selenite fertilizer on As accumulation by rice is related to water management. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains

    International Nuclear Information System (INIS)

    Lin, Xiaoyan; Mou, Renxiang; Cao, Zhaoyun; Xu, Ping; Wu, Xiaoliang; Zhu, Zhiwei; Chen, Mingxue

    2016-01-01

    Cadmium (Cd) pollution is a serious widespread environmental problem that not only destroys the microbial ecology of soil and decreases crop production, but also poses a serious risk to human health. Many methods have been used for the remediation of Cd pollution but none of these is totally satisfactory. Microbial remediation strategies have attracted increasing interest since they are environmentally friendly and cost-effective. In the present study, three Cd-resistant bacteria were isolated and evaluated for potential application in Cd bioremediation. Based on their morphological, physiological and biochemical characteristics, together with 16S rDNA gene sequence analyses, bacteria were identified as Stenotrophomonas acidaminiphila (2#), Pseudomonas aeruginosa (9#) and Delftia tsuruhatensis (12#). Pseudomonas aeruginosa showed very high tolerance to metals, especially Cd (2200 mg/L), Zn (1800 mg/L) and Pb (1200 mg/L), and is thought to be a multi-metal-resistant bacterium. Pseudomonas aeruginosa was also sensitive to 13 different antibiotics. The effects of the bacterial strains on the growth of rice plants and their ability to reduce Cd accumulation from Cd-contaminated soils in pot experiments were also evaluated. For Oryza sativa L. A grown in contaminated soil (3 mg/kg Cd), the accumulation of Cd was decreased by 31.2 and 25.5% in brown rice and polished rice, respectively, by strain 9#; Pseudomonas aeruginosa was more effective in reducing Cd accumulation in rice grains than a mixture of strains. For Oryza sativa L. B, a mixture of strains acting synergistically was more effective than a single strain in reducing Cd accumulation; treatment with mixed strains (strains + 3 mg/kg Cd) resulted in 41.3, 35.9, and 32.6% reductions in Cd accumulation in unhulled rice, brown rice and polished rice, respectively. Although different results were obtained for two rice varieties, it can still be concluded that Cd-resistant bacteria are suitable for reducing Cd

  18. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiaoyan; Mou, Renxiang; Cao, Zhaoyun; Xu, Ping; Wu, Xiaoliang; Zhu, Zhiwei; Chen, Mingxue, E-mail: cmingxue@126.com

    2016-11-01

    Cadmium (Cd) pollution is a serious widespread environmental problem that not only destroys the microbial ecology of soil and decreases crop production, but also poses a serious risk to human health. Many methods have been used for the remediation of Cd pollution but none of these is totally satisfactory. Microbial remediation strategies have attracted increasing interest since they are environmentally friendly and cost-effective. In the present study, three Cd-resistant bacteria were isolated and evaluated for potential application in Cd bioremediation. Based on their morphological, physiological and biochemical characteristics, together with 16S rDNA gene sequence analyses, bacteria were identified as Stenotrophomonas acidaminiphila (2#), Pseudomonas aeruginosa (9#) and Delftia tsuruhatensis (12#). Pseudomonas aeruginosa showed very high tolerance to metals, especially Cd (2200 mg/L), Zn (1800 mg/L) and Pb (1200 mg/L), and is thought to be a multi-metal-resistant bacterium. Pseudomonas aeruginosa was also sensitive to 13 different antibiotics. The effects of the bacterial strains on the growth of rice plants and their ability to reduce Cd accumulation from Cd-contaminated soils in pot experiments were also evaluated. For Oryza sativa L. A grown in contaminated soil (3 mg/kg Cd), the accumulation of Cd was decreased by 31.2 and 25.5% in brown rice and polished rice, respectively, by strain 9#; Pseudomonas aeruginosa was more effective in reducing Cd accumulation in rice grains than a mixture of strains. For Oryza sativa L. B, a mixture of strains acting synergistically was more effective than a single strain in reducing Cd accumulation; treatment with mixed strains (strains + 3 mg/kg Cd) resulted in 41.3, 35.9, and 32.6% reductions in Cd accumulation in unhulled rice, brown rice and polished rice, respectively. Although different results were obtained for two rice varieties, it can still be concluded that Cd-resistant bacteria are suitable for reducing Cd

  19. Effect of fluoride on photosynthesis, growth and accumulation of four widely cultivated rice (Oryza sativa L.) varieties in India.

    Science.gov (United States)

    Mondal, Naba Kumar

    2017-10-01

    Long-term use of fluoride contaminated groundwater to irrigate crops; especially paddy rice (Oryza sativa L.) has resulted in elevated soil fluoride levels in Eastern India. There is, therefore, growing concern regarding accumulation of fluoride in rice grown on these soils. A laboratory experiment was conducted to investigate the effect of F on germination and phytotoxicity of four varieties of rice (Orzya sativa L.) (MTU-1010; IET-4094; IET-4786 and GB-1) grown in petri dish in a green house with inorganic sodium fluoride (NaF). Three different levels (0, 5, 10 and 20mg/L) of NaF solution were applied. At the end of the experiment (28 days), biochemical analysis (pigment, sugar, protein, amino acid and phenol), lipid peroxidation, root ion leakage and catalase activity along with fluoride accumulation and fresh and dry weight of roots and shoots of four cultivars were measured. The results revealed that all the four studied varieties exhibited gradual decrease of germination pattern with increasing concentration of F. Pigment and growth morphological study clearly demonstrated that the variety IET-4094 was the least influenced by F compare to the other three varieties of rice. The translocation factor (TF) was recorded to be the highest for variety IET-4786 (0.215 ± 0.03) at 5mg/L F concentration. All the four varieties showed higher level of fluoride accumulation in root than in shoot. Variable results were recorded for biochemical parameters and lipid peroxidation. Catalase activity and relative conductivity (root ion leakage) gradually increased with increasing F concentration for all the four varieties. It is speculated that fluoride accumulation in rice straw at very high levels will affect the feeding cattle and such contaminated straw could be a direct threat to their health and also, indirectly, to human health via presumably contaminated meat and milk. Copyright © 2017. Published by Elsevier Inc.

  20. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains.

    Science.gov (United States)

    Lin, Xiaoyan; Mou, Renxiang; Cao, Zhaoyun; Xu, Ping; Wu, Xiaoliang; Zhu, Zhiwei; Chen, Mingxue

    2016-11-01

    Cadmium (Cd) pollution is a serious widespread environmental problem that not only destroys the microbial ecology of soil and decreases crop production, but also poses a serious risk to human health. Many methods have been used for the remediation of Cd pollution but none of these is totally satisfactory. Microbial remediation strategies have attracted increasing interest since they are environmentally friendly and cost-effective. In the present study, three Cd-resistant bacteria were isolated and evaluated for potential application in Cd bioremediation. Based on their morphological, physiological and biochemical characteristics, together with 16S rDNA gene sequence analyses, bacteria were identified as Stenotrophomonas acidaminiphila (2#), Pseudomonas aeruginosa (9#) and Delftia tsuruhatensis (12#). Pseudomonas aeruginosa showed very high tolerance to metals, especially Cd (2200mg/L), Zn (1800mg/L) and Pb (1200mg/L), and is thought to be a multi-metal-resistant bacterium. Pseudomonas aeruginosa was also sensitive to 13 different antibiotics. The effects of the bacterial strains on the growth of rice plants and their ability to reduce Cd accumulation from Cd-contaminated soils in pot experiments were also evaluated. For Oryza sativa L. A grown in contaminated soil (3mg/kg Cd), the accumulation of Cd was decreased by 31.2 and 25.5% in brown rice and polished rice, respectively, by strain 9#; Pseudomonas aeruginosa was more effective in reducing Cd accumulation in rice grains than a mixture of strains. For Oryza sativa L. B, a mixture of strains acting synergistically was more effective than a single strain in reducing Cd accumulation; treatment with mixed strains (strains+3mg/kg Cd) resulted in 41.3, 35.9, and 32.6% reductions in Cd accumulation in unhulled rice, brown rice and polished rice, respectively. Although different results were obtained for two rice varieties, it can still be concluded that Cd-resistant bacteria are suitable for reducing Cd accumulation in

  1. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    Science.gov (United States)

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A Mitigation Approach to Alleviate Arsenic Accumulation in Rice through Balanced Fertilization

    International Nuclear Information System (INIS)

    Huq, S.M.I.; Sultana, S.; Chakraborty, G.; Chowdhury, M.T.A.

    2011-01-01

    Pot experiments with boro and aman season rice on the same soils treated with arsenic contaminated irrigation water and using balanced fertilizer or not revealed that balance fertilization could be a strategy to mitigate arsenic accumulation in rice grain. The study also revealed that there is a carryover effect of As applied through irrigation in the boro season to the subsequent aman season rice. This carryover effect too, could be minimized with balanced fertilization.

  3. A Mitigation Approach to Alleviate Arsenic Accumulation in Rice through Balanced Fertilization

    Directory of Open Access Journals (Sweden)

    S. M. Imamul Huq

    2011-01-01

    Full Text Available Pot experiments with boro and aman season rice on the same soils treated with arsenic contaminated irrigation water and using balanced fertilizer or not revealed that balance fertilization could be a strategy to mitigate arsenic accumulation in rice grain. The study also revealed that there is a carryover effect of As applied through irrigation in the boro season to the subsequent aman season rice. This carryover effect too, could be minimized with balanced fertilization.

  4. Effect of Biochar on Relieving Cadmium Stress and Reducing Accumulation in Super japonica Rice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhen-yu; MENG Jun; DANG Shu; CHEN Wen-fu

    2014-01-01

    It is of great importance to solve the threats induced by cadmium pollution on crops. This paper examined the effect of biochar on cadmium accumulation in japonica rice and revealed the mechanism underlying the response of protective enzyme system to cadmium stress. Biochar derived from rice straw was applied at two application rates under three cadmium concentrations. Shennong 265, super japonica rice variety, was selected as the test crop. The results indicated that cadmium content in above-ground biomass of rice increased with increasing soil cadmium concentrations, but the biochar application could suppress the accumulation of cadmium to some extent. Under high concentrations of cadmium, content of free proline and MDA (malondialdehyde) were high, so did the SOD (superoxide dismutase), POD (peroxidase) and CAT (catalase) activity in the lfag leaf of rice. However, the protective enzyme activities remained at low level when biochar was added.

  5. Study of arsenic accumulation in rice and evaluation of protective effects of Chorchorus olitorius leaves against arsenic contaminated rice induced toxicities in Wistar albino rats.

    Science.gov (United States)

    Hosen, Saeed Mohammed Imran; Das, Dipesh; Kobi, Rupkanowar; Chowdhury, Dil Umme Salma; Alam, Md Jibran; Rudra, Bashudev; Bakar, Muhammad Abu; Islam, Saiful; Rahman, Zillur; Al-Forkan, Mohammad

    2016-10-14

    In the present study, we investigated the arsenic accumulation in different parts of rice irrigated with arsenic contaminated water. Besides, we also evaluated the protective effects of Corchorus olitorius leaves against arsenic contaminated rice induced toxicities in animal model. A pot experiment was conducted with arsenic amended irrigation water (0.0, 25.0, 50.0 and 75.0 mg/L As) to investigate the arsenic accumulation in different parts of rice. In order to evaluate the protective effects of Corchorus olitorius leaves, twenty Wistar albino rats were divided into four different groups. The control group (Group-I) was supplied with normal laboratory pellets while groups II, III, and IV received normal laboratory pellets supplemented with arsenic contaminated rice, C. olitorius leaf powder (4 %), arsenic contaminated rice plus C. olitorius leaf powder (4 %) respectively. Different haematological parameters and serum indices were analyzed to evaluate the protective effects of Corchorus olitorius leaves against arsenic intoxication. To gather more supportive evidences of Corchorus olitorius potentiality against arsenic intoxication, histopathological analysis of liver, kidney, spleen and heart tissues was also performed. From the pot experiment, we have found a significant (p ≤ 0.05) increase of arsenic accumulation in different parts of rice with the increase of arsenic concentrations in irrigation water and the trend of accumulation was found as root > straw > husk > grain. Another part of the experiment revealed that supplementation of C. olitorius leaves with arsenic contaminated rice significantly (p rice induced toxicities. Arsenic accumulation in different parts of rice increased dose-dependently. Hence, for irrigation purpose arsenic contaminated water cannot be used. Furthermore, arsenic contaminated rice induced several toxicities in animal model, most of which could be minimized with the food supplementation of Corchorus olitorius

  6. Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review

    Directory of Open Access Journals (Sweden)

    Anindita Mitra

    2017-10-01

    Full Text Available According to recent reports, millions of people across the globe are suffering from arsenic (As toxicity. Arsenic is present in different oxidative states in the environment and enters in the food chain through soil and water. In the agricultural field, irrigation with arsenic contaminated water, that is, having a higher level of arsenic contamination on the top soil, which may affects the quality of crop production. The major crop like rice (Oryza sativa L. requires a considerable amount of water to complete its lifecycle. Rice plants potentially accumulate arsenic, particularly inorganic arsenic (iAs from the field, in different body parts including grains. Different transporters have been reported in assisting the accumulation of arsenic in plant cells; for example, arsenate (AsV is absorbed with the help of phosphate transporters, and arsenite (AsIII through nodulin 26-like intrinsic protein (NIP by the silicon transport pathway and plasma membrane intrinsic protein aquaporins. Researchers and practitioners are trying their level best to mitigate the problem of As contamination in rice. However, the solution strategies vary considerably with various factors, such as cultural practices, soil, water, and environmental/economic conditions, etc. The contemporary work on rice to explain arsenic uptake, transport, and metabolism processes at rhizosphere, may help to formulate better plans. Common agronomical practices like rain water harvesting for crop irrigation, use of natural components that help in arsenic methylation, and biotechnological approaches may explore how to reduce arsenic uptake by food crops. This review will encompass the research advances and practical agronomic strategies on arsenic contamination in rice crop.

  7. Biochar amendment reduced methylmercury accumulation in rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Rui; Wang, Yongjie [School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, People’s Republic of China (China); Zhong, Huan, E-mail: zhonghuan@nju.edu.cn [School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, People’s Republic of China (China); Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario (Canada)

    2016-08-05

    Highlights: • Biochar amendment could evidently reduce methylmercury (MeHg) levels in rice grain. • Biochar could enhance microbial production of MeHg, probably by providing sulfate. • Biochar could immobilize MeHg in soil, and reduce MeHg availability to rice plants. • Biochar amendment increased grain biomass, leading to biodilution of MeHg in grain. - Abstract: There is growing concern about methylmercury (MeHg) accumulation in rice grains and thus enhanced dietary exposure to MeHg in Asian countries. Here, we explored the possibility of reducing grain MeHg levels by biochar amendment, and the underlying mechanisms. Pot (i.e., rice cultivation in biochar amended soils) and batch experiments (i.e., incubation of amended soils under laboratory conditions) were carried out, to investigate MeHg dynamics (i.e., MeHg production, partitioning and phytoavailability in paddy soils, and MeHg uptake by rice) under biochar amendment (1–4% of soil mass). We demonstrate for the first time that biochar amendment could evidently reduce grain MeHg levels (49–92%). The declines could be attributed to the combined effects of: (1) increased soil MeHg concentrations, probably explained by the release of sulfate from biochar and thus enhanced microbial production of MeHg (e.g., by sulfate-reducing bacteria), (2) MeHg immobilization in soils, facilitated by the large surface areas and high organosulfur content of biochar, and (3) biodilution of MeHg in rice grains, due to the increased grain biomass under biochar amendment (35–79%). These observations together with mechanistic explanations improve understanding of MeHg dynamics in soil-rice systems, and support the possibility of reducing MeHg phytoaccumulation under biochar amendment.

  8. Biochar amendment reduced methylmercury accumulation in rice plants

    International Nuclear Information System (INIS)

    Shu, Rui; Wang, Yongjie; Zhong, Huan

    2016-01-01

    Highlights: • Biochar amendment could evidently reduce methylmercury (MeHg) levels in rice grain. • Biochar could enhance microbial production of MeHg, probably by providing sulfate. • Biochar could immobilize MeHg in soil, and reduce MeHg availability to rice plants. • Biochar amendment increased grain biomass, leading to biodilution of MeHg in grain. - Abstract: There is growing concern about methylmercury (MeHg) accumulation in rice grains and thus enhanced dietary exposure to MeHg in Asian countries. Here, we explored the possibility of reducing grain MeHg levels by biochar amendment, and the underlying mechanisms. Pot (i.e., rice cultivation in biochar amended soils) and batch experiments (i.e., incubation of amended soils under laboratory conditions) were carried out, to investigate MeHg dynamics (i.e., MeHg production, partitioning and phytoavailability in paddy soils, and MeHg uptake by rice) under biochar amendment (1–4% of soil mass). We demonstrate for the first time that biochar amendment could evidently reduce grain MeHg levels (49–92%). The declines could be attributed to the combined effects of: (1) increased soil MeHg concentrations, probably explained by the release of sulfate from biochar and thus enhanced microbial production of MeHg (e.g., by sulfate-reducing bacteria), (2) MeHg immobilization in soils, facilitated by the large surface areas and high organosulfur content of biochar, and (3) biodilution of MeHg in rice grains, due to the increased grain biomass under biochar amendment (35–79%). These observations together with mechanistic explanations improve understanding of MeHg dynamics in soil-rice systems, and support the possibility of reducing MeHg phytoaccumulation under biochar amendment.

  9. Biochar amendment reduced methylmercury accumulation in rice plants.

    Science.gov (United States)

    Shu, Rui; Wang, Yongjie; Zhong, Huan

    2016-08-05

    There is growing concern about methylmercury (MeHg) accumulation in rice grains and thus enhanced dietary exposure to MeHg in Asian countries. Here, we explored the possibility of reducing grain MeHg levels by biochar amendment, and the underlying mechanisms. Pot (i.e., rice cultivation in biochar amended soils) and batch experiments (i.e., incubation of amended soils under laboratory conditions) were carried out, to investigate MeHg dynamics (i.e., MeHg production, partitioning and phytoavailability in paddy soils, and MeHg uptake by rice) under biochar amendment (1-4% of soil mass). We demonstrate for the first time that biochar amendment could evidently reduce grain MeHg levels (49-92%). The declines could be attributed to the combined effects of: (1) increased soil MeHg concentrations, probably explained by the release of sulfate from biochar and thus enhanced microbial production of MeHg (e.g., by sulfate-reducing bacteria), (2) MeHg immobilization in soils, facilitated by the large surface areas and high organosulfur content of biochar, and (3) biodilution of MeHg in rice grains, due to the increased grain biomass under biochar amendment (35-79%). These observations together with mechanistic explanations improve understanding of MeHg dynamics in soil-rice systems, and support the possibility of reducing MeHg phytoaccumulation under biochar amendment. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Gamma-amino butyric acid (GABA) synthesis of Lactobacillus in fermentation of defatted rice bran extract

    Science.gov (United States)

    Dat, Lai Quoc; Ngan, Tran Thi Kim; Nu, Nguyen Thi Xuan

    2017-09-01

    This research focused on the synthesis of GABA by Lactobacillus bacteria in fermentation of defatted rice bran extract without adding glutamate. Two strains of Lactobacillus were investigated into capacity of GABA synthesis. Result indicates that, Lactobacillus brevis VTCC - B - 454 exhibited the higher capacity of GABA synthesis in fermentation of defatted rice bran extract than that of Lactobacillus plantarum VTCC - B - 890. Total dissolved solid (TDS), free amino acids (AA) and reducing sugar (RS) contents in fermentation of defatted rice bran extract with two strains also significantly decreased. At pH 5 and 9 %w/w of TDS content in defatted rice bran extract, Lactobacillus brevis VTCC - B - 454 accumulated 2,952 ppm of GABA in 24 hours of fermentation. The result implies that fermentation with Lactobacillus brevis VTCC - B - 454 can be applied for GABA production from defatted rice bran extract.

  11. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant.

    Science.gov (United States)

    Yang, Junxing; Liu, Zhiyan; Wan, Xiaoming; Zheng, Guodi; Yang, Jun; Zhang, Hanzhi; Guo, Lin; Wang, Xuedong; Zhou, Xiaoyong; Guo, Qingjun; Xu, Ruixiang; Zhou, Guangdong; Peters, Marc; Zhu, Guangxu; Wei, Rongfei; Tian, Liyan; Han, Xiaokun

    2016-06-01

    Human activities have resulted in lead and sulfur accumulation in paddy soils in parts of southern China. A combined soil-sand pot experiment was conducted to investigate the influence of S supply on iron plaque formation and Pb accumulation in rice (Oryza sativa L.) under two Pb levels (0 and 600 mg kg(-1)), combined with four S concentrations (0, 30, 60, and 120 mg kg(-1)). Results showed that S supply significantly decreased Pb accumulation in straw and grains of rice. This result may be attributed to the enhancement of Fe plaque formation, decrease of Pb availability in soil, and increase of reduced glutathione (GSH) in rice leaves. Moderate S supply (30 mg kg(-1)) significantly increased Fe plaque formation on the root surface and in the rhizosphere, whereas excessive S supply (60 and 120 mg kg(-1)) significantly decreased the amounts of iron plaque on the root surface. Sulfur supply significantly enhanced the GSH contents in leaves of rice plants under Pb treatment. With excessive S application, the rice root acted as a more effective barrier to Pb accumulation compared with iron plaque. Excessive S supply may result in a higher monosulfide toxicity and decreased iron plaque formation on the root surface during flooded conditions. However, excessive S supply could effectively decrease Pb availability in soils and reduce Pb accumulation in rice plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Tungsten (W) bioavailability in paddy rice soils and its accumulation in rice (Oryza sativa).

    Science.gov (United States)

    James, Blessing; Zhang, Weili; Sun, Pei; Wu, Mingyan; Li, Hong Hong; Khaliq, Muhammad Athar; Jayasuriya, Pathmamali; James, Swithin; Wang, Guo

    2017-12-01

    The aim of this study was to investigate the accumulation characteristics of tungsten (W) by different indica rice cultivars from the soil and to assess the potential risks to human health via dietary intake of W in rice consumption. A total of 153 rice (ear) samples of 15 cultivars and the corresponding surface soil samples were collected from 7 cities in Fujian Province of southeastern China. The available soil W were extracted using H 2 C 2 O 4 ·2H 2 O-(NH 4 ) 2 C 2 O 4 ·H 2 O at pH 3.3). Results showed that the total soil W ranged from 2.03 mg kg -1 to 15.34 mg kg -1  and available soil W ranged from 0.03 mg kg -1 to 1.61 mg kg -1 . The W concentration in brown rice varied from 7 μg kg -1 to 283 μg kg -1 and was significantly correlated with the available soil W. The highest mean TF avail (transfer factor based on available soil W) was 0.91 for Te-you 627 (hybrid, indica rice), whereas the lowest was 0.08 for Yi-you 673 (hybrid, indica rice). The TF avail decreased with the increase in available soil W, clay content, and cation exchange capacity. The consumption of the brown rice produced from the investigated areas in some cultivars by the present study may cause risks to human health.

  13. Prediction of methylmercury accumulation in rice grains by chemical extraction methods

    International Nuclear Information System (INIS)

    Zhu, Dai-Wen; Zhong, Huan; Zeng, Qi-Long; Yin, Ying

    2015-01-01

    To explore the possibility of using chemical extraction methods to predict phytoavailability/bioaccumulation of soil-bound MeHg, MeHg extractions by three widely-used extractants (CaCl 2 , DTPA, and (NH 4 ) 2 S 2 O 3 ) were compared with MeHg accumulation in rice grains. Despite of variations in characteristics of different soils, MeHg extracted by (NH 4 ) 2 S 2 O 3 (highly affinitive to MeHg) correlated well with grain MeHg levels. Thus (NH 4 ) 2 S 2 O 3 extraction, solubilizing not only weakly-bound and but also strongly-bound MeHg, may provide a measure of ‘phytoavailable MeHg pool’ for rice plants. Besides, a better prediction of grain MeHg levels was obtained when growing condition of rice plants was also considered. However, MeHg extracted by CaCl 2 or DTPA, possibly quantifying ‘exchangeable MeHg pool’ or ‘weakly-complexed MeHg pool’ in soils, may not indicate phytoavailable MeHg or predict grain MeHg levels. Our results provided the possibility of predicting MeHg phytoavailability/bioaccumulation by (NH 4 ) 2 S 2 O 3 extraction, which could be useful in screening soils for rice cultivation in contaminated areas. - Highlights: • MeHg extraction by (NH 4 ) 2 S 2 O 3 correlates well with its accumulation in rice grains. • MeHg extraction by (NH 4 ) 2 S 2 O 3 provides a measure of phytoavailable MeHg in soils. • Some strongly-bound MeHg could be desorbed from soils and available to rice plants. • MeHg extraction by CaCl 2 or DTPA could not predict grain MeHg levels. - Methylmercury extraction from soils by (NH 4 ) 2 S 2 O 3 could possibly be used for predicting methylmercury phytoavailability and its bioaccumulation in rice grains

  14. Reducing arsenic accumulation in rice grain through iron oxide amendment

    Science.gov (United States)

    In this research, we investigated the accumulation of arsenic (As), selenium (Se), molybdenum (Mo), and cadmium (Cd) in rice grain under different soil conditions in standard straighthead-resistant and straighthead-susceptible cultivars, Zhe 733 and Cocodrie, respectively. Results demonstrated that,...

  15. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi; Dai, Jun

    2017-10-01

    A field-based study was undertaken to analyze the effects of soil bioavailable heavy metals determined by a sequential extraction procedure, and soil microbial parameters on the heavy metal accumulation in rice grain. The results showed that Cd, Cr, Cu, Ni, Pb and Zn concentrations in rice grain decreases by 65.9%, 78.9%, 32.6%, 80.5%, 61.0% and 15.7%, respectively in the sites 3 (far-away), compared with those in sites 1 (close-to). Redundancy analysis (RDA) indicated that soil catalase activity, the MBC/MBN ratio, along with bioavailable Cd, Cr and Ni could explain 68.9% of the total eigenvalue, indicating that these parameters have a great impact on the heavy metal accumulation in rice grain. The soil bioavailable heavy metals have a dominant impact on their accumulation in rice grain, with a variance contribution of 60.1%, while the MBC/MBN has a regulatory effect, with a variance contribution of 4.1%. Stepwise regression analysis showed that the MBC/MBN, urease and catalase activities are the key microbial parameters that affect the heavy metal accumulation in rice by influencing the soil bioavailable heavy metals or the translocation of heavy metals in rice. RDA showed an interactive effect between Cu, Pb and Zn in rice grain and the soil bioavailable Cd, Cr and Ni. The heavy metals in rice grain, with the exception of Pb, could be predicted by their respective soil bioavailable heavy metals. The results suggested that Pb accumulation in rice grain was mainly influenced by the multi-metal interactive effects, and less affected by soil bioavailable Pb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. PDH45 overexpressing transgenic tobacco and rice plants provide salinity stress tolerance via less sodium accumulation.

    Science.gov (United States)

    Nath, Manoj; Garg, Bharti; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2015-01-01

    Salinity stress negatively affects the crop productivity worldwide, including that of rice. Coping with these losses is a major concern for all countries. The pea DNA helicase, PDH45 is a unique member of helicase family involved in the salinity stress tolerance. However, the exact mechanism of the PDH45 in salinity stress tolerance is yet to be established. Therefore, the present study was conducted to investigate the mechanism of PDH45-mediated salinity stress tolerance in transgenic tobacco and rice lines along with wild type (WT) plants using CoroNa Green dye based sodium localization in root and shoot sections. The results showed that under salinity stress root and shoot of PDH45 overexpressing transgenic tobacco and rice accumulated less sodium (Na(+)) as compared to their respective WT. The present study also reports salinity tolerant (FL478) and salinity susceptible (Pusa-44) varieties of rice accumulated lowest and highest Na(+) level, respectively. All the varieties and transgenic lines of rice accumulate differential Na(+) ions in root and shoot. However, roots accumulate high Na(+) as compared to the shoots in both tobacco and rice transgenic lines suggesting that the Na(+) transport in shoot is somehow inhibited. It is proposed that the PDH45 is probably involved in the deposition of apoplastic hydrophobic barriers and consequently inhibit Na(+) transport to shoot and therefore confers salinity stress tolerance to PDH45 overexpressing transgenic lines. This study concludes that tobacco (dicot) and rice (monocot) transgenic plants probably share common salinity tolerance mechanism mediated by PDH45 gene.

  17. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid

    Science.gov (United States)

    Goufo, Piebiep; Trindade, Henrique

    2014-01-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice. PMID:24804068

  18. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid.

    Science.gov (United States)

    Goufo, Piebiep; Trindade, Henrique

    2014-03-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice.

  19. A two-step acid-catalyzed process for the production of biodiesel from rice bran oil

    Energy Technology Data Exchange (ETDEWEB)

    Zullaikah, S.; Lai, Chao Chin; Vali, S.R.; Ju, Yi Hsu [National Taiwan Univ. of Science and Technology, Taipei (China). Dept. of Chemical Engineering

    2005-11-15

    A study was undertaken to examine the effect of temperature, moisture and storage time on the accumulation of free fatty acid in the rice bran. Rice bran stored at room temperature showed that most triacylglyceride was hydrolyzed and free fatty acid (FFA) content was raised up to 76% in six months. A two-step acid-catalyzed methanolysis process was employed for the efficient conversion of rice bran oil into fatty acid methyl ester (FAME). The first step was carried out at 60 {sup o}C. Depending on the initial FFA content of oil, 55-90% FAME content in the reaction product was obtained. More than 98% FFA and less than 35% of TG were reacted in 2 h. The organic phase of the first step reaction product was used as the substrate for a second acid-catalyzed methanolysis at 100 {sup o}C. By this two-step methanolysis reaction, more than 98% FAME in the product can be obtained in less than 8 h. Distillation of reaction product gave 99.8% FAME (biodiesel) with recovery of more than 96%. The residue contains enriched nutraceuticals such as {gamma}-oryzanol (16-18%), mixture of phytosterol, tocol and steryl ester (19-21%). (author)

  20. Comparative Effects of Salt Stress and Extreme pH Stress Combined on Glycinebetaine Accumulation, Photosynthetic Abilities and Growth Characters of Two Rice Genotypes

    Directory of Open Access Journals (Sweden)

    Suriyan CHA-UM

    2009-12-01

    Full Text Available Glycinebetaine (Glybet accumulation, photosynthetic efficiency and growth performance in indica rice cultivated under salt stress and extreme pH stress were investigated. Betaine aldehyde dehydrogenase (BADH activity and Glybet accumulation in the seedlings of salt-tolerant and salt-sensitive rice varieties grown under saline and acidic conditions peaked after treatment for 72 h and 96 h, respectively, and were higher than those grown under neutral pH and alkaline salt stress. A positive correlation was found between BADH activity and Glybet content in both salt-tolerant (r2 = 0.71 and salt-sensitive (r2 = 0.86 genotypes. The chlorophyll a, chlorophyll b, total chlorophyll and total carotenoids contents in the stressed seedlings significantly decreased under both acidic and alkaline stresses, especially in the salt-sensitive genotype. Similarly, the maximum quantum yield of PSII (Fv/Fm, photon yield of PSII (ΦPSII, non-photochemical quenching (NPQ and net photosynthetic rate (Pn in the stressed seedlings were inhibited, leading to overall growth reduction. The positive correlations between chlorophyll a content and Fv/Fm, total chlorophyll content and ΦPSII, ΦPSII and Pn as well as Pn and leaf area in both salt-tolerant and salt-sensitive genotypes were found. Saline acidic and saline alkaline soils may play a key role affecting vegetative growth prior to the reproductive stage in rice plants.

  1. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar.

    Science.gov (United States)

    Yu, Zhihong; Qiu, Weiwen; Wang, Fei; Lei, Ming; Wang, Di; Song, Zhengguo

    2017-02-01

    A pot experiment was used to investigate arsenic (As) speciation and accumulation in rice, as well as its concentration in both heavily contaminated and moderately contaminated soils amended with manganese oxide-modified biochar composites (MBC) and biochar alone (BC). In heavily As-contaminated soil, application of BC and MBC improved the weight of above-ground part and rice root, whereas in moderately As-contaminated soil, the application of MBC and low rate BC amendment increased rice root, grain weight and the biomass of the plant. Arsenic reduction in different parts of rice grown in MBC-amended soils was greater than that in plants cultivated in BC-amended soils. Such reduction can be attributed to the oxidation of arsenite, As(III), to arsenate, As(V), by Mn-oxides, which also had a strong adsorptive capacity for As(V). MBC amended to As-contaminated soil had a positive effect on amino acids. The Fe and Mn levels in the iron-manganese plaque that formed on the rice root surface differed among the treatments. MBC addition significantly increased Mn content (p rice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Understanding reduced inorganic mercury accumulation in rice following selenium application: Selenium application routes, speciation and doses.

    Science.gov (United States)

    Tang, Wenli; Dang, Fei; Evans, Douglas; Zhong, Huan; Xiao, Lin

    2017-02-01

    Selenium (Se) has recently been demonstrated to reduce inorganic mercury (IHg) accumulation in rice plants, while its mechanism is far from clear. Here, we aimed at exploring the potential effects of Se application routes (soil or foliar application with Se), speciation (selenite and selenate), and doses on IHg-Se antagonistic interactions in soil-rice systems. Results of our pot experiments indicated that soil application but not foliar application could evidently reduce tissue IHg concentrations (root: 0-48%, straw: 15-58%, and brown rice: 26-74%), although both application routes resulted in comparable Se accumulation in aboveground tissues. Meanwhile, IHg distribution in root generally increased with amended Se doses in soil, suggesting antagonistic interactions between IHg and Se in root. These results provided initial evidence that IHg-Se interactions in the rhizosphere (i.e., soil or rice root), instead of those in the aboveground tissues, could probably be more responsible for the reduced IHg bioaccumulation following Se application. Furthermore, Se dose rather than Se speciation was found to be more important in controlling IHg accumulation in rice. Our findings regarding the importance of IHg-Se interactions in the rhizosphere, together with the systematic investigation of key factors affecting IHg-Se antagonism and IHg bioaccumulation, advance our understanding of Hg dynamics in soil-rice systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The respective effects of soil heavy metal fractions by sequential extraction procedure and soil properties on the accumulation of heavy metals in rice grains and brassicas.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi

    2017-01-01

    This study was carried out to examine heavy metal accumulation in rice grains and brassicas and to identify the different controls, such as soil properties and soil heavy metal fractions obtained by the Community Bureau of Reference (BCR) sequential extraction, in their accumulation. In Guangdong Province, South China, rice grain and brassica samples, along with their rhizospheric soil, were collected from fields on the basis of distance downstream from electroplating factories, whose wastewater was used for irrigation. The results showed that long-term irrigation using the electroplating effluent has not only enriched the rhizospheric soil with Cd, Cr, Cu, and Zn but has also increased their mobility and bioavailability. The average concentrations of Cd and Cr in rice grains and brassicas from closest to the electroplating factories were significantly higher than those from the control areas. Results from hybrid redundancy analysis (hRDA) and redundancy analysis (RDA) showed that the BCR fractions of soil heavy metals could explain 29.0 and 46.5 % of total eigenvalue for heavy metal concentrations in rice grains and brassicas, respectively, while soil properties could only explain 11.1 and 33.4 %, respectively. This indicated that heavy metal fractions exerted more control upon their concentrations in rice grains and brassicas than soil properties. In terms of metal interaction, an increase of residual Zn in paddy soil or a decrease of acid soluble Cd in the brassica soil could enhance the accumulation of Cd, Cu, Cr, and Pb in both rice grains and brassicas, respectively, while the reducible or oxidizable Cd in soil could enhance the plants' accumulation of Cr and Pb. The RDA showed an inhibition effect of sand content and CFO on the accumulation of heavy metals in rice grains and brassicas. Moreover, multiple stepwise linear regression could offer prediction for Cd, Cu, Cr, and Zn concentrations in the two crops by soil heavy metal fractions and soil properties.

  4. Accumulation and distribution of polycyclic aromatic hydrocarbons in rice (Oryza sativa)

    International Nuclear Information System (INIS)

    Tao, S.; Jiao, X.C.; Chen, S.H.; Liu, W.X.; Coveney, R.M.; Zhu, L.Z.; Luo, Y.M.

    2006-01-01

    Various tissues of rice plants were sampled from a PAH contaminated site in Tianjin, China at different growth stages of the ripening period and analyzed for PAHs. PAHs were much higher in roots than in the exposed tissues. Grains and internodes accumulated much smaller amounts of PAHs than leaves, hulls or ear axes. No specific gradient trends along roots, stem, ear axes, and grains were observed, suggesting that systematic translocation among them is unlikely. Over the ripening period, PAH concentrations were increased in rice roots and decreased in most above-ground tissues. Significant correlations between PAH and lipid contents can only be observed during full mature stage. The spectra of individual PAH compounds in rice organs including roots were similar to those in air, rather than those in soil. There was also a significant correlation between bioconcentration factor (BCF, plant over air) and octanol/air partitioning coefficient (K oa ). - PAHs in various tissues of rice plants from various growth stages were investigated

  5. Do rice suspension-cultured cells treated with abscisic acid mimic developing seeds?

    Science.gov (United States)

    Matsuno, Koya; Fujimura, Tatsuhito

    2015-08-01

    Starch synthesis is activated in the endosperm during seed development and also in rice suspension cells cultured with abscisic acid. In the anticipation that the mechanisms of starch synthesis are similar between the endosperm and the suspension cells cultured with abscisic acid, expression of genes involved in starch synthesis was evaluated in the suspension cells after abscisic acid treatment. However, it was found that the regulatory mechanism of starch synthesis in the suspension cells cultured with abscisic acid was different from that in developing seeds. Expression analyses of genes involved in oil bodies, which accumulate in the embryo and aleurone layer, and seed storage proteins, which accumulate mainly in the endosperm, showed that the former were activated in the suspension cells cultured with abscisic acid, but the latter were not. Master regulators for embryogenesis, OsVP1 (homologue of AtABI3) and OsLFL1 (homologue of AtFUS3 or AtLFL2), were expressed in the suspension cells at levels comparable to those in the embryo. From these results, it is suggested that interactions between regulators and abscisic acid control the synthesis of phytic acid and oil bodies in the cultured cells and embryo. We suggest that the system of suspension cells cultured with abscisic acid helps to reveal the mechanisms of phytic acid and oil body synthesis in embryo.

  6. Jasmonic acid and salicylic acid activate a common defense system in rice.

    Science.gov (United States)

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-06-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice.

  7. Physiological Mechanism of Salicylic Acid for Alleviation of Salt Stress in Rice

    Directory of Open Access Journals (Sweden)

    D. Jini

    2017-03-01

    Full Text Available Soil salinity is one of the most important problems of crop production in estuarine and coastal zones. Improvement in salt tolerance of major food crops is an important way for the economic utilization of coastal zones. This study proved that the application of salicylic acid (SA improved the growth and yield under salt stress conditions and investigated its physiological mechanisms for salt tolerance. The investigation on the effect of SA for salt tolerance during germination showed that the decreased rates of germination and growth (in terms of shoot and root lengths by the salt stress were significantly increased by the SA application (SA + NaCl. The treatment of SA to the high and low saline soils enhanced the growth, yield and nutrient values of rice. The effects of SA on Na+, K+ and Cl– ionic accumulation were traced under salt stress condition by inductively coupled plasma optical emission spectrometry and ion chromatography. It was revealed that the increased accumulation of Na+ and Clˉ ions by the salt stress were reduced by SA application. An increased concentration of endogenous SA level was detected from the SA-treated rice varieties (ASD16 and BR26 by liquid chromatography electrospray Ionization-tandem mass spectrometry. The activities of antioxidant enzymes such as superoxide dismutase, catalase and peroxidase were increased by salt stress whereas decreased by the SA application. The study proved that the application of SA could alleviate the adverse effects of salt stress by the regulation of physiological mechanism in rice plants. In spite of salt stress, it can be applied to the coastal and estuarine regions to increase the rice production.

  8. Genotypic-dependent effects of N fertilizer, glutathione, silicon, zinc, and selenium on proteomic profiles, amino acid contents, and quality of rice genotypes with contrasting grain Cd accumulation.

    Science.gov (United States)

    Cao, Fangbin; Fu, Manman; Wang, Runfeng; Cheng, Wangda; Zhang, Guoping; Wu, Feibo

    2017-07-01

    Soil heavy metal (HM) contamination has posed a serious problem for safe food production. For restricting the translocation of HM into grain, many proteins were regulated to involve in the process. To identify these proteins, 2D-based proteomic analysis was carried out using different rice genotypes with distinct Cd accumulation in grains and as affected by an alleviating regulator (AR) in field experiments. AR application improved grain quality, with increased contents in Glu, Cys, His, Pro, and protein. Twenty-six low-grain HM accumulation-associated protein species were identified and categorized as physiological functions via two-dimensional gel electrophoresis (2DE) and mass spectrometry. Among these proteins, 8, 9, and 9 proteins exhibited higher accumulation, lower accumulation, and unchanged accumulation, respectively, in Xiushui817 (low accumulator) vs R8097 (high accumulator) under control conditions but showed differential accumulation patterns after AR application. These proteins included sucrose synthase 3, alanine aminotransferase, glutelin, cupin family protein, and zinc finger CCCH domain-containing protein 32. The differential expression of these protein species might contribute to decreased HM accumulation in grain via decreasing the protein accumulation which had high affinity to HM or regulating energy metabolism and signal transduction. Our findings provide valuable insights into the mechanisms of low-grain HM accumulation in rice and possible utilization of candidate protein species in developing low-grain HM accumulation genotypes.

  9. Effects of Three Inhibitors on the Accumulation of Cadmium in Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    LONG Si-si

    2016-09-01

    Full Text Available How to control cadmium (Cd pollution in rice grain has become a hot research issue. The effects of the three amendments such as lime, silicon fertilizer and zinc foliar fertilizer from local market on the accumulation Cd in rice grain including early rice and later rice growth in one Cd-contaminated field in Hengyang County, Hunan Province were studied. Among the three treatments, the silicon fertilizer and lime were applied into soil, and the zinc fertilizer was sprayed on the leaf of rice plant. The results showed that, except lime and zinc fertilizer(late rice, in comparison to nonamendment, the output of early rice and late rice increased with increasing of the other types of resistances. Among three kinds of resistances, the zinc foliar fertilizer had significant impacts on decreasing Cd in edible grains, in which Cd concentrations of early rice(Y-liangyou 792 and late rice(Nongxiang130 reduced by 51.28% and 50.92%, respectively, followed by silicon fertilizer. The present study demonstrated that the silicon fertilizer and zinc foliar fertilizer would be used as resistances for remediation Cd-polluted rice plant, moreover, the relationship between Zn and Cd in rice-soil would need further studied.

  10. Effects and mechanisms of meta-sodium silicate amendments on lead uptake and accumulation by rice.

    Science.gov (United States)

    Zhao, Mingliu; Liu, Yuting; Li, Honghong; Cai, Yifan; Wang, Ming Kuang; Chen, Yanhui; Xie, Tuanhui; Wang, Guo

    2017-09-01

    The objectives of this research were to study the effects of Na 2 SiO 3 application on the uptake, translocation, and accumulation of Pb in rice and to investigate the mechanisms of Pb immobilization by Na 2 SiO 3 in paddy rice soils and rice plants. Pot experiments were conducted using a Cd-Pb-Zn-polluted soil and Oryza sativa L. ssp. indica cv. Donglian 5. L 3 -edge X-ray absorption spectroscopy was used to identify Pb species in soils and roots. The results showed that the application of Na 2 SiO 3 increased soil pH and available soil Si but decreased DTPA-extractable Pb in the soil. High dose of Na 2 SiO 3 (12.5 g/kg) reduced the Pb level in brown rice as it inhibited Pb transfer from soil to rice grains, especially Pb transfer from the root to the stem. The Pb X-ray absorption near-edge spectroscopic analysis revealed that application of high dose of Na 2 SiO 3 increased Pb-ferrihydrite and PbSiO 3 precipitates in the soil and in the root while it reduced Pb-humic acids (Pb-HAs) in the soil and Pb-pectin in the root. The decrease in Pb availability in the soil can be partly attributed to increase the precipitation of PbSiO 3 and the association of Pb 2+ with Fe oxides in the soil. The inhibition of the root-to-stem translocation of Pb was partially due to the precipitation of PbSiO 3 on the root surfaces or inside the roots.

  11. Effects of lanthanum and acid rain stress on the bio-sequestration of lanthanum in phytoliths in germinated rice seeds

    Science.gov (United States)

    Si, Yong; Wang, Lihong; Huang, Xiaohua

    2018-01-01

    REEs in the environment can be absorbed by plants and sequestered by plant phytoliths. Acid rain can directly or indirectly affect plant physiological functions. Currently, the effects of REEs and acid rain on phytolith-REEs complex in plants are not yet fully understood. In this study, a high-silicon accumulation crop, rice (Oryza sativa L.), was selected as a representative of plants, and orthogonal experiments were conducted under various levels of lanthanum [La(III)] and pH. The results showed that various La(III) concentrations could significantly improve the efficiency and sequestration of phytolith La(III) in germinated rice seeds. A pH of 4.5 promoted phytolith La(III) sequestration, while a pH of 3.5 inhibited sequestration. Compared with the single treatment with La(III), the combination of La(III) and acid rain inhibited the efficiency and sequestration of phytolith La(III). Correlation analysis showed that the efficiency of phytolith La(III) sequestration had no correlation with the production of phytolith but was closely correlated with the sequestration of phytolith La(III) and the physiological changes of germinated rice seeds. Phytolith morphology was an important factor affecting phytolith La(III) sequestration in germinated rice seeds, and the effect of tubes on sequestration was more significant than that of dumbbells. This study demonstrated that the formation of the phytolith and La(III) complex could be affected by exogenous La(III) and acid rain in germinated rice seeds. PMID:29763463

  12. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain

    Science.gov (United States)

    As one of the most important staple crops, rice not only provides more than one fifth of daily calories for half of the world’s human population but is also a major source of mineral nutrients. However, little is known about the genetic basis of mineral nutrient accumulation in rice grain such as co...

  13. Mitigation of Cd accumulation in paddy rice (Oryza sativa L.) by Fe fertilization.

    Science.gov (United States)

    Chen, Zhe; Tang, Ye-Tao; Yao, Ai-Jun; Cao, Jian; Wu, Zhuo-Hao; Peng, Zhe-Ran; Wang, Shi-Zhong; Xiao, Shi; Baker, Alan J M; Qiu, Rong-Liang

    2017-12-01

    Cadmium uptake in rice is believed to be mediated by the Fe transport system. Phyto-available Cd can be changed by Fe fertilization of substrates. This work investigated whether and how Fe fertilization affects mitigation of Cd accumulation in paddy rice. A 90-d soil column experiment was conducted to study the change of Cd and Fe availability in soil after Fe fertilization (ionic and chelated Fe). A low-Cd accumulating cultivar (TY116) and a high-Cd accumulating cultivar (JY841) were grown in two Cd-polluted paddy soils amended with chelated Fe fertilizers. Additionally, both cultivars were grown in hydroponics to compare Fe-related gene expression in EDDHAFe-deficient and EDDHAFe-sufficient roots. The column experiment showed that EDTANa 2 Fe(II) and EDDHAFe(III) fertilization had a better mitigation effect on soil Cd availability compared to FeSO 4 ·7H 2 O. Moreover, the field experiment demonstrated that these two chelated fertilizations could reduce Cd concentrations in brown rice by up to 80%. Iron concentrations in the brown rice were elevated by Fe chelates. Compared to EDDHAFe(III), EDTANa 2 Fe(II) fertilization had a stronger mitigation effect by generating more EDTANa 2 Cd(II) in the soil solution to decrease phyto-available Cd in the soil. While EDDHAFe(III) fertilization could increase soil pH and decrease soil Eh which contributed to decreasing phyto-available Cd in a contaminated soil. In the hydroponic experiment, Fe sufficiency significantly reduced Cd concentrations in above-ground organs. In some cases, the expression of OsIRT1, OsNRAMP1 and OsNRAMP5 was inhibited under Fe sufficiency relative to Fe deficiency conditions. These results suggest that mitigation of rice Cd by Fe chelate fertilization results from a decrease in available Cd in substrates and the inhibition of the expression of several Fe-related genes in the IRT and NRAMP families. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL).

    Science.gov (United States)

    Wu, Chuan; Zou, Qi; Xue, Sheng-Guo; Pan, Wei-Song; Huang, Liu; Hartley, William; Mo, Jing-Yu; Wong, Ming-Hung

    2016-05-01

    Rice is one of the major pathways of arsenic (As) exposure in human food chain, threatening over half of the global population. Greenhouse pot experiments were conducted to examine the effects of Si application on iron (Fe) plaque formation, As uptake and rice grain As speciation in indica and hybrid rice genotypes with different radial oxygen loss (ROL) ability. The results demonstrated that Si significantly increased root and grain biomass. Indica genotypes with higher ROL induced greater Fe plaque formation, compared to hybrid genotypes and sequestered more As in Fe plaque. Silicon applications significantly increased Fe concentrations in iron plaque of different genotypes, but it decreased As concentrations in the roots, straws and husks by 28-35%, 15-35% and 32-57% respectively. In addition, it significantly reduced DMA accumulation in rice grains but not inorganic As accumulation. Rice of indica genotypes with higher ROL accumulated lower concentrations of inorganic As in grains than hybrid genotypes with lower ROL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Mutation of a Rice Gene Encoding a Phenylalanine Biosynthetic Enzyme Results in Accumulation of Phenylalanine and Tryptophan[W

    Science.gov (United States)

    Yamada, Tetsuya; Matsuda, Fumio; Kasai, Koji; Fukuoka, Shuichi; Kitamura, Keisuke; Tozawa, Yuzuru; Miyagawa, Hisashi; Wakasa, Kyo

    2008-01-01

    Two distinct biosynthetic pathways for Phe in plants have been proposed: conversion of prephenate to Phe via phenylpyruvate or arogenate. The reactions catalyzed by prephenate dehydratase (PDT) and arogenate dehydratase (ADT) contribute to these respective pathways. The Mtr1 mutant of rice (Oryza sativa) manifests accumulation of Phe, Trp, and several phenylpropanoids, suggesting a link between the synthesis of Phe and Trp. Here, we show that the Mtr1 mutant gene (mtr1-D) encodes a form of rice PDT with a point mutation in the putative allosteric regulatory region of the protein. Transformed callus lines expressing mtr1-D exhibited all the characteristics of Mtr1 callus tissue. Biochemical analysis revealed that rice PDT possesses both PDT and ADT activities, with a preference for arogenate as substrate, suggesting that it functions primarily as an ADT. The wild-type enzyme is feedback regulated by Phe, whereas the mutant enzyme showed a reduced feedback sensitivity, resulting in Phe accumulation. In addition, these observations indicate that rice PDT is critical for regulating the size of the Phe pool in plant cells. Feeding external Phe to wild-type callus tissue and seedlings resulted in Trp accumulation, demonstrating a connection between Phe accumulation and Trp pool size. PMID:18487352

  16. Field experiment for determining lead accumulation in rice grains of different genotypes and correlation with iron oxides deposited on rhizosphere soil.

    Science.gov (United States)

    Lai, Yu-Cheng; Syu, Chien-Hui; Wang, Pin-Jie; Lee, Dar-Yuan; Fan, Chihhao; Juang, Kai-Wei

    2018-01-01

    Paddy rice (Oryza sativa L.) is a major staple crop in Asia. However, heavy metal accumulation in paddy soil poses a health risk for rice consumption. Although plant uptake of Pb is usually low, Pb concentrations in rice plants have been increasing with Pb contamination in paddy fields. It is known that iron oxide deposits in the rhizosphere influence the absorption of soil Pb by rice plants. In this study, 14 rice cultivars bred in Taiwan, including ten japonica cultivars (HL21, KH145, TC192, TK9, TK14, TK16, TN11, TNG71, TNG84, and TY3) and four indica cultivars (TCS10, TCS17, TCSW2, and TNGS22), were used in a field experiment. We investigated the genotypic variation in rice plant Pb in relation to iron oxides deposited in the rhizosphere, as seen in a suspiciously contaminated site in central Taiwan. The results showed that the cultivars TCSW2, TN11, TNG71, and TNG84 accumulated brown rice Pb exceeding the tolerable level of 0.2mgkg -1 . In contrast, the cultivars TNGS22, TK9, TK14, and TY3 accumulated much lower brown rice Pb (iron oxides deposited on the rhizosphere soil show stronger affinity to soil-available Pb than those on the root surface to form iron plaque. The relative tendency of Pb sequestration toward rhizosphere soil was negatively correlated with the Pb concentrations in brown rice. The iron oxides deposited on the rhizosphere soil but not on the root surface to form iron plaque dominate Pb sequestration in the rhizosphere. Therefore, the enhancement of iron oxide deposits on the rhizosphere soil could serve as a barrier preventing soil Pb on the root surface and result in reduced Pb accumulation in brown rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Characterization of 140 Japanese and world rice collections cultivated in Nihonmatsu-city in Fukushima in terms of radiocesium activity concentrations in seed grains and straws to explore rice cultivars with low radiocesium accumulation

    International Nuclear Information System (INIS)

    Katsuhiro Kojima; Djedidi Salem

    2017-01-01

    We studied varietal difference in radiocesium accumulation by using Japanese and World rice collection for future development of low accumulation varieties. As a result, the radiocesium activity concentration varied by 12- and 22-fold in seed grains and straws, respectively. When we examined the seed grain to straw ratio of radiocesium activity concentration, paddy rice cultivars of Japonica sub-species showed a lower result than Indica and Javanica paddy rice cultivars. These observations suggest that the Japonica paddy rice cultivars may have the property of repressing radioactive cesium translocation to edible parts. (author)

  18. Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization.

    Science.gov (United States)

    Chen, Zhe; Tang, Ye-Tao; Zhou, Can; Xie, Shu-Ting; Xiao, Shi; Baker, Alan J M; Qiu, Rong-Liang

    2017-05-01

    Cadmium contaminated rice from China has become a global food safety issue. Some research has suggested that chelate addition to substrates can affect metal speciation and plant metal content. We investigated the mitigation of Cd accumulation in hydroponically-grown rice supplied with EDTANa 2 Fe(II) or EDDHAFe(III). A japonica rice variety (Nipponbare) was grown in modified Kimura B solution containing three concentrations (0, 10, 100 μΜ) of the iron chelates EDTANa 2 Fe(II) or EDDHAFe(III) and 1 μΜ Cd. Metal speciation in solution was simulated by Geochem-EZ; growth and photosynthetic efficiency of rice were evaluated, and accumulation of Cd and Fe in plant parts was determined. Net Cd fluxes in the meristematic zone, growth zone, and maturation zone of roots were monitored by a non-invasive micro-test technology. Expression of Fe- and Cd-related genes in Fe-sufficient or Fe-deficient roots and leaves were studied by QRT-PCR. Compared to Fe deficiency, a sufficient or excess supply of Fe chelates significantly enhanced rice growth by elevating photosynthetic efficiency. Both Fe chelates increased the Fe content and decreased the Cd content of rice organs, except for the Cd content of roots treated with excess EDDHAFe(III). Compared to EDDHAFe(III), EDTANa 2 Fe(II) exhibited better mitigation of Cd accumulation in rice by generating the EDTANa 2 Cd complex in solution, decreasing net Cd influx and increasing net Cd efflux in root micro-zones. Application of EDTANa 2 Fe(II) and EDDHAFe(III) also reduced Cd accumulation in rice by inhibiting expression of genes involved in transport of Fe and Cd in the xylem and phloem. The 'win-win' situation of Fe biofortification and Cd mitigation in rice was achieved by application of Fe chelates. Root-to-stem xylem transport of Cd and redistribution of Cd in leaves by phloem transport can be regulated in rice through the use of Fe chelates that influence Fe availability and Fe-related gene expression. Fe fertilization

  19. Composition and Fatty Acid Profile of Goat Meat Sausages with Added Rice Bran

    Directory of Open Access Journals (Sweden)

    Fatemeh Malekian

    2014-01-01

    Full Text Available A scientific consensus on the relationship between obesity, obesity related diseases, and diet has emerged. One of the factors is overconsumption of the red meats such as pork and beef. Goat meat has the potential to replace these traditionally consumed meats. Rice bran is a rich source of antioxidants such as vitamin E. In this study, goat meat sausages were formulated to contain 0, 1.5 or 3 percent stabilized rice bran. Proximate and fatty acid composition, α-tocopherol, cholesterol concentration, and antioxidant activities of cooked goat meat sausages containing varying percentages of rice bran were measured. Data were analyzed using a fixed effects model. The fat percentage in the goat meat sausages increased in response to increasing rice bran percentages (P<0.001. Saturated fatty acids concentration decreased linearly (P<0.01, while unsaturated fatty acids and omega-3 and omega-6 fatty acids increased linearly in response to increasing rice bran percentages (P<0.05. The concentration of α-tocopherol in sausages increased linearly in response to increasing rice bran percentages (P<0.01. Also, antioxidant activity increased linearly in sausages in response to added rice bran (P<0.01. The cholesterol concentration of sausages did not vary significantly in response to added rice bran.

  20. Composition and Fatty Acid Profile of Goat Meat Sausages with Added Rice Bran.

    Science.gov (United States)

    Malekian, Fatemeh; Khachaturyan, Margarita; Gebrelul, Sebhatu; Henson, James F

    2014-01-01

    A scientific consensus on the relationship between obesity, obesity related diseases, and diet has emerged. One of the factors is overconsumption of the red meats such as pork and beef. Goat meat has the potential to replace these traditionally consumed meats. Rice bran is a rich source of antioxidants such as vitamin E. In this study, goat meat sausages were formulated to contain 0, 1.5 or 3 percent stabilized rice bran. Proximate and fatty acid composition, α-tocopherol, cholesterol concentration, and antioxidant activities of cooked goat meat sausages containing varying percentages of rice bran were measured. Data were analyzed using a fixed effects model. The fat percentage in the goat meat sausages increased in response to increasing rice bran percentages (P < 0.001). Saturated fatty acids concentration decreased linearly (P < 0.01), while unsaturated fatty acids and omega-3 and omega-6 fatty acids increased linearly in response to increasing rice bran percentages (P < 0.05). The concentration of α-tocopherol in sausages increased linearly in response to increasing rice bran percentages (P < 0.01). Also, antioxidant activity increased linearly in sausages in response to added rice bran (P < 0.01). The cholesterol concentration of sausages did not vary significantly in response to added rice bran.

  1. Polymer-Coated Urea Delays Growth and Accumulation of Key Nutrients in Aerobic Rice but Does Not Affect Grain Mineral Concentrations

    Directory of Open Access Journals (Sweden)

    Terry J. Rose

    2016-01-01

    Full Text Available Enhanced efficiency nitrogen (N fertilizers (EEFs may improve crop recovery of fertilizer-N, but there is evidence that some EEFs cause a lag in crop growth compared to growth with standard urea. Biomass and mineral nutrient accumulation was investigated in rice fertilized with urea, urea-3,4-dimethylpyrazole phosphate (DMPP and polymer-coated urea (PCU to determine whether any delays in biomass production alter the accumulation patterns, and subsequent grain concentrations, of key mineral nutrients. Plant growth and mineral accumulation and partitioning to grains did not differ significantly between plants fertilized with urea or urea-DMPP. In contrast, biomass accumulation and the accumulation of phosphorus, potassium, calcium, magnesium, copper, zinc and manganese were delayed during the early growth phase of plants fertilized with PCU. However, plants in the PCU treatment ultimately compensated for this by increasing growth and nutrient uptake during the latter vegetative stages so that no differences in biomass or nutrient accumulation generally existed among N fertilizer treatments at anthesis. Delayed biomass accumulation in rice fertilized with PCU does not appear to reduce the total accumulation of mineral nutrients, nor to have any impact on grain mineral nutrition when biomass and grain yields are equal to those of rice grown with urea or urea-DMPP.

  2. Effects of Interaction between Cadmium (Cd) and Selenium (Se) on Grain Yield and Cd and Se Accumulation in a Hybrid Rice (Oryza sativa) System.

    Science.gov (United States)

    Huang, Baifei; Xin, Junliang; Dai, Hongwen; Zhou, Wenjing

    2017-11-01

    A pot experiment was conducted to investigate the interactive effects of cadmium (Cd) and selenium (Se) on their accumulation in three rice cultivars, which remains unclear. The results showed that Se reduced Cd-induced growth inhibition, and increased and decreased Se and Cd concentrations in brown rice, respectively. Cadmium concentrations in all tissues of the hybrid were similar to those in its male parent yet significantly lower than those in its female parent. Selenium reduced Cd accumulation in rice when Cd concentration exceeded 2.0 mg kg -1 ; however Se accumulation depended on the levels of Cd exposure. Finally, Cd had minimal effect on Se translocation within the three cultivars. We concluded that Cd concentration in brown rice is a heritable trait, making crossbreeding a feasible method for cultivating high-yield, low-Cd rice cultivars. Selenium effectively decreased the toxicity and accumulation of Cd, and Cd affected Se uptake but not translocation.

  3. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    Science.gov (United States)

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-01-31

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice.

    Science.gov (United States)

    Taniguchi, Shiduku; Hosokawa-Shinonaga, Yumi; Tamaoki, Daisuke; Yamada, Shoko; Akimitsu, Kazuya; Gomi, Kenji

    2014-02-01

    Jasmonic acid (JA) is involved in the regulation of host immunity in plants. Recently, we demonstrated that JA signalling has an important role in resistance to rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice. Here, we report that many volatile compounds accumulate in response to exogenous application of JA, including the monoterpene linalool. Expression of linalool synthase was up-regulated by JA. Vapour treatment with linalool induced resistance to Xoo, and transgenic rice plants overexpressing linalool synthase were more resistance to Xoo, presumably due to the up-regulation of defence-related genes in the absence of any treatment. JA-induced accumulation of linalool was regulated by OsJAZ8, a rice jasmonate ZIM-domain protein involving the JA signalling pathway at the transcriptional level, suggesting that linalool plays an important role in JA-induced resistance to Xoo in rice. © 2013 John Wiley & Sons Ltd.

  5. Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag.

    Science.gov (United States)

    He, Huaidong; Tam, Nora F Y; Yao, Aijun; Qiu, Rongliang; Li, Wai Chin; Ye, Zhihong

    2017-12-01

    Contamination of rice (Oryza sativa) by Cd is of great concern. Steel slag could be used to amend Cd-contaminated soils and make them safe for cereal production. This work was conducted to study the effects of steel slag on Cd uptake and growth of rice plants in acidic and Cd-contaminated paddy soils and to determine the possible mechanisms behind these effects. Pot (rhizobag) experiments were conducted using rice plants grown on two acidic and Cd-contaminated paddy soils with or without steel slag amendment. Steel slag amendment significantly increased grain yield by 36-45% and root catalase activity, and decreased Cd concentrations in brown rice by 66-77% compared with the control, in both soils. Steel slag amendment also markedly decreased extractable soil Cd, Cd concentrations in pore-water and Cd translocation from roots to above-ground parts. It also significantly increased soil pH, extractable Si and Ca in soils and Ca concentrations in roots. Significant positive correlations were found between extractable soil Cd and Cd concentrations in rice tissues, but it was negatively correlated with soil pH and extractable Si. Calcium in root tissues significantly and negatively correlated with Cd translocation factors from roots to straw. Overall, steel slag amendment not only significantly promoted rice growth but decreased Cd accumulation in brown rice. These benefits appear to be related to improvements in soil conditions (e.g. increasing pH, extractable Si and Ca), a reduction in extractable soil Cd, and suppression of Cd translocation from roots to above-ground parts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Role of probiotic Lactobacillus fermentum KKL1 in the preparation of a rice based fermented beverage.

    Science.gov (United States)

    Ghosh, Kuntal; Ray, Mousumi; Adak, Atanu; Halder, Suman K; Das, Arpan; Jana, Arijit; Parua Mondal, Saswati; Vágvölgyi, Csaba; Das Mohapatra, Pradeep K; Pati, Bikas R; Mondal, Keshab C

    2015-01-01

    A dominant lactic acid bacteria, Lactobacillus fermentum KKL1 was isolated from an Indian rice based fermented beverage and its fermentative behavior on rice was evaluated. The isolate grown well in rice and decreased the pH, with an increase of total titratable acidity on account of high yield in lactic acid and acetic acid. The production of α-amylase and glucoamylase by the strain reached plateau on 1st and 2nd day of fermentation respectively. The accumulation of malto-oligosaccharides of different degrees of polymerization was also found highest on 4th day. Besides, phytase activity along with accumulation of free minerals also unremittingly increased throughout the fermentation. The fermented materials showed free radical scavenging activity against DPPH radicals. In-vitro characteristics revealed the suitability of the isolate as probiotic organism. The above profiling revealed that probiotic L. fermentum KKL1 have the significant impact in preparation of rice beer and improves its functional characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Cd Toxicity and Accumulation in Rice Plants Vary with Soil Nitrogen Status and Their Genotypic Difference can be Partly Attributed to Nitrogen Uptake Capacity

    Directory of Open Access Journals (Sweden)

    Qin DU

    2009-12-01

    Full Text Available Two indica rice genotypes, viz. Milyang 46 and Zhenshan 97B differing in Cd accumulation and tolerance were used as materials in a hydroponic system consisting of four Cd levels (0, 0.1, 1.0 and 5.0 µmol/L and three N levels (23.2, 116.0 and 232.0 mg/L to study the effects of nitrogen status and nitrogen uptake capacity on Cd accumulation and tolerance in rice plants. N-efficient rice genotype, Zhenshan 97B, accumulated less Cd and showed higher Cd tolerance than N-inefficient rice genotype, Milyang 46. There was consistency between nitrogen uptake capacity and Cd tolerance in rice plants. Increase of N level in solution slightly increased Cd concentration in shoots but significantly increased in roots of both genotypes. Compared with the control at low N level, Cd tolerance in both rice genotypes could be significantly enhanced under normal N level, but no significant difference was observed between the Cd tolerances under normal N (116.0 mg/L and high N (232.0 mg/L conditions. The result proved that genotypic differences in Cd accumulation and toxicity could be, at least in part, attributed to N uptake capacity in rice plants.

  8. Soil removal as a decontamination practice and radiocesium accumulation in tadpoles in rice paddies at Fukushima

    International Nuclear Information System (INIS)

    Sakai, Masaru; Gomi, Takashi; Nunokawa, Masanori; Wakahara, Taeko; Onda, Yuichi

    2014-01-01

    We investigated the biological accumulation of radiocesium in tadpoles [Rana (Pelophylax) porosa porosa] in rice paddies with and without decontamination practice at Fukushima. Radiocesium was accumulated in surface part of soils both in the control and decontaminated paddies one year after decontamination. Mean 134 Cs and 137 Cs concentrations in tadpoles in the control and decontaminated paddies were 3000 and 4500, and 600 and 890 Bq/kg dry weight, respectively. Radiocesium concentrations in surface soil (0–5 cm depth) and tadpoles in the decontaminated paddy were five times smaller than in the control paddy. These results suggest that decontamination practice can reduce radiocesium concentrations in both soil and tadpoles. However, at the decontaminated paddy, radiocesium concentrations in surface soils became 3.8 times greater one year after decontamination, which indicates that monitoring the subsequent movement of radiocesium in rice paddies and surrounding areas is essential for examining contamination propagation. - Highlights: • Surface soil removal in a rice paddy reduced the radiocesium concentration in soil. • The radiocesium concentration in tadpoles decreased following decontamination. • Radiocesium levels in soil increased at 1 year following decontamination practice. • Reduction of radiocesium of soil can propagate to biota in rice paddies. - Decontamination practice reduced radiocesium concentrations in both soil and tadpoles that suggests reduction of radiocesium of soil can propagate to biota in rice paddies

  9. Leaf application of silicic acid to upland rice and corn

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Costa Crusciol

    2013-12-01

    Full Text Available This study aimed to evaluate the effect of Si (stabilized silicic acid, Silamol® leaf application on mineral nutrition and yield in upland rice and corn crops. The treatments were the control (without Si and Si foliar split spraying using 2 L ha-1 of the Silamol® commercial product, with 0.8% soluble Si as concentrated stabilized silicic acid. Silicon leaf application increased the concentrations of K, Ca and Si in rice and corn leaves, the number of panicles per m2 of rice and the number of grains per ear of corn; accordingly, the Si leaf application provided a higher grain yield in both crops.

  10. Effects of ferrous sulfate amendment and water management on rice growth and metal(loid) accumulation in arsenic and lead co-contaminated soil.

    Science.gov (United States)

    Zou, Lina; Zhang, Shu; Duan, Dechao; Liang, Xinqiang; Shi, Jiyan; Xu, Jianming; Tang, Xianjin

    2018-03-01

    Arsenic (As) and lead (Pb) commonly co-exist with high concentrations in paddy soil mainly due to human activities in south of China. This study investigates the effect of ferrous sulfate (FeSO 4 ) amendment and water management on rice growth and arsenic (As) and lead (Pb) accumulation in rice plants. A paddy soil co-contaminated with As and Pb was chosen for the pot experiment with three FeSO 4 levels (0, 0.25, and 1%, on a dry weight basis) and two water managements (flooded, non-flooded). The concentrations of As and Pb in iron plaques and rice plants were determined. Application of FeSO 4 and non-flooded conditions significantly accelerated the growth of rice plants. With the addition of FeSO 4 , iron plaques were significantly promoted and most of the As and Pb were sequestered in the iron plaques. The addition of 0.25% FeSO 4 and non-flooded conditions did not significantly change the accumulation of As and Pb in rice grains. The practice also significantly decreased the translocation factor (TF) of As and Pb from roots to above-ground parts which might have been aided by the reduction of As and Pb availability in soil, the preventing effect of rice roots, and the formation of more reduced glutathione (GSH). Flooded conditions decreased the Pb concentration in rice plants, but increased As accumulation. Moreover, rice grew thin and weak and even died under flooded conditions. Overall, an appropriate FeSO 4 dose and non-flooded conditions might be feasible for rice cultivation, especially addressing the As issue in the co-contaminated soil. However, further detailed studies to decrease the accumulation of Pb in edible parts and the field application in As and Pb co-contaminated soil are recommended.

  11. Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils.

    Science.gov (United States)

    Li, Yunyun; Zhao, Jiating; Guo, Jingxia; Liu, Mengjiao; Xu, Qinlei; Li, Hong; Li, Yu-Feng; Zheng, Lei; Zhang, Zhiyong; Gao, Yuxi

    2017-09-01

    Sulfur (S) is an essential element for plant growth and its biogeochemical cycling is strongly linked to the species of heavy metals in soil. In this work, the effects of S (sulfate and elemental sulfur) treatment on the accumulation, distribution and chemical forms of Hg in rice growing in Hg contaminated soil were investigated. It was found that S could promote the formation of iron plaque on the root surface and decrease total mercury (T-Hg) and methylmercury (MeHg) accumulation in rice grains, straw, and roots. Hg in the root was dominated in the form of RS-Hg-SR. Sulfate treatment increased the percentage of RS-Hg-SR to T-Hg in the rice root and changed the Hg species in soil. The dominant Hg species (70%) in soil was organic substance bound fractions. Sulfur treatment decreased Hg motility in the rhizosphere soils by promoting the conversion of RS-Hg-SR to HgS. This study is significant since it suggests that low dose sulfur treatment in Hg-containing water irrigated soil can decrease both T-Hg and MeHg accumulation in rice via inactivating Hg in the soil and promoting the formation of iron plaque in rice root, which may reduce health risk for people consuming those crops. Copyright © 2017. Published by Elsevier Ltd.

  12. Development of a new lactic acid bacterial inoculant for fresh rice straw silage

    Directory of Open Access Journals (Sweden)

    Jong Geun Kim

    2017-07-01

    Full Text Available Objective Effects of newly isolated Lactobacillus plantarum on the fermentation and chemical composition of fresh rice straw silage was evaluated in this study. Methods Lactic acid bacteria (LAB from good crop silage were screened by growing them in MRS broth and a minimal medium with low carbohydrate content. Selected LAB (LAB 1821 were Gram-positive, rods, catalase negative, and were identified to be Lactobacillus plantarum based on their biochemical characteristics and a 16S rRNA analysis. Fresh rice straw was ensiled with two isolated LAB (1821 and 1841, two commercial inoculants (HM/F and P1132 and no additive as a control. Results After 2 months of storage at ambient temperature, rice straw silages treated with additives were well-preserved, the pH values and butyric and acetic acid contents were lower, and the lactic acid content and lactic/acetic acid ratio were higher than those in the control (p0.05 effect on acid detergent fiber or neutral detergent fiber contents. Crude protein (CP content and in vitro DM digestibility (IVDMD increased after inoculation of LAB 1821 (p<0.05. Conclusion LAB 1821 increased the CP, IVDMD, lactic acid content and ratio of lactic acid to acetic acid in rice straw silage and decreased the pH, acetic acid, NH3-N, and butyric acid contents. Therefore, adding LAB 1821 improved the fermentation quality and feed value of rice straw silage.

  13. Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China

    International Nuclear Information System (INIS)

    Lu Ying; Dong, Fei; Deacon, Claire; Chen Huojun; Raab, Andrea; Meharg, Andrew A.

    2010-01-01

    The consumption of paddy rice (Oryza sativa L.) is a major inorganic arsenic exposure pathway in S.E. Asia. A multi-location survey was undertaken in Guangdong Province, South China to assess arsenic accumulation and speciation in 2 rice cultivars, one an Indica and the other a hybrid Indica. The results showed that arsenic concentrations in rice tissue increased in the order grain < husk < straw < root. Rice grain arsenic content of 2 rice cultivars was significant different and correlated with phosphorus concentration and molar ratio of P/As in shoot, being higher for the Indica cultivar than for the hybrid Indica, which suggests altering shoot phosphorus status as a promising route for breeding rice cultivars with reduced grain arsenic. Speciation of grain arsenic, performed using HPLC-ICP-MS, identified inorganic arsenic as the dominant arsenic species present in the rice grain. - Altering rice shoot phosphorus status is a promising route for breeding rice cultivars with reduced grain arsenic.

  14. Combined effects of lanthanum (III) chloride and acid rain on photosynthetic parameters in rice.

    Science.gov (United States)

    Wang, Lihong; Wang, Wen; Zhou, Qing; Huang, Xiaohua

    2014-10-01

    Rare earth elements (REEs) pollution and acid rain are environmental issues, and their deleterious effects on plants attract worldwide attention. These two issues exist simultaneously in many regions, especially in some rice-growing areas. However, little is known about the combined effects of REEs and acid rain on plants. Here, the combined effects of lanthanum chloride (LaCl3), one type of REE salt, and acid rain on photosynthesis in rice were investigated. We showed that the combined treatment of 81.6 μM LaCl3 and acid rain at pH 4.5 increased net photosynthetic rate (Pn), stomatic conductance (Gs), intercellular CO2 concentration (Ci), Hill reaction activity (HRA), apparent quantum yield (AQY) and carboxylation efficiency (CE) in rice. The combined treatment of 81.6 μM LaCl3 and acid rain at pH 3.5 began to behave toxic effects on photosynthesis (decreasing Pn, Gs, HRA, AQY and CE, and increasing Ci), and the maximally toxic effects were observed in the combined treatment of 2449.0 μM LaCl3 and acid rain at pH 2.5. Moreover, the combined effects of LaCl3 and acid rain on photosynthesis in rice depended on the growth stage of rice, with the maximal effects occurring at the booting stage. Furthermore, the combined treatment of high-concentration LaCl3 and low-pH acid rain had more serious effects on photosynthesis in rice than LaCl3 or acid rain treatment alone. Finally, the combined effect of LaCl3 and acid rain on Pn in rice resulted from the changes in stomatic (Gs, Ci) and non-stomatic (HRA, AQY and CE) factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Mutation in Rice Abscisic Acid2 Results in Cell Death, Enhanced Disease-Resistance, Altered Seed Dormancy and Development

    Directory of Open Access Journals (Sweden)

    Yongxiang Liao

    2018-03-01

    Full Text Available Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 (lmm9150, exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H2O2. Enhanced disease resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OsABA2 (LOC_Os03g59610 in lmm9150. Knock-out of OsABA2 through CRISPR/Cas9 led to phenotypes similar to those of lmm9150. Consistent with the function of OsABA2 in ABA biosynthesis, ABA level in the lmm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant phenotypes of lmm9150. Taken together, our data linked ABA deficiency to cell death and provided insight into the role of ABA in rice disease resistance.

  16. Mutation in Rice Abscisic Acid2 Results in Cell Death, Enhanced Disease-Resistance, Altered Seed Dormancy and Development.

    Science.gov (United States)

    Liao, Yongxiang; Bai, Que; Xu, Peizhou; Wu, Tingkai; Guo, Daiming; Peng, Yongbin; Zhang, Hongyu; Deng, Xiaoshu; Chen, Xiaoqiong; Luo, Ming; Ali, Asif; Wang, Wenming; Wu, Xianjun

    2018-01-01

    Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA) synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 ( lmm9150 ), exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H 2 O 2 . Enhanced disease resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OsABA2 (LOC_Os03g59610) in lmm9150 . Knock-out of OsABA2 through CRISPR/Cas9 led to phenotypes similar to those of lmm9150 . Consistent with the function of OsABA2 in ABA biosynthesis, ABA level in the lmm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant phenotypes of lmm9150 . Taken together, our data linked ABA deficiency to cell death and provided insight into the role of ABA in rice disease resistance.

  17. Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Fangbin; Wang, Runfeng [Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058 (China); Cheng, Wangda [Jiaxing Academy of Agricultural Sciences, Jiaxing 314016 (China); Zeng, Fanrong; Ahmed, Imrul Mosaddek; Hu, Xinna; Zhang, Guoping [Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058 (China); Wu, Feibo, E-mail: wufeibo@zju.edu.cn [Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058 (China)

    2014-10-15

    The field scale trials revealed significant genotypic and environmental differences in grain heavy metal (HM) concentrations of 158 newly developed rice varieties grown in twelve locations of Zhejiang province of China. Grain Pb and Cd contents in 5.3% and 0.4% samples, respectively, were above the maximum permissible concentration (MPC); none of samples had Cr/Cu exceeding MPC. Stepwise multiple linear regression analysis estimated soil HM critical levels for safe rice production. Low grain HM accumulation cultivars such as Xiushui817, Jiayou08-1 and Chunyou689 were recommended as suitable cultivars for planting in slight/medium HM contaminated soils. The alleviating regulator (AR) of (NH{sub 4}){sub 2}SO{sub 4} as N fertilizer coupled with foliar spray of a mixture containing glutathione (GSH), Si, Zn and Se significantly decreased grain Cd, Cr, Cu and Pb concentrations grown in HM contaminated fields with no effect on yield, indicating a promising measurement for further reducing grain HM content to guarantee safe food production. - Highlights: • Field trials evaluated situation of grain HM in main rice growing areas of Zhejiang. • Forecasting index system to predict rice grain HM concentration was achieved. • Hybrid rice holds higher grain Cd concentration than conventional cultivars. • Low grain HM accumulation rice cultivars were successfully identified. • Developed alleviating regulator which effectively reduced grain toxic HM.

  18. Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation

    International Nuclear Information System (INIS)

    Cao, Fangbin; Wang, Runfeng; Cheng, Wangda; Zeng, Fanrong; Ahmed, Imrul Mosaddek; Hu, Xinna; Zhang, Guoping; Wu, Feibo

    2014-01-01

    The field scale trials revealed significant genotypic and environmental differences in grain heavy metal (HM) concentrations of 158 newly developed rice varieties grown in twelve locations of Zhejiang province of China. Grain Pb and Cd contents in 5.3% and 0.4% samples, respectively, were above the maximum permissible concentration (MPC); none of samples had Cr/Cu exceeding MPC. Stepwise multiple linear regression analysis estimated soil HM critical levels for safe rice production. Low grain HM accumulation cultivars such as Xiushui817, Jiayou08-1 and Chunyou689 were recommended as suitable cultivars for planting in slight/medium HM contaminated soils. The alleviating regulator (AR) of (NH 4 ) 2 SO 4 as N fertilizer coupled with foliar spray of a mixture containing glutathione (GSH), Si, Zn and Se significantly decreased grain Cd, Cr, Cu and Pb concentrations grown in HM contaminated fields with no effect on yield, indicating a promising measurement for further reducing grain HM content to guarantee safe food production. - Highlights: • Field trials evaluated situation of grain HM in main rice growing areas of Zhejiang. • Forecasting index system to predict rice grain HM concentration was achieved. • Hybrid rice holds higher grain Cd concentration than conventional cultivars. • Low grain HM accumulation rice cultivars were successfully identified. • Developed alleviating regulator which effectively reduced grain toxic HM

  19. Composition of the enzymatic and acid hydrolyzates of gamma-irradiated rice straw

    International Nuclear Information System (INIS)

    Abad, L.V.; Banzon, R.B.; Rosa, A. de la

    1989-01-01

    Gamma irradiation was utilized to induce structural changes in rice straw that would enhance the conversion of its cellulose and ligno-cellulosic components to glucose and other reducing sugars. With the appropriate fermentation conditions these sugars can eventually be converted into alcohol. Rice straw materials were irradiated at varying doses (0-500 kgy) and hydrolyzed by the use of a) cellulose enzyme and b) 1% sulfuric acid. The composition of the hydrolyzates of rice straw was studied by thin layer chromatography (TLC) coupled with the Nelson-Somogyi test for its quantification. Acid hydrolyzates of rice straw showed a maximum increase of 16.46% in its total reducing sugars at 300 Kgy. TLC of the acid hydrolyzates of rice straw revealed the presence of glucose, xylose, arabinose, and cellobiose. However, it was only with xylose that a significant increase in yield was observed with the non-irradiated straw 12.55% xylose yield was noted while with rice straw-irradiated at 400 Kgy a maximum yield of 15.90% xylose was obtained. Total reducing sugar of the enzymatic hydrolyzate of rice straw showed a maximum increase of 205% at 500 Kgy. TLC revealed that only glucose was present in the enzymatic hydrolyzate. Glucose yield increase from 2.49% (0 Kgy) to 7.31% (500 Kgy). The results showed that radiation pre-treatment of rice straw induces significant increases in reducing sugar for both enzymatic and hydrolyzate. (Auth.). 2 tabs.; 1 fig

  20. The migration, accumulation and distribution of 59Fe in rice plants and soils

    International Nuclear Information System (INIS)

    Wang Yumin; Xu Shiming; Xu Guanren

    1990-07-01

    The 59 Fe is one of radionuclides in the waste water discharged from nuclear power plants. The accumulation and distribution of 59 Fe in rice plants at different growing stages and the accumulation and migration in soils of different textures were studied by using solution containing 59 FeCl 3 as a tracer. At the same contaminated activity, the distribution in the soils are discussed. According to the biological consequences caused by 59 Fe entering indirectly into agroecological environment, the possible methods for treatment and utilization of agricultural products are suggested

  1. Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-06-01

    Full Text Available Abscisic acid (ABA plays an essential role in root hair elongation in plants, but the regulatory mechanism remains to be elucidated. In this study, we found that exogenous ABA can promote rice root hair elongation. Transgenic rice overexpressing SAPK10 (Stress/ABA-activated protein kinase 10 had longer root hairs; rice plants overexpressing OsABIL2 (OsABI-Like 2 had attenuated ABA signaling and shorter root hairs, suggesting that the effect of ABA on root hair elongation depends on the conserved PYR/PP2C/SnRK2 ABA signaling module. Treatment of the DR5-GUS and OsPIN-GUS lines with ABA and an auxin efflux inhibitor showed that ABA-induced root hair elongation depends on polar auxin transport. To examine the transcriptional response to ABA, we divided rice root tips into three regions: short root hair, long root hair and root tip zones; and conducted RNA-seq analysis with or without ABA treatment. Examination of genes involved in auxin transport, biosynthesis and metabolism indicated that ABA promotes auxin biosynthesis and polar auxin transport in the root tip, which may lead to auxin accumulation in the long root hair zone. Our findings shed light on how ABA regulates root hair elongation through crosstalk with auxin biosynthesis and transport to orchestrate plant development.

  2. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation

    Science.gov (United States)

    Liu, Yalong; Wang, Ping; Ding, Yuanjun; Lu, Haifei; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Filley, Timothy; Zhang, Xuhui; Zheng, Jinwei; Pan, Genxing

    2016-12-01

    While soil organic carbon (SOC) accumulation and stabilization has been increasingly the focus of ecosystem properties, how it could be linked to soil biological activity enhancement has been poorly assessed. In this study, topsoil samples were collected from a series of rice soils shifted from salt marshes for 0, 50, 100, 300 and 700 years from a coastal area of eastern China. Soil aggregates were fractioned into different sizes of coarse sand (200-2000 µm), fine sand (20-200 µm), silt (2-20 µm) and clay (Soil properties were determined to investigate niche specialization of different soil particle fractions in response to long-term rice cultivation, including recalcitrant and labile organic carbon, microbial diversity of bacterial, archaeal and fungal communities, soil respiration and enzyme activity. The results showed that the mass proportion both of coarse-sand (2000-200 µm) and clay (clay fractions (20-25 g kg-1), but was depleted in silt fractions (˜ 10 g kg-1). The recalcitrant carbon pool was higher (33-40 % of SOC) in both coarse-sand and clay fractions than in fine-sand and silt fractions (20-29 % of SOC). However, the ratio of labile organic carbon (LOC) to SOC showed a weakly decreasing trend with decreasing size of aggregate fractions. Total soil DNA (deoxyribonucleic acid) content in the size fractions followed a similar trend to that of SOC. Despite the largely similar diversity between the fractions, 16S ribosomal gene abundance of bacteria and of archaeal were concentrated in both coarse-sand and clay fractions. Being the highest generally in coarse-sand fractions, 18S rRNA gene abundance of fungi decreased sharply but the diversity gently, with decreasing size of the aggregate fractions. The soil respiration quotient (ratio of respired CO2-C to SOC) was the highest in the silt fraction, followed by the fine-sand fraction, but the lowest in coarse-sand and clay fractions in the rice soils cultivated over 100 years, whereas the microbial

  3. Lead accumulation in the straw mushroom, Volvariella volvacea, from lead contaminated rice straw and stubble.

    Science.gov (United States)

    Kumhomkul, Thapakorn; Panich-pat, Thanawan

    2013-08-01

    Straw mushrooms were grown on lead contaminated rice straw and stubble. Study materials were dried, acid digested, and analyzed for lead using flame atomic absorption spectrophotometry. The results showed the highest lead concentration in substrate was 445.350 mg kg⁻¹ in Treatment 3 (T3) and the lowest was BD (below detection) in Treatment 1 (T1). The maximum lead content in straw mushrooms was 5.072 mg kg⁻¹ dw in pileus of T3 and the minimum lead content in straw mushrooms was BD in egg and mature (stalk and pileus) stage of T1. The lead concentration in straw mushrooms was affected by the age of the mycelium and the morphology of mushrooms. Mushrooms' lead uptake produced the highest accumulation in the cell wall. Some lead concentrations in straw mushrooms exceeded the EU standard (>3 mg kg⁻¹ dw).

  4. Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice.

    Science.gov (United States)

    Shao, Yafang; Hu, Zhanqiang; Yu, Yonghong; Mou, Renxiang; Zhu, Zhiwei; Beta, Trust

    2018-01-15

    Soluble-free, soluble-conjugated, insoluble-bound phenolics and antioxidant activity, flavonoid (TFC), proanthocyanidins (TPAC), anthocyanins and minerals of fifteen whole rice grains with different colors were investigated. Soluble-free protocatechuic and vanillic acids were only quantified in black rice, which had the most quantities. Non-pigmented rice had no detectable conjugated protocatechuic and 2,5-dihydroxybenzoic acids both of which were found in black and red rice, respectively. The main bound phenolic acids were ferulic and p-coumaric, as well as 2,5-dihydroxybenzoic in red rice and protocatechuic and vanillic acids in black rice. Soluble-conjugated phenolics, TFC, and anthocyanins were negatively correlated with L ∗ , b ∗ , C and H° values. TPAC was positively correlated with a ∗ (Pblack rice groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance.

    Science.gov (United States)

    Singh, Dhananjaya P; Prabha, Ratna; Yandigeri, Mahesh S; Arora, Dilip K

    2011-11-01

    Phenylpropanoids, flavonoids and plant growth regulators in rice (Oryza sativa) variety (UPR 1823) inoculated with different cyanobacterial strains namely Anabaena oryzae, Anabaena doliolum, Phormidium fragile, Calothrix geitonos, Hapalosiphon intricatus, Aulosira fertilissima, Tolypothrix tenuis, Oscillatoria acuta and Plectonema boryanum were quantified using HPLC in pot conditions after 15 and 30 days. Qualitative analysis of the induced compounds using reverse phase HPLC and further confirmation with LC-MS/MS showed consistent accumulation of phenolic acids (gallic, gentisic, caffeic, chlorogenic and ferulic acids), flavonoids (rutin and quercetin) and phytohormones (indole acetic acid and indole butyric acid) in rice leaves. Plant growth promotion (shoot, root length and biomass) was positively correlated with total protein and chlorophyll content of leaves. Enzyme activity of peroxidase and phenylalanine ammonia lyase and total phenolic content was fairly high in rice leaves inoculated with O. acuta and P. boryanum after 30 days. Differential systemic accumulation of phenylpropanoids in plant leaves led us to conclude that cyanobacterial inoculation correlates positively with plant growth promotion and stress tolerance in rice. Furthermore, the study helped in deciphering possible mechanisms underlying plant growth promotion and stress tolerance in rice following cyanobacterial inoculation and indicated the less explored avenue of cyanobacterial colonization in stress tolerance against abiotic stress.

  6. Analysis of Lysophospholipid Content in Low Phytate Rice Mutants.

    Science.gov (United States)

    Tong, Chuan; Chen, Yaling; Tan, Yuanyuan; Liu, Lei; Waters, Daniel L E; Rose, Terry J; Shu, Qingyao; Bao, Jinsong

    2017-07-05

    As a fundamental component of nucleic acids, phospholipids, and adenosine triphosphate, phosphorus (P) is critical to all life forms, however, the molecular mechanism of P translocation and distribution in rice grains are still not understood. Here, with the use of five different low phytic acid (lpa) rice mutants, the redistribution in the main P-containing compounds in rice grain, phytic acid (PA), lysophospholipid (LPL), and inorganic P (Pi), was investigated. The lpa mutants showed a significant decrease in PA and phytate-phosphorus (PA-P) concentration with a concomitant increase in Pi concentration. Moreover, defects in the OsST and OsMIK genes result in a great reduction of specific LPL components and LPL-phosphorus (LPL-P) contents in rice grain. In contrast, defective OsMRP5 and Os2-PGK genes led to a significant increase in individual LPL components. The effect of the Os2-PGK gene on the LPL accumulation was validated using breeding lines derived from a cross between KBNT-lpa (Os2-PGK mutation) and Jiahe218. This study demonstrates that these rice lpa mutants lead to the redistribution of Pi in endosperm and modify LPL biosynthesis. Increase LPLs in the endosperm in the lpa mutants may have practical applications in rice breeding to produce "healthier" rice.

  7. Purification of gamma-amino butyric acid (GABA) from fermentation of defatted rice bran extract by using ion exchange resin

    Science.gov (United States)

    Tuan Nha, Vi; Phung, Le Thi Kim; Dat, Lai Quoc

    2017-09-01

    Rice bran is one of the significant byproducts of rice processing with 10 %w/w of constitution of whole rice grain. It is rich in nutrient compounds, including glutamic acid. Thus, it could be utilized for the fermentation with Lactobateria for synthesis of GABA, a valuable bioactive for antihypertensive effects. However, the concentration and purity of GABA in fermentation broth of defatted rice bran extract is low for production of GABA drug. This research focused on the purification of GABA from the fermentation broth of defatted rice bran extract by using cation exchange resin. The results indicate that, the adsorption isotherm of GABA by Purelite C100 showed the good agreement with Freundlich model, with high adsorption capacity. The effects of pH and concentration of NaCl in eluent on the elution were also investigated. The obtained results show that, at the operating conditions of elution as follows: pH 6.5, 0.8 M of NaCl in eluent, 0.43 of bed volume; concentration of GABA in accumulative eluent, the purity and recovery yield of GABA were 743.8 ppm, 44.0% and 84.2%, respectively. Results imply that, it is feasible to apply cation exchange resin for purification of GABA from fermentation broth of defatted rice bran extract.

  8. Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings.

    Directory of Open Access Journals (Sweden)

    Yun-An Chen

    Full Text Available Mercury (Hg is a serious environmental pollution threat to the planet. The accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. To gain more insight into the cellular response to Hg, we performed a large-scale analysis of the rice transcriptome during Hg stress. Genes induced with short-term exposure represented functional categories of cell-wall formation, chemical detoxification, secondary metabolism, signal transduction and abiotic stress response. Moreover, Hg stress upregulated several genes involved in aromatic amino acids (Phe and Trp and increased the level of free Phe and Trp content. Exogenous application of Phe and Trp to rice roots enhanced tolerance to Hg and effectively reduced Hg-induced production of reactive oxygen species. Hg induced calcium accumulation and activated mitogen-activated protein kinase. Further characterization of the Hg-responsive genes we identified may be helpful for better understanding the mechanisms of Hg in plants.

  9. Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings.

    Science.gov (United States)

    Chen, Yun-An; Chi, Wen-Chang; Trinh, Ngoc Nam; Huang, Li-Yao; Chen, Ying-Chih; Cheng, Kai-Teng; Huang, Tsai-Lien; Lin, Chung-Yi; Huang, Hao-Jen

    2014-01-01

    Mercury (Hg) is a serious environmental pollution threat to the planet. The accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. To gain more insight into the cellular response to Hg, we performed a large-scale analysis of the rice transcriptome during Hg stress. Genes induced with short-term exposure represented functional categories of cell-wall formation, chemical detoxification, secondary metabolism, signal transduction and abiotic stress response. Moreover, Hg stress upregulated several genes involved in aromatic amino acids (Phe and Trp) and increased the level of free Phe and Trp content. Exogenous application of Phe and Trp to rice roots enhanced tolerance to Hg and effectively reduced Hg-induced production of reactive oxygen species. Hg induced calcium accumulation and activated mitogen-activated protein kinase. Further characterization of the Hg-responsive genes we identified may be helpful for better understanding the mechanisms of Hg in plants.

  10. Rice straw incorporated just before soil flooding increases acetic acid formation and decreases available nitrogen

    Directory of Open Access Journals (Sweden)

    Ronaldir Knoblauch

    2014-02-01

    before, the concentration of N-NH4+ in the soil was 28 and 54 mg kg-1, equivalent to an accumulation of 42 and 81 kg ha-1 of N-NH4+, respectively. There was formation of acetic acid in which toxic concentrations were reached (7.2 mmol L-1 on the 15th day of flooding only for the treatment with straw incorporated on the day of flooding. The pH of the soil solution of all the treatments increased after flooding and this increase was faster in the treatments with incorporation of straw, followed by the ash treatment and then the control. After 60 days of flooding, however, the pH values were around 6.5 for all treatments, except for the control, which reached a pH of 6.3. Rice straw should be incorporated into the soil at least 30 days before flooding; otherwise, it may immobilize part of the mineral N and produce acetic acid in concentrations toxic to rice seedlings.

  11. Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering.

    Science.gov (United States)

    Shao, Yafang; Xu, Feifei; Sun, Xiao; Bao, Jinsong; Beta, Trust

    2014-01-15

    This study investigated differences in total phenolic content (TPC), antioxidant capacity, and phenolic acids in free, conjugated and bound fractions of white (unpolished), red and black rice at 1-, 2-, and 3-weeks of grain development after flowering and at maturity. Unlike the TPC (mg/100g) of white rice (14.6-33.4) and red rice (66.8-422.2) which was significantly higher at 1-week than at later stages, the TPC of black rice (56.5-82.0) was highest at maturity. The antioxidant capacity measured by DPPH radical scavenging and ORAC methods generally followed a similar trend as TPC. Only black rice had detectable anthocyanins (26.5-174.7mg/100g). Cyanidin-3-glucoside (C3G) and peonidin-3-glucoside (P3G) were the main anthocyanins in black rice showing significantly higher levels at 2- and 3-weeks than at 1-week development and at maturity. At all stages, the phenolic acids existed mainly in the bound form as detected by HPLC and confirmed by LC-MS/MS. Black rice (20.1-31.7mg/100g) had higher total bound phenolic acids than white rice and red rice (7.0-11.8mg/100g). Protocatechuic acid was detected in red rice and black rice with relatively high levels at 1-week development (1.41mg/100g) and at maturity (4.48mg/100g), respectively. Vanillic acid (2.4-5.4mg/100g) was detected only in black rice where it peaked at maturity. p-Coumaric acid (black rice. Ferulic acid (4.0-17.9mg/100g), the most abundant bound phenolic acid, had an inconsistent trend with higher levels being observed in black rice where it peaked at maturity. Isoferulic acid levels (0.8-1.6mg/100g) were generally low with slightly elevated values being observed at maturity. Overall black rice had higher total bound phenolic acids than white and red rice while white rice at all stages of development after flowering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Cadmium accumulation characteristics of low-cadmium rice (Oryza sativa L.) line and F1 hybrids grown in cadmium-contaminated soils.

    Science.gov (United States)

    Li, Kun; Yu, Haiying; Li, Tingxuan; Chen, Guangdeng; Huang, Fu

    2017-07-01

    Cadmium (Cd) pollution has threatened severely to food safety and human health. A pot experiment and a field experiment were conducted to investigate the difference of Cd accumulation between rice (Oryza sativa L.) lines and F 1 hybrids in Cd-contaminated soils. The adverse effect on biomass of rice lines was greater than that of F 1 hybrids under Cd treatments in the pot experiment. The variations of Cd concentration among rice cultivars in different organs were smaller in stem and leaf, but larger in root and ear. Average proportion of Cd in root of F 1 hybrids was 1.39, 1.39, and 1.16 times higher than those of rice lines at the treatment of 1, 2, and 4 mg Cd kg -1 soil, respectively. Cd concentrations in ear of F 1 hybrids were significantly lower than rice lines with the reduction from 29.24 to 50.59%. Cd concentrations in brown rice of all F 1 hybrids were less than 0.2 mg kg -1 at 1 mg Cd kg -1 soil, in which Lu98A/YaHui2816, 5406A/YaHui2816, and C268A/YaHui2816 could be screened out as cadmium-safe cultivars (CSCs) for being safe even at 2 mg Cd kg -1 soil. C268A/YaHui2816 showed the lowest Cd concentration in root among F 1 hybrids, while Lu98A/YaHui2816 and 5406A/YaHui2816 showed lower capability of Cd translocation from root to shoot under Cd exposure, which eventually caused the lower Cd accumulation in brown rice. The lower level of Cd translocation contributed to reducing the accumulation of Cd in brown rice had been validated by the field experiment. Thus, Lu98A/YaHui2816, 5406A/YaHui2816, and C268A/YaHui2816 could be considered as potential CSCs to cultivate in Cd-contaminated soils (<2 mg Cd kg -1 soil).

  13. Effects of nitrogen fertilization strategies on nitrogen use efficiency in physiology, recovery, and agronomy and redistribution of dry matter accumulation and nitrogen accumulation in two typical rice cultivars in Zhejiang, China.

    Science.gov (United States)

    Xie, Wen-xia; Wang, Guang-huo; Zhang, Qi-chun; Guo, Hai-chao

    2007-03-01

    Field experiments were conducted in farmers' rice fields in 2001 and 2002 to study the effects of nitrogen (N) management strategies on N use efficiency in recovery (RE), agronomy (AE) and physiology (PE) and redistribution of dry matter accumulation (DMA) and nitrogen accumulation (NA) in two typical rice cultivars in Jinhua, Zhejiang Province. This study aimed mainly at identifying the possible causes of poor fertilizer N use efficiency (NUE) of rice in Zhejiang by comparing farmers' fertilizer practice (FFP) with advanced site-specific nutrient management (SSNM) and real-time N management (RTNM). The results showed that compared to FFP, SSNM and RTNM reduced DMA and NA before panicle initiation and increased DMA and NA at post-flowering. There is no significant difference between SSNM and FFP in post-flowering dry matter redistribution (post-DMR) and post-flowering nitrogen redistribution (post-NR). These results suggest that high input rate of fertilizer N and improper fertilizer N timing are the main factors causing low NUE of irrigated rice in the farmer's routine practice of Zhejiang. With SSNM, about 15% of the current total N input in direct-seeding early rice and 45% in single rice could be reduced without yield loss in Zhejiang, China.

  14. Enhancing Contents of γ-Aminobutyric Acid (GABA) and Other Micronutrients in Dehulled Rice during Germination under Normoxic and Hypoxic Conditions.

    Science.gov (United States)

    Ding, Junzhou; Yang, Tewu; Feng, Hao; Dong, Mengyi; Slavin, Margaret; Xiong, Shanbai; Zhao, Siming

    2016-02-10

    Biofortification of staple grains with high contents of essential micronutrients is an important strategy to overcome micronutrient malnutrition. However, few attempts have targeted at γ-aminobutyric acid (GABA), a functional nutrient for aging populations. In this study, two rice cultivars, Heinuo and Xianhui 207, were used to investigate changes in GABA and other nutritional compounds of dehulled rice after germination under normoxic and hypoxic conditions. Forty-one metabolites were identified in both cultivars treated by normoxic germination, whereas the germinated dehulled rice of Heinuo and Xianhui 207 under hypoxic treatment had 43 and 41 metabolites identified, respectively. GABA increased in dehulled rice after germination, especially under hypoxia. Meanwhile, a number of other health-beneficial and/or flavor-related compounds such as lysine and d-mannose increased after the hypoxic treatment. The accumulation of GABA exhibited genotype-specific modes in both normoxic and hypoxic treatments. With regard to GABA production, Xianhui 207 was more responsive to the germination process than Heinuo, whereas Heinuo was more responsive to hypoxia than Xianhui 207. This study provides a promising approach to biofortify dehulled rice with increased GABA and other nutrients through metabolomic-based regulation.

  15. Butyric acid fermentation of sodium hydroxide pretreated rice straw with undefined mixed culture.

    Science.gov (United States)

    Ai, Binling; Li, Jianzheng; Chi, Xue; Meng, Jia; Liu, Chong; Shi, En

    2014-05-01

    This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at 50°C for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

  16. Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation.

    Science.gov (United States)

    Shi, Lu; Guo, Miaomiao; Ye, Nenghui; Liu, Yinggao; Liu, Rui; Xia, Yiji; Cui, Suxia; Zhang, Jianhua

    2015-05-01

    Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Proximate composition and amino acid profile of rice husk ...

    African Journals Online (AJOL)

    Native rice husk (NRH) was fermented with Pleurotus ostreatus for 7, 14 and 21 days to improve the nutritional values. The proximate composition and amino acid profiles were determined. The results showed that crude fibre (CF), nitrogen free extract (NFE), acid detergent fibre (ADF), and neutral detergent fibre (NDF) were ...

  18. The effects of radiation on phytic acid content of rice bran

    International Nuclear Information System (INIS)

    Gunawan; Kompiang , S.; Tangenjaya, B.; Hilyati.

    1988-01-01

    The study of the effect of radiation on the phytic acid content of rice bran was carried out. As much as 0.25 kg fresh rice bran (Var. Cisadane) in plastic bag was radiated (gamma 60-Co) at a dose of 0, 2, 4, 6, 8, and 10 kGy. The phytic acid content was significantly reduced by radiation, and it corelated to the level of dose (y = -0.04 + 1.44 x, y = phytic acid content, x = radiation dose, r = -0.98). At the highest level used (10 kGy) the phytic content was reduce by 29%. (authors). 11 refs, 1 fig, 1 tab

  19. Proximate Composition, Mineral Content and Fatty Acids Analyses of Aromatic and Non-Aromatic Indian Rice

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Verma

    2017-01-01

    Full Text Available Awareness on nutritive value and health benefits of rice is of vital importance in order to increase the consumption of rice in daily diet of the human beings. In this study, a total of six aromatic and two non-aromatic rice accessions grown in India were analysed for their nutritional quality attributes including proximate composition, mineral contents and fatty acids. Data with three replications were used to measure Pearson's simple correlation co-efficient in order to establish the relationship among various nutritional quality attributes. The result on proximate composition showed that Govind Bhog had the highest moisture (13.57% and fat (0.92% content, which signifies its tasty attribute. Badshah Bhog exhibited the highest fibre content (0.85%, carbohydrate content (82.70% and food energy (365.23 kCal per 100 g. Among the minerals, the higher Ca (98.75 mg/kg, Zn (17.00 mg/kg and Fe (31.50 mg/kg were in Gopal Bhog, whereas the highest Na (68.85 mg/kg was in Badshah Bhog, the highest K (500.00 mg/kg was in Swetganga, Khushboo and Sarbati. The highest contents of unsaturated fatty acids viz. oleic acid (49.14%, linoleic acid (46.99% and linolenic acid (1.27% were found in Sarbati, whereas the highest content of saturated fatty acids viz. myristic acid (4.60% and palmitic acid (31.91% were found in Govind Bhog and stearic acid (6.47% in Todal. The identified aromatic rice accessions Gopal Bhog, Govind Bhog and Badshah Bhog and non-aromatic rice accession Sarbati were found nutritionally superior among all eight tested accessions. The nutritional quality oriented attributes in this study were competent with recognized prominent aromatic and non-aromatic rice accessions as an index of their nutritional worth and recommend to farmers and consumers which may be graded as export quality rice with good unique nutritional values in international market.

  20. Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway[OPEN

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. PMID:25841037

  1. Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains.

    Science.gov (United States)

    Zhang, Xin; Wu, Songlin; Ren, Baihui; Chen, Baodong

    2016-05-01

    A pot experiment was carried out to investigate the effects of water management and mycorrhizal inoculation on arsenic (As) uptake by two rice varieties, the As-resistant BRRI dhan 47 (B47) and As-sensitive BRRI dhan 29 (B29). Grain As concentration of B47 plants was significantly lower than that of B29, and grain As concentration of B47 was higher under flooding conditions than that under aerobic conditions. In general, mycorrhizal inoculation (Rhizophagus irregularis) had no significant effect on grain As concentrations, but decreased the proportion of inorganic arsenic (iAs) in grains of B47. The proportion of dimethylarsinic acid (DMA) in the total grain As was dramatically higher under flooding conditions. Results demonstrate that rice variety selection and appropriate water management along with mycorrhizal inoculation could be practical countermeasures to As accumulation and toxicity in rice grains, thus reducing health risks of As exposure in rice diets.

  2. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss

    International Nuclear Information System (INIS)

    Wang, M.Y.; Chen, A.K.; Wong, M.H.; Qiu, R.L.; Cheng, H.; Ye, Z.H.

    2011-01-01

    Cadmium (Cd) uptake and tolerance were investigated among 20 rice cultivars based on a field experiment (1.2 mg Cd kg -1 in soil) and a soil pot trial (control, 100 mg Cd kg -1 ), and rates of radial oxygen loss (ROL) were measured under a deoxygenated solution. Significant differences were found among the cultivars in: (1) brown rice Cd concentrations (0.11-0.29 mg kg -1 ) in a field soil, (2) grain Cd tolerance (34-113%) and concentrations (2.1-6.5 mg kg -1 ) in a pot trial, and (3) rates of ROL (15-31 mmol O 2 kg -1 root d.w. h -1 ). Target hazard quotients were calculated for the field experiment to assess potential Cd risk. Significant negative relationships were found between rates of ROL and concentrations of Cd in brown rice or straw under field and greenhouse conditions, indicating that rice cultivars with higher rates of ROL had higher capacities for limiting the transfer of Cd to rice and straw. - Highlights: → There are significant differences in brown rice Cd concentrations and rates of ROL among the rice cultivars. → The rates of ROL are significantly correlated with concentrations of Cd in brown rice. → Rice cultivars with higher rates of ROL have higher capacities for limiting the transfer of Cd to rice and straw. - Rice cultivars with high rates of ROL tended to accumulate low Cd in grains.

  3. Screening for Direct Production of Lactic Acid from Rice Starch Waste by Geobacillus stearothermophilus

    Directory of Open Access Journals (Sweden)

    Kunasundari Balakrishnan

    2017-01-01

    Full Text Available Lactic acid recently became an important chemical where it is widely used in many industries such as food, cosmetic, chemical and pharmaceutical industry. The present study focuses on the screening for lactic acid production from rice starch waste using a thermophilic amylolytic bacterium, Geobacillus stearothermophilus. There is no information available on direct fermentation of lactic acid from rice starch waste using G. stearothermophilus. The effects of different parameters such as temperature, pH, incubation time, agitation speed, concentration of nitrogen and carbon sources on the lactic acid production were assessed. The highest concentration of lactic acid produced was 5.65 ± 0.07 g/L at operating conditions of 60°C, pH 5.5, 48 h, 200 rpm of agitation speed with 5% concentrations of both carbon and nitrogen source. The findings indicated that rice starch waste can be successfully converted to lactic acid by G. stearothermophilus.

  4. Fermentation of Prefermented and Extruded Rice Flour by Lactic Acid Bacteria from Sikhae

    DEFF Research Database (Denmark)

    Lee, C. H.; Min, K. C.; Souane, M.

    1992-01-01

    of prefermentation of rice flour in solid-state with Bacillus laevolacticus and Saccharomyces cerevisiae, extrusion cooking and addition of soymilk as the substrate of lactic acid fermentation were tested. Extrusion cooking and prefermentation of rice increased the soluble solid and sugar contents before malt......The acid- and flavor-forming properties of Lactobacillus plantarum and Leuconostoc mesenteroides isolated from Sikhae, a Korean traditional lactic acid fermented fish product, were examined and compared to those of Lactobacillus casei and Lactococcus lactis subsp. diacetylactis DRC3. The effects...... digestion. The amount of sugar consumption during lactic fermentation varied with the type of bacteria. Leuconostoc mesenteroides(sikhae) and Lactobacillus plantarum(sikhae) increased up to 6 times of original cell number by 24 hrs of fermentation in rice + soymilk substrate, but Lactococcus lactis...

  5. Soil removal as a decontamination practice and radiocesium accumulation in tadpoles in rice paddies at Fukushima.

    Science.gov (United States)

    Sakai, Masaru; Gomi, Takashi; Nunokawa, Masanori; Wakahara, Taeko; Onda, Yuichi

    2014-04-01

    We investigated the biological accumulation of radiocesium in tadpoles [Rana (Pelophylax) porosa porosa] in rice paddies with and without decontamination practice at Fukushima. Radiocesium was accumulated in surface part of soils both in the control and decontaminated paddies one year after decontamination. Mean (134)Cs and (137)Cs concentrations in tadpoles in the control and decontaminated paddies were 3000 and 4500, and 600 and 890 Bq/kg dry weight, respectively. Radiocesium concentrations in surface soil (0-5 cm depth) and tadpoles in the decontaminated paddy were five times smaller than in the control paddy. These results suggest that decontamination practice can reduce radiocesium concentrations in both soil and tadpoles. However, at the decontaminated paddy, radiocesium concentrations in surface soils became 3.8 times greater one year after decontamination, which indicates that monitoring the subsequent movement of radiocesium in rice paddies and surrounding areas is essential for examining contamination propagation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Iron plaque decreases cadmium accumulation in Oryza sativa L. and serves as a source of iron.

    Science.gov (United States)

    Sebastian, A; Prasad, M N V

    2016-11-01

    Cadmium (Cd) contamination occurs in paddy soils; hence it is necessary to reduce Cd content of rice. Application and mode of action of ferrous sulphate in minimizing Cd in rice was monitored in the present study. Pot culture with Indian rice variety Swarna (MTU 7029) was maintained in Cd-spiked soil containing ferrous sulphates, which is expected to reduce Cd accumulation in rice. Responses in rhizosphere pH, root surface, metal accumulation in plant and molecular physiological processes were monitored. Iron plaque was induced on root surfaces after FeSO4 application and the amount of Fe in plaque reduced with increases in Cd in the soil. Rhizosphere pH decreased during plaque formation and became more acidic due to secretion of organic acids from the roots under Cd treatment. Moreover, iron chelate reductase activity increased with Cd treatment, but in the absence of Cd, activity of this enzyme increased in plaque-induced plants. Cd treatment caused expression of OsYSL18, whereas OsYSL15 was expressed only in roots without iron plaque. Fe content of plants increased during plaque formation, which protected plants from Cd-induced Fe deficiency and metal toxicity. This was corroborated with increased biomass, chlorophyll content and quantum efficiency of photo-synthesis among plaque-induced plants. We conclude that ferrous sulphate-induced iron plaque prevents Cd accumulation and Fe deficiency in rice. Iron released from plaque via organic acid mediated dissolution during Cd stress. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Influence of aspartic acid and lysine on the uptake of gold nanoparticles in rice.

    Science.gov (United States)

    Ye, Xinxin; Li, Hongying; Wang, Qingyun; Chai, Rushan; Ma, Chao; Gao, Hongjian; Mao, Jingdong

    2018-02-01

    The interactions between plants and nanomaterials (NMs) can shed light on the environmental consequences of nanotechnology. We used the major crop plant rice (Oryza sativa L.) to investigate the uptake of gold nanoparticles (GNPs) coated with either negatively or positively charged ligands, over a 5-day period, in the absence or presence of one of two amino acids, aspartic acid (Asp) or lysine (Lys), acting as components of rice root exudates. The presence of Asp or Lys influenced the uptake and distribution of GNPs in rice, which depended on the electrical interaction between the coated GNPs and each amino acid. When the electrical charge of the amino acid was the same as that of the surface ligand coated onto the GNPs, the GNPs could disperse well in nutrient solution, resulting in increased uptake of GNPs into rice tissue. The opposite was true where the charge on the surface ligand was different from that on the amino acid, resulting in agglomeration and reduced Au uptake into rice tissue. The behavior of GNPs in the hydroponic nutrient solution was monitored in terms of agglomeration, particle size distribution, and surface charge in the presence and absence of Asp or Lys, which depended strongly on the electrostatic interaction. Results from this study indicated that the species of root exudates must be taken into account in assessing the bioavailability of nanomaterials to plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. COMPARATIVE ANALYSIS OF OXALIC ACID PRODUCED FROM RICE HUSK AND PADDY

    OpenAIRE

    P.I. Oghome; K.O.Amanze; C.I.O.Kamalu; A.C Nkwocha; S.O.Opebiyi

    2012-01-01

    In this research work, comparative analysis of Oxalic acid produced from Rice husk and Paddy was carried out in order to ascertain which waste sample produced a better yield. Nitric acid oxidation of carbohydrates was the method adopted in the production. The variable ratios of HNO3:H2SO4 used were 80:20, 70:30, 60:40, and 50:50. The variable ratio of 60:40 gave the maximum yield and at a maximum temperature of 75oC. Rice husk sample gave a percentage yield of 53.2, 64.4, 81.0, and 53.3 at te...

  9. Cell wall targeted in planta iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haibing [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Department of Biological Sciences, Purdue University, West Lafayette IN USA; Wei, Hui [Biosciences Center, National Renewable Energy Laboratory, Golden CO USA; Ma, Guojie [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Antunes, Mauricio S. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Biological Sciences, Purdue University, West Lafayette IN USA; Vogt, Stefan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL USA; Cox, Joseph [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Zhang, Xiao [Department of Horticulture, Purdue University, West Lafayette IN USA; Liu, Xiping [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Bu, Lintao [National Bioenergy Center, National Renewable Energy Laboratory, Golden CO USA; Gleber, S. Charlotte [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL USA; Carpita, Nicholas C. [Department of Biological Sciences, Purdue University, West Lafayette IN USA; Department of Botany and Plant Pathology, Purdue University, West Lafayette IN USA; Makowski, Lee [Department of Bioengineering, Northeastern University, Boston MA USA; Department of Chemistry and Chemical Biology, Northeastern University, Boston MA USA; Himmel, Michael E. [Biosciences Center, National Renewable Energy Laboratory, Golden CO USA; Tucker, Melvin P. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL USA; McCann, Maureen C. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Biological Sciences, Purdue University, West Lafayette IN USA; Murphy, Angus S. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park MD USA; Peer, Wendy A. [Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette IN USA; Department of Horticulture, Purdue University, West Lafayette IN USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park MD USA; Department of Environmental Science and Technology, University of Maryland, College Park MD USA

    2016-04-07

    Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusion polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.

  10. Effects of the traditional method and an alternative parboiling process on the fatty acids, vitamin E, γ-oryzanol and phenolic acids of glutinous rice.

    Science.gov (United States)

    Thammapat, Pornpisanu; Meeso, Naret; Siriamornpun, Sirithon

    2016-03-01

    The impacts of traditional and alternative parboiling processes on the concentrations of fatty acids, tocopherol, tocotrienol, γ-oryzanol and phenolic acids in glutinous rice were investigated. Differences between the two methods were the soaking temperatures and the steaming methods. Results showed that parboiling processes significantly increased the concentrations of saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), γ-oryzanol, γ-tocotrienol and total phenolic acids (TPA) in glutinous rice, while α-tocopherol, γ-tocopherol and polyunsaturated fatty acids (PUFA) decreased (p-oryzanol by three or fourfold compared with the level of γ-oryzanol in raw rice. Parboiling caused both adverse and favorable effects on phenolic acids content (p-oryzanol, hydrobenzoic acid, hydroxycinnamic acid and TPA compared to the traditional method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. [Degradation of urea and ethyl carbamate in Chinese Rice wine by recombinant acid urease].

    Science.gov (United States)

    Zhou, Jianli; Kang, Zhen; Liu, Qingtao; Du, Guocheng; Chen, Jian

    2016-01-01

    Ethyl carbamate (EC) as a potential carcinogen commonly exists in traditional fermented foods. It is important eliminate urea that is the precursors of EC in many fermented foods, including Chinese Rice wine. On the basis of achieving high-level overexpression of food-grade ethanol-resistant acid urease, we studied the hydrolysis of urea and EC with the recombinant acid urease. Recombinant acid urease showed degraded urea in both the simulated system with ethanol and Chinese Rice wine (60 mg/L of urea was completely degraded within 25 h), indicating that the recombinant enzyme is suitable for the elimination of urea in Chinese Rice wine. Although recombinant acid urease also has degradation catalytic activity on EC, no obvious degradation of EC was observed. Further investigation results showed that the Km value for urea and EC of the recombinant acid urease was 0.7147 mmol/L and 41.32 mmol/L, respectively. The results provided theoretical foundation for realizing simultaneous degradation of urea and EC.

  12. Jasmonic Acid, Abscisic Acid, and Salicylic Acid Are Involved in the Phytoalexin Responses of Rice to Fusarium fujikuroi, a High Gibberellin Producer Pathogen.

    Science.gov (United States)

    Siciliano, Ilenia; Amaral Carneiro, Greice; Spadaro, Davide; Garibaldi, Angelo; Gullino, Maria Lodovica

    2015-09-23

    Fusarium fujikuroi, the causal agent of bakanae disease, is the main seedborne pathogen on rice. To understand the basis of rice resistance, a quantitative method to simultaneously detect phytohormones and phytoalexins was developed by using HPLC-MS/MS. With this method dynamic profiles and possible interactions of defense-related phytohormones and phytoalexins were investigated on two rice cultivars, inoculated or not with F. fujikuroi. In the resistant cultivar Selenio, the presence of pathogen induced high production of phytoalexins, mainly sakuranetin, and symptoms of bakanae were not observed. On the contrary, in the susceptible genotype Dorella, the pathogen induced the production of gibberellin and abscisic acid and inhibited jasmonic acid production, phytoalexins were very low, and bakanae symptoms were observed. The results suggested that a wide range of secondary metabolites are involved in plant defense against pathogens and phytoalexin synthesis could be an important factor for rice resistance against bakanae disease.

  13. Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice

    NARCIS (Netherlands)

    Zhang, Q.; Xiang, J.; Zhang, L.; Zhu, X.; Evers, J.B.; Werf, van der W.; Duan, L.

    2014-01-01

    Germinated brown rice is a well-known functional food due to its high content of gamma-aminobutyric acid (GABA). This study was designed to test the difference of producing GABA in two domesticated rice genotypes (indica and japonica rice), and the effects of adding exogenous glutamic acid or

  14. Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid.

    Science.gov (United States)

    Wu, Xi; Liang, Chanjuan

    2017-02-01

    Abscisic acid (ABA) regulates much important plant physiological and biochemical processes and induces tolerance to different stresses. Here, we studied the regulation of exogenous ABA on adaptation of rice seedlings to simulated acid rain (SAR) stress by measuring biomass dry weight, stomatal conductance, net photosynthesis rate, nutrient elements, and endogenous hormones. The application of 10 μM ABA alleviated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and decreases in contents of nutrient (K, Mg, N, and P) and hormone (auxin, gibberellins, and zeatin). Moreover, 10 μM ABA could stimulate the Ca content as signaling molecules under SAR stress. Contrarily, the application of 100 μM ABA aggravated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and contents of nutrient and hormone. The results got after a 5-day recovery (without SAR) show that exogenous 10 μM ABA can promote self-restoration process in rice whereas 100 μM ABA hindered the restoration by increasing deficiency of nutrients and disturbing the balance of hormones. These results confirmed that exogenous ABA at proper concentration could enhance the tolerance of rice to SAR stress.

  15. Infrared stabilization of rice bran and its effects on γ-oryzanol content, tocopherols and fatty acid composition.

    Science.gov (United States)

    Yılmaz, Neşe; Tuncel, Necati Barış; Kocabıyık, Habib

    2014-06-01

    Rice bran is a nutritionally valuable by-product of paddy milling. In this study an experimental infrared (IR) stabilization system was developed to prevent rice bran rancidity. The free fatty acid content of raw and IR-stabilized rice bran samples was monitored every 15 days during 6 months of storage. In addition, energy consumption was determined. The free fatty acid content of rice bran stabilized at 600 W IR power for 5 min remained below 5% for 165 days. No significant change in γ-oryzanol content or fatty acid composition but a significant decrease in tocopherol content was observed in stabilized rice bran compared with raw bran. IR stabilization was found to be comparable to extrusion with regard to energy consumption. IR stabilization was effective in preventing hydrolytic rancidity of rice bran. By optimizing the operational parameters of IR stabilization, this by-product has the potential for use in the food industry in various ways as a value-added commodity. © 2013 Society of Chemical Industry.

  16. Studies on changes in fatty acid composition and content of endogenous antioxidants during gamma irradiation of rice seeds

    International Nuclear Information System (INIS)

    Ramarathnam, N.; Osawa, T.; Namiki, M.; Kawakishi, S.

    1989-01-01

    Accelerated aging effects, induced by y irradiation, were investigated on the fatty acid composition of lipids and on the content of endogenous antioxidants of four Indica and four Japonica rice seeds with and without intact hull. While the linoleic acid content of the phospholipids decreased gradually with the increase in irradiation doses, there was a corresponding increase in the linoleic acid content of the free fatty acids. Such changes were drastic, especially in the case of Japonica rice seeds irradiated without intact hull. However, the neutral lipids were found to be resistant to γ irradiation. The α-tocopherol content was found to decrease (markedly) in rice seeds irradiated with or without hull, especially in the Japonica rice seeds. At a dose of 15 kGy only traces of a-tocopherol could be detected in Japonica and Indica rice seeds irradiated with and without intact hull. Oryzanol, a relatively weaker anti-oxidant, was found to be more resistant to oxidative damage than a-tocopherol. At 15 kGy, the oryzanol content ranged from 59 μg to 170 μg/g lipid in rice seeds irradiated with intact hull, while the corresponding value for rice seeds irradiated without hull was 52 μg to 153 μg/g lipid. The overall susceptibility to oxidative damage was less in Indica rice seeds, indicating that the antioxidative defense system offered better protection in overcoming oxidative stress in Indica rice hull than in Japonica rice hull

  17. Release of Polyphenols Is the Major Factor Influencing the Bioconversion of Rice Straw to Lactic Acid.

    Science.gov (United States)

    Chen, Xingxuan; Xue, Yiyun; Hu, Jiajun; Tsang, Yiu Fai; Gao, Min-Tian

    2017-11-01

    In this study, we found that p-coumaric acid (p-CA), ferulic acid (FA), and condensed tannins were released from rice straw during saccharification. The presence of polyphenols prolonged the lag phase and lowered the productivity of lactic acid. p-CA was identified as a key inhibitor. Tannins had a lower inhibitory effect than p-CA; FA had little inhibitory effect. Acid, alkaline, and ball milling pretreatments elicited different levels of polyphenol release from rice straw. Due to the different levels of polyphenol release in the pretreatment step, the enzymatic hydrolysates contained different concentrations of polyphenols. Compared with fermentation with a synthetic medium, fermentation with the hydrolysates of ball-milled rice straw provided much lower productivity and yield of lactic acid due to the presence of polyphenols. Removal of these compounds played an important role in lactic acid fermentation. When rice straw was alkaline pretreated, the hydrolysates contained few phenolic compounds, resulting in high productivity and yield of lactic acid (1.8 g/L/h and 26.7 g/100 g straw), which were comparable to those in a synthetic medium. This indicates that there is a correlation between removal of phenolic compounds and efficiency in lactic acid fermentation.

  18. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds.

    Science.gov (United States)

    Liu, Wen Xian; Liu, Hua Liang; Qu, Le Qing

    2013-09-01

    Oleosin is the most abundant protein in the oil bodies of plant seeds, playing an important role in regulating oil body formation and lipid accumulation. To investigate whether lipid accumulation in transgenic rice seeds depends on the expression level of oleosin, we introduced two soybean oleosin genes encoding 24 kDa proteins into rice under the control of an embryo-specific rice promoter REG-2. Overexpression of soybean oleosin in transgenic rice leads to an increase of seed lipid content up to 36.93 and 46.06 % higher than that of the non-transgenic control, respectively, while the overall fatty acid profiles of triacylglycerols remained unchanged. The overexpression of soybean oleosin in transgenic rice seeds resulted in more numerous and smaller oil bodies compared with wild type, suggesting that an inverse relationship exists between oil body size and the total oleosin level. The increase in lipid content is accompanied by a reduction in the accumulation of total seed protein. Our results suggest that it is possible to increase rice seed oil content for food use and for use as a low-cost feedstock for biodiesel by overexpressing oleosin in rice seeds.

  19. Optimisation of dilute acid pre-treatment of artisan rice hulls for ethanol production

    International Nuclear Information System (INIS)

    Lopez, Yoney; Martin, Carlos; Gullon, Beatriz; Parajo, Juan Carlos

    2011-01-01

    Rice hulls are potential low-cost feedstocks for fuel ethanol production in many countries. In this work, the dilute-acid pre-treatment of artisan rice hulls was investigated using a central composite rotatable experimental design. The experimental variables were temperature (140-210 C), biomass load (5-20%) and sulphuric acid concentration (0.5-1.5 g per 100 g of reaction mixture). A total of 16 experimental runs, including a 23-plan, two replicates at the central point and six star points, were carried out. Low temperatures were found to be favourable for the hydrolysis of xylan and of the easily hydrolyzable glucan fraction. High glucose formation (up to 15.3 g/100 g), attributable to starch hydrolysis, was detected in the hydrolysates obtained under the least severe pre-treatment conditions. Using the experimental results, several models for predicting the effect of the operational conditions on the yield of pretreated solids, xylan and glucan conversion upon pre-treatment, and on enzymatic convertibility of cellulose were developed. Optimum results were predicted for the conversion of easily-hydrolyzable glucan in the material pretreated at 140.7 C, and for the enzymatic saccharification of cellulose in the material pretreated at 169 C. These results suggested the use of two-step acid hydrolysis as future pre-treatment strategy for artisan rice hulls. Key words: Dilute acid hydrolysis, enzymatic hydrolysis, pre-treatment, rice hulls. (author)

  20. Iron biofortification of Myanmar rice

    Directory of Open Access Journals (Sweden)

    May Sann Aung

    2013-05-01

    Full Text Available Iron (Fe deficiency causes elevates human mortality rates, especially in developing countries. In Myanmar, the prevalence of Fe-deficient anemia in children and pregnant women are 75% and 71%, respectively. Myanmar people have one of the highest per capita rice consumption rates globally. Consequently, production of Fe-biofortified rice would likely contribute to solving the Fe-deficiency problem in this human population. To produce Fe-biofortified Myanmar rice by transgenic methods, we first analyzed callus induction and regeneration efficiencies in 15 varieties that are presently popular because of their high yields and/or qualities. Callus formation and regeneration efficiency in each variety was strongly influenced by types of culture media containing a range of 2,4-dichlorophenoxyacetic acid concentrations. The Paw San Yin variety, which has a high Fe content in polished seeds, performed well in callus induction and regeneration trials. Thus, we transformed this variety using a gene expression cassette that enhanced Fe transport within rice plants through overexpression of the nicotianamine synthase gene HvNAS1, Fe flow to the endosperm through the Fe(II-nicotianamine transporter gene OsYSL2, and Fe accumulation in endosperm by the Fe storage protein gene SoyferH2. A line with a transgene insertion was successfully obtained. Enhanced expressions of the introduced genes OsYSL2, HvNAS1, and SoyferH2 occurred in immature T2 seeds. The transformants accumulated 3.4-fold higher Fe concentrations, and also 1.3-fold higher zinc concentrations in T2 polished seeds compared to levels in non-transgenic rice. This Fe-biofortified rice has the potential to reduce Fe-deficiency anemia in millions of Myanmar people without changing food habits and without introducing additional costs.

  1. Influence of ethyl-trinexapac on 15N accumulation and distribution and on highland rice yield

    International Nuclear Information System (INIS)

    Alvarez, Rita de Cassia Felix; Crusciol, Carlos Alexandre Costa; Alvarez, Angela Cristina Camarim; Trivelin, Paulo Cesar Ocheuze; Rodrigues, Joao Domingos

    2007-01-01

    The high rice grain yields ensured by sprinkler irrigation have encouraged the use of higher fertilizer doses, mainly the nitrogen fertilizers. However, an improper management of nitrogen fertilization may result in plant lodging. Application of plant regulators may redirect assimilates to grain production while limiting the vegetative growth. This study aimed to: evaluate the influence of the growth regulator Ethyl-trinexapac on plant growth parameters and on 15 N accumulation and distribution in the whole plant and plant components, and determine the contribution of nitrogen taken up in different developmental stages in panicle formation, yield components and rice yield. The experiment was carried out under controlled greenhouse conditions. The treatments consisted of application or not of a plant growth regulator (0 and 200 g active ingredient ha-1 of ethyl-trinexapac) at four plant development stages (beginning to end of tillering; end of tillering and flower differentiation; flower differentiation to flowering; flowering until physiological maturation). The experimental design was arranged in random blocks, in a 2 x 4 factorial scheme, with three replications. The plants were placed in a group of 48 pots. In a group of 24 pots with nutrient solution containing 15 NH 4 SO 4 , plants were collected and separated in parts in the beginning of each pre-established plant development stage and at the end of each stage. In a second group (24 pots), pre-labeled plants were left to grow in nutrient solution with 14 NH 4 SO 4 and harvested at the end of each cycle in order to access 15 N redistribution.. The growth regulator reduced plant height and 15 N accumulation in the panicle and promoted redistribution of the absorbed 15 N, and increased accumulated 15 N in root, stem+sheats and leaves. The contribution of absorbed 15 N to panicle formation in each stage increased with the plant development, though in a lower proportion in the presence of the growth regulator

  2. The effect of pretreatment using sodium hydroxide and acetic acid to biogas production from rice straw waste

    Directory of Open Access Journals (Sweden)

    Budiyono

    2017-01-01

    Full Text Available Rice straw is agricultural waste containing high potency to be treated to biogas. However, the usage of rice straw is still limited due to high lignin content that will cause low biodegradability. The aim of this research was to study the effect of pretreatment using NaOH and acetic acid to biogas production from rice straw. NaOH was varied from 2%w, 4%w, and 6%w; and acetic acid was varied from 0,075 M, 0,15 M dan 0,75 M. The rice straw was cut into 1 cm size and submerged for 30 minutes in NaOH and acetic acid solution. The rice straw then filtered and neutralized before sending to anaerobic digestion process using rumen fluid bacteria. Biogas produced was measured using water displacement method. The result showed that the optimum concentration of NaOH solution was 4%w that resulted in biogas volume of 21,1 ml/gTS. Meanwhile, the optimum concentration of acetic acid pretreatment was 0,075 M that produced biogas volume of 14,5 ml/gTS. These results suggest that pretreatment using NaOH solution is more effective for decreasing the lignin content from rice straw.

  3. Ascorbic acid transport and accumulation in human neutrophils

    International Nuclear Information System (INIS)

    Washko, P.; Rotrosen, D.; Levine, M.

    1989-01-01

    The transport, accumulation, and distribution of ascorbic acid were investigated in isolated human neutrophils utilizing a new ascorbic acid assay, which combined the techniques of high performance liquid chromatography and coulometric electrochemical detection. Freshly isolated human neutrophils contained 1.0-1.4 mM ascorbic acid, which was localized greater than or equal to 94% to the cytosol, was not protein bound, and was present only as ascorbic acid and not as dehydroascorbic acid. Upon addition of ascorbic acid to the extracellular medium in physiologic amounts, ascorbic acid was accumulated in neutrophils in millimolar concentrations. Accumulation was mediated by a high affinity and a low affinity transporter; both transporters were responsible for maintenance of concentration gradients as large as 50-fold. The high affinity transporter had an apparent Km of 2-5 microns by Lineweaver-Burk and Eadie-Hofstee analyses, and the low affinity transporter had an apparent Km of 6-7 mM by similar analyses. Each transporter was saturable and temperature dependent. In normal human blood the high affinity transporter should be saturated, whereas the low affinity transporter should be in its linear phase of uptake

  4. Physiological and molecular characterization of Si uptake in wild rice species.

    Science.gov (United States)

    Mitani-Ueno, Namiki; Ogai, Hisao; Yamaji, Naoki; Ma, Jian Feng

    2014-07-01

    Cultivated rice (Oryza sativa) accumulates high concentration of silicon (Si), which is required for its high and sustainable production. High Si accumulation in cultivated rice is achieved by a high expression of both influx (Lsi1) and efflux (Lsi2) Si transporters in roots. Herein, we physiologically investigated Si uptake, isolated and functionally characterized Si transporters in six wild rice species with different genome types. Si uptake by the roots was lower in Oryza rufipogon, Oryza barthii (AA genome), Oryza australiensis (EE genome) and Oryza punctata (BB genome), but similar in Oryza glumaepatula and Oryza meridionalis (AA genome) compared with the cultivated rice (cv. Nipponbare). However, all wild rice species and the cultivated rice showed similar concentration of Si in the shoots when grown in a field. All species with AA genome showed the same amino acid sequence of both Lsi1 and Lsi2 as O. sativa, whereas species with EE and BB genome showed several nucleotide differences in both Lsi1 and Lsi2. However, proteins encoded by these genes also showed transport activity for Si in Xenopus oocyte. The mRNA expression of Lsi1 in all wild rice species was lower than that in the cultivated rice, whereas the expression of Lsi2 was lower in O. rufipogon and O. barthii but similar in other species. Similar cellular localization of Lsi1 and Lsi2 was observed in all wild rice as the cultivated rice. These results indicate that superior Si uptake, the important trait for rice growth, is basically conserved in wild and cultivated rice species. © 2013 Scandinavian Plant Physiology Society.

  5. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    Science.gov (United States)

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  6. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions

    Science.gov (United States)

    Mun, Bong-Gyu; Khan, Abdul Latif; Waqas, Muhammad; Kim, Hyun-Ho; Shahzad, Raheem; Imran, Muhammad

    2018-01-01

    This study investigated the regulatory role of exogenous salicylic acid (SA) in rice and its effects on toxic reactive oxygen and nitrogen species during short-term salinity stress. SA application (0.5 and 1.0 mM) during salinity-induced stress (100 mM NaCl) resulted in significantly longer shoot length and higher chlorophyll and biomass accumulation than with salinity stress alone. NaCl-induced reactive oxygen species production led to increased levels of lipid peroxidation in rice plants, which were significantly reduced following SA application. A similar finding was observed for superoxide dismutase; however, catalase (CAT) and ascorbate peroxidase (APX) were significantly reduced in rice plants treated with SA and NaCl alone and in combination. The relative mRNA expression of OsCATA and OsAPX1 was lower in rice plants during SA stress. Regarding nitrogenous species, S-nitrosothiol (SNO) was significantly reduced initially (one day after treatment [DAT]) but then increased in plants subjected to single or combined stress conditions. Genes related to SNO biosynthesis, S-nitrosoglutathione reductase (GSNOR1), NO synthase-like activity (NOA), and nitrite reductase (NIR) were also assessed. The mRNA expression of GSNOR1 was increased relative to that of the control, whereas OsNOA was expressed at higher levels in plants treated with SA and NaCl alone relative to the control. The mRNA expression of OsNR was decreased in plants subjected to single or combination treatment, except at 2 DAT, compared to the control. In conclusion, the current findings suggest that SA can regulate the generation of NaCl-induced oxygen and nitrogen reactive species in rice plants. PMID:29558477

  7. Biochar amendment changes jasmonic acid levels in two rice varieties and alters their resistance to herbivory.

    Science.gov (United States)

    Waqas, Muhammad; Shahzad, Raheem; Hamayun, Muhammad; Asaf, Sajjad; Khan, Abdul Latif; Kang, Sang-Mo; Yun, Sopheap; Kim, Kyung-Min; Lee, In-Jung

    2018-01-01

    Biochar addition to soil not only sequesters carbon for the long-term but enhances agricultural productivity. Several well-known benefits arise from biochar amendment, including constant provision of nutrients, increased soil moisture retention, decreased soil bulk density, and sometimes the induction of systemic resistance against foliar and soil borne plant pathogens. However, no research has investigated the potential of biochar to increase resistance against herbivory. The white-backed plant hopper (WBPH) (Sogatella furcifera Horváth) is a serious agricultural pest that targets rice (Oryza sativa L.), a staple crop that feeds half of the world's human population. Therefore, we investigated the (1) optimization of biochar amendment levels for two rice varieties ('Cheongcheong' and 'Nagdong') and (2) subsequent effects of different biochar amendments on resistance and susceptibility of these two varieties to WBPH infestation. Initial screening results for the optimization level revealed that the application of biochar 10% (w/w) to the rooting media significantly improved plant physiological characteristics of both rice varieties. However, levels of biochar amendment, mainly 1, 2, 3, and 20%, resulted in negative effects on plant growth characteristics. Cheongcheong and Nagdong rice plants grown with the optimum biochar level showed contrasting reactions to WBPH infestation. Specifically, biochar application significantly increased plant growth characteristics of Nagdong when exposed to WBPH infestation and significantly decreased these characteristics in Cheongcheong. The amount of WBPH-induced damage to plants was significantly lower and higher in Nagdong and Cheongcheong, respectively, compared to that in the controls. Higher levels of jasmonic acid caused by the biochar priming effect could have accumulated in response to WBPH infestation, resulting in a maladaptive response to stress, negatively affecting growth and resistance to WBPH in Cheongcheong. This

  8. Reduction in uptake by rice and soybean of aromatic arsenicals from diphenylarsinic acid contaminated soil amended with activated charcoal

    International Nuclear Information System (INIS)

    Arao, Tomohito; Maejima, Yuji; Baba, Koji

    2011-01-01

    Activated charcoal (AC) amendment has been suggested as a promising method to immobilize organic contaminants in soil. We performed pot experiments with rice and soybean grown in agricultural soil polluted by aromatic arsenicals (AAs). The most abundant AA in rice grains and soybean seeds was methylphenylarsinic acid (MPAA). MPAA concentration in rice grains was significantly reduced to 2% and 3% in 0.2% AC treated soil compared to untreated soil in the first year of rice cultivation. In the second year, MPAA concentration in rice grains was significantly reduced to 15% in 0.2% AC treated soil compared to untreated soil. MPAA concentration in soybean seeds was significantly reduced to 44% in 0.2% AC treated soil compared to untreated soil. AC amendment was effective in reducing AAs in rice and soybean. - Highlights: → Pot experiments using agricultural soil contaminated with aromatic arsenicals (AAs). → Methylphenylarsinic acid (MPAA) was the most abundant AA in rice and soybean. → MPAA concentration in rice grains was dramatically reduced via 0.2% AC amendment. → MPAA concentration in soybean seeds was also reduced via 0.2% AC amendment. → AC amendment effectively reduced AAs in rice and soybean. - Activated charcoal amendment to soil contaminated with diphenylarsinic acid reduced aromatic arsenicals in rice and soybean.

  9. Reduction in uptake by rice and soybean of aromatic arsenicals from diphenylarsinic acid contaminated soil amended with activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Arao, Tomohito, E-mail: arao@affrc.go.jp [National Institute for Agro-Environmental Sciences, Soil Environmental Division, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan); Maejima, Yuji; Baba, Koji [National Institute for Agro-Environmental Sciences, Soil Environmental Division, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan)

    2011-10-15

    Activated charcoal (AC) amendment has been suggested as a promising method to immobilize organic contaminants in soil. We performed pot experiments with rice and soybean grown in agricultural soil polluted by aromatic arsenicals (AAs). The most abundant AA in rice grains and soybean seeds was methylphenylarsinic acid (MPAA). MPAA concentration in rice grains was significantly reduced to 2% and 3% in 0.2% AC treated soil compared to untreated soil in the first year of rice cultivation. In the second year, MPAA concentration in rice grains was significantly reduced to 15% in 0.2% AC treated soil compared to untreated soil. MPAA concentration in soybean seeds was significantly reduced to 44% in 0.2% AC treated soil compared to untreated soil. AC amendment was effective in reducing AAs in rice and soybean. - Highlights: > Pot experiments using agricultural soil contaminated with aromatic arsenicals (AAs). > Methylphenylarsinic acid (MPAA) was the most abundant AA in rice and soybean. > MPAA concentration in rice grains was dramatically reduced via 0.2% AC amendment. > MPAA concentration in soybean seeds was also reduced via 0.2% AC amendment. > AC amendment effectively reduced AAs in rice and soybean. - Activated charcoal amendment to soil contaminated with diphenylarsinic acid reduced aromatic arsenicals in rice and soybean.

  10. Enhanced Soil Chemical Properties and Rice Yield in Acid Sulphate Soil by Application of Rice Straw

    Directory of Open Access Journals (Sweden)

    Siti Nurzakiah

    2012-01-01

    Full Text Available Swampland development such as acid sulphate soil for agricultural cultivation has various problem, including highsoil acidity, fluctuated and unpredictable water flooding and the presence of toxic elements such as Fe whichresulting in low crop yields. The research was conducted at the experimental station Belandean, Barito Kualaregency in dry season 2007. The objective of research was to study the effect of rice straw on the dynamic of soilpH, the concentration of iron and sulphate and yield on tidal land acid sulphate soil at two different water inletchannel. This research was designed in RCBD (Randomized Completely Block Design with five treatments (0, 2.5,5.0, 7.5 and 10 Mg ha-1 and four replications. Dolomite as much as 1 Mg ha-1 was also applied. This research wasdivided into two sub-units experiment i.e. two conditions of different water inlet channel. The first water channelswere placed with limestone and the second inlet was planted with Eleocharis dulcis. The results showed that (i ricestraw application did not affect the dynamic of soil pH, concentration of iron and sulphate, and (ii the highest yieldwas obtained with 7.5 Mg ha-1 of rice straw.

  11. Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-01-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as Palm Fatty Acid Distillate (PFAD) from palm oil industries. The use of PFAD can reduce the cost of biodiesel production significantly, which makes PFAD a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid (FFA) on PFAD was studied using rice husk ash (RHA) as heterogeneous catalyst. The rice husk ash catalyst was synthesized by sulfonation using concentrated sulfuric acid. The RHA catalyst were characterized by using different techniques, such as porosity analysis, Fourier transform infrared (FT-IR) spectroscopy, total number of acid sites and elemental analysis. The effects of the molar ratio of methanol to PFAD (1-10%), the molar ratio of methanol to PFAD (4:1-10:1), and the reaction temperature (40-60°C) were studied for the conversion of FFA to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 10:1, the catalyst amount of 10 wt% of PFAD, and reaction temperature of 60°C.

  12. Persistence of malathion residues in stored milled rice: Direct and indirect applications

    International Nuclear Information System (INIS)

    Arshad, J.H.

    1990-01-01

    Two experiments were carried out: (i) to study the persistence of malathion residues in stored milled rice following multiple applications of 14 C-malathion to the bagged rice and (ii) to determine the degradation of malathion in stored milled rice and stored paddy following direct and single application of 14 C-malathion. The storage conditions were similar to those found in the local rice godowns. Three applications of malathion to the bagged milled rice resulted in the accumulation of malathion and its metabolites in and/or on the rice grains over the storage period. After 9 months' storage, ca. 4% of the total applied radioactivity, which amounted to 10 μg/g equivalent of 14 C residues, were found in and/or on the grains. About one fourth of the residue remained as the unchanged parent compound. On the other hand, when 14 C-malathion at the 10 ppm level was mixed directly with the milled rice or paddy prior to storage, the amount of malathion (recovered in the chloroform extracts) decreased from 6.2 μg/g at zero time to 2.9 μg/g after 3 months' storage for the milled rice samples. The major metabolite in the milled rice and paddy samples was malathion monocarboxylic acid with trace amounts of malathion dicarboxylic acid and malaoxon. (author). 5 refs, 3 tabs

  13. Bromine accumulation in acidic black colluvial soils

    Science.gov (United States)

    Martínez Cortizas, Antonio; Ferro Vázquez, Cruz; Kaal, Joeri; Biester, Harald; Costa Casais, Manuela; Taboada Rodríguez, Teresa; Rodríguez Lado, Luis

    2016-02-01

    Recent investigations showed that bromine is incorporated to soil organic matter (SOM), its content increasing with humification. But few research was done on its long-term accumulation and the role played by pedogenetic processes, as those involved in organic matter stabilization. We investigated bromine content and distribution in four deep, acidic, organic-rich, Holocene soils from an oceanic area of Western Europe. Bromine concentrations (93-778 μg g-1) in the silt + clay (stabilized as aluminium-OM associations, and to a lesser extent on soil acidity (pH) and iron-OM associations. Thus, at scales of thousands of years, bromine accumulation in acidic soils is linked to the pool of metal-clay-stabilized organic matter.

  14. Rice planted along with accumulators in arsenic amended plots reduced arsenic uptake in grains and shoots.

    Science.gov (United States)

    Praveen, Ashish; Mehrotra, Sonali; Singh, Nandita

    2017-10-01

    An experiment was designed using phytoremadiation technology to obtain grains of rice safe for consumption. Sixteen plots of size 2 × 2 m were prepared (8 plots were treated with 50 mg kg -1 of sodium arsenate and rest 8 without any treatment). The study was done for two plantations (1st and 2nd plantation). Rice was planted with three accumulators (Phragmites australis, Vetiveria zizanioides and Pteris vitatta) in treated and untreated plot. Arsenic in grains of Actr (R + Pt, R + Ph and R + Vt) for 1st plantation was 0.4, 0.2 and 0.2 mg kg -1 where as in the case of wActr (Ras) it was 3 mg kg -1 . In 2nd plantation the concentration of arsenic in grain of Actr (R + Pt, R + Ph and R + Vt) was 0.1, 0.1 and 0.1 mg kg -1 where as in the case of wActr (Ras) it was 2 mg kg -1 . Significant differences in growth and yield parameters of rice between Actr and wActr in 1st plantation, while for 2nd plantation the activity was reduced in combinations except R + Pt and no significant difference was observed between Actr, Acntr and wActr. The study concluded that combinations of accumulators with crops could be useful for the survival and safe grains in As-contaminated soils but with some amendments in long-term remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Influence of pH of acid irrigation water on the transfer of elements into rice plant from soils

    International Nuclear Information System (INIS)

    Maeno, Tomokazu; Tanizaki, Yoshiyuki

    1996-01-01

    Rice plant samples were grown in 14 cultivative pots under six different pH conditions of acid irrigation water (pH: 6.5, 6.0, 4.5, 3.5, 3.0. 2.5) and ion exchange water (pH: 7.5), in order to study an influence of pH of irrigation water on the transfer of elements into rice plant from soils. The acid irrigation water was prepared by adding mixed solution of 1N H 2 SO 4 and 1N HNO 3 (1:1) to ion exchange water. The rice grain yielded was separated into three parts, i.e., polished rice, bran and chaff and they were powdered one by one. The contents of twenty five elements in the three parts of grain (14 samples each) were determined by a neutron activation analysis. It was clarified that the contents of Cu, Zn, Fe, Cr, Mg, Rb, Mo, Ni, and Cs in the polished rice increased with decreasing pH of the acid irrigation water. The contents of Se and Br, on the contrary, decreased. Significant changes of the contents were not observed for Na, Al, Sc, Mn, Cl, Ca, V and Co. The relationships between the contents of elements in the bran or chaff and pH of the acid irrigation water were not so clear as the case of polished rice. The enrichment factor of trace elements from soils was calculated for the polished rice, bran and chaff The high enrichment of Cl, Mo, Zn, Se and Cu was observed in the polished rice. Manganese and Cr were concentrated more in the bran than in the polished rice. (author)

  16. Genotypic differences among rice cultivars in lead accumulation and translocation and the relation with grain Pb levels.

    Science.gov (United States)

    Liu, Jianguo; Ma, Xinmei; Wang, Mingxin; Sun, Xiangwu

    2013-04-01

    In order to understand the differences among rice cultivars and genotypes in lead (Pb) uptake and translocation, and their relationship with Pb accumulation in rice grains, pot soil experiments were carried out with six rice cultivars of diverse types under different soil Pb levels. The results showed that the differences among rice cultivars in Pb concentrations varied largely with plant organs, and the magnitudes of the differences were larger in ears and grains than in shoots and roots. Pb concentrations in ears and grains differed significantly (price types, and were in the order: Hybrid Indica>Indica>Japonica. Grain Pb concentrations were correlated significantly (price cultivars in translocation factors (TF) of Pb from shoots to ears/grains were generally larger than the TF of Pb from roots to shoots. The differences among rice types in TF of Pb from shoots to ears/grains were generally significant (pIndica>Japonica. But the differences between rice types in the TF of Pb from roots to shoots were mostly insignificant (p>0.05). In general, grain Pb concentrations were correlated significantly (p0.05) with the TF of Pb from roots to shoots. So the Pb in shoots, but not in roots, may be the main sources of Pb transferred to the grains. Pb concentrations in rice grains are likely to be determined mainly by the translocations of Pb from shoots to the grains, and little by the transport from roots to shoots. Pb concentration in ears of heading can be used as an index of Pb level in the grains. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season

    International Nuclear Information System (INIS)

    Pramanik, Prabhat; Haque, Md. Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2014-01-01

    Cover crop application increased CH 4 emission from rice paddy soil. • N 2 O emission was decreased instead of applying N-rich cover crops. • N was accumulated mainly in smaller soil aggregates during rice cultivation. • N accumulation increased N 2 O emission potentials of soil aggregates. • Higher amount of N 2 O was emitted in the fallow season from cover crop treated soil

  18. Metabolic Conversion of l-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants 1

    Science.gov (United States)

    Yang, Joan C.; Loewus, Frank A.

    1975-01-01

    l-Ascorbic acid-1-14C and its oxidation product, dehydro-l-ascorbic acid, produced labeled oxalic acid in oxalate-accumulating plants such as spinach seedlings (Spinacia oleracea) and the detached leaves of woodsorrel (Oxalis stricta and O. oregana), shamrock (Oxalis adenopylla), and begonia (Begonia evansiana). In O. oregana, conversion occurred equally well in the presence or absence of light. This relationship between l-ascorbic acid metabolism and oxalic acid formation must be given careful consideration in attempts to explain oxalic accumulation in plants. PMID:16659288

  19. Characterization of Acetic Acid Bacteria in Traditional Acetic Acid Fermentation of Rice Vinegar (Komesu) and Unpolished Rice Vinegar (Kurosu) Produced in Japan

    Science.gov (United States)

    Nanda, Kumiko; Taniguchi, Mariko; Ujike, Satoshi; Ishihara, Nobuhiro; Mori, Hirotaka; Ono, Hisayo; Murooka, Yoshikatsu

    2001-01-01

    Bacterial strains were isolated from samples of Japanese rice vinegar (komesu) and unpolished rice vinegar (kurosu) fermented by the traditional static method. Fermentations have never been inoculated with a pure culture since they were started in 1907. A total of 178 isolates were divided into groups A and B on the basis of enterobacterial repetitive intergenic consensus-PCR and random amplified polymorphic DNA fingerprinting analyses. The 16S ribosomal DNA sequences of strains belonging to each group showed similarities of more than 99% with Acetobacter pasteurianus. Group A strains overwhelmingly dominated all stages of fermentation of both types of vinegar. Our results indicate that appropriate strains of acetic acid bacteria have spontaneously established almost pure cultures during nearly a century of komesu and kurosu fermentation. PMID:11157275

  20. The role of tolerant genotypes and plant nutrients in the management of acid soil infertility in upland rice

    International Nuclear Information System (INIS)

    Sahrawat, K.L.; Jones, M.P.; Diatta, S.

    2000-01-01

    As in other parts of the humid tropics, acid-related problems are the major constraint to crop production on low-activity clay soils in the humid and sub-humid zones of West Africa. The upland ecosystem of West Africa is very important to rice production. About 70% of upland rice is grown in the humid zone of the sub-region. To increase and stabilize rice productivity of the acid uplands at reasonable levels, a strategy is needed that integrates the use of tolerant cultivars with soil and plant-nutrient management. Research conducted on Alfisols and Ultisols of the humid-forest and savannah zones in West Africa showed that upland rice is a robust crop, possessing a wide range of tolerance to acid-soil conditions. Recent research at WARDA showed also that acid-soil tolerance can be enhanced through interspecific Oryza sativa x O. glaberrima progenies, which not only possess increased tolerance of acid-soil conditions, but also have superior overall adaptability to diverse upland environments in the sub-region. Our research on the diagnosis of acid-soil infertility problems on the Ultisols and Alfisols of the humid savannah and forest zones indicates that P deficiency is the most important nutrient disorder for upland rice. In the forest zone, response to N depended on the application of P. In the savannah and forest-savannah transition zones, N deficiency was more important than P deficiency. Among other plant nutrients, the application of Ca and Mg (as plant nutrients) did not appear initially to improve the performance of acid-tolerant upland rice cultivars. The results from a long-term study on an Ultisol with four acid-tolerant rice cultivars, revealed that they differed in agronomic and physiological P efficiencies, and the efficiencies were higher at lower rates of P. The amounts of total P removed in three successive crops were similar for all four cultivars although P-harvest index was 10 to 12% higher in the P-efficient than the inefficient cultivars. The

  1. Rice Bran Metabolome Contains Amino Acids, Vitamins & Cofactors, and Phytochemicals with Medicinal and Nutritional Properties.

    Science.gov (United States)

    Zarei, Iman; Brown, Dustin G; Nealon, Nora Jean; Ryan, Elizabeth P

    2017-12-01

    Rice bran is a functional food that has shown protection against major chronic diseases (e.g. obesity, diabetes, cardiovascular disease and cancer) in animals and humans, and these health effects have been associated with the presence of bioactive phytochemicals. Food metabolomics uses multiple chromatography and mass spectrometry platforms to detect and identify a diverse range of small molecules with high sensitivity and precision, and has not been completed for rice bran. This study utilized global, non-targeted metabolomics to identify small molecules in rice bran, and conducted a comprehensive search of peer-reviewed literature to determine bioactive compounds. Three U.S. rice varieties (Calrose, Dixiebelle, and Neptune), that have been used for human dietary intervention trials, were assessed herein for bioactive compounds that have disease control and prevention properties. The profiling of rice bran by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) identified 453 distinct phytochemicals, 209 of which were classified as amino acids, cofactors & vitamins, and secondary metabolites, and were further assessed for bioactivity. A scientific literature search revealed 65 compounds with health properties, 16 of which had not been previously identified in rice bran. This suite of amino acids, cofactors & vitamins, and secondary metabolites comprised 46% of the identified rice bran metabolome, which substantially enhanced our knowledge of health-promoting rice bran compounds provided during dietary supplementation. Rice bran metabolite profiling revealed a suite of biochemical molecules that can be further investigated and exploited for multiple nutritional therapies and medical food applications. These bioactive compounds may also be biomarkers of dietary rice bran intake. The medicinal compounds associated with rice bran can function as a network across metabolic pathways and this

  2. The DELLA Protein SLR1 Integrates and Amplifies Salicylic Acid- and Jasmonic Acid-Dependent Innate Immunity in Rice.

    Science.gov (United States)

    De Vleesschauwer, David; Seifi, Hamed Soren; Filipe, Osvaldo; Haeck, Ashley; Huu, Son Nguyen; Demeestere, Kristof; Höfte, Monica

    2016-03-01

    Gibberellins are a class of tetracyclic plant hormones that are well known to promote plant growth by inducing the degradation of a class of nuclear growth-repressing proteins, called DELLAs. In recent years, GA and DELLAs are also increasingly implicated in plant responses to pathogen attack, although our understanding of the underlying mechanisms is still limited, especially in monocotyledonous crop plants. Aiming to further decipher the molecular underpinnings of GA- and DELLA-modulated plant immunity, we studied the dynamics and impact of GA and DELLA during infection of the model crop rice (Oryza sativa) with four different pathogens exhibiting distinct lifestyles and infection strategies. Opposite to previous findings in Arabidopsis (Arabidopsis thaliana), our findings reveal a prominent role of the DELLA protein Slender Rice1 (SLR1) in the resistance toward (hemi)biotrophic but not necrotrophic rice pathogens. Moreover, contrary to the differential effect of DELLA on the archetypal defense hormones salicylic acid (SA) and jasmonic acid (JA) in Arabidopsis, we demonstrate that the resistance-promoting effect of SLR1 is due at least in part to its ability to boost both SA- and JA-mediated rice defenses. In a reciprocal manner, we found JA and SA treatment to interfere with GA metabolism and stabilize SLR1. Together, these findings favor a model whereby SLR1 acts as a positive regulator of hemibiotroph resistance in rice by integrating and amplifying SA- and JA-dependent defense signaling. Our results highlight the differences in hormone defense networking between rice and Arabidopsis and underscore the importance of GA and DELLA in molding disease outcomes. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Identification of The First Limiting Amino Acid In Cooked Polished White Rice Fed To Weanling Holtzman Rats

    Directory of Open Access Journals (Sweden)

    Mellova Masrizal

    2010-10-01

    Full Text Available Forty-eight male weanling rats (91 g were utilized to study the nutritional adequacy of cooked polished white rice. Rats were individually housed, and allowed ad libitum access to one of six treatment diets. Treatment diets were 1 polished white rice plus 10% casein and 0.18% methionine, CAS, 2 polished white rice, WHR, 3 polished white rice plus 0.45% lysine, LYS, 4 polished white rice plus0.40% methionine, MET, 5 polished white rice plus 0.30% threonine, THR, 6 polished white rice plus 0.45% lysine, 0.40% methionine, and 0.40% threonine, COM. Rice was cooked prior diet formulation using a 3 to 1 ratio of water to rice. Vitamins (AIN-76 and AIN minerals were added to all diets to meet NRC (1978 requirements. Rats fed CAS diets were significantly heavier on d 21 (P<0.05 than rats on COM, LYS, MET, THR, or WHR diets, (219.9 vs. 171.6, 153.2, 153.2, 148.3, or 155.4 g respectively. Supplementation of the most deficient essential amino acids, lysine (LYS or methionine (MET did not improve (P>0.05 rat performance over WHR fed rats, Average daily gain (ADG for CAS was 6.1 g/d and ADG for LYS and MET was 3.0 g/d. The addition of threonine (THR significantly (P<0.05 reduced ADG when compared to WHR diets (2.7 vs. 3.0 g/d. When rats were fed to COM diet significant (P<0.05 improvement in ADG was observed compared to WHR fed rats (4.8 vs. 3.0 g/d. The increased gains achieved with COM diet and the poor gains observed with the single amino acid diets (LYS, MET, or THR would suggest that polished white rice is limiting in more than one essential amino acid.

  4. Identification of gibberellin acid-responsive proteins in rice leaf sheath using proteomics.

    Science.gov (United States)

    Gu, Jia-Yu; Wang, Ye; Zhang, Xu; Zhang, Shi-Hua; Gao, Yin; An, Cheng-Cai

    2010-06-01

    The phytohormone gibberellin acid (GA) controls many aspects of plant development. In this study, we identified proteins that are differentially expressed between the rice (Oryza sativa L.) GA-deficient cultivar, Aijiaonante, and its parental line, Nante. Proteins were extracted from rice leaf sheath and examined by 2DGE. Among more than 1200 protein spots reproducibly detected on each gel, 29 were found to be highly up-regulated by GAs in Nante, and 6 were down-regulated by GAs in Aijiaonante. These 35 proteins were identified by MALDI-TOF MS and were classified into three groups based on their putative function in metabolism, stress/defense processes and signal transduction. These data suggest that metabolic pathways are the main target of regulation by GAs during rice development. Our results provide new information about the involvement of GAs in rice development.

  5. Temporal changes of radiocesium in irrigated paddy fields and its accumulation in rice plants in Fukushima.

    Science.gov (United States)

    Yang, Baolu; Onda, Yuichi; Wakiyama, Yoshifumi; Yoshimura, Kazuya; Sekimoto, Hitoshi; Ha, Yiming

    2016-01-01

    About half of the total paddy field area, which is the dominant agricultural land in Fukushima Prefecture, was contaminated by radiocesium released by the Fukushima Daiichi Nuclear Power Plant accident. In this study, we investigated the temporal changes of radiocesium in soil, irrigation water, and rice plant in two adjacent rice paddies, with and without surface-soil-removal, in Fukushima Prefecture for over three years (2012-2014) after the nuclear accident. Our results showed that radiocesium migrated into 24-28 cm soil layers and that the activity concentration of radiocesium in paddy soils showed a significant reduction in 2014. The newly added radiocesium to paddies through irrigation water contributed only a maximum value of 0.15% and 0.75% of the total amount present in control and decontaminated paddies, respectively, throughout the study period. The radiocesium activity concentration in suspended sediment in irrigation water exponentially decreased, and the effective half-lives (Teff) for (137)Cs and (134)Cs were 1.3 and 0.9 years, respectively. Additionally, the average suspended sediment concentration in irrigation water increased between 2012 and 2014, suggesting that enhanced soil erosion had occurred in the surrounding environment. Radiocesium accumulation in rice plant also decreased with time in both paddies. However, the concentration ratio of radiocesium for rice plant in the decontaminated paddy increased compared with control paddy, despite approximately 96% of fallout radiocesium removed in paddy soil. Further analysis is required to clarify the reasons of high concentration ratio of radiocesium for rice plant in the decontaminated paddy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The DELLA Protein SLR1 Integrates and Amplifies Salicylic Acid- and Jasmonic Acid-Dependent Innate Immunity in Rice1

    Science.gov (United States)

    De Vleesschauwer, David; Seifi, Hamed Soren; Haeck, Ashley; Huu, Son Nguyen; Demeestere, Kristof

    2016-01-01

    Gibberellins are a class of tetracyclic plant hormones that are well known to promote plant growth by inducing the degradation of a class of nuclear growth-repressing proteins, called DELLAs. In recent years, GA and DELLAs are also increasingly implicated in plant responses to pathogen attack, although our understanding of the underlying mechanisms is still limited, especially in monocotyledonous crop plants. Aiming to further decipher the molecular underpinnings of GA- and DELLA-modulated plant immunity, we studied the dynamics and impact of GA and DELLA during infection of the model crop rice (Oryza sativa) with four different pathogens exhibiting distinct lifestyles and infection strategies. Opposite to previous findings in Arabidopsis (Arabidopsis thaliana), our findings reveal a prominent role of the DELLA protein Slender Rice1 (SLR1) in the resistance toward (hemi)biotrophic but not necrotrophic rice pathogens. Moreover, contrary to the differential effect of DELLA on the archetypal defense hormones salicylic acid (SA) and jasmonic acid (JA) in Arabidopsis, we demonstrate that the resistance-promoting effect of SLR1 is due at least in part to its ability to boost both SA- and JA-mediated rice defenses. In a reciprocal manner, we found JA and SA treatment to interfere with GA metabolism and stabilize SLR1. Together, these findings favor a model whereby SLR1 acts as a positive regulator of hemibiotroph resistance in rice by integrating and amplifying SA- and JA-dependent defense signaling. Our results highlight the differences in hormone defense networking between rice and Arabidopsis and underscore the importance of GA and DELLA in molding disease outcomes. PMID:26829979

  7. Leaf development of cultivated rice and weedy red rice under elevated temperature scenarios

    OpenAIRE

    Streck,Nereu A.; Uhlmann,Lilian O.; Gabriel,Luana F.

    2013-01-01

    The objective of this study was to simulate leaf development of cultivated rice genotypes and weedy red rice biotypes in climate change scenarios at Santa Maria, RS, Brazil. A leaf appearance (LAR) model adapted for rice was used to simulate the accumulated leaf number, represented by the Haun Stage, from crop emergence to flag leaf appearance (EM-FL). Three cultivated rice genotypes and two weedy red rice biotypes in six emergence dates were used. The LAR model was run for each emergence dat...

  8. Methylmercury Exposure and Health Effects from Rice and Fish Consumption: A Review

    Directory of Open Access Journals (Sweden)

    Ping Li

    2010-06-01

    Full Text Available Methylmercury (MeHg is highly toxic, and its principal target tissue in humans is the nervous system, which has made MeHg intoxication a public health concern for many decades. The general population is primarily exposed to MeHg through consumption of contaminated fish and marine mammals, but recent studies have reported high levels of MeHg in rice and confirmed that in China the main human exposure to MeHg is related to frequent rice consumption in mercury (Hg polluted areas. This article reviews the progress in the research on MeHg accumulation in rice, human exposure and health effects, and nutrient and co-contaminant interactions. Compared with fish, rice is of poor nutritional quality and lacks specific micronutrients identified as having health benefits (e.g., n-3 long chain polyunsaturated fatty acid, selenium, essential amino acids. The effects of these nutrients on the toxicity of MeHg should be better addressed in future epidemiologic and clinical studies. More emphasis should be given to assessing the health effects of low level MeHg exposure in the long term, with appropriate recommendations, as needed, to reduce MeHg exposure in the rice-eating population.

  9. Characterization of metabolic network of oxalic acid biosynthesis through RNA seq data analysis of developing spikes of finger millet (Eleusine coracana): Deciphering the role of key genes involved in oxalate formation in relation to grain calcium accumulation.

    Science.gov (United States)

    Akbar, Naved; Gupta, Supriya; Tiwari, Apoorv; Singh, K P; Kumar, Anil

    2018-04-05

    In the present study, we identified seven major genes of oxalic acid biosynthesis pathway (SGAT, GGAT, ICL, GLO, MHAR, APO and OXO) from developing spike transcriptome of finger millet using rice as a reference. Sequence alignment of identified genes showed high similarity with their respective homolog in rice except for OXO and GLO. Transcript abundance (FPKM) reflects the higher accumulation of identified genes in GP-1 (low calcium genotype) as compared to GP-45 (high calcium genotype) which was further confirmed by qRT-PCR analysis, indicating differential oxalate formation in both genotypes. Determination of oxalic acid and tartaric acid content in developing spikes explain that higher oxalic acid content in GP-1 however, tartaric acid content was more in GP-45. Higher calcium content in GP-45 and lower oxalate accumulation may be due to the diversion of more ascorbic acid into tartaric acid and may correspond to less formation of calcium oxalate. Our results suggest that more than one pathway for oxalic acid biosynthesis might be present in finger millet with probable predominance of ascorbate-tartarate pathway rather than glyoxalate-oxalate conversion. Thus, finger millet can be use as an excellent model system for understanding more specific role of nutrients-antinutrients interactions, as evident from the present study. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana.

    Science.gov (United States)

    Huang, Tengfang; Jander, Georg

    2017-10-01

    Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of

  11. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Prabhat, E-mail: prabhat2003@gmail.com; Haque, Md. Mozammel; Kim, Sang Yoon; Kim, Pil Joo, E-mail: pjkim@gnu.ac.kr

    2014-08-15

    considered especially for fallow season to calculate total GWP. - Highlights: • Cover crop application increased CH{sub 4} emission from rice paddy soil. • N{sub 2}O emission was decreased instead of applying N-rich cover crops. • N was accumulated mainly in smaller soil aggregates during rice cultivation. • N accumulation increased N{sub 2}O emission potentials of soil aggregates. • Higher amount of N{sub 2}O was emitted in the fallow season from cover crop treated soil.

  12. Grain Yield, Dry Weight and Phosphorus Accumulation and Translocation in Two Rice (Oryza sativa L. Varieties as Affected by Salt-Alkali and Phosphorus

    Directory of Open Access Journals (Sweden)

    Zhijie Tian

    2017-08-01

    Full Text Available Salt-alkali is the main threat to global crop production. The functioning of phosphorus (P in alleviating damage to crops from saline-alkaline stress may be dependent on the variety of crop but there is little published research on the topic. This pot experiment was conducted to study if P has any effect on rice (Oryza sativa L. yield, dry matter and P accumulation and translocation in salt-alkaline soils. Plant dry weight and P content at heading and harvest stages of two contrasting saline-alkaline tolerant (Dongdao-4 and sensitive (Tongyu-315 rice varieties were examined under two saline-alkaline (light versus severe soils and five P supplements (P0, P50, P100, P150 and P200 kg ha−1. The results were: in light saline-alkaline soil, the optimal P levels were found for P150 for Dongdao-4 and for P100 for Tongyu-315 with the greatest grain dry weight and P content. Two rice varieties obtained relatively higher dry weight and P accumulation and translocation in P0. In severe saline-alkaline soil, however, dry weight and P accumulation and translocation, 1000-grain weight, seed-setting rate and grain yield significantly decreased, but effectively increased with P application for Dongdao-4. Tongyu-315 showed lower sensitivity to P nutrition. Thus, a more tolerant variety could have a stronger capacity to absorb and translocate P for grain filling, especially in severe salt-alkaline soils. This should be helpful for consideration in rice breeding and deciding a reasonable P application in saline-alkaline soil.

  13. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars

    Directory of Open Access Journals (Sweden)

    Saddam eHussain

    2016-02-01

    Full Text Available Rice belongs to tropical and subtropical environments and is extremely sensitive to chilling stress particularly during emergence and early stages of seedling development. Seed priming can be a good approach to enhance rice germination and stand establishment under chilling stress. The present study examined the role of different seed priming techniques viz., hydropriming, osmopriming, redox priming, chemical priming, and hormonal priming, in enhancing the chilling tolerance in rice. The most effective reagents and their pre-optimized concentrations based on preliminary experiments were used in this study. Two different rice cultivars were sown under chilling stress (18˚C and normal temperatures (28˚C in separate growth chambers. A non-primed control treatment was also maintained for comparison. Chilling stress caused erratic and delayed germination, poor seedling growth, reduced starch metabolism and lower respiration rate, while higher lipid peroxidation and hydrogen peroxide accumulation in rice seedlings of both cultivars. Nevertheless, all the seed priming treatments effectively alleviated the negative effects of chilling stress. In addition, seed priming treatments triggered the activities of superoxide dismutase, peroxidase, and catalase, and enhanced the accumulations of glutathione and free proline in rice seedlings, which suggests that these measures help prevent the rice seedlings from chilling induced oxidative stress. Chemical priming with selenium and hormonal priming with salicylic acid remained more effective treatments for both rice cultivars under chilling stress than all other priming treatments. The better performance and greater tolerance of primed rice seedlings was associated with enhanced starch metabolism, high respiration rate, lower lipid peroxidation, and strong antioxidative defense system under chilling stress.

  14. Total lipid accumulation and fatty acid profiles of microalga Spirulina ...

    African Journals Online (AJOL)

    Nutrient limitation in terms of nitrogen and phosphorus increased lipid accumulation under depleted growth in Spirulina strains. Nitrogen limitation was found more effective than phosphorus in accumulating lipid. The fatty acid profile was variable: palmitic (48%), linolenic (21%) and linoleic acids (15%) were the most ...

  15. Cis-12-oxo-phytodienoic acid stimulates rice defense response to a piercing-sucking insect.

    Science.gov (United States)

    Guo, Hui-Min; Li, Hai-Chao; Zhou, Shi-Rong; Xue, Hong-Wei; Miao, Xue-Xia

    2014-11-01

    The brown planthopper (BPH, Nilaparvata lugens) is a destructive, monophagous, piercing-sucking insect pest of rice. Previous studies indicated that jasmonic acid (JA) positively regulates rice defense against chewing insect pests but negatively regulates it against the piercing-sucking insect of BPH. We here demonstrated that overexpression of allene oxide cyclase (AOC) but not OPR3 (cis-12-oxo-phytodienoic acid (OPDA) reductase 3, an enzyme adjacent to AOC in the JA synthetic pathway) significantly increased rice resistance to BPH, mainly by reducing the feeding activity and survival rate. Further analysis revealed that plant response to BPH under AOC overexpression was independent of the JA pathway and that significantly higher OPDA levels stimulated rice resistance to BPH. Microarray analysis identified multiple candidate resistance-related genes under AOC overexpression. OPDA treatment stimulated the resistance of radish seedlings to green peach aphid Myzus persicae, another piercing-sucking insect. These results imply that rice resistance to chewing insects and to sucking insects can be enhanced simultaneously through AOC-mediated increases of JA and OPDA and provide direct evidence of the potential application of OPDA in stimulating plant defense responses to piercing-sucking insect pests in agriculture. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  16. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice — A field study over four rice seasons in Hunan, China

    International Nuclear Information System (INIS)

    Chen, De; Guo, Hu; Li, Ruiyue; Li, Lianqing; Pan, Genxing; Chang, Andrew; Joseph, Stephen

    2016-01-01

    Biochar is becoming an environmentally friendly material for remediation of heavy metal contaminated soils and improving food safety. A field trial over four rice seasons was conducted to investigate the use of biochar and low Cd accumulating cultivars on Cd uptake in a heavy metal contaminated soil. Wheat straw derived biochar was applied at 0, 20 and 40 t ha"−"1. Two rice cultivars with differing Cd accumulation abilities were selected in each season. The results showed that both biochar and low Cd affinity cultivars significantly reduced rice grain Cd accumulation. Biochar had no significant effect the first season but thereafter consistently reduced rice grain Cd by a maximum of 61, 86 and 57% over the next three seasons. Zn accumulation in the rice grains was not decreased by biochar application, although available soil Zn was sharply reduced (35–91%). Indica conventional rice cultivars had much lower Cd, but higher Zn and lower Cd/Zn ratios in the grain than indica hybrid cultivars. Biochar was more effective for mitigating grain Cd accumulation in low Cd affinity cultivars than in high affinity cultivars. Soil pH was sustainably increased (up to nearly 1 unit) while available Cd significantly decreased by a maximum of 85% after biochar addition. The translocation of Cd from rice roots to shoots was reduced from 20 to 80% by biochar. Low uptake affinity cultivars combined with biochar reduced late rice grain Cd concentration and Cd/Zn ratios by 69–80% and 72–80%, respectively. It indicated that the management of combining biochar and low Cd affinity cultivars should be an efficient way to remediate Cd contaminated rice paddies and reduce health risk associated with consuming rice from these soils. - Highlights: • Biochar sustainably reduced soil Cd availability and Cd translocation in rice plant. • Indica conventional cultivars had lower Cd but higher Zn in grains than hybrid ones. • Biochar significantly reduced grain Cd and Cd/Zn ratio, though

  17. A rice gene of de novo origin negatively regulates pathogen-induced defense response.

    Directory of Open Access Journals (Sweden)

    Wenfei Xiao

    Full Text Available How defense genes originated with the evolution of their specific pathogen-responsive traits remains an important problem. It is generally known that a form of duplication can generate new genes, suggesting that a new gene usually evolves from an ancestral gene. However, we show that a new defense gene in plants may evolve by de novo origination, resulting in sophisticated disease-resistant functions in rice. Analyses of gene evolution showed that this new gene, OsDR10, had homologs only in the closest relative, Leersia genus, but not other subfamilies of the grass family; therefore, it is a rice tribe-specific gene that may have originated de novo in the tribe. We further show that this gene may evolve a highly conservative rice-specific function that contributes to the regulation difference between rice and other plant species in response to pathogen infections. Biologic analyses including gene silencing, pathologic analysis, and mutant characterization by transformation showed that the OsDR10-suppressed plants enhanced resistance to a broad spectrum of Xanthomonas oryzae pv. oryzae strains, which cause bacterial blight disease. This enhanced disease resistance was accompanied by increased accumulation of endogenous salicylic acid (SA and suppressed accumulation of endogenous jasmonic acid (JA as well as modified expression of a subset of defense-responsive genes functioning both upstream and downstream of SA and JA. These data and analyses provide fresh insights into the new biologic and evolutionary processes of a de novo gene recruited rapidly.

  18. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants.

    Science.gov (United States)

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K

    2016-03-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Oxalic acid pretreatment of rice straw particles and loblolly pine chips : release of hemicellulosic carbohydrates

    Science.gov (United States)

    Xianjun Li; Zhiyong Cai; Eric Horn; Jerrold E. Winandy

    2011-01-01

    This study was conducted to evaluate the effect of oxalic acid (OA) pretreatment on carbohydrates released from rice straw particles and wood chips. The results showed that OA treatment accelerated carbohydrates extraction from rice straw particles and wood chips. OA pretreatment dramatically increased the amount of carbohydrates extracted, up to 24 times for wood...

  20. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice.

    Science.gov (United States)

    Li, Meijuan; Ashraf, Umair; Tian, Hua; Mo, Zhaowen; Pan, Shenggang; Anjum, Shakeel Ahmad; Duan, Meiyang; Tang, Xiangru

    2016-06-01

    Micro-nutrient application is essential for normal plant growth while a little is known about manganese (Mn)-induced regulations in morpho-physiological attributes, aroma formation and enzyme involved in 2-acetyl-1-pyrroline (2-AP) biosynthesis in aromatic rice. Present study aimed to examine the influence of four levels of Mn i.e., Mn1 (100 mg MnSO4 pot(-1)), Mn2 (150 mg MnSO4 pot(-1)), Mn3 (200 mg MnSO4 pot(-1)), and Mn4 (250 mg MnSO4 pot(-1)) on the growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in two fragrant rice cultivars i.e., Meixiangzhan and Nongxiang 18. Pots without Mn application were served as control (Ck). Each pot contained 15 kg of soil. Effects on agronomic characters, quality attributes, 2-AP contents and enzymes involved in 2-AP biosynthesis have been studied in early and late season rice. Results depicted that Mn improved rice growth, yield and related characters, and some quality attributes significantly. It further up-regulated proline, pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP), soluble proteins and activities of proline dehydrogenase (ProDH), Δ(1) pyrroline-5-carboxylic acid synthetase (P5CS) ornithine aminotransferase (OAT) that led to enhanced 2-AP production in rice grains. Moreover, higher Mn levels resulted in increased grain Mn contents in both rice cultivars. Along with growth and yield improvement, Mn application significantly improved rice aromatic contents. Overall, Nongxiang 18 accumulated more 2-AP contents than Meixiangzhan in both seasons under Mn application. This study further explored the importance of Mn in rice aroma formation and signifies that micro-nutrients can play significant roles in rice aroma synthesis; however, intensive studies at molecular levels are still needed to understand the exact mechanisms of Mn to improve rice aroma formation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Amendment damages the function of continuous flooding in decreasing Cd and Pb uptake by rice in acid paddy soil.

    Science.gov (United States)

    Ye, Xinxin; Li, Hongying; Zhang, Ligan; Chai, Rushan; Tu, Renfeng; Gao, Hongjian

    2018-01-01

    Combinations of remediation technologies are needed to solve the problem of soil contamination in paddy rice, due to multiple potential toxic elements (PTEs). Two potential mitigation methods, water management and in-situ remediation by soil amendment, have been widely used in treatment of PTE-polluted paddy soil. However, the interactive relationship between soil amendment and water management, and its influence on the accumulation of PTEs in rice are poorly understood. Greenhouse pot experiments were conducted to examine the effects of phosphate amendment on Cd and Pb availability in soil and their influence on Cd and Pb uptake into rice, on Fe and P availability in soil, and on the alteration of Fe amount and compartment on root surface among different water management strategies. Results indicated that Cd and Pb content in the shoot and grain were significantly affected by the different water management strategies in nonamended soils, and followed the order: wetting irrigation > conventional irrigation > continuous flooding. The application of phosphate amendment significantly decreased the variations of Cd and Pb absorption in shoot and grain of rice among different water treatments. The reasons may be attributed to the enhancement of P availability and the decrease of Fe availability in soil, and the decreased variations of Fe 2+ /Fe 3+ content in root coating after the application of phosphate amendment. These results suggested that the simultaneous use of phosphate amendment and continuous flooding to immobilize Cd and Pb, especially in acid paddy soils, should be avoided. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effect of Temperature on Chinese Rice Wine Brewing with High Concentration Presteamed Whole Sticky Rice

    Science.gov (United States)

    Zhang, Hong-Tao; Xiong, Weili; Hu, Jianhua; Xu, Baoguo; Lin, Chi-Chung; Xu, Ling; Jiang, Lihua

    2014-01-01

    Production of high quality Chinese rice wine largely depends on fermentation temperature. However, there is no report on the ethanol, sugars, and acids kinetics in the fermentation mash of Chinese rice wine treated at various temperatures. The effects of fermentation temperatures on Chinese rice wine quality were investigated. The compositions and concentrations of ethanol, sugars, glycerol, and organic acids in the mash of Chinese rice wine samples were determined by HPLC method. The highest ethanol concentration and the highest glycerol concentration both were attained at the fermentation mash treated at 23°C. The highest peak value of maltose (90 g/L) was obtained at 18°C. Lactic acid and acetic acid both achieved maximum values at 33°C. The experimental results indicated that temperature contributed significantly to the ethanol production, acid flavor contents, and sugar contents in the fermentation broth of the Chinese rice wines. PMID:24672788

  3. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice

    Science.gov (United States)

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-01-01

    Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings. PMID:25941326

  4. Enhancement of gama-aminobutyric acid (GABA) and other health-related metabolites in germinated red rice (Oryza sativa L.) by ultrasonication.

    Science.gov (United States)

    Ding, Junzhou; Ulanov, Alexander V; Dong, Mengyi; Yang, Tewu; Nemzer, Boris V; Xiong, Shanbai; Zhao, Siming; Feng, Hao

    2018-01-01

    Red rice (Oryza sativa L.) that has a red (reddish brown) bran layer in de-hulled rice is known to contain rich biofunctional components. Germination is an effective technique to improve the nutritional quality, digestibility, and flavor of de-hulled rice. Ultrasonication, a form of physical stimulation, has been documented as a novel approach to improve the nutritional quality of plant-based food. This study was undertaken to test the use of ultrasound to enhance the nutritional value of red rice. Ultrasonication (5min, 16W/L) was applied to rice during soaking or after 66h germination. Changes of metabolites (amino acids, sugars, and organic acids) in red rice treated by ultrasonication were determined using a GC/MS plant primary metabolomics analysis platform. Differential expressed metabolites were identified through multivariate statistical analysis. Results showed that γ-aminobutyric acid (GABA) and riboflavin (vitamin B 2 ) in red rice significantly increased after germination for 72h, and then experienced a further increase after treatment by ultrasound at different stages during germination. The metabolomics analysis showed that some plant metabolites, i.e. GABA, O-phosphoethanolamine, and glucose-6-phosphate were significantly increased after the ultrasonic treatment (VIP>1.5) in comparison with the untreated germinated rice. The findings of this study showed that controlled germination with ultrasonic stress is an effective method to enhance GABA and other health-promoted components in de-hulled rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Purification of Industrial Phosphoric Acid using Silica Produced from Rice Husk (Part 1)

    International Nuclear Information System (INIS)

    Gad, H.M.H.; Awwad, N.S.; El-Khalafawy, A.; Daifullah, A.A.M.; El-Reefy, S.A.; Aly, H.F.

    2008-01-01

    In this work, silica was extracted from rice husk (RH) by different techniques and used for removal of some heavy metals from industrial phosphoric acid. The data obtained, showed that removal of Cu(II), Cd(II) and Pb(II) is efficient when the silica used is obtained by acidic treatment, while the removal of Fe(III) and Zn(II) is efficient when the silica used was obtained by alkaline treatment of RH. On the other hand, if silica used is obtained from rice husk ash (RHA) it was found more efficient for the removal of Mn. In all cases, the concentration of silica has been characterized by UV-Spectrophotometry. FTIR, SEM and EDX were used for predication of sorption mechanism

  6. Vinegar rice (Oryza sativa L. produced by a submerged fermentation process from alcoholic fermented rice

    Directory of Open Access Journals (Sweden)

    Wilma Aparecida Spinosa

    2015-03-01

    Full Text Available Considering the limited availability of technology for the production of rice vinegar and also due to the potential consumer product market, this study aimed to use alcoholic fermented rice (rice wine (Oryza sativa L. for vinegar production. An alcoholic solution with 6.28% (w/v ethanol was oxidized by a submerged fermentation process to produce vinegar. The process of acetic acid fermentation occurred at 30 ± 0.3°C in a FRINGS® Acetator (Germany for the production of vinegar and was followed through 10 cycles. The vinegar had a total acidity of 6.85% (w/v, 0.17% alcohol (w/v, 1.26% (w/v minerals and 1.78% (w/v dry extract. The composition of organic acids present in rice vinegar was: cis-aconitic acid (6 mg/L, maleic acid (3 mg/L, trans-aconitic acid (3 mg/L, shikimic + succinic acid (4 mg/L, lactic acid (300 mg/L, formic acid (180 mg/L, oxalic acid (3 mg/L, fumaric acid (3 mg/L and itaconic acid (1 mg/L.

  7. Cholic acid accumulation and its diminution by short-chain fatty acids in bifidobacteria

    NARCIS (Netherlands)

    Kurdi, P; Tanaka, H; van Veen, HW; Asano, K; Tomita, F; Yokota, A

    Cholic acid (CA) transport was investigated in nine intestinal Bifidobacterium strains. Upon energization with glucose, all of the bificlobacteria accumulated CA. The driving force behind CA accumulation was found to be the transmembrane proton gradient (DeltapH, alkaline interior). The levels of

  8. Effect of Temperature on Chinese Rice Wine Brewing with High Concentration Presteamed Whole Sticky Rice

    Directory of Open Access Journals (Sweden)

    Dengfeng Liu

    2014-01-01

    Full Text Available Production of high quality Chinese rice wine largely depends on fermentation temperature. However, there is no report on the ethanol, sugars, and acids kinetics in the fermentation mash of Chinese rice wine treated at various temperatures. The effects of fermentation temperatures on Chinese rice wine quality were investigated. The compositions and concentrations of ethanol, sugars, glycerol, and organic acids in the mash of Chinese rice wine samples were determined by HPLC method. The highest ethanol concentration and the highest glycerol concentration both were attained at the fermentation mash treated at 23°C. The highest peak value of maltose (90 g/L was obtained at 18°C. Lactic acid and acetic acid both achieved maximum values at 33°C. The experimental results indicated that temperature contributed significantly to the ethanol production, acid flavor contents, and sugar contents in the fermentation broth of the Chinese rice wines.

  9. The Potency of White Rice (Oryza sativa), Black Rice (Oryza sativa L. indica), and Red Rice (Oryza nivara) as Antioxidant and Tyrosinase Inhibitor

    Science.gov (United States)

    Batubara, I.; Maharni, M.; Sadiah, S.

    2017-04-01

    Rice is known to have many beneficial biological activities and is often used as “bedak dingin”, a face powder. The content of vitamins, minerals, fiber, and several types of antioxidants, such as ferulic acid, phytic acid, tocopherol, and oryzanols [1-2] are predicted to be potential as a tyrosinase inhibitor. The purpose of this study is to determine the potency of extracts from there types of rice, namely white, red, and black rice as an antioxidant and tyrosinase inhibitor. The rice was extracted with three different solvents, n-hexane, ethyl acetate, and methanol. The results showed that the highest antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl method was found in the methanol extract of black rice (IC50 290 μg/mL). Meanwhile, ethyl acetate extract of white rice has the highest antioxidant activity withphosphomolybdic acid method (41 mmol α-tocopherol equivalents/g sample). Thus, methanol extract of black rice and ethyl acetate extract of white rice are potential as an antioxidant. For tyrosinase inhibitor, n-hexane extract of red rice (IC50 3156 μg/mL) was the most active extract. The active component for radical scavenging is polar compound and for antioxidant by phosphomolybdate method is less polar compounds in black rice methanol extract based on TLC bioautogram. In conclusion, the black rice is the most potent in antioxidant while red rice is for tyrosinase inhibition.

  10. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability

    Science.gov (United States)

    Li, Honghong; Liu, Yuting; Chen, Yanhui; Wang, Shanli; Wang, Mingkuang; Xie, Tuanhui; Wang, Guo

    2016-08-01

    This study aimed to determine effects of rice straw biochar on Pb sequestration in a soil-rice system. Pot experiments were conducted with rice plants in Pb-contaminated paddy soils that had been amended with 0, 2.5, and 5% (w/w) biochar. Compared to the control treatment, amendment with 5% biochar resulted in 54 and 94% decreases in the acid soluble and CaCl2-extractable Pb, respectively, in soils containing rice plants at the maturity stage. The amount of Fe-plaque on root surfaces and the Pb concentrations of the Fe-plaque were also reduced in biochar amended soils. Furthermore, lead species in rice roots were determined using Pb L3-edge X-ray absorption near edge structure (XANES), and although Pb-ferrihydrite complexes dominated Pb inventories, increasing amounts of organic complexes like Pb-pectins and Pb-cysteine were found in roots from the 5% biochar treatments. Such organic complexes might impede Pb translocation from root to shoot and subsequently reduce Pb accumulation in rice with biochar amendment.

  11. The Effect of Acid Pre-Treatment using Acetic Acid and Nitric Acid in The Production of Biogas from Rice Husk during Solid State Anaerobic Digestion (SS-AD)

    Science.gov (United States)

    Nugraha, Winardi Dwi; Syafrudin; Keumala, Cut Fadhila; Matin, Hasfi Hawali Abdul; Budiyono

    2018-02-01

    Pretreatment during biogas production aims to assist in degradation of lignin contained in the rice husk. In this study, pretreatment which is used are acid and biological pretreatment. Acid pretreatment was performed using acetic acid and nitric acid with a variety levels of 3% and 5%. While biological pretreatment as a control variable. Acid pretreatment was conducted by soaking the rice straw for 24 hours with acid variation. The study was conducted using Solid State Anaerobic Digestion (SS-AD) with 21% TS. Biogas production was measured using water displacement method every two days for 60 days at room temperature conditions. The results showed that acid pretreatment gave an effect on the production of biogas yield. The yield of the biogas produced by pretreatment of acetic acid of 5% and 3% was 43.28 and 45.86 ml/gr.TS. While the results without pretreatment biogas yield was 29.51 ml/gr.TS. The results yield biogas produced by pretreatment using nitric acid of 5% and 3% was 12.14 ml/gr.TS and 21.85 ml/gr.TS. Results biogas yield with acetic acid pretreatment was better than the biogas yield results with nitric acid pretreatment.

  12. Effects of high hydrostatic pressure on distribution dynamics of free amino acids in water soaked brown rice grain

    International Nuclear Information System (INIS)

    Shigematsu, T; Nakajima, K; Uno, Y; Sakano, A; Murakami, M; Narahara, Y; Fujii, T; Hayashi, M; Ueno, S

    2010-01-01

    High hydrostatic pressure (HP) with approximately below 400 MPa can induce a transformation of food materials to an alternative form, where membrane systems are damaged but certain enzymes are still active. HP treatment of water soaked brown rice grain could modify the mass transfer inside and apparent activities of enzymes, resulting in HP-dependent change of distribution of free amino acids. Thus, the distribution of free amino acids in brown rice grain during preservation after HP treatment was analyzed. Just after HP treatment at 200 MPa for 10 min, the distribution of free amino acids was not apparently different from that of untreated control. In contrast, after 1 to 4 days preservation at 25 0 C, amino acids, such as Ala, Glu, Gly, Asp and Val, showed higher concentrations than those in control. This result suggested that HP treatment induced proteolysis to produce free amino acids. However, Gln, Thr and Cys, showed no apparent difference, suggesting that conversion of certain amino acids produced by proteolysis occurred. Moreover, the concentration of γ-aminobutyric acid (GABA) in HP-treated sample was higher than that in untreated control. These results suggested that HP treatment induced alteration of distribution of free amino acids of rice grains via proteolysis and certain amino acids metabolism pathways.

  13. Effects of high hydrostatic pressure on distribution dynamics of free amino acids in water soaked brown rice grain

    Science.gov (United States)

    Shigematsu, T.; Hayashi, M.; Nakajima, K.; Uno, Y.; Sakano, A.; Murakami, M.; Narahara, Y.; Ueno, S.; Fujii, T.

    2010-03-01

    High hydrostatic pressure (HP) with approximately below 400 MPa can induce a transformation of food materials to an alternative form, where membrane systems are damaged but certain enzymes are still active. HP treatment of water soaked brown rice grain could modify the mass transfer inside and apparent activities of enzymes, resulting in HP-dependent change of distribution of free amino acids. Thus, the distribution of free amino acids in brown rice grain during preservation after HP treatment was analyzed. Just after HP treatment at 200 MPa for 10 min, the distribution of free amino acids was not apparently different from that of untreated control. In contrast, after 1 to 4 days preservation at 25°C, amino acids, such as Ala, Glu, Gly, Asp and Val, showed higher concentrations than those in control. This result suggested that HP treatment induced proteolysis to produce free amino acids. However, Gln, Thr and Cys, showed no apparent difference, suggesting that conversion of certain amino acids produced by proteolysis occurred. Moreover, the concentration of γ-aminobutyric acid (GABA) in HP-treated sample was higher than that in untreated control. These results suggested that HP treatment induced alteration of distribution of free amino acids of rice grains via proteolysis and certain amino acids metabolism pathways.

  14. Utilization of applied zinc by rice crop in wetland acidic soils

    International Nuclear Information System (INIS)

    Singh, A.K.; Nongkynrih, P.; Sachdev, P.; Sachdev, M.S.

    2001-01-01

    A greenhouse experiment was conducted to study the response of rice plant to zinc fertilizer under submerged condition using 65 Zn-labelled ZnSO 4 in 13 wetland acidic soils of Meghalaya. Application of Zn significantly increased the dry matter yield. Dry matter yield, total Zn content and per cent Zndff of rice plant at 2.5 and 5 mg Zn kg -1 increased significantly from 7.05 to 8.47 g/pot, 66 g/pot to 78 mg/pot and 7.56 to 8.73 per cent, respectively. Per cent Zn utilization declined significantly from 0.188 to 0.131 on enhancing the levels of Zn from 2.5 to 5 mg kg -1 . On an average, per cent utilization of added Zn by rice plant was only a fraction of total quantity of applied Zn. Most of the soil characteristics analysed play important role in regulating the availability of added Zn in these soils. (author)

  15. Binding and detoxification of chlorpyrifos by lactic acid bacteria on rice straw silage fermentation.

    Science.gov (United States)

    Wang, Yan-Su; Wu, Tian-Hao; Yang, Yao; Zhu, Cen-Ling; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-01-01

    This investigation examined the reduction of pesticide residues on straw inoculated with lactic acid bacteria (LAB) during ensiling. Lactobacillus casei WYS3 was isolated from rice straw that contained pesticide residues. Non-sterilized rice straw, which was inoculated with L. casei WYS3, showed increased removal of chlorpyrifos after ensiling, compared with rice straw that was not inoculated with L. casei WYS3 or sterilized rice straw. In pure culture, these strains can bind chlorpyrifos as indicated by high-performance liquid chromatography analysis. Viable L. casei WYS3 was shown to bind 33.3-42% of exogenously added chlorpyrifos. These results are similar to those of acid-treated cells but less than those of heat-treated cells, which were found to bind 32.0% and 77.2% of the added chlorpyrifos respectively. Furthermore, gas chromatography-mass spectrometry analysis determined that L. casei WYS3 detoxified chlorpyrifos via P-O-C cleavage. Real-time polymerized chain reaction analysis determined that organophosphorus hydrolase gene expression tripled after the addition of chlorpyrifos to LAB cultures, compared with the control group (without chlorpyrifos). This paper highlights the potential use of LAB starter cultures for the detoxification and removal of chlorpyrifos residues in the environment.

  16. THIOGLYCOLIC ACID ESTERIFIED IN TO RICE STRAW FOR REMOVING LEAD FROM AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    R. Gong

    2011-09-01

    Full Text Available Thiol rice straw (TRS was prepared by esterifying thioglycolic acid onto rice straw in the medium of acetic anhydride and acetic acid with sulfuric acid as catalyst. The sorption of lead (Pb on TRS from aqueous solution was subsequently investigated. The batch experiments showed that Pb removal was dependent on initial pH, sorbent dose, Pb concentration, contact time, and temperature. The maximum value of Pb removal appeared at pH 5. For 100 mg/L of Pb solution, a removal ratio of greater than 98% could be achieved with 2.0 g/L or more of TRS. The isothermal data of Pb sorption conformed well to the Langmuir model, and the maximum sorption capacity (Qm of TRS for Pb was 104.17 mg/g. The equilibrium of Pb removal was reached within 120 min. The Pb removal process could be described by the pseudo-first-order kinetic model. The thermodynamic study indicated that the Pb removal process was spontaneous and endothermic.

  17. Relative bioavailability of 13C5-folic acid in pectin-coated folate fortified rice in humans using stable isotope techniques.

    Science.gov (United States)

    de Ambrosis, A; Vishnumohan, S; Paterson, J; Haber, P; Arcot, J

    2017-01-01

    The aim of the study was to measure the relative bioavailability of labeled pteroylglutamic acid (13C5-PteGlu) from a pectin-coated fortified rice in vivo to measure any effect of the edible coating on folic acid bioavailability. Healthy volunteers (N=26) aged 18-39 years received three test meals in three randomized short-term cross-over trials: Trial 1: aqueous 400 μg 13C5-PteGlu, Trial 2: 200 g cooked white rice+400 μg 13C5-PteGlu,Trial 3: 200 g fortified cooked white rice with pectin-coated premix containing 400 μg 13C5-PteGlu. Blood samples were drawn at 0,1,2,5 and 8 h postprandial. The concentration of 13C5-5 methyl-tetrahydrofolate appearing in plasma was quantified using high performance liquid chromatography-mass spectrometry (MS)/MS. For 24 h before baseline estimation and during the area under the curve (AUC) study, the subjects were placed on a low folate diet (∼100 μg/day). The relative bioavailability of the folic acid following Trial 3 was measured by comparing the 13C5-5 methyl-tetrahydrofuran (THF) AUC with Trials 1 and 2. The bioavailability of folic acid in a pectin-coated rice premix was 68.7% (range 47-105) and 86.5% (range 65-115) in uncoated fortified rice relative to aqueous folic acid. This study is the first demonstration of the bioavailability of folate in pectin-coated fortified rice in humans.

  18. Increase in cellulose accumulation and improvement of saccharification by overexpression of arabinofuranosidase in rice.

    Directory of Open Access Journals (Sweden)

    Minako Sumiyoshi

    Full Text Available Cellulosic biomass is available for the production of biofuel, with saccharification of the cell wall being a key process. We investigated whether alteration of arabinoxylan, a major hemicellulose in monocots, causes an increase in saccharification efficiency. Arabinoxylans have β-1,4-D-xylopyranosyl backbones and 1,3- or 1,4-α-l-arabinofuranosyl residues linked to O-2 and/or O-3 of xylopyranosyl residues as side chains. Arabinose side chains interrupt the hydrogen bond between arabinoxylan and cellulose and carry an ester-linked feruloyl substituent. Arabinose side chains are the base point for diferuloyl cross-links and lignification. We analyzed rice plants overexpressing arabinofuranosidase (ARAF to study the role of arabinose residues in the cell wall and their effects on saccharification. Arabinose content in the cell wall of transgenic rice plants overexpressing individual ARAF full-length cDNA (OsARAF1-FOX and OsARAF3-FOX decreased 25% and 20% compared to the control and the amount of glucose increased by 28.2% and 34.2%, respectively. We studied modifications of cell wall polysaccharides at the cellular level by comparing histochemical cellulose staining patterns and immunolocalization patterns using antibodies raised against α-(1,5-linked l-Ara (LM6 and β-(1,4-linked d-Xyl (LM10 and LM11 residues. However, they showed no visible phenotype. Our results suggest that the balance between arabinoxylan and cellulose might maintain the cell wall network. Moreover, ARAF overexpression in rice effectively leads to an increase in cellulose accumulation and saccharification efficiency, which can be used to produce bioethanol.

  19. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice — A field study over four rice seasons in Hunan, China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De; Guo, Hu; Li, Ruiyue [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Li, Lianqing, E-mail: lqli@njau.edu.cn [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Pan, Genxing [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Chang, Andrew [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Joseph, Stephen [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-01-15

    Biochar is becoming an environmentally friendly material for remediation of heavy metal contaminated soils and improving food safety. A field trial over four rice seasons was conducted to investigate the use of biochar and low Cd accumulating cultivars on Cd uptake in a heavy metal contaminated soil. Wheat straw derived biochar was applied at 0, 20 and 40 t ha{sup −1}. Two rice cultivars with differing Cd accumulation abilities were selected in each season. The results showed that both biochar and low Cd affinity cultivars significantly reduced rice grain Cd accumulation. Biochar had no significant effect the first season but thereafter consistently reduced rice grain Cd by a maximum of 61, 86 and 57% over the next three seasons. Zn accumulation in the rice grains was not decreased by biochar application, although available soil Zn was sharply reduced (35–91%). Indica conventional rice cultivars had much lower Cd, but higher Zn and lower Cd/Zn ratios in the grain than indica hybrid cultivars. Biochar was more effective for mitigating grain Cd accumulation in low Cd affinity cultivars than in high affinity cultivars. Soil pH was sustainably increased (up to nearly 1 unit) while available Cd significantly decreased by a maximum of 85% after biochar addition. The translocation of Cd from rice roots to shoots was reduced from 20 to 80% by biochar. Low uptake affinity cultivars combined with biochar reduced late rice grain Cd concentration and Cd/Zn ratios by 69–80% and 72–80%, respectively. It indicated that the management of combining biochar and low Cd affinity cultivars should be an efficient way to remediate Cd contaminated rice paddies and reduce health risk associated with consuming rice from these soils. - Highlights: • Biochar sustainably reduced soil Cd availability and Cd translocation in rice plant. • Indica conventional cultivars had lower Cd but higher Zn in grains than hybrid ones. • Biochar significantly reduced grain Cd and Cd/Zn ratio

  20. Physicochemical and Antioxidant Properties of Rice Bran Oils Produced from Colored Rice Using Different Extraction Methods.

    Science.gov (United States)

    Mingyai, Sukanya; Kettawan, Aikkarach; Srikaeo, Khongsak; Singanusong, Riantong

    2017-06-01

    This study investigated the physicochemical and antioxidant properties of rice bran oil (RBO) produced from the bran of three rice varities; Khao Dawk Mali 105 (white rice), Red Jasmine rice (red rice) and Hom-nin rice (black rice) using three extraction methods including cold-press extraction (CPE), solvent extraction (SE) and supercritical CO 2 extraction (SC-CO 2 ). Yields, color, acid value (AV), free fatty acid (FFA), peroxide value (PV), iodine value (IV), total phenolic compound (TPC), γ-oryzanol, α-tocopherol and fatty acid profile were analyzed. It was found that the yields obtained from SE, SC-CO 2 and CPE extractions were 17.35-20.19%, 14.76-18.16% and 3.22-6.22%, respectively. The RBO from the bran of red and black rice samples exhibited high antioxidant activities. They also contained higher amount of γ-oryzanol and α-tocopherol than those of white rice sample. In terms of extraction methods, SC-CO 2 provided better qualities of RBO as evidenced by their physicochemical and antioxidant properties. This study found that RBO produced from the bran of black rice samples using SC-CO 2 extraction method showed the best physicochemical and antioxidant properties.

  1. Effect of soaking and phytase treatment on phytic acid, calcium, iron and zinc in rice fractions

    NARCIS (Netherlands)

    Liang, J.; Han, B.Z.; Nout, M.J.R.; Hamer, R.J.

    2009-01-01

    With the aim to maximise phytic acid removal and minimise losses of dry matter and minerals (Ca, Fe, Zn) in rice, three products (whole kernels and flour milled from white and brown rice; and bran, all from the same batch of variety Kenjian 90-31) were soaked in demineralized water at 10 °C (SDW),

  2. Preparation of methacrylic acid-modified rice husk improved by an experimental design and application for paraquat adsorption

    International Nuclear Information System (INIS)

    Hsu, Shih-Tong; Chen, Lung-Chuan; Lee, Cheng-Chieh; Pan, Ting-Chung; You, Bing-Xuan; Yan, Qi-Feng

    2009-01-01

    Methacrylic acid (MAA) grafted rice husk was synthesized using graft copolymerization with Fenton's reagent as the redox initiator and applied to the adsorption of paraquat. The highest grafting percentage of 44.3% was obtained using the traditional kinetic method. However, a maximum grafting percentage of 65.3% was calculated using the central composite design. Experimental results based on the recipes predicted from the statistical analysis are consistent with theoretical calculations. A representative polymethacrylic acid-g-rice husk (PMAA-g-rice husk) copolymer was hydrolyzed to a salt type and applied to the adsorption of paraquat. The adsorption equilibrium data correlate more closely with the Langmuir isotherm than with the Freundlich equation. The maximum adsorption capacity of modified rice husk is 292.5 mg/g-adsorbent. This value exceeds those for Fuller's earth and activated carbon, which are the most common binding agents used for paraquat. The samples at various stages were characterized by solid-state 13 C NMR spectroscopy.

  3. Preparation of methacrylic acid-modified rice husk improved by an experimental design and application for paraquat adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shih-Tong, E-mail: shihtong@mail.ksu.edu.tw [Department of Polymer Materials, Kun Shan University, No. 949 Da-Wan Rd., Yung-Kang City, Tainan Hsien, Taiwan (China); Chen, Lung-Chuan, E-mail: lcchen@mail.ksu.edu.tw [Department of Polymer Materials, Kun Shan University, No. 949 Da-Wan Rd., Yung-Kang City, Tainan Hsien, Taiwan (China); Lee, Cheng-Chieh, E-mail: etmediagoing@yahoo.com.tw [Department of Environmental Engineering, Kun Shan University, No. 949 Da-Wan Rd., Yung-Kang City 710, Tainan Hsien, Taiwan (China); Pan, Ting-Chung, E-mail: tcpan@mail.ksu.edutw [Department of Environmental Engineering, Kun Shan University, No. 949 Da-Wan Rd., Yung-Kang City 710, Tainan Hsien, Taiwan (China); You, Bing-Xuan, E-mail: kp2681@yahoo.com.tw [Department of Polymer Materials, Kun Shan University, No. 949 Da-Wan Rd., Yung-Kang City, Tainan Hsien, Taiwan (China); Yan, Qi-Feng, E-mail: rsrs0938@yahoo.com.tw [Department of Polymer Materials, Kun Shan University, No. 949 Da-Wan Rd., Yung-Kang City, Tainan Hsien, Taiwan (China)

    2009-11-15

    Methacrylic acid (MAA) grafted rice husk was synthesized using graft copolymerization with Fenton's reagent as the redox initiator and applied to the adsorption of paraquat. The highest grafting percentage of 44.3% was obtained using the traditional kinetic method. However, a maximum grafting percentage of 65.3% was calculated using the central composite design. Experimental results based on the recipes predicted from the statistical analysis are consistent with theoretical calculations. A representative polymethacrylic acid-g-rice husk (PMAA-g-rice husk) copolymer was hydrolyzed to a salt type and applied to the adsorption of paraquat. The adsorption equilibrium data correlate more closely with the Langmuir isotherm than with the Freundlich equation. The maximum adsorption capacity of modified rice husk is 292.5 mg/g-adsorbent. This value exceeds those for Fuller's earth and activated carbon, which are the most common binding agents used for paraquat. The samples at various stages were characterized by solid-state {sup 13}C NMR spectroscopy.

  4. Preparation of methacrylic acid-modified rice husk improved by an experimental design and application for paraquat adsorption.

    Science.gov (United States)

    Hsu, Shih-Tong; Chen, Lung-Chuan; Lee, Cheng-Chieh; Pan, Ting-Chung; You, Bing-Xuan; Yan, Qi-Feng

    2009-11-15

    Methacrylic acid (MAA) grafted rice husk was synthesized using graft copolymerization with Fenton's reagent as the redox initiator and applied to the adsorption of paraquat. The highest grafting percentage of 44.3% was obtained using the traditional kinetic method. However, a maximum grafting percentage of 65.3% was calculated using the central composite design. Experimental results based on the recipes predicted from the statistical analysis are consistent with theoretical calculations. A representative polymethacrylic acid-g-rice husk (PMAA-g-rice husk) copolymer was hydrolyzed to a salt type and applied to the adsorption of paraquat. The adsorption equilibrium data correlate more closely with the Langmuir isotherm than with the Freundlich equation. The maximum adsorption capacity of modified rice husk is 292.5mg/g-adsorbent. This value exceeds those for Fuller's earth and activated carbon, which are the most common binding agents used for paraquat. The samples at various stages were characterized by solid-state (13)C NMR spectroscopy.

  5. New strategy for the determination of gliadins in maize- or rice-based foods matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: fractionation of gliadins from maize or rice prolamins by acidic treatment.

    Science.gov (United States)

    Hernando, Alberto; Valdes, Israel; Méndez, Enrique

    2003-08-01

    A procedure for determining small quantities of gliadins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) in gluten-free foods containing relatively large amounts of prolamin proteins from maize or rice is described. We report for the first time that gliadins, the ethanol-soluble wheat prolamin fraction, can be quantitatively solubilized in 1.0 M acetic acid, while the corresponding ethanol-soluble maize or rice prolamin fraction remains insoluble in acetic acid. We describe a methodology for the detection of gliadins in maize and rice foods based on a two-step procedure of extraction (60% aqueous ethanol followed by 1 M acetic acid). Subsequent MALDI-TOFMS analysis of the resulting acidic extract from these gluten-free foods clearly confirms the presence of a typical mass pattern corresponding to gliadin components, ranging from 30 to 45 kDa. Depending on the percentages of maize or rice flours employed in the elaboration of these foods, the combined procedure enables levels of gliadins from 100 to 400 ppm to be detected. The efficiency of this combined procedure corroborates enzyme-linked immunosorbent assay data for a large number of maize/rice gluten-free foods by means of direct visualization of the characteristic gliadin mass pattern in maize or rice foods. Copyright 2003 John Wiley & Sons, Ltd.

  6. Accumulation of cadmium by halophytic and non-halophytic Juncus species

    Czech Academy of Sciences Publication Activity Database

    Vaněk, Tomáš; Moťková, Kateřina; Podlipná, Radka

    2016-01-01

    Roč. 28, č. 4 (2016), s. 415-423 ISSN 2197-0025 R&D Projects: GA MŠk(CZ) OC10028; GA MPO FR-TI3/778 Institutional support: RVO:61389030 Keywords : plant-responses * salt-tolerance * heavy-metals * salinity tolerance * abiotic stress * rice seedlings * amino-acids * proline * phytoremediation * detoxification * Halophyte * Cadmium accumulation * Proline * Juncus gerardii * Juncus inflexus Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.045, year: 2016

  7. Impact of rice fortified with iron, zinc, thiamine and folic acid on laboratory measurements of nutritional status of preschool children

    Directory of Open Access Journals (Sweden)

    Ceres Mattos Della Lucia

    Full Text Available Abstract Fortification of food constitutes an important strategy for the control of micronutrient deficiency and has advantages such as high population coverage and maintenance of eating habits. This study aimed to assess the impact of using fortified rice (Ultra Rice® - UR® on the nutritional status of preschoolers. Ninety-nine children enrolled in two philanthropic preschools participated of the study. Children of one of the preschools were offered UR® mixed with polished rice, as part of school meals (test group and the children of another preschool were offered pure polished rice (control group. Biochemical evaluations were performed before and after 4 months of intervention. Dietary assessment and sensory evaluation of UR® mixed with polished rice were performed during the study. The fortified rice improved the concentrations of zinc (p < 0.001, thiamine (p < 0.001, folic acid (p = 0.003, mean corpuscular hemoglobin (p < 0.001 and mean corpuscular hemoglobin concentration (p < 0.001. The fortified rice showed good acceptability among preschoolers. This study demonstrated the effectiveness of using rice fortified with iron, zinc, thiamine and folic acid on the nutritional status of children.

  8. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    Full Text Available A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia. The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c kg(-1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis. The isolated strains were capable of producing indoleacetic acid (IAA and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65% existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.

  9. Co-Production of Nattokinase and Poly (γ-Glutamic Acid Under Solid-State Fermentation Using Soybean and Rice Husk

    Directory of Open Access Journals (Sweden)

    Guangjun Nie

    2015-10-01

    Full Text Available ABSTRACTThe aim of this work was to study the co-production of nattokinase and poly (γ-glutamic acid by Bacillus subtilis natto with soybean and rice husk under solid-state fermentation (SSF. The results showed that the size of soybean particle and rice husk significantly improved the co-production of nattokinase and poly (γ-glutamic acid, yielding 2503.4 IU/gs and 320 mg/gs, respectively in the improved culture medium composed of 16.7% soybean flour and 13.3% rice husk with 70% water content. The yields increased by approximate 7- and 2-fold factor relative to their original ones. Thus, the co-production of nattokinase and poly (γ-glutamic acid under SSF could be considered as an efficient method to exploit agro-residues for economical production of some higher-value products.

  10. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice.

    Science.gov (United States)

    Ye, Wen-Ling; Khan, M Asaduzzaman; McGrath, Steve P; Zhao, Fang-Jie

    2011-12-01

    Arsenic (As) accumulation in food crops such as rice is of major concern. To investigate whether phytoremediation can reduce As uptake by rice, the As hyperaccumulator Pteris vittata was grown in five contaminated paddy soils in a pot experiment. Over a 9-month period P. vittata removed 3.5-11.4% of the total soil As, and decreased phosphate-extractable As and soil pore water As by 11-38% and 18-77%, respectively. Rice grown following P. vittata had significantly lower As concentrations in straw and grain, being 17-82% and 22-58% of those in the control, respectively. Phytoremediation also resulted in significant changes in As speciation in rice grain by greatly decreasing the concentration of dimethylarsinic acid (DMA). In two soils the concentration of inorganic As in rice grain was decreased by 50-58%. The results demonstrate an effective stripping of bioavailable As from contaminated paddy soils thus reducing As uptake by rice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils.

    Science.gov (United States)

    Qiao, Jiang-Tao; Liu, Tong-Xu; Wang, Xiang-Qin; Li, Fang-Bai; Lv, Ya-Hui; Cui, Jiang-Hu; Zeng, Xiao-Duo; Yuan, Yu-Zhen; Liu, Chuan-Ping

    2018-03-01

    The fates of cadmium (Cd) and arsenic (As) in paddy fields are generally opposite; thus, the inconsistent transformation of Cd and As poses large challenges for their remediation. In this study, the impacts of zero valent iron (ZVI) and/or biochar amendments on Cd and As bioavailability were examined in pot trials with rice. Comparison with the untreated soil, both Cd and As accumulation in different rice tissues decreased significantly in the ZVI-biochar amendments and the Cd and As accumulation in rice decreased with increasing ZVI contents. In particular, the concentrations of Cd (0.15 ± 0.01 mg kg -1 ) and As (0.17 ± 0.01 mg kg -1 ) in rice grains were decreased by 93% and 61% relative to the untreated soil, respectively. A sequential extraction analysis indicated that with increasing Fe ratios in the ZVI-biochar mixtures, bioavailable Cd and As decreased, and the immobilized Cd and As increased. Furthermore, high levels of Fe, Cd, and As were detected in Fe plaque of the ZVI-biochar amendments in comparison with the single biochar or single ZVI amendments. The ZVI-biochar mixture may have a synergistic effect that simultaneously reduces Cd and As bioavailability by increasing the formation of amorphous Fe and Fe plaque for Cd and As immobilization. The single ZVI amendment significantly decreased As bioavailability, while the single biochar amendment significantly reduced the bioavailability of Cd compared with the combined amendments. Hence, using a ZVI-biochar mixture as a soil amendment could be a promising strategy for safely-utilizing Cd and As co-contaminated sites in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Ammonium assimilation in rice based on the occurrence of 15N and inhibition of glutamine synthetase activity

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, J. R.; Huber, D. M.; Lee, T. C.; Tsai, C. Y.

    1995-07-01

    Assimilation of ammonium (NH4) into free amino acids and total reduced nitrogen (N) was monitored in both roots and shoots of two-week old rice seedlings supplied with 5 mM 99% (15NH4)2SO4 in aerated hydroponic culture with or without a 2 h preincubation with 1 mM methionine sulfoximine (MSX) an inhibitor of glutamine synthetase (GS) activity. 15NH4 was not assimilated into amino acids when the GS/GOGAT (glutamate synthase) cycle was inhibited by MSX. Inhibition of glutamine synthetase (GS) activity in roots with MSX increased both the amount of NH4 and the abundance of 15N labeled NH4. In contrast, the amount of Gln and Glu, and their proportions as 15N, decreased in roots when GS activity was inhibited. This research confirms the importance of GS/GOGAT in NH4 assimilation in rice roots. 15N-labeled studies indicate that NH4 ions incorporated by roots of rice are transformed primarily into glutamine (Gin) and glutamic acid (Glu) before being converted to other amino acids through transamination. The formation of amino acids such as aspartic acid (Asp) and alanine (Ala) directly from free NH4 in roots also has been reported. Translocation of free NH4 to plant shoots, based on the concentration of free NH4 in xylem exudate, has been reported in tomato, although NH4 in shoots primarily originates from nitrate reduction in the shoot. Photorespiration also can contribute to the accumulation of NH4 in leaves. The GS/GOGAT cycle appears to be primarily responsible for the assimilation of exogenously supplied NH4 and NH4 derived from nitrate reduction in leaves, as well as NH4 derived from photorespiration. Genetic evidence cited to support this conclusion includes the lethal effect of photorespiratory conditions on plant mutants deficient in chloroplast-localized GS and GOGAT activities, and the rapid accumulation of free NH4 in GS-deficient mutants under photorespiratory conditions. The present study was initiated to quantify the in vivo amino acid synthesis in rice

  13. Ammonium assimilation in rice based on the occurrence of 15N and inhibition of glutamine synthetase activity

    International Nuclear Information System (INIS)

    Magalhaes, J.R.; Huber, D.M.; Lee, T.C.; Tsai, C.Y.

    1995-01-01

    Assimilation of ammonium (NH4) into free amino acids and total reduced nitrogen (N) was monitored in both roots and shoots of two-week old rice seedlings supplied with 5 mM 99% (15NH4)2SO4 in aerated hydroponic culture with or without a 2 h preincubation with 1 mM methionine sulfoximine (MSX) an inhibitor of glutamine synthetase (GS) activity. 15NH4 was not assimilated into amino acids when the GS/GOGAT (glutamate synthase) cycle was inhibited by MSX. Inhibition of glutamine synthetase (GS) activity in roots with MSX increased both the amount of NH4 and the abundance of 15N labeled NH4. In contrast, the amount of Gln and Glu, and their proportions as 15N, decreased in roots when GS activity was inhibited. This research confirms the importance of GS/GOGAT in NH4 assimilation in rice roots. 15N-labeled studies indicate that NH4 ions incorporated by roots of rice are transformed primarily into glutamine (Gin) and glutamic acid (Glu) before being converted to other amino acids through transamination. The formation of amino acids such as aspartic acid (Asp) and alanine (Ala) directly from free NH4 in roots also has been reported. Translocation of free NH4 to plant shoots, based on the concentration of free NH4 in xylem exudate, has been reported in tomato, although NH4 in shoots primarily originates from nitrate reduction in the shoot. Photorespiration also can contribute to the accumulation of NH4 in leaves. The GS/GOGAT cycle appears to be primarily responsible for the assimilation of exogenously supplied NH4 and NH4 derived from nitrate reduction in leaves, as well as NH4 derived from photorespiration. Genetic evidence cited to support this conclusion includes the lethal effect of photorespiratory conditions on plant mutants deficient in chloroplast-localized GS and GOGAT activities, and the rapid accumulation of free NH4 in GS-deficient mutants under photorespiratory conditions. The present study was initiated to quantify the in vivo amino acid synthesis in rice

  14. Acid drainage from coal mining: Effect on paddy soil and productivity of rice.

    Science.gov (United States)

    Choudhury, Burhan U; Malang, Akbar; Webster, Richard; Mohapatra, Kamal P; Verma, Bibhash C; Kumar, Manoj; Das, Anup; Islam, Mokidul; Hazarika, Samarendra

    2017-04-01

    Overburden and acid drainage from coal mining is transforming productive agricultural lands to unproductive wasteland in some parts of Northeast India. We have investigated the adverse effects of acid mine drainage on the soil of rice paddy and productivity by comparing them with non-mined land and abandoned paddy fields of Jaintia Hills in Northeast India. Pot experiments with a local rice cultivar (Myngoi) as test crop evaluated biological productivity of the contaminated soil. Contamination from overburden and acid mine drainage acidified the soil by 0.5 pH units, increased the exchangeable Al 3+ content 2-fold and its saturation on clay complexes by 53%. Available sulfur and extractable heavy metals, namely Fe, Mn and Cu increased several-fold in excess of critical limits, while the availability of phosphorus, potassium and zinc contents diminished by 32-62%. The grain yield of rice was 62% less from fields contaminated with acid mine drainage than from fields that have not suffered. Similarly, the amounts of vegetation, i.e. shoots and roots, in pots filled with soil from fields that received acid mine drainage were 59-68% less than from uncontaminated land (average shoot weight: 7.9±2.12gpot -1 ; average root weight: 3.40±1.15gpot -1 ). Paddy fields recovered some of their productivity 4years after mining ceased. Step-wise multiple regression analysis affirmed that shoot weight in the pots and grain yield in field were significantly (p<0.01) and positively influenced by the soil's pH and its contents of K, N and Zn, while concentration of S in excess of threshold limits in contaminated soil significantly (p<0.01) reduced the weight of shoots in the pots and grain yield in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Contamination of rice (Oryza sativa L) with Cadmium and Arsenic by irrigation with the Bogota River water in rice soils of the Lower Basin

    International Nuclear Information System (INIS)

    Montenegro, Omar; Mejia L

    2001-01-01

    In this study, field and greenhouse experiments were simultaneously carried out with rice (oryza sativa l., variedad oryzica-1) in soils of the Bogota River lower basin (Los Manueles Series, a member of the clayed, mixed, isohipertermic family of the Fluventic Vertic Haplustepts) to evaluate the effect of Cd and As content of the irrigation waters (of the Bogota River and greenhouse) on soils and: 1) rice growth physiological parameters; 2) Cd and As accumulated in different parts of rice plants; 3) yields and other aspects and properties of rice crop. The results lead to the following conclusions: 1) The Cd and As content of the Bogota River water, increased during the driest months and was minimum in those with the highest precipitation; Cd and As concentrations in both seasons surpassed the maximum permissible limits. 2) Rice height was highest when irrigation water does have neither Cd nor As. Effects of both elements showed an inverse lineal tendency. 3) The gradual increase of Cd in irrigation water reduced in 12.5% the number of grains per panicle; the increase of As induced a 10% reduction. 4) The highest concentration of Cd and As in irrigation waters significantly reduced yields; maximum yields l were obtained when Cd and As were absent from irrigation waters. 5) For any concentration of As in irrigation water the highest concentration of Cd was accumulated in rice leafs when concentration of Cd 2 was 2mg/l; above this value Cd accumulation in leafs el decreased with the gradual increase of As concentration. 6) Cd and As accumulated in rice grains increased with the gradual increment of both elements in the irrigation waters; Cd and As accumulated were respectively 50 and 15 times higher than the maximum critical levels proposed for rice grains. 7) Cd and As accumulated progressively on soils with gradual increase of both elements in irrigation waters 8) Cd and As concentration in irrigation waters apparently does not affect the rice mill behavior

  16. Application of Potential Phosphate-Solubilizing Bacteria and Organic Acids on Phosphate Solubilization from Phosphate Rock in Aerobic Rice

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    2013-01-01

    Full Text Available A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB and organic acids (oxalic & malic on phosphate (P solubilization from phosphate rock (PR and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM, and PSB strain (Bacillus sp. were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg−1, plant P uptake (0.78 P pot−1, and plant biomass (33.26 mg. Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g−1 compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH.

  17. Amino acids composition of mycelial protein of penicillium expansum grown in acid treated rice husk mineral medium

    International Nuclear Information System (INIS)

    Khan, M.Y.; Dahot, M.U.

    2012-01-01

    The aim of the present study was to analyze the amino acids composition of single cell protein of Penicillium expansum . Mycelial biomass was produced when fungus was grown in 0.6N H/sub 2/SO/sub 4/ pretreated rice husk mineral medium incorporated with 0.5% and 1% of nitrogen sources like potassium nitrate, sodium nitrate, ammonium nitrate, peptone, yeast extract, urea, corn steep liquor and ammonium sulphate. It was observed that the growth rate of Penicillium expansum increased with 0.5% sodium nitrate produces 1.390 +- 0.084g/l of mycelial biomass. In the subsequent experiment, fermentation medium was supplemented with 0.5% and 1.0% different sugars (sucrose, glucose, fructose, maltose, galactose, lactose, carboxymethyl-cellulose, starch, mannose, and molasses) at pH 6.0 for 240 hours at 35 +- 2 deg. C in a fermenter. The highest amount of mycelial biomass (5.107 +- 0.169g/l) was obtained with 1% sucrose and followed by 4.953 +- 0.17g/l, 4.808 +- 0.14g/l and 4.844 +- 0.10g/l mycelial biomass using glucose, maltose and galactose, respectively. The mycelial biomass of Penicillium expansum contains essential and non essential amino acids like phospho-serine, serine, valine, aspartic acid, threonine, glutamic acid, glycine, isoleucine, leucine, phenylalanine, alo-lysine, halo-lysine, lysine and arginine. The glutamic acid (3355.0 +- 19.798 mu mol/g mycelia) and proline (785.0 +- 9.899 mu mol/g mycelia) were found in higher concentration than other amino acids produced by Penicillium expansum grown on rice husk supplemented with lactose. (author)

  18. Oleoyl and linoleoyl esters of fumonisin B1 are differently produced by Fusarium verticillioides on maize and rice based media.

    Science.gov (United States)

    Falavigna, C; Lazzaro, I; Galaverna, G; Dall'Asta, C; Battilani, P

    2016-01-18

    Fatty acid esters of fumonisins, namely oleoyl- and linoleoyl esters of fumonisin B1 (EFB1OA and EFB1LA, respectively), are modified forms of fumonisins whose formation and occurrence have been reported so far in naturally infected maize and in artificially inoculated rice. There is a lack of knowledge about the mechanism of formation, mainly in relation to the role played by the substrate. Therefore, in this work we studied the dynamics of accumulation of the toxin and its esters, together with their precursor, in maize and rice based media inoculated with different strains of F. verticillioides and incubated at 25 °C for 7-45 days. The production pattern of FB1 and its modified forms was significantly influenced by growth media, reaching a higher concentration in cornmeal compared to rice based medium. Similarly, cornmeal was more supportive for the conversion of FB1 by considering the esterification rate, with a prevalence of linoleoyl esters compared to oleoyl esters resembling the OA/LA rate in both media. The conversion of FB1 into fatty acid esters was also shown as strain-related. Results, thus, strongly support the hypothesis that fatty acid esters of FB1 are produced by the fungus itself at a late stage of growth, or at a certain point of FB1 accumulation in the medium, using fatty acids from the substrate.

  19. The Tyrosine Aminomutase TAM1 Is Required for β-Tyrosine Biosynthesis in Rice

    Science.gov (United States)

    Yan, Jian; Aboshi, Takako; Teraishi, Masayoshi; Strickler, Susan R.; Spindel, Jennifer E.; Tung, Chih-Wei; Takata, Ryo; Matsumoto, Fuka; Maesaka, Yoshihiro; McCouch, Susan R.; Okumoto, Yutaka; Mori, Naoki; Jander, Georg

    2015-01-01

    Non-protein amino acids, often isomers of the standard 20 protein amino acids, have defense-related functions in many plant species. A targeted search for jasmonate-induced metabolites in cultivated rice (Oryza sativa) identified (R)-β-tyrosine, an isomer of the common amino acid (S)-α-tyrosine in the seeds, leaves, roots, and root exudates of the Nipponbare cultivar. Assays with 119 diverse cultivars showed a distinct presence/absence polymorphism, with β-tyrosine being most prevalent in temperate japonica cultivars. Genetic mapping identified a candidate gene on chromosome 12, which was confirmed to encode a tyrosine aminomutase (TAM1) by transient expression in Nicotiana benthamiana and in vitro enzyme assays. A point mutation in TAM1 eliminated β-tyrosine production in Nipponbare. Rice cultivars that do not produce β-tyrosine have a chromosome 12 deletion that encompasses TAM1. Although β-tyrosine accumulation was induced by the plant defense signaling molecule jasmonic acid, bioassays with hemipteran and lepidopteran herbivores showed no negative effects at physiologically relevant β-tyrosine concentrations. In contrast, root growth of Arabidopsis thaliana and other tested dicot plants was inhibited by concentrations as low as 1 μM. As β-tyrosine is exuded into hydroponic medium at higher concentrations, it may contribute to the allelopathic potential of rice. PMID:25901084

  20. Enhancing the fertility of an acid sulfate soil for rice cultivation using lime in combination with bio-organic fertilizer

    International Nuclear Information System (INIS)

    Farhana, A.; Shamshuddin, J.; Fauziah, C.I.; Panhwar, Q.A.

    2017-01-01

    The acid sulfate soils contain pyrite (FeS/sub 2/) which is due to oxidation results in the production of high amount of acidity, aluminum and iron significantly affecting rice growth. A glasshouse study was arranged to determine the effect of ground magnesium limestone (GML) in combination with bio-organic fertilizer (JITUTM) application on the chemical properties of soils and rice yield. Three rice seedlings were transplanted in pots which were previously amended with 0, 2, 4, 6 and 8 t/ha GML with or without bio-organic fertilizer. The common rice varieties (MR 219 and MR 253) were cultivated for two seasons in the same pots. The critical Fe2+ and Al3+ activities for MR 219 were 14.45 and 4.23 mu M, while for MR 253 were 7.45 and 5.53 mu M, respectively. However, without applying the amendments, rice grown on the soils was affected severely by the high acidity (Fe2+ and Al3+ toxicity). The soil pH increased to 5 and the higher grain yield of MR 219 (99.77 and 121.38 g/pot) and MR253 (98.63 and 112.60 g/pot) was in first and second season with the application of 2 t GML application combined with 0.25 t JITUTM/ha respectively. In addition, 1000 grain weight, number of panicle, number of spikelets panicle-1 and the percentage of filled spikelet, were also higher than without the soil amendments. Hence, the infertility of acid sulfate soils for sustainable rice cultivation in Malaysia can be improved by applying 2 t GML/ha combined with 0.25 t JITUTM/ha for two seasons in long run. (author)

  1. Responses of endogenous proline in rice seedlings under chromium exposure

    Directory of Open Access Journals (Sweden)

    X.Z. Yu

    2016-12-01

    Full Text Available Hydroponic experiments were performed to exam the dynamic change of endogenous proline in rice seedlings exposed to potassium chromate chromium (VI or chromium nitrate chromium (III. Although accumulation of both chromium species in rice seedlings was obvious, more chromium was detected in plant tissues of rice seedlings exposed to chromium (III than those in chromium (VI, majority being in roots rather than shoots. Results also showed that the accumulation capacity of chromium by rice seedlings was positively correlated to chromium concentrations supplied in both chromium variants and the accumulation curve depicted an exponential trend in both chromium treatments over the entire period of exposure. Proline assays showed that both chromium variants induced the change of endogenous proline in shoots and roots of rice seedlings. Chromium (VI of 12.8 mg/L increased proline content significantly (p

  2. Integrated Analysis of the Effects of Cold and Dehydration on Rice Metabolites, Phytohormones, and Gene Transcripts1[W][OPEN

    Science.gov (United States)

    Maruyama, Kyonoshin; Urano, Kaoru; Yoshiwara, Kyouko; Morishita, Yoshihiko; Sakurai, Nozomu; Suzuki, Hideyuki; Kojima, Mikiko; Sakakibara, Hitoshi; Shibata, Daisuke; Saito, Kazuki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2014-01-01

    Correlations between gene expression and metabolite/phytohormone levels under abiotic stress conditions have been reported for Arabidopsis (Arabidopsis thaliana). However, little is known about these correlations in rice (Oryza sativa ‘Nipponbare’), despite its importance as a model monocot. We performed an integrated analysis to clarify the relationships among cold- and dehydration-responsive metabolites, phytohormones, and gene transcription in rice. An integrated analysis of metabolites and gene expression indicated that several genes encoding enzymes involved in starch degradation, sucrose metabolism, and the glyoxylate cycle are up-regulated in rice plants exposed to cold or dehydration and that these changes are correlated with the accumulation of glucose (Glc), fructose, and sucrose. In particular, high expression levels of genes encoding isocitrate lyase and malate synthase in the glyoxylate cycle correlate with increased Glc levels in rice, but not in Arabidopsis, under dehydration conditions, indicating that the regulation of the glyoxylate cycle may be involved in Glc accumulation under dehydration conditions in rice but not Arabidopsis. An integrated analysis of phytohormones and gene transcripts revealed an inverse relationship between abscisic acid (ABA) signaling and cytokinin (CK) signaling under cold and dehydration stresses; these stresses increase ABA signaling and decrease CK signaling. High levels of Oryza sativa 9-cis-epoxycarotenoid dioxygenase transcripts correlate with ABA accumulation, and low levels of Cytochrome P450 (CYP) 735A transcripts correlate with decreased levels of a CK precursor in rice. This reduced expression of CYP735As occurs in rice but not Arabidopsis. Therefore, transcriptional regulation of CYP735As might be involved in regulating CK levels under cold and dehydration conditions in rice but not Arabidopsis. PMID:24515831

  3. UTILIZATION OF AMINO ACIDS OF BROKEN RICE IN GROWING PIGS

    Directory of Open Access Journals (Sweden)

    Matej Brestenský

    2014-02-01

    Full Text Available The six cannulated gilts (initial body weight 35.8 ± 0.5 kg fitted with a T-cannula in terminal ileum, were used to determine the apparent (AID and standardized (SID ileal digestibility of nitrogen (N and amino acids (AA in broken rice. Animals were fed twice daily in a two equal doses at a daily rate of 80 g.kg - 0.75. Water was offered ad libitum. The tested feed was the sole source of protein in the diet. The N-free diet was used to determine the ileal endogenous flow of AA and N. Chromium oxide (Cr2O3 was added to the diets as an indigestible marker in an amount of 0.3 % per kg of diet. After a 14 d postoperative period a 6 d adaptation period followed during which the animals were fed with an experimental diet. On d 7 ileal digesta was collected continuously for 24 h. The AID and SID of AA and N were calculated using analytically determined values of N, Cr2O3 and AA. The SID of AA was in a range from 81.6 % (tyrosine to 112.6 % (proline (P 0.05, respectively. There were no differences between standardized ileal digestibility of essential amino acids (94.3 % and nonessential amino acids (95.3 %. Regarding the ileal digestibility of AA, broken rice, a by-product from the food industry, is an appropriate source of digestible AA for growing pigs.

  4. Effect of oxalic acid and steam pretreatment on the primary properties of UF-bonded rice straw particleboards

    Science.gov (United States)

    Xianjun Li; Zhiyong Cai; Jerrold E. Winandy; Altaf H. Basta

    2011-01-01

    The objective is to evaluate the effect of oxalic acid (OA) and steam-pretreatment on the primary performance of rice straw particleboards. In addition, the effect of various treatment conditions on carbohydrates released from rice straw particles was investigated. The results show that steam- and short durations of OA-treatment significantly improved the mechanical...

  5. Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black streaked dwarf virus infection in rice.

    Science.gov (United States)

    He, Yuqing; Zhang, Hehong; Sun, Zongtao; Li, Junmin; Hong, Gaojie; Zhu, Qisong; Zhou, Xuebiao; MacFarlane, Stuart; Yan, Fei; Chen, Jianping

    2017-04-01

    Plant hormones play a vital role in plant immune responses. However, in contrast to the relative wealth of information on hormone-mediated immunity in dicot plants, little information is available on monocot-virus defense systems. We used a high-throughput-sequencing approach to compare the global gene expression of Rice black-streaked dwarf virus (RBSDV)-infected rice plants with that of healthy plants. Exogenous hormone applications and transgenic rice were used to test RBSDV infectivity and pathogenicity. Our results revealed that the jasmonic acid (JA) pathway was induced while the brassinosteroid (BR) pathway was suppressed in infected plants. Foliar application of methyl jasmonate (MeJA) or brassinazole (BRZ) resulted in a significant reduction in RBSDV incidence, while epibrassinolide (BL) treatment increased RBSDV infection. Infection studies using coi1-13 and Go mutants demonstrated JA-mediated resistance and BR-mediated susceptibility to RBSDV infection. A mixture of MeJA and BL treatment resulted in a significant reduction in RBSDV infection compared with a single BL treatment. MeJA application efficiently suppressed the expression of BR pathway genes, and this inhibition depended on the JA coreceptor OsCOI1. Collectively, our results reveal that JA-mediated defense can suppress the BR-mediated susceptibility to RBSDV infection. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water.

    Science.gov (United States)

    Sun, Min; Xiao, Tangfu; Ning, Zengping; Xiao, Enzong; Sun, Weimin

    2015-03-01

    Five rice paddy soils located in southwest China were selected for geochemical and microbial community analysis. These rice fields were irrigated with river water which was contaminated by Fe-S-rich acid mine drainage. Microbial communities were characterized by high-throughput sequencing, which showed 39 different phyla/groups in these samples. Among these phyla/groups, Proteobacteria was the most abundant phylum in all samples. Chloroflexi, Acidobacteria, Nitrospirae, and Bacteroidetes exhibited higher relative abundances than other phyla. A number of rare and candidate phyla were also detected. Moreover, canonical correspondence analysis suggested that pH, sulfate, and nitrate were significant factors that shaped the microbial community structure. In addition, a wide diversity of Fe- and S-related bacteria, such as GOUTA19, Shewanella, Geobacter, Desulfobacca, Thiobacillus, Desulfobacterium, and Anaeromyxobacter, might be responsible for biogeochemical Fe and S cycles in the tested rice paddy soils. Among the dominant genera, GOUTA19 and Shewanella were seldom detected in rice paddy soils.

  7. In situ ruminal degradation of phytic acid in formaldehyde treated rice bran

    NARCIS (Netherlands)

    Martin-Tereso, J.; Gonzalez, A.; Laar, van H.; Burbara, C.; Pedrosa, M.; Mulder, K.; Hartog, den L.A.; Verstegen, M.W.A.

    2009-01-01

    Rice bran has a very high content of phytic acid (IP6), which is a nutritional antagonist of Ca. Microbial phytase degrades IP6, but ruminal degradation of nutrients can be reduced by formaldehyde treatment. Milk fever in dairy cows can be prevented by reducing available dietary Ca to stimulate Ca

  8. Enzymatic hydrolsis of pretreated rice straw

    Energy Technology Data Exchange (ETDEWEB)

    Vlasenko, E.Y.; Shoemaker, S.P. [California Inst. of Food and Agricultural Research, Davis, CA (United States); Ding, H. [California Univ., Davis (Canada). Dept. of Food Science and Technology; Labavitch, J.M. [California Univ., Davis, CA (United States). Dept. of Pomology

    1997-02-01

    California rice straw is being evaluated as a feedstock for production of power and fuel. This paper examines the initial steps in the process: pretreatment of rice straw and enzymatic hydrolysis of the polysaccharides in the pretreated material to soluble sugars. Rice straw was subjected to three distinct pretreatment procedures: acid-catalyzed steam explosion (Swan Biomass Company), acid hydrolysis (U.S. DOE National Renewable Energy Laboratory), and ammonia fiber explosion or AFEX (Texas A and M University). Standard conditions for each pretreatment were used, but none was optimized for rice straw specifically. Six commercial cellulases, products of Genencor International (USA), Novo (Denmark), Iogen (Canada) and Fermtech (Russia) were used for hydrolysis. The Swan- and the acid-pretreatments effectively removed hemicellulose from rice straw, providing high yields of fermentable sugars. The AFEX-pretreatment was distinctly different from other pretreatments in that it did not significantly solubilize hemicellulose. All three pretreatment procedures substantially increased enzymatic digestibility of rice straw. Three commercial Trichoderma-reesei-derived enzyme preparations: Cellulase 100L (Iogen), Spezyme CP (Genencor), and Al (Fermtech), were more active on pretreated rice straw compared than others tested. Conditions for hydrolysis of rice straw using Cellulase 100L were evaluated. The supplementation of this enzyme preparation with cellobiase (Novozyme 188) significantly improved the parameters of hydrolysis for the Swan- and the acid-pretreated materials, but did not affect the hydrolysis of the AFEX-pretreated rice straw. (Author)

  9. Underlying mechanisms and effects of hydrated lime and selenium application on cadmium uptake by rice (Oryza sativa L.) seedlings.

    Science.gov (United States)

    Huang, Gaoxiang; Ding, Changfeng; Guo, Fuyu; Li, Xiaogang; Zhang, Taolin; Wang, Xingxiang

    2017-08-01

    A pot experiment was conducted to investigate the effects of selenium (Se) and hydrated lime (Lime), applied alone or simultaneously (Se+Lime), on growth and cadmium (Cd) uptake and translocation in rice seedlings grown in an acid soil with three levels of Cd (slight, mild, and moderate contamination). In the soil with 0.41 mg kg -1 Cd (slight Cd contamination), Se addition alone significantly decreased Cd accumulation in the root and shoot by 35.3 and 40.1%, respectively, but this tendency weakened when Cd level in the soil increased. However, Se+Lime treatment effectively reduced Cd accumulation in rice seedlings in the soil with higher Cd levels. The results also showed that Se application alone strongly increased Cd concentration in the iron plaque under slight Cd contamination, which was suggested as the main reason underlying the inhibition of Cd accumulation in rice seedlings. Se+Lime treatment also increased the ability of the iron plaques to restrict Cd uptake by rice seedlings across all Cd levels and dramatically decreased the available Cd concentration in the soil. These results suggest that Se application alone would be useful in the soil with low levels of Cd, and the effect would be enhanced when Se application is combined with hydrated lime at higher Cd levels.

  10. Effect of gallic and protocatechuic acids on the metabolism of ethyl carbamate in Chinese yellow rice wine brewing.

    Science.gov (United States)

    Zhou, Wanyi; Fang, Ruosi; Chen, Qihe

    2017-10-15

    It was studied that gallic and protocatechuic acids played important roles in ethyl carbamate (EC) forming. Gallic and protocatechuic acids can reduce the arginine consumption through inhibiting the arginine deiminase enzyme. Therefore, they are generally added to regulate EC catabolism in the course of yellow rice wine leavening at the third day. In this work, gallic and protocatechuic acids made little influence on the growth of Saccharomyces cerevisiae. Besides, the addition of 200mg/L gallic or protocatechuic acid could prevent the transformation from urea/citrulline to EC. Gallic acid showed better inhibiting effect that the content of EC could be reduced by 91.9% at most. Furthermore, the production of amino acids and volatile flavor compounds are not markedly affected by phenolic compounds. The discoveries reveal that EC can be reduced by supplying gallic acid or protocatechuic acid while yellow rice wine leavening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice

    NARCIS (Netherlands)

    Liang, J.; Han, B.Z.; Nout, M.J.R.; Hamer, R.J.

    2008-01-01

    Rice is an important staple food in Asian countries. In rural areas it is also a major source of micronutrients. Unfortunately, the bioavailability of minerals, e.g. zinc from rice, is low because it is present as an insoluble complex with food components such as phytic acid. We investigated the

  12. Gibberellic Acid: A Key Phytohormone for Spikelet Fertility in Rice Grain Production.

    Science.gov (United States)

    Kwon, Choon-Tak; Paek, Nam-Chon

    2016-05-23

    The phytohormone gibberellic acid (GA) has essential signaling functions in multiple processes during plant development. In the "Green Revolution", breeders developed high-yield rice cultivars that exhibited both semi-dwarfism and altered GA responses, thus improving grain production. Most studies of GA have concentrated on germination and cell elongation, but GA also has a pivotal role in floral organ development, particularly in stamen/anther formation. In rice, GA signaling plays an important role in spikelet fertility; however, the molecular genetic and biochemical mechanisms of GA in male fertility remain largely unknown. Here, we review recent progress in understanding the network of GA signaling and its connection with spikelet fertility, which is tightly associated with grain productivity in cereal crops.

  13. Effects of Soil Veterinary Antibiotics Pollution on Rice Growth

    Directory of Open Access Journals (Sweden)

    XU Qiu-tong

    2016-01-01

    Full Text Available To understand the potential effect of soil veterinary antibiotics pollution on the growth of rice, a main food crop in China, oxytetracycline which was used widely in livestock and poultry breeding was selected to test the effects of different levels of soil antibiotics pollution on growth and yield of rice plant at both seedling and growth periods. Relationship between oxytetracycline accumulated in different organs of rice plant and oxytetracycline pollution levels in the soil was characterized. The results showed that the effects of soil oxytetracycline pollution on rice growth mainly occurred at the seedling stage, and the effect on the underground part was obviously greater than the above-ground part of rice. Significant negative effects on biomass of the underground part of rice, root activity, and chlorophyll content and oxidase activity of the leave at the seedling stage were found when soil oxytetracycline pollution concentrations was over 30 mg·kg-1. The consequence from the impact of soil oxytetracycline pollution on rice seedling could be extended to the whole growth period of the plant, which could reduce the number of tiller and rice yield. Oxytetracycline accumulated in various organs of rice plant was in the sequence of root> leaf> stem> grain. Rice roots had low capacity to uptake oxytetracycline from the soil, the transfer capacity of oxytetracycline from the roots to leaf, stem, and grain was also weak. Considering the low oxytetracycline pollution levels in most of current actual farmland soils (less than 10 mg·kg-1 and lower accumulation character of oxytetracycline in the grain, it is thought that the direct damage of soil oxytetracycline pollution on rice production is small.

  14. Humic Acid and Water Management to Decrease Ferro (Fe2+ Solution and Increase Productivity of Established New Rice Field

    Directory of Open Access Journals (Sweden)

    Amrizal Saidi

    2012-01-01

    Full Text Available The purpose of this research was to gain a technological breakthrough in controlling Fe toxicity (Fe2+ on Ultisol ina new established rice field by using humic acid from rice straw compost and water management, so that optimalproduction of rice plants could be achieved. The experiment was designed using a 2 × 4 factorials with 3 replicationsin a split plot design. The main plot was water management consists of 2 levels: continuous and intermittentirrigation (2 weeks flooded and 2 weeks field capacity. Small plot was humic acid which was extracted from ricestraw compost by NaOH 0.5 N which consists of 4 levels: 0, 200, 400, and 600 mg kg-1. The results showed thatapplications of humic acid from 0 to 600 mg kg-1 that was followed by 2 weeks of intermittent irrigation decreasedFe2+ concentration. It was approaching levels that were not toxic to plants, with soil Fe2+ between 180-250 mg kg-1.The best treatment was found at the application of 600 mg kg-1 humic acid extracted from rice straw compostcombined with 2 week flooded – 2 weeks field capacity of water management. Those treatment decreased Fe2+concentration from 1,614 to 180 mg kg-1 and increased the dry weight of grain from 5.15 to 16.73 g pot-1 compared tocontinuous flooding and without humic acid application.

  15. Soil organic carbon (SOC) accumulation in rice paddies under long-term agro-ecosystem experiments in southern China - VI. Changes in microbial community structure and respiratory activity

    Science.gov (United States)

    Liu, D.; Liu, X.; Liu, Y.; Li, L.; Pan, G.; Crowley, D.; Tippkötter, R.

    2011-02-01

    Biological stabilization within accumulated soil organic carbon (SOC) has not been well understood, while its role in physical and chemical protection as well as of chemical recalcitrance had been addressed in Chinese rice paddies. In this study, topsoil samples were collected and respiratory activity measured in situ following rice harvest under different fertilization treatments of three long-term experimental sites across southern China in 2009. The SOC contents, microbial biomass carbon (SMBC) and nitrogen (SMBN) were analysed using chemical digestion and microbial community structure assessment via clony dilute plate counting methods. While SOC contents were consistently higher under compound chemical fertilization (Comp-Fert) or combined organic and inorganic fertilization (Comb-Fert) compared to N fertilization only (N-Fert), there was significantly higher fungal-bacterial ratio under Comb-Fert than under N-Fert and Comp-Fert. When subtracting the background effect under no fertilization treatment (Non-Fert), the increase both in SMBC and SMBN under fertilization treatment was found very significantly correlated to the increase in SOC over controls across the sites. Also, the ratio of culturable fungal to bacterial population numbers (F/B ratio) was well correlated with soil organic carbon contents in all samples across the sites studied. SOC accumulation favoured a build-up the microbial community with increasing fungal dominance in the rice paddies under fertilization treatments. While soil respiration rates were high under Comb-Fert as a result of enhanced microbial community build-up, the specific soil respiratory activity based on microbial biomass carbon was found in a significantly negatively correlation with the SOC contents for overall samples. Thus, a fungal-dominated microbial community seemed to slow SOC turnover, thereby favouring SOC accumulation under Comp-Fert or under Comb-Fert in the rice paddies. Therefore, the biological stabilization

  16. High Purity Silica Production from Rice Husk Ash

    International Nuclear Information System (INIS)

    Yaminn Lwin; April Nwayy Nwayy Htett

    2010-12-01

    In this research, two types of raw material source, rice husk and rice husk ash, were used. Among the rice husk samples, taungpyan sample was chosen because it contains the maximum silica content and treated with (1,3,5) wt% sulphuric acid (96% concentration) and citric acid (99% concentration). These acid treated taungpyan samples and nonacid treated taungpyan sample were burned at 900C for 30 min. For rice husk ash samples, ash samples from fluidized combustor, fluidized gasifier and brick factory were collected. All of the rice husk ash samples were purified by alkaline extraction method with (2-3) N NaOH solution and followed by acid precipitation method with 5 N H2SO4 solution. According to the analysis and characterization, acid treated taungpyan sample (5 wt% citric acid) with the highest silica content (99.906 wt% and crystallization form) was obtained.

  17. Differential effects of citric acid on cadmium uptake and accumulation between tall fescue and Kentucky bluegrass.

    Science.gov (United States)

    Wang, ShuTing; Dong, Qin; Wang, ZhaoLong

    2017-11-01

    Organic acids play an important role in cadmium availability, uptake, translocation, and detoxification. A sand culture experiment was designed to investigate the effects of citric acid on Cd uptake, translocation, and accumulation in tall fescue and Kentucky bluegrass. The results showed that two grass species presented different Cd chemical forms, organic acid components and amount in roots. The dormant Cd accumulated in roots of tall fescue was the pectate- and protein- integrated form, which contributed by 84.85%. However, in Kentucky bluegrass, the pectate- and protein- integrated Cd was only contributed by 35.78%, and the higher proportion of Cd form was the water soluble Cd-organic acid complexes. In tall fescue, citric acid dramatically enhanced 2.8 fold of Cd uptake, 3 fold of root Cd accumulation, and 2.3 fold of shoot Cd accumulation. In Kentucky bluegrass, citric acid promoted Cd accumulation in roots, but significantly decreased Cd accumulation in shoots. These results suggested that the enhancements of citric acid on Cd uptake, translocation, and accumulation in tall fescue was associated with its promotion of organic acids and the water soluble Cd-organic acid complexes in roots. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cholic acid is accumulated spontaneously, driven by membrane Delta pH, in many lactobacilli

    NARCIS (Netherlands)

    Kurdi, P; van Veen, HW; Tanaka, H; Mierau, [No Value; Konings, WN; Tannock, GW; Tomita, F; Yokota, A

    2000-01-01

    Many lactobacilli from various origins were found to apparently lack cholic acid extrusion activity. Cholic acid was accumulated spontaneously, driven by the transmembrane proton gradient. Accumulation is a newly identified kind of interaction between intestinal microbes and unconjugated bile acids

  19. Applying Limestone or Basalt in Combination with Bio-Fertilizer to Sustain Rice Production on an Acid Sulfate Soil in Malaysia

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    2016-07-01

    Full Text Available A study was conducted to determine the efficacy of applying ground magnesium limestone (GML or ground basalt in combination with bio-fertilizer to sustain rice production on an acid sulfate soil in Malaysia. Soils from Kelantan Plains, Malaysia, were treated with GML, ground basalt, bio-fertilizer, GML + bio-fertilizer, and ground basalt + bio-fertilizer (4 t·ha−1 each. Results showed that soil fertility was improved by applying the soil amendments. GML and basalt contain some Zn and Cu; thus, application of these amendments would increase their contents in the soil needed for the healthy growth of rice. Basalt applied in combination with bio-fertilizer appeared to be the best agronomic option to improve the fertility of acid sulfate soils for sustainable rice production in the long run. In addition to increasing Ca, Mg, Zn, and Cu reserves in the soil, water pH increased and precipitated Al3+ and/or Fe2+. Ground basalt is cheaper than GML, but basalt dissolution in the acidic soil was slow. As such, its ameliorative effects could only be seen significantly from the second season onwards. The specially-formulated bio-fertilizer for alleviating the infertility of acid sulfate soil could also enhance rice growth. The use of the bio-fertilizer fortified with N2-fixing bacteria is a green technology that would help reduce NO3− and/or NO2− pollution and reduce the cost of rice production. The phosphate-solubilizing bacteria (PSB present in the bio-fertilizer not only increased the available P, but also helped release organic acids that would inactivate Al3+ and/or Fe2+ via the process of chelation.

  20. The interaction of strigolactones with abscisic acid during the drought response in rice

    KAUST Repository

    Haider, Imran; Andreo-Jimenez, Beatriz; Bruno, Mark; Bimbo, Andrea; Floková , Kristý na; Abuauf, Haneen Waleed Hamza; Otang Ntui, Valentine; Guo, Xiujie; Charnikhova, Tatsiana; Al-Babili, Salim; Bouwmeester, Harro J; Ruyter-Spira, Carolien

    2018-01-01

    Both strigolactones (SLs) and abscisic acid (ABA) biosynthetically originate from carotenoids. Considering their common origin, the interaction of these two hormones at the biosynthetic and/or regulatory level may be anticipated. Here, we show in rice that drought simultaneously induces SL production in the root, and ABA production and the expression of SL biosynthetic genes in the shoot. Under control conditions, the ABA concentration was higher in shoots of the SL biosynthetic rice mutants dwarf10 (d10) and d17 than in wild-type plants, while a similar trend was observed for SL-perception mutant d3. These differences were enhanced under drought. However, drought did not result in an increase in leaf ABA content in rice mutant line d27, carrying a mutation in the gene encoding the first committed enzyme in SL biosynthesis, to the same extent as in the other SL mutants and the wild-type. Accordingly, d10, d17 and d3 lines were more drought tolerant than wild-type plants, whereas d27 displayed decreased tolerance. Finally, over-expression of OsD27 in rice resulted in increased levels of ABA when compared with wild-type plants. We conclude that the SL and ABA pathways are connected with each other through D27, which is playing a crucial role in determining ABA and SL content in rice.

  1. The interaction of strigolactones with abscisic acid during the drought response in rice

    KAUST Repository

    Haider, Imran

    2018-03-09

    Both strigolactones (SLs) and abscisic acid (ABA) biosynthetically originate from carotenoids. Considering their common origin, the interaction of these two hormones at the biosynthetic and/or regulatory level may be anticipated. Here, we show in rice that drought simultaneously induces SL production in the root, and ABA production and the expression of SL biosynthetic genes in the shoot. Under control conditions, the ABA concentration was higher in shoots of the SL biosynthetic rice mutants dwarf10 (d10) and d17 than in wild-type plants, while a similar trend was observed for SL-perception mutant d3. These differences were enhanced under drought. However, drought did not result in an increase in leaf ABA content in rice mutant line d27, carrying a mutation in the gene encoding the first committed enzyme in SL biosynthesis, to the same extent as in the other SL mutants and the wild-type. Accordingly, d10, d17 and d3 lines were more drought tolerant than wild-type plants, whereas d27 displayed decreased tolerance. Finally, over-expression of OsD27 in rice resulted in increased levels of ABA when compared with wild-type plants. We conclude that the SL and ABA pathways are connected with each other through D27, which is playing a crucial role in determining ABA and SL content in rice.

  2. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress

    International Nuclear Information System (INIS)

    Guo, B.; Liang, Y.C.; Zhu, Y.G.; Zhao, F.J.

    2007-01-01

    Time-dependent changes in enzymatic and non-enzymatic antioxidants, and lipid peroxidation were investigated in roots of rice (Oryza sativa) grown hydroponically with Cd, with or without pretreatment of salicylic acid (SA). Exposure to 50 μM Cd significantly decreased root growth, and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), but increased the concentrations of H 2 O 2 , malondialdehyde (MDA), ascorbic acid (AsA), glutathione (GSH) and non-protein thiols (NPT). However, pretreatment with 10 μM SA enhanced the activities of antioxidant enzymes and the concentrations of non-enzymatic antioxidants, but lowered the concentrations of H 2 O 2 and MDA in the Cd-stressed rice compared with the Cd treatment alone. Pretreatment with SA alleviated the Cd-induced inhibition of root growth. The results showed that pretreatment with SA enhanced the antioxidant defense activities in Cd-stressed rice, thus alleviating Cd-induced oxidative damage and enhancing Cd tolerance. The possible mechanism of SA-induced H 2 O 2 signaling in mediating Cd tolerance was discussed. - Pretreatment with SA enhanced the antioxidant defense activities in Cd-stressed rice, thus alleviating Cd-induced oxidative damage and enhancing Cd tolerance

  3. Radioactive cesium deposition on rice, wheat, peach tree and soil after nuclear accident in Fukushima

    International Nuclear Information System (INIS)

    Nakanishi, T.M.; Kobayashi, N.I.; Tanoi, K.

    2013-01-01

    We present how radioactive Cs was deposited on wheat, rice, peach tree and soil after nuclear accident in Fukushima. The deposition of radioactive Cs was found as spots at the surface of the leaves, branch or trunk of the trees, as well as in soil using one of the imaging method, autoradiography. The deposited radioactive Cs was not easily washed out, even with the treatment of acid solution. When the wheat was harvested 2 months after the accident, high radioactivity of Cs was found only on the leaves developed and expanded at the time of the accident. In the case of the rice grain, most of the radioactivity was found in bran and the radioactivity was drastically reduced in milled rice. Most of the radioactive Cs accumulation in rice plants was estimated from the absorption of the Cs ion dissolved in water, rather than Cs adsorbed in soil. (author)

  4. Effect of germination on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria.

    Science.gov (United States)

    Chinma, Chiemela Enyinnaya; Anuonye, Julian Chukwuemeka; Simon, Omotade Comfort; Ohiare, Raliat Ozavize; Danbaba, Nahemiah

    2015-10-15

    This study determined the effect of germination (48 h) on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria. Local rice varieties (Jamila, Jeep and Kwandala) were evaluated and compared to an improved variety (MR 219). Physicochemical and antioxidant properties of flours were determined using standard methods. Protein, magnesium, phosphorus, potassium and antioxidant properties of rice flours increased after germination while phytic acid and total starch contents decreased. Foaming capacity and stability of rice flours increased after germination. Germination resulted to changes in pasting and thermal characteristics of rice flours. Germinated rice flours had better physicochemical and antioxidant properties with reduced phytic acid and starch contents compared to MR 219, which can be utilized as functional ingredients in the preparation of rice-based products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Gibberellic Acid: A Key Phytohormone for Spikelet Fertility in Rice Grain Production

    Directory of Open Access Journals (Sweden)

    Choon-Tak Kwon

    2016-05-01

    Full Text Available The phytohormone gibberellic acid (GA has essential signaling functions in multiple processes during plant development. In the “Green Revolution”, breeders developed high-yield rice cultivars that exhibited both semi-dwarfism and altered GA responses, thus improving grain production. Most studies of GA have concentrated on germination and cell elongation, but GA also has a pivotal role in floral organ development, particularly in stamen/anther formation. In rice, GA signaling plays an important role in spikelet fertility; however, the molecular genetic and biochemical mechanisms of GA in male fertility remain largely unknown. Here, we review recent progress in understanding the network of GA signaling and its connection with spikelet fertility, which is tightly associated with grain productivity in cereal crops.

  6. On the role of abscisic acid in seed dormancy of red rice.

    Science.gov (United States)

    Gianinetti, Alberto; Vernieri, Paolo

    2007-01-01

    Abscisic acid (ABA) is commonly assumed to be the primary effector of seed dormancy, but conclusive evidence for this role is lacking. This paper reports on the relationships occurring in red rice between ABA and seed dormancy. Content of free ABA in dry and imbibed caryopses, both dormant and after-ripened, the effects of inhibitors, and the ability of applied ABA to revert dormancy breakage were considered. The results indicate: (i) no direct correlation of ABA content with the dormancy status of the seed, either dry or imbibed; (ii) different sensitivity to ABA of non-dormant seed and seed that was forced to germinate by fluridone; and (iii) an inability of exogenous ABA to reinstate dormancy in fluridone-treated seed, even though applied at a pH which favoured high ABA accumulation. These considerations suggest that ABA is involved in regulating the first steps of germination, but unidentified developmental effectors that are specific to dormancy appear to stimulate ABA synthesis and to enforce the responsiveness to this phytohormone. These primary effectors appear physiologically to modulate dormancy and via ABA they effect the growth of the embryo. Therefore, it is suggested that ABA plays a key role in integrating the dormancy-specific developmental signals with the control of growth.

  7. Effects of NaCl and soaking temperature on the phenolic compounds, α-tocopherol, γ-oryzanol and fatty acids of glutinous rice.

    Science.gov (United States)

    Thammapat, Pornpisanu; Meeso, Naret; Siriamornpun, Sirithon

    2015-05-15

    Soaking is one of the important steps of the parboiling process. In this study, we investigated the effect of changes in different sodium chloride (NaCl) content (0%, 1.5% and 3.0% NaCl, w/v) of soaking media and soaking temperatures (30°C, 45°C and 60°C) on the phenolic compounds (α-tocopherol, γ-oryzanol) and on the fatty acids of glutinous rice, compared with unsoaked samples. Overall, the total phenolic content, total phenolic acids, γ-oryzanol, saturated fatty acid and mono-unsaturated fatty acid of the glutinous rice showed an increasing trend as NaCl content and soaking temperature increased, while α-tocopherol and polyunsaturated fatty acids decreased. Soaking at 3.0% NaCl provided the highest total phenolic content, total phenolic acids and γ-oryzanol (0.2mg GAE/g, 63.61 μg/g and 139.76 mg/100g, respectively) for the soaking treatments tested. Nevertheless, the amount of α-tocopherol and polyunsaturated fatty acid were found to be the highest (18.30/100g and 39.74%, respectively) in unsoaked rice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.

    Science.gov (United States)

    Liu, Houjun; Zhang, Junling; Christie, Peter; Zhang, Fusuo

    2008-05-15

    Iron plaque is ubiquitously formed on the root surfaces of rice. However, little is known about the role of iron plaque in Cd movement from soil to the plant aboveground parts. A pot experiment was conducted to investigate the influence of iron plaque in Cd uptake and accumulation by rice seedlings in soil. Rice seedlings were pre-cultivated in solution culture for 16 days. Two seedlings were transplanted in a nylon bag containing no substrate but surrounded by soil amended with Fe and Cd combined at rates of 0, 1, or 2 g Fe kg(-1) and 0, 2.0, or 10 mg Cd kg(-1) soil. Fe was added to induce different amounts of iron plaque, and Cd to simulate Cd-polluted soils. Plants were grown for a further 43 days and then harvested. The length of the longest leaf and SPAD values of the newly mature leaves were measured during plant growth. Fe and Cd concentrations were determined in dithionite-citrate-bicarbonate (DCB) soil extracts and in plant roots and shoots. Shoot and root dry weights were significantly affected by Fe supply level but not by added Cd. Root dry weight declined with increasing Fe supply but shoot dry weight decreased at 2 g Fe kg(-1) and increased at 1 g Fe kg(-1) (except at 2 mg Cd kg(-1)). The length of the longest leaf and SPAD values of the newly mature leaves were significantly affected by plant growth stage and added Fe and Cd. Fe tended to diminish the negative effect of Cd on these two parameters. Cd concentrations in DCB extracts increased with increasing Cd and Fe supply. In contrast, external Fe supply markedly reduced shoot and root Cd concentrations and there was generally no significant difference between the two Fe supply levels. Shoot and root Cd concentrations increased with increasing Cd addition. Root Cd concentrations were negatively correlated with root Fe concentrations. The proportion of Cd in DCB extracts was significantly lower than in roots or shoots. The results indicate that enhanced Fe uptake by plants can diminish the negative

  9. Rice Hull Ash and Silicic Acid as Adsorbents for Concentration of Bacteriocins†

    OpenAIRE

    Janes, M. E.; Nannapaneni, R.; Proctor, A.; Johnson, M. G.

    1998-01-01

    A model procedure has been developed for the rapid extraction of five bacteriocins (nisin, pediocin RS2, leucocin BC2, lactocin GI3, and enterocin CS1) from concentrated freeze-dried crude culture supernatants by adsorption onto acid or alkaline rice hull ash (RHA) or silicic acid (SA). Bacteriocins were adsorbed onto RHA or SA by a pH-dependent method and desorbed by decreasing the pH to 2.5 or 3.0 and heating at 90°C for 5 min. The maximum adsorption and optimal pH range for different bacte...

  10. The influence of acid rain on the intake of trace elements into rice plant from soils

    International Nuclear Information System (INIS)

    Tanizaki, Yoshiyuki; Nakamura, Masaru; Maeno, Tomokazu

    1995-01-01

    Rice plant samples were grown in 14 cultivative pots by irrigation using the six conditions of artificial acid rain waters (pH: 6.5, 6.0, 4.5, 3.5, 3.0 and 2.5) and tap water (pH: 7.5). The rice grain yielded were separated into three parts, i.e., polished rice, bran and chaff, and they were reduced to powder one by one. Twenty six element contents in the three parts of grain (each 14 samples) were determined by a neutron activation analysis. The contents of Cr, Fe, Ni, Zn, Cu, Rb, Mo in the polished rice increased with decreasing of pH of the irrigation waters. The contents of Se and Br, on the contrary, decreased with decreasing of pH of the irrigation waters. Significant changes of the contents were not observed for the elements Na, Al, Cl, Sc, Mn, Co, V. The enrichment factor of trace elements to soils were calculated for the polished rice, bran and chaff. The high enrichments of Cl, Mo, Zn, Se, Cu and Ni were observed in the polished rice. The elements K, Rb, Mn, Mg and Cr were highly concentrated in the bran. (author)

  11. Effects of lactic acid bacteria in kimoto on sake brewing. Part 2. ; Promotion mechanism of enzymolysis in rice by teichoic acid. Kimotochu no nyusankin no seishu jozo ni oyobosu eikyo. 2. ; Kimotochu no nyusankin ni yuraisuru teikosan no. alpha. kamai yokai sokushin sayo kisaku

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, H.; Tsurumoto, M.; Furukawa, A.; Kawasaki, T. (Kikumasamune Sake Brewing Co. Ltd, Hyogo (Japan))

    1991-07-25

    In order to elucidate promotion mechanism of dissolution of {alpha}-rice (pregelatinized rice) by teichoic acid. adsorption of teichoic acid and {alpha}-amylase onto rice protein oryzenin was investigated by experiments. Teichoic acid was adsorbed well onto oryzenin and reduced adsorption of {alpha}-amylase. Adsorption of {alpha}-amylase onto rice powder was decreased logarithmically in proportion to the teichoic acid added. Both teichoic acid and {alpha}-amylase were adsorbed by histone, abundant in basic amino acids, and by anion-exchange resin. Adsorption of {alpha}-amylase onto them was reduced by coexistence with teichoic acid. As the results of experiments, it was inferred that teichoic acid became dissolvable through autolysis by lactic acid bacteria in kimoto, changed the state of electric charge on oryzenin surfaces through adsorption onto oryzenin by phosphoric group, decreasing adsorption of {alpha}-amylase onto oryzenin and increasing free {alpha}-amylase in the liquid phase, and thus increased the dissolution of {alpha}-rice. 9 refs., 6 figs., 3 tabs.

  12. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants.

    Science.gov (United States)

    Chen, Rui; Zhang, Changbo; Zhao, Yanling; Huang, Yongchun; Liu, Zhongqi

    2018-01-01

    Nano-silicon (Si) may be more effective than regular fertilizers in protecting plants from cadmium (Cd) stress. A field experiment was conducted to study the effects of nano-Si on Cd accumulation in grains and other organs of rice plants (Oryza sativa L. cv. Xiangzaoxian 45) grown in Cd-contaminated farmland. Foliar application with 5~25 mM nano-Si at anthesis stage reduced Cd concentrations in grains and rachises at maturity stage by 31.6~64.9 and 36.1~60.8%, respectively. Meanwhile, nano-Si application significantly increased concentrations of potassium (K), magnesium (Mg), and iron (Fe) in grains and rachises, but imposed little effect on concentrations of calcium (Ca), zinc (Zn), and manganese (Mn) in them. Uppermost nodes under panicles displayed much higher Cd concentration (4.50~5.53 mg kg -1 ) than other aerial organs. After foliar application with nano-Si, translocation factors (TFs) of Cd ions from the uppermost nodes to rachises significantly declined, but TFs of K, Mg, and Fe from the uppermost nodes to rachises increased significantly. High dose of nano-Si (25 mM) was more effective than low dose of nano-Si in reducing TFs of Cd from roots to the uppermost nodes and from the uppermost nodes to rachises. These findings indicate that nano-Si supply reduces Cd accumulation in grains by inhibiting translocation of Cd and, meanwhile, promoting translocation of K, Mg, and Fe from the uppermost nodes to rachises in rice plants.

  13. Recovery of Pyruvic Acid using Tri-n-butylamine Dissolved in Non-Toxic Diluent (Rice Bran Oil)

    Science.gov (United States)

    Pal, Dharm; Keshav, Amit

    2016-04-01

    An attempt has been made to investigate the effectiveness of the vegetable oil based biocompatible solvent for the separation of pyruvic acid from fermentation broth, by using rice bran oil as natural, non-toxic diluent. Reactive extraction of pyruvic acid (0.1-0.5 k mol/m3) from aqueous solutions has been studied using tri-n-butylamine (TBA; 10-70 %) as an extractant dissolved in non toxic rice bran oil at T = 30 ± 1 °C. Results were presented in terms of distribution coefficient (Kd), extraction efficiency (E %), loading ratio (Z), and complexation constant (\\varphi_{α β }). Extraction equilibrium was interpreted using mass action modeling approach. Based on the extent of loading (Z < 0.5) only (1:1), pyruvic acid: TBA complex was proposed. Equilibrium complexation constant was evaluated to 1.22 m3/k mol. Results obtained are useful in understanding the extraction mechanism.

  14. Xylitol from rice husks by acid hydrolysis and Candida yeast fermentation

    Directory of Open Access Journals (Sweden)

    Magale K. D. Rambo

    2013-01-01

    Full Text Available An investigation was conducted into the production of xylose by acid hydrolysis of rice husks and its subsequent bioconversion to xylitol. The parameters were optimised using the response surface methodology. The fermentation stage took place with the aid of the yeast species Candida guilliermondii and Candida tropicalis. An evaluation of the influence of several biomass pre-treatments was also performed. The effects of the acid concentration and hydrolysate pH on xylitol global yield were also assessed, and the highest yield of xylitol was 64.0% (w/w. The main products, xylose and xylitol, were identified and quantified by means of liquid chromatography.

  15. Phospholipid fatty acids in mitochondria and microsomes of wheat and rice seedling roots during aeration and anaerobiosis

    International Nuclear Information System (INIS)

    Chirkova, T.V.; Sinyutina, N.F.; Blyudzin, Yu.A.; Barskii, I.E.; Smetannikova, S.V.

    1989-01-01

    Mitochondrial and microsomal fractions were isolated from the roots after residence of wheat and rice seedlings under conditions of aeration or anaerobiosis and used to determine the percentage ratio of phospholipid fatty acids (PFA), their content, and the rate of incorporation of [2- 14 C]-acetate into them. In rice mitochondria under anaerobic influence, the ratio of unsaturated to saturated PFA was higher than the level that occurred in the control plants and PFA content remained close to the control level throughout the entire course of exposure. On the other hand, these indices declined in wheat mitochondria and microsomes of both plants. Anoxia also powerfully inhibited incorporation of labelled acetate into PFA of both membrane fractions in wheat and rice seedlings alike. Probably indicating adaptive reorganizations in composition of the main groups of PFA and inhibition of their decomposition in rice mitochondria, the obtained data are discussed in relation to greater resistance to temporary anaerobiosis in rice as compared with wheat

  16. Field trial of GABA-fortified rice plants and oral administration of milled rice in spontaneously hypertensive rats.

    Science.gov (United States)

    Kowaka, Emi; Shimajiri, Yasuka; Kawakami, Kouhei; Tongu, Miki; Akama, Kazuhito

    2015-06-01

    Hypertension is one of the most critical risk factors accompanying cardiovascular diseases. γ-Aminobutyric acid (GABA) is a non-protein amino acid that functions as a major neurotransmitter in mammals and also as a blood-pressure lowering agent. We previously produced GABA-fortified rice lines of a popular Japonica rice cultivar 'Koshihikari' by genetic manipulation of GABA shunt-related genes. In the study reported here, we grew these same novel rice lines in a field trial and administered the milled rice orally to rats. The yield parameters of the transgenic rice plants were almost unchanged compared to those of untransformed cv. 'Koshihikari' plants, while the rice grains of the transgenic plants contained a high GABA content (3.5 g GABA/kg brown rice; 0.75-0.85 GABA g/kg milled rice) in a greenhouse trial. Oral administration of a diet containing 2.5% GABA-fortified rice, with a daily intake for 8 weeks, had an approximately 20 mmHg anti-hypertensive effect in spontaneous hypertensive rats but not in normotensive Wistar-Kyoto rats. These results suggest that GABA-fortified rice may be applicable as a staple food to control or prevent hypertension.

  17. Lactic acid production from submerged fermentation of broken rice using undefined mixed culture.

    Science.gov (United States)

    Nunes, Luiza Varela; de Barros Correa, Fabiane Fernanda; de Oliva Neto, Pedro; Mayer, Cassia Roberta Malacrida; Escaramboni, Bruna; Campioni, Tania Sila; de Barros, Natan Roberto; Herculano, Rondinelli Donizetti; Fernández Núñez, Eutimio Gustavo

    2017-04-01

    The present work aimed to characterize and optimize the submerged fermentation of broken rice for lactic acid (LA) production using undefined mixed culture from dewatered activated sludge. A microorganism with amylolytic activity, which also produces LA, Lactobacillus amylovorus, was used as a control to assess the extent of mixed culture on LA yield. Three level full factorial designs were performed to optimize and define the influence of fermentation temperature (20-50 °C), gelatinization time (30-60 min) and broken rice concentration in culture medium (40-80 g L -1 ) on LA production in pure and undefined mixed culture. LA production in mixed culture (9.76 g L -1 ) increased in sixfold respect to pure culture in optimal assessed experimental conditions. The optimal conditions for maximizing LA yield in mixed culture bioprocess were 31 °C temperature, 45 min gelatinization time and 79 g L -1 broken rice concentration in culture medium. This study demonstrated the positive effect of undefined mixed culture from dewatered activated sludge to produce LA from culture medium formulated with broken rice. In addition, this work establishes the basis for an efficient and low-cost bioprocess to manufacture LA from this booming agro-industrial by-product.

  18. Study on the optimal moisture adding rate of brown rice during germination by using segmented moisture conditioning method.

    Science.gov (United States)

    Cao, Yinping; Jia, Fuguo; Han, Yanlong; Liu, Yang; Zhang, Qiang

    2015-10-01

    The aim of this study was to find out the optimal moisture adding rate of brown rice during the process of germination. The process of water addition in brown rice could be divided into three stages according to different water absorption speeds in soaking process. Water was added with three different speeds in three stages to get the optimal water adding rate in the whole process of germination. Thus, the technology of segmented moisture conditioning which is a method of adding water gradually was put forward. Germinated brown rice was produced by using segmented moisture conditioning method to reduce the loss of water-soluble nutrients and was beneficial to the accumulation of gamma aminobutyric acid. The effects of once moisture adding amount in three stages on the gamma aminobutyric acid content in germinated brown rice and germination rate of brown rice were investigated by using response surface methodology. The optimum process parameters were obtained as follows: once moisture adding amount of stage I with 1.06 %/h, once moisture adding amount of stage II with 1.42 %/h and once moisture adding amount of stage III with 1.31 %/h. The germination rate under the optimum parameters was 91.33 %, which was 7.45 % higher than that of germinated brown rice produced by soaking method (84.97 %). The content of gamma aminobutyric acid in germinated brown rice under the optimum parameters was 29.03 mg/100 g, which was more than two times higher than that of germinated brown rice produced by soaking method (12.81 mg/100 g). The technology of segmented moisture conditioning has potential applications for studying many other cereals.

  19. Radiation use efficiency of rice under different planting methods and environmental conditions

    International Nuclear Information System (INIS)

    Apakupakul, R.

    1995-01-01

    Radiation use efficiency is an important parameter which has often been used in many crop growth models to estimate total biomass and yield. Studies of the relationships between above-ground biomass and accumulative absorbed photosynthetically active radiation (PARa, MJ/square m) of rice were examined both on-farms and on-station in Phatthalung. Planting methods were wet-sown and transplanted rice for Suphanburi 90 in the 1993 dry season and Chieng in the 1993-94 wet season. Solar radiation of the two growing seasons were calculated from climatic data. The objectives of this experiment were (1) to know the pattern of relationship between above-ground biomass and accumulative absorbed PAR of rice cultivars grown in South Thailand, (2) to compare the radiation use efficiency of rice cultivars under different planting methods and (3) to obtain the primary data for rice growth modelling in the southern climate. Results presented that only the duration of first growing period up to stem elongation in both cultivars, above-ground biomass and leaf area index were higher in wet-sown than in transplanted rice. Relationship between above-ground biomass accumulation through growing period and accumulative absorbed PAR was in positive linear regression with R*[2)0.85. Erect leaf of Suphanburi 90 had a radiation use efficiency (RUE, g/MJ) higher than non-erect leaf of Chieng. A problem of weed infestation in wet-sown rice in both cultivars had an effect on the RUE which were highly significant lower than transplanted rice. The Rue of wet-sown and transplanted rice were 2.77 and 3.20 g/MJ, respectively for Suphanburi 90, 2.13 and 2.67 g/MJ for Chieng. These results suggest that when dealing with radiation use efficiency in the rice growth modelling the differences of cultivars and planting methods should be taken into consideration

  20. Influence of Rapeseed Cake on Heavy Metal Uptake by a Subsequent Rice Crop After Phytoextraction Using Sedum plumbizincicola.

    Science.gov (United States)

    Zhou, Liqiang; Wu, Longhua; Li, Zhu; Yang, Bingfan; Yin, Bin; Luo, Yongming; Christie, Peter

    2015-01-01

    A glasshouse pot experiment was conducted to study the effects of phytoextraction by Sedum plumbizincicola and application of rapeseed cake (RSC) on heavy metal accumulation by a subsequent rice (Oryza sativa L.) crop in a contaminated paddy soil collected from east China. After phytoextraction by S. plumbizincicola the soil and brown rice Cd concentrations effectively declined. After phytoextraction, RSC application reduced brown rice Cd concentrations in the subsequent rice crop to 0.23-0.28 mg kg(-1), almost down to the standard limit (0.2 mg kg(-1)). After phytoextraction and then application of RSC, the soil solution pH, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations increased during early stages of rice growth resulting directly and indirectly in lowering the bioavailability of the heavy metals. Thus the grain yield of the subsequent rice crop increased and the heavy metals in the brown rice declined significantly. In this contaminated acid soil, growing the hyperaccumulator S. plumbizincicola and rice in rotation together with RSC application may therefore be regarded as a viable strategy for safe grain production and bioremediation.

  1. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice

    International Nuclear Information System (INIS)

    Ye Wenling; Khan, M. Asaduzzaman; McGrath, Steve P.; Zhao Fangjie

    2011-01-01

    Arsenic (As) accumulation in food crops such as rice is of major concern. To investigate whether phytoremediation can reduce As uptake by rice, the As hyperaccumulator Pteris vittata was grown in five contaminated paddy soils in a pot experiment. Over a 9-month period P. vittata removed 3.5-11.4% of the total soil As, and decreased phosphate-extractable As and soil pore water As by 11-38% and 18-77%, respectively. Rice grown following P. vittata had significantly lower As concentrations in straw and grain, being 17-82% and 22-58% of those in the control, respectively. Phytoremediation also resulted in significant changes in As speciation in rice grain by greatly decreasing the concentration of dimethylarsinic acid (DMA). In two soils the concentration of inorganic As in rice grain was decreased by 50-58%. The results demonstrate an effective stripping of bioavailable As from contaminated paddy soils thus reducing As uptake by rice. - Highlights: → Pteris vittata removed 3.5-11.4% of the total As from five contaminated paddy soils. → P. vittata decreased phosphate-extractable and soil solution As to a greater extent. → P. vittata reduced As concentration in rice grain by 18-83%. → P. vittata decreased methylated As in rice grain more than inorganic As. - Phytoremediation with P. vittata significantly reduced arsenic uptake by rice from contaminated paddy soils.

  2. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice

    Energy Technology Data Exchange (ETDEWEB)

    Ye Wenling [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Khan, M. Asaduzzaman [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207 (Bangladesh); McGrath, Steve P. [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Zhao Fangjie, E-mail: Fangjie.Zhao@bbsrc.ac.uk [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom)

    2011-12-15

    Arsenic (As) accumulation in food crops such as rice is of major concern. To investigate whether phytoremediation can reduce As uptake by rice, the As hyperaccumulator Pteris vittata was grown in five contaminated paddy soils in a pot experiment. Over a 9-month period P. vittata removed 3.5-11.4% of the total soil As, and decreased phosphate-extractable As and soil pore water As by 11-38% and 18-77%, respectively. Rice grown following P. vittata had significantly lower As concentrations in straw and grain, being 17-82% and 22-58% of those in the control, respectively. Phytoremediation also resulted in significant changes in As speciation in rice grain by greatly decreasing the concentration of dimethylarsinic acid (DMA). In two soils the concentration of inorganic As in rice grain was decreased by 50-58%. The results demonstrate an effective stripping of bioavailable As from contaminated paddy soils thus reducing As uptake by rice. - Highlights: > Pteris vittata removed 3.5-11.4% of the total As from five contaminated paddy soils. > P. vittata decreased phosphate-extractable and soil solution As to a greater extent. > P. vittata reduced As concentration in rice grain by 18-83%. > P. vittata decreased methylated As in rice grain more than inorganic As. - Phytoremediation with P. vittata significantly reduced arsenic uptake by rice from contaminated paddy soils.

  3. Formation of Guaiacol by Spoilage Bacteria from Vanillic Acid, a Product of Rice Koji Cultivation, in Japanese Sake Brewing.

    Science.gov (United States)

    Ito, Toshihiko; Konno, Mahito; Shimura, Yoichiro; Watanabe, Seiei; Takahashi, Hitoshi; Hashizume, Katsumi

    2016-06-08

    The formation of guaiacol, a potent phenolic off-odor compound in the Japanese sake brewing process, was investigated. Eight rice koji samples were analyzed, and one contained guaiacol and 4-vinylguaiacol (4-VG) at extraordinarily high levels: 374 and 2433 μg/kg dry mass koji, respectively. All samples contained ferulic and vanillic acids at concentrations of mg/kg dry mass koji. Guaiacol forming microorganisms were isolated from four rice koji samples. They were identified as Bacillus subtilis, B. amyloliquefaciens/subtilis, and Staphylococcus gallinarum using 16S rRNA gene sequence. These spoilage bacteria convert vanillic acid to guaiacol and ferulic acid to 4-VG. However, they convert very little ferulic acid or 4-VG to guaiacol. Nine strains of koji fungi tested produced vanillic acid at the mg/kg dry mass koji level after cultivation. These results indicated that spoilage bacteria form guaiacol from vanillic acid, which is a product of koji cultivation in the sake brewing process.

  4. Acid Rain Contribution from Pesticide Distribution to Rice Farmers in Pati Regency

    Science.gov (United States)

    Qosim, Ahmad; Anies; Sunoko, Henna Rya

    2018-02-01

    Productivity rate of rice fields in Regency has been in a surplus condition annually. The fields have produced 7 to 8 tons per hectare, making the total annual rate of 600 tons. The regency, therefore, is considered to be capable of fulfilling its own need for rice and to contribute significantly to the rice needs in Central Java Province. Agriculture coexists with the presence of pesticides. While helping the farmers to combat the plant diseases, pesticides have still been greatly necessary by the local farmers. Distribution by means of transportation devices plays an important role for the dissemination of the pesticides from the producers to their end users. Problem arises due to emission produced during the transportation activities. Transportation emits SO2 as the major contributor to acid rain. To make worse, application in practice by the farmers also emit the similar substance. Annual use of pesticides in Pati Regency has reached 605 tons with SO2 emission of 13,697 kg. It is recommended that distribution management and selection of pesticides are performed by applying an integrated pest control in order to reduce the pesticide emission.

  5. Effect of coated urea on cadmium accumulation in Oryza sativa L. grown in contaminated soil.

    Science.gov (United States)

    Xu, Chao; Wu, Zisong; Zhu, Qihong; Zhu, Hanhua; Zhang, Yangzhu; Huang, Daoyou

    2015-11-01

    Experiments were conducted to determine the effects of three types of coated urea on the accumulation of cadmium (Cd) in rice (Oryza sativa L.) grown in contaminated soil. Pot-culture experiments were conducted in a greenhouse from July to November 2012 on the rice cultivar "Hua Hang Si Miao" in Guangzhou (China). The experimental design was completely randomized with four treatments and three replications. The treatments were control (CK) (N 0 mg/kg), prilled urea (PU) (N 200 mg/kg), polymer-coated urea (PCU) (N 200 mg/kg), and sulfur-coated urea (SCU) (N 200 mg/kg). Our results indicated that applications of PCU and SCU slightly increased the dry weight of rice grains. The application of SCU significantly decreased the CaCl2 and toxicity characteristic leaching procedure (TCLP)-extractable Cd concentrations by 15.4 and 56.1%, respectively. Sequential extractions showed that PCU and SCU applications led to a significant decrease in Cd in the exchangeable fraction and an increase in the bound iron (Fe) and manganese (Mn) oxides fractions. Cd concentrations in grains treated with PCU were reduced by 11.7%, whereas SCU significantly reduced Cd concentrations by 29.1%. SCU reduced Cd transfer from the straws to the grain. Our results demonstrated that PCU and SCU may be effective in mitigating Cd accumulation in rice grown in acidic Cd-contaminated soil, especially in plants receiving SCU.

  6. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice.

    Science.gov (United States)

    Yu, Hui; Wang, Junli; Fang, Wei; Yuan, Jiangang; Yang, Zhongyi

    2006-11-01

    Large areas of contaminated land are being used for agricultural production in some countries due to the high demand for food. To minimize the influx of pollutants to the human food chain through consumption of agricultural products, we propose the concept of pollution-safe cultivars (PSCs), i.e. cultivars whose edible parts accumulate a specific pollutant at a level low enough for safe consumption, even when grown in contaminated soil. We tested the feasibility of the PSC concept by growing 43 cultivars of paddy rice (Oryza sativa L., including 20 normal and 23 hybrid cultivars) under a high (75.69-77.55 mg kg(-1)) and a low (1.75-1.85 mg kg(-1)) cadmium (Cd) exposure. These pot experiments took place in the spring and summer of 2004. At the low level of Cd exposure, 30 out of the 43 tested cultivars were found to be Cd-PSCs. Grain Cd concentrations were highly correlated (price grain is genotype-dependent and that the selection of PSCs is possible, at least at a certain level of soil contamination. No Cd-PSCs were found under the high level of Cd exposure. Yield was enhanced in some cultivars and depressed in others in response to elevated soil Cd, indicating that farmers cannot rely on yield depression as an indicator of toxicity of the grains. It is therefore important and feasible to screen for PSCs and to establish PSC breeding programs to effectively and efficiently reduce the risk of human exposure to soil pollutants, such as Cd, through crop consumption.

  7. Relationship between transpiration and amino acid accumulation in Brassica leaf discs treated with cytokinins and fusicoccin

    International Nuclear Information System (INIS)

    Kuraishi, Susumu; Ishikawa, Fumio

    1977-01-01

    Both cytokinins and fusicoccin (FC) stimulated the transpiration and the amino acid accumulation in leaf discs of Brassica campestris var. komatsuna. Enhancement effects were of the same magnitude. Both the accumulation and the transpiration were similarly inhibited when vaseline was smeared on the leaf surface. Abscisic acid (ABA) also inhibited those cytokinin-induced effects. The accumulation of amino acid- 14 C was at the cytokinin- or FC-treated site unless the leaf surface was smeared with vaseline. These facts suggest that cytokinin- or FC-induced amino acid accumulation in leaf is caused by the stimulation of transpiration. (auth.)

  8. Mechanisms of callose deposition in rice regulated by exogenous abscisic acid and its involvement in rice resistance to Nilaparvata lugens Stål (Hemiptera: Delphacidae).

    Science.gov (United States)

    Liu, Jinglan; Du, Haitao; Ding, Xu; Zhou, Yaodong; Xie, Pengfei; Wu, Jincai

    2017-12-01

    Callose is a plant cell wall polysaccharide controlled by β-1,3-glucanase and synthase. Abscisic acid (ABA) is an important plant hormone. Exogenous ABA promotes rice resistance to pests. Whether exogenous ABA could reduce the decline in rice yield after brown planthopper (Nilaparvata lugens Stål; BPH) feeding is an important question, however, the mechanisms behind rice resistance induced by ABA remain obscure. Electronic penetration graph (EPG) recording indicated a significant increase in rice resistance to BPH, and the number of BPH eggs decreased significantly upon application of exogenous ABA. As the concentration of ABA increased, the reduction in rice yield decreased significantly after BPH feeding. Further studies showed that β-1,3-glucanase activity was significantly lower, but synthase activity was higher after ABA treatment than in controls. Our results demonstrated that exogenous ABA suppressed β-1,3-glucanase and induced synthase activity, and promoted callose deposition. This is an important defense mechanism that prevents BPH from ingesting phloem sap. These studies provide support for an insect-resistance mechanism after ABA treatment and provide a reference for the integrated management of other piercing-sucking pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation.

    Science.gov (United States)

    Cao, Fangbin; Wang, Runfeng; Cheng, Wangda; Zeng, Fanrong; Ahmed, Imrul Mosaddek; Hu, Xinna; Zhang, Guoping; Wu, Feibo

    2014-10-15

    The field scale trials revealed significant genotypic and environmental differences in grain heavy metal (HM) concentrations of 158 newly developed rice varieties grown in twelve locations of Zhejiang province of China. Grain Pb and Cd contents in 5.3% and 0.4% samples, respectively, were above the maximum permissible concentration (MPC); none of samples had Cr/Cu exceeding MPC. Stepwise multiple linear regression analysis estimated soil HM critical levels for safe rice production. Low grain HM accumulation cultivars such as Xiushui817, Jiayou08-1 and Chunyou689 were recommended as suitable cultivars for planting in slight/medium HM contaminated soils. The alleviating regulator (AR) of (NH₄)₂SO₄ as N fertilizer coupled with foliar spray of a mixture containing glutathione (GSH), Si, Zn and Se significantly decreased grain Cd, Cr, Cu and Pb concentrations grown in HM contaminated fields with no effect on yield, indicating a promising measurement for further reducing grain HM content to guarantee safe food production. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China.

    Science.gov (United States)

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-12-22

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg(-)¹, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety.

  11. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China

    Science.gov (United States)

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-01-01

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg−1, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety. PMID:26703698

  12. Caffeoylquinic Acids Generated In Vitro in a High-Anthocyanin-Accumulating Sweet potato Cell Line

    Directory of Open Access Journals (Sweden)

    Izabela Konczak

    2004-01-01

    Full Text Available Accumulation of phenolic compounds has been monitored in a suspension culture of anthocyanin-accumulating sweet potato cell line grown under the conditions of modified Murashige and Skoog high-anthocyanin production medium (APM over a period of 24 days. Tissue samples extracted with 15% acetic acid were analysed using HPLC at a detection wavelength of 326 nm. Among others, the following derivatives of caffeoylquinic acids were detected: 4,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, and 3,4,5-tricaffeoylquinic acid. Their total amount reached a maximum of 110 mg/gFW between the 4th and the 15th day of culture growth on APM. The major compound of the phenolic mixture was 3,5-dicaffeoylquinic acid with maximum accumulation level of 80 mg/100 gFW. The potential effects of targeted phenolic compounds on the nutraceutical qualities of in vitro produced anthocyanin-rich extracts are discussed.

  13. Interaction between amylose and 1-butanol during 1-butanol-hydrochloric acid hydrolysis of normal rice starch.

    Science.gov (United States)

    Hu, Xiuting; Wei, Benxi; Zhang, Bao; Li, Hongyan; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2013-10-01

    The aim of this study was to examine the interaction between amylose and 1-butanol during the 1-butanol-hydrochloric acid (1-butanol-HCl) hydrolysis of normal rice starch. The interaction model between amylose and 1-butanol was proposed using gas chromatography-mass spectrometry (GC-MS), (13)C cross polarization and magic angle spinning NMR analysis ((13)C CP/MAS NMR), differential scanning calorimetry (DSC), and thermalgravimetric analysis (TGA). GC-MS data showed that another form of 1-butanol existed in 1-butanol-HCl-hydrolyzed normal rice starch, except in the form of free molecules absorbed on the starch granules. The signal of 1-butanol-HCl-hydrolyzed starch at 100.1 ppm appeared in the (13)C CP/MAS NMR spectrum, indicating that the amylose-1-butanol complex was formed. DSC and TGA data also demonstrated the formation of the complex, which significantly affected the thermal properties of normal rice starch. These findings revealed that less dextrin with low molecular weight formed might be attributed to resistance of this complex to acid during 1-butanol-HCl hydrolysis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  14. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements.

    Directory of Open Access Journals (Sweden)

    Yushi Ye

    Full Text Available Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C, nitrogen (N and phosphorus (P, in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD and four N managements (control, N0; conventional urea at 240 kg N ha(-1, UREA; controlled-release bulk blending fertilizer at 240 kg N ha(-1, BBF; polymer-coated urea at 240 kg N ha(-1, PCU. We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems.

  15. Carbon, Nitrogen and Phosphorus Accumulation and Partitioning, and C:N:P Stoichiometry in Late-Season Rice under Different Water and Nitrogen Managements

    Science.gov (United States)

    Ye, Yushi; Liang, Xinqiang; Chen, Yingxu; Li, Liang; Ji, Yuanjing; Zhu, Chunyan

    2014-01-01

    Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C), nitrogen (N) and phosphorus (P), in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle) of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD) and four N managements (control, N0; conventional urea at 240 kg N ha−1, UREA; controlled-release bulk blending fertilizer at 240 kg N ha−1, BBF; polymer-coated urea at 240 kg N ha−1, PCU). We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems. PMID:24992006

  16. Esterification free fatty acid in sludge palm oil using ZrO2/SO42- - rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-05-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as sludge palm oil (SPO) from palm oil industries. The use of SPO can lower the cost of biodiesel production significantly, which makes SPO a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid on sludge palm oil was studied using rice husk ash as heterogeneous solid catalysts. Heterogeneous solid catalysts offer significant advantages of eliminating separation, corrosion, toxicity and environmental problems. In this paper the esterification of SPO, a by-product from palm oil industry, in the presence of modified rice husk ash catalysts was studied. The rice husk ash catalysts were synthesized by impregnating of Zirconia (Zr) on rice husk ash followed by sulfonation. The rice husk ash catalysts were characterized by using different techniques, such as FT-IR, XRD, and porous analysis. The effects of the mass ratio of catalyst to oil (1 - 10%), the molar ratio of methanol to oil (4:1 - 10:1), and the reaction temperature (40 - 60°C) were studied for the conversion of free fatty acids (FFAs) to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to oil molar ratio of 10:1, the amount of catalyst of 10%w, and reaction temperature of 60°C.

  17. Transcriptomic analysis of rice aleurone cells identified a novel abscisic acid response element.

    Science.gov (United States)

    Watanabe, Kenneth A; Homayouni, Arielle; Gu, Lingkun; Huang, Kuan-Ying; Ho, Tuan-Hua David; Shen, Qingxi J

    2017-09-01

    Seeds serve as a great model to study plant responses to drought stress, which is largely mediated by abscisic acid (ABA). The ABA responsive element (ABRE) is a key cis-regulatory element in ABA signalling. However, its consensus sequence (ACGTG(G/T)C) is present in the promoters of only about 40% of ABA-induced genes in rice aleurone cells, suggesting other ABREs may exist. To identify novel ABREs, RNA sequencing was performed on aleurone cells of rice seeds treated with 20 μM ABA. Gibbs sampling was used to identify enriched elements, and particle bombardment-mediated transient expression studies were performed to verify the function. Gene ontology analysis was performed to predict the roles of genes containing the novel ABREs. This study revealed 2443 ABA-inducible genes and a novel ABRE, designated as ABREN, which was experimentally verified to mediate ABA signalling in rice aleurone cells. Many of the ABREN-containing genes are predicted to be involved in stress responses and transcription. Analysis of other species suggests that the ABREN may be monocot specific. This study also revealed interesting expression patterns of genes involved in ABA metabolism and signalling. Collectively, this study advanced our understanding of diverse cis-regulatory sequences and the transcriptomes underlying ABA responses in rice aleurone cells. © 2017 John Wiley & Sons Ltd.

  18. Phytanic acid alpha-oxidation: accumulation of 2-hydroxyphytanic acid and absence of 2-oxophytanic acid in plasma from patients with peroxisomal disorders

    NARCIS (Netherlands)

    ten Brink, H. J.; Schor, D. S.; Kok, R. M.; Poll-The, B. T.; Wanders, R. J.; Jakobs, C.

    1992-01-01

    A stable isotope dilution method was developed for the measurement of 2-hydroxyphytanic acid and 2-oxophytanic acid in plasma. In plasma from healthy individuals and from patients with Refsum's disease, 2-hydroxyphytanic acid was found at levels less than 0.2 mumol/l, whereas the acid accumulated in

  19. Bioethanol production from rice straw residues

    Directory of Open Access Journals (Sweden)

    Elsayed B. Belal

    2013-01-01

    Full Text Available A rice straw -cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 ºC, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L-1.

  20. Rice epigenomics and epigenetics: challenges and opportunities.

    Science.gov (United States)

    Chen, Xiangsong; Zhou, Dao-Xiu

    2013-05-01

    During recent years rice genome-wide epigenomic information such as DNA methylation and histone modifications, which are important for genome activity has been accumulated. The function of a number of rice epigenetic regulators has been studied, many of which are found to be involved in a diverse range of developmental and stress-responsive pathways. Analysis of epigenetic variations among different rice varieties indicates that epigenetic modification may lead to inheritable phenotypic variation. Characterizing phenotypic consequences of rice epigenomic variations and the underlining chromatin mechanism and identifying epialleles related to important agronomic traits may provide novel strategies to enhance agronomically favorable traits and grain productivity in rice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China

    Directory of Open Access Journals (Sweden)

    Zhouping Liu

    2015-12-01

    Full Text Available Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg−1, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM. This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety.

  2. Effects of simple rain-shelter cultivation on fatty acid and amino acid accumulation in 'Chardonnay' grape berries.

    Science.gov (United States)

    Meng, Nan; Ren, Zhi-Yuan; Yang, Xiao-Fan; Pan, Qiu-Hong

    2018-02-01

    Fatty acids and amino acids are the precursors of aliphatic and aromatic volatile compounds, higher alcohols and esters. They are also nutrition for yeast metabolism during fermentation. However, few reports have been concerned about the effect of viticulture practices on the accumulation of fatty acids and amino acids in wine grapes. This study aimed to explore the accumulation of these compounds in developing Vitis vinifera L. cv. Chardonnay grape berries under two vintages, and compare the influences of the rain-shelter cultivation and open-field cultivation. Fifteen fatty acids and 21 amino acids were detected in total. The rain-shelter cultivation led to an increase in the total concentration of fatty acids, and a decrease in the total concentration of amino acids compared with the open-field cultivation in 2012, while no significant difference was observed between two cultivation modes in 2013 vintage. Concentrations of palmitoleic acid, isoleucine and cysteine were significantly promoted in the rain-shelter grape berries, whereas those of tyrosine and ornithine were markedly reduced in both vintages. The rain-shelter cultivation of wine grapes in the rainy region is beneficial for improving grape quality and fermentation activity by influence on the concentration of fatty acids and amino acids. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties: Rice straw as a feedstock for biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Satlewal, Alok [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Joint Inst. for Biological Sciences, Biosciences Division; Indian Oil Corporation Ltd, Faridabad (India), Dept. of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre; Agrawal, Ruchi [Indian Oil Corporation Ltd, Faridabad (India), Dept. of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre; Bhagia, Samarthya [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Das, Parthapratim [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Ragauskas, Arthur J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering

    2017-10-17

    The surplus availability of rice straw, its limited usage and environment pollution caused by inefficient burning has fostered research for its valorization to biofuels. This review elucidates the current status of rice straw potential around the globe along with recent advances in revealing the critical factors responsible for its recalcitrance and chemical properties. The role and accumulation of high silica content in rice straw has been elucidated with its impact on enzymatic hydrolysis in a biorefinery environment. The correlation of different pretreatment approaches in modifying the physiochemical properties of rice straw and improving the enzymatic accessibility has also been discussed. This study highlights new challenges, resolutions and opportunities for rice straw based biorefineries.

  4. Impact of α-amylase combined with hydrochloric acid hydrolysis on structure and digestion of waxy rice starch.

    Science.gov (United States)

    Li, Hongyan; Zhu, Yanqiao; Jiao, Aiquan; Zhao, Jianwei; Chen, Xiaoming; Wei, Benxi; Hu, Xiuting; Wu, Chunsen; Jin, Zhengyu; Tian, Yaoqi

    2013-04-01

    The structure and in vitro digestibility of native waxy rice starch by the combined hydrolysis of α-amylase and hydrochloric acid were investigated in this study. The combined hydrolysis technique generated higher hydrolysis rate and extent than the enzymatic hydrolysis. The granular appearance and chromatograph profile demonstrated that α-amylase and hydrochloric acid exhibited different patterns of hydrolysis. The rise in the ratio of absorbance 1047/1022cm(-1), the melting temperature range (Tc-To), and the melting enthalpy (ΔH) were observed during the combined hydrolysis. These results suggest that α-amylase simultaneously cleaves the amorphous and crystalline regions, whereas the amorphous regions of starch granules are preferentially hydrolyzed during the acid hydrolysis. Furthermore, the combined hydrolysis increased rapidly digestible starch (RDS) while decreased slowly digestible starch (SDS) and resistant starch (RS), indicating that the hydrolysis mode affected the digestion property of native waxy rice starch. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Influence of earthworm mucus and amino acids on tomato seedling growth and cadmium accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shujie [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Hu Feng, E-mail: fenghu@njau.edu.c [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li Huixin; Li Xiuqiang [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2009-10-15

    The effects on the growth of tomato seedlings and cadmium accumulation of earthworm mucus and a solution of amino acids matching those in earthworm mucus was studied through a hydroponic experiment. The experiment included four treatments: 5 mg Cd L{sup -1} (CC), 5 mg Cd L{sup -1} + 100 mL L{sup -1} earthworm mucus (CE), 5 mg Cd L{sup -1} + 100 mL L{sup -1} amino acids solution (CA) and the control (CK). Results showed that, compared with CC treatment, either earthworm mucus or amino acids significantly increased tomato seedling growth and Cd accumulation but the increase was much higher in the CE treatment compared with the CA treatment. This may be due to earthworm mucus and amino acids significantly increasing the chlorophyll content, antioxidative enzyme activities, and essential microelement uptake and transport in the tomato seedlings. The much greater increase in the effect of earthworm mucus compared with amino acid treatments may be due to IAA-like substances in earthworm mucus. - Earthworm mucus increased tomato seedlings growth and Cd accumulation through increasing chlorophyll content, antioxidative enzyme activities, and essential microelement accumulation.

  6. Antifungal activity of Leuconostoc citreum and Weissella confusa in rice cakes.

    Science.gov (United States)

    Baek, Eunjong; Kim, Hyojin; Choi, Hyejung; Yoon, Sun; Kim, Jeongho

    2012-10-01

    The antifungal activity of organic acids greatly improves the shelf life of bread and bakery products. However, little is known about the effect of lactic acid fermentation on fungal contamination in rice cakes. Here, we show that lactic acid fermentation in rice dough can greatly retard the growth of three fungal species when present in rice cakes, namely Cladosporium sp. YS1, Neurospora sp. YS3, and Penicillium crustosum YS2. The antifungal activity of the lactic acid bacteria against these fungi was much better than that of 0.3% calcium propionate. We found that organic acids including lactic and acetic acid, which are byproducts of lactic fermentation or can be artificially added, were the main antifungal substances. We also found that some Leuconostoc citreum and Weissella confusa strains could be good starter species for rice dough fermentation. These results imply that these lactic acid bacteria can be applicable to improve the preservation of rice cakes.

  7. Effect of Commercial SiO2 and SiO2 from rice husk ash loading on biodegradation of Poly (lactic acid) and crosslinked Poly (lactic acid)

    Science.gov (United States)

    Prapruddivongs, C.; Apichartsitporn, M.; Wongpreedee, T.

    2017-09-01

    In this work, biodegradation behavior of poly (lactic acid) (PLA) and crosslinked PLA filled with two types of SiO2, precipitated SiO2 (commercial SiO2) and SiO2 from rice husk ash, were studied. Rice husks were first treated with 2 molar hydrochloric acid (HCl) to produce high purity SiO2, before burnt in a furnace at 800°C for 6 hours. All components were melted bending by an internal mixer then hot pressed using compression molder to form tested specimens. FTIR spectra of SiO2 and PLA samples were investigated. The results showed the lack of silanol group (Si-OH) of rice husk ash after steric acid surface modification, while the addition of particles can affect the crosslinking of the PLA. For biodegradation test by evaluating total amount of carbon dioxide (CO2) evolved during 60 days incubation at a controlled temperature of 58±2°C, the results showed that the biodegradation of crosslinked PLA occurred slower than the neat PLA. However, SiO2 incorporation enhanced the degree of biodegradation In particular, introducing commercial SiO2 in PLA and crosslinked PLA tended to clearly increase the degree of biodegradation as a consequence of the more accelerated hydrolysis degradation.

  8. Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available Hydrolytic degradations of polylactic acid/rice hulls (PLA/RH composites with various rice hulls contents due to water absorptions at 23, 51 and 69°C were investigated by studying the thermal properties, chemical composition, molecular weight, and morphology of the degraded products. The results have attested that the stability of PLA/RH composites in water depends slightly on rice hulls contents but it is significantly influenced by water temperature. Water absorption in 30 days at 23°C was between 0.87 and 9.25% depending on rice hull contents. However, at thermophilic temperatures, the water absorption and degradation of these products were increased significantly. Saturations were achieved in less than 25 and 9 days at 51°C and 69°C, respectively, while hydrolytic degradation was demonstrated by an increase in fragility and development of crystallinity. At 69°C, there were significant reductions of the decomposition and glass transition temperatures of the polymer by 13°C. These changes were associated with the reduction of the molecular weight of PLA from 153.1 kDa to ~10.7 kDa due to hydrolysis of its ester group.

  9. Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid.

    Science.gov (United States)

    Bai, Chenxi; Zhu, Linfeng; Shen, Feng; Qi, Xinhua

    2016-11-01

    Lignin-containing black liquor from pretreatment of rice straw by KOH aqueous solution was applied to prepare a carbonaceous solid acid catalyst, in which KOH played dual roles of extracting lignin from rice straw and developing porosity of the carbon material as an activation agent. The synthesized black liquor-derived carbon material was applied in catalytic hydrolysis of the residue solid from the pretreatment of rice straw, which was mainly composed of cellulose and hemicellulose, and showed excellent activity for the production of total reducing sugars (TRS) in ionic liquid, 1-butyl-3-methyl imidazolium chloride. The highest TRS yield of 63.4% was achieved at 140°C for 120min, which was much higher than that obtained from crude rice straw under the same reaction conditions (36.6% TRS yield). Overall, this study provides a renewable strategy for the utilization of all components of lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Hormonal regulation of floret closure of rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Youming Huang

    Full Text Available Plant hormones play important roles in regulating every aspect of growth, development, and metabolism of plants. We are interested in understanding hormonal regulation of floret opening and closure in plants. This is a particularly important problem for hybrid rice because regulation of flowering time is vitally important in hybrid rice seed production. However, little was known about the effects of plant hormones on rice flowering. We have shown that jasmonate and methyl jasmonate play significant roles in promoting rice floret opening. In this study, we investigated the effects of auxins including indole-3-acidic acid (IAA, indole-3-butyric acid (IBA, 1-naphthalene-acetic acid (NAA, 2,4-dichlorophenoxy acetic acid (2,4-D and 3,6-dichloro-2-methoxybenzoic acid (DIC and abscisic acid (ABA on floret closure of four fertile and three sterile varieties of rice. The results from field studies in three growing seasons in 2013-2015 showed that the percentages of closed florets were significantly lower in plants treated with IAA, IBA, 2,4-D, DIC and NAA and that the durations of floret opening were significantly longer in plants treated with the same auxins. The auxins exhibited time- and concentration-dependant effects on floret closure. ABA displayed opposite effects of auxins because it increased the percentages of floret closure and decreased the length of floret opening of rice varieties. The degree of auxin-inhibiting and ABA-promoting effects on floret closure was varied somewhat but not significantly different among the rice varieties. Endogenous IAA levels were the highest in florets collected shortly before opening followed by a sharp decline in florets with maximal angles of opening and a significant jump of IAA levels shortly after floret closure in both fertile and sterile rice plants. ABA levels showed an opposite trend in the same samples. Our results showed that auxins delayed but ABA promoted the closure of rice floret regardless of

  11. Hormonal regulation of floret closure of rice (Oryza sativa)

    Science.gov (United States)

    Huang, Youming; Zeng, Xiaochun

    2018-01-01

    Plant hormones play important roles in regulating every aspect of growth, development, and metabolism of plants. We are interested in understanding hormonal regulation of floret opening and closure in plants. This is a particularly important problem for hybrid rice because regulation of flowering time is vitally important in hybrid rice seed production. However, little was known about the effects of plant hormones on rice flowering. We have shown that jasmonate and methyl jasmonate play significant roles in promoting rice floret opening. In this study, we investigated the effects of auxins including indole-3-acidic acid (IAA), indole-3-butyric acid (IBA), 1-naphthalene-acetic acid (NAA), 2,4-dichlorophenoxy acetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (DIC) and abscisic acid (ABA) on floret closure of four fertile and three sterile varieties of rice. The results from field studies in three growing seasons in 2013–2015 showed that the percentages of closed florets were significantly lower in plants treated with IAA, IBA, 2,4-D, DIC and NAA and that the durations of floret opening were significantly longer in plants treated with the same auxins. The auxins exhibited time- and concentration-dependant effects on floret closure. ABA displayed opposite effects of auxins because it increased the percentages of floret closure and decreased the length of floret opening of rice varieties. The degree of auxin-inhibiting and ABA-promoting effects on floret closure was varied somewhat but not significantly different among the rice varieties. Endogenous IAA levels were the highest in florets collected shortly before opening followed by a sharp decline in florets with maximal angles of opening and a significant jump of IAA levels shortly after floret closure in both fertile and sterile rice plants. ABA levels showed an opposite trend in the same samples. Our results showed that auxins delayed but ABA promoted the closure of rice floret regardless of the varieties

  12. GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice.

    Science.gov (United States)

    Du, Hao; Chang, Yu; Huang, Fei; Xiong, Lizhong

    2015-11-01

    Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs. Gibberellic acid (GA) and abscisic acid (ABA) play critical roles in the developmental programs and environmental responses, respectively, through complex signaling and metabolism networks. However, crosstalk between the two phytohormones in stress responses remains largely unknown. In this study, we report that GIBBERELLIN-INSENSITIVE DWARF 1 (GID1), a soluble receptor for GA, regulates stomatal development and patterning in rice (Oryza sativa L.). The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions, but it exhibited enhanced sensitivity to exogenous ABA. Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions. Interestingly, the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions, and showed enhanced reactive oxygen species (ROS)-scavenging ability and submergence tolerance compared with the wild-type. Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA, and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption. Taken together, these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice. © 2014 Institute of Botany, Chinese Academy of Sciences.

  13. The biochemistry of citric acid accumulation by Aspergillus niger.

    Science.gov (United States)

    Karaffa, L; Sándor, E; Fekete, E; Szentirmai, A

    2001-01-01

    Fungi, in particular Aspergilli, are well known for their potential to overproduce a variety of organic acids. These microorganisms have an intrinsic ability to accumulate these substances and it is generally believed that this provides the fungi with an ecological advantage, since they grow rather well at pH 3 to 5, while some species even tolerate pH values as low as 1.5. Organic acid production can be stimulated and in a number of cases conditions have been found that result in almost quantitative conversion of carbon substrate into acid. This is exploited in large-scale production of a number of organic acids like citric-, gluconic- and itaconic acid. Both in production volume as well as in knowledge available, citrate is by far the major organic acid. Citric acid (2-hydroxy-propane-1,2,3-tricarboxylic acid) is a true bulk product with an estimated global production of over 900 thousand tons in the year 2000. Till the beginning of the 20th century, it was exclusively extracted from lemons. Since the global market was dominated by an Italian cartel, other means of production were sought. Chemical synthesis was possible, but not suitable due to expensive raw materials and a complicated process with low yield. The discovery of citrate accumulation by Aspergillus niger led to a rapid development of a fermentation process, which only a decade later accounted for a large part of the global production. The application of citric acid is based on three of its properties: (1) acidity and buffer capacity, (2) taste and flavour, and (3) chelation of metal ions. Because of its three acid groups with pKa values of 3.1, 4.7 and 6.4, citrate is able to produce a very low pH in solution, but is also useful as a buffer over a broad range of pH values (2 to 7). Citric acid has a pleasant acid taste which leaves little aftertaste. It sometimes enhances flavour, but is also able to mask sweetness, such as the aspartame taste in diet beverages. Chelation of metal ions is a very

  14. Accumulation of methylmercury in rice and flooded soil in experiments with an enriched isotopic Hg(II) tracer

    Science.gov (United States)

    Strickman, R. J.; Mitchell, C. P. J.

    2015-12-01

    Methylmercury (MeHg) is a neurotoxin produced in anoxic aquatic sediments. Numerous factors, including the presence of aquatic plants, alter the biogeochemistry of sediments, affecting the rate at which microorganisms transform bioavailable inorganic Hg (IHg) to MeHg. Methylmercury produced in flooded paddy soils and its transfer into rice has become an important dietary consideration. An improved understanding of how MeHg reaches the grain and the extent to which rice alters MeHg production in rhizosphere sediments could help to inform rice cultivation practices. We conducted a controlled greenhouse experiment with thirty rice plants grown in individual, flooded pots amended with enriched 200Hg. Unvegetated controls were maintained under identical conditions. At three plant growth stages (vegetative growth, flowering, and grain maturity), ten plants were sacrificed and samples collected from soil, roots, straw, panicle, and grain of vegetated and unvegetated pots, and assessed for MeHg and THg concentrations. We observed consistent ratios between ambient and tracer MeHg between soils (0.36 ±0.04 — 0.44 ± 0.09) and plant compartments (0.23 ± 0.07 -0.34 ± 0.05) indicating that plant MeHg contamination originates in the soil rather than in planta methylation. The majority of this MeHg was absorbed between the tillering (4.48 ± 2.38 ng/plant) and flowering (8.43 ± 5.12 ng/pl) phases, with a subsequent decline at maturity (2.87 ± 1.23 ng/pl) only partly explained by translocation to the developing grain, indicating that MeHg was demethylated in planta. In contrast, IHg was absorbed from both soil and air, as evidenced by the higher ambient IHg concentrations compared to tracer (3.76 ± 1.19 vs. 0.27 ± 0.40 ng/g). Surprisingly, MeHg accumulation was significantly (p= 0.042-- 0.003) lower in vegetated vs. unvegetated sediments at flowering (1.41 ± 0.26 vs. 1.57 ± 0.23) and maturity (1.27 ± 0.22 vs. 1.71 ± 0.25), suggesting that plant exudates bound Hg

  15. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    Science.gov (United States)

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. In vitro assessment on the impact of soil arsenic in the eight rice varieties of West Bengal, India.

    Science.gov (United States)

    Bhattacharya, Piyal; Samal, Alok C; Majumdar, Jayjit; Banerjee, Satabdi; Santra, Subhas C

    2013-11-15

    Rice is an efficient accumulator of arsenic and thus irrigation with arsenic-contaminated groundwater and soil may induce human health hazard via water-soil-plant-human pathway. A greenhouse pot experiment was conducted on three high yielding, one hybrid and four local rice varieties to investigate the uptake, distribution and phytotoxicity of arsenic in rice plant. 5, 10, 20, 30 and 40 mg kg(-1) dry weights arsenic dosing was applied in pot soil and the results were compared with the control samples. All the studied high yielding and hybrid varieties (Ratna, IET 4094, IR 50 and Gangakaveri) were found to be higher accumulator of arsenic as compared to all but one local rice variety, Kerala Sundari. In these five rice varieties accumulation of arsenic in grain exceeded the WHO permissible limit (1.0 mg kg(-1)) at 20 mg kg(-1) arsenic dosing. Irrespective of variety, arsenic accumulation in different parts of rice plant was found to increase with increasing arsenic doses, but not at the same rate. A consistent negative correlation was established between soil arsenic and chlorophyll contents while carbohydrate accumulation depicted consistent positive correlation with increasing arsenic toxicity in rice plant. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Root-uptake of 14C derived from acetic acid and 14C transfer to rice edible parts

    International Nuclear Information System (INIS)

    Ogiyama, Shinichi; Suzuki, Hiroyuki; Inubushi, Kazuyuki; Takeda, Hiroshi; Uchida, Shigeo

    2010-01-01

    Three types of culture experiments using paddy rice (Oryza sativa L.) were performed to examine root-uptake of 14 C in the form of acetic acid: double pot experiment (hydroponics), wet culture experiment (submerged sand medium), and chamber experiment (hydroponics and submerged sand medium). The 14 C radioactivity in the plant, mediums, and atmospheric carbon dioxide ( 14 CO 2 ) in the chamber were determined, and the distribution of 14 C in the plant was visualized using autoradiography. In the double pot experiment, the shoot of the plant and the lower root which was soaked in the culture solution had 14 C radioactivity, but the upper root which did not have contact with the solution had none. There were also 14 C radioactivity in the grains and roots in the wet culture experiment. Results of the chamber experiment showed that 14 CO 2 gas was released from the culture solution in both types of cultures. Results indicated that the 14 C-acetic acid absorbed by rice plant through its root would be very small. Most of the 14 C-acetic acid was transformed into gaseous forms either in the culture solution or rhizosphere. A relatively longer time would be needed to assimilate 14 C derived from acetic acid to grain parts after it was once absorbed by the shoot through the root. Availability of 14 C for the plant in sand culture was considered to be decreased compared with that for the plant in the hydroponics experiment. It was suggested that rice plant absorbed and assimilated 14 C through the plant roots not because of uptake of 14 C-acetic acid but because of uptake of 14 C in gaseous forms such as 14 CO 2 .

  18. Binary Solvent Extraction of Tocols, γ-Oryzanol, and Ferulic Acid from Rice Bran Using Alkaline Treatment Combined with Ultrasonication.

    Science.gov (United States)

    Truong, Hoa Thi; Luu, Phuong Duc; Imamura, Kiyoshi; Matsubara, Takeo; Takahashi, Hideki; Takenaka, Norimichi; Boi, Luu Van; Maeda, Yasuaki

    2017-06-21

    Alkaline treatment (Alk) combined with ultrasound-assisted extraction (UAE) (Alk+UAE) was examined as a means of extracting tocols and γ-oryzanol from rice bran into an organic phase while simultaneously recovering ferulic acid into an aqueous phase. The tocols and γ-oryzanol/ferulic acid yields were determined using high-performance liquid chromatography with fluorescence and UV detection. The effects of extraction conditions were evaluated by varying the Alk treatment temperature and extraction duration. The maximum yields of tocols and γ-oryzanol were obtained at 25 °C over a time span of 30 min. When the temperature was increased to 80 °C, the yield of ferulic acid increased dramatically, whereas the recovery of γ-oryzanol slightly decreased. Employing the Alk+UAE procedure, the recovered concentrations of tocols, γ-oryzanol, and ferulic acid were in the ranges of 146-518, 1591-3629, and 352-970 μg/g, respectively. These results are in good agreement with those reported for rice bran samples from Thailand.

  19. Phytase activity in brown rice during steeping and sprouting

    NARCIS (Netherlands)

    Ou, K.; Cheng, Y.; Xing, Y.; Lin, L.; Nout, M.J.R.; Liang, J.

    2011-01-01

    Phytase in brown rice will be activated and accumulated during seed germination. Changes of phytase activity in brown rice during two stages of germination (steeping and sprouting) affected by process conditions were studied. It was shown that steeping led to significant decrease of phytase activity

  20. Characterization of 68Zn uptake, translocation, and accumulation into developing grains and young leaves of high Zn-density rice genotype*

    Science.gov (United States)

    Wu, Chun-yong; Feng, Ying; Shohag, Md. Jahidul Islam; Lu, Ling-li; Wei, Yan-yan; Gao, Chong; Yang, Xiao-e

    2011-01-01

    Zinc (Zn) is an essential micronutrient for humans, but Zn deficiency has become serious as equally as iron (Fe) and vitamin A deficiencies nowadays. Selection and breeding of high Zn-density crops is a suitable, cost-effective, and sustainable way to improve human health. However, the mechanism of high Zn density in rice grain is not fully understood, especially how Zn transports from soil to grains. Hydroponics experiments were carried out to compare Zn uptake and distribution in two different Zn-density rice genotypes using stable isotope technique. At seedling stage, IR68144 showed higher 68Zn uptake and transport rate to the shoot for the short-term, but no significant difference was observed in both genotypes for the long-term. Zn in xylem sap of IR68144 was consistently higher, and IR68144 exhibited higher Zn absorption ratio than IR64 at sufficient (2.0 µmol/L) or surplus (8.0 µmol/L) Zn supply level. IR64 and IR68144 showed similar patterns of 68Zn accumulation in new leaves at seedling stage and in developing grains at ripening stage, whereas 68Zn in new leaves and grains of IR68144 was consistently higher. These results suggested that a rapid root-to-shoot translocation and enhanced xylem loading capacity may be the crucial processes for high Zn density in rice grains. PMID:21528496

  1. Effect of rice bran supplementation on cookie baking quality

    International Nuclear Information System (INIS)

    Younis, A.; Bhatti, M.S.; Ahmed, A

    2011-01-01

    Rice bran, a by-product obtained during polishing of un-milled rice, contains a large quantity of essential nutrients such as minerals, vitamins, fiber, amino acids and antioxidants. Supplementation of rice bran in cookies can improve their nutritional value. In the present study, cookies were prepared from wheat flour with supplementation of rice bran at the rate of 5, 10, 15 and 20 percent. The rice bran was stabilized with acid and dry heat treatment before supplementation. Chemical analysis of the cookies revealed that there was no significant difference in chemical and physical properties of cookies supplemented with acid stabilized rice bran (ASRB) and heat stabilized rice bran (HSRB). The moisture, crude protein, fat and mineral contents were significantly increased with the increment of rice bran. Average width, thickness and spread factor of cookies also increased with the increase in percentage of rice bran. Sensory evaluation of cookies showed that scores for color of cookies decreased significantly with increase in level of rice bran and sensory scores were significantly higher in the cookies prepared with HSRB. However the decrease was non-significant at 10 percent level of substitution. Highest scores for overall acceptability of supplemented cookies was recorded at 15 percent level of substitution as compared to other treatments. Hence it is concluded from the results that supplementation of HSRB at the rate of 10 percent is more suitable for production of rice bran supplemented cookies. (author)

  2. Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil

    Directory of Open Access Journals (Sweden)

    Maria Lígia de Souza Silva

    2014-04-01

    Full Text Available Heavy metals can accumulate in soil and cause phytotoxicity in plants with some specific symptoms. The present study evaluated the specific symptoms on rice and soybeans plants caused by excess of heavy metals in soil. Rice and soybean were grown in pots containing soil with different levels of heavy metals. A completely randomized design was used, with four replications, using two crop species and seven sample soils with different contamination levels. Rice and soybean exhibited different responses to the high concentrations of heavy metals in the soil. Rice plants accumulated higher Cu, Mn, Pb and Zn concentrations and were more sensitive to high concentrations of these elements in the soil, absorbing them more easily compared to the soybean plants. However, high available Zn concentrations in the soil caused phytotoxicity symptoms in rice and soybean, mainly chlorosis and inhibited plant growth. Further, high Zn concentrations in the soil reduced the Fe concentration in the shoots of soybean and rice plants to levels considered deficient.

  3. Radial Oxygen Loss in the Rhizosphere of Wild Rice as a Control On Root Surface Mineral Precipitation

    Science.gov (United States)

    Murphy, K.; Trejo, B.; LaFond-Hudson, S.

    2017-12-01

    Wild rice (Zizania palustris) is an aquatic plant native to the Great Lakes region that is culturally and nutritionally significant for the Ojibwe people of Northern Minnesota. Concern for the future health of wild rice populations has increased amidst ongoing pressures from proposed mining projects that risk sulfate contamination to natural waters. Although sulfate itself is not toxic to wild rice, bacteria living in anoxic sediments use the sulfate as an electron acceptor, converting it to sulfide, which subsequently precipitates in the form of iron-sulfide on the root surface of wild rice. These precipitates are linked to lowered viability of wild rice. Most wetland plants are able to shield against the harmful accumulation of these precipitates through a process known as radial oxygen loss (ROL), in which oxygen leaches from roots into anoxic sediments to form protective iron-oxide plaques. This mechanism, however, had yet to be experimentally confirmed in wild rice. In this study, we eliminated the potential for ROL to occur in wild rice prior to the reproductive phase, and measured the rates of iron-sulfide accumulation on the roots and in associated sediments. We compared these data with the geochemical composition of roots and sediment from wild rice that accumulated iron-sulfide precipitate during the reproductive phase. In doing so, we demonstrate that ROL is indeed a mechanism by which wild rice protects itself against sulfide exposure, and examine the nuances of ROL as it relates to the life cycle of wild rice. The better we understand the vulnerability of wild rice across its life cycle and comparative rates of both toxic and protective precipitate accumulation, the better we can approach wild rice conservation.

  4. Fat-soluble bioactive components in colored rice varieties.

    Science.gov (United States)

    Minatel, Igor Otavio; Han, Sang-Ik; Aldini, Giancarlo; Colzani, Mara; Matthan, Nirupa R; Correa, Camila Renata; Fecchio, Denise; Yeum, Kyung-Jin

    2014-10-01

    Bioactive components in rice vary depending on the variety and growing condition. Fat-soluble components such as γ-oryzanol, tocopherols, tocotrienols, carotenoids, and fatty acids were analyzed in brown, sugary brown, red, and black rice varieties using established high-performance liquid chromatography (HPLC) and GC methodologies. In addition, these colored rice varieties were further analyzed using a high-resolution liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) (LTQ-Orbitrap XL) to identify the [M-H](-) ions of γ-oryzanol, ranging from m/z 573.3949 to 617.4211. The highest content of tocopherols (α-, 1.5; γ-, 0.5 mg/100 g) and carotenoids (lutein 244; trans-β carotene 25 μg/100 g) were observed in black rice; tocotrienols (α-, 0.07; γ-, 0.14 mg/100 g) in red rice, and γ-oryzanol (115 mg/100 g) in sugary brown rice. In all colored rice varieties, the major fatty acids were palmitic (16:0), oleic (18:1n-9), and linoleic (18:2n-6) acids. When the γ-oryzanol components were further analyzed by LC-MS/MS, 3, 10, 8, and 8 triterpene alcohols or sterol ferulates were identified in brown, sugary brown, red, and black rice varieties, respectively. Such structural identification can lead to the elucidation of biological function of each component at the molecular level. Consumption of colored rice rich in beneficial bioactive compounds may be a useful dietary strategy for achieving optimal health.

  5. Effect of Se-enriched Organic Fertilizers on Selenium Accumulation in Corn and Soil

    Directory of Open Access Journals (Sweden)

    LI Sheng-nan

    2015-12-01

    Full Text Available The effect of two Se-enriched organic fertilizers (cow dung and rice straw biochar on selenium accumulation of corn growing in selenium deficient soil was studied with pot experiment. The results showed that corn accumulated more selenium and the selenium was much easier to convert from root to shoot in the corn plant with the application of Se-enriched cow dung than Se-enriched rice straw biochar. With the application of more organic fertilizer such as 25 t·hm-2 Se-enriched cow dung or 40 t·hm-2 Se-enriched rice straw biochar, the accumulation of selenium and growth status of corn were getting better than the other treatments. At the same time, as the application amount of Se-enriched organic fertilizers (cow dung and rice straw biochar increased, the total selenium content in the soil also increased, which positively correlated with each other.

  6. Effects of a gamma irradiation and 5-methyltryptophan on the selection of high tryptophan accumulating rice mutants by an embryo culture system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Kim, Jin Baek; Song, Jae Young; Jeon, Jae Beom; Lee, Young Mi; Lee, Geung Joo; Kang, Si Yong [Radiation Research Center for Bio-technology, Advanced Radiation Research Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kang, Kwon Kyoo [Division of Life Science, Hankyong National University, Anseong (Korea, Republic of); Cho, Yong Gu [College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju (Korea, Republic of); Kim, Bo Kyeong [Division of Rice Breeding and Cultivation, Honam Agricultural Research Institute, NICS, Iksan (Korea, Republic of)

    2008-11-15

    For an increase of specific free amino acids through embryo cultures, the rice (Oryza sativa L.) mutant lines resistant to a growth inhibition by 5-methyltryptophan (5MT) were selected from calli irradiated with 0-90 Gy gamma rays in 3 rice cultivars, Dongjinbyeo, Donganbyeo and Jakwangdo. The optimum 5MT concentrations for a resistance selection were 0.25 mM at the callus level. In the test of the radiation sensitivity for the callus level, radiation doses of RD50 (50% reduction on fresh weight) were 71.2, 64.0, and 68.2 Gy in the cvs. Dongjinbyeo, Donganbyeo and Jakwangdo by each exponential function. The appearance of 5MT resistant calli seemed to be dependent on a combination between the radiation dose and the 5MT selection pressure. The treatment of mutagens for the selection of amino acid analog resistant mutants has a different influence among cultivars on the resistance frequency. In the effect of growth regulators on a regeneration, a combination of 0.1 mg/l IAA and 5 mg/l kinetin, was the optimum concentration for a regeneration of calli induced from rice embryo. The regeneration rate of cv. Donganbyeo was 14.8%, which was 3.5 times and 2.6 times higher than cv. Dongjinbyeo (4.2%) and cv. Jakwangdo (5.6%), respectively. In the progeny test, the 5MT resistance character is inherited to the next generation and is expressed in the germinating M2 seeds and would appear to be a dominant trait. The 5MT resistant mutants will be useful in molecular and biochemical studies for the regulation of the nutritional quality in rice.

  7. Total mercury and methylmercury concentrations over a gradient of contamination in earthworms living in rice paddy soil.

    Science.gov (United States)

    Abeysinghe, Kasun S; Yang, Xiao-Dong; Goodale, Eben; Anderson, Christopher W N; Bishop, Kevin; Cao, Axiang; Feng, Xinbin; Liu, Shengjie; Mammides, Christos; Meng, Bo; Quan, Rui-Chang; Sun, Jing; Qiu, Guangle

    2017-05-01

    Mercury (Hg) deposited from emissions or from local contamination, can have serious health effects on humans and wildlife. Traditionally, Hg has been seen as a threat to aquatic wildlife, because of its conversion in suboxic conditions into bioavailable methylmercury (MeHg), but it can also threaten contaminated terrestrial ecosystems. In Asia, rice paddies in particular may be sensitive ecosystems. Earthworms are soil-dwelling organisms that have been used as indicators of Hg bioavailability; however, the MeHg concentrations they accumulate in rice paddy environments are not well known. Earthworm and soil samples were collected from rice paddies at progressive distances from abandoned mercury mines in Guizhou, China, and at control sites without a history of Hg mining. Total Hg (THg) and MeHg concentrations declined in soil and earthworms as distance increased from the mines, but the percentage of THg that was MeHg, and the bioaccumulation factors in earthworms, increased over this gradient. This escalation in methylation and the incursion of MeHg into earthworms may be influenced by more acidic soil conditions and higher organic content further from the mines. In areas where the source of Hg is deposition, especially in water-logged and acidic rice paddy soil, earthworms may biomagnify MeHg more than was previously reported. It is emphasized that rice paddy environments affected by acidifying deposition may be widely dispersed throughout Asia. Environ Toxicol Chem 2017;36:1202-1210. © 2016 SETAC. © 2016 SETAC.

  8. Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Haruta, Shin; Ueno, Shintaro; Egawa, Isao; Hashiguchi, Kazunori; Fujii, Akira; Nagano, Masanobu; Ishii, Masaharu; Igarashi, Yasuo

    2006-05-25

    Denaturing gradient gel electrophoresis (DGGE) based on small subunit rRNA gene was applied to a traditional rice vinegar fermentation process in which the conversion of rice starch into acetic acid proceeded in a pot. The fungal DGGE profile indicated that the transition from Aspergillus oryzae to Saccharomyces sp. took place at the initial stage at which alcohol production was observed. The early stage was characterized by the coexistence of Saccharomyces sp. and lactic acid bacteria. Almost all of the bacterial DGGE bands related to lactic acid bacteria were replaced by bands derived from Lactobacillus acetotolerance and Acetobacter pasteurianus at the stage at which acetic acid started to accumulate. The microbial succession, tested in three different pots, was found to be essentially identical. Among the bacteria isolated at the early stage, some species differed from those detected by DGGE. This is the first report to reveal the microbial community succession that occurs during a unique vinegar fermentation process, as determined by a culture-independent method.

  9. ORGANIC ACIDS PRODUCTION OF RICE STRAW FERMENTED WITH SEVERAL TYPES OF MICROORGANISM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Y. Yanti

    2014-10-01

    Full Text Available The experiment was carried out to examine the organic acids production of rice straw fermentedwith some types of microorganisms at different temperatures. The experiment was designed as SplitPlot-Completely Randomized Design. The main plot was temperatures treatments (25, 35, 45°C and thesub plot were microorganisms (Control, Control+Mollases, Lactobacillus fermentum, Bacillus subtilis,Bacillus coagulant, Saccharomyces cerevisiae, Aspergillus niger. The highest lactic acid productionswas in B. coagulans treatment at 35°C (53.79 g/kg DM. The highest acetic acid productions was in L.fermentum at 35°C (13.20 g/kg DM, while the highest propionic acid productions were in Controltreatment at 35°C (0.37 g/kg DM.

  10. Bioactive compounds and antioxidative activity of colored rice bran

    Directory of Open Access Journals (Sweden)

    Yu-Ping Huang

    2016-07-01

    Full Text Available The profiles of bioactive compounds (including phenolics and flavonoids in free and bound fractions, anthocyanins, proanthocyanidins, vitamin E, and γ-oryzanol of outer and inner rice bran from six colored rice samples collected from local markets were investigated. Proanthocyanidins could only be detected in red rice bran but not in black rice bran. The free fraction of the extracts dominated the total phenolics (72–92% and the total flavonoids (72–96% of colored rice bran. Most of the phenolic acids (83–97% in colored rice bran were present in the bound form. Protocatechualdehyde was identified for the first time in the bound fraction of red rice bran by high performance liquid chromatography-photodiode array/electrospray ionization tandem mass spectrometry. The antioxidative activities of the free fraction of the colored rice bran were attributed to the proanthocyanidins in red colored rice and anthocyanins in black rice, while that of the bound fraction was mainly due to the phenolic acids.

  11. Human exposure to mercury in a compact fluorescent lamp manufacturing area: By food (rice and fish) consumption and occupational exposure

    International Nuclear Information System (INIS)

    Liang, Peng; Feng, Xinbin; Zhang, Chan; Zhang, Jin; Cao, Yucheng; You, Qiongzhi; Leung, Anna Oi Wah; Wong, Ming-Hung; Wu, Sheng-Chun

    2015-01-01

    To investigate human Hg exposure by food consumption and occupation exposure in a compact fluorescent lamp (CFL) manufacturing area, human hair and rice samples were collected from Gaohong town, Zhejiang Province, China. The mean values of total mercury (THg) and methylmercury (MeHg) concentrations in local cultivated rice samples were significantly higher than in commercial rice samples which indicated that CFL manufacturing activities resulted in Hg accumulation in local rice samples. For all of the study participants, significantly higher THg concentrations in human hair were observed in CFL workers compared with other residents. In comparison, MeHg concentrations in human hair of residents whose diet consisted of local cultivated rice were significantly higher than those who consumed commercial rice. These results demonstrated that CFL manufacturing activities resulted in THg accumulation in the hair of CFL workers. However, MeHg in hair were mainly affected by the sources of rice of the residents. - Highlights: • Rice samples were contaminated by Compact fluorescent lamp (CFL) manufacturing. • CFL manufacturing lead to THg accumulation in human hair. • MeHg in human hair were mainly affected by the sources of rice. • MeHg intake from fish consumption was lower than that from rice consumption. • PDI of MeHg by food consumption was below the guidelines for public health concern. - CFL manufacturing activities result in Hg accumulation in local rice samples and hair of CFL workers. However, MeHg in hair were mainly affected by sources of rice

  12. Effect of fertilizer application and deep rooting measures on the absorption of 137Cs by rice

    International Nuclear Information System (INIS)

    Zhu Yongyi; Yang Juncheng; Chen Jingjian; Liu Xuelian; Xu Yinliang; Sun Zhiming

    1998-01-01

    Effects of the application of phosphorus and potassium fertilizer and deep rooting on reducing the absorption of 137 Cs by rice (especially in the seed) were estimated using pot and plot experiment. The results show that the available 137 Cs in soil decreased significantly by applying potassium fertilizer, which led to the lower accumulation of 137 Cs in rice stem and the most effective measure was to apply potassium sulphate of 922.5 kg/ha. An unsteady effect with phosphate fertilizer existed. When P application was in a lower amount, the accumulation of 137 Cs in rice decreased. But following the increase of P application, the absorption of 137 Cs was promoted. The 137 Cs accumulation in rice decreased significantly by deep rooting

  13. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants.

    Science.gov (United States)

    Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2017-08-01

    Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Dynamic changes in radial oxygen loss and iron plaque formation and their effects on Cd and As accumulation in rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Xun; Yao, Haixin; Wong, Ming Hung; Ye, Zhihong

    2013-12-01

    Temporal variations and correlations between radial oxygen loss (ROL), iron (Fe) plaque formation, cadmium (Cd) and arsenic (As) accumulation were investigated in two rice cultivars at four different growth stages based upon soil pot and deoxygenated solution experiments. The results showed that there were significant differences in ROL (1.1-16 μmol O(2) plant(-1) h(-1)), Fe plaque formation (4,097-36,056 mg kg(-1)), Cd and As in root tissues (Cd 77-162 mg kg(-1); As 49-199 mg kg(-1)) and Fe plaque (Cd 0.4-24 mg kg(-1); As 185-1,396 mg kg(-1)) between these growth stages. ROL and Fe plaque increased dramatically from tillering to ear emergence stages and then were much reduced at the grain-filling stage. Furthermore, significantly positive correlations were detected between ROL and concentrations of Fe, Cd and As in Fe plaque. Our study indicates that increased Fe plaque forms on rice roots at the ear emergence stage due to the increased ROL. This stage could therefore be an important period to limit the transfer and distribution of Cd and As in rice plants when growing in soils contaminated with these toxic elements.

  15. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger *

    Science.gov (United States)

    Hu, Wei; Chen, Ji-hong; Wang, Shu-yang; Liu, Jing; Song, Yuan; Wu, Qing-feng; Li, Wen-jian

    2016-01-01

    The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of Aspergillus niger, and to analyze the relationship between changes in the physiological properties of A. niger induced by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in sugar utilization compared with the original strain.

  16. Whole-plant mineral partitioning during the reproductive development of rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Sperotto, R.A.; Vasconcelos, M.W.; Grusak, M.A.; Fett, J.

    2017-07-01

    Minimal information exists on whole-plant dynamics of mineral flow. Understanding these phenomena in a model plant such as rice could help in the development of nutritionally enhanced cultivars. A whole-plant mineral accumulation study was performed in rice (cv. Kitaake), using sequential harvests during reproductive development panicle exertion, grain filling, and full maturity stages in order to characterize mineral accumulation in roots, non-flag leaves, flag leaves, stems/sheaths, and panicles. Partition quotient analysis showed that Fe, Zn, Cu and Ni are preferentially accumulated in roots; Mn and Mg are accumulated in leaves; Mo, Ca, and S in roots and leaves; and K in roots, leaves and stems/sheaths. Correlation analysis indicated that changes in the concentrations of mineral pairs Fe-Mn, K-S, Fe-Ni, Cu-Mg, Mn-Ni, S-Mo, Mn-Ca, and Mn-Mg throughout the reproductive development of rice were positively correlated in all four of the above ground organs evaluated, with Fe-Mn and K-S being positively correlated also in roots, which suggest that root-to-shoot transfer is not driven simply by concentrations in roots. These analyses will serve as a starting point for a more detailed examination of mineral transport and accumulation in rice plants.

  17. LEACHING AND DEGRADATION OF 2,4-DICHLOROPHENOXIACETIC ACID, IN COLOMBIA RICE FLOODED SOIL.

    Science.gov (United States)

    Huertas, J; Guerrero, J A; Martinez-Cordon, M J

    2015-01-01

    Rice is mostly cultivated on soil held under flooded conditions. Under these conditions pesticides undergo reductive transformations which are characteristic to rice fields and other anaerobic systems. The present study was undertaken to evaluate the mobility and persistence of 2,4-dichlorophenoxy acetic acid (2,4-D) under laboratory conditions for the rice crop in Espinal, Colombia. A displacement study was performed on a hand packed soil column 30 cm length. After leaching experiment, the soil from column was sliced into six successive sections (5 cm). Methanol acidified (H3PO4 0.25%) extraction was used to determine the herbicide residues in each section. 2,4-D experimental breakthrough curve was analyzed using Stanmod program (inverse problem) to obtain transport parameters. The non-equilibrium physical model fitted well the experimental breakthrough curve. The recovery percent of 2,4-D in leachates was 36.44% after 3.4 pore volumes, and retardation factor was 2.1, indicating low adsorption in that conditions. 2,4-D was rapidly degraded, with DT50 = 11.4 days. The results suggest that 2,4-D under flooded conditions have a high potential for leaching through the soil profile, although the elevated rate of degradation reduced the ground water contamination risk.

  18. Effect of Interplanting with Zero Tillage and Straw Manure on Rice Growth and Rice Quality

    Directory of Open Access Journals (Sweden)

    Shi-ping LIU

    2007-09-01

    Full Text Available The interplanting with zero-tillage of rice, i.e. direct sowing rice 10–20 days before wheat harvesting, and remaining about 30-cm high stubble after cutting wheat or rice with no tillage, is a new cultivation technology in wheat-rice rotation system. To study the effects of interplanting with zero tillage and straw manure on rice growth and quality, an experiment was conducted in a wheat-rotation rotation system. Four treatments, i.e. ZIS (Zero-tillage, straw manure and rice interplanting, ZI (Zero-tillage, no straw manure and rice interplanting, PTS (Plowing tillage, straw manure and rice transplanting, and PT (Plowing tillage, no straw manure and rice transplanting, were used. ZIS reduced plant height, leaf area per plant and the biomass of rice plants, but the biomass accumulation of rice at the late stage was quicker than that under conventional transplanting cultivation. In the first year (2002, there was no significant difference in rice yield among the four treatments. However, rice yield decreased in interplanting with zero-tillage in the second year (2003. Compared with the transplanting treatments, the number of filled grains per panicle decreased but 1000-grain weight increased in interplanting with zero-tillage, which were the main factors resulting in higher yield. Interplanting with zero-tillage improved the milling and appearance qualities of rice. The rates of milled and head rice increased while chalky rice rate and chalkiness decreased in interplanting with zero-tillage. Zero-tillage and interplanting also affected rice nutritional and cooking qualities. In 2002, ZIS showed raised protein content, decreased amylose content, softer gel consistency, resulting in improved rice quality. In 2003, zero-tillage and interplanting decreased protein content and showed similar amylose content as compared with transplanting treatments. Moreover, protein content in PTS was obviously increased in comparison with the other three treatments

  19. Further Studies on Oxalic Acid Biosynthesis in Oxalate-accumulating Plants 1

    Science.gov (United States)

    Nuss, Richard F.; Loewus, Frank A.

    1978-01-01

    l-Ascorbic acid functions as a precursor of oxalic acid in several oxalate-accumulating plants. The present study extends this observation to include Rumex crispus L. (curly dock), Amaranthus retroflexus L. (red root pigweed), Chenopodium album L. (lamb's-quarters), Beta vulgaris L. (sugar beet), Halogeton glomeratus M. Bieb. (halogeton), and Rheum rhabarbarum L. (rhubarb). Several species with low oxalate content are also examined. When l-[1-14C]ascorbic acid is supplied to young seedlings of R. crispus or H. glomeratus, a major portion of the 14C is released over a 24-hour period as 14CO2 and only a small portion is recovered as [14C]oxalate, unlike cuttings from 2- or 4-month-old plants which retain a large part of the 14C as [14C]oxalic acid and release very little 14CO2. Support for an intermediate role of oxalate in the release of 14CO2 from l-[1-14C]ascorbic acid is seen in the rapid release of 14CO2 by R. crispus and H. glomeratus seedlings labeled with [14C]oxalic acid. The common origin of oxalic acid carbon in the C1 and C2 fragment from l-ascorbic acid is demonstrated by comparison of 14C content of oxalic acid in several oxalate-accumulators after cuttings or seedlings are supplied equal amounts of l-[1-14C]- or l-[UL-14C]ascorbic acid. Theoretically, l-[1-14C]ascorbic acid will produce labeled oxalic acid containing three times as much 14C as l-[UL-14C]ascorbic acid when equal amounts of label are provided. Experimentally, a ratio of 2.7 ± 0.5 is obtained in duplicate experiments with six different species. PMID:16660342

  20. Physiological studies on photochemical oxidants injury in rice plants. I. Varietal difference of abscisic acid content and its relation to the resistance to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Nakamura, H.; Ota, Y.

    1980-01-01

    In order to determine the abscisic acid relationships in the resistance of the rice plants to ozone, endogeneous abscisic acid content in varieties with different sensitivity to ozone was examined. The cultivars differed in their visible injury to ozone fumigation. Nipponbare and Jinheung were more sensitive than Tongil, Milyang No. 23 and Te-tep. Endogeneous abscisic acid content in the resistant variety (Tongil) was higher than in the sensitive one (Nipponbare). Visible injury caused by ozone fumigation was decreased by application of abscisic acid. Abscisic acid content in rice cultivars was found to increase differently depending on varieties response to ozone fumigation (0.3 ppM for 3 hours). The increase of abscisic acid content caused by ozone fumigation was higher in Nipponbare than in Tongil, although the endogeneous level of abscisic acid was higher in Tongil than Nipponbare.

  1. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Science.gov (United States)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  2. Effect of demineralization on the physiochemical structure and thermal degradation of acid treated indigenous rice husk

    Directory of Open Access Journals (Sweden)

    Aslam Umair

    2016-09-01

    Full Text Available Energy generation from biomass presents some serious problems like slagging, fouling and corrosion of boilers. To address these problems, demineralization of biomass is performed using different leaching agents. This study is focused on determining the influence of leaching agents and leaching time on the physiochemical structure of rice husk during demineralization. Dilute (5% wt solutions of HCl and H2SO4 were used for the demineralization of rice husk separately with leaching time of 15, 60 and 120 minutes. It is shown that H2SO4 exhibited higher removal of alkali and alkaline earth metals (AAEM comparatively as depicted by the 34.2% decrease in ash content along with an increase of 7.10% in the heating value. The acid has been seen to induce more notable changes in physiochemical structure as depicted by the FTIR spectra and SEM micrographs. The thermal degradation behavior of the demineralized rice husk has also been reported.

  3. Biofortification of essential nutritional compounds and trace elements in rice and cassava.

    Science.gov (United States)

    Sautter, C; Poletti, S; Zhang, P; Gruissem, W

    2006-05-01

    Plant biotechnology can make important contributions to food security and nutritional improvement. For example, the development of 'Golden Rice' by Professor Ingo Potrykus was a milestone in the application of gene technology to deliver both increased nutritional qualities and health improvement to wide sections of the human population. Mineral nutrient and protein deficiency as well as food security remain the most important challenges for developing countries. Current projects are addressing these issues in two major staple crops, cassava (Manihot esculenta Crantz) and rice. The tropical root crop cassava is a major source of food for approximately 600 million of the population worldwide. In sub-Saharan Africa >200 million of the population rely on cassava as their major source of dietary energy. The nutritional quality of the cassava root is not sufficient to meet all dietary needs. Rice is the staple food for half the world population, providing approximately 20% of the per capita energy and 13% of the protein for human consumption worldwide. In many developing countries the dietary contributions of rice are substantially greater (29.3% dietary energy and 29.1% dietary protein). The current six most popular 'mega' rice varieties (in terms of popularity and acreage), including Chinese hybrid rice, have an incomplete amino acid profile and contain limited amounts of essential micronutrients. Rice lines with improved Fe contents have been developed using genes that have functions in Fe absorption, translocation and accumulation in the plant, as well as improved Fe bioavailability in the human intestine. Current developments in biotechnology-assisted plant improvement are reviewed and the potential of the technology in addressing human nutrition and health are discussed.

  4. Effects of Soil Veterinary Antibiotics Pollution on Rice Growth

    OpenAIRE

    XU Qiu-tong; GU Guo-ping; ZHANG Ming-kui

    2016-01-01

    To understand the potential effect of soil veterinary antibiotics pollution on the growth of rice, a main food crop in China, oxytetracycline which was used widely in livestock and poultry breeding was selected to test the effects of different levels of soil antibiotics pollution on growth and yield of rice plant at both seedling and growth periods. Relationship between oxytetracycline accumulated in different organs of rice plant and oxytetracycline pollution levels in the soil was character...

  5. ORGANIC ACIDS PRODUCTION OF RICE STRAW FERMENTED WITH SEVERAL TYPES OF MICROORGANISM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Surahmanto

    2012-09-01

    Full Text Available The experiment was carried out to examine the organic acids production of rice straw fermented with some types of microorganisms at different temperatures. The experiment was designed as Split Plot-Completely Randomized Design. The main plot was temperatures treatments (25, 35, 45°C and the sub plot were microorganisms (Control, Control+Mollases, Lactobacillus fermentum, Bacillus subtilis, Bacillus coagulant, Saccharomyces cerevisiae, Aspergillus niger. The highest lactic acid productions was in B. coagulans treatment at 35°C (53.79 g/kg DM. The highest acetic acid productions was in L. fermentum at 35°C (13.20 g/kg DM, while the highest propionic acid productions were in Control treatment at 35°C (0.37 g/kg DM.

  6. Exploring traditional aus-type rice for metabolites conferring drought tolerance.

    Science.gov (United States)

    Casartelli, Alberto; Riewe, David; Hubberten, Hans Michael; Altmann, Thomas; Hoefgen, Rainer; Heuer, Sigrid

    2018-01-25

    Traditional varieties and landraces belonging to the aus-type group of rice (Oryza sativa L.) are known to be highly tolerant to environmental stresses, such as drought and heat, and are therefore recognized as a valuable genetic resource for crop improvement. Using two aus-type (Dular, N22) and two drought intolerant irrigated varieties (IR64, IR74) an untargeted metabolomics analysis was conducted to identify drought-responsive metabolites associated with tolerance. The superior drought tolerance of Dular and N22 compared with the irrigated varieties was confirmed by phenotyping plants grown to maturity after imposing severe drought stress in a dry-down treatment. Dular and N22 did not show a significant reduction in grain yield compared to well-watered control plants, whereas the intolerant varieties showed a significant reduction in both, total spikelet number and grain yield. The metabolomics analysis was conducted with shoot and root samples of plants at the tillering stage at the end of the dry-down treatment. The data revealed an overall higher accumulation of N-rich metabolites (amino acids and nucleotide-related metabolites allantoin and uridine) in shoots of the tolerant varieties. In roots, the aus-type varieties were characterised by a higher reduction of metabolites representative of glycolysis and the TCA cycle, such as malate, glyceric acid and glyceric acid-3-phosphate. On the other hand, the oligosaccharide raffinose showed a higher fold increase in both, shoots and roots of the sensitive genotypes. The data further showed that, for certain drought-responsive metabolites, differences between the contrasting rice varieties were already evident under well-watered control conditions. The drought tolerance-related metabolites identified in the aus-type varieties provide a valuable set of protective compounds and an entry point for assessing genetic diversity in the underlying pathways for developing drought tolerant rice and other crops.

  7. Amino Acid Composition of an Organic Brown Rice Protein Concentrate and Isolate Compared to Soy and Whey Concentrates and Isolates.

    Science.gov (United States)

    Kalman, Douglas S

    2014-06-30

    A protein concentrate (Oryzatein-80™) and a protein isolate (Oryzatein-90™) from organic whole-grain brown rice were analyzed for their amino acid composition. Two samples from different batches of Oryzatein-90™ and one sample of Oryzatein-80™ were provided by Axiom Foods (Los Angeles, CA, USA). Preparation and analysis was carried out by Covance Laboratories (Madison, WI, USA). After hydrolysis in 6-N hydrochloric acid for 24 h at approximately 110 °C and further chemical stabilization, samples were analyzed by HPLC after pre-injection derivitization. Total amino acid content of both the isolate and the concentrate was approximately 78% by weight with 36% essential amino acids and 18% branched-chain amino acids. These results are similar to the profiles of raw and cooked brown rice except in the case of glutamic acid which was 3% lower in the isolate and concentrate. The amino acid content and profile of the Oryzatein-90™ isolate was similar to published values for soy protein isolate but the total, essential, and branched-chain amino acid content of whey protein isolate was 20%, 39% and 33% greater, respectively, than that of Oryzatein-90™. These results provide a valuable addition to the nutrient database of protein isolates and concentrates from cereal grains.

  8. Root-to-shoot signal transduction in rice under salt stress

    International Nuclear Information System (INIS)

    Bano, A.

    2010-01-01

    This paper describes the impact of salt stress on changes in the level of Abscisic acid (ABA) and cytokinins as signal molecules communicated through root-to-shoot in rice. The study focus to investigate the time related changes in the salt induced ABA and cytokinins accumulation concomitant with the changes in water potential and stomatal conductance of salt stressed plants. Seeds of 3 rice varieties were grown in plastic pots in phytotron. The changes in the level of abscisic acid (ABA), transzeatin riboside (t-zr) and 2-isopentyl adenine (2-ipa) were monitored in xylem sap and leaves of three rice varieties viz. BAS-385 (salt-sensitive), BG-402 (moderately tolerant) and NIAB-6 (tolerant). The salt solution (NaCl,1.2 dS m-1) was added to the rooting medium after transplanting when plants were 50 d old. There was delay in response of stomata to salt treatment in BAS-385 as opposed to earlier increase in leaf resistance in BG-402 and NIAB-6. The stem water potential increased sharply in all the varieties following salt treatment but the decrease in stomatal conductance of leaves preceded the decrease in stem water potential. The concentration of xylem ABA increased significantly greatly reaching a peak in BAS-385 much earlier (24 h of salt treatment) than that of other varieties. The ABA accumulation was delayed and the magnitude of ABA accumulation was greater in BG-402 and NIAB-6.The xylem flux of ABA followed a similar pattern. The concentration of xylem t-zr showed a short- term increase in all the varieties but the magnitude of increase was greater in BAS-385 at all the measurements till 96h of salt treatment .The concentration of xylem 2-ipa was higher in BAS-385 till 48 h of salt treatment . The flux of both the t-zr and 2ipa was greater in the tolerant variety 96h after salt treatment. The basal level of ABA and cytokinin appears to play important role in determining the response of a variety to salt stress. The xylem flux of ABA and cytokinin (2-ipa and t

  9. Nitrogen metabolism correlates with the acclimation of photosynthesis to short-term water stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Zhong, Chu; Cao, Xiaochuang; Bai, Zhigang; Zhang, Junhua; Zhu, Lianfeng; Huang, Jianliang; Jin, Qianyu

    2018-04-01

    Nitrogen metabolism is as sensitive to water stress as photosynthesis, but its role in plant under soil drying is not well understood. We hypothesized that the alterations in N metabolism could be related to the acclimation of photosynthesis to water stress. The features of photosynthesis and N metabolism in a japonica rice 'Jiayou 5' and an indica rice 'Zhongzheyou 1' were investigated under mild and moderate soil drying with a pot experiment. Soil drying increased non-photochemical quenching (NPQ) and reduced photon quantum efficiency of PSII and CO 2 fixation in 'Zhongzheyou 1', whereas the effect was much slighter in 'Jiayou 5'. Nevertheless, the photosynthetic rate of the two cultivars showed no significant difference between control and water stress. Soil drying increased nitrate reducing in leaves of 'Zhongzheyou 1', characterized by enhanced nitrate reductase (NR) activity and lowered nitrate content; whereas glutamate dehydrogenase (GDH), glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) were relative slightly affected. 'Jiayou 5' plants increased the accumulation of nitrate under soil drying, although its NR activity was increased. In addition, the activities of GDH, GOT and GPT were typically increased under soil drying. Besides, amino acids and soluble sugar were significantly increased under mild and moderate soil drying, respectively. The accumulation of nitrate, amino acid and sugar could serve as osmotica in 'Jiayou 5'. The results reveal that N metabolism plays diverse roles in the photosynthetic acclimation of rice plants to soil drying. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis.

    Science.gov (United States)

    Bell, E; Creelman, R A; Mullet, J E

    1995-09-12

    Plant lipoxygenases are thought to be involved in the biosynthesis of lipid-derived signaling molecules. The potential involvement of a specific Arabidopsis thaliana lipoxygenase isozyme, LOX2, in the biosynthesis of the plant growth regulators jasmonic acid (JA) and abscisic acid was investigated. Our characterization of LOX2 indicates that the protein is targeted to chloroplasts. The physiological role of this chloroplast lipoxygenase was analyzed in transgenic plants where cosuppression reduced LOX2 accumulation. The reduction in LOX2 levels caused no obvious changes in plant growth or in the accumulation of abscisic acid. However, the wound-induced accumulation of JA observed in control plants was absent in leaves of transgenic plants that lacked LOX2. Thus, LOX2 is required for the wound-induced synthesis of the plant growth regulator JA in leaves. We also examined the expression of a wound- and JA-inducible Arabidopsis gene, vsp, in transgenic and control plants. Leaves of transgenic plants lacking LOX2 accumulated less vsp mRNA than did control leaves in response to wounding. This result suggests that wound-induced JA (or some other LOX2-requiring component of the wound response pathway) is involved in the wound-induced regulation of this gene.

  11. Cloning and Characterization of Purple Acid Phosphatase Phytases from Wheat, Barley, Maize and Rice

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Madsen, Claus Krogh; Holm, Preben Bach

    2011-01-01

    development and germination. In wheat, it was demonstrated that a and b isogene expression is driven by different promoters (approximately 31% identity). TaPAPhy_a/b promoter reporter gene expression in transgenic grains and peptide mapping of TaPAPhy purified from wheat bran and germinating grains confirmed......Barley (Hordeum vulgare) and wheat (Triticum aestivum) possess significant phytase activity in the mature grains. Maize (Zea mays) and rice (Oryza sativa) possess little or virtually no preformed phytase activity in the mature grain and depend fully on de novo synthesis during germination. Here......, it is demonstrated that wheat, barley, maize, and rice all possess purple acid phosphatase (PAP) genes that, expressed in Pichia pastoris, give fully functional phytases (PAPhys) with very similar enzyme kinetics. Preformed wheat PAPhy was localized to the protein crystalloid of the aleurone vacuole. Phylogenetic...

  12. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    Energy Technology Data Exchange (ETDEWEB)

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  13. Vinegar rice (Oryza sativa L.) produced by a submerged fermentation process from alcoholic fermented rice

    OpenAIRE

    Spinosa,Wilma Aparecida; Santos Júnior,Vitório dos; Galvan,Diego; Fiorio,Jhonatan Luiz; Gomez,Raul Jorge Hernan Castro

    2015-01-01

    Considering the limited availability of technology for the production of rice vinegar and also due to the potential consumer product market, this study aimed to use alcoholic fermented rice (rice wine (Oryza sativa L.)) for vinegar production. An alcoholic solution with 6.28% (w/v) ethanol was oxidized by a submerged fermentation process to produce vinegar. The process of acetic acid fermentation occurred at 30 ± 0.3°C in a FRINGS® Acetator (Germany) for the production of vineg...

  14. The cell death factor, cell wall elicitor of rice blast fungus (Magnaporthe grisea) causes metabolic alterations including GABA shunt in rice cultured cells

    OpenAIRE

    Takahashi, Hideyuki; Matsumura, Hideo; Kawai-Yamada, Maki; Uchimiya, Hirofumi

    2008-01-01

    An elicitor derived from the cell wall of rice blast fungus (Magnaporthe grisea) causes cell death in suspension cultured cells of rice (Oryza sativa L.). To elucidate the role of M. grisea elicitor on metabolic pathway of rice cells, we performed metabolite profiling using capillary electrophoresis-mass spectrometry (CE/MS). Treatment with M. grisea elicitor increased the amounts of antioxidants and free amino acids and decreased the amount of metabolites in the tricarboxylic acid (TCA) cycl...

  15. The effect of mixed liming and NPK fertilizer to yield of some rice varieties on new openings of acid sulfate tidal swamp land

    Science.gov (United States)

    Akhmad, A.; Dewi, W. S.; Sagiman, S.; Suntoro

    2018-03-01

    The strategies to meet the staple food needs in Indonesia is to open new paddy fields in the sub-optimal land. The research aims to get adaptive rice varieties with the highest yield on new openings of the acid sulfate tidal swamp applying mixed liming and NPK fertilizer. The experiment was conducted in a greenhouse at the Faculty of Agriculture, Tanjungpura University, Pontianak. The trials used a factorial completely randomized block design consisting of two factors. The first factor is a mixture of dolomite with NPK fertilizer, consisting of 3 levels (1 ton/ha dolomite and 60 kg/ha NPK; 2 ton/ha dolomite and 90 kg/ha of NPK, and 3 ton/ha dolomite and 120 kg/ha NPK). The second factor is rice varieties, consisting of 6 levels (Ciherang, Situ Bagendit, Inpara, Mira, Si Randah and Ringkak Janggut). Each treatment replicated four times. The results showed that the application of a mixture of 3 ton/ha dolomite and 120 kg/ha of NPK fertilizer showed the best results to improve rice yield on new opening of the acid sulfate tidal swap. Local rice varieties, Ringkak Janggut, applied 3 ton/ha dolomite and 120 kg/ha NPK fertilizer showed the best result of 1000 seed weight, i.e., 28.19 g, and total grain amount per panicle is 110.75 grains, with the lowest number of empty grains. Local rice varieties Ringkak Janggut potential to be developed as superior varieties on new opening acid sulfate tidal swamps by applying liming and fertilizer.

  16. Milk Chemical Composition of Dairy Cows Fed Rations Containing Protected Omega-3 Fatty Acids and Fermented Rice Bran

    Directory of Open Access Journals (Sweden)

    Sudibya

    2013-12-01

    Full Text Available The research was conducted to investigate the effect of ration containing protected omega-3 and fermented rice bran on chemical composition of dairy milk. The research employed 10 female PFH dairy cows of 2-4 years old with body weight 300-375 kg. The research was assigned in randomized complete block design. The treatment consisted of P0= control ration, P1= P0 + 20% fermented rice bran, P2= P1 + 4% soya bean oil, P3= P1 + 4% protected tuna fish oil and P4= P1 + 4% protected lemuru fish oil. The results showed that the effects of fish oil supplementation in the rations significantly (P<0.01 decreased feed consumption, cholesterol, low density lipoprotein, lipids, and saturated fatty acids. Meanwhile, it increased milk production, content of high density lipoprotein, omega-3, omega-6 and unsaturated fatty acids in the dairy cows milk. It is concluded that the inclusion of 4% protected fish oil in the rations can produce healthy milk by decreasing milk cholesterol and increasing omega-3 fatty acids content.

  17. Fermented Brown Rice Flour as Functional Food Ingredient

    OpenAIRE

    Ilowefah, Muna; Chinma, Chiemela; Bakar, Jamilah; Ghazali, Hasanah; Muhammad, Kharidah; Makeri, Mohammad

    2014-01-01

    As fermentation could reduce the negative effects of bran on final cereal products, the utilization of whole-cereal flour is recommended, such as brown rice flour as a functional food ingredient. Therefore, this study aimed to investigate the effect of fermented brown rice flour on white rice flour, white rice batter and its steamed bread qualities. Brown rice batter was fermented using commercial baker?s yeast (Eagle brand) according to the optimum conditions for moderate acidity (pH 5.5) to...

  18. The Defense-Related Isoleucic Acid Differentially Accumulates in Arabidopsis Among Branched-Chain Amino Acid-Related 2-Hydroxy Carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Rafał P. Maksym

    2018-06-01

    Full Text Available The branched-chain amino acid (BCAA related 2-hydroxy carboxylic acid isoleucic acid (ILA enhances salicylic acid-mediated pathogen defense in Arabidopsis thaliana. ILA has been identified in A. thaliana as its glucose conjugate correlated with the activity of the small-molecule glucosyltransferase UGT76B1, which can glucosylate both salicylic acid and ILA in vitro. However, endogenous levels of the ILA aglycon have not yet been determined in planta. To quantify ILA as well as the related leucic acid (LA and valic acid (VA in plant extracts, a sensitive method based on the derivatization of small carboxylic acids by silylation and gas chromatography–mass spectrometric analysis was developed. ILA was present in all species tested including several monocotyledonous and dicotyledonous plants as well as broadleaf and coniferous trees, whereas LA and VA were only detectable in a few species. In A. thaliana both ILA and LA were found. However, their levels varied during plant growth and in root vs. leaves. ILA levels were higher in 2-week-old leaves and decreased in older plants, whereas LA exhibited a reverted accumulation pattern. Roots displayed higher ILA and LA levels compared to leaves. ILA was inversely related to UGT76B1 expression level indicating that UGT76B1 glucosylates ILA in planta. In contrast, LA was not affected by the expression of UGT76B1. To address the relation of both 2-hydroxy acids to plant defense, we studied ILA and LA levels upon infection by Pseudomonas syringae. LA abundance remained unaffected, whereas ILA was reduced. This change suggests an ILA-related attenuation of the salicylic acid response. Collectively, the BCAA-related ILA and LA differentially accumulated in Arabidopsis, supporting a specific role and regulation of the defense-modulating small-molecule ILA among these 2-hydroxy acids. The new sensitive method will pave the way to further unravel their role in plants.

  19. Grain Accumulation of Selenium Species in Rice (Oryza sativa L.)

    Science.gov (United States)

    Selenium (Se) is an essential micronutrient in which up to 1 billion people worldwide are deficient, causing a range of health disorders and potentially an increased risk of certain cancers. Consequently, there is much interest in Se biofortification of rice, the staple food for...

  20. Salt stress induced ion accumulation, ion homeostasis, membrane ...

    African Journals Online (AJOL)

    Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice ( Oryza sativa L. spp. indica ) roots under isoosmotic conditions. ... The accumulation of sugars in PT1 roots may be a primary salt-defense mechanism and may function as an osmotic control. Key words: ...

  1. Protective potentials of wild rice (Zizania latifolia (Griseb) Turcz) against obesity and lipotoxicity induced by a high-fat/cholesterol diet in rats.

    Science.gov (United States)

    Han, Shu-Fen; Zhang, Hong; Zhai, Cheng-Kai

    2012-07-01

    The study evaluates the protective potentials of wild rice against obesity and lipotoxicity induced by a high-fat/cholesterol diet in rats. In addition to the rats of low-fat diet group, others animals were exposed to a high-fat/cholesterol diet condition for 8 weeks. The city diet (CD) is based on the diet consumed by urban residents in modern China, which is rich in fat/cholesterol and high in carbohydrates from white rice and processed wheat starch. The chief source of dietary carbohydrates of wild rice diet (WRD) is from Chinese wild rice and other compositions are the same with CD. Rats fed CD showed elevated body and liver organ weights, lipid profiles, free fatty acids (FFA) and leptin comparable with rats fed high-fat/cholesterol diet (HFD) known to induce obesity and hyperlipidaemia in this species. However, rats consuming WRD suppressed the increase of lipid droplets accumulation, FFA, and leptin, and the decrease of lipoprotein lipase and adipose triglyceride lipase. Meanwhile, WRD prevented high-fat/cholesterol diet-induced elevation in protein expression of sterol-regulatory element binding protein-1c, and gene expression of fatty acid synthase and acetyl-CoA carboxylase. These findings indicate that wild rice as a natural food has the potentials of preventing obesity and liver lipotoxicity induced by a high-fat/cholesterol diet in rats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Conversion of rice straw to sugars by dilute-acid hydrolysis

    International Nuclear Information System (INIS)

    Karimi, Keikhosro; Kheradmandinia, Shauker; Taherzadeh, Mohammad J.

    2006-01-01

    Hydrolysis of rice straw by dilute sulfuric acid at high temperature and pressure was investigated in one and two stages. The hydrolyses were carried out in a 10-l reactor, where the hydrolysis retention time (3-10 min), pressure (10-35 bar) and acid concentration (0-1%) were examined. Optimization of first stage hydrolysis is desirable to achieve the highest yield of the sugars from hemicellulose and also as a pretreatment for enzymatic hydrolysis. The results show the ability of first stage hydrolysis to depolymerize xylan to xylose with a maximum yield of 80.8% at hydrolysis pressure of 15 bar, 10 min retention time and 0.5% acid concentration. However, the yield of glucose from glucan was relatively low in first stage hydrolysis at a maximum of 25.8%. The solid residuals were subjected to further dilute-acid hydrolysis in this study. This second-stage hydrolysis without addition of the acid could not increase the yield of glucose from glucan beyond 26.6%. On the other hand, the best results of the hydrolysis were achieved, when 0.5% sulfuric acid was added prior to each stage in two-stage hydrolysis. The best results of the second stage of the hydrolysis were achieved at the hydrolysis pressure and the retention time of 30 bar and 3 min in the second stage hydrolysis, where a total of 78.9% of xylan and 46.6% of glucan were converted to xylose and glucose, respectively in the two stages. Formation of furfural and HMF were functions of the hydrolysis pressure, acid concentration, and retention time, whereas the concentration of acetic acid was almost constant at pressure of higher than 10 bar and a total retention time of 10 min

  3. Effects of different cellulases on the release of phenolic acids from rice straw during saccharification.

    Science.gov (United States)

    Xue, Yiyun; Wang, Xiahui; Chen, Xingxuan; Hu, Jiajun; Gao, Min-Tian; Li, Jixiang

    2017-06-01

    Effects of different cellulases on the release of phenolic acids from rice straw during saccharification were investigated in this study. All cellulases tested increased the contents of phenolic acids during saccharification. However, few free phenolic acids were detected, as they were present in conjugated form after saccharification when the cellulases from Trichoderma reesei, Trichoderma viride and Aspergillus niger were used. On the other hand, phenolic acids were present in free form when the Acremonium cellulolyticus cellulase was used. Assays of enzyme activity showed that, besides high cellulase activity, the A. cellulolyticus cellulase exhibited high feruloyl esterase (FAE) activity. A synergistic interaction between FAE and cellulase led to the increase in free phenolic acids, and thus an increase in antioxidative and antiradical activities of the phenolic acids. Moreover, a cost estimation demonstrated the feasibility of phenolic acids as value-added products to reduce the total production cost of ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Do Si/As ratios in growth medium affect arsenic uptake, arsenite efflux and translocation of arsenite in rice (Oryza sativa)?

    Science.gov (United States)

    Zhang, Min; Zhao, Quanli; Xue, Peiying; Zhang, Shijie; Li, Bowen; Liu, Wenju

    2017-10-01

    Silicon (Si) may decrease the uptake and accumulation of arsenic (As) in rice. However, the effects of Si/As ratios in growth medium on arsenic uptake, arsenite efflux to the external medium and translocation of arsenite in rice are currently unclear. Rice seedlings (Oryza sativa L.) were exposed to nutrient solutions with 10 μM arsenite [As(III)] or 10 μM arsenate [As(V)] to explore the influence of different silicic acid concentrations (0, 10, 100, 1000 μM) on arsenic uptake and translocation of arsenite with or without 91 μM phosphate for 24 h. Arsenic speciation was determined in nutrient solutions, roots, and shoots. In the arsenite treatments, different Si/As ratios (1:1, 10:1, 100:1) did not affect As(III) uptake by rice roots, however they did inhibit translocation of As(III) from roots to shoots significantly (P rice roots and shoots. A Si/As ratio of 100:1 reduced As(III) translocation from roots to shoots markedly without phosphate. When phosphate was supplied, As(III) translocation from roots to shoots was significantly inhibited by Si/As ratios of 10:1 and 100:1. The results indicated that in the presence of P, different silicic acid concentrations did not impact arsenite uptake and transport in rice when arsenite was supplied. However, a Si/As ratio of 100:1 inhibited As(V) uptake, as well as As(III) efflux and translocation from roots to shoots when arsenate was supplied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Rice production in relation to soil quality under different rice-based cropping systems

    Science.gov (United States)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  6. Transcript profiling and gene characterization of three fatty acid desaturase genes in high, moderate, and low linolenic acid genotypes of flax (Linum usitatissimum L.) and their role in linolenic acid accumulation.

    Science.gov (United States)

    Banik, Mitali; Duguid, Scott; Cloutier, Sylvie

    2011-06-01

    Three genes encoding fatty acid desaturase 3 (fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcripts were observed and reached their peak levels at 20 days after anthesis, except for fad3a from SP2047 where only low level expression was observed throughout seed development. Transcript accumulation of the novel fad3c gene was at similar background levels. The fatty acid composition was analysed for all genotypes and stages of development and compared with the fad3 gene expression patterns. α-Linolenic acid gradually accumulated during seed development, while linoleic acid was transient and decreased in M5791, UGG5-5, and AC McDuff. In contrast, the linolenic acid present in the early stages of development nearly completely disappeared in SP2047, while linoleic acid steadily accumulated. fad3a of the low linolenic acid line SP2047 encoded a truncated protein caused by a premature stop codon resulting from a single point mutation, and the low level of transcript accumulation in this genotype is likely due to nonsense-mediated mRNA decay caused by the premature termination of translation as a result of this early stop codon. Although substantial amounts of transcript accumulation occurred with fad3b of SP2047 genotype, cloning of the gene revealed a mutation in the first histidine box causing an amino acid change. Heterologous expression in yeast of the SP2047 and UGG5-5 fad3b genes showed that the mutation in the histidine box in SP2047 caused the enzyme inactivity. Taken together, these results showed that fad3a and fad3b are responsible for linolenic acid accumulation in flax seeds but did not support a major role for the novel fad3c. These observations were further supported by phenotypic and genotypic assessment of a doubled haploid population. Expression patterns

  7. Root-uptake of {sup 14}C derived from acetic acid and {sup 14}C transfer to rice edible parts

    Energy Technology Data Exchange (ETDEWEB)

    Ogiyama, Shinichi [Office of Biospheric Assessment for Waste Disposal, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan)], E-mail: ogiyama@nirs.go.jp; Suzuki, Hiroyuki [Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi 263-5522 (Japan); Inubushi, Kazuyuki [Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-shi 271-8510 (Japan); Takeda, Hiroshi; Uchida, Shigeo [Office of Biospheric Assessment for Waste Disposal, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan)

    2010-02-15

    Three types of culture experiments using paddy rice (Oryza sativa L.) were performed to examine root-uptake of {sup 14}C in the form of acetic acid: double pot experiment (hydroponics), wet culture experiment (submerged sand medium), and chamber experiment (hydroponics and submerged sand medium). The {sup 14}C radioactivity in the plant, mediums, and atmospheric carbon dioxide ({sup 14}CO{sub 2}) in the chamber were determined, and the distribution of {sup 14}C in the plant was visualized using autoradiography. In the double pot experiment, the shoot of the plant and the lower root which was soaked in the culture solution had {sup 14}C radioactivity, but the upper root which did not have contact with the solution had none. There were also {sup 14}C radioactivity in the grains and roots in the wet culture experiment. Results of the chamber experiment showed that {sup 14}CO{sub 2} gas was released from the culture solution in both types of cultures. Results indicated that the {sup 14}C-acetic acid absorbed by rice plant through its root would be very small. Most of the {sup 14}C-acetic acid was transformed into gaseous forms either in the culture solution or rhizosphere. A relatively longer time would be needed to assimilate {sup 14}C derived from acetic acid to grain parts after it was once absorbed by the shoot through the root. Availability of {sup 14}C for the plant in sand culture was considered to be decreased compared with that for the plant in the hydroponics experiment. It was suggested that rice plant absorbed and assimilated {sup 14}C through the plant roots not because of uptake of {sup 14}C-acetic acid but because of uptake of {sup 14}C in gaseous forms such as {sup 14}CO{sub 2}.

  8. Hormonal changes in the grains of rice subjected to water stress during grain filling.

    Science.gov (United States)

    Yang, J; Zhang, J; Wang, Z; Zhu, Q; Wang, W

    2001-09-01

    Lodging-resistant rice (Oryza sativa) cultivars usually show slow grain filling when nitrogen is applied in large amounts. This study investigated the possibility that a hormonal change may mediate the effect of water deficit that enhances whole plant senescence and speeds up grain filling. Two rice cultivars showing high lodging resistance and slow grain filling were field grown and applied with either normal or high amount nitrogen (HN) at heading. Well-watered and water-stressed (WS) treatments were imposed 9 days post anthesis to maturity. Results showed that WS increased partitioning of fixed (14)CO(2) into grains, accelerated the grain filling rate but shortened the grain filling period, whereas the HN did the opposite way. Cytokinin (zeatin + zeatin riboside) and indole-3-acetic acid contents in the grains transiently increased at early filling stage and WS treatments hastened their declines at the late grain filling stage. Gibberellins (GAs; GA(1) + GA(4)) in the grains were also high at early grain filling but HN enhanced, whereas WS substantially reduced, its accumulation. Opposite to GAs, abscisic acid (ABA) in the grains was low at early grain filling but WS remarkably enhanced its accumulation. The peak values of ABA were significantly correlated with the maximum grain filling rates (r = 0.92**, P water stress during grain filling, especially a decrease in GAs and an increase in ABA, enhances the remobilization of prestored carbon to the grains and accelerates the grain filling rate.

  9. Risk assessment and vertical distribution of thallium in paddy soils and uptake in rice plants irrigated with acid mine drainage.

    Science.gov (United States)

    Huang, Xuexia; Li, Ning; Wu, Qihang; Long, Jianyou; Luo, Dinggui; Zhang, Ping; Yao, Yan; Huang, Xiaowu; Li, Dongmei; Lu, Yayin; Liang, Jianfeng

    2016-12-01

    The objective of this paper is to assess the influence of irritating paddy fields with acid mine drainage containing thallium (Tl) to rice plant-soil system and potential health risks for local residents. Vertical distribution of Tl, pH, organic matter (OM), and cation exchange capacity (CEC) in 24 paddy soil profiles around Yunfu pyrite mine area was investigated. Rice plant samples were collected from the corresponding soil sampling site. The results showed that Tl concentrations in paddy soils at 0-60 cm depth range from 3.07 to 9.42 mg kg -1 , with a mean of 5.74 mg kg -1 , which were significantly higher than the background value of soil in China (0.58 mg kg -1 ). On the whole, Tl contents in paddy soil profiles increased quickly with soil depth from 0 to 30 cm and decreased slowly with soil depth from 30 to 60 cm. The soil Tl content was significant negatively correlated with soil pH. The mean content of Tl in the root, stem, leaf, and rice was 4.36, 1.83, 2.74, and 1.42 mg kg -1 , respectively, which exceeded the proposed permissible limits for foods and feedstuffs in Germany. The Tl content in various tissues of the rice plants followed the order root > leaf > stem (rice), which suggested that most Tl taken up by rice plants retained in the root, and a little migrated to the leaf, stem, and rice. Correlation analysis showed that Tl content in root was significant positively correlated with Tl content in leaf and rice. The ranges of hazard quotient (HQ) values were 4.08∼24.50 and 3.84∼22.38 for males and females, respectively. Males have higher health risk than females in the same age group. In childhood age groups (2 to <21 years) and adult age groups (21 to <70 years), the highest health risk level was observed in the 11 to 16 age group and 21 to 50 age group, respectively. The findings indicated that regular irrigation with Tl-bearing acid mine drainage led to considerable contamination of Tl in paddy soil and rice plant. Local government

  10. Iron bioavailability in Wistar rats fed with fortified rice by Ultra Rice technology with or without addition of yacon flour (Smallanthus sonchifolius).

    Science.gov (United States)

    Della Lucia, Ceres M; Vaz Tostes, Maria das Graças; Silveira, Carlos Mário M; Bordalo, Lívia A; Rodrigues, Fabiana C; Pinheiro-Sant'Ana, Helena Maria; Martino, Hércia S D; Costa, Neuza Maria B

    2013-03-01

    This study aimed to evaluate iron (Fe) bioavailability in Wistar rats fed with rice fortified with micronized ferric pyrophosphate (FP) by Ultra Rice (UR) technology with or without addition of yacon flour as a source of 7.5% of fructooligosaccharides (FOS). Diets were supplied with 12 mg iron/kg from the following sources: ferrous sulfate (FS - control diet), fortified rice with micronized ferric pyrophosphate (Ultra Rice) (UR diet), ferrous sulfate + yacon flour (FS + Y diet) or Ultra Rice + yacon flour (UR + Y diet). Blood samples were collected at the end of depletion and repletion stages for determination of hemoglobin concentration and calculation of the relative biological value (RBV). Also, the content of short chain fatty acids (SCFA) (acetic, propionic and butyric acids) from animals' stools and caecum weight were determined. The UR diet showed high iron bioavailability (RBV = 84.7%). However, the addition of yacon flour in the diet containing fortified rice (UR + Y diet) decreased RBV (63.1%) significantly below the other three groups (p flour showed higher acetic acid values compared to those who did not. In conclusion, fortified UR with micronized ferric pyrophosphate showed high iron bioavailability but the addition of yacon flour at 7.5% FOS reduced iron bioavailability despite increased caecum weight and SCFA concentration.

  11. Effects and mechanism of UV-B radiation on rice growth

    International Nuclear Information System (INIS)

    Gao Xiaoxiao; Gao Zhaohua; Zu Yanqun

    2009-01-01

    The enhancement of UV-B radiation influences the growth of rice and physiology in different levels and this performances as changes in morphology destroyed photosynthetic system unstable anti-oxidation system changes of endogenous hormone content exacerbated rice diseases decreased biomass and developmental stage delay. Through the establishment of the response index we can evaluate the varietal differences in responses of the rice to UV-B radiation. Reasons for such varietal differences were differences in rice gene physiology and morphology developmental stage and environmental factors. The main mechanism in responses of the rice to UV-B radiation was induction of flavonoid compounds and accumulation of anthocyanins. Based on the analysis of the influence of enhanced UV-B radiation to rice and the varietal differences in responses to UV-B radiation and mechanism of rice the direction of the further research about the relationship between the rice and UV-B was put forward

  12. Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice.

    Science.gov (United States)

    Pang, Yuehan; Ahmed, Sulaiman; Xu, Yanjie; Beta, Trust; Zhu, Zhiwei; Shao, Yafang; Bao, Jinsong

    2018-02-01

    Total phenolic content (TPC), individual phenolic acid and antioxidant capacity of whole grain and bran fraction 18 rices with different bran color were investigated. The levels of TPC in bound fractions were significantly higher than those in the free fractions either in the whole grains or brans. The main bound phenolic acids in white rice samples were ferulic acid, p-coumaric acid, and isoferulic acid, and in pigmented rice samples were ferulic acid, p-coumaric acid, and vanillic acid. The protocatechuic acid and 2,5-dihydroxybenzoic acid were not detected in white samples. The content of gallic acid, protocatechuic acid, 2,5-dihydroxybenzoic acid, ferulic acid, sinapic acid had significantly positive correlations with TPC and antioxidant capacity. This study found much wider diversity in the phenolics and antioxidant capacity in the whole grain and brans of rice, and will provide new opportunities to further improvement of rice with enhanced levels of the phytochemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evaluation of Mercury Uptake and Distribution in Rice (Oryza sativa L.).

    Science.gov (United States)

    Hang, Xiaoshuai; Gan, Fangqun; Chen, Yudong; Chen, Xiaoqin; Wang, Huoyan; Du, Changwen; Zhou, Jianmin

    2018-03-01

    Mercury (Hg) contamination in soil-rice systems from industry, mining and agriculture has received increasing attention recently in China. Pot experiments were conducted to research the Hg accumulation capacity of rice under exogenous Hg in the soil and study the major soil factors affecting translocation of Hg from soil to plant. Soil treated with 2 mg kg -1 Hg decreased rice grain yield and inhibited the growth of rice plants. With increased Hg contamination of the rice, the enrichment rate of Hg was significantly higher in the rice grain than that in the stalk and leaf. Soil pH and cation exchange capacity are the key factors controlling Hg bioavailability in soils.

  14. Use of a Potential Probiotic, Lactobacillus plantarum L7, for the Preparation of a Rice-Based Fermented Beverage

    Directory of Open Access Journals (Sweden)

    Sib Sankar Giri

    2018-03-01

    Full Text Available This study aimed to isolate potential probiotic lactic acid bacteria from a traditional rice-based fermented beverage “bhaati jaanr” and to evaluate their role during preparation of the beverage. Among various isolates, Lactobacillus plantarum strain L7 exhibited satisfactory in vitro probiotic characteristics such as acid resistance and bile tolerance, cell surface hydrophobicity, auto-aggregation, antibiotic susceptibility, and antimicrobial activities. Therefore, performance of L7 as a starter culture in rice fermentation was determined during a 6-day rice fermentation study. L. plantarum L7 decreased the pH, associated with an increase in total titratable acidity and organic acid production up to the 4th day of fermentation. The highest concentrations of succinic acid (0.37 mg/g, lactic acid (4.95 mg/g, and acetic acid (0.36 mg/g were recorded on the 3rd, 4th, and 5th days of fermentation, respectively. Saccharifying (148.13 μg/min g−1 and liquefying (89.47 μg/min g−1 activities were the highest on days 3 and 2, respectively, and thereafter, they decreased. Phytase activity and the cleavage of free minerals (sodium, calcium, magnesium, manganese, and ferrous increased up to days 3–4. The concentration of various accumulated malto-oligosaccharides (glucose, fructose, maltotriose, and maltoterose was noted to be the maximum on days 4 and 5. Furthermore, gas chromatography-mass spectrometry analysis indicated the presence of various volatile compounds. The fermented material also exhibited 1,1-diphenyl-2-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid radical scavenging activity. Therefore, the probiotic, L. plantarum L7, has a significant role in the fermentation of this beverage and enhances its functional properties.

  15. Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India.

    Directory of Open Access Journals (Sweden)

    Jay Prakash Awasthi

    Full Text Available Aluminum (Al is the third most abundant metal in earth crust, whose chemical form is mainly dependent on soil pH. The most toxic form of Al with respect to plants is Al3+, which exists in soil pH <5. Acidic soil significantly limits crop production mainly due to Al3+ toxicity worldwide, impacting approximately 50% of the world's arable land (in North-Eastern India 80% soil are acidic. Al3+ toxicity in plants ensues root growth inhibition leading to less nutrient and water uptake impacting crop productivity as a whole. Rice is one of the chief grains which constitutes the staple food of two-third of the world population including India and is not untouched by Al3+ toxicity. Al contamination is a critical constraint to plant production in agricultural soils of North East India. 24 indigenous Indica rice varieties (including Badshahbhog as tolerant check and Mashuri as sensitive check were screened for Al stress tolerance in hydroponic plant growth system. Results show marked difference in growth parameters (relative growth rate, Root tolerance index, fresh and dry weight of root of rice seedlings due to Al (100 μM toxicity. Al3+ uptake and lipid peroxidation level also increased concomitantly under Al treatment. Histochemical assay were also performed to elucidate uptake of aluminum, loss of membrane integrity and lipid peroxidation, which were found to be more in sensitive genotypes at higher Al concentration. This study revealed that aluminum toxicity is a serious harmful problem for rice crop productivity in acid soil. Based on various parameters studied it's concluded that Disang is a comparatively tolerant variety whereas Joymati a sensitive variety. Western blot hybridization further strengthened the claim, as it demonstrated more accumulation of Glutathione reductase (GR protein in Disang rice variety than Joymati under stressed condition. This study also observed that the emergence of lethal toxic symptoms occurs only after 48h

  16. Evaluation of Heavy Metals Contamination from Environment to Food Matrix by TXRF: The Case of Rice and Rice Husk

    Directory of Open Access Journals (Sweden)

    Fabjola Bilo

    2015-01-01

    Full Text Available This paper is devoted to the chemical analysis of contaminated soils of India and the rice grown in the same area. Total reflection X-ray fluorescence spectroscopy is a well-established technique for elemental chemical analysis of environmental samples, and it can be a useful tool to assess food safety. Metals uptake in rice crop grown in soils from different areas was studied. In this work soil, rice husk and rice samples were analyzed after complete solubilization of samples by microwave acid digestion. Heavy metals concentration detected in rice samples decreases in the following order: Mn > Zn > Cu > Ni > Pb > Cr. The metal content in rice husk was higher than in rice. This study suggests, for the first time, a possible role of heavy metals filter played by rice husk. The knowledge of metals sequestration capability of rice husk may promote some new management practices for rice cultivation to preserve it from pollution.

  17. Primary properties of MDF using thermomechanical pulp made from oxalic acid pretreated rice straw particles

    Science.gov (United States)

    Xianjun Li; Yiqiang Wu; Zhiyong Cai; Jerrold E. Winandy

    2013-01-01

    The main objective of this study is to evaluate the effect the oxalic acid (OA) and steam pretreatment on the primary properties of rice straw medium-density fiberboard (MDF). The results show the IB strength increased about 9.6% and 13.4% for steam-treated MDF (PC) and OA-treated MDF compared with raw control panels, while OA pretreatment has a slight negative effect...

  18. Quantification of rice bran oil in oil blends

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, R.; Sharma, H. K.; Sengar, G.

    2012-11-01

    Blends consisting of physically refined rice bran oil (PRBO): sunflower oil (SnF) and PRBO: safflower oil (SAF) in different proportions were analyzed for various physicochemical parameters. The quantification of pure rice bran oil in the blended oils was carried out using different methods including gas chromatographic, HPLC, ultrasonic velocity and methods based on physico-chemical parameters. The physicochemical parameters such as ultrasonic velocity, relative association and acoustic impedance at 2 MHz, iodine value, palmitic acid content and oryzanol content reflected significant changes with increased proportions of PRBO in the blended oils. These parameters were selected as dependent parameters and % PRBO proportion was selected as independent parameters. The study revealed that regression equations based on the oryzanol content, palmitic acid composition, ultrasonic velocity, relative association, acoustic impedance, and iodine value can be used for the quantification of rice bran oil in blended oils. The rice bran oil can easily be quantified in the blended oils based on the oryzanol content by HPLC even at a 1% level. The palmitic acid content in blended oils can also be used as an indicator to quantify rice bran oil at or above the 20% level in blended oils whereas the method based on ultrasonic velocity, acoustic impedance and relative association showed initial promise in the quantification of rice bran oil. (Author) 23 refs.

  19. Amino Acid Composition of an Organic Brown Rice Protein Concentrate and Isolate Compared to Soy and Whey Concentrates and Isolates

    Directory of Open Access Journals (Sweden)

    Douglas S. Kalman

    2014-06-01

    Full Text Available A protein concentrate (Oryzatein-80™ and a protein isolate (Oryzatein-90™ from organic whole-grain brown rice were analyzed for their amino acid composition. Two samples from different batches of Oryzatein-90™ and one sample of Oryzatein-80™ were provided by Axiom Foods (Los Angeles, CA, USA. Preparation and analysis was carried out by Covance Laboratories (Madison, WI, USA. After hydrolysis in 6-N hydrochloric acid for 24 h at approximately 110 °C and further chemical stabilization, samples were analyzed by HPLC after pre-injection derivitization. Total amino acid content of both the isolate and the concentrate was approximately 78% by weight with 36% essential amino acids and 18% branched-chain amino acids. These results are similar to the profiles of raw and cooked brown rice except in the case of glutamic acid which was 3% lower in the isolate and concentrate. The amino acid content and profile of the Oryzatein-90™ isolate was similar to published values for soy protein isolate but the total, essential, and branched-chain amino acid content of whey protein isolate was 20%, 39% and 33% greater, respectively, than that of Oryzatein-90™. These results provide a valuable addition to the nutrient database of protein isolates and concentrates from cereal grains.

  20. Salinity Stress Is Beneficial to the Accumulation of Chlorogenic Acids in Honeysuckle (Lonicera japonica Thunb.).

    Science.gov (United States)

    Yan, Kun; Cui, Mingxing; Zhao, Shijie; Chen, Xiaobing; Tang, Xiaoli

    2016-01-01

    Honeysuckle ( Lonicera japonica Thunb.) is a traditional medicinal plant in China that is particularly rich in chlorogenic acids, which are phenolic compounds with various medicinal properties. This study aimed to examine the effects of salinity stress on accumulation of chlorogenic acids in honeysuckle, through hydroponic experiments and field trials, and to examine the mechanisms underlying the effects. NaCl stress stimulated the transcription of genes encoding key enzymes in the synthesis of chlorogenic acids in leaves; accordingly, the concentrations of chlorogenic acids in leaves were significantly increased under NaCl stress, as was antioxidant activity. Specifically, the total concentration of leaf chlorogenic acids was increased by 145.74 and 50.34% after 30 days of 150 and 300 mM NaCl stress, respectively. Similarly, the concentrations of chlorogenic acids were higher in the leaves of plants in saline, compared with non-saline, plots, with increases in total concentrations of chlorogenic acids of 56.05 and 105.29% in October 2014 and 2015, respectively. Despite leaf biomass reduction, absolute amounts of chlorogenic acids per plant and phenylalanine ammonia-lyase (PAL) activity were significantly increased by soil salinity, confirming that the accumulation of chlorogenic acids in leaves was a result of stimulation of their synthesis under salinity stress. Soil salinity also led to elevated chlorogenic acid concentrations in honeysuckle flower buds, with significant increases in total chlorogenic acids concentration of 22.42 and 25.14% in May 2014 and 2015, respectively. Consistent with biomass reduction, the absolute amounts of chlorogenic acid per plant declined in flower buds of plants exposed to elevated soil salinity, with no significant change in PAL activity. Thus, salinity-induced chlorogenic acid accumulation in flower buds depended on an amplification effect of growth reduction. In conclusion, salinity stress improved the medicinal quality of

  1. Salinity Stress is Beneficial to the Accumulation of Chlorogenic Acids in Honeysuckle (Lonicera japonica Thunb.

    Directory of Open Access Journals (Sweden)

    Kun Yan

    2016-10-01

    Full Text Available Abstract Honeysuckle (Lonicera japonica Thunb. is a traditional medicinal plant in China that is particularly rich in chlorogenic acids, which are phenolic compounds with various medicinal properties. This study aimed to examine the effects of salinity stress on accumulation of chlorogenic acids in honeysuckle, through hydroponic experiments and field trials, and to examine the mechanisms underlying the effects. NaCl stress stimulated the transcription of genes encoding key enzymes in the synthesis of chlorogenic acids in leaves; accordingly, the concentrations of chlorogenic acids in leaves were significantly increased under NaCl stress, as was antioxidant activity. Specifically, the total concentration of leaf chlorogenic acids was increased by 145.74% and 50.34% after 30 days of 150 and 300 mM NaCl stress, respectively. Similarly, the concentrations of chlorogenic acids were higher in the leaves of plants in saline, compared with non-saline, plots, with increases in total concentrations of chlorogenic acids of 56.05% and 105.29% in October 2014 and 2015, respectively. Despite leaf biomass reduction, absolute amounts of chlorogenic acids per plant and phenylalanine ammonia-lyase (PAL activity were significantly increased by soil salinity, confirming that the accumulation of chlorogenic acids in leaves was a result of stimulation of their synthesis under salinity stress. Soil salinity also led to elevated chlorogenic acid concentrations in honeysuckle flower buds, with significant increases in total chlorogenic acids concentration of 22.42% and 25.14% in May 2014 and 2015, respectively. Consistent with biomass reduction, the absolute amounts of chlorogenic acid per plant declined in flower buds of plants exposed to elevated soil salinity, with no significant change in PAL activity. Thus, salinity-induced chlorogenic acid accumulation in flower buds depended on an amplification effect of growth reduction. In conclusion, salinity stress improves

  2. Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease.

    Directory of Open Access Journals (Sweden)

    Zhen-Zhu Su

    Full Text Available The mutualism pattern of the dark septate endophyte (DSE Harpophora oryzae in rice roots and its biocontrol potential in rice blast disease caused by Magnaporthe oryzae were investigated. Fluorescent protein-expressing H. oryzae was used to monitor the colonization pattern. Hyphae invaded from the epidermis to the inner cortex, but not into the root stele. Fungal colonization increased with root tissue maturation, showing no colonization in the meristematic zone, slight colonization in the elongation zone, and heavy colonization in the differentiation zone. H. oryzae adopted a biotrophic lifestyle in roots accompanied by programmed cell death. Real-time PCR facilitated the accurate quantification of fungal growth and the respective plant response. The biocontrol potential of H. oryzae was visualized by inoculation with eGFP-tagged M. oryzae in rice. H. oryzae protected rice from M. oryzae root invasion by the accumulation of H2O2 and elevated antioxidative capacity. H. oryzae also induced systemic resistance against rice blast. This systemic resistance was mediated by the OsWRKY45-dependent salicylic acid (SA signaling pathway, as indicated by the strongly upregulated expression of OsWRKY45. The colonization pattern of H. oryzae was consistent with the typical characteristics of DSEs. H. oryzae enhanced local resistance by reactive oxygen species (ROS and high antioxidative level and induced OsWRKY45-dependent SA-mediated systemic resistance against rice blast.

  3. Reduction of Cadmium Uptake of Rice Plants Using Soil Amendments in High Cadmium Contaminated Soil: A Pot Experiment

    Directory of Open Access Journals (Sweden)

    Dian Siswanto

    2013-05-01

    Full Text Available The aims of this study were to investigate the effect of agricultural residues on reducing cadmium uptake in rice plants. The rice plants growing on no cadmium/free cadmium soils (N, Cd soils (Cds, and Cd soils each amended with 1% w/w of coir pith (CP, coir pith modified with sodium hydroxide (CPm and corncob (CC under high cadmium contaminated soil with an average 145 mg Cd kg-1 soil were investigated. The results showed that the cumulative transpiration of rice grown in various treatments under high cadmium contaminated soil followed the order: Cds > CPm ≥ CP ≥ CC. These transpirations directly influenced cadmium accumulation in shoots and husks of rice plants. The CC and CP seemed to work to reduce the cadmium uptake by rice plants indicated by accumulated cadmium in the husk that were 2.47 and 7.38 mg Cd kg-1 dry weight, respectively. Overall, transpiration tended to drive cadmium accumulation in plants for rice grown in high cadmium contaminated soil. The more that plants uptake cadmium, the lower cadmium that remains in the soil.

  4. A Rice CPYC-Type Glutaredoxin OsGRX20 in Protection against Bacterial Blight, Methyl Viologen and Salt Stresses

    Directory of Open Access Journals (Sweden)

    Xi Ning

    2018-02-01

    Full Text Available Glutaredoxins (GRXs belong to the antioxidants involved in the cellular stress responses. In spite of the identification 48 GRX genes in rice genomes, the biological functions of most of them remain unknown. Especially, the biological roles of members of GRX family in disease resistance are still lacking. Our proteomic analysis found that OsGRX20 increased by 2.7-fold after infection by bacterial blight. In this study, we isolated and characterized the full-length nucleotide sequences of the rice OsGRX20 gene, which encodes a GRX family protein with CPFC active site of CPYC-type class. OsGRX20 protein was localized in nucleus and cytosol, and its transcripts were expressed predominantly in leaves. Several stress- and hormone-related motifs putatively acting as regulatory elements were found in the OsGRX20 promoter. Real-time quantitative PCR analysis indicated that OsGRX20 was expressed at a significantly higher level in leaves of a resistant or tolerant rice genotype, Yongjing 50A, than in a sensitive genotype, Xiushui 11, exposed to bacterial blight, methyl viologen, heat, and cold. Its expression could be induced by salt, PEG-6000, 2,4-D, salicylic acid, jasmonic acid, and abscisic acid treatments in Yongjing 50A. Overexpression of OsGRX20 in rice Xiushui 11 significantly enhanced its resistance to bacterial blight attack, and tolerance to methyl viologen and salt stresses. In contrast, interference of OsGRX20 in Yongjing 50A led to increased susceptibility to bacterial blight, methyl viologen and salt stresses. OsGRX20 restrained accumulation of superoxide radicals in aerial tissue during methyl viologen treatment. Consistently, alterations in OsGRX20 expression affect the ascorbate/dehydroascorbate ratio and the abundance of transcripts encoding four reactive oxygen species scavenging enzymes after methyl viologen-induced stress. Our results demonstrate that OsGRX20 functioned as a positive regulator in rice tolerance to multiple stresses

  5. Alleviatory effects of silicon on the foliar micromorphology and anatomy of rice (Oryza sativa L.) seedlings under simulated acid rain.

    Science.gov (United States)

    Ju, Shuming; Wang, Liping; Zhang, Cuiying; Yin, Tingchao; Shao, Siliang

    2017-01-01

    Silicon (Si) is a macroelement in plants. The biological effects and mitigation mechanisms of silicon under environmental stress have become hot topics. The main objectives of this study were to elucidate the roles of Si in alleviating the effects on the phenotype, micromorphology and anatomy of the leaves of rice seedlings under acid rain stress. The results indicated that the combined or single effects of Si and simulated acid rain (SAR) stress on rice roots depended on the concentration of Si and the intensity of the SAR stress. The combined or single effects of the moderate concentration of Si (2.0 mM) and light SAR (pH 4.0) enhanced the growth of the rice leaves and the development of the mesophyll cells, and the combined effects were stronger than those of the single treatments. The high concentration of Si (4.0 mM) and severe SAR (pH 3.0 or 2.0) exerted deleterious effects. The incorporation of Si (2.0 or 4.0 mM) into SAR at pH values of 3.0 or 2.0 promoted rice leaf growth, decreased necrosis spots, maintained the structure and function of the mesophyll cells, increased the epicuticular wax content and wart-like protuberance (WP) density, and improved the stomatal characteristics of the leaves of rice seedlings more than the SAR only treatments. The alleviatory effects observed with a moderate concentration of Si (2.0 mM) were better than the effects obtained with the high concentration of Si (4.0 mM). The alleviatory effects were due to the enhancement of the mechanical barriers in the leaf epidermis.

  6. Alleviatory effects of silicon on the foliar micromorphology and anatomy of rice (Oryza sativa L.) seedlings under simulated acid rain

    Science.gov (United States)

    Ju, Shuming; Wang, Liping; Zhang, Cuiying; Yin, Tingchao; Shao, Siliang

    2017-01-01

    Silicon (Si) is a macroelement in plants. The biological effects and mitigation mechanisms of silicon under environmental stress have become hot topics. The main objectives of this study were to elucidate the roles of Si in alleviating the effects on the phenotype, micromorphology and anatomy of the leaves of rice seedlings under acid rain stress. The results indicated that the combined or single effects of Si and simulated acid rain (SAR) stress on rice roots depended on the concentration of Si and the intensity of the SAR stress. The combined or single effects of the moderate concentration of Si (2.0 mM) and light SAR (pH 4.0) enhanced the growth of the rice leaves and the development of the mesophyll cells, and the combined effects were stronger than those of the single treatments. The high concentration of Si (4.0 mM) and severe SAR (pH 3.0 or 2.0) exerted deleterious effects. The incorporation of Si (2.0 or 4.0 mM) into SAR at pH values of 3.0 or 2.0 promoted rice leaf growth, decreased necrosis spots, maintained the structure and function of the mesophyll cells, increased the epicuticular wax content and wart-like protuberance (WP) density, and improved the stomatal characteristics of the leaves of rice seedlings more than the SAR only treatments. The alleviatory effects observed with a moderate concentration of Si (2.0 mM) were better than the effects obtained with the high concentration of Si (4.0 mM). The alleviatory effects were due to the enhancement of the mechanical barriers in the leaf epidermis. PMID:29065171

  7. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    Science.gov (United States)

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.

  8. Study on movement, accumulation and distribution of 137Cs in rice and soils

    International Nuclear Information System (INIS)

    Lu Zixian; Xu Shiming

    1992-11-01

    The experiment of growing rice contaminated by 137 Cs solution shows that from the seedling stage to booting stage the absorption rate of 137 Cs is the highest, in the heading stage it is steady and in the milk stage goes to high again. The 137 Cs transfers from root to straw and ear, and from vegetative organs to reproductive organs. The relationship between specific activity (SA) and the amount of 137 Cs in soil is proportional. Only when the amount of 137 Cs in soil reaches to 370 Bq/g the SA of 137 Cs in rice rises remarkably. The different soil growing rice has different absorption rate of 137 Cs. Only in Shenzhen it is much higher than in other areas. The absorption of 137 Cs is also depending on different stage, in the milk stage it is considerably higher than other stages

  9. ?-Oryzanols of North American Wild Rice (Zizania palustris)

    OpenAIRE

    Aladedunye, Felix; Przybylski, Roman; Rudzinska, Magdalena; Klensporf-Pawlik, Dorota

    2013-01-01

    ?-Oryzanol, a natural mixture of ferulic acid esters of triterpene alcohols and sterols, are an important bioactive components present in rice bran oil. In light of the recent increase in the popularity of wild rice among consumers, and the possibility of a direct relationship between ?-oryzanol composition and its bioactivity, the oryzanol profile of major wild rice (Zizania palustris) grown in North America was studied and compared to regular brown rice (Oryza sativa L.). A total of twenty-...

  10. Chemical, Sensorial and Rheological Properties of a New Organic Rice Bran Beverage

    Directory of Open Access Journals (Sweden)

    Gerson Luis FACCIN

    2009-09-01

    Full Text Available Rice bran is a solid residue from rice polishing that is used in animal nutrition and rice oil production. Cultivation conditions with agro-toxics, lipids instability, and tendency for mycotoxin contamination restrict its application in human nutrition. Therefore, organic agriculture is an alternative to use the properties of rice bran. Rice bran beverage is a new cereal product from organic rice. This work presents the preliminary results of the chemical and rheological studies of a bath pasteurized rice bran beverage. Compared with integral defatted milk, soy extracts, and brown rice low-fat milk, the rice bran beverage studied in this work presents itself as an important source of minerals and unsaturated lipids. All essential amino acids were found in this product. Glutamic and aspartic acids were predominant. Bath pasteurization at boiling water temperature for 15 and 30 min was adequate for microbiological safety. Refrigeration storage for 20 days, evaluated by pH and acidity variations, was ideal for assessment of the beverage conservation time. The beverage viscosity was of the Newtonian standard behavior, and its viscosity during storage was not a good parameter to evaluate shelf life. Sensory preference tests showed positive perspectives for this new beverage.

  11. Soil salinity and acidity : spatial variabil[it]y and effects on rice production in West Africa's mangrove zone

    NARCIS (Netherlands)

    Sylla, M.

    1994-01-01

    In the mangrove environment of West Africa, high spatial and temporal variability of soil constraints (salinity and acidity) to rice production is a problem for the transfer and adoption of new agronomic techniques, for land use planning, and for soil and water management. Recently, several

  12. Innovation Chinese rice wine brewing technology by bi-acidification to exclude rice soaking process.

    Science.gov (United States)

    Wei, Xiao Lu; Liu, Shuang Ping; Yu, Jian Shen; Yu, Yong Jian; Zhu, Sheng Hu; Zhou, Zhi Lei; Hu, Jian; Mao, Jian

    2017-04-01

    As a traditional fermented alcoholic beverage of China, Chinese rice wine (CRW) had a long history of more than 5000 years. Rice soaking process was the most crucial step during CRW brewing process, because rice soaking quality directly determined the quality of CRW. However, rice soaking water would cause the eutrophication of water bodies and waste of water. The longer time of rice soaking, the higher the content of biogenic amine, and it would have a huge impact on human health. An innovation brewing technology was carried out to exclude the rice soaking process and the Lactobacillus was added to make up for the total acid. Compared to the traditional brewing technology, the new technology saved water resources and reduced environmental pollution. The concentration of biogenic amine was also decreased by 27.16%, which improving the security of the CRW. The esters increased led to more soft-tasted CRW and less aging time; the quality of CRW would be improved with less alcohol. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India.

    Science.gov (United States)

    Awasthi, Jay Prakash; Saha, Bedabrata; Regon, Preetom; Sahoo, Smita; Chowra, Umakanta; Pradhan, Amit; Roy, Anupam; Panda, Sanjib Kumar

    2017-01-01

    Aluminum (Al) is the third most abundant metal in earth crust, whose chemical form is mainly dependent on soil pH. The most toxic form of Al with respect to plants is Al3+, which exists in soil pH Eastern India 80% soil are acidic). Al3+ toxicity in plants ensues root growth inhibition leading to less nutrient and water uptake impacting crop productivity as a whole. Rice is one of the chief grains which constitutes the staple food of two-third of the world population including India and is not untouched by Al3+ toxicity. Al contamination is a critical constraint to plant production in agricultural soils of North East India. 24 indigenous Indica rice varieties (including Badshahbhog as tolerant check and Mashuri as sensitive check) were screened for Al stress tolerance in hydroponic plant growth system. Results show marked difference in growth parameters (relative growth rate, Root tolerance index, fresh and dry weight of root) of rice seedlings due to Al (100 μM) toxicity. Al3+ uptake and lipid peroxidation level also increased concomitantly under Al treatment. Histochemical assay were also performed to elucidate uptake of aluminum, loss of membrane integrity and lipid peroxidation, which were found to be more in sensitive genotypes at higher Al concentration. This study revealed that aluminum toxicity is a serious harmful problem for rice crop productivity in acid soil. Based on various parameters studied it's concluded that Disang is a comparatively tolerant variety whereas Joymati a sensitive variety. Western blot hybridization further strengthened the claim, as it demonstrated more accumulation of Glutathione reductase (GR) protein in Disang rice variety than Joymati under stressed condition. This study also observed that the emergence of lethal toxic symptoms occurs only after 48h irrespective of the dose used in the study.

  14. Heat-assisted aqueous extraction of rice flour for arsenic speciation analysis.

    Science.gov (United States)

    Narukawa, Tomohiro; Chiba, Koichi

    2010-07-28

    A versatile heat-assisted pretreatment aqueous extraction method for the analysis of arsenic species in rice was developed. Rice flour certified reference materials NIST SRM1568a and NMIJ CRM 7503-a and a flour made from polished rice were used as samples, and HPLC-ICP-MS was employed for the determination of arsenic species. Arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) were detected in NIST SRM, and As(III), As(V) and DMAA were found in NMIJ CRM and the prepared polished rice flour. The sums of the concentrations of all species in each rice flour sample were 97-102% of the total arsenic concentration in each sample.

  15. Impacts of Steel-Slag-Based Silicate Fertilizer on Soil Acidity and Silicon Availability and Metals-Immobilization in a Paddy Soil.

    Directory of Open Access Journals (Sweden)

    Dongfeng Ning

    Full Text Available Slag-based silicate fertilizer has been widely used to improve soil silicon- availability and crop productivity. A consecutive early rice-late rice rotation experiment was conducted to test the impacts of steel slag on soil pH, silicon availability, rice growth and metals-immobilization in paddy soil. Our results show that application of slag at a rate above higher or equal to 1 600 mg plant-available SiO2 per kg soil increased soil pH, dry weight of rice straw and grain, plant-available Si concentration and Si concentration in rice shoots compared with the control treatment. No significant accumulation of total cadmium (Cd and lead (Pb was noted in soil; rather, the exchangeable fraction of Cd significantly decreased. The cadmium concentrations in rice grains decreased significantly compared with the control treatment. In conclusion, application of steel slag reduced soil acidity, increased plant-availability of silicon, promoted rice growth and inhibited Cd transport to rice grain in the soil-plant system.

  16. The Challenges and Solutions for Cadmium-contaminated Rice in China: A Critical Review.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa; Tao, Shu

    2016-01-01

    The wide occurrence of Cd-contaminated rice in southern China poses significant public health risk and deserves immediate action, which arises primarily from extensive metal (including Cd) contamination of paddies with the fast expansion of nonferrous metal mining and smelting activities. Accumulation of Cd in rice grains can be reduced by removing Cd from the contaminated paddy soils, reducing its bioavailability, and controlling its uptake by rice plants. Although a range of measures can be taken to rehabilitate Cd-contaminated lands, including soil replacement and turnover, chemical washing, and phytoremediation, they are either too expensive and/or too slow. Various amendment materials, including lime, animal manures, and biochar, can be used to immobilize Cd in soils, but such fixation approach can only temporarily reduce Cd availability to rice uptake. Cultivation of alternative crops with low Cd accumulation in edible plant parts is impractical on large scales due to extensive contamination and food security concerns in southern China. Transgenic techniques can help develop rice cultivars with low Cd accumulation in grains, but little public acceptance is expected for such products. As an alternative, selection and development of low-Cd rice varieties and hybrids through plant biotechnology and breeding, particularly, by integration of marker-assisted selection (MAS) with traditional breeding, could be a practical and acceptable option that would allow continued rice production in soils with high bioavailability of Cd. Plant biotechnology and breeding can also help develop Cd-hyperaccumulating rice varieties, which can greatly facilitate phytoremediation of contaminated paddies. To eliminate the long-term risk of Cd entering the food chain, soils contaminated by Cd should be cleaned up when cost-effective remediation measures are available. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Dissection of cis-regulatory element architecture of the rice oleosin gene promoters to assess abscisic acid responsiveness in suspension-cultured rice cells.

    Science.gov (United States)

    Kim, Sol; Lee, Soo-Bin; Han, Chae-Seong; Lim, Mi-Na; Lee, Sung-Eun; Yoon, In Sun; Hwang, Yong-Sic

    2017-08-01

    Oleosins are the most abundant proteins in the monolipid layer surrounding neutral storage lipids that form oil bodies in plants. Several lines of evidence indicate that they are physiologically important for the maintenance of oil body structure and for mobilization of the lipids stored inside. Rice has six oleosin genes in its genome, the expression of all of which was found to be responsive to abscisic acid (ABA) in our examination of mature embryo and aleurone tissues. The 5'-flanking region of OsOle5 was initially characterized for its responsiveness to ABA through a transient expression assay system using the protoplasts from suspension-cultured rice cells. A series of successive deletions and site-directed mutations identified five regions critical for the hormonal induction of its promoter activity. A search for cis-acting elements in these regions deposited in a public database revealed that they contain various promoter elements previously reported to be involved in the ABA response of various genes. A gain-of-function experiment indicated that multiple copies of all five regions were sufficient to provide the minimal promoter with a distinct ABA responsiveness. Comparative sequence analysis of the short, but still ABA-responsive, promoters of OsOle genes revealed no common modular architecture shared by them, indicating that various distinct promoter elements and independent trans-acting factors are involved in the ABA responsiveness of rice oleosin multigenes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Consolidated bioprocessing for butyric acid production from rice straw with undefined mixed culture

    Directory of Open Access Journals (Sweden)

    Binling Ai

    2016-10-01

    Full Text Available Lignocellulosic biomass is a renewable source with great potential for biofuels and bioproducts. However, the cost of cellulolytic enzymes limits the utilization of the low-cost bioresource. This study aimed to develop a consolidated bioprocessing without the need of supplementary cellulase for butyric acid production from lignocellulosic biomass. A stirred-tank reactor with a working volume of 21 L was constructed and operated in batch and semi-continuous fermentation modes with a cellulolytic butyrate-producing microbial community. The semi-continuous fermentation with intermittent discharging of the culture broth and replenishment with fresh medium achieved the highest butyric acid productivity of 2.69 g/(L•d. In semi-continuous operation mode, the butyric acid and total carboxylic acid concentrations of 16.2 and 28.9 g/L, respectively, were achieved. Over the 21-day fermentation period, their cumulative yields reached 1189 and 2048 g, respectively, corresponding to 41% and 74% of the maximum theoretical yields based on the amount of NaOH pretreated rice straw fed in. This study demonstrated that an undefined mixed culture-based consolidated bioprocessing for butyric acid production can completely eliminate the cost of supplementary cellulolytic enzymes.

  19. Consolidated Bioprocessing for Butyric Acid Production from Rice Straw with Undefined Mixed Culture.

    Science.gov (United States)

    Ai, Binling; Chi, Xue; Meng, Jia; Sheng, Zhanwu; Zheng, Lili; Zheng, Xiaoyan; Li, Jianzheng

    2016-01-01

    Lignocellulosic biomass is a renewable source with great potential for biofuels and bioproducts. However, the cost of cellulolytic enzymes limits the utilization of the low-cost bioresource. This study aimed to develop a consolidated bioprocessing without the need of supplementary cellulase for butyric acid production from lignocellulosic biomass. A stirred-tank reactor with a working volume of 21 L was constructed and operated in batch and semi-continuous fermentation modes with a cellulolytic butyrate-producing microbial community. The semi-continuous fermentation with intermittent discharging of the culture broth and replenishment with fresh medium achieved the highest butyric acid productivity of 2.69 g/(L· d). In semi-continuous operation mode, the butyric acid and total carboxylic acid concentrations of 16.2 and 28.9 g/L, respectively, were achieved. Over the 21-day fermentation period, their cumulative yields reached 1189 and 2048 g, respectively, corresponding to 41 and 74% of the maximum theoretical yields based on the amount of NaOH pretreated rice straw fed in. This study demonstrated that an undefined mixed culture-based consolidated bioprocessing for butyric acid production can completely eliminate the cost of supplementary cellulolytic enzymes.

  20. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates.

    Science.gov (United States)

    Wang, Huicong; Ma, Fangfang; Cheng, Lailiang

    2010-07-01

    Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of 'Honeycrisp' apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO(2) assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to "consume" the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.

  1. Photosynthetic rate, dry matter accumulation and yield inter-relationships jn genotypes of rice

    International Nuclear Information System (INIS)

    Devendra, R.; Udaya Kumar, M.; Krishna Sastry, K.S.

    1980-01-01

    The relationship between photosynthetic efficiency, dry matter accumulation and yield in five genotypes of paddy derived from a single cross between Jaya X Halubbalu was studied. Photosynthetic efficiency of younger leaves, on the main tiller was higher than in the older leaves. A significant positive correlation between RuDPcase activity and photosynthetic efficiency was observed in these genotypes. Also a similar positive correlation between dry matter production and photosynthetic efficiency during vegetative period but not during post-anthesis period was observed. Genotypes with high photosynthetic efficiency and also the genotypes with high LAD produced higher dry matter. A reduction in LAD or in photosynthetic efficiency during the post-anthesis period and thus a reduction in source capacity which occurred specially in late types resulted in a lesser ratio between productive and total tillers and also higher percent sterility. Differences in yield amongst the genotypes were not significant, since in the late types MR. 333 and MR. 335, the post-anthesis dry matter production was low due to lesser source capacity. But in the early types, though the total dry matter was less, the post-anthesis source capacity was high. The importance of post-anthesis leaf area of photo-synthetic efficiency in productivity in genotypes of rice is highlighted. (author)

  2. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice.

    Science.gov (United States)

    Xu, Lei; Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang; Yi, Keke

    2017-03-01

    Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice ( Oryza sativa ) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 ( AIM1 ), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1 , likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1 These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. © 2017 American Society of Plant Biologists. All rights reserved.

  3. Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory.

    Science.gov (United States)

    Alamgir, Kabir Md; Hojo, Yuko; Christeller, John T; Fukumoto, Kaori; Isshiki, Ryutaro; Shinya, Tomonori; Baldwin, Ian T; Galis, Ivan

    2016-02-01

    Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non-biassed metabolomics approach to identify many novel herbivory-regulated metabolic signatures in rice. Most were up-regulated by herbivore attack while only a few were suppressed. Two of the most prominent up-regulated signatures were characterized as phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p-coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants. © 2015 John Wiley & Sons Ltd.

  4. Transgenic rice seed expressing flavonoid biosynthetic genes accumulate glycosylated and/or acylated flavonoids in protein bodies

    Science.gov (United States)

    Ogo, Yuko; Mori, Tetsuya; Nakabayashi, Ryo; Saito, Kazuki; Takaiwa, Fumio

    2016-01-01

    Plant-specialized (or secondary) metabolites represent an important source of high-value chemicals. In order to generate a new production platform for these metabolites, an attempt was made to produce flavonoids in rice seeds. Metabolome analysis of these transgenic rice seeds using liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometry was performed. A total of 4392 peaks were detected in both transgenic and non-transgenic rice, 20–40% of which were only detected in transgenic rice. Among these, 82 flavonoids, including 37 flavonols, 11 isoflavones, and 34 flavones, were chemically assigned. Most of the flavonols and isoflavones were O-glycosylated, while many flavones were O-glycosylated and/or C-glycosylated. Several flavonoids were acylated with malonyl, feruloyl, acetyl, and coumaroyl groups. These glycosylated/acylated flavonoids are thought to have been biosynthesized by endogenous rice enzymes using newly synthesized flavonoids whose biosynthesis was catalysed by exogenous enzymes. The subcellular localization of the flavonoids differed depending on the class of aglycone and the glycosylation/acylation pattern. Therefore, flavonoids with the intended aglycones were efficiently produced in rice seeds via the exogenous enzymes introduced, while the flavonoids were variously glycosylated/acylated by endogenous enzymes. The results suggest that rice seeds are useful not only as a production platform for plant-specialized metabolites such as flavonoids but also as a tool for expanding the diversity of flavonoid structures, providing novel, physiologically active substances. PMID:26438413

  5. Effects of soaking and acidification on physicochemical properties of calcium-fortified rice.

    Science.gov (United States)

    Sirisoontaralak, Porntip; Limboon, Pailin; Jatuwong, Sujitra; Chavanalikit, Arusa

    2016-06-01

    Calcium-fortified rice was prepared by soaking milled rice in calcium lactate solution, steaming and drying, and physicochemical properties were determined to evaluate effects of calcium concentration (0, 30, 50 g L(-1) ), soaking temperature (ambient temperature, 40 °C, 60 °C) and acidification. Calcium-fortified rice had less lightness. More total solid loss was observed, especially at high soaking temperature. Harder texture was detected with increased calcium concentration. Calcium fortification lowered pasting viscosity of milled rice. Panelists accepted all fortified rice; however, only rice soaked at 50 g L(-1) concentration could be claimed as a good source of calcium. Increasing of soaking temperature induced more penetration of calcium to rice kernels but calcium was lost more easily after washing. With addition of acetic acid to the soaking solution, enriched calcium content was comparable to that of high soaking temperature but with better retention after washing and calcium solubility was improved. Acid induced reduction of lightness and cooked rice hardness but increased total solid loss and pasting viscosity. Although the taste of acetic acid remained, panelists still accepted the fortified rice. Calcium-fortified rice (190.47-194.3 mg 100 g(-1) ) could be successfully produced by soaking milled rice in 50 g L(-1) calcium lactate solution at 40 °C or at ambient temperature with acidification. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. Selection of D-Alanine-Tolerant Rice Cells

    OpenAIRE

    Hisashi, Manabe; Koji, Ohira; Aizu Junior College of Fukushima Prefecture; Department of Agricultural Chemistry, Faculty of Agriculture, Tohoku University

    1984-01-01

    By repeating subculture of rice cells (parent cells) in a D-alanine containing medium, we could select rice cells which grew well in the D-alanine medium. The D-alanine-tolerant cells absorbed a fairly small amount of D-alanine from the medium and did not accumulate much D-alanine in the cells. Aggregation of D-alanine-tolerant cells was greater than that of parent cells. D-Alanine metabolism of D-alanine.-tolerant cells did not increase in comparison with parent cells.

  7. Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections.

    Directory of Open Access Journals (Sweden)

    Nyuk Ling Ma

    Full Text Available Salinity threat is estimated to reduce global rice production by 50%. Comprehensive analysis of the physiological and metabolite changes in rice plants from salinity stress (i.e. tolerant versus susceptible plants is important to combat higher salinity conditions. In this study, we screened a total of 92 genotypes and selected the most salinity tolerant line (SS1-14 and most susceptible line (SS2-18 to conduct comparative physiological and metabolome inspections. We demonstrated that the tolerant line managed to maintain their water and chlorophyll content with lower incidence of sodium ion accumulation. We also examined the antioxidant activities of these lines: production of ascorbate peroxidase (APX and catalase (CAT were significantly higher in the sensitive line while superoxide dismutase (SOD was higher in the tolerant line. Partial least squares discriminant analysis (PLS-DA score plots show significantly different response for both lines after the exposure to salinity stress. In the tolerant line, there was an upregulation of non-polar metabolites and production of sucrose, GABA and acetic acid, suggesting an important role in salinity adaptation. In contrast, glutamine and putrescine were noticeably high in the susceptible rice. Coordination of different strategies in tolerant and susceptible lines show that they responded differently after exposure to salt stress. These findings can assist crop development in terms of developing tolerance mechanisms for rice crops.

  8. EFFECT OF FERTILIZER ELEMENTS ON LIPIDS ACCUMULATION AND FATTY ACIDS COMPOSITION OF PUMPKIN SEEDS

    Directory of Open Access Journals (Sweden)

    S. M. Nadezhkin

    2013-01-01

    Full Text Available Effect of organic and mineral fertilizers on pumpkin seeds lipids accumulation and their fatty acids com position is investigated. The influence of nutrition's composition on the seeds size, lipids content and concentration of polyunsaturated fatty acids was shown.

  9. The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in rice subjected to heavy metal cadmium stress

    Directory of Open Access Journals (Sweden)

    Liming eYang

    2016-02-01

    Full Text Available The heavy metal cadmium is a common environmental contaminant in soils and has adverse effects on crop growth and development. The signaling processes in plants that initiate cellular responses to environmental stress have been shown to be located in the plasma membrane (PM. A better understanding of the PM proteome in response to environmental stress might provide new insights for improving stress-tolerant crops. Nitric oxide (NO is reported to be involved in the plant response to cadmium (Cd stress. To further investigate how NO modulates protein changes in the plasma membrane during Cd stress, a quantitative proteomics approach based on isobaric tags for relative and absolute quantification (iTRAQ was used to identify differentially regulated proteins from the rice plasma membrane after Cd or Cd and NO treatment. Sixty-six differentially expressed proteins were identified, of which, many function as transporters, ATPases, kinases, metabolic enzymes, phosphatases and phospholipases. Among these, the abundance of phospholipase D (PLD was altered substantially after the treatment of both Cd and Cd and NO. Transient expression of the PLD fused with green fluorescent peptide (GFP in rice protoplasts showed that the Cd and NO treatment promoted the accumulation of PLD in the plasma membrane. Addition of NO also enhanced Cd-induced PLD activity and the accumulation of phosphatidic acid (PA produced through PLD activity. Meanwhile, NO elevated the activities of antioxidant enzymes and caused the accumulation of glutathione both which function to reduce Cd-induced H2O2 accumulation. Taken together, we suggest that NO signaling is associated with the accumulation of antioxidant enzymes, glutathione and PA which increases cadmium tolerance in rice via the antioxidant defense system.

  10. Rice methylmercury exposure and mitigation: a comprehensive review.

    Science.gov (United States)

    Rothenberg, Sarah E; Windham-Myers, Lisamarie; Creswell, Joel E

    2014-08-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation.

    Science.gov (United States)

    Das, Natasha; Bhattacharya, Surajit; Maiti, Mrinal K

    2016-08-01

    One of the most grievous heavy metal pollutants in the environment is cadmium (Cd), which is not only responsible for the crop yield loss owing to its phytotoxicity, but also for the human health hazards as the toxic elements usually accumulate in the consumable parts of crop plants. In the present study, we aimed to isolate and functionally characterize the OsMTP1 gene from indica rice (Oryza sativa L. cv. IR64) to study its potential application for efficient phytoremediation of Cd. The 1257 bp coding DNA sequence (CDS) of OsMTP1 encodes a ∼46 kDa protein belonging to the cation diffusion facilitator (CDF) or metal tolerance/transport protein (MTP) family. The OsMTP1 transcript in rice plant was found to respond during external Cd stress. Heterologous expression of OsMTP1 in tobacco resulted in the reduction of Cd stress-induced phytotoxic effects, including growth inhibition, lipid peroxidation, and cell death. Compared to untransformed control, the transgenic tobacco plants showed enhanced vacuolar thiol content, indicating vacuolar localization of the sequestered Cd. The transgenic tobacco plants exhibited significantly higher biomass growth (2.2-2.8-folds) and hyperaccumulation of Cd (1.96-2.22-folds) compared to untransformed control under Cd exposure. The transgenic plants also showed moderate tolerance and accumulation of arsenic (As) upon exogenous As stress, signifying broad substrate specificity of OsMTP1. Together, findings of our research suggest that the transgenic tobacco plants overexpressing OsMTP1 with its hyperaccumulating activity and increased growth rate could be useful for future phytoremediation applications to clean up the Cd-contaminated soil. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Gama-aminobutyric acid accumulation in Elsholtzia splendens in response to copper toxicity*

    OpenAIRE

    Yang, Xiao-e; Peng, Hong-yun; Tian, Sheng-ke

    2005-01-01

    A solution with different Cu supply levels was cultured to investigate gama-aminobutyric acid (GABA) accumulation in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species. Increasing Cu from 0.25 to 500 μmol/L significantly enhanced levels of GABA and histidine (His), but considerably decreased levels of aspartate (Asp) and glutamate (Glu) in the leaves. The leaf Asp level negatively correlated with leaf Cu level, while leaf GABA level positively correlated with le...

  13. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    Science.gov (United States)

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands.

  14. Mechanistic Bases of Neurotoxicity Provoked by Fatty Acids Accumulating in MCAD and LCHAD Deficiencies

    Directory of Open Access Journals (Sweden)

    Alexandre U. Amaral PhD

    2017-03-01

    Full Text Available Fatty acid oxidation defects (FAODs are inherited metabolic disorders caused by deficiency of specific enzyme activities or transport proteins involved in the mitochondrial catabolism of fatty acids. Medium-chain fatty acyl-CoA dehydrogenase (MCAD and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD deficiencies are relatively common FAOD biochemically characterized by tissue accumulation of medium-chain fatty acids and long-chain 3-hydroxy fatty acids and their carnitine derivatives, respectively. Patients with MCAD deficiency usually have episodic encephalopathic crises and liver biochemical alterations especially during crises of metabolic decompensation, whereas patients with LCHAD deficiency present severe hepatopathy, cardiomyopathy, and acute and/or progressive encephalopathy. Although neurological symptoms are common features, the underlying mechanisms responsible for the brain damage in these disorders are still under debate. In this context, energy deficiency due to defective fatty acid catabolism and hypoglycemia/hypoketonemia has been postulated to contribute to the pathophysiology of MCAD and LCHAD deficiencies. However, since energetic substrate supplementation is not able to reverse or prevent symptomatology in some patients, it is presumed that other pathogenetic mechanisms are implicated. Since worsening of clinical symptoms during crises is accompanied by significant increases in the concentrations of the accumulating fatty acids, it is conceivable that these compounds may be potentially neurotoxic. We will briefly summarize the current knowledge obtained from patients with these disorders, as well as from animal studies demonstrating deleterious effects of the major fatty acids accumulating in MCAD and LCHAD deficiencies, indicating that disruption of mitochondrial energy, redox, and calcium homeostasis is involved in the pathophysiology of the cerebral damage in these diseases. It is presumed that these findings based on the

  15. [The main nutrients digestibility of genetically modified rice and parental rice in the terminal ileum of pigs].

    Science.gov (United States)

    Li, Min; Hu, Yi-chun; Piao, Jian-hua; Yang, Xiao-guang

    2010-10-01

    To compare the digestibility of main nutrients in genetically modified rice with double antisense starch-branching enzyme gene and parental rice. Seven Wuzhishan healthy adult barrows were surgically fitted with a T-cannula at the terminal ileum. After surgery, seven pigs were randomly divided into two groups, and fed genetically modified rice and parental rice by a crossover model. Ileal digesta were collected for analysis of main nutrient digestibility. The apparent digestibility levels of protein in genetically modified rice and parental rice were 69.50% ± 4.50%, 69.61% ± 8.40%, respectively (t = 0.01, P = 0.994); true digestibility levels of protein were 87.55% ± 4.95%, 87.64% ± 9.40%, respectively (t = 0.01, P = 0.994); fat digestibility levels were 72.86% ± 0.34%, 77.89% ± 13.09%, respectively (t = 0.95, P = 0.378); carbohydrate digestibility levels were 72.92% ± 7.43%, 92.35% ± 5.88%, respectively (t = 4.27, P = 0.005). The apparent and true digestibility of 17 amino acids had no significant difference in the two rice. Carbohydrate digestibility in genetically modified rice was significantly lower than that in non-genetically modified rice, other main nutrients digestibility in the two rice have substantial equivalence.

  16. Production and accumulation of UV-B [ultra violet] absorbing compounds in UV-B irradiated leaves of rice, Oryza SativaL.: effects of varying UV-B doses on leaf damage, phenolic content and HPLC [high performance liquid chromatography] peak I area

    International Nuclear Information System (INIS)

    Caasi-Lit, M.T.

    2005-01-01

    The effects of varying UV-B doses on leaf damage, phenolic content and HPLC peak 1 area were studied using 65-d-old plants of the UV-B tolerant rice cultivar, M202, and the UV-B susceptible rice cultivar, Dular. Results showed that the production and accumulation of UV-B- absorbing compounds in rice leaves were affected by leaf position and levels (dose) of UV-B and time or duration of UV-B irradiation or exposure. The youngest terminal leaves showed the least damage when exposed to medium and high UV-B doses. The production of these absorptive compounds as represented by relative phenolic and HPLC peak 1 were significantly higher in younger leaves and lower in older or senescing leaves. M202 showed significantly higher amounts of peak 1 area and relative phenolic compared to UV-B susceptible rice cultivar, Dular. The results also confirmed the strong relationship of overall damage rating and area of HPLC peak 1. The development of UV-B symptoms in the susceptible cultivar was hastened when a high UV-B treatment was applied. Peak 1 area did not accumulate in the UV-B susceptible Dular at any given UV-B dose

  17. Rice methylmercury exposure and mitigation: a comprehensive review

    Science.gov (United States)

    Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.

    2014-01-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, price percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion.

  18. The Caryopsis of Red-Grained Rice Has Enhanced Resistance to Fungal Attack

    Directory of Open Access Journals (Sweden)

    Alberto Gianinetti

    2018-06-01

    Full Text Available Seed persistence in the soil is threatened by microorganisms, but the seed coat helps protect the seed from them. Although modern rice (Oryza sativa L. cultivars have a whitish caryopsis, some varieties have a red caryopsis coat, a trait typical of wild Oryza species. The red colour is due to the oxidation of proanthocyanidins, a class of flavonoids that is found in the outer layers of the seed in many species. We aimed to assess whether these natural compounds (proanthocyanidins and proanthocyanidin-derived pigment have some protective effect against microbial attacks. Dehulled caryopses of white-grained and red-grained rice genotypes were employed to assay fungal infection. Specifically, three white-grained rice cultivars (Perla, Augusto, and Koral and three red-grained rice varieties (Perla Rosso, Augusto Rosso, and Koral Rosso were used. In a first test, the caryopses were infected with Epicoccum nigrum at 10 °C, and seedling growth was then assessed at 30 °C. In a second test, the degree of infection by the mycotoxigenic fungus Fusarium sporotrichioides was assayed by measuring the accumulation of T-2/HT-2 toxins in the caryopses. Infection was performed at 10 °C to prevent rice germination while allowing fungal growth. In both the tests, red caryopses showed reduced, or delayed, infection with respect to white ones. One black-grained cultivar (Venere was assayed for the accumulation of T-2/HT-2 toxins as well, with results corresponding to those of the red-grained rice varieties. We argue that the red pigment accumulating in the caryopsis coat, and/or the proanthocyanidins associated with it, provides a protective barrier against challenging microorganisms.

  19. Assessment of human dietary exposure to arsenic through rice.

    Science.gov (United States)

    Davis, Matthew A; Signes-Pastor, Antonio J; Argos, Maria; Slaughter, Francis; Pendergrast, Claire; Punshon, Tracy; Gossai, Anala; Ahsan, Habibul; Karagas, Margaret R

    2017-05-15

    Rice accumulates 10-fold higher inorganic arsenic (i-As), an established human carcinogen, than other grains. This review summarizes epidemiologic studies that examined the association between rice consumption and biomarkers of arsenic exposure. After reviewing the literature we identified 20 studies, among them included 18 observational and 2 human experimental studies that reported on associations between rice consumption and an arsenic biomarker. Among individuals not exposed to contaminated water, rice is a source of i-As exposure - rice consumption has been consistently related to arsenic biomarkers, and the relationship has been clearly demonstrated in experimental studies. Early-life i-As exposure is of particular concern due to its association with lifelong adverse health outcomes. Maternal rice consumption during pregnancy also has been associated with infant toenail total arsenic concentrations indicating that dietary exposure during pregnancy results in fetal exposure. Thus, the collective evidence indicates that rice is an independent source of arsenic exposure in populations around the world and highlights the importance of investigating its affect on health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. [Mechanisms for the increased fertilizer nitrogen use efficiency of rice in wheat-rice rotation system under combined application of inorganic and organic fertilizers].

    Science.gov (United States)

    Liu, Yi-Ren; Li, Xiang; Yu, Jie; Shen, Qi-Rong; Xu, Yang-Chun

    2012-01-01

    A pot experiment was conducted to study the effects of combined application of organic and inorganic fertilizers on the nitrogen uptake by rice and the nitrogen supply by soil in a wheat-rice rotation system, and approach the mechanisms for the increased fertilizer nitrogen use efficiency of rice under the combined fertilization from the viewpoint of microbiology. Comparing with applying inorganic fertilizers, combined application of organic and inorganic fertilizers decreased the soil microbial biomass carbon and nitrogen and soil mineral nitrogen contents before tillering stage, but increased them significantly from heading to filling stage. Under the combined fertilization, the dynamics of soil nitrogen supply matched best the dynamics of rice nitrogen uptake and utilization, which promoted the nitrogen accumulation in rice plant and the increase of rice yield and biomass, and increased the fertilizer nitrogen use efficiency of rice significantly. Combined application of inorganic and organic fertilizers also promoted the propagation of soil microbes, and consequently, more mineral nitrogen in soil was immobilized by the microbes at rice early growth stage, and the immobilized nitrogen was gradually released at the mid and late growth stages of rice, being able to better satisfy the nitrogen demand of rice in its various growth and development stages.

  1. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon

    Science.gov (United States)

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar ‘203Z’ and its near-isogenic line (NIL) ‘SW’ (in the ‘203Z’ background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening. PMID:29324867

  2. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.

    Directory of Open Access Journals (Sweden)

    Lei Gao

    Full Text Available Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar '203Z' and its near-isogenic line (NIL 'SW' (in the '203Z' background were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy, sucrose-phosphate synthase (SPSs, insoluble acid invertases (IAI, NAD-dependent malate dehydrogenase (NAD-cyt MDH, aluminum-activated malate transporter (ALMT, and citrate synthase (CS. This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.

  3. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.

    Science.gov (United States)

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling; Liu, Wenge

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar '203Z' and its near-isogenic line (NIL) 'SW' (in the '203Z' background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.

  4. Kinetic parameters of silicon uptake by rice cultivars

    Directory of Open Access Journals (Sweden)

    Priscila Oliveira Martins

    2012-02-01

    Full Text Available Silicon is considered an important chemical element for rice, because it can improve tolerance to biotic and abiotic stress. However, in many situations no positive effect of silicon was observed, probably due to genetic factors. The objective of this research was to monitor Si uptake kinetics and identify responses of rice cultivars in terms of Si uptake capacity and use. The experiment was carried out in a greenhouse of the São Paulo State University (UNESP, Brazil. The experiment was arranged in a completely randomized, factorial design with three replications. that consisted of two rice cultivars and two Si levels. Kinetic parameters (Vmax, Km, and Cmin, root morphology variables, dry matter yield, Si accumulation and levels in shoots and roots, uptake efficiency, utilization efficiency, and root/shoot ratio were evaluated. Higher Si concentrations in the nutrient solution did not increase rice dry matter. The development of the low-affinity silicon uptake system of the rice cultivar 'Caiapó' was better than of 'Maravilha'.

  5. Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice (Oryza sativa L.).

    Science.gov (United States)

    Huang, Qingqing; Yu, Yao; Wan, Yanan; Wang, Qi; Luo, Zhang; Qiao, Yuhui; Su, Dechun; Li, Huafen

    2018-06-01

    A four-year field trial was conducted in a rice paddy in southern China to determine the effects of continuous phosphate fertilizer, pig manure, chicken manure, and sewage sludge application on soil Cd accumulation in soil and Cd uptake by rice. The results showed that continuous application of fertilizers with higher Cd levels caused Cd to accumulate and redistribute in various soil fractions. In turn, these effects influenced Cd bioavailability in rice plants. After four years of phosphate fertilizer, pig manure, chicken manure, and sewage sludge application, the annual soil Cd accumulation rates were 0.007-0.032 mg kg -1 , 0.005-0.022 mg kg -1 , 0.002-0.013 mg kg -1 , and 0.032-0.087 mg kg -1 , respectively. Relative to the control, the pig- and chicken manure treatments significantly increased soil pH and reduced DTPA-extractable Cd (DTPA-Cd) and the exchangeable Cd fraction (Exc-Cd). In contrast, sewage sludge application significantly increased DTPA-Cd and Cd in all soil fractions. Phosphate fertilization had no significant effect on soil pH, DTPA-Cd, or Exc-Cd. Pearson's correlation coefficients showed that the rice grain Cd levels varied directly with DTPA-Cd, and Exc-Cd but inversely with soil pH. Pig- or chicken manure decreased rice grain Cd content, but sewage sludge increased both soil Cd availability and rice grain Cd uptake. Application of phosphate fertilizer had no significant effect on rice grain Cd content. The continuous use of organic- or phosphate fertilizer with elevated Cd content at high application rates may induce soil Cd accumulation and influence rice grain Cd accumulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. UV-irradiation enhances rice allelopathic potential in rhizosphere soil

    DEFF Research Database (Denmark)

    Mahmood, Khalid; Khan, Muhammad Bismillah; Song, Yuan Yuan

    2013-01-01

    Ultraviolet-B radiation is rising continuously due to stratospheric ozone depletion over temperate latitudes. This study investigated effects of UV exposure on rice allelopathic potentials. For this purpose, two rice (Oryza sativa L.) cultivars BR-41 (high allelopathic = able to inhibit neighboring...... grass and lettuce). These bioassays showed significant inhibition in lettuce and barnyard growth after UV in both rice cultivars. Interestingly, Huajingxian, which did not exhibit allelopathic potential in absence of UV showed significant inhibition after UV exposure. Phenolics, enzymes activities...... and genes responsible for biosynthesis of allelopathic compounds were examined after UV exposure. Phenolic compounds accumulated in rice leaves were quantified through HPLC analysis. They were significantly higher in BR-41 leaves after UV exposure. Enzyme activities (PAL and C4H) were significantly higher...

  7. One-step production of biodiesel from rice bran oil catalyzed by chlorosulfonic acid modified zirconia via simultaneous esterification and transesterification.

    Science.gov (United States)

    Zhang, Yue; Wong, Wing-Tak; Yung, Ka-Fu

    2013-11-01

    Due to the high content (25-50%) of free fatty acid (FFA), crude rice bran oil usually requires a two steps conversion or one step conversion with very harsh condition for simultaneous esterification and transesterification. In this study, chlorosulfonic acid modified zirconia (HClSO3-ZrO2) with strong acidity and durability is prepared and it shows excellent catalytic activity toward simultaneous esterification and transesterification. Under a relative low reaction temperature of 120 °C, HClSO3-ZrO2 catalyzes a complete conversion of simulated crude rice bran oil (refined oil with 40 wt% FFA) into biodiesel and the conversion yield keep at above 92% for at least three cycles. Further investigation on the tolerance towards FFA and water reveals that it maintains high activity even with the presence of 40 wt% FFA and 3 wt% water. It shows that HClSO3-ZrO2 is a robust and durable catalyst which shows high potential to be commercial catalyst for biodiesel production from low grade feedstock. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Mitigating arsenic contamination in rice plants with an aquatic fern, Marsilea minuta.

    Science.gov (United States)

    Hassi, Ummehani; Hossain, Md Tawhid; Huq, S M Imamul

    2017-10-10

    Dangers of arsenic contamination are well known in human civilization. The threat increases when arsenic is accumulated in food and livestock through irrigated crops or animal food. Hence, it is important to mitigate the effects of arsenic as much as possible. This paper discusses a process for reducing the level of arsenic in different parts of rice plants with an aquatic fern, Marsilea minuta L. A pot experiment was done to study the possibility of using Marsilea minuta as a phytoremediator of arsenic. Rice and Marsilea minuta were allowed to grow together in soils. As a control, Marsilea minuta was also cultured alone in the presence and absence of arsenic (applied at 1 mg/L as irrigation water). We did not find any significant change in the growth of rice due to the association of Marsilea minuta, though it showed a reduction of approximately 58.64% arsenic accumulation in the roots of rice grown with the association of fern compared to that grown without fern. We measured a bioaccumulation factor (BF) of > 5.34, indicating that Marsilea minuta could be a good phytoremediator of arsenic in rice fields.

  9. Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor-induced flavonol glycoside accumulation of Ginkgo biloba cells.

    Science.gov (United States)

    Xu, Maojun; Dong, Jufang; Wang, Huizhong; Huang, Luqi

    2009-08-01

    The antagonistic action between jasmonic acid (JA) and salicylic acid (SA) in plant defence responses has been well documented. However, their relationship in secondary metabolite production is largely unknown. Here, we report that PB90, a protein elicitor from Phytophthora boehmeriae, triggers JA generation, SA accumulation and flavonol glycoside production of Ginkgo biloba cells. JA inhibitors suppress not only PB90-triggered JA generation, but also the elicitor-induced flavonol glycoside production. However, the elicitor can still enhance flavonol glycoside production even though the JA generation is totally inhibited. Over-expression of SA hydrolase gene NahG not only abolishes SA accumulation, but also suppresses the elicitor-induced flavonol glycoside production when JA signalling is inhibited. Interestingly, expression of NahG does not inhibit the elicitor-induced flavonol glycoside accumulation in the absence of JA inhibitors. Moreover, JA levels are significantly enhanced when SA accumulation is impaired in the transgenic cells. Together, the data suggest that both JA and SA are involved in PB90-induced flavonol glycoside production. Furthermore, we demonstrate that JA signalling might be enhanced to substitute for SA to mediate the elicitor-induced flavonol glycoside accumulation when SA signalling is impaired, which reveals an unusual complementary relationship between JA and SA in mediating plant secondary metabolite production.

  10. Growth-inhibition patterns and transfer-factor profiles in arsenic-stressed rice (Oryza sativa L.).

    Science.gov (United States)

    Jung, Ha-Il; Lee, Jinwook; Chae, Mi-Jin; Kong, Myung-Suk; Lee, Chang-Hoon; Kang, Seong-Soo; Kim, Yoo-Hak

    2017-11-16

    Arsenic (As) accumulation in rice owing to uptake from the soil is a critical human health issue. Here, we studied the chemical properties of As-treated soils, growth inhibition patterns of As-stressed rice plants, changes in the As content of soil and soil solutions, and the relationship between As accumulation and As transfer factor from the soil to the rice organs. Rice plants were cultivated in a greenhouse under four concentrations of As: 0 (control), 25, 50, and 75 mg kg -1 . A significant positive correlation was found between available P 2 O 5 and exchangeable K and between As concentration and available P 2 O 5 or exchangeable K. The As concentration for 50% shoot growth inhibition was 50 mg kg -1 . As levels in roots and shoots were positively correlated with the growth stages of rice. The transfer factor (TF) root/soil increased with As concentration at the tillering stage but decreased at the heading stage. TF root/soil and TF shoot/soil were higher at the heading stage than at the tillering stage. As accumulation in the 25 mg kg -1 treatment was higher during the heading stage, whereas no difference was found at the tillering stage. As accumulation was related to plant biomass and soil As concentration. We found that As accumulation was greater at As concentrations that allowed for plant growth and development. Thus, species-specific threshold concentrations must be determined based on As phytotoxicity for the phytoremediation of As-contaminated soils. Hence, developing practical approaches for managing safe crop production in farmlands with an As contamination of 25 mg kg -1 or less is necessary.

  11. Impact of bio-processing on rice

    Directory of Open Access Journals (Sweden)

    ANCA NICOLAU

    2011-07-01

    Full Text Available The usual way of preparing rice is boiling, thermal process that gives it a lower digestibility as compared to instantiation, extrusion or expandation. Having in view this fact, the possibility to biotechnologically improve the boiled rice digestibility was investigated in a laboratory study. In this respect, boiled rice wassolid state fermented using a strain of Saccharomycopsis fibuligera, an amylase producing yeast originating from ragi. Fermented rice was then analyzed from the point of view of its content in easily assimilable sugars, protein, amino-acids, phosphorus and vitamins from B group. Biochemical analyses revealed that the fermented rice has a ten times higher content of reducing sugars than boiled rice, due to starch hydrolysis, while chromatographic studies proved that the fermented rice contains glucose, maltose, maltotriose and maltotetrose that are easily assimilable carbohydrates.Fermented rice has a protein content that is two times higher than that of boiled rice because it contains the yeast biomass, and is enriched in vitamins from B group (B1, B2, and B6 that are synthesized by the yeast. Inorganic phosphorus present in rice doubles its concentration in fermented rice, which means thatphosphorus bioavailability is increased.The sensorial profile of boiled rice is also improved by fermentation.This study proves the possibility to have a processing method which is relatively cheap, practical and of which the resulting product has good nutritive qualities and does not pose safety problems due to pure culture utilization as starter.

  12. Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage

    Directory of Open Access Journals (Sweden)

    Sumitahnun Chunthaburee

    2016-07-01

    Full Text Available Salinity tolerance levels and physiological changes were evaluated for twelve rice cultivars, including four white rice and eight black glutinous rice cultivars, during their seedling stage in response to salinity stress at 100 mM NaCl. All the rice cultivars evaluated showed an apparent decrease in growth characteristics and chlorophyll accumulation under salinity stress. By contrast an increase in proline, hydrogen peroxide, peroxidase (POX activity and anthocyanins were observed for all cultivars. The K+/Na+ ratios evaluated for all rice cultivars were noted to be highly correlated with the salinity scores thus indicating that the K+/Na+ ratio serves as a reliable indicator of salt stress tolerance in rice. Principal component analysis (PCA based on physiological salt tolerance indexes could clearly distinguish rice cultivars into 4 salt tolerance clusters. Noteworthy, in comparison to the salt-sensitive ones, rice cultivars that possessed higher degrees of salt tolerance displayed more enhanced activity of catalase (CAT, a smaller increase in anthocyanin, hydrogen peroxide and proline content but a smaller drop in the K+/Na+ ratio and chlorophyll accumulation.

  13. Rice Bran Oil: A Versatile Source for Edible and Industrial Applications.

    Science.gov (United States)

    Pal, Yogita P; Pratap, Amit P

    2017-01-01

    Rice bran oil (RBO) is healthy gift generously given by nature to mankind. RBO is obtained from rice husk, a byproduct of rice milling industry and is gaining lot of importance as cooking oil due to presence of important micronutrient, gamma oryzanol. Its high smoke point is beneficial for its use for frying and deep frying of food stuff. It is popular because of balanced fatty acid profile (most ideal ratio of saturated, monounsaturated and polyunsaturated fatty acids), antioxidant capacity, and cholesterollowering abilities. Rice bran wax which is secondary by-product obtained as tank settling from RBO is used as a substitute for carnauba wax in cosmetics, confectionery, shoe creams etc. It can be also used as a source for fatty acid and fatty alcohol. The article is intended to highlight for the importance of RBO and its applications.

  14. Adsorption and absorption of polycyclic aromatic hydrocarbons to rice roots

    International Nuclear Information System (INIS)

    Jiao, X.C.; Xu, F.L.; Dawson, R.; Chen, S.H.; Tao, S.

    2007-01-01

    Rice roots and surrounding air, soil and water samples were collected for polycyclic aromatic hydrocarbon (PAH) analysis. The rice roots were separated into lateral roots and nodal roots, and the PAH concentration in the former was found to be higher than that in the latter. In addition, root physiological characteristics including root biotic mass, root lipid content and specific surface area are also discussed. When normalizing the total, adsorption and absorption PAH fractions on a dry root weight basis to root biomass, root lipid, and surface area bases respectively, the differences between PAHs in the two types of roots diminished by 2 to 3 times on average. Results from sequential extraction indicated that PAHs were more easily absorbed by interior rice roots than adsorbed on the surface. In addition, more than 60% of total PAHs accumulated in root tissue for both lateral and nodal roots. However, the results were highly related to the solvent used, extraction time and methodology. Correlation analysis between bioconcentration factors (root over environment) and K OA , K OW showed water to be more significant for PAH adsorption in rice roots than other environmental media. - A sequential extraction method was applied to divide the PAHs accumulated on rice roots into PAHs in root exudates, PAHs adsorbed on root surfaces, and PAHs absorbed in root tissue

  15. Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry

    KAUST Repository

    Kyriacou, Bianca; Moore, Katie L.; Paterson, David J.; De Jonge, Martin Daly; Howard, Daryl Lloyd; Stangoulis, James Constantine R; Tester, Mark A.; Lombi, E.; Johnson, Alexander A T

    2014-01-01

    Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.

  16. Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry

    KAUST Repository

    Kyriacou, Bianca

    2014-03-01

    Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.

  17. Assessing arsenic intake from groundwater and rice by residents in Prey Veng province, Cambodia

    International Nuclear Information System (INIS)

    Phan, Kongkea; Phan, Samrach; Heng, Savoeun; Huoy, Laingshun; Kim, Kyoung-Woong

    2014-01-01

    We investigated total daily intake of As by residents in Prey Veng province in the Mekong River basin of Cambodia. Groundwater (n = 11), rice (n = 11) and fingernail (n = 23) samples were randomly collected from the households and analyzed for total As by inductively coupled plasma mass spectrometry. Calculation indicated that daily dose of inorganic As was greater than the lower limits on the benchmark dose for a 0.5% increased incidence of lung cancer (BMDL 0.5 equals to 3.0 μg d −1 kg −1 body wt. ). Moreover, positive correlation between As in fingernail and daily dose of As from groundwater and rice and total daily dose of As were found. These results suggest that the Prey Veng residents are exposed to As in groundwater. As in rice is an additional source which is attributable to high As accumulation in human bodies in the Mekong River basin of Cambodia. -- Highlights: • We investigated total daily intake of As in Prey Veng province of Cambodia. • Residents in Prey Veng study area are at risk of As in groundwater. • As in rice is an additional source for high As accumulation in human bodies. -- Calculation of total daily intake indicated that Prey Veng residents are at risk of As in groundwater while As in rice is an additional source for high As accumulation in human bodies

  18. Evaluation of nitric and acetic acid resistance of cement mortars containing high-volume black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2014-01-15

    This paper presents the performance of cement mortar containing black rice husk ash (BRHA) under nitric and acetic acid attacks. The BRHA, collected from an electrical generating power plant that uses rice husk as fuel, was ground using a grinding machine. The compressive strength loss, weight loss, and expansion of mortars under nitric and acetic acid attack were investigated. The test results of BRHA properties in accordance with the ASTM C 618 standard found that the optimal grinding time was 4 h as this achieved a Blaine fineness of 5370 cm(2)/g. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 20%, 30%, 40%, and 50% by weight of binder. The water-to-binder ratios were 0.55, 0.60, and 0.65. From test results, when the percentage replacements of BRHA in cement increased, it was observed that the strength loss and weight loss of mortars containing BRHA under acetic acid attack were higher than those of the mortars against nitric acid attack. It was found that, of the various BHRA mortars, the strength loss and weight loss due to nitric and acetic acid attacks were the lowest in the mortar with 10% BRHA replacement. For 10%, 20% and 30% BRHA replacements, the rate of expansion of the BRHA mortar decreased when compared with the control mortar. For the mortars with other percentage replacements of BRHA, the rate of expansion increased. Furthermore, the effective water-to-binder ratios of control and BRHA mortars were the primary factor for determining the durability of mortar mixed with BRHA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Streptomyces clavuligerus shows a strong association between TCA cycle intermediate accumulation and clavulanic acid biosynthesis.

    Science.gov (United States)

    Ramirez-Malule, Howard; Junne, Stefan; Nicolás Cruz-Bournazou, Mariano; Neubauer, Peter; Ríos-Estepa, Rigoberto

    2018-05-01

    Clavulanic acid (CA) is produced by Streptomyces clavuligerus (S. clavuligerus) as a secondary metabolite. Knowledge about the carbon flux distribution along the various routes that supply CA precursors would certainly provide insights about metabolic performance. In order to evaluate metabolic patterns and the possible accumulation of tricarboxylic acid (TCA) cycle intermediates during CA biosynthesis, batch and subsequent continuous cultures with steadily declining feed rates were performed with glycerol as the main substrate. The data were used to in silico explore the metabolic capabilities and the accumulation of metabolic intermediates in S. clavuligerus. While clavulanic acid accumulated at glycerol excess, it steadily decreased at declining dilution rates; CA synthesis stopped when glycerol became the limiting substrate. A strong association of succinate, oxaloacetate, malate, and acetate accumulation with CA production in S. clavuligerus was observed, and flux balance analysis (FBA) was used to describe the carbon flux distribution in the network. This combined experimental and numerical approach also identified bottlenecks during the synthesis of CA in a batch and subsequent continuous cultivation and demonstrated the importance of this type of methodologies for a more advanced understanding of metabolism; this potentially derives valuable insights for future successful metabolic engineering studies in S. clavuligerus.

  20. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils

    International Nuclear Information System (INIS)

    Kuo, S.; Lai, M.S.; Lin, C.W.

    2006-01-01

    Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1 ± 0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl 2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them

  1. Characterization of cytoplasmic male sterility of rice with Lead Rice cytoplasm in comparison with that with Chinsurah Boro II cytoplasm.

    Science.gov (United States)

    Itabashi, Etsuko; Kazama, Tomohiko; Toriyama, Kinya

    2009-02-01

    Rice with LD-type cytoplasmic male sterility (CMS) possesses the cytoplasm of 'Lead Rice' and its fertility is recovered by a nuclear fertility restorer gene Rf1. Rf1 promotes processing of a CMS-associated mitochondrial RNA of atp6-orf79, which consists of atp6 and orf79, in BT-CMS with the cytoplasm of 'Chinsurah Boro II'. In this study, we found that LD-cytoplasm contained a sequence variant of orf79 downstream of atp6. Northern blot analysis showed that atp6-orf79 RNA of LD-cytoplasm was co-transcribed and was processed in the presence of Rf1 in the same manner as in BT-cytoplasm. Western blot analysis showed that the ORF79 peptide did not accumulate in an LD-CMS line, while ORF79 accumulated in a BT-CMS line and was diminished by Rf1. These results suggest that accumulation of ORF79 is not the cause of CMS in LD-cytoplasm and the mechanism of male-sterility induction/fertility restoration in LD-CMS is different from that in BT-CMS.

  2. Analysis and comparison of fragrant gene sequence in some rice cultivars

    Directory of Open Access Journals (Sweden)

    Karami Noushafarin

    2016-01-01

    Full Text Available It is known that the fragrant trait in rice (Oryza sativa L. is largely controlled by fgr gene on chromosome 8 and it has been specified that the existence of an 8 bp deletion and three single nucleotide polymorphism (SNP in exon 7 is effective on this trait. In this study, sequence alignment analysis of fgr exon7 on chromosome 8 for 11 different fragrant and non-fragrant cultivars revealed that 5 aromatic rice cultivars carried 3 SNPs and 8 bp deletion in exon7 which terminates prematurely at a TAA stop codon. However, 5 of the non-aromatics showed a sequence identical to the published Nipponbare, being non-fragrant Japonica variety sequence. An exception among them was Bejar, which had 8 bp deletion and 3SNPs but it was non-aromatic. Sequencing can determine nucleotide alignment of a gene and give beneficial information about gene function. In silico prediction showed proteins sequences alignment of fgr gene for Khazar and Domsiah genotypes were different. Betaine aldehyde dehydrogenase complete enzyme belongs to Khazar non-fragrant genotype that has complete length and 503 amino acids while non-functional BADH2 enzyme for Domsiah fragrant genotype has 251 amino acids that result in accumulate 2-acetyl-1-pyrroline (2AP and produces aroma in fragrant genotypes.

  3. Use of Agro-Residues (Rice Husk) in Removal of some Radioisotopes from their Waste Solutions

    International Nuclear Information System (INIS)

    Omar, H.A.

    2011-01-01

    Removal of some radioisotopes namely ( 152 + 154 )Eu and 60 Co from radioactive waste solutions by natural rice husk (NRh) and modified rice husk with different concentrations of citric acid (MCA) had been investigated. The obtained results indicated that the modification of rice husk using citric acid generated large population of surface acid sites and improved the adsorption characteristics of adsorbent. Characterization by infrared spectroscopy and surface area were carried out for both non-modified and modified rice husk samples. The influences of ph, contact time and initial metal ion concentration on sorption had been reported. Pseudo first-order and intra particle diffusion models were used to analyze the sorption rate data. Equilibrium isotherms were determined to assess the maximum sorption capacity of both studied radionuclides on rice husk and modified rice husk. The equilibrium sorption data were analyzed using Freundlich and Langmuir isotherm models. The tested models fit the data reasonably well in terms of regression coefficients. The maximum sorption capacity of modified rice husk was found to be greater than that of rice husk for both ions.

  4. Superabsorbent nanocomposite synthesis of cellulose from rice husk grafted poly(acrylate acid-co-acrylamide)/bentonite

    Science.gov (United States)

    Helmiyati; Abbas, G. H.; Kurniawan, S.

    2017-04-01

    Superabsorbent nanocomposite synthesis of cellulose rice husk as the backbone with free radical polymerization method in copolymerization grafted with acrylic acid and acrylamide monomer. The cellulose was isolated from rice husk with mixture of toluene and ethanol and then hemicellulose and lignin were removed by using potassium hydroxide 4% and hydrogen peroxide 2%. The obtained cellulose rendement was 37.85%. The functional group of lignin analyzed by FTIR spectra was disappeared at wavenumber 1724 cm-1. Crystal size of the obtained isolated cellulose analyzed by XRD diffraction pattern was 34.6 nm, indicated the nanocrystal structure. Copolymerization was performed at temperature of 70°C with flow nitrogen gas. Initiator and crosslinking agent used were potassium persulfate and N‧N-methylene-bis-acrylamide. The swelling capacity of water and urea showed the results was quite satisfactory, the maximum swelling capacity in urea and water were 611.700 g/g and 451.303 g/g, respectively, and can be applied in agriculture to absorb water and urea fertilizer.

  5. Bacillus amyloliquefaciens Confers Tolerance to Various Abiotic Stresses and Modulates Plant Response to Phytohormones through Osmoprotection and Gene Expression Regulation in Rice

    Directory of Open Access Journals (Sweden)

    Shalini Tiwari

    2017-08-01

    Full Text Available Being sessile in nature, plants have to withstand various adverse environmental stress conditions including both biotic and abiotic stresses. Comparatively, abiotic stresses such as drought, salinity, high temperature, and cold pose major threat to agriculture by negatively impacting plant growth and yield worldwide. Rice is one of the most widely consumed staple cereals across the globe, the production and productivity of which is also severely affected by different abiotic stresses. Therefore, several crop improvement programs are directed toward developing stress tolerant rice cultivars either through marker assisted breeding or transgenic technology. Alternatively, some known rhizospheric competent bacteria are also known to improve plant growth during abiotic stresses. A plant growth promoting rhizobacteria (PGPR, Bacillus amyloliquefaciens NBRI-SN13 (SN13 was previously reported by our lab to confer salt stress tolerance to rice seedlings. However, the present study investigates the role of SN13 in ameliorating various abiotic stresses such as salt, drought, desiccation, heat, cold, and freezing on a popular rice cv. Saryu-52 under hydroponic growth conditions. Apart from this, seedlings were also exogenously supplied with abscisic acid (ABA, salicylic acid (SA, jasmonic acid (JA and ethephon (ET to study the role of SN13 in phytohormone-induced stress tolerance as well as its role in abiotic and biotic stress cross-talk. All abiotic stresses and phytohormone treatments significantly affected various physiological and biochemical parameters like membrane integrity and osmolyte accumulation. SN13 also positively modulated stress-responsive gene expressions under various abiotic stresses and phytohormone treatments suggesting its multifaceted role in cross-talk among stresses and phytohormones in response to PGPR. To the best of our knowledge, this is the first report on detailed analysis of plant growth promotion and stress alleviation by a

  6. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

    International Nuclear Information System (INIS)

    Norton, Gareth J.; Adomako, Eureka E.; Deacon, Claire M.; Carey, Anne-Marie; Price, Adam H.; Meharg, Andrew A.

    2013-01-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. -- Highlights: ► High soil arsenic and organic matter caused a reduction in plant growth. ► A delayed flowering time was observed in high arsenic and organic matter soil. ► Total grain arsenic increased in high arsenic and organic matter soil. ► Percentage organic arsenic in the grain altered in arsenic and organic matter soil. -- The addition of high amounts of organic matter to soils led to an increase in total rice grain arsenic, as well as alteration in the percentage arsenic species in the rice grains

  7. Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans

    Directory of Open Access Journals (Sweden)

    Huang Chao

    2012-01-01

    Full Text Available Abstract Background Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel production, and the use of lignocellulosic hydrolysates as carbon sources seems to be a feasible strategy for cost-effective lipid fermentation with oleaginous microorganisms on a large scale. During the hydrolysis of lignocellulosic materials with dilute acid, however, various kinds of inhibitors, especially large amounts of organic acids, will be produced, which substantially decrease the fermentability of lignocellulosic hydrolysates. To overcome the inhibitory effects of organic acids, it is critical to understand their impact on the growth and lipid accumulation of oleaginous microorganisms. Results In our present work, we investigated for the first time the effect of ten representative organic acids in lignocellulosic hydrolysates on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans cells. In contrast to previous reports, we found that the toxicity of the organic acids to the cells was not directly related to their hydrophobicity. It is worth noting that most organic acids tested were less toxic than aldehydes to the cells, and some could even stimulate the growth and lipid accumulation at a low concentration. Unlike aldehydes, most binary combinations of organic acids exerted no synergistic inhibitory effects on lipid production. The presence of organic acids decelerated the consumption of glucose, whereas it influenced the utilization of xylose in a different and complicated way. In addition, all the organic acids tested, except furoic acid, inhibited the malic activity of T. fermentans. Furthermore, the inhibition of organic acids on cell growth was dependent more on inoculum size, temperature and initial pH than on lipid content. Conclusions This work provides some meaningful information about the effect of organic acid in lignocellulosic hydrolysates on the lipid production of

  8. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China.

    Science.gov (United States)

    Williams, Paul N; Lei, Ming; Sun, Guoxin; Huang, Qing; Lu, Ying; Deacon, Claire; Meharg, Andrew A; Zhu, Yong-Guan

    2009-02-01

    Paddy rice has been likened to nictiana sp in its ability to scavenge cadmium (Cd) from soil, whereas arsenic (As) accumulation is commonly an order of magnitude higher than in other cereal crops. In areas such as those found in parts of Hunan province in south central China, base-metal mining activities and rice farming coexist. Therefore there is a considerable likelihood that lead (Pb), in addition to Cd and As, will accumulate in rice grown in parts of this region above levels suitable for human consumption. To test this hypothesis, a widespread provincial survey of rice from mine spoilt paddies (n = 100), in addition to a follow-up market grain survey (n = 122) conducted in mine impacted areas was undertaken to determine the safety of local rice supply networks. Furthermore, a specific Cd, As, and Pb biogeochemical survey of paddy soil and rice was conducted within southern China, targeting sites impacted by mining of varying intensities to calibrate rice metal(loid) transfer models and transfer factors that can be used to predict tissue loading. Results revealed a number of highly significant correlations between shoot, husk, bran, and endosperm rice tissue fractions and that rice from mining areas was enriched in Cd, As, and Pb. Sixty-five, 50, and 34% of all the mine-impacted field rice was predicted to fail national food standards for Cd, As, and Pb, respectively. Although, not as elevated as the grains from the mine-impacted field survey, it was demonstrated that metal(loid) tainted rice was entering food supply chains intended for direct human consumption.

  9. IMPACT OF BRACHIARIA, ARBUSCULAR MYCORRHIZA, AND POTASSIUM ENRICHED RICE STRAW COMPOST ON ALUMINIUM, POTASSIUM AND STABILITY OF ACID SOIL AGGREGATES

    Directory of Open Access Journals (Sweden)

    Bariot Hafif

    2013-04-01

    Full Text Available Acid soil is commonly grown with cassava, which in general, tolerate low soil  fertility and aluminum (Al toxicity. However, without any improvement efforts such soil will become worse. Intercropping cassava with Brachiaria decumbens (BD which adapts to acid soil and tolerates low fertility soils as well as application of arbuscular mycorrhiza (AM and organic matters are among the important efforts to rehabilitate this soil. The experiment was conducted to  examine the impact of BD, AM, and potassium (K enriched rice straw compost on exchangeable Al, available K, and stability of soil aggregates. Experiment was arranged in a completely randomized design with three factors and three replications. The first factor was BD as cassava intercropping, the second factor was AM, and the third factor was 2 t ha-1 rice straw compost enriched with 0 kg, 50 kg, 100 kg, and 200 kg KCl ha-1. Brick pots (1 m length x 1 m width x 0.45 m depth filled with Kanhapludult soil was used for growing cassava in which row of BD was planted at 60 cm from cassava stem. K-enriched rice straw compost and AM (10 g per stem were applied around cassava stem at 2 and 12 days after planting, respectively. BD was cut every 30 days and the cutting was returned to the soil. Soil exchangeable Al was analyzed at 0, 3, 6 and 9 months after planting (MAP, while Al and K contents as well as aggregate stability were measured at 6 MAP. The results showed that planting BD decreased 33% exchangeable Al, which means that the root exudates of this grass was effective in detoxifying Al3+. Treatment of BD and/or in combination with AM was effective in preserving K added to the soil, increasing total polysaccharides, and improving soil aggregate stability. This indicated that planting BD and applying AM and Kenriched rice straw compost improved acid soil fertility, and therefore can be recommended in cassava cultivation.

  10. Synthesis and characterization of chitosan-graft-poly(acrylic acid)/rice husk ash hydrogels composites

    International Nuclear Information System (INIS)

    Rodrigues, Francisco H.A.; Lopes, Gabriel V.; Pereira, Antonio G.B.; Fajardo, Andre R.; Muniz, Edvani C.

    2011-01-01

    According to environmental concerns, super absorbent hydrogel composites were synthesized based on rice husk ash (RHA), an industrial waste, and Chitosan-graft-poly(acrylic acid). The WAXS and FTIR data confirmed the syntheses of hydrogel composites. The effect of crystalline or amorphous RHA on water uptake was investigated. It was found that the RHA in crystalline form induces higher water capacity (W eq ) of composites hydrogels due to the fact that the intra-interactions among silanol groups on RHA make available new sites in the polymer matrix, which could interact to water. (author)

  11. Cadmium remobilization from shoot to grain is related to pH of vascular bundle in rice.

    Science.gov (United States)

    Zhang, Bing-Lin; Ouyang, You-Nan; Xu, Jun-Ying; Liu, Ke

    2018-01-01

    The remobilization of cadmium (Cd) from shoots to grain is the key process to determine the Cd accumulation in grain. The apoplastic pH of plants is an important factor and signal in influencing on plant responding to environmental variation and inorganic elements uptake. It is proposed that pH of rice plants responds and influences on Cd remobilization from shoots to grain when rice is exposed to Cd stress. The results of hydroponic experiment showed that: pH of the rice leaf vascular bundles among 3 cultivars was almost increased, pH value of 1 cultivar was slightly increasing when rice plants were treated with Cd. The decrease degree of H + concentration in leaf vascular bundles was different among cultivars. The cultivar with higher decreasing in H + concentration, showed higher Cd transfer efficiency from shoots to grain. The H + concentration of leaf vascular bundles under normal condition was negatively correlated to cadmium accumulation in leaf. Moreover, pH change was related to Cd accumulation in shots and remobilization from shoots to grain. Uncovering the role of pH response is a key component for the understanding Cd uptake and remobilization mechanism for rice production. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Efficient Hydrolysis of Rice Straw into Xylose and Glucose by a Two-step Process

    Directory of Open Access Journals (Sweden)

    YAN Lu-lu

    2016-07-01

    Full Text Available The hydrolysis of rice straw into xylose and glucose in dilute sulfuric acid aqueous solution was studied with a two-step process in batch autoclave reactor. The results showed that compared with the traditional one-step acid hydrolysis, both xylose and glucose could be produced in high yields from rice straw by using the two-step acid hydrolysis process. The effects of reaction temperature, reaction time, the amount of rice straw and acid concentration on the hydrolysis of rice straw were systematically studied, and showed that except initial rice straw loading amount, the other parameters had remarkable influence on the products distribution and yields. In the first-step of the hydrolysis process, a high xylose yield of 162.6 g·kg-1 was obtained at 140℃ after 120 min reaction time. When the solid residues from the first step were subjected to a second-step hydrolysis, a glucose yield as high as 216.5 g·kg-1 could be achieved at 180℃ after 120 min. This work provides a promising strategy for the efficient and value-added utilization of agricultural wastes such as rice straw.

  13. Aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference.

    Science.gov (United States)

    Zhao, Xue Qiang; Guo, Shi Wei; Shinmachi, Fumie; Sunairi, Michio; Noguchi, Akira; Hasegawa, Isao; Shen, Ren Fang

    2013-01-01

    Acidic soils are dominated chemically by more ammonium and more available, so more potentially toxic, aluminium compared with neutral to calcareous soils, which are characterized by more nitrate and less available, so less toxic, aluminium. However, it is not known whether aluminium tolerance and nitrogen source preference are linked in plants. This question was investigated by comparing the responses of 30 rice (Oryza sativa) varieties (15 subsp. japonica cultivars and 15 subsp. indica cultivars) to aluminium, various ammonium/nitrate ratios and their combinations under acidic solution conditions. indica rice plants were generally found to be aluminium-sensitive and nitrate-preferring, while japonica cultivars were aluminium-tolerant and relatively ammonium-preferring. Aluminium tolerance of different rice varieties was significantly negatively correlated with their nitrate preference. Furthermore, aluminium enhanced ammonium-fed rice growth but inhibited nitrate-fed rice growth. The results suggest that aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference under acidic solution conditions. A schematic diagram summarizing the interactions of aluminium and nitrogen in soil-plant ecosystems is presented and provides a new basis for the integrated management of acidic soils.

  14. Binding constants of Southern rice black-streaked dwarf virus Coat Protein with ferulic acid derivatives

    Directory of Open Access Journals (Sweden)

    Longlu Ran

    2018-04-01

    Full Text Available The data present binding constants between ferulic acid derivatives and the Coat Protein (P10 by fluorescence titration in this article, which is hosted in the research article entitled “Interaction Research on an Antiviral Molecule that Targets the Coat Protein of Southern rice black-streaked dwarf virus’’ (Ran et al., 2017 [1]. The data include fluorescence quenching spectrum, Stern–Volmer quenching constants, and binding parameters. In this article, a more comprehensive data interpretation and analysis is explained.

  15. A Method for Ferulic Acid Production from Rice Bran Oil Soapstock Using a Homogenous System

    OpenAIRE

    Hoa Thi Truong; Manh Do Van; Long Duc Huynh; Linh Thi Nguyen; Anh Do Tuan; Thao Le Xuan Thanh; Hung Duong Phuoc; Norimichi Takenaka; Kiyoshi Imamura; Yasuaki Maeda

    2017-01-01

    Ferulic acid (FA) is widely used as an antioxidant, e.g., as a Ultraviolet (UV) protectant in cosmetics and in various medical applications. It has been produced by the hydrolysis of γ-oryzanol found in rice bran oil soapstock. In this study, the base-catalyzed, homogenous hydrolysis of γ-oryzanol was conducted using various ratios of potassium hydroxide (KOH) to γ-oryzanol, initial concentrations of γ-oryzanol in the reaction mixture, and ratios of ethanol (EtOH) (as cosolvent)/ethyl acetate...

  16. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings.

    Science.gov (United States)

    Wang, Shihua; Wang, Fayuan; Gao, Shuangcheng

    2015-02-01

    Nanofertilizers may be more effective than regular fertilizers in improving plant nutrition, enhancing nutrition use efficiency, and protecting plants from environmental stress. A hydroponic pot experiment was conducted to study the role of foliar application with 2.5 mM nano-silicon in alleviating Cd stress in rice seedlings (Oryza sativa L. cv Youyou 128) grown in solution added with or without 20 μM CdCl2. The results showed that Cd treatment decreased the growth and the contents of Mg, Fe, Zn, chlorophyll a, and glutathione (GSH), accompanied by a significant increase in Cd accumulation. However, foliar application with nano-Si improved the growth, Mg, Fe, and Zn nutrition, and the contents of chlorophyll a of the rice seedlings under Cd stress and decreased Cd accumulation and translocation of Cd from root to shoot. Cd treatment produced oxidative stress to rice seedlings indicated by a higher lipid peroxidation level (as malondialdehyde (MDA)) and higher activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and a lower GSH content. However, those nano-Si-treated plants had lower MDA but higher GSH content and different antioxidant enzyme activities, indicating a higher Cd tolerance in them. The results suggested that nano-Si application alleviated Cd toxicity in rice by decreasing Cd accumulation, Cd partitioning in shoot and MDA level and by increasing content of some mineral elements (Mg, Fe, and Zn) and antioxidant capacity.

  17. Assessment of Rice Associated Bacterial Ability to Enhance Rice Seed Germination and Rice Growth Promotion

    Directory of Open Access Journals (Sweden)

    R. Gholamalizadeh

    2017-08-01

    Full Text Available ABSTRACT The application of beneficial bacteria has recently been used for sustainable agriculture. In current research, 71 bacterial isolates were obtained from rice plant and the rhizosphere soil of different paddy fields in Guilan province, Iran. After primitive investigation, 40 bacteria with typical predominant characteristics were selected. By PCR-RFLP of their 16S r-DNA gene, 8 Operational Taxonomic Units (OTUs totally consisted of 33 isolates were obtained. From all of them, 8 isolates were selected for rice seed germination experiment, then, effective isolates were used for pot experiment to evaluate their ability for promoting rice growth. All of them were able to increase rice growth and yield, but in different potential. These tested isolates were identified as Alcaligenes faecalis (DEp8, O1R4, Pantoea ananatis (AEn1, Bacillus vietnamensis (MR5, Bacillus idriensis (MR2 and Stenotrophomonas maltophilia by partial sequencing of their 16S r-DNA gene. Among them, AEn1 and MR5 produced indole-3- acetic acid (IAA in larger amounts than the other isolates and the isolates AEn1 and O1R4 were able to solubilize phosphate in higher amounts. According to the results obtained, it can be concluded that AEn1, O1R4 and MR5 can be considered as bacterial inoculants to use as alternatives for chemical fertilizers.

  18. The humic acids from vermicompost protect rice (Oryza sativa L.) plants against a posterior hidric stress

    International Nuclear Information System (INIS)

    Guridi-Izquierdo, Fernando; Martínez-Balmori, Dariellys; Rosquete-Bassó, Mayelín; Calderín-García, Andrés; Louro-Berbara, Ricardo L.

    2017-01-01

    The humic acids (HA) from two different vermicompost were extracted, isolated, purified and partially characterized, to evaluate their possible protection in rice (Oryza sativa L.) plants against an hydric stress. Differences in elemental composition, as the coagulation threshold value and E4/E6 relation in their UV-Vis spectra were found. Two concentrations (40 and 60 mg L-1) of both HA were included in the nutritive solutions for rice plants in controlled conditions. It was verified that the previous treatment with the HA during six days stimulated the root biomass production. Later the HA were excluded and was an hydric deficit induced by adding polietilenglicol (PEG-6000) in the initially treated plants and in a group of those used as control. After 96 hours of this final condition the net radical biomass, the photosynthetic pigments content and the root membrane permeability were evaluated. In the plants previously treated with HA (at the concentration 60 mg HA L-1), the root membrane permeability, the net radical biomass production and the “a” chlorophyll content had no differences when compared with those without stress. It was concluded that the previous treatment with the HA protected the rice plants against a posterior hydric stress that was induced. (author)

  19. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.).

    Science.gov (United States)

    Chauhan, Reshu; Awasthi, Surabhi; Tripathi, Preeti; Mishra, Seema; Dwivedi, Sanjay; Niranjan, Abhishek; Mallick, Shekhar; Tripathi, Pratibha; Pande, Veena; Tripathi, Rudra Deo

    2017-04-01

    Arsenic (As) contamination of paddy rice is a serious threat all over the world particularly in South East Asia. Selenium (Se) plays important role in protection of plants against various abiotic stresses including heavy metals. Moreover, arsenite (AsIII) and selenite (SeIV) can be biologically antagonistic due to similar electronic configuration and sharing the common transporter for their uptake in plant. In the present study, the response of oxidative stress, phenolic compounds and nutrient elements was analyzed to investigate Se mediated As tolerance in rice seedlings during AsIII and SeIV exposure in hydroponics. Selenite (25µM) significantly decreased As accumulation in plant than As (25µM) alone treated plants. Level of oxidative stress related parameters viz., reactive oxygen species (ROS), lipid peroxidation, electrical conductivity, nitric oxide and pro-oxidant enzyme (NADPH oxidase), were in the order of As>As+Se>control>Se. Selenium ameliorated As phytotoxicity by increased level of phenolic compounds particularly gallic acid, protocatechuic acid, ferulic acid and rutin and thiol metabolism related enzymes viz., serine acetyl transferase (SAT) and cysteine synthase (CS). Selenium supplementation enhanced the uptake of nutrient elements viz., Fe, Mn, Co, Cu, Zn, Mo, and improved plant growth. The results concluded that Se addition in As contaminated environment might be an important strategy to reduce As uptake and associated phytotoxicity in rice plant by modulation of phenolic compounds and increased uptake of nutrient elements. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A new Em-like protein from Lactuca sativa, LsEm1, enhances drought and salt stress tolerance in Escherichia coli and rice.

    Science.gov (United States)

    Xiang, Dian-Jun; Man, Li-Li; Zhang, Chun-Lan; Peng-Liu; Li, Zhi-Gang; Zheng, Gen-Chang

    2018-02-07

    Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these

  1. Evaluation of antioxidant potential of Brazilian rice cultivars

    Directory of Open Access Journals (Sweden)

    Sylvio Vicentin Palombini

    2013-12-01

    Full Text Available This study quantified the fatty acids and evaluated the proximate composition, antioxidant activity (using the Quencher procedure, and total phenolic compound concentrations in Brazilian rice cultivars. The cultivars studied showed high amounts of unsaturated fatty acids, such as linoleic and oleic acid. The ratios of polyunsaturated and saturated fatty acids obtained were high. Regarding the antioxidant activity, the best results were found using the ABTS method and the worst in the DPPH assay. The results of the DPPH and FRAP assays showed the highest correlation. The antioxidant capacity results obtained were also much higher than those reported for other varieties worldwide. Therefore, the Quencher procedure is highly suitable for application in cereals such as rice, especially when combined with the ABTS radical capture method.

  2. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism

    OpenAIRE

    Xia, Hui; Huang, Weixia; Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investig...

  3. Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis.

    Science.gov (United States)

    Lu, Hai-Ping; Luo, Ting; Fu, Hao-Wei; Wang, Long; Tan, Yuan-Yuan; Huang, Jian-Zhong; Wang, Qing; Ye, Gong-Yin; Gatehouse, Angharad M R; Lou, Yong-Gen; Shu, Qing-Yao

    2018-05-07

    Rice is one of the world's most important foods, but its production suffers from insect pests, causing losses of billions of dollars, and extensive use of environmentally damaging pesticides for their control 1,2 . However, the molecular mechanisms of insect resistance remain elusive. Although a few resistance genes for planthopper have been cloned, no rice germplasm is resistant to stem borers. Here, we report that biosynthesis of serotonin, a neurotransmitter in mammals 3 , is induced by insect infestation in rice, and its suppression confers resistance to planthoppers and stem borers, the two most destructive pests of rice 2 . Serotonin and salicylic acid derive from chorismate 4 . In rice, the cytochrome P450 gene CYP71A1 encodes tryptamine 5-hydroxylase, which catalyses conversion of tryptamine to serotonin 5 . In susceptible wild-type rice, planthopper feeding induces biosynthesis of serotonin and salicylic acid, whereas in mutants with an inactivated CYP71A1 gene, no serotonin is produced, salicylic acid levels are higher and plants are more insect resistant. The addition of serotonin to the resistant rice mutant and other brown planthopper-resistant genotypes results in a loss of insect resistance. Similarly, serotonin supplementation in artificial diet enhances the performance of both insects. These insights demonstrate that regulation of serotonin biosynthesis plays an important role in defence, and may prove valuable for breeding insect-resistant cultivars of rice and other cereal crops.

  4. Glufosinate ammonium-induced pathogen inhibition and defense responses culminate in disease protection in bar-transgenic rice.

    Science.gov (United States)

    Ahn, Il-Pyung

    2008-01-01

    Glufosinate ammonium diminished developments of rice (Oryza sativa) blast and brown leaf spot in 35S:bar-transgenic rice. Pre- and postinoculation treatments of this herbicide reduced disease development. Glufosinate ammonium specifically impeded appressorium formation of the pathogens Magnaporthe grisea and Cochliobolus miyabeanus on hydrophobic surface and on transgenic rice. In contrast, conidial germination remained unaffected. Glufosinate ammonium diminished mycelial growth of two pathogens; however, this inhibitory effect was attenuated in malnutrition conditions. Glufosinate ammonium caused slight chlorosis and diminished chlorophyll content; however, these alterations were almost completely restored in transgenic rice within 7 d. Glufosinate ammonium triggered transcriptions of PATHOGENESIS-RELATED (PR) genes and hydrogen peroxide accumulation in transgenic rice and PR1 transcription in Arabidopsis (Arabidopsis thaliana) wild-type ecotype Columbia harboring 35S:bar construct. All transgenic Arabidopsis showed robust hydrogen peroxide accumulation by glufosinate ammonium. This herbicide also induced PR1 transcription in etr1 and jar1 expressing bar; however, no expression was observed in NahG and npr1. Fungal infection did not alter transcriptions of PR genes and hydrogen peroxide accumulation induced by glufosinate ammonium. Infiltration of glufosinate ammonium did not affect appressorium formation of M. grisea in vivo but inhibited blast disease development. Hydrogen peroxide scavengers nullified blast protection and transcriptions of PR genes by glufosinate ammonium; however, they did not affect brown leaf spot progression. In sum, both direct inhibition of pathogen infection and activation of defense systems were responsible for disease protection in bar-transgenic rice.

  5. The knockdown of OsVIT2 and MIT affects iron localization in rice seed.

    Science.gov (United States)

    Bashir, Khurram; Takahashi, Ryuichi; Akhtar, Shamim; Ishimaru, Yasuhiro; Nakanishi, Hiromi; Nishizawa, Naoko K

    2013-11-20

    The mechanism of iron (Fe) uptake in plants has been extensively characterized, but little is known about how Fe transport to different subcellular compartments affects Fe localization in rice seed. Here, we discuss the characterization of a rice vacuolar Fe transporter 2 (OsVIT2) T-DNA insertion line (osvit2) and report that the knockdown of OsVIT2 and mitochondrial Fe transporter (MIT) expression affects seed Fe localization. osvit2 plants accumulated less Fe in their shoots when grown under normal or excess Fe conditions, while the accumulation of Fe was comparable to that in wild-type (WT) plants under Fe-deficient conditions. The accumulation of zinc, copper, and manganese also changed significantly in the shoots of osvit2 plants. The growth of osvit2 plants was also slow compared to that of WT plants. The concentration of Fe increased in osvit2 polished seeds. Previously, we reported that the expression of OsVIT2 was higher in MIT knockdown (mit-2) plants, and in this study, the accumulation of Fe in mit-2 seeds decreased significantly. These results suggest that vacuolar Fe trafficking is important for plant Fe homeostasis and distribution, especially in plants grown in the presence of excess Fe. Moreover, changes in the expression of OsVIT2 and MIT affect the concentration and localization of metals in brown rice as well as in polished rice seeds.

  6. Distribution of assimilates derived from canopy leaves at different milky stage of intergeneric high-yielding hybrid rice

    International Nuclear Information System (INIS)

    Tang Jianjun

    1997-01-01

    Distribution characteristics of assimilates derived from 14 C-glucose fed on different canopy leaves of the high-yielding intergeneric hybrid rice Yuanyou 1 and GER-1, intra-varietal 3-line hybrid rice Shanyou 63, maternal and paternal parents of intergeneric hybrid rice at various ripening stage from flowering stage to late milky stage were studied with pot experiments under greenhouse in 1993 and 1994 in Guangzhou. The results indicates that there exists a significant difference in exportation of radioactivity from the leaf fed, partitioning of radioactivity exported into different organs and importation accumulation percent of total radioactivity in the rice panicle Yuanyou 1 has a high average exportation percent, importation accumulation percent and a stable and sustainable grain-filling process, which results in a high seed-setting rate with large spikelet population

  7. Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2.1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Verma

    2016-06-01

    Full Text Available Glutaredoxins (Grxs are a family of small multifunctional proteins involved in various cellular functions, including redox regulation and protection under oxidative stress. Despite the high number of Grx genes in plant genomes (48 Grxs in rice, the biological functions and physiological roles of most of them remain unknown. Here, the functional characterization of the two arsenic-responsive rice Grx family proteins, OsGrx_C7 and OsGrx_C2.1 are reported. Over-expression of OsGrx_C7 and OsGrx_C2.1 in transgenic Arabidopsis thaliana conferred arsenic (As tolerance as reflected by germination, root growth assay, and whole plant growth. Also, the transgenic expression of OsGrxs displayed significantly reduced As accumulation in A. thaliana seeds and shoot tissues compared to WT plants during both AsIII and AsV stress. Thus, OsGrx_C7 and OsGrx_C2.1 seem to be an important determinant of As-stress response in plants. OsGrx_C7 and OsGrx_C2.1 transgenic showed to maintain intracellular GSH pool and involved in lowering AsIII accumulation either by extrusion or reducing uptake by altering the transcript of A. thaliana AtNIPs. Overall, OsGrx_C7 and OsGrx_C2.1 may represent a Grx family protein involved in As stress response and may allow a better understanding of the As induced stress pathways and the design of strategies for the improvement of stress tolerance as well as decreased As content in crops.

  8. Initial Continuous Chemistry Results From The Roosevelt Island Ice Core (RICE)

    Science.gov (United States)

    Kjær, H. A.; Vallelonga, P. T.; Simonsen, M. F.; Neff, P. D.; Bertler, N. A. N.; Svensson, A.; Dahl-Jensen, D.

    2014-12-01

    The Roosevelt Island ice core (79.36° S, -161.71° W) was drilled in 2011-13 at the top of the Roosevelt Island ice dome, a location surrounded by the Ross ice shelf. The RICE ice core provides a unique opportunity to look into the past evolution of the West Antarctic Ice sheet. Further the site has high accumulation; 0.26 m of ice equivalent is deposited annually allowing annual layer determination for many chemical parameters. The RICE core was drilled to bedrock and has a total length of 763 metres. Preliminary results derived from water isotopes suggest that the oldest ice reaches back to the Eemian, with the last glacial being compressed in the bottom 60 metres. We present preliminary results from the RICE ice core including continuous measurements of acidity using an optical dye method, insoluble dust particles, conductivity and calcium. The core was analyzed at the New Zealand National Ice Core Research Facility at GNS Science in Wellington. The analytical set up used to determine climate proxies in the ice core was a modified version of the Copenhagen CFA system (Bigler et al., 2011). Key volcanic layers have been matched to those from the WAIS record (Sigl et al., 2013). A significant anti-correlation between acidity and calcium was seen in the Holocene part of the record. Due to the proximity to the ocean a large fraction of the calcium originates from sea salt and is in phase with total conductivity and sodium. In combination with the insoluble dust record, calcium has been apportioned into ocean-related and dust-related sources. Variability over the Holocene is presented and attributed to changing inputs of marine and dust aerosols.

  9. Computational prediction and experimental verification of HVA1-like abscisic acid responsive promoters in rice (Oryza sativa).

    Science.gov (United States)

    Ross, Christian; Shen, Qingxi J

    2006-09-01

    Abscisic acid (ABA) is one of the central plant hormones, responsible for controlling both maturation and germination in seeds, as well as mediating adaptive responses to desiccation, injury, and pathogen infection in vegetative tissues. Thorough analyses of two barley genes, HVA1 and HVA22, indicate that their response to ABA relies on the interaction of two cis-acting elements in their promoters, an ABA response element (ABRE) and a coupling element (CE). Together, they form an ABA response promoter complex (ABRC). Comparison of promoters of barley HVA1 and it rice orthologue indicates that the structures and sequences of their ABRCs are highly similar. Prediction of ABA responsive genes in the rice genome is then tractable to a bioinformatics approach based on the structures of the well-defined barley ABRCs. Here we describe a model developed based on the consensus, inter-element spacing and orientations of experimentally determined ABREs and CEs. Our search of the rice promoter database for promoters that fit the model has generated a partial list of genes in rice that have a high likelihood of being involved in the ABA signaling network. The ABA inducibility of some of the rice genes identified was validated with quantitative reverse transcription PCR (QPCR). By limiting our input data to known enhancer modules and experimentally derived rules, we have generated a high confidence subset of ABA-regulated genes. The results suggest that the pathways by which cereals respond to biotic and abiotic stresses overlap significantly, and that regulation is not confined to the level transcription. The large fraction of putative regulatory genes carrying HVA1-like enhancer modules in their promoters suggests the ABA signal enters at multiple points into a complex regulatory network that remains largely unmapped.

  10. The molecular biology and biochemistry of rice endosperm α-globulin

    International Nuclear Information System (INIS)

    Shorrosh, B.S.

    1989-01-01

    The author's first objective was to isolate a cDNA clone that encodes the rice endosperm α-globulin. Purified antibodies against a rice storage protein, α-globulin, were used to screen a λgt11 cDNA expression library constructed from immature rice seed endosperm. The cDNA insert of clone 4A1 (identified by antibody screening) was used as a probe to identify long cDNA inserts in the library. The deduced amino acid sequence of clone A3-12 cDNA insert (identified by cDNA screening) contained the amino acid sequences of three cyanogen bromide peptides fragment of α-globulin. The calculated molecular weight and amino acid composition of the deduced amino acid sequence were similar to the α-globulin protein. Northern blot analysis indicated that mRNA of one size, approximately 1.0 kb, is expressed. Southern genomic blot analysis revealed one band with EcoRI or Hind III digestion. Cell-free translation and immunoprecipitation showed that the initial translation product is approximately 2,000 daltons larger than the mature protein. The amino acid sequence of α-globulin revealed limited regions of similarities with wheat storage proteins. The author concludes that the cDNA insert in clone A3-12 contained the entire coding region of α-globulin protein and that α-globulin is encoded by a single gene. My second objective was to inhibit the degradation of α-globulin in the salt extract of rice flour. The salt extract of rice flour contained an acid protease whose optimal pH was 3 for 3 H-casein hydrolysis. A polypeptide with molecular weight of 20,000 was immunologically reactive with α-globulin antibodies and is produced by limited proteolysis in the extract. Pepstatin inhibited the proteolysis of 3H-casein and slowed the proteolysis of α-globulin

  11. Stability and retention of micronutrients in fortified rice prepared using different cooking methods.

    Science.gov (United States)

    Wieringa, Frank T; Laillou, Arnaud; Guyondet, Christophe; Jallier, Vincent; Moench-Pfanner, Regina; Berger, Jacques

    2014-09-01

    Fortified rice holds great potential for bringing essential micronutrients to a large part of the world population. However, it is unknown whether differences in cooking methods or in production of rice premix affect the final amount of micronutrient consumed. This paper presents a study that quantified the losses of five different micronutrients (vitamin A, iron, zinc, folic acid, and vitamin B12) in fortified rice that was produced using three different techniques (hot extrusion, cold extrusion, and coating) during cooking and five different cooking methods (absorption method with or without soaking, washing before cooking, cooking in excess water, and frying rice before cooking). Fortified rice premix from six different producers (two for each technique) was mixed with normal rice in a 1:100 ratio. Each sample was prepared in triplicate, using the five different cooking methods, and retention of iron, zinc, vitamin A, vitamin B12, and folic acid was determined. It was found that the overall retention of iron, zinc, vitamin B12, and folic acid was between 75% and 100% and was unaffected by cooking method, while the retention of vitamin A was significantly affected by cooking method, with retention ranging from 0% (excess water) to 80% (soaking), depending on the cooking method and producer of the rice premix. No systematic differences between the different production methods were observed. We conclude that different cooking methods of rice as used in different regions of the world do not lead to a major loss of most micronutrients, with the exception of vitamin A. The factors involved in protecting vitamin A against losses during cooking need to be identified. All production techniques of rice premix yielded similar results, showing that coating is not inferior to extrusion techniques. Standard overages (50%) for vitamin B12 and folic acid are too high. © 2014 New York Academy of Sciences.

  12. CHEMICAL COMPOSITION AND FUNCTIONAL PROPERTIES OF RICE PROTEIN CONCENTRATES

    Directory of Open Access Journals (Sweden)

    V. V. Kolpakova

    2015-01-01

    Full Text Available Traditionally rice and products of its processing are used to cook porridge, pilaf, lettuce, confectionery, fish, dairy and meat products. At the same time new ways of its processing with releasing of protein products for more effective using, including the use of a glutenfree diet, are developing. The task of this study was a comparative research of nutrition and biological value and functional properties of protein and protein-calcium concentrates produced from rice flour milled from white and brown rice. The traditional and special methods were used. Concentrates were isolated with enzyme preparations of xylanase and amylolytic activity with the next dissolution of protein in diluted hydrochloric acid. Concentrates differed in the content of mineral substances (calcium, zinc, iron and other elements, amino acids and functional properties. The values of the functional properties and indicators of the nutritional value of concentrates from white rice show the advisability of their using in food products, including gluten-free products prepared on the basis of the emulsion and foam systems, and concentrates from brown rice in food products prepared on the basis of using of the emulsion systems. Protein concentrates of brown rice have a low foaming capacity and there is no foam stability at all.

  13. Overexpression of Rat Neurons Nitric Oxide Synthase in Rice Enhances Drought and Salt Tolerance.

    Directory of Open Access Journals (Sweden)

    Wei Cai

    Full Text Available Nitric oxide (NO has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.

  14. Biallelic and Genome Wide Association Mapping of Germanium Tolerant Loci in Rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Partha Talukdar

    Full Text Available Rice plants accumulate high concentrations of silicon. Silicon has been shown to be involved in plant growth, high yield, and mitigating biotic and abiotic stresses. However, it has been demonstrated that inorganic arsenic is taken up by rice through silicon transporters under anaerobic conditions, thus the ability to efficiently take up silicon may be considered either a positive or a negative trait in rice. Germanium is an analogue of silicon that produces brown lesions in shoots and leaves, and germanium toxicity has been used to identify mutants in silicon and arsenic transport. In this study, two different genetic mapping methods were performed to determine the loci involved in germanium sensitivity in rice. Genetic mapping in the biparental cross of Bala × Azucena (an F6 population and a genome wide association (GWA study with 350 accessions from the Rice Diversity Panel 1 were conducted using 15 μM of germanic acid. This identified a number of germanium sensitive loci: some co-localised with previously identified quantitative trait loci (QTL for tissue silicon or arsenic concentration, none co-localised with Lsi1 or Lsi6, while one single nucleotide polymorphism (SNP was detected within 200 kb of Lsi2 (these are genes known to transport silicon, whose identity was discovered using germanium toxicity. However, examining candidate genes that are within the genomic region of the loci detected above reveals genes homologous to both Lsi1 and Lsi2, as well as a number of other candidate genes, which are discussed.

  15. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system.

    Science.gov (United States)

    Zeng, Lu S; Liao, Min; Chen, Cheng L; Huang, Chang Y

    2007-05-01

    The effect of lead (Pb) treatment on the soil enzymatic activities, soil microbial biomass, rice physiological indices and rice biomass were studied in a greenhouse pot experiment. Six levels of Pb viz. 0(CK), 100, 300, 500, 700, 900 mg/kg soil were applied in two types of paddy soils. The results showed that Pb treatment had a stimulating effect on soil enzymatic activities and microbial biomass carbon (Cmic) at low concentration and an inhibitory influence at higher concentration. The degree of influence on enzymatic activities and Cmic by Pb was related to the clay and organic matter contents of the soils. When the Pb treatment was raised to the level of 500 mg/kg, ecological risk appeared both to soil microorganisms and plants. The results also revealed a consistent trend of increased chlorophyll contents and rice biomass initially, maximum at a certain Pb treatment, and then decreased gradually with the increase in Pb concentration. Pb was effective in inducing proline accumulation and its toxicity causes oxidative stress in rice plants. Therefore, it was concluded that soil enzymatic activities, Cmic and rice physiological indices, could be sensitive indicators to reflect environmental stress in soil-lead-rice system.

  16. D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica.

    Science.gov (United States)

    Ochoa-Estopier, Abril; Guillouet, Stéphane E

    2014-01-20

    Lipid accumulation in oleaginous yeasts is triggered by nutrient imbalance in the culture medium between the carbon source in excess and the nitrogen source in limiting concentration. However Yarrowia lipolytica when cultivated on glucose as the sole carbon source, mainly produces citric acid upon nitrogen limitation over lipid accumulation (only 5-10% triacylglycerol). Therefore for developing bioprocess for the production of triacylglycerol from renewable carbon source as glucose it is of first importance to control this imbalance in order to avoid citric acid production during TAG accumulation. Using D-stat cultivation system, where the N/C was linearly decreased using a constant change rate we were able to identify the N/C ratio inducing TAG accumulation (0.085NmolCmol(-1)) and citric acid (0.021NmolCmol(-1)). We therefore demonstrated that it was possible to accumulate lipids without excretion citric acid as long as the N/C was within this indicated range. Moreover enzyme specific activities measurement during the D-stat indicated that ATP-citrate lyase, malic enzyme and acetyl-coA carboxylase were strongly induced at the onset of lipid accumulation and showed different patterns when citric acid was excreted. Our results give relevant information for future industrial bioprocess development concerning the production of lipids using renewable carbohydrate substrates as an alternative way to produce synthons for fuel or chemical industry. By controlling the N/C over the fermentation process on glucose Y. lipolytica can accumulate lipids without excreting citric acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Rice production with minimal irrigation and no nitrogen fertilizer by intensive use of treated municipal wastewater.

    Science.gov (United States)

    Muramatsu, Ayumi; Watanabe, Toru; Sasaki, Atsushi; Ito, Hiroaki; Kajihara, Akihiko

    2014-01-01

    We designed a new cultivation system of rice with circulated irrigation to remove nitrogen from treated municipal wastewater effectively and assessed the possibility of nitrogen removal in the new system without any adverse effects on rice production through bench-scale experiments through two seasons. Overgrowth of the rice plant, which can lead to lodging and tasteless rice, was found in the first season probably because nitrogen supply based on standard practice in normal paddy fields was too much in the closed irrigation system. In the second season, therefore, the amount of treated wastewater initially applied to the system was reduced but this resulted in a considerably decreased yield. On the other hand, the taste of the rice was significantly improved. The two-season experiments revealed that the new system enabled rice production with minimal irrigation (approximately 50% on the yield base compared to normal paddy fields) and no nitrogen fertilizer. The system also achieved >95% removal of nitrogen from the treated wastewater used for circulated irrigation. The accumulation of harmful metals in the rice was not observed after one season of cultivation in the new system. The accumulation after cultivation using the same soil repeatedly for a longer time should be examined by further studies.

  18. A label-free quantitative shotgun proteomics analysis of rice grain development

    Directory of Open Access Journals (Sweden)

    Koh Hee-Jong

    2011-09-01

    Full Text Available Abstract Background Although a great deal of rice proteomic research has been conducted, there are relatively few studies specifically addressing the rice grain proteome. The existing rice grain proteomic researches have focused on the identification of differentially expressed proteins or monitoring protein expression patterns during grain filling stages. Results Proteins were extracted from rice grains 10, 20, and 30 days after flowering, as well as from fully mature grains. By merging all of the identified proteins in this study, we identified 4,172 non-redundant proteins with a wide range of molecular weights (from 5.2 kDa to 611 kDa and pI values (from pH 2.9 to pH 12.6. A Genome Ontology category enrichment analysis for the 4,172 proteins revealed that 52 categories were enriched, including the carbohydrate metabolic process, transport, localization, lipid metabolic process, and secondary metabolic process. The relative abundances of the 1,784 reproducibly identified proteins were compared to detect 484 differentially expressed proteins during rice grain development. Clustering analysis and Genome Ontology category enrichment analysis revealed that proteins involved in the metabolic process were enriched through all stages of development, suggesting that proteome changes occurred even in the desiccation phase. Interestingly, enrichments of proteins involved in protein folding were detected in the desiccation phase and in fully mature grain. Conclusion This is the first report conducting comprehensive identification of rice grain proteins. With a label free shotgun proteomic approach, we identified large number of rice grain proteins and compared the expression patterns of reproducibly identified proteins during rice grain development. Clustering analysis, Genome Ontology category enrichment analysis, and the analysis of composite expression profiles revealed dynamic changes of metabolisms during rice grain development. Interestingly, we

  19. The components of rice and watermelon root exudates and their effects on pathogenic fungus and watermelon defense.

    Science.gov (United States)

    Ren, Lixuan; Huo, Hongwei; Zhang, Fang; Hao, Wenya; Xiao, Liang; Dong, Caixia; Xu, Guohua

    2016-06-02

    Watermelon (Citrullus lanatus) is susceptible to wilt disease caused by the fungus Fusarium oxysporum f. sp niveum (FON). Intercropping management of watermelon/aerobic rice (Oryza sativa) alleviates watermelon wilt disease, because some unidentified component(s) in rice root exudates suppress FON sporulation and spore germination. Here, we show that the phenolic acid p-coumaric acid is present in rice root exudates only, and it inhibits FON spore germination and sporulation. We found that exogenously applied p-coumaric acid up-regulated the expression of ClPR3 in roots, as well as increased chitinase activity in leaves. Furthermore, exogenously applied p-coumaric acid increased β-1,3-glucanase activity in watermelon roots. By contrast, we found that ferulic acid was secreted by watermelon roots, but not by rice roots, and that it stimulated spore germination and sporulation of FON. Exogenous application of ferulic acid down-regulated ClPR3 expression and inhibited chitinase activity in watermelon leaves. Salicylic acid was detected in both watermelon and rice root exudates, which stimulated FON spore germination at low concentrations and suppressed spore germination at high concentrations. Exogenously applied salicylic acid did not alter ClPR3 expression, but did increase chitinase and β-1,3-glucanase activities in watermelon leaves. Together, our results show that the root exudates of phenolic acids were different between rice and watermelon, which lead to their special ecological roles on pathogenic fungus and watermelon defense.

  20. Comparative Proteome of Acetobacter pasteurianus Ab3 During the High Acidity Rice Vinegar Fermentation.

    Science.gov (United States)

    Wang, Zhe; Zang, Ning; Shi, Jieyan; Feng, Wei; Liu, Ye; Liang, Xinle

    2015-12-01

    As a traditional Asian food for several centuries, vinegar is known to be produced by acetic acid bacteria. The Acetobacter species is the primary starter for vinegar fermentation and has evolutionarily acquired acetic acid resistance, in which Acetobacter pasteurianus Ab3 is routinely used for industrial production of rice vinegar with a high acidity (9 %, w/v). In contrast to the documented short-term and low acetic acid effects on A. pasteurianus, here we investigated the molecular and cellular signatures of long-term and high acetic acid responses by proteomic profiling with bidimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF/MS) analyses. Protein spots of interest were selected based on the threshold ANOVA p value of 0.05 and minimal twofold of differential expression, leading to the identification of 26 proteins that are functionally enriched in oxidoreductase activity, cell membrane, and metabolism. The alterations in protein functioning in respiratory chain and protein denaturation may underlay cellular modifications at the outer membrane. Significantly, we found that at higher acidity fermentation phase, the A. pasteurianus Ab3 cells would adapt to distinct physiological processes from that of an ordinary vinegar fermentation with intermediate acidity, indicating increasing energy requirement and dependency of membrane integrity during the transition of acetic acid production. Together, our study provided new insights into the adaptation mechanisms in A. pasteurianus to high acetic acid environments and yield novel regulators and key pathways during the development of acetic acid resistance.

  1. The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains.

    Science.gov (United States)

    Wu, Guanxun; Gao, Zhengquan; Du, Huanmin; Lin, Bin; Yan, Yuchen; Li, Guoqiang; Guo, Yanyun; Fu, Shenggui; Wei, Gongxiang; Wang, Miaomiao; Cui, Meng; Meng, Chunxiao

    2018-03-27

    Sustainable renewable energy is being hotly debated globally because the continued use of finite fossil fuels is now widely recognized as being unsustainable. Microalgae potentially offer great opportunities for resolving this challenge. Abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) are involved in regulating many physiological properties and have been widely used in higher plants. To test if phytohormones have an impact on accumulating lipid for microalgae, ABA, JA and SA were used to induce two Chlorella strains in the present study. The results showed 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L JA, led strain C. vulgaris ZF strain to produce a 45%, 42% and 49% lipid content that was 1.8-, 1.7- and 2.0-fold that of controls, respectively. For FACHB 31 (number 31 of the Freshwater Algae Culture Collection at the Institute of Hydrobiology, Chinese Academy of Sciences), the addition of 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L, JA produced 33%, 30% and 38% lipid content, which was 1.8-, 1.6- and 2.1-fold that of controls, respectively. As for lipid productivity, 1.0 mg/L ABA increased the lipid productivity of C. vulgaris ZF strain and FACHB-31 by 123% and 44%; 10 mg/L SA enhanced lipid productivity by 100% and 33%; the best elicitor, 0.5 mg/L JA, augmented lipid productivity by 127% and 75% compared to that of controls, respectively. The results above suggest that the three phytohormones at physiological concentrations play crucial roles in inducing lipid accumulation in Chlorella.

  2. Oxygen dynamics in submerged rice (Oryza sativa L.)

    DEFF Research Database (Denmark)

    Colmer, Timothy D.; Pedersen, Ole

    2008-01-01

    Complete submergence of plants prevents direct O2 and CO2 exchange with air. Underwater photosynthesis can result in marked diurnal changes in O2 supply to submerged plants. Dynamics in pO2 had not been measured directly for submerged rice (Oryza sativa), but in an earlier study, radial O2 loss...... from roots showed an initial peak following shoot illumination.  O2 dynamics in shoots and roots of submerged rice were monitored during light and dark periods, using O2 microelectrodes. Tissue sugar concentrations were also measured.  On illumination of shoots of submerged rice, pO2 increased rapidly...... of magnitude higher than in darkness, enhancing also pO2 in roots.The initial peak in pO2 following illumination of submerged rice was likely to result from high initial rates of net photosynthesis, fuelled by CO2 accumulated during the dark period. Nevertheless, since sugars decline with time in submerged...

  3. [Impact of low temperature in young ear formation stage on rice seed setting.

    Science.gov (United States)

    Ma, Shu Qing; Liu, Xiao Hang; Deng, Kui Cai; Quan, Hu Jie; Tong, Li Yuan; Xi, Zhu Xiang; Chai, Qing Rong; Yang, Jun

    2018-01-01

    A low temperature treatment in rice booting key period was executed on the north slope of Changbai Mountains to construct the impact model of low temperature on rice shell rate, and to reveal the effects of low temperature at different stages of rice young panicle on seed setting. The results showed that effects of low temperature in the young ear formation stage on rice shell rate generally followed the logarithmic function, the lower the temperature was, the greater the temperature influence coefficient was, and the longer the low temperature duration was, the higher rice shell rate was. The seed setting rate was most sensitive to low temperature in the middle time of booting stage (the period from formation to meiosis of the pollen mother cell), followed by the early and later stages. During the booting stage, with 1 ℃ decrease of daily temperature under 2-, 3- and 5-day low temperature treatments, the shell rate increased by 0.5, 1.7 and 4.3 percentage, respectively, and with 1 ℃ decrease of daily minimum temperature, the shell rate increased by 0.4,1.8 and 4.5 percentage, respectively. The impact of 2-day low temperature was smaller than that of 3 days or more. The impact of accumulative cold-temperature on the shell rate followed exponential function. In the range of harmful low temperature, rice shell rate increased about 8.5 percentage with the accumulative cold-temperature increasing 10 ℃·d. When the 3 days average temperature dropped to 21.6, 18.0 and 15.0 ℃, or the 5 days average temperature dropped to 22.0, 20.4 and 18.5 ℃, or the accumulative cold-temperature was more than 8, 19, 26 ℃·d, the light, moderate and severe booting stage chilling injury would occur, respectively. In Northeast China, low temperature within 2 d in rice booting stage might not cause moderate and severe chilling injury.

  4. Silencing of the Rice Gene LRR1 Compromises Rice Xa21 Transcript Accumulation and XA21-Mediated Immunity.

    Science.gov (United States)

    Caddell, Daniel F; Park, Chang-Jin; Thomas, Nicholas C; Canlas, Patrick E; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. We previously demonstrated that an auxilin-like protein, XA21 BINDING PROTEIN 21 (XB21), positively regulates resistance to Xoo. To further investigate the function of XB21, we performed a yeast two-hybrid screen. We identified 22 unique XB21 interacting proteins, including LEUCINE-RICH REPEAT PROTEIN 1 (LRR1), which we selected for further analysis. Silencing of LRR1 in the XA21 genetic background (XA21-LRR1Ri) compromises resistance to Xoo compared with control XA21 plants. XA21-LRR1Ri plants have reduced Xa21 transcript levels and reduced expression of genes that serve as markers of XA21-mediated activation. Overexpression of LRR1 is insufficient to alter resistance to Xoo in rice lines lacking XA21. Taken together, our results indicate that LRR1 is required for wild-type Xa21 transcript expression and XA21-mediated immunity.

  5. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry.

    Science.gov (United States)

    Liu, Fenghong; Wang, Lei; Gu, Liang; Zhao, Wei; Su, Hongyan; Cheng, Xianhao

    2015-12-01

    In our preliminary study, the ripe fruits of two highbush blueberry (Vaccinium corymbosum L.) cultivars, cv 'Berkeley' and cv 'Bluecrop', were found to contain different levels of ascorbic acid. However, factors responsible for these differences are still unknown. In the present study, ascorbic acid content in fruits was compared with expression profiles of ascorbic acid biosynthetic and recycling genes between 'Bluecrop' and 'Berkeley' cultivars. The results indicated that the l-galactose pathway was the predominant route of ascorbic acid biosynthesis in blueberry fruits. Moreover, higher expression levels of the ascorbic acid biosynthetic genes GME, GGP, and GLDH, as well as the recycling genes MDHAR and DHAR, were associated with higher ascorbic acid content in 'Bluecrop' compared with 'Berkeley', which indicated that a higher efficiency ascorbic acid biosynthesis and regeneration was likely to be responsible for the higher ascorbic acid accumulation in 'Bluecrop'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Characterization of Microbial Communities in Chinese Rice Wine Collected at Yichang City and Suzhou City in China.

    Science.gov (United States)

    Lü, Yucai; Gong, Yanli; Li, Yajie; Pan, Zejiang; Yao, Yi; Li, Ning; Guo, Jinling; Gong, Dachun; Tian, Yihong; Peng, Caiyun

    2017-08-28

    Two typical microbial communities from Chinese rice wine fermentation collected in Yichang city and Suzhou city in China were investigated. Both communities could ferment glutinous rice to rice wine in 2 days. The sugar and ethanol contents were 198.67 and 14.47 mg/g, respectively, for rice wine from Yichang city, and 292.50 and 12.31 mg/g, respectively, for rice wine from Suzhou city. Acetic acid and lactic acid were the most abundant organic acids. Abundant fungi and bacteria were detected in both communities by high-throughput sequencing. Saccharomycopsis fibuligera and Rhizopus oryzae were the dominant fungi in rice wine from Suzhou city, compared with R. oryzae , Wickerhamomyces anomalus, Saccharomyces cerevisiae, Mucor indicus , and Rhizopus microsporus in rice wine from Yichang city. Bacterial diversity was greater than fungal diversity in both communities. Citrobacter was the most abundant genus. Furthermore, Exiguobacterium, Aeromonas, Acinetobacter, Pseudomonas, Enterobacter, Bacillus , and Lactococcus were highly abundant in both communities.

  7. Abscisic acid-cytokinin antagonism modulates resistance against pseudomonas syringae in Tobacco

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2014-01-01

    Phytohormones are known as essential regulators of plant defenses, with ethylene, jasmonic acid, and salicylic acid as the central immunity backbone, while other phytohormones have been demonstrated to interact with this. Only recently, a function of the classic phytohormone cytokinin in plant...... immunity has been described in Arabidopsis, rice, and tobacco. Although interactions of cytokinins with salicylic acid and auxin have been indicated, the complete network of cytokinin interactions with other immunity-relevant phytohormones is not yet understood. Therefore, we studied the interaction...... of kinetin and abscisic acid as a negative regulator of plant immunity to modulate resistance in tobacco against Pseudomonas syringae. By analyzing infection symptoms, pathogen proliferation, and accumulation of the phytoalexin scopoletin as a key mediator of kinetin-induced resistance in tobacco...

  8. Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages

    DEFF Research Database (Denmark)

    Del Bo', Cristian; Cao, Yi; Roursgaard, Martin

    2016-01-01

    PURPOSE: Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity...... to counteract lipid accumulation in macrophages derived from monocytic THP-1 cells. In addition, we tested the capacity of pure ACNs and their metabolites to alter lipid accumulation. METHODS: THP-1-derived macrophages were incubated with fatty acids (500 μM oleic/palmitic acid, 2:1 ratio) and different...... concentrations (from 0.05 to 10 μg mL(-1)) of ACN- and PA-rich fractions, pure ACN standards (malvidin, delphinidin and cyanidin 3-glucoside), and metabolites (syringic, gallic and protocatechuic acids). Lipid accumulation was quantified with the fluorescent dye Nile red. RESULTS: Lipid accumulation was reduced...

  9. Medicinal and nutritional importance of rice bran

    International Nuclear Information System (INIS)

    Ahmad, R.; Salim, M.; Rauf, R.; Baloach, M.K.

    2005-01-01

    Rice-bran is produced from the outer layer of brown rice and is stabilized through steam-heating. The rice-bran and its products are safe for human and animal consumption. The microbiological safety and rigorous quality-control practices merits its use as nutritional and dietary supplement for overall health-maintenance and as a part of a healthy diet and life-style, as it contributes to the reduction of certain diseases and health-related conditions. Stabilized rice-barn contain 15% of high nutritional- value protein, 20% of high-quality fat with Omega-3 and Omega-6 fatty acids, and nutritional dietary fiber. In addition to several phytonutrients, rice-bran contains vitamins and minerals, while over 100 potent antioxidants have been identified to date. Several scientific papers have reported the analysis and bioavailibility of rice-bran nutrients. Various chemical studies demonstrated the biological effects of the nutrients found in rice-bran. So far, more than 250 scientific publications are available on rice-bran, establishing the striking medicinal properties of rice-bran products. The oil-fraction of rice-bran has concentrated all tire fat-soluble phytonutrient in it, making itself an excellent health-promoting edible oil, as well as message oil The fiber-fraction of rice-bran has a profound effect on the gastrointestinal health, and improves bowel function. Rice-bran fiber along with phytonutrients was found to reduce cholesterol and lipid levels and maintain cardiovascular function. It has beneficial effect on tire kidney and urinary tract health and is helpful in weight-management and fiber replacement diets. (author)

  10. A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.).

    Science.gov (United States)

    Tamiru, Muluneh; Undan, Jerwin R; Takagi, Hiroki; Abe, Akira; Yoshida, Kakoto; Undan, Jesusa Q; Natsume, Satoshi; Uemura, Aiko; Saitoh, Hiromasa; Matsumura, Hideo; Urasaki, Naoya; Yokota, Takao; Terauchi, Ryohei

    2015-05-01

    Cytochrome P450s are among the largest protein coding gene families in plant genomes. However, majority of the genes remain uncharacterized. Here, we report the characterization of dss1, a rice mutant showing dwarfism and reduced grain size. The dss1 phenotype is caused by a non-synonymous point mutation we identified in DSS1, which is member of a P450 gene cluster located on rice chromosome 3 and corresponds to the previously reported CYP96B4/SD37 gene. Phenotypes of several dwarf mutants characterized in rice are associated with defects in the biosynthesis or perception of the phytohormones gibberellins (GAs) and brassinosteroids (BRs). However, both GA and BR failed to rescue the dss1 phenotype. Hormone profiling revealed the accumulation of abscisic acid (ABA) and ABA metabolites, as well as significant reductions in GA19 and GA53 levels, precursors of the bioactive GA1, in the mutant. The dss1 contents of cytokinin and auxins were not significantly different from wild-type plants. Consistent with the accumulation of ABA and metabolites, germination and early growth was delayed in dss1, which also exhibited an enhanced tolerance to drought. Additionally, expressions of members of the DSS1/CYP96B gene cluster were regulated by drought stress and exogenous ABA. RNA-seq-based transcriptome profiling revealed, among others, that cell wall-related genes and genes involved in lipid metabolism were up- and down-regulated in dss1, respectively. Taken together, these findings suggest that DSS1 mediates growth and stress responses in rice by fine-tuning GA-to-ABA balance, and might as well play a role in lipid metabolism.

  11. Characterization of pre-gelatinized rice and bean flour

    Directory of Open Access Journals (Sweden)

    Ana Vânia Carvalho

    2013-06-01

    Full Text Available The objective of this study was to develop a pre-gelatinized flour using a mixture of broken rice and split beans by thermoplastic extrusion, and to evaluate the physicochemical, nutritional, and technological quality of the final product. The extrusion parameters were maintained using three heating zones with temperatures of 30 ºC, 40 ºC, and 70 ºC; screw speed of 177 rpm; feed rate of 257 g/m, and circular matrix of 3.85 mm. The following characterization analyses were performed: physicochemical, nutritional, water absorption index (WAI, water solubility index (WSI, and paste viscosity. The pre-gelatinized rice and bean flour had an intermediate value of WAI, 7.51 g/g, and high WSI value, 24.61%. Regarding proteins, it was verified an average content of 12.9% in the final product. The amino acid contents found in the pre-gelatinized flour indicate that the mixture has the essential amino acids. It was also found that the pre-gelatinized flour supplies more than 60% of the essential amino acids recommended for children aged one to three years old. The gelatinized flour composed of broken rice and split beans is an alternative to the use of these by-products of the manufacture process of rice and beans to obtain a product with viable technological characteristics and high nutritional value.

  12. Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice

    Directory of Open Access Journals (Sweden)

    Hye-Jung Lee

    2015-06-01

    Full Text Available The major seed storage proteins (SSPs in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi, which was generated with RNA interference (RNAi-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs.

  13. Extracting silica from rice husk treated with potassium permanganate

    International Nuclear Information System (INIS)

    Javed, S.H.; Naveed, S.

    2008-01-01

    As an agro-waste material the rice husk is abundantly available is rice growing areas. In many areas rice husk after burning involves disposal problems because of higher quantities of silica present in it. Rice husk contains about 20 per cent silica, which is present in hydrated amorphous form. On thermal treatment the silica converts into crystobalite, which is a crystalline form of silica. However amorphous silica can be produced under controlled conditions ensuring high reactivity and large surface area. Leaching the rice husk with organic acids and alkalies removes the metallic impurities from its surface. How a dilute solution of potassium permanganate affects the rice husk is the subject of this research paper. The rice husk was treated with the dilute solution of potassium permanganate at room temperature and then analyzed by SEM, TGA and the ash by analytical treatment after burning under controlled temperature. The SEM results revealed that the protuberances of the rice husk were eaten away by the solution of potassium permanganate. Pyrolysis of rice husks showed that the thermal degradation of the treated rice husk was faster than the untreated rice husk where as analytical results confirmed the presence of more amorphous silica than untreated rice husk. (author)

  14. Determination of contents and antioxidant activity of free and bound phenolics compounds and in vitro digestibility of commercial black and red rice (Oryza sativa L.) varieties.

    Science.gov (United States)

    Sumczynski, Daniela; Kotásková, Eva; Družbíková, Helena; Mlček, Jiří

    2016-11-15

    Black and red rices (Oryza sativa L.) were analysed for total flavonoids and phenolics and the HPLC profile including both free and bound phenolic fractions. Moreover, antioxidant activity and in vitro digestibility was determined. Content of flavonoids and polyphenols as well as antioxidant activity was higher in free phenolic fractions. Bound flavonoids in black rices were not significant contributors to antioxidant activity. The main free phenolics in black rices were ferulic, protocatechuic and trans-p-coumaric acids, while the major free phenolics in red rices were catechin, protocatechuic and caffeic acids. The main bound phenolics in black rices were ferulic and vanillic acids and quercetin, in red rice types, they were ferulic, syringic, trans-p-coumaric acids and quercetin. Newly, the presence of m-coumaric acid in red rices was detected. Steam cooked rices showed very high levels of organic matter digestibility, whereas red rices were significantly more digestible than black rices (p<0.05). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of Rice Bran, Flax Seed, and Sunflower Seed on Growth Performance, Carcass Characteristics, Fatty Acid Composition, Free Amino Acid and Peptide Contents, and Sensory Evaluations of Native Korean Cattle (Hanwoo

    Directory of Open Access Journals (Sweden)

    Chang Bon Choi

    2016-02-01

    Full Text Available This study was conducted to evaluate the effect of dietary supplementation with rice bran, flax seed, or sunflower seed to finishing native Korean cattle (Hanwoo on growth performances, carcass characteristics, fatty acid composition, free amino acid and peptide contents, and sensory evaluations of Longissimus muscle (LM. A total of 39 Hanwoo steers (average age of 22.2 mo and average body weight (BW of 552.2 kg were randomly divided into Control, rice bran (RB, flax seed (FS, or Sunflower seed (SS groups. The steers were group fed for 273 d until they reached an average age of 31.2 mo. Final BW was 768.2, 785.8, 786.2, and 789.0 kg, and average daily gain was 0.79, 0.85, 0.82, and 0.84 kg for the Control, RS, FS, and SS groups, respectively (p>0.05. Fat thickness of the FS group (19.8 mm was greater (p0.05 scores for flavor, umami, and overall palatability in sensory evaluations. In conclusion, supplementation of flax seed to diets of finishing Hanwoo steers improved sensory evaluations which might have been caused by increases in flavor related amino acids such as methionine, glutamic acid and α-AAA and peptides, anserine and carnosine, and their complex reactions.

  16. Self-enhancement of GABA in rice bran using various stress treatments.

    Science.gov (United States)

    Kim, Hyun Soo; Lee, Eun Jung; Lim, Seung-Taik; Han, Jung-Ah

    2015-04-01

    Gamma-aminobutyric acid (GABA) may be synthesized in plant tissues when the organism is under stressful conditions. Rice bran byproduct obtained from the milling of brown rice was treated under anaerobic storage with nitrogen at different temperatures (20-60 °C) and moisture contents (10-50%) up to 12h. For the GABA synthesis, the storage at 30% moisture content and 40 °C appeared optimal. Utilisation of an electrolyzed oxidizing water (EOW, pH 3.3) for moisture adjustment and addition of glutamic acid increased the GABA content in rice bran. The maximum GABA content in rice bran (523 mg/100g) could be achieved by the anaerobic storage at 30% EOW for 5h at 40 °C after an addition of glutamic acid (5mM). This amount was approximately 17 times higher than that in the control (30 mg/100g). The use of EOW also prevented bacterial growth by decreasing the colony counts almost by half. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Synthesis and biological activity of amino acid conjugates of abscisic acid.

    Science.gov (United States)

    Todoroki, Yasushi; Narita, Kenta; Muramatsu, Taku; Shimomura, Hajime; Ohnishi, Toshiyuki; Mizutani, Masaharu; Ueno, Kotomi; Hirai, Nobuhiro

    2011-03-01

    We prepared 19 amino acid conjugates of the plant hormone abscisic acid (ABA) and investigated their biological activity, enzymatic hydrolysis by a recombinant Arabidopsis amidohydrolases GST-ILR1 and GST-IAR3, and metabolic fate in rice seedlings. Different sets of ABA-amino acids induced ABA-like responses in different plants. Some ABA-amino acids, including some that were active in bioassays, were hydrolyzed by recombinant Arabidopsis GST-IAR3, although GST-ILR1 did not show hydrolysis activity for any of the ABA-amino acids. ABA-L-Ala, which was active in all the bioassays, an Arabidopsis seed germination, spinach seed germination, and rice seedling elongation assays, except in a lettuce seed germination assay and was hydrolyzed by GST-IAR3, was hydrolyzed to free ABA in rice seedlings. These findings suggest that some plant amidohydrolases hydrolyze some ABA-amino acid conjugates. Because our study indicates the possibility that different plants have hydrolyzing activity toward different ABA-amino acids, an ABA-amino acid may function as a species-selective pro-hormone of ABA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Screening for Osmotic Stress Responses in Rice Varieties under Drought Condition

    Directory of Open Access Journals (Sweden)

    Simon Swapna

    2017-09-01

    Full Text Available Drought is the major abiotic stress factor that limits rice production worldwide. To evaluate the osmotic stress responses in rice varieties under drought condition, a total of 42 high-yielding rice varieties were collected from various research stations of Kerala Agricultural University in India. The experimental setup comprises of initial hydroponic treatments at different osmotic potentials, artificially induced by desired strengths of polyethylene glycol (PEG6000, and followed by the pot planted experiments in the rain-out-zone. The activities of antioxidant enzymes, relative water content, cell membrane stability, photosynthetic pigments, proline content, along with plant growth parameters of the varieties under drought condition were evaluated. Moreover, the standard scores of these rice varieties were assessed under stress and recovery conditions based on the scoring scale of the Standard Evaluation System for rice. Among the 42 rice varieties, we identified 2 rice varieties, Swarnaprabha and Kattamodan, with less leaf rolling, better drought recovery ability as well as relative water content, increased membrane stability index, osmolyte accumulation, and antioxidant enzyme activities pointed towards their degree of tolerance to drought stress. The positive adaptive responses of these rice varieties towards drought stress can be used in the genetic improvement of rice drought resistance breeding program.

  19. Quality assessment of noodles made from blends of rice flour and canna starch.

    Science.gov (United States)

    Wandee, Yuree; Uttapap, Dudsadee; Puncha-arnon, Santhanee; Puttanlek, Chureerat; Rungsardthong, Vilai; Wetprasit, Nuanchawee

    2015-07-15

    Canna starch and its derivatives (retrograded, retrograded debranched, and cross-linked) were evaluated for their suitability to be used as prebiotic sources in a rice noodle product. Twenty percent of the rice flour was replaced with these tested starches, and the noodles obtained were analyzed for morphology, cooking qualities, textural properties, and capability of producing short-chain fatty acids (SCFAs). Cross-linked canna starch could increase tensile strength and elongation of rice noodles. Total dietary fiber (TDF) content of noodles made from rice flour was 3.0% and increased to 5.1% and 7.3% when rice flour was replaced with retrograded and retrograded debranched starches, respectively. Cooking qualities and textural properties of noodles containing 20% retrograded debranched starch were mostly comparable, while the capability of producing SCFAs and butyric acid was superior to the control rice noodles; the cooked noodle strips also showed fewer tendencies to stick together. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Fermented Brown Rice Flour as Functional Food Ingredient.

    Science.gov (United States)

    Ilowefah, Muna; Chinma, Chiemela; Bakar, Jamilah; Ghazali, Hasanah M; Muhammad, Kharidah; Makeri, Mohammad

    2014-02-12

    As fermentation could reduce the negative effects of bran on final cereal products, the utilization of whole-cereal flour is recommended, such as brown rice flour as a functional food ingredient. Therefore, this study aimed to investigate the effect of fermented brown rice flour on white rice flour, white rice batter and its steamed bread qualities. Brown rice batter was fermented using commercial baker's yeast (Eagle brand) according to the optimum conditions for moderate acidity (pH 5.5) to obtain fermented brown rice flour (FBRF). The FBRF was added to white rice flour at 0%, 10%, 20%, 30%, 40% and 50% levels to prepare steamed rice bread. Based on the sensory evaluation test, steamed rice bread containing 40% FBRF had the highest overall acceptability score. Thus, pasting properties of the composite rice flour, rheological properties of its batter, volume and texture properties of its steamed bread were determined. The results showed that peak viscosity of the rice flour containing 40% FBRF was significantly increased, whereas its breakdown, final viscosity and setback significantly decreased. Viscous, elastic and complex moduli of the batter having 40% FBRF were also significantly reduced. However, volume, specific volume, chewiness, resilience and cohesiveness of its steamed bread were significantly increased, while hardness and springiness significantly reduced in comparison to the control. These results established the effectiveness of yeast fermentation in reducing the detrimental effects of bran on the sensory properties of steamed white rice bread and encourage the usage of brown rice flour to enhance the quality of rice products.

  1. The Birth of a Black Rice Gene and Its Local Spread by Introgression.

    Science.gov (United States)

    Oikawa, Tetsuo; Maeda, Hiroaki; Oguchi, Taichi; Yamaguchi, Takuya; Tanabe, Noriko; Ebana, Kaworu; Yano, Masahiro; Ebitani, Takeshi; Izawa, Takeshi

    2015-09-01

    The origin and spread of novel agronomic traits during crop domestication are complex events in plant evolution. Wild rice (Oryza rufipogon) has red grains due to the accumulation of proanthocyanidins, whereas most cultivated rice (Oryza sativa) varieties have white grains induced by a defective allele in the Rc basic helix-loop-helix (bHLH) gene. Although the events surrounding the origin and spread of black rice traits remain unknown, varieties with black grains due to anthocyanin accumulation are distributed in various locations throughout Asia. Here, we show that the black grain trait originated from ectopic expression of the Kala4 bHLH gene due to rearrangement in the promoter region. Both the Rc and Kala4 genes activate upstream flavonol biosynthesis genes, such as chalcone synthase and dihydroflavonol-4-reductase, and downstream genes, such as leucoanthocyanidin reductase and leucoanthocyanidin dioxygenase, to produce the respective specific pigments. Genome analysis of 21 black rice varieties as well as red- and white-grained landraces demonstrated that black rice arose in tropical japonica and its subsequent spread to the indica subspecies can be attributed to the causal alleles of Kala4. The relatively small size of genomic fragments of tropical japonica origin in some indica varieties indicates that refined introgression must have occurred by natural crossbreeding in the course of evolution of the black trait in rice. © 2015 American Society of Plant Biologists. All rights reserved.

  2. Lysophosphatidic acid inhibition of the accumulation of Pseudomonas aeruginosa PAO1 alginate, pyoverdin, elastase and LasA

    DEFF Research Database (Denmark)

    Laux, D.C.; Corson, J.M.; Givskov, Michael Christian

    2002-01-01

    . In the present study, a lysophospholipid, 1-paimitoyl-2-hydroxy-sn-glycero-3-phosphate [also called monopalmitoylphosphatidic acid (MPPA)], which accumulates in inflammatory exudates, was shown to inhibit the extracellular accumulation of P. aeruginosa PAO1 alginate, elastase, LasA protease and the siderophore...

  3. Effect of microcystins on root growth, oxidative response, and exudation of rice (Oryza sativa).

    Science.gov (United States)

    Cao, Qing; Rediske, Richard R; Yao, Lei; Xie, Liqiang

    2018-03-01

    A 30 days indoor hydroponic experiment was carried out to evaluate the effect of microcystins (MCs) on rice root morphology and exudation, as well as bioaccumulation of MCs in rice. MCs were bioaccumulated in rice with the greatest concentrations being observed in the leaves (113.68μgg -1 Fresh weight (FW)) when exposed to 500μgL -1 MCs. Root activity at 500μgL -1 decreased 37%, compared to the control. MCs also induced disruption of the antioxidant system and lipid peroxidation in rice roots. Root growth was significantly inhibited by MCs. Root weight, length; surface area and volume were significantly decreased, as well as crown root number and lateral root number. After 30 days exposure to MCs, an increase was found in tartaric acid and malic acid while the other organic acids were not affected. Glycine, tyrosine, and glutamate were the only amino acids stimulated at MCs concentrations of 500μgL -1 . Similarly, dissolved organic carbon (DOC) and carbohydrate at 50 and 500μgL -1 treatments were significantly increased. The increase of DOC and carbohydrate in root exudates was due to rice root membrane permeability changes induced by MCs. Overall, this study indicated that MCs significantly inhibited rice root growth and affected root exudation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China.

    Science.gov (United States)

    Liang, Jianfen; Han, Bei-Zhong; Nout, M J Robert; Hamer, Robert J

    2010-02-01

    In vitro solubility of calcium, iron and zinc in relation to phytic acid (PA) levels in 30 commercial rice-based foods from China was studied. Solubility of minerals and molar ratios of PA to minerals varied with degrees of processing. In primary products, [PA]/[Ca] values were less than 5 and [PA]/[Fe] and [PA]/[Zn] similarly ranged between 5 and 74, with most values between 20 and 30. [PA]/[mineral] molar ratios in intensively processed products were lower. Solubility of calcium ranged from 0% to 87%, with the lowest in brown rice (12%) and the highest in infant foods (50%). Iron solubility in two-thirds of samples was lower than 30%, and that of zinc narrowly ranged from 6% to 30%. Solubility of minerals was not significantly affected by [PA]/[mineral]. At present, neither primary nor intensively processed rice-based products are good dietary sources of minerals. Improvements should be attempted by dephytinization, mineral fortification or, preferably, combination of both.

  5. Metabolomic Profiles of Aspergillus oryzae and Bacillus amyloliquefaciens During Rice Koji Fermentation

    Directory of Open Access Journals (Sweden)

    Da Eun Lee

    2016-06-01

    Full Text Available Rice koji, used early in the manufacturing process for many fermented foods, produces diverse metabolites and enzymes during fermentation. Using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS, ultrahigh-performance liquid chromatography linear trap quadrupole ion trap tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS, and multivariate analysis we generated the metabolite profiles of rice koji produced by fermentation with Aspergillus oryzae (RK_AO or Bacillus amyloliquefaciens (RK_BA for different durations. Two principal components of the metabolomic data distinguished the rice koji samples according to their fermenter species and fermentation time. Several enzymes secreted by the fermenter species, including α-amylase, protease, and β-glucosidase, were assayed to identify differences in expression levels. This approach revealed that carbohydrate metabolism, serine-derived amino acids, and fatty acids were associated with rice koji fermentation by A. oryzae, whereas aromatic and branched chain amino acids, flavonoids, and lysophospholipids were more typical in rice koji fermentation by B. amyloliquefaciens. Antioxidant activity was significantly higher for RK_BA than for RK_AO, as were the abundances of flavonoids, including tricin, tricin glycosides, apigenin glycosides, and chrysoeriol glycosides. In summary, we have used MS-based metabolomics and enzyme activity assays to evaluate the effects of using different microbial species and fermentation times on the nutritional profile of rice koji.

  6. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss.

    Science.gov (United States)

    Wang, M Y; Chen, A K; Wong, M H; Qiu, R L; Cheng, H; Ye, Z H

    2011-06-01

    Cadmium (Cd) uptake and tolerance were investigated among 20 rice cultivars based on a field experiment (1.2 mg Cd kg⁻¹ in soil) and a soil pot trial (control, 100 mg Cd kg⁻¹), and rates of radial oxygen loss (ROL) were measured under a deoxygenated solution. Significant differences were found among the cultivars in: (1) brown rice Cd concentrations (0.11-0.29 mg kg⁻¹) in a field soil, (2) grain Cd tolerance (34-113%) and concentrations (2.1-6.5 mg kg⁻¹) in a pot trial, and (3) rates of ROL (15-31 mmol O₂ kg⁻¹ root d.w. h⁻¹). Target hazard quotients were calculated for the field experiment to assess potential Cd risk. Significant negative relationships were found between rates of ROL and concentrations of Cd in brown rice or straw under field and greenhouse conditions, indicating that rice cultivars with higher rates of ROL had higher capacities for limiting the transfer of Cd to rice and straw. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Abscisic Acid accumulates at positive turgor potential in excised soybean seedling growing zones.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1991-04-01

    Abscisic acid (ABA) accumulated in soybean (Glycine max [L.] Merr. cv Williams) hypocotyl elongating regions when seedlings were transferred to low water potential vermiculite (Psi = -0.3 megapascals) even though positive turgor is retained in this tissue. Accumulation of ABA in growing zones could occur from de novo biosynthesis within this tissue or transport from adjacent nongrowing zones. Both growing and nongrowing hypocotyl and root tissues accumulated significant levels of ABA when excised and dehydrated to reduce turgor. Surprisingly, excised growing zones (which experienced no water loss) also accumulated ABA when incubated in darkness for 4 hours at 100% relative humidity and 29 degrees C. Induction of ABA accumulation in the excised elongating region of the hypocotyl was not caused by disruption of root pressure or wounding. While excision of hypocotyl elongating regions induced ABA accumulation, no change in either extensin or p33 mRNA levels was observed. Accumulation of extensin or p33 mRNA required more severe wounding. This suggests that ABA is not involved in the response of these genes in wounded tissue and that wound signals are not causing ABA accumulation in excised tissue. Accumulation of ABA in excised elongating regions was correlated with growth inhibition and a decline in turgor to the yield threshold (Psi;(p) = 0.37 megapascals; R Matyssek, S Maruyama, JS Boyer [1988] Plant Physiol 86: 1163-1167). Inhibiting hypocotyl growth by transferring seedlings to lower temperatures or light did not cause ABA accumulation. We conclude that induction of ABA accumulation in growing zones is more sensitive to changes in turgor than the induction which occurs in mature tissues.

  8. Nonadditive protein accumulation patterns in Maize (Zea mays L.) hybrids during embryo development.

    Science.gov (United States)

    Marcon, Caroline; Schützenmeister, André; Schütz, Wolfgang; Madlung, Johannes; Piepho, Hans-Peter; Hochholdinger, Frank

    2010-12-03

    Heterosis describes the superior performance of heterozygous F(1)-hybrid plants compared to their homozygous parental inbred lines. In the present study, heterosis was detected for length, weight, and the time point of seminal root primordia initiation in maize (Zea mays L.) embryos of the reciprocal F(1)-hybrids UH005xUH250 and UH250xUH005. A two-dimensional gel electrophoresis (2-DE) proteome survey of the most abundant proteins of the reciprocal hybrids and their parental inbred lines 25 and 35 days after pollination revealed that 141 of 597 detected proteins (24%) exhibited nonadditive accumulation in at least one hybrid. Approximately 44% of all nonadditively accumulated proteins displayed an expression pattern that was not distinguishable from the low parent value. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) analyses and subsequent functional classification of the 141 proteins revealed that development, protein metabolism, redox-regulation, glycolysis, and amino acid metabolism were the most prominent functional classes among nonadditively accumulated proteins. In 35-day-old embryos of the hybrid UH250xUH005, a significant up-regulation of enzymes related to glucose metabolism which often exceeded the best parent values was observed. A comparison of nonadditive protein accumulation between rice and maize embryo data sets revealed a significant overlap of nonadditively accumulated proteins suggesting conserved organ- or tissue-specific regulatory mechanisms in monocots related to heterosis.

  9. Tolerance, quality and storability of gamma-irradiated Egyptian rice

    International Nuclear Information System (INIS)

    Ismail, F.A.; El-Wakeil, F.A.; El-Dash, S.M.

    1978-01-01

    The effect of gamma irradiation on some organoleptic and physico-chemical properties and the storability of Egyptian rice was investigated. Radiation up to 50krad was chosen as an adequate dose causing non-significant changes in eating and cooking qualities. The effect of irradiation on degradation of starch and protein molecules is demonstrated on the basis of studies on the viscosity and solubility of rice paste. Irradiation at relatively low dose levels up to 50krad did not affect the chemical and nutritional qualities of rice regarding amino acids and B vitamins. It was also found that irradiation maintains better storability of rice under ambient temperature. (author)

  10. Metabolite profiling, antioxidant, and α-glucosidase inhibitory activities of germinated rice: nuclear-magnetic-resonance-based metabolomics study

    Directory of Open Access Journals (Sweden)

    Phaiwan Pramai

    2018-01-01

    Full Text Available In an attempt to profile the metabolites of three different varieties of germinated rice, specifically black (GBR, red, and white rice, a 1H-nuclear-magnetic-resonance-based metabolomics approach was conducted. Multivariate data analysis was applied to discriminate between the three different varieties using a partial least squares discriminant analysis (PLS-DA model. The PLS model was used to evaluate the relationship between chemicals and biological activities of germinated rice. The PLS-DA score plot exhibited a noticeable separation between the three rice varieties into three clusters by PC1 and PC2. The PLS model indicated that α-linolenic acid, γ-oryzanol, α-tocopherol, γ-aminobutyric acid, 3-hydroxybutyric acid, fumaric acid, fatty acids, threonine, tryptophan, and vanillic acid were significantly correlated with the higher bioactivities demonstrated by GBR that was extracted in 100% ethanol. Subsequently, the proposed biosynthetic pathway analysis revealed that the increased quantities of secondary metabolites found in GBR may contribute to its nutritional value and health benefits.

  11. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China

    NARCIS (Netherlands)

    Liang, J.; Han, B.Z.; Nout, M.J.R.; Hamer, R.J.

    2010-01-01

    In vitro solubility of calcium, iron and zinc in relation to phytic acid (PA) levels in 30 commercial rice-based foods from China was studied. Solubility of minerals and molar ratios of PA to minerals varied with degrees of processing. In primary products, [PA]/[Ca] values were less than 5 and

  12. Effect of gypsum, pressmud, fulvic acid and zinc sources on yield and zinc uptake by rice crop in a saline-sodic soil

    International Nuclear Information System (INIS)

    Chand, M.

    1980-01-01

    The application of fulvic acid to a saline-sodic soil augmented the solubility of zinc by thousands fold. Zinc fulvate when applied at levels equivalent to that of zinc sulphate was more effective in enhancing diffusion of zinc in the soil. Application of gypsum, zinc sulphate and fulvic acid significantly increased dry matter yield and uptake of zinc by rice crop in a saline-sodic soil. Application of gypsum with pressmud or with fulvic acid and zinc sulphate resulted in significantly higher yield and zinc uptake than in other treatments. (orig.)

  13. Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies

    International Nuclear Information System (INIS)

    Takahashi, W.; Nguyen-Cong, V.; Kawaguchi, S.; Minamiyama, M.; Ninomiya, S.

    2000-01-01

    Various multivariate regression models were examined with ten-fold cross-validation to develop efficient, accurate models to predict dry weight and nitrogen accumulation of rice crops (cultivars Koshihikari, Hanaechizen, Nipponbare, and IR-36) from the maximum tiller number stage to the meiosis stage, using plant-canopy reflectance of hyper-spectra within the 400-1100 nm domain without any variable selection. The results showed that the principal component regression using hyper-spectra gave better fits and predictability than that using specific wavelengths. On the other hand, partial least squares regression was the most useful among the models tested; this method avoided overfitting and multicollinearity by using all wavelength information without variable selection and by inclusion of both x and y variations in its latent variables. (author)

  14. Transfer of gaseous iodine from atmosphere to rough rice, brown rice and polished rice

    International Nuclear Information System (INIS)

    Sumiya, Misako; Uchida, Shigeo; Muramatsu, Yasuyuki; Ohmomo, Yoichiro; Yamaguchi, Shuho; Obata, Hitoshi.

    1987-01-01

    Experiments were carried out in order to obtain information required for establishing transfer coefficients of gaseous iodine (I 2 ) to rough rice, brown rice and polished rice. The gaseous iodine deposited on young rice plants before the heading period was scarcely found in the rough rice harvested at the full ripe stage. The biological half life of iodine in hull, however, was much slower than that in leaves of 14 days. The translocation of iodine from leaves and stalks to rough rice was not clearly recognized. Therefore, it was deduced that iodine found in brown rice mainly should originate from that deposited on the hull. The distribution ratios of iodine between rough rice and brown rice, and between brown rice and polished rice were 100:4 and 100:30 on 100 grains basis, respectively. If average normalized deposition velocity (V d(m) ) or derived deposition velocity (V s ) are given, the transfer coefficients of gaseous iodine to rough rice (TF r ), brown rice (TF b ) and polished rice (TF p ) could be calculated. (author)

  15. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.

    Science.gov (United States)

    Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin

    2015-01-01

    Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings.

  16. Genetic dissection of black grain rice by the development of a near isogenic line

    OpenAIRE

    Maeda, Hiroaki; Yamaguchi, Takuya; Omoteno, Motoyasu; Takarada, Takeshi; Fujita, Kenji; Murata, Kazumasa; Iyama, Yukihide; Kojima, Yoichiro; Morikawa, Makiko; Ozaki, Hidenobu; Mukaino, Naoyuki; Kidani, Yoshinori; Ebitani, Takeshi

    2014-01-01

    Rice (Oryza sativa L.) can produce black grains as well as white. In black rice, the pericarp of the grain accumulates anthocyanin, which has antioxidant activity and is beneficial to human health. We developed a black rice introgression line in the genetic background of Oryza sativa L. ‘Koshihikari’, which is a leading variety in Japan. We used Oryza sativa L. ‘Hong Xie Nuo’ as the donor parent and backcrossed with ‘Koshihikari’ four times, resulting in a near isogenic line (NIL) for black g...

  17. Metabolic regulation of carotenoid-enriched Golden rice line

    Directory of Open Access Journals (Sweden)

    Dipak Gayen

    2016-10-01

    Full Text Available Vitamin A deficiency (VAD is the leading cause of blindness among children and is associated with high risk of maternal mortality. In order to enhance the bioavailability of vitamin A, high carotenoid transgenic golden rice has been developed by manipulating enzymes, such as phytoene synthase (psy and phytoene desaturase (crtI. In this study, proteome and metabolite analyses were carried out to comprehend metabolic regulation and adaptation of transgenic golden rice after the manipulation of endosperm specific carotenoid pathways. The main alteration was observed in carbohydrate metabolism pathways of the transgenic seeds. The 2D based proteomic studies demonstrated that carbohydrate metabolism-related enzymes, such as pullulanase, UDP-glucose pyrophosphorylase and glucose-1-phosphate adenylyl transferase, were primarily up-regulated in transgenic rice seeds. In addition, the enzyme PPDK was also elevated in transgenic seeds thus enhancing pyruvate biosynthesis, which is the precursor in the carotenoids biosynthetic pathway. GC-MS based metabolite profiling demonstrated an increase in the levels of glyceric acid, fructo-furanose, and galactose, while decrease in galactonic acid and gentiobiose in the transgenic rice compared to WT. It is noteworthy to mention that the carotenoid content, especially β-carotene level in transgenic rice (4.3 µg/g was significantly enhanced. The present study highlights the metabolic adaptation process of a transgenic golden rice line (homozygous T4 progeny of SKBR-244 after enhancing carotenoid biosynthesis. The presented information would be helpful in the development of crops enriched in carotenoids by expressing metabolic flux of pyruvate biosynthesis.

  18. Differences in phytoalexin response among rice cultivars of different resistance to blast

    International Nuclear Information System (INIS)

    Dillon, V.M.; Overton, J.; Grayer, R.J.; Harborne, J.B.

    1997-01-01

    he production of both flavonoid and diterpenoid phytoalexins after induction by UV irradiation was studied in five rice genotypes of different susceptibility to the rice blast fungus Pyricularia oryzae. Consistent qualitative and quatitative differences were found between the rice cultivars in the phytoalexins produced, and there was a strong correlation between the accumulation of the phytoalexins, sakuranetin, momilactone A and oryzalexin S, and rice resistance to blast. Production of phytoalexins was also investigated in rice genotype Tetep after inoculation with an incompatible race of P. oryzae. Similar levels of sakuranetin and oryzalexin E were formed 3 days after both inoculation and UV irradiation of the leaves, but there were different levels of momilactone A and the other oryzalexins. Although a given rice genotype may respond quite differently in its production of phytoalexins depending on whether it has been irradiated or inoculated with a fungus, and in the latter case on whether a compatible race of the pathogen has been used, the present results indicate that genetic differences in phytoalexin response between rice cultivars are likely to play an important role among the many factors that determine differences in blast resistance between different rice genotypes. (author)

  19. The emission of nitrous oxide upon wetting a rice soil following a dry season fallow

    Science.gov (United States)

    Byrnes, B. H.; Holt, L. S.; Austin, E. R.

    1993-12-01

    A greenhouse experiment was conducted to measure nitrous oxide (N2O) emissions from a soil, which had been planted to flooded transplanted rice, as it was rewetted to simulate the end of a dry season fallow period. The pots of soil had been cropped to transplanted rice with two commonly used nitrogen (N) fertilizer treatments and a control, and the soil had been puddled before transplanting. Large amounts of nitrate N accumulated in the soils during the dry season fallow, and the N fertilizers applied to the previous crop had little effect on nitrate accumulation. There was little N2O emission during the nitrification period. With water additions meant to simulate rainfall events at the beginning of a wet season, the soil redox dropped slightly, and large amounts of N2O began to be emitted. Large emissions began 5 days after each of the two simulated rainy season watering events and stopped abruptly at soil saturation, even though considerable amounts of nitrate still remained in the soil after saturation. Total measured emissions amounted to 6 to 7 kg N2O-N ha-1 for the period. Although these measurements were made in a system which may have favored nitrate accumulation, they are the first known measurements of N2O made from a rice soil as it is wetted. Nitrous oxide emitted from the flooding of rice soils that have accumulated nitrate during a dry season fallow may be a major source of N2O additions to the atmosphere.

  20. Studies on the physiological changes in the rice plants infected with Xanthomonas campestris pv. oryzae, (3)

    International Nuclear Information System (INIS)

    Watanabe, Minoru; Samejima, Shin-ichi; Hosokawa, Daijiro

    1980-01-01

    Accumulation of 14 C-photosynthetic assimilates in rice leaves infected with Xanthomonas campestris pv. oryzae was studied by using autoradiography for the purpose of elucidating the movement of nutrients from healthy tissues to the infected parts. When rice plants were exposed to 14 CO 2 immediately after inoculation, 14 C-photosynthetic assimilates did not accumulate in and around the inoculated spots of leaves until the lesions became visible, i.e., approximately 7 days after inoculation. When the leaves were exposed to 14 CO 2 before visible lesions appeared, 2 and 5 days after inoculation, the assimilates did not accumulate in the inoculated areas, but apparently accumulated in the lesions 24 hr later on from the exposure of leaves with visible lesions. In the newly formed lesions, accumulation site corresponded to the yellow streak parts of lesions along leaf veins. In the large and old lesions, assimilates hardly any accumulated in the center of lesions, grayish-white in color, but accumulated in the border parts of lesions adjacent to healthy tissues which are developing and yellow streak in symptoms. (author)