Sample records for achondrites

  1. A Classification Table for Achondrites (United States)

    Chennaoui-Aoudjehane, H.; Larouci, N.; Jambon, A.; Mittlefehldt, D. W.


    Classifying chondrites is relatively easy and the criteria are well documented. It is based on mineral compositions, textural characteristics and more recently, magnetic susceptibility. It can be more difficult to classify achondrites, especially those that are very similar to terrestrial igneous rocks, because mineralogical, textural and compositional properties can be quite variable. Achondrites contain essentially olivine, pyroxenes, plagioclases, oxides, sulphides and accessory minerals. Their origin is attributed to differentiated parents bodies: large asteroids (Vesta); planets (Mars); a satellite (the Moon); and numerous asteroids of unknown size. In most cases, achondrites are not eye witnessed falls and some do not have fusion crust. Because of the mineralogical and magnetic susceptibility similarity with terrestrial igneous rocks for some achondrites, it can be difficult for classifiers to confirm their extra-terrestrial origin. We -as classifiers of meteorites- are confronted with this problem with every suspected achondrite we receive for identification. We are developing a "grid" of classification to provide an easier approach for initial classification. We use simple but reproducible criteria based on mineralogical, petrological and geochemical studies. We presented the classes: acapulcoites, lodranites, winonaites and Martian meteorites (shergottite, chassignites, nakhlites). In this work we are completing the classification table by including the groups: angrites, aubrites, brachinites, ureilites, HED (howardites, eucrites, and diogenites), lunar meteorites, pallasites and mesosiderites. Iron meteorites are not presented in this abstract.

  2. Uranium and thorium in achondrites. (United States)

    Morgan, J. W.; Lovering, J. F.


    The abundances of U and Th in 19 achondrites and two pallasite olivines have been measured by radiochemical neutron activation analysis. Brecciated eucrites are enriched relative to chondrites in both elements by factors between 10 and 20, perhaps as a result of a magmatic differentiation process. Two unbrecciated eucrites are far less enriched, possibly due to their origin as igneous cumulates. The diogenites Johnstown and Shalka contain approximately chondritic levels of U and Th, but Ellemeet is 10 times lower. The abundances in three howardites are in good agreement with those expected from major element data for a mixing model with eucrite and diogenite end members. The high O-18 basaltic achondrites Nakhla, Shergotty and Angra dos Reis have a range of U and Th abundances similar to the brecciated eucrites and howardites, but have systematically higher Th/U ratios.

  3. The variation of Zn content in spinel group minerals and daubreelites of primitive achondrites




    We have studied the Zn content of spinel group mineral and daubreelite in primitive achondrites in order to clarify how the content of Zn, a moderately volatile element, reflects their formation process. Primitive achondrites have achondritic texture and chondrite-related chemistry and mineralogy. Because of these characteristics, primitive achondrites are thought to represent the transition from chondrites to achondrites. We have compared the Zn content in spinel group minerals of primitive ...

  4. Compositions of Normal and Anomalous Eucrite-Type Mafic Achondrites (United States)

    Mittlefehldt, D. W.; Peng, Z. X.; Mertzman, S. A.


    The most common asteroidal igneous meteorites are eucrite-type mafic achondrites - basalts and gabbros composed of ferroan pigeonite, ferroan augite, calcic plagioclase, silica, ilmenite, troilite, Ca-phosphate, chromite and Fe-metal. These rocks are thought to have formed on a single asteroid along with howardites and diogenites. However, high precision O-isotopic analyses have shown that some mafic achondrites have small, well-resolved, non-mass-dependent differences that have been interpreted as indicating derivation from different asteroids. Some of these O-anomalous mafic achondrites also have anomalous petrologic characteristics, strengthening the case that they hail from distinct parent asteroids. We present the results of bulk compositional studies of a suite of normal and anomalous eucrite-type basalts and cumulate gabbros.

  5. Could 433 Eros have a Primitive Achondritic Composition? (United States)

    Burbine, T. H.; McCoy, T. J.; Nittler, L. R.; Bell, J. F., III


    One of the goals of the NEAR (Near Earth Asteroid Rendezvous) mission to 433 Eros is to determine if it has a meteoritic analog. We are currently investigating if primitive achondrites have bulk compositions and spectral properties similar to Eros. Additional information is contained in the original extended abstract.

  6. Geochemistry and chronology of the Bunburra Rockhole ungrouped achondrite

    Czech Academy of Sciences Publication Activity Database

    Spivak-Birndorf, L.J.; Bouvier, A.; Benedix, G.K.; Hammond, S.; Brennecka, G.A.; Howard, K.; Rogers, N.; Wadhwa, M.; Bland, P.A.; Spurný, Pavel; Towner, M.C.


    Roč. 50, č. 5 (2015), s. 958-975. ISSN 1086-9379 Institutional support: RVO:67985815 Keywords : early solar-system * MN-53-CR-53 systematics * basaltic achondrite Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.104, year: 2014

  7. Ungrouped achondrite NWA 7325: Infrared and Raman study of a potential sample from Mercury (United States)

    Morlok, A.; Weber, I.; Ahmedi, M.; Bischoff, A.; Hiesinger, H.; Helbert, J.


    We analyzed the ungrouped achondrite NWA 7325 using Raman and FTIR spectroscopy in order to characterize the main mineralogy, and to provide infrared data for remote sensing purposes. Both Raman and FTIR results show a mineralogy dominated by anorthitic feldspar and diopside.

  8. Assessing the Formation of Ungrouped Achondrite Northwest Africa 8186: Residue, Crystallization Product, or Recrystallized Chondrite? (United States)

    Srinivasan, P.; McCubbin, F. M.; Agee, C. B.


    The recent discoveries of primitive achondrites, metachondrites, and type 7 chondrites challenge the long held idea that all chondrites and achondrites form on separate parent bodies. These meteorites have experienced metamorphic temperatures above petrologic type 6 and have partially melted to various degrees. However, because of their isotopic and compositional similarities to both undifferentiated and differentiated groups, the provenance of these 'type 6+' meteorites remains largely unknown. CK and CV chondrites have recently been linked to a few achondrites due to their strong compositional, mineralogical, and isotopic similarities], suggesting a common origin between these meteorites. Although CVs have generally undergone low degrees of alteration near petrologic type 3, CKs have experienced a wide range of thermal alteration from petrologic type 3 to 6. Thermal evolution models on early accreting bodies predict that an early forming body can partially differentiate due to radiogenic heating, and, as a result, form radial layers of material increasing in thermal grade (types 3 to 6+) from the unmelted chondritic surface towards the differentiated core.Northwest Africa (NWA) 8186 is an ungrouped achondrite that provides compelling evidence for higher degrees of thermal processing and/or melting and differentiation on some CK/CV parent bodies. NWA 8186 plots on the CCAM line on a 3-oxygen isotope diagram directly with CK and CV chondrites and also plots with the CKs in regards to Cr isotopes. This meteorite is dominated by Nickel(II)Oxygen-rich olivine (less than 80%), lacks iron metal, and contains four oxide phases, indicating a high fOxygen (above FMQ) similar to the CKs. Additionally, NWA 8186 does not contain chondrules. We have further investigated the origins of NWA 8186 by examining and comparing the bulk composition of this CK-like achondrite with CK and CV chondrites, allowing us to assess the various scenarios in which NWA 8186 may have formed from

  9. Chronology and petrogenesis of young achondrites, Shergotty, Zagami, and ALHA77005 - Late magmatism on a geologically active planet (United States)

    Shih, C.-Y.; Wooden, J. L.; Bansal, B. M.; Wiesmann, H.; Nyquist, L. E.; Bogard, D. D.; Mckay, G. A.


    Three achondrites were examined for chronology, petrogenesis, and relationships among the shergotites. Isotopic and trace elements analyses were carried out through neutron activation and mass spectrometry on Shergotty, Zagami, and ALHA77005 samples. Attention was given the Rb-Sr, Sm-Nd, and the Ar-39/Ar-40 ages in the samples. Evidence was detected for a shock metamorphism and a younger age of the meteorites than with most other achondrites. Depletions of the rare-earth elements were observed in Shergotty and Zagami, and to a more pronounced degree in ALHA77005. The Rb-Sr internal isochrons for all three meteorites were about 180 Myr, while the Ar-39/Ar-40 plateau ages of Shergotty and Zagami maskelynite were determined at 250-260 Myr. No precise identification of the crystallization ages was found. It is suggested that the achondrites originated in a parent body which experienced at least two epochs of sustained melting.


    International Nuclear Information System (INIS)

    The standard planetary formation models assume that primitive materials, such as carbonaceous chondrites, are the precursor materials of evolved planetesimals. Past chronological studies have revealed that planetesimals of several hundred kilometers in size, such as the Howardite-Eucrite-Diogenite (HED) parent body (Vesta) and angrite parent body, began their differentiation as early as ∼3 million years of the solar system formation, and continued for at least several million years. However, the timescale of planetesimal formation in distinct regions of the inner solar system, as well as the isotopic characteristics of the reservoirs from which they evolved, remains unclear. Here we present the first report for the precise 53Mn-53Cr ages of monomict ureilites. Chemically separated phases from one monomict ureilite (NWA 766) yielded the Mn-Cr age of 4564.60 ± 0.67 Ma, identical within error to the oldest age preserved in other achondrites, such as angrites and eucrites. The 54Cr isotopic data for this and seven additional bulk ureilites show homogeneous ε54Cr of ∼-0.9, a value distinct from other achondrites and chondrites. Using the ε54Cr signatures of Earth, Mars, and Vesta (HED), we noticed a linear decrease in the ε54Cr value with the heliocentric distance in the inner region of the solar system. If this trend can be extrapolated into the outer asteroid belt, the ε54Cr signatures of monomict ureilites will place the position of the ureilite parent body at ∼2.8 AU. These observations imply that the differentiation of achondrite parent bodies began nearly simultaneously at ∼4565 Ma in different regions of the inner solar system. The distinct ε54Cr value between ureilite and carbonaceous chondrite also implies that a genetic link commonly proposed between the two is unlikely.

  11. Igneous history of the aubrite parent asteroid - Evidence from the Norton County enstatite achondrite (United States)

    Okada, Akihiko; Keil, Klaus; Taylor, G. Jeffrey; Newsom, Horton


    Numerous specimens of the Norton County enstatite achondrite (aubrite) were studied by optical microscopy, electron microprobe, and neutron-activation analysis. Norton County is found to be a fragmental impact breccia, consisting of a clastic matrix made mostly of crushed enstatite, into which are embedded a variety of mineral and lithic clasts of both igneous and impact melt origin. The Norton County precursor materials were igneous rocks, mostly plutonic orthopyroxenites, not grains formed by condensation from the solar nebula. The Mg-silicate-rich aubrite parent body experienced extensive melting and igneous differentiation, causing formation of diverse lithologies including dunites, plutonic orthopyroxenites, plutonic pyroxenites, and plagioclase-silica rocks. The presence of impact melt breccias (the microporphyritic clasts and the diopside-plagioclase-silica clast) of still different compositions further attests to the lithologic diversity of the aubrite parent body.

  12. Petrography and petrogenesis of some Indian basaltic achondrites derived from the HED parent body: Insights from electron microprobe analyses

    Indian Academy of Sciences (India)

    Rajesh K Srivastava


    Three Indian achondrites, viz., Bholghati howardite, Lohawat howardite and Pipliya Kalan eucrite and two other achondrites, viz., Bé ré ba eucrite and Johnstown diogenite are studied for their petrography and mineral chemistry. All these achondrites are derived from the HED parent body. Both Bholghati and Lohawat howardites are polymict breccias and contain pieces of eucrites and diaogenites (lithic clasts), pyroxene and minor olivine as mineral clasts, and small proportion of ilmenite and pure iron metal. Eucrite clasts are noncumulate basaltic in nature, whereas diogenite clasts are mostly composed of orthopyroxene with minor clinopyroxene and anorthite. Both howardite samples contain orthopyroxene, pigeonite and augite. Notable characteristics observed in Lohawat howardite include crystallization of orthoenstatite first at a high-temperature followed by ferrosilite, pigeonite olivine and augite from a basaltic melt. Piplia Kalan eucrite is noncumulate, unbrecciated and basaltic in nature and display ophitic/sub-ophitic or hypidiomorphic textures. It contains ∼60% pyroxenes (clinoenstatite and pigeonite) and ∼40% plagioclase feldspars (bytownite to anorthite). The observed mineralogy in the Piplia Kalan eucrite suggests its crystallization from a high-temperature basaltic melt crystallized at low pressure. Two other achondrite samples, viz., Bé ré ba eucrite and Johnstown diogenite are also studied. The Bé ré ba eucrite shows cumulate nature which is probably formed by small-degree melts of ilmenitebearing gabbro, whereas the Johnstown diogenite crystallized from a slow cooling of a Ca-poor basaltic melt derived from cumulates formed from the magma ocean, similar to the origin of the noncumulate eucrites.

  13. Antarctic primitive achondrites Yamato-74025, -75300, and -75305:Their mineralogy, thermal history and the relevance to winonaite




    Three Antarctic primitive achondrites, Yamato (Y)-74025,-75300,and -75305 were mineralogically and chemically studied. They consist of anhedral to subhedral silicate and opaque minerals. The major constituent minerals are typical of equilibrated ordinary chondrites. However, they do not have any relic of chondrule, and the presence of various accessory minerals, such as K-feldspar, schreibersite, daubreelite, phosphate, Nb-bearing rutile, and magnesiochromite, characterizes these meteorites. ...

  14. U-Pb systematics of the unique achondrite Ibitira: Precise age determination and petrogenetic implications (United States)

    Iizuka, Tsuyoshi; Amelin, Yuri; Kaltenbach, Angela; Koefoed, Piers; Stirling, Claudine H.


    Ibitira is an unbrecciated, equilibrated vesicular basaltic achondrite that is considered to have originated on a parent body distinct from all other known meteorites. We present the first combined high-precision U and Pb isotopic data for this unique meteorite. The 238U/235U value of 137.777 ± 0.013 determined for the whole rock is comparable to values determined for bulk chondrites and other basaltic achondrites. This value results in corrections of -1.1 Ma for Pb-Pb dates calculated using the previously assumed invariant 238U/235U value of 137.88. Using the determined 238U/235U value, the 7 most radiogenic Pb isotopic analyses for acid-leached pyroxene-rich and whole rock fractions yield an isochron Pb-Pb age of 4556.75 ± 0.57 Ma, in excellent agreement with the results of Mn-Cr chronology which give the ages of 4557.4 ± 2.5 Ma and 4555.9 ± 3.2 Ma using the U-corrected Pb-Pb age of D'Orbigny as a time anchor. Along with the previously proposed thermal history of Ibitira and our closure temperature estimates for Pb diffusion, the Pb-Pb age is interpreted as the timing of the last chemical equilibration and coarse pyroxene exsolution that occurred during high temperature metamorphism. The metamorphism may have been caused by burial of Ibitira lava under successive lava flows and, if so, the Pb-Pb age should post-date the crystallization by a short time interval. The Pb isotopic data for acid leachates suggest partial re-equilibration of Pb between plagioclase and phosphate, perhaps during an impact event at 4.49 Ga, as recorded by K-Ar systematics. The whole rock 238U/204Pb indicates that compared to CI chondrites, Ibitira is less depleted in Pb than in some alkali elements despite a lower condensation temperature of Pb than the alkali elements. The restricted Pb depletion may reflect preferential concentration of metals with high fluid/melt partition coefficients including Pb and Zn as a result of fluid exsolution and migration within the parent magma. We

  15. U-Pb and Al-Mg systematics of the ungrouped achondrite Northwest Africa 7325 (United States)

    Koefoed, Piers; Amelin, Yuri; Yin, Qing-Zhu; Wimpenny, Josh; Sanborn, Matthew E.; Iizuka, Tsuyoshi; Irving, Anthony J.


    Northwest Africa (NWA) 7325 is a unique ungrouped gabbroic achondrite which has characteristics consistent with a possible link to the planet Mercury. In order to understand the origin of this meteorite and the nature of its parent body, we have determined its crystallisation age using the long-lived U-Pb and short-lived Al-Mg chronometers. An internal Pb-Pb isochron defined by six acid leached pyroxene fractions yields an age of 4563.4 ± 2.6 Ma, assuming that the 238U/235U ratio for NWA 7325 is identical to the bulk Earth and Solar System value of 137.794. The Al-Mg isotope analyses of seven fractions (four plagioclase, one pyroxene, one olivine and one whole rock) define a regression line corresponding to 26Al/27Al0 = (3.03 ± 0.14) × 10-7 and an initial δ26Mg∗ of 0.093 ± 0.004‰. When anchored to the D'Orbigny angrite, this initial 26Al/27Al yields an age of 4563.09 ± 0.26 Ma. The Pb-Pb age of 4563.4 ± 2.6 Ma and Al-Mg age of 4563.09 ± 0.26 Ma are in complete agreement, but the low U concentrations of NWA 7325 resulted in a relatively low precision Pb-Pb age. The observed excess in initial δ26Mg∗ can be explained by 27Al/24Mg fractionation and subsequent Mg isotopic evolution after planetary differentiation. Furthermore, the parental magma of NWA 7325 most likely formed within 1.72 Ma after calcium-aluminium rich inclusion (CAI) formation. NWA 7325 formed near simultaneously with quenched angrites and a number of ungrouped achondrites at ∼4563 Ma, suggesting that a multitude of planetary bodies had formed and differentiated by ∼4-5 Myr after CAI formation. This ancient age may be interpreted as an argument against NWA 7325 originating from Mercury, however it does not completely rule it out.

  16. Determination of primordial and cosmogenic radioactivity in achondritic meteorites by low-level, gamma-ray spectrometry

    International Nuclear Information System (INIS)

    A high-sensitivity, low-background gamma-ray spectrometer containing two 23 cm by 13 cm thallium-activated, sodium iodide detectors was used to measure long-lived primordial and cosmogenic radioactivity in a suite of achondritic meteorites. Potassium, thorium, uranium, and 26Al abundances were established for sixteen brecciated eucrites, two unbrecciated eucrites, a nakhlite, a chassignite, and a unique meteorite from Antarctica by nondestructive counting techniques. In several cases, multiple samples of the same meteorite fall were examined. Concentrations ranged from 79.8 ppM to 1150 ppM for potassium, 55.6 ppb to 663 ppb for thorium, 18.1 ppb to 190 ppb for uranium, and 45.0 dpm/kg to 99.0 dpm/kg for 26Al. In addition, a 137Cs concentration of 264 dpm/kg was observed in the Allan Hills 77005,9 specimen

  17. AR-39Ar-40 dating of basalts and rock breccias from Apollo 17 and the malvern achondrite (United States)

    Kirsten, T.; Horn, P.


    The principles and the potential of the Ar-39/Ar-40 dating technique are illustrated by means of results obtained for 12 Apollo 17 rocks. Emphasis is given to methodical problems and the geological interpretation of lunar rock ages. Often it is ambigious to associate a given lunar breccia with a certain formation, or a formation with a basin. In addition, large-scale events on the Moon have not necessarily reset radiometric clocks completely. One rock fragment has a well-defined plateau age of 4.28 b.y., but the ages of two Apollo 17 breccias define an upper limit for the formation age of the Serenitatis basin at 4.05 b.y. Ages derived from five mare basalts indicate cessation of mare volcanism at Taurus-Littrow approximately 3.78 b.y. ago. Ca/Ar-37 exposure ages show that Camelot Crater was formed by an impact approximately 95 m.y. ago. After a short summary of the lunar timetable as it stands at the end of the Apollo program, we report about Ar-39/Ar-40 and rare gas studies on the Malvern meteorite. This achondrite resembles lunar highland breccias in texture as well as in rare-gas patterns. It was strongly annealed at some time between 3.4 and 3.8 b.y. ago. The results indicate that very similar processes have occurred on the Moon and on achondritic parent bodies at comparable times, leading to impact breccias with strikingly similar features, including the retention of rare-gas isotopes from various sources.

  18. 40Ar/39Ar impact ages and time-temperature argon diffusion history of the Bunburra Rockhole anomalous basaltic achondrite (United States)

    Jourdan, Fred; Benedix, Gretchen; Eroglu, Ela.; Bland, Phil. A.; Bouvier, Audrey.


    The Bunburra Rockhole meteorite is a brecciated anomalous basaltic achondrite containing coarse-, medium- and fine-grained lithologies. Petrographic observations constrain the limited shock pressure to between ca. 10 GPa and 20 GPa. In this study, we carried out nine 40Ar/39Ar step-heating experiments on distinct single-grain fragments extracted from the coarse and fine lithologies. We obtained six plateau ages and three mini-plateau ages. These ages fall into two internally concordant populations with mean ages of 3640 ± 21 Ma (n = 7; P = 0.53) and 3544 ± 26 Ma (n = 2; P = 0.54), respectively. Based on these results, additional 40Ar/39Ar data of fusion crust fragments, argon diffusion modelling, and petrographic observations, we conclude that the principal components of the Bunburra Rockhole basaltic achondrite are from a melt rock formed at ∼3.64 Ga by a medium to large impact event. The data imply that this impact generated high enough energy to completely melt the basaltic target rock and reset the Ar systematics, but only partially reset the Pb-Pb age. We also conclude that a complete 40Ar∗ resetting of pyroxene and plagioclase at this time could not have been achieved at solid-state conditions. Comparison with a terrestrial analog (Lonar crater) shows that the time-temperature conditions required to melt basaltic target rocks upon impact are relatively easy to achieve. Ar data also suggest that a second medium-size impact event occurred on a neighbouring part of the same target rock at ∼3.54 Ga. Concordant low-temperature step ages of the nine aliquots suggest that, at ∼3.42 Ga, a third smaller impact excavated parts of the ∼3.64 Ga and ∼3.54 Ga melt rocks and brought the fragments together. The lack of significant impact activity after 3.5 Ga, as recorded by the Bunburra Rockhole suggests that (1) either the meteorite was ejected in a small secondary parent body where it resided untouched by large impacts, or (2) it was covered by a porous heat

  19. 40Ar-39Ar age of the Shergotty achondrite and implications for its post-shock thermal history

    International Nuclear Information System (INIS)

    Analyses of 40Ar-39Ar have been made on a whole rock sample and a maskelynite (feldspar) separate of the shocked Shergotty achondrite. The maskelynite gave a plateau age of 254 +- 10 Myr. The whole rock sample gave a complex release with apparent ages between 240 and 640 Myr. The slightly younger Rb-Sr isochron age of 165 Myr for Shergotty suggests that the maskelynite as well as the whole rock was incompletely degassed. Reasonable Ar diffusion characteristics for Shergotty for shock heating temperatures of 0C indicate D/a2 of 10-11 to 10-13sec-1. The time required to lose 95% of the 40Ar from the plagioclase would be approximately 103 to 104 yr. When this gas diffusion time is introduced into a thermal model of a cooling ejecta blanket of variable thickness, a post-shock cooling time of >= 103 yr and a burial depth of >= 300 m are indicated for Shergotty. These conclusions are not seriously affected by uncertainties in the thermal model. Most likely the shock event occurred approximately 165 Myr ago, but no earlier than 250 Myr ago, when the Shergotty parent object experienced a collision in the asteroid belt. As a result of that collision, feldspar was converted to maskelynite, the K-Ar and Rb-Sr ages were completely or nearly completely reset, and the Shergotty meteorite was heated to 0C and left to cool slowly inside the parent body. (author)

  20. A partial melting study of an ordinary (H) chondrite composition with application to the unique achondrite Graves Nunataks 06128 and 06129 (United States)

    Usui, Tomohiro; Jones, John H.; Mittlefehldt, David W.


    Melting experiments of a synthesized, alkali-bearing, H-chondrite composition were conducted at ambient pressure with three distinct oxygen fugacity conditions (IW-1, IW, and IW+2). Oxygen fugacity conditions significantly influence the compositions of partial melts. Partial melts at IW-1 are distinctly enriched in SiO2 relative to those of IW and IW+2 melts. The silica-enriched, reduced (IW-1) melts are characterized by high alkali contents and have silica-oversaturated compositions. In contrast, the silica-depleted, oxidized (≥IW) melts, which are also enriched in alkali contents, have distinctly silica-undersaturated compositions. These experimental results suggest that alkali-rich, felsic, asteroidal crusts as represented by paired achondrites Graves Nunataks 06128 and 06129 should originate from a low-degree, relatively reduced partial melt from a parent body having near-chondritic compositions. Based on recent chronological constraints and numerical considerations as well as our experimental results, we propose that such felsic magmatism should have occurred in a parent body that is smaller in size and commenced accreting later than those highly differentiated asteroids having basaltic crusts and metallic cores.

  1. History of the Pasamonte achondrite: relative susceptibility of the Sm-Nd, Rb-Sr, and U-Pb systems to metamorphic events

    International Nuclear Information System (INIS)

    The Rb-Sr, Sm-Nd, and U-Pb systematics of the eucrite Pasamonte have been studied in order to investigate the relative susceptibility of the different systems to post-crystallization events and to determine the age and history of the meteorite. The Rb-Sr and 238U-206Pb data of mineral separates do not define an isochron but the Sm-Nd data define an internal isochron which corresponds to the formation age of 4.58+-0.12 b.y. (109 years). The 207Pb- 206Pb data of mineral separates define an apparent age of 4.53+-0.03 b.y., however it is concluded that this age, while in agreement with the Sm-Nd age, is not strictly valid since the U-Pb data indicate at least three stages of evolution. The U-Pb data indicate that the parent body of the meteorite experienced brecciation shortly after the formation of the parent body surface (approximately 4.2-4.45 b.y. ago) and a recent disturbance (collision) 6+-30 m.y. ago. The latter age is within the range of cosmic ray exposure ages for achondrites. (Auth.)

  2. Petrologic and Oxygen-Isotopic Investigations of Eucritic and Anomalous Mafic Achondrites (United States)

    Mittlefehldt, D. W.; Greenwood, R. C.; Peng, Z. X.; Ross, D. K.; Berger, E. L.; Barrett, T. J.


    The most common asteroidal igneous meteorites are eucrite-type basalts and gabbros rocks composed of ferroan pigeonite and augite, calcic plagioclase, silica, ilmenite, troilite, Ca-phosphate, chromite and Fe-metal. These rocks are thought to have formed on a single asteroid along with howardites and diogenites (HEDs). However, Northwest Africa (NWA) 011 is mineralogically identical to eucrites, but has an O-isotopic composition distinct from them and was derived from a different asteroid. Modern analyses with higher precision have shown that some eucrites have smaller O-isotopic differences that are nevertheless well-resolved from the group mean.

  3. Characterization of crust formation on a parent body of achondrites and the moon by pyroxene crystallography and chemistry (United States)

    Takeda, H.; Miyamoto, M.; Ishii, T.; Reid, A. M.


    Single crystal X-ray diffraction and electron microprobe techniques were used to study lunar crustal pyroxenes in a cataclastic norite, a pyroxene-rich clast, and anorthosite lunar samples, and also in meteorites including diogenites, eucrites, and the Yamoto (1) howardite. The crystallographic and chemical characteristics of pyroxenes in these materials are compared and are discussed in terms of the lower stability limit of pigeonite. A mechanical mixing model of howardite is proposed.

  4. Evidence from Tm anomalies for non-CI refractory lithophile element proportions in terrestrial planets and achondrites (United States)

    Barrat, J. A.; Dauphas, N.; Gillet, P.; Bollinger, C.; Etoubleau, J.; Bischoff, A.; Yamaguchi, A.


    Thulium is a heavy rare earth element (REE) whose geochemical behavior is intermediate between Er and Yb, and that is not expected to be decoupled from these elements during accretion of planetary bodies and geological processes. However, irregularities in REE volatilities at higher temperature could have decoupled the REEs relative to one another during the early stages of condensation of the solar nebula. Indeed, positive Tm anomalies are found in some refractory inclusions from carbonaceous chondrites, and it is possible that large scale nebular reservoirs displaying positive or negative Tm anomalies were formed during the early history of the solar system. We analyzed a series of meteorites and terrestrial rocks in order to evaluate the existence of Tm anomalies in planetary materials. Relative to CIs (Ivuna-type carbonaceous chondrites), carbonaceous chondrites display unresolved or positive Tm anomalies, while most of the noncarbonaceous chondrites show slightly negative Tm anomalies. Quantification of these anomalies in terrestrial samples is complicated when samples display fractionated heavy REE patterns. Taking this effect into account, we show that the Earth, Mars, Vesta, the aubrite and ureilite parent bodies display small negative anomalies (Tm/Tm∗ ≈ 0.975), very similar to those found in ordinary and enstatite chondrites. We suggest that a slight negative Tm anomaly relative to CI is a widespread feature of the materials from the inner solar system. This finding suggests that CI chondrites may not be appropriate for normalizing REE abundances of most planetary materials as they may be enriched in a high-temperature refractory component with non-solar composition. The presence of Tm anomalies at a bulk planetary scale is, to this day, the strongest piece of evidence that refractory lithophile elements are not present in constant CI proportions in planetary bodies.

  5. Noble gases in 18 Martian meteorites and angrite Northwest Africa 7812—Exposure ages, trapped gases, and a re-evaluation of the evidence for solar cosmic ray-produced neon in shergottites and other achondrites (United States)

    Wieler, R.; Huber, L.; Busemann, H.; Seiler, S.; Leya, I.; Maden, C.; Masarik, J.; Meier, M. M. M.; Nagao, K.; Trappitsch, R.; Irving, A. J.


    We present noble gas data for 16 shergottites, 2 nakhlites (NWA 5790, NWA 10153), and 1 angrite (NWA 7812). Noble gas exposure ages of the shergottites fall in the 1-6 Ma range found in previous studies. Three depleted olivine-phyric shergottites (Tissint, NWA 6162, NWA 7635) have exposure ages of ~1 Ma, in agreement with published data for similar specimens. The exposure age of NWA 10153 (~12.2 Ma) falls in the range of 9-13 Ma reported for other nakhlites. Our preferred age of ~7.3 Ma for NWA 5790 is lower than this range, and it is possible that NWA 5790 represents a distinct ejection event. A Tissint glass sample contains Xe from the Martian atmosphere. Several samples show a remarkably low (21Ne/22Ne)cos ratio SCR Ne) in addition to the commonly found galactic cosmic ray-produced Ne, implying very low preatmospheric shielding and ablation loss. We revisit this by comparing measured (21Ne/22Ne)cos ratios with predictions by cosmogenic nuclide production models. Indeed, several shergottites, acalpulcoites/lodranites, angrites (including NWA 7812), and the Brachina-like meteorite LEW 88763 likely contain SCR Ne, as previously postulated for many of them. The SCR contribution may influence the calculation of exposure ages. One likely reason that SCR nuclides are predominantly detected in meteorites from rare classes is because they usually are analyzed for cosmogenic nuclides even if they had a very small (preatmospheric) mass and hence low ablation loss.

  6. The Meteoritical Bulletin, No. 102 (United States)

    Ruzicka, Alex; Grossman, Jeffrey; Bouvier, Audrey; Herd, Christopher D. K.; Agee, Carl B.


    Meteoritical Bulletin 102 contains 3141 meteorites including 12 falls (Boumdeid (2003), Boumdeid (2011), Braunschweig, Chelyabinsk, Dongyang, Draveil, Heyetang, Indian Butte, Katol, Ladkee, Ouadangou, Xining), with 2611 ordinary chondrites, 264 HED achondrites, 124 carbonaceous chondrites, 30 ureilites, 20 Martian meteorites, 16 primitive achondrites, 16 Rumuruti chondrites, 15 mesosiderites, 12 iron meteorites, 10 lunar meteorites, 9 enstatite chondrites, 4 enstatite achondrites, 4 Pallasites, 4 ungrouped achondrites, and 2 angrites, and with 1708 from Antarctica, 956 from Africa, 294 from South America, 126 from Asia, 47 from North America, 6 from Europe (including Russia), and 4 from Oceania. Information about approved meteorites can be obtained from the Meteoritical Bulletin Database (MBD) available on line at">

  7. NWA 1235: A Phlogopite-bearing Enstatite Meteorite (United States)

    Lorenz, C.; Kurat, G.; Brandstätter, F.; Nazarov, M. A.


    NWA 1235 achondrite was formed from an enstatite meteorite source under more oxidized conditions than enstatite meteorites. Its unique features are unusual composition of sulfides, a wide set of microinclusions and the occurrence of fluorphlogopite.

  8. The Meteoritical Bulletin, No. 101 (United States)

    Ruzicka, Alex; Grossman, Jeffrey; Bouvier, Audrey; Herd, Christopher D. K.; Agee, Carl B.


    Meteoritical Bulletin 101 contains 2639 meteorites accepted by the Nomenclature Committee in 2012, including 1 fall (Battle Mountain), with 2308 ordinary chondrites, 156 carbonaceous chondrites, 63 HED achondrites, 17 relict meteorites, 16 Rumuruti chondrites, 15 enstatite chondrites, 15 ureilites, 10 iron meteorites, 9 lunar meteorites, 9 primitive achondrites, 8 ungrouped achondrites, 7 mesosiderites, 4 Martian meteorites, and 2 Pallasites, and with 1812 from Antarctica, 437 from Asia, 301 from Africa, 43 from South America, 21 from Europe (including Russia), 21 from North America, 3 from Oceania, and 1 from unknown. Information about approved meteorites can be obtained from the Meteoritical Bulletin Database (MBD) available on line at">

  9. Rapid timescales for magma ocean crystallization on the howardite-eucrite-diogenite parent body

    DEFF Research Database (Denmark)

    Schiller, M.; Paton, C.; Bizzarro, Martin;


    Asteroid 4 Vesta has long been postulated as the source for the howardite-eucrite-diogenite (HED) achondrite meteorites. Here we show that Al-free diogenite meteorites record variability in the mass-independent abundance of Mg ( Mg*) that is correlated with their mineral chemistry. This suggests...

  10. INAA of stone and iron meteorites

    International Nuclear Information System (INIS)

    A brief introduction into meteorites and the role of INAA in their investigation is presented. Tables include nuclear characteristics of some 'exotic' elements determined in iron meteorites by INAA, INAA of iron meteorites, and INAA of the 'moon' achondrite Al Qaryah Ash Sahrqiyah in Libya. (P.A.)

  11. Petrology of Anomalous Eucrite QUE 94484 (United States)

    Mittlefehldt, D. W.; Peng, Z. X.


    Most mafic achondrites are broadly "eucritic", being composed of ferroan low-Ca clinopyroxene, high-Ca plagioclase, a silica phase, ilmenite and accessory phases. Their characteristics indicate that eucrite-like basalts formed on asteroids of similar composition under similar petrologic conditions (T, P, fO2). Some eucrite-like basalts have isotopic compositions and petrologic characteristics consistent with formation on different parent asteroids (e.g., Ibitira, NWA 011). Others show small isotopic differences but no distinguishing petrological characteristics (e.g., Caldera, Pasamonte). We have begun a study of anomalous eucrite-like achondrites in an effort to seek resolution to the issues: Did the eucrite parent asteroid fail to homogenize via a magma-ocean stage, thus explaining outliers like Pasamonte? How many parent asteroids are represented by these basalts? Here we present preliminary petrologic information on anomalous basaltic eucrite QUE 94484.

  12. Curation and Allocation of the New Antarctic Nakhlite, MIL03346 (United States)

    McBride, K. M.; Righter, K.; Satterwhite, C. E.; Schwarz, C.; Robinson, P.


    In January 2004, the ANSMET reconnaissance field team (Fig. 1) working in the Miller Range of the Transantarctic Mountains discovered a 715 g achondrite that was instantly recognized as unique. Named MIL03346, initial processing (NASA Johnson Space Center or JSC) and classification (Smithsonian Institution or SI) revealed this achondrite to be a nakhlite (Fig. 2). MIL03346 is the seventh nakhlite recognized in world collections [2], the third nakhlite returned from Antartica, and the first nakhlite in the US Antarctic collection (Table 1). The following is a summary of the steps taken in the processing and allocating of MIL 03346 and some comparisons to some other lunar and martian meteorites processed and allocated at JSC.

  13. Mineralogical Characterization of Baptistina Asteroid Family: Implications for K/T Impactor Source

    CERN Document Server

    Reddy, Vishnu; Lazzaro, Daniela; Michtchenko, Tatiana A; Gaffey, Michael J; Kelley, Michael S; Diniz, Thais Mothé; Candal, Alvaro Alvarez; Moskovitz, Nicholas A; Cloutis, Edward A; Ryan, Erin L; 10.1016/j.icarus.2011.08.027


    Bottke et al. (2007) linked the catastrophic formation of Baptistina Asteroid Family (BAF) to the K/T impact event. This linkage was based on dynamical and compositional evidence, which suggested the impactor had a composition similar to CM2 carbonaceous chondrites. However, our recent study (Reddy et al. 2009) suggests that the composition of (298) Baptistina is similar to LL-type ordinary chondrites rather than CM2 carbonaceous chondrites. This rules out any possibility of it being related to the source of the K/T impactor, if the impactor was of CM-type composition. Mineralogical study of asteroids in the vicinity of BAF has revealed a plethora of compositional types suggesting a complex formation and evolution environment. A detailed compositional analysis of 16 asteroids suggests several distinct surface assemblages including ordinary chondrites (Gaffey SIV subtype), primitive achondrites (Gaffey SIII subtype), basaltic achondrites (Gaffey SVII subtype and V-type), and a carbonaceous chondrite. Based on ...

  14. Cosmochemical and spectroscopic properties of Northwest Africa 7325—A consortium study


    I. Weber, A. Morlok, A. Bischoff, H. Hiesinger, D. Ward, K. H. Joy, S. A. Crowther, N. D. Jastrzebski, J. D. Gilmour, P. L. Clay, R. A. Wogelius, R. C. Greenwood, I. A. Franchi and C. Münker


    This work is part of a project to build an infrared database in order to link IR data of planetary materials (and therefore possible Mercury material) with remote sensing observations of Mercury, which will probably be obtained by the MERTIS instrument on the forthcoming BepiColombo mission. The unique achondrite Northwest Africa (NWA) 7325, which has previously been suggested to represent the first sample from Mercury, was investigated by optical and electron microscopy, and infrared an...

  15. 1991 Urey Prize Lecture: Physical evolution in the solar system - Present observations as a key to the past (United States)

    Binzel, Richard P.


    The present evaluation of the use of new observational methods for exploring solar system evolutionary processes gives attention to illustrative cases from the constraining of near-earth asteroid sources and the discovery of main-belt asteroid fragments which indicate Vesta to be a source of basaltic achondrite meteorites. The coupling of observational constraints with numerical models clarifies cratering and collisional evolution for both main-belt and Trojan asteroids.

  16. Ordinary chondritic micrometeorites from the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    ShyamPrasad, M.; Rudraswami, N.G.; Babu, E.V.S.S.K.; VijayaKumar, T.

    of ordinary chondrites (L3, Semarkona) have been reported (Jones, 1996). In addition to dusty metal in chondrules, Rambaldi and Wasson (1982) also observed minor orthopyroxene and Ca, Al-rich glass within the chondrules. Boland and Duba (1981) produced Ni...-Ni metal etc. They suggested carbonaceous chondritic precursors for a majority of the relict grain-bearing particles, a few could also be from ordinary chondrites and none from achondrites or mesosiderites. However, subsequent investigations (e...

  17. Geochemical arguments for an Earth-like Moon-forming impactor


    Dauphas, Nicolas; Burkhardt, Christoph; Warren, Paul H.; Fang-Zhen, Teng


    Geochemical evidence suggests that the material accreted by the Earth did not change in nature during Earth's accretion, presumably because the inner protoplanetary disc had uniform isotopic composition similar to enstatite chondrites, aubrites and ungrouped achondrite NWA 5363/5400. Enstatite meteorites and the Earth were derived from the same nebular reservoir but diverged in their chemical evolutions, so no chondrite sample in meteorite collections is representative of the Earth's building...

  18. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body


    Carporzen, Laurent; Weiss, Benjamin P.; Elkins-Tanton, Linda T.; Shuster, David L.; Ebel, Denton; Gattacceca, Jérôme


    The textures of chondritic meteorites demonstrate that they are not the products of planetary melting processes. This has long been interpreted as evidence that chondrite parent bodies never experienced large-scale melting. As a result, the paleomagnetism of the CV carbonaceous chondrite Allende, most of which was acquired after accretion of the parent body, has been a long-standing mystery. The possibility of a core dynamo like that known for achondrite parent bodies has been discounted beca...

  19. Strangways Crater, Northern Territory, Australia: siderophile element enrichment and lithophile element fractionation. (United States)

    Morgan, J.W.; Wandless, G.A.


    Seven samples of melt rock and four samples of country rock from the Strangways crater were analysed for Sc, Cr, Fe, Co, Zn, Rb, Zr, Sb, Cs, Ba, REE, Hf, Ta, Th, U, Ni, Se, Pd, Ag, Cd, Re, Os, Ir and Au. The data indicate that the crater may have been formed by the impact of an olivine-rich achondrite, and melt rocks appear to contain approx 3 wt.% of projectile material.-B.M.

  20. Petrology of Anomalous Eucrites (United States)

    Mittlefehldt, D. W.; Peng, Z. X.; Ross, D. K.


    Most mafic achondrites can be broadly categorized as being "eucritic", that is, they are composed of a ferroan low-Ca clinopyroxene, high-Ca plagioclase and a silica phase. They are petrologically distinct from angritic basalts, which are composed of high-Ca, Al-Ti-rich clinopyroxene, Carich olivine, nearly pure anorthite and kirschsteinite, or from what might be called brachinitic basalts, which are composed of ferroan orthopyroxene and high-Ca clinopyroxene, intermediate-Ca plagioclase and ferroan olivine. Because of their similar mineralogy and composition, eucrite-like mafic achondrites formed on compositionally similar asteroids under similar conditions of temperature, pressure and oxygen fugacity. Some of them have distinctive isotopic compositions and petrologic characteristics that demonstrate formation on asteroids different from the parent of the HED clan (e.g., Ibitira, Northwest Africa (NWA) 011). Others show smaller oxygen isotopic distinctions but are otherwise petrologically and compositionally indistinguishable from basaltic eucrites (e.g., Pasamonte, Pecora Escarpment (PCA) 91007). The degree of uniformity in delta O-17 of eucrites and diogenites is one piece of evidence considered to favor of a magma-ocean scenario for their petrogenesis. Given that the O isotopic differences separating Pasamonte and PCA 91007 from other eucrites are small, and that there is an absence of other distinguishing characteristics, a legitimate question is: Did the HED parent asteroid fail to homogenize via a magma-ocean stage, thus explaining outliers like Pasamonte? We are initiating a program of study of anomalous eucrite-like achondrites as one part of our effort to seek a resolution of this issue. Here we present preliminary petrologic information on Asuka (A-) 881394, Elephant Moraine (EET) 87520 and EET 87542. We will have studied several more by conference time.

  1. Petrology of Diogenite NWA 5480, A Pristine Olivine-Rich Deformed Harzburgite (United States)

    Peslier, A. H.; Brandon, A. D.; Tarduno, J. A.; Mittlefehldt, D. W.


    Diogenites are achondrites that are part of the HED (howardite, eucrite, diogenite) meteorite group thought to originate from asteroid Vesta. This suite of igneous rocks offers a glimpse of early planetary differentiation and subsequent igneous processes. While eucrites represent asteroidal basaltic crust and howardites the impact brecciated surface, diogenites are samples of the mantle and lower crust. Most of them are orthopyroxene (Opx) dominated cumulates, although harzburgites and rare dunites have also been found. The majority of diogenites are impact breccias. This study describes NWA 5480, a pristine, i.e. hardly altered and minimally shocked, harzburgitic diogenite.

  2. Accretion, Differentiation, and Impact Processes on the Ureilite Parent Body (United States)

    Downes, Hilary; Herrin, J. S.; Hudon, P.; Mittlefehldt, D.W.


    Ureilites are primitive ultramafic achondrites composed largely of olivine and pigeonite, with minor augite, orthopyroxene, carbon, sulphide and metal. They represent very early material in the history of the Solar System and (in common with lodranites and acapulcoites) form a bridge between undifferentiated chondrites and fully differentiated asteroidal bodies. They show an intriguing mixture of chemical characteristics, some of which are considered to be nebula-derived (e.g. variations in Delta(sup 17)O and mg#) whereas others have been imposed by asteroidal differentiation (e.g. core formation, silicate partial melting, removal of basalt).

  3. Petrology of the Baszkowka L5 chondrite: A record of surface-forming processes on the parent body (United States)

    Przylibski, T. A.; Pilski, A. S.; Zagożdżon, P. P.; Kryza, R.


    We review the petrology of Baszkowka, present new microprobe data on mineral constituents, and propose a model for surface properties of the parent body consistent with these data. The low shock index and high porosity of the Baszkowka L5 chondrite mean that considerable primary textural and petrographic detail is preserved, allowing insight into the structure and evolution of the parent body. This meteorite formed in a sedimentary environment resembling that in which pyroclastic rocks are deposited. The origin of the component chondrules, achondritic fragments (mostly olivine and pyroxene aggregates), chondritic-achondritic aggregates, and compound chondrules can be explained by invoking collision of 2 melted or partially melted planetesimals, each covered with a thin crust. This could have happened at an early stage in the evolution of the solar system, between 1 and 2 Myr after its origin. The collision resulted in the formation of a cloud containing products of earlier magmatic crystallization (chondrite and achondrite fragments) from which new chondrules were created. Particle collision in this cloud produced fragmented chondrules, chondritic-achondritic aggregates, and compound chondrules. Within this low-density medium, these particles were accreted on the surface of the larger of the planetesimals involved in the collision. The density of the medium was low enough to prevent grain-size sorting of the components but high enough to prevent the total loss of heat and to enable the welding of fragments on the surface of the body. The rock material was homogenized within the cloud and, in particular, within the zone close to the planetesimal surface. The hot material settled on the surface and became welded as molten or plastic metal, and sulfide components cemented the grains together. The process resembled the formation of welded ignimbrites. Once these processes on the planetesimal surface were completed, no subsequent recrystallization occurred. The high

  4. Microprobe analyses of rare-earth-element fractionation in meteoritic minerals

    International Nuclear Information System (INIS)

    Two meteorites were analyzed by PIXE with the Los Alamos Nuclear Microprobe. The enstatite achondrite Pena Blanca Spring and the ordinary chondrite St. Severin were chosen as likely candidates for use in 244Pu (t/sub 1/2/ = 82 my) cosmochronology and geochronology. These applications require the meteoritic minerals to have unfractionated actinides and lanthanides relative to cosmic elemental abundance ratios. The PIXE analyses produced evidence of actinide-lanthanide fractionation in Pena Blanca Spring oldhamite (CaS) whereas the St Severin phosphates, whitlockite and chlorapatite, do not exhibit this fractionation

  5. Bunburra Rockhole: Exploring the Geology of a New Differentiated Basaltic Asteroid (United States)

    Benedix, G.K.; Bland, P. A.; Friedrich, J. M.; Mittlefehldt, D.; Sanborn, M. E.; Yin, Q.-Z.; Greenwood, R. C; Franchi, L. A.; Bevan, A. W. R.; Towner, M. C.; Perotta, Grace C.


    Bunburra Rockhole (BR) is the first recovered meteorite of the Desert Fireball Network. It was initially classified as a basaltic eucrite, based on texture, mineralogy, and mineral chemistry but subsequent O isotopic analyses showed that BR's composition lies significantly far away from the HED group of meteorites. This suggested that BR was not a piece of the HED parent body (4 Vesta), but other explanations could also account for the observed oxygen signatures. Possible scenarios include contamination by components from other bodies (chondrites or other achondrites) or that 4 Vesta may not be as equilibrated as hypothesized. After examining multiple pieces with different instruments (CT scans and x-ray maps), no obvious evidence of contamination was found. If BR is not from Vesta, a conundrum exists as no unusual features were found in mineral and bulk trace element chemistry as exist for other anomalous basaltic achondrites such as Ibitira or Asuka 881394. These meteorites have distinct petrological and geochemical characteristics, in addition to their anomalous O isotope compositions, that set them apart from eucrites. Thus, early results provided a somewhat ambiguous picture of BR's petrogenesis and parentage. To clarify the nature of the relationship, if any, between BR and eucrites, we have performed a correlated stable isotope and bulk chemical study of several lithologic fragments.

  6. The Mineralogy and Petrology of Anomalous Eucrite Emmaville (United States)

    Barrett, T. J.; Mittlefehldt, D. W.; Ross, D. K.; Greenwood, R. C.; Anand, M.; Franchi, I. A.; Grady, M. M.; Charlier, B. L. A.


    It has long been known that certain basaltic achondrites share similarities with eucrites. These eucrite-like achondrites have distinct isotopic compositions and petrologic characteristics indicative of formation on a separate parent body from the howardite-eucrite-diogenite (HED) clan (e.g., Ibitira, Northwest Africa (NWA) 011). Others show smaller isotopic variations but are otherwise petrologically and compositionally indistinguishable from basaltic eucrites (e.g., Pasamonte, Pecora Escarpment (PCA) 91007). The Emmaville eucrite has a delta O-17 value of -0.137 plus or minus 0.024 per mille (1 sigma), which is substantially different from the eucrite mean of -0.246 plus or minus 0.014 per mille (2 sigma), but similar to those of A-881394 and Bunburra Rockhole (BR). Currently little data exist for Emmaville in terms of petrology or bulk composition. Studying anomalous eucrites allows us to more completely understand the numbers of asteroids represented by eucrite- like basalts and thus constrain the heterogeneity of the HED suite. In this study, we present our preliminary petrological and mineral composition results for Emmaville.

  7. The Foreign Clast Populations of Anomalous Polymict Urelite Almahata Sitta (Asteroid 2008 TC(sub3) and Typical Polymict Ureilites: Implications for Asteroid-Meteorite Connections (United States)

    Goodrich, C. A.; Treiman, A. H.; Zolensky, M.; Kita, N. T.; Defouilloy, C.; Fioretti, A. M.; O'Brien, D. P.; Jenniskens, P.; Shaddad, M. H.


    Almahata Sitta (AhS) is the first meteorite to originate from an asteroid (2008 TC3) that had been studied in space before it hit Earth [1,2]. It is also unique because the fallen fragments comprise a variety of types: approximately 69% ureilites (achondrites) and 31% chondrites [3]. Two models have been proposed for the origin 2008 TC3: 1) an accretionary model [3,4]; or 2) a regolith model [5,6]. Typical polymict ureilites are interpreted to represent regolith, and contain a few % foreign clasts [7,8]. The most common are dark (CC matrix-like) clasts similar to those in many meteoritic breccias [9]. A variety of other chondrites, as well as achondrites (angrites), have also been reported [7,9,10]. We have been working to determine the full diversity of these clasts [10-13] for comparison with AhS. We discuss implications for mixing of materials in the early solar system and the origin of 2008 TC3.

  8. Mineral chemistry of the shergottites, nakhlites, Chassigny, Brachina, pallasites and urelites (United States)

    Smith, J. V.; Steele, I. M.; Leitch, C. A.


    The mineral chemistry is compared for selected achondrites. Olivine in the ALHA 77005 and EETA 79001 shergottites, olivine-rich Chassigny and Brachina, and the nakhlites, contains Ni indicative of oxidizing conditions, whereas pallasitic and ureilitic olivines contain much lower Ni due to reducing conditions. The Brachina olivine and pyroxene have distinctively higher Fe/Mn than the shergottites and Chassigny, further indicating that Brachina is unique. The Chassigny and 77005 olivines contain lower Cr2O3 (0.03 wt. pct) than the Brachina and 79001 olivines. Values of Fe/Mn for cumulus augites in nakhlites are higher than for the shergottites, whereas those for ferropigeonites are not. The 77005 shergottite contains troilite FeS in contrast to 79001, Shergotty, Zagami, and Chassigny, which contain pyrrhotite. Further analyses are needed, but the present survey indicates that at least Brachina is not chemically cogenetic with the other 'oxidized achondrites', and that the Fe/Mn ratio of the cumulus augites in nakhlites is a problem for the assignment of the nakhlites, shergottites, and Chassigny to a single genetic group.

  9. Analysis of Moderately Siderophile Elements in Angrites: Implications for Core Formation of the Angrite Parent Body (United States)

    Righter, K.; Shirai, N.; Irving, A.J.


    Angrites are an enigmatic group of achondrites, that constitute the largest group of basalts not affiliated with the Moon, Mars or Vesta (HEDs). Chemically, angrites are exceptionally refractory element- enriched (e.g., Al, Ca) and volatile element-depleted (e.g., Na and K) achondrites. Highly volatile siderophile and chalcophile elements (Zn, Ge and Se) may be less depleted than alkalis and Ga taken to imply a fractionation of plagiophile elements. Core formation on the angrite parent body (APB) is not well understood due to the dearth of moderately siderophile element (Ga, Ge, Mo, Sb, W) data for angrites, with the exception of Ni and Co [2]. In particular, there are no data for Mo abundances of angrites, while Sb and W abundances are reported for only 3 angrites, and have not always been determined on the same sample. The recent increase in angrite numbers (13) has greatly increased our knowledge of the compositional diversity of the angrite parent body (APB). In this study, we report new Co, Ni, Ga, Mo, Sb and W abundances for angrites by laser ablation inductively coupled plasma mass spectrometry (ICP-MS) in order to place constraints on core formation of the APB.

  10. The initial abundance and distribution of 92Nb in the Solar System

    CERN Document Server

    Iizuka, Tsuyoshi; Akram, Waheed; Amelin, Yuri; Schönbächler, Maria


    Niobium-92 is an extinct proton-rich nuclide, which decays to 92Zr with a half-life of 37 Ma. This radionuclide potentially offers a unique opportunity to determine the timescales of early Solar System processes and the site(s) of nucleosynthesis for p-nuclei, once its initial abundance and distribution in the Solar System are well established. Here we present internal Nb-Zr isochrons for three basaltic achondrites with known U-Pb ages: the angrite NWA 4590, the eucrite Agoult, and the ungrouped achondrite Ibitira. Our results show that the relative Nb-Zr isochron ages of the three meteorites are consistent with the time intervals obtained from the Pb-Pb chronometer for pyroxene and plagioclase, indicating that 92Nb was homogeneously distributed among their source regions. The Nb-Zr and Pb-Pb data for NWA 4590 yield the most reliable and precise reference point for anchoring the Nb-Zr chronometer to the absolute timescale: an initial 92Nb/93Nb ratio of $(1.4 \\pm 0.5) \\times 10^{-5}$ at $4557.93 \\pm 0.36$ Ma, ...

  11. Cosmochemical and spectroscopic properties of Northwest Africa 7325—A consortium study (United States)

    Weber, I.; Morlok, A.; Bischoff, A.; Hiesinger, H.; Ward, D.; Joy, K. H.; Crowther, S. A.; Jastrzebski, N. D.; Gilmour, J. D.; Clay, P. L.; Wogelius, R. A.; Greenwood, R. C.; Franchi, I. A.; Münker, C.


    This work is part of a project to build an infrared database in order to link IR data of planetary materials (and therefore possible Mercury material) with remote sensing observations of Mercury, which will probably be obtained by the MERTIS instrument on the forthcoming BepiColombo mission. The unique achondrite Northwest Africa (NWA) 7325, which has previously been suggested to represent the first sample from Mercury, was investigated by optical and electron microscopy, and infrared and Raman spectroscopy. In addition, the oxygen, strontium, xenon, and argon isotopes were measured and the abundance of selected trace elements determined. The meteorite is a cumulate rock with subchondritic abundances of HFSE and REE and elevated Sr contents, which underwent a second heating and partial remelting process. Oxygen isotope measurements show that NWA 7325 plots in the ureilite field, close to the ALM-A trachyandesitic fragment found in the unique Almahata Sitta meteorite breccia. On the other hand, mineralogical investigations of the pyroxenes in NWA 7325 provide evidence for similarities to the lodranites and acapulcoites. Furthermore, the rock is weakly shocked and argon isotope data record ancient (~4.5 Ga) plateau ages that have not been reset. The sample records a cosmogenic exposure age of ~19 Ma. Systematics of Rb-Sr indicate an extreme early volatile depletion of the precursor material, similar to many other achondrite groups. However, despite its compositional similarities to other meteorite groups, our results suggest that this meteorite is unique and unrelated to any other known achondrite group. An origin for NWA 7325 as a sample from the planet Mercury is not supported by the results of our investigation. In particular, the evidence from infrared spectroscopy indicates that a direct relationship between NWA 7325 and the planet Mercury can be ruled out: no acceptable spectral match between laboratory analyses and remote sensing observations from Mercury has

  12. Chondrule size and related physical properties: a compilation and evaluation of current data across all meteorite groups

    CERN Document Server

    Friedrich, Jon M; Ebel, Denton S; Biltz, Alison E; Corbett, Bernadette M; Iotzov, Ivan V; Khan, Wajiha S; Wolman, Matthew D


    The examination of the physical properties of chondrules has generally received less emphasis than other properties of meteorites such as their mineralogy, petrology, and chemical and isotopic compositions. Among the various physical properties of chondrules, chondrule size is especially important for the classification of chondrites into chemical groups, since each chemical group possesses a distinct size-frequency distribution of chondrules. Knowledge of the physical properties of chondrules is also vital for the development of astrophysical models for chondrule formation, and for understanding how to utilize asteroidal resources in space exploration. To examine our current knowledge of chondrule sizes, we have compiled and provide commentary on available chondrule dimension literature data. We include all chondrite chemical groups as well as the acapulcoite primitive achondrites, some of which contain relict chondrules. We also compile and review current literature data for other astrophysically-relevant p...

  13. Search for extinct natural radioactivity of Pb205 via thallium-isotope anomalies in chondrites and lunar soil. (United States)

    Huey, J. M.; Kohman, T. P.


    Thallium and Pb204 contents were determined by stable-isotope-dilution analysis in 16 chondrites, one achondrite, and Apollo 11 and 12 lunar fines. Meteoritic thallium contents vary over a large range, 0.02 to 100 ppb, corresponding to the fact that thallium is a highly fractionated volatile element. Lunar thallium contents are less than 5 ppb. The Tl205/Tl203 ratio was determined in most of the samples, with precision ranging from 0.03% to several percent depending mainly on the amount of thallium present. No variations from the terrestrial ratio were observed. The chondritic isochron slope for Pb205 (13.8-m.y. half-life) is less than or equal to 0.00009 (99% confidence level), corresponding to an interval of at least 60 m.y. and possibly exceeding 120 m.y. between the termination of s-process nucleosynthesis and the lead-thallium fractionations.

  14. Mercury (Hg) in meteorites: variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation

    CERN Document Server

    Meier, Matthias M M; Marty, Bernard


    We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14'000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150 to 650 {\\deg}C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of ...

  15. Plutonium-244 fission xenon and primordial xenon in lunar samples and meteorites

    International Nuclear Information System (INIS)

    Xenon found in lunar samples is a binary mixture of 244Pu fission xenon and a trapped xenon, whose isotopic composition often shows a striking resemblance to that of TAKAOKA's primitive xenon. The decay product of 129I is conspicuously absent in lunar samples and this may be attributed to the facts that (a) the half-life of 129I is much shorter than that of 244Pu, and (b) the separation of xenon from plutonium may take place easily, since the former is a gaseous element, while the latter is a refractory element. The separation of xenon from iodine may not take place easily, however, since the former is a gaseous element, while the latter is a volatile element. The isotopic compositions of the trapped xenon released from ordinary chondrites and achondrites resemble that of TAKAOKA's primitive xenon, which has been mass-fractionated in such a manner that the heavier isotopes are systematically enriched relative to the lighter isotopes. (author)

  16. In Situ Analysis of Orthopyroxene in Diogenites Using Laser Ablation ICP-MS (United States)

    Elk, Mattias; Quinn, J. E.; Mittlefehldt, D. W.


    Howardites, eucrites and diogenites (HED) form a suit of igneous achondrite meteorites that are thought to have formed on a single asteroidal body. While there have been many different models proposed for the formation of the HED parent asteroid they can be generalized into two end member models. One is the magma ocean model (e.g. [1]) in which the entire HED parent body was continuously fractionated from a planet wide magma ocean with diogenites representing the lower crust and eucrites being upper crustal rocks. The second model hypothesizes that diogenites and eucrites were formed as a series of intrusions and/or extrusions of partial melts of a primitive proto-Vesta [2]. We use in situ trace element analysis together with major and minor element analysis to try and distinguish between these different hypotheses for the evolution of the HED parent body.

  17. Possible spinel absorption bands in S-asteroid visible reflectance spectra (United States)

    Hiroi, T.; Vilas, F.; Sunshine, J. M.


    Minor absorption bands in the 0.55 to 0.7 micron wavelength range of reflectance spectra of 10 S asteroids have been found and compared with those of spinel-group minerals using the modified Gaussian model. Most of these S asteroids are consistently shown to have two absorption bands around 0.6 and 0.67 micron. Of the spinel-group minerals examined in this study, the 0.6 and 0.67 micron bands are most consistent with those seen in chromite. Recently, the existence of spinels has also been detected from the absorption-band features around 1 and 2 micron of two S-asteroid reflectance spectra, and chromite has been found in a primitive achondrite as its major phase. These new findings suggest a possible common existence of spinel-group minerals in the solar system.

  18. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets. (United States)

    Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James


    Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (solar system (solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content. PMID:25453079

  19. Low-Degree Partial Melting Experiments of CR and H Chondrite Compositions: Implications for Asteroidal Magmatism Recorded in GRA 06128 and GRA 06129 T (United States)

    Usui, T.; Jones, John H.; Mittlefehldt, D. W.


    Studies of differentiated meteorites have revealed a diversity of differentiation processes on their parental asteroids; these differentiation mechanisms range from whole-scale melting to partial melting without the core formation [e.g., 1]. Recently discovered paired achondrites GRA 06128 and GRA 06129 (hereafter referred to as GRA) represent unique asteroidal magmatic processes. These meteorites are characterized by high abundances of sodic plagioclase and alkali-rich whole-rock compositions, implying that they could originate from a low-degree partial melt from a volatile-rich oxidized asteroid [e.g., 2, 3, 4]. These conditions are consistent with the high abundances of highly siderophile elements, suggesting that their parent asteroid did not segregate a metallic core [2]. In this study, we test the hypothesis that low-degree partial melts of chondritic precursors under oxidizing conditions can explain the whole-rock and mineral chemistry of GRA based on melting experiments of synthesized CR- and H-chondrite compositions.

  20. Petrography and Geochemistry of Metals in Almahata Sitta Ureilites (United States)

    Ross, A. J.; Herrin, J. S.; Mittlefehldt, D. W.; Downes, H.; Smith, C. L.; Lee, M. R.; Jones, A. P.; Jenniskens, P.; Shaddad, M. H,


    Ureilites are ultramafic achondrites, predominantly composed of olivine and pyroxenes with accessory carbon, metal and sulfide. The majority of ureilites are believed to represent the mantle of the ureilite parent body (UPB) [1]. Although ureilites have lost much of their original metal [2], the metal that remains retains a record of the formative processes. Almahata Sitta is predominantly composed of unbrecciated ureilites with a wide range of silicate compositions [3,4]. As a fall it presents a rare opportunity to examine fresh ureilite metal in-situ, and analyzing their highly siderophile element (HSE) ratios gives clues to their formation. Bulk siderophile element analyses of Almahata Sitta fall within the range observed in other ureilites [5]. We have examined the metals in seven ureilitic samples of Almahata Sitta (AS) and one associated chondrite fragment (AS#25).

  1. Electron microprobe analysis (WDS EPMA) of Zhamanshin glass reveals the impactor and a common role of accretion in the origin of splash-form impact glass

    International Nuclear Information System (INIS)

    Impact glass samples collected during expeditions to the Zhamashin and Lonar craters were subjected to a morphology survey and compared to Wabar, Henbury and Darwin impact glasses to reveal that the accretion of fibres and spherules is not exclusive for irghizites but occurs in other splash form glasses over the world. WDS EPMA and LA-ICP-MS assays of Zhamanshin and Lonar glasses enabled the definition of akmurynites as Zhamanshin glass of specific morphology, chemistry and absence of extraterrestrial contamination. However, extraterrestrial contamination in irghizites was verified and further WDS EPMA analyses led to the conclusion that the Zhamanshin crater had been formed by the impact of a primitive achondrite of Lodran chemistry.

  2. Mineralogy and Surface Composition of Asteroids

    CERN Document Server

    Reddy, Vishnu; Thomas, Cristina A; Moskovitz, Nicholas A; Burbine, Thomas H


    Methods to constrain the surface mineralogy of asteroids have seen considerable development during the last decade with advancement in laboratory spectral calibrations and validation of our interpretive methodologies by spacecraft rendezvous missions. This has enabled the accurate identification of several meteorite parent bodies in the main asteroid belt and helped constrain the mineral chemistries and abundances in ordinary chondrites and basaltic achondrites. With better quantification of spectral effects due to temperature, phase angle, and grain size, systematic discrepancies due to non-compositional factors can now be virtually eliminated for mafic silicate-bearing asteroids. Interpretation of spectrally featureless asteroids remains a challenge. This paper presents a review of all mineralogical interpretive tools currently in use and outlines procedures for their application.

  3. Mercury (Hg) in meteorites: Variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation (United States)

    Meier, Matthias M. M.; Cloquet, Christophe; Marty, Bernard


    We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14,000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150-650 °C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of asteroids from primordial radionuclides and late-stage impact heating. Non-carbonaceous chondrites, most achondrites and the Earth do not show these enrichments in vapor-phase Hg. All meteorites studied here have however isotopically light Hg (δ202Hg = ∼-7 to -1) relative to the Earth's average crustal values, which could suggest that the Earth has lost a significant fraction of its primordial Hg. However, the late accretion of carbonaceous chondritic material on the order of ∼2%, which has been suggested to account for the water, carbon, nitrogen and noble gas inventories of the Earth, can also contribute most or all of the Earth's current Hg budget. In this case, the isotopically heavy Hg of the Earth's crust would have to be the result of isotopic fractionation between surface and deep-Earth reservoirs.

  4. Geologic History of Asteroid 4 Vesta (United States)

    Mittlefehldt, David W.


    Some types of meteorites - most irons, stony irons, some achondrites - hail from asteroids that were heated to the point where magmatism occurred within a very few million years of the formation of the earliest solids in the solar system. The largest clan of achondrites, the howardite, eucrite and diogenite (HED) meteorites, represent the crust of their parent asteroid]. Diogenites are cumulate harzburgites and orthopyroxenites from the lower crust whilst eucrites are basalts, diabases and cumulate gabbros from the upper crust. Howardites are impact-engendered breccias mostly of diogenites and eucrites. There remains only one large asteroid with a basaltic crust, 4 Vesta, which is thought to be the source of the HED clan. Differentiation models for Vesta are based on HED compositions. Proto-Vesta consisted of chondritic materials containing Al-26, a potent, short-lived heat source. Inferences from compositional data are that Vesta was melted to high degree (=50%) allowing homogenization of the silicate phase and separation of a metallic core. Convection of the silicate magma ocean allowed equilibrium crystallization, forming a harzburgitic mantle. After convective lockup occurred, melt collected between the mantle and the cool thermal boundary layer and underwent fractional crystallization forming an orthopyroxene-rich (diogenite) lower crust. The initial thermal boundary layer of chondritic material was replaced by a mafic upper crust through impact disruption and foundering. The mafic crust thickened over time as additional residual magma intrudes and penetrates the mafic crust forming plutons, dikes, sills and flows of cumulate and basaltic eucrite composition. This magmatic history may have taken only 2-3 Myr. This magma ocean scenario is at odds with a model of heat and magma transport that indicates that small degrees of melt would be rapidly expelled from source regions, precluding development of a magma ocean. Constraints from radiogenic Mg-26 distibutions

  5. The initial abundance and distribution of 92Nb in the Solar System (United States)

    Iizuka, Tsuyoshi; Lai, Yi-Jen; Akram, Waheed; Amelin, Yuri; Schönbächler, Maria


    Niobium-92 is an extinct proton-rich nuclide, which decays to 92Zr with a half-life of 37 Ma. This radionuclide potentially offers a unique opportunity to determine the timescales of early Solar System processes and the site(s) of nucleosynthesis for p-nuclei, once its initial abundance and distribution in the Solar System are well established. Here we present internal Nb-Zr isochrons for three basaltic achondrites with known U-Pb ages: the angrite NWA 4590, the eucrite Agoult, and the ungrouped achondrite Ibitira. Our results show that the relative Nb-Zr isochron ages of the three meteorites are consistent with the time intervals obtained from the Pb-Pb chronometer for pyroxene and plagioclase, indicating that 92Nb was homogeneously distributed among their source regions. The Nb-Zr and Pb-Pb data for NWA 4590 yield the most reliable and precise reference point for anchoring the Nb-Zr chronometer to the absolute timescale: an initial 92Nb/93Nb ratio of (1.4 ± 0.5) ×10-5 at 4557.93 ± 0.36 Ma, which corresponds to a 92Nb/93Nb ratio of (1.7 ± 0.6) ×10-5 at the time of the Solar System formation. On the basis of this new initial ratio, we demonstrate the capability of the Nb-Zr chronometer to date early Solar System objects including troilite and rutile, such as iron and stony-iron meteorites. Furthermore, we estimate a nucleosynthetic production ratio of 92Nb to the p-nucleus 92Mo between 0.0015 and 0.035. This production ratio, together with the solar abundances of other p-nuclei with similar masses, can be best explained if these light p-nuclei were primarily synthesized by photodisintegration reactions in Type Ia supernovae.


    International Nuclear Information System (INIS)

    Constraining the timescales for the evolution of planetary bodies in our solar system is essential for a complete understanding of planet-forming processes. However, frequent collisions between planetesimals in the early solar system obscured and destroyed much of the primitive features of the old, first-generation planetary bodies. The presence of differentiated, achondritic clasts in brecciated chondrites and of chondritic fragments in achondritic breccias clearly witness multiple processes such as metamorphism, magmatism, fragmentation, mixing, and reaccretion. Here, we report the results of ion microprobe Pb-Pb dating of a granite-like fragment found in a meteorite, the LL3-6 ordinary chondrite regolith breccia Adzhi-Bogdo. Eight spot analyses of two phosphate grains and other co-genetic phases of the granitoid give a Pb-Pb isochron age of 4.48 ± 0.12 billion years (95% confidence) and a model age of 4.53 ± 0.03 billion years (1σ), respectively. These ages represent the crystallization age of a parental granite-like magma that is significantly older than those of terrestrial (4.00-4.40 Gyr) and lunar granites (3.88-4.32 Gyr) indicating that the clast in Adzhi-Bogdo is the oldest known granitoid in the solar system. This is the first evidence that granite-like formation is not only a common process on Earth, but also occurred on primitive asteroids in the early solar system 4.53 Gyr ago. Thus, the discovery of granite magmatism recorded in a brecciated meteorite provides an innovative idea within the framework of scenarios for the formation and evolution of planetary bodies and possibly exoplanetary bodies.

  7. Asteroid 4 Vesta: A Fully Differentiated Dwarf Planet (United States)

    Mittlefehldt, David


    One conclusion derived from the study of meteorites is that some of them - most irons, stony irons, some achondrites - hail from asteroids that were heated to the point where metallic cores and basaltic crusts were formed. Telescopic observations show that there remains only one large asteroid with a basaltic crust, 4 Vesta; present day mean radius 263 km. The largest clan of achondrites, the howardite, eucrite and diogenite (HED) meteorites, represent the crust of their parent asteroid. Diogenites are cumulate harzburgites and orthopyroxenites from the lower crust whilst eucrites are cumulate gabbros, diabases and basalts from the upper crust. Howardites are impact-engendered breccias of diogenites and eucrites. A strong case can be made that HEDs are derived from Vesta. The NASA Dawn spacecraft orbited Vesta for 14 months returning data allowing geological, mineralogical, compositional and geophysical interpretations of Vesta's surface and structure. Combined with geochemical and petrological observations of HED meteorites, differentiation models for Vesta can be developed. Proto-Vesta probably consisted of primitive chondritic materials. Compositional evidence, primarily from basaltic eucrites, indicates that Vesta was melted to high degree (>=50%) which facilitated homogenization of the silicate phase and separation of immiscible Fe,Ni metal plus Fe sulphide into a core. Geophysical models based on Dawn data support a core of 110 km radius. The silicate melt vigorously convected and initially followed a path of equilibrium crystallization forming a harzburgitic mantle, possibly overlying a dunitic restite. Once the fraction of crystals was sufficient to cause convective lockup, the remaining melt collected between the mantle and the cool thermal boundary layer. This melt undergoes fractional crystallization to form a dominantly orthopyroxenite (diogenite) lower crust. The initial thermal boundary layer of primitive chondritic material is gradually replaced by a

  8. U-Pb Dating of Zircons and Phosphates in Lunar Meteorites, Acapulcoites and Angrites (United States)

    Zhou, Q.; Zeigler, R. A.; Yin, Q. Z.; Korotev, R. L.; Joliff, B. L.; Amelin, Y.; Marti, K.; Wu, F. Y.; Li, X. H.; Li, Q. L.; Lin, Y. T.; Liu, Y.; Tang, G. Q.


    Zircon U-Pb geochronology has made a great contribution to the timing of magmatism in the early Solar System [1-3]. Ca phosphates are another group of common accessory minerals in meteorites with great potential for U-Pb geochronology. Compared to zircons, the lower closure temperatures of the U-Pb system for apatite and merrillite (the most common phosphates in achondrites) makes them susceptible to resetting during thermal metamorphism. The different closure temperatures of the U-Pb system for zircon and apatite provide us an opportunity to discover the evolutionary history of meteoritic parent bodies, such as the crystallization ages of magmatism, as well as later impact events and thermal metamorphism. We have developed techniques using the Cameca IMS-1280 ion microprobe to date both zircon and phosphate grains in meteorites. Here we report U-Pb dating results for zircons and phosphates from lunar meteorites Dhofar 1442 and SaU 169. To test and verify the reliability of the newly developed phosphate dating technique, two additional meteorites, Acapulco, obtained from Acapulco consortium, and angrite NWA 4590 were also selected for this study as both have precisely known phosphate U-Pb ages by TIMS [4,5]. Both meteorites are from very fast cooled parent bodies with no sign of resetting [4,5], satisfying a necessity for precise dating.

  9. Differentiation of Planetesimals and the Thermal Consequences of Melt Migration

    CERN Document Server

    Moskovitz, Nicholas


    We model the heating of a primordial planetesimal by decay of the short-lived radionuclides Al-26 and Fe-60 to determine (i) the timescale on which melting will occur; (ii) the minimum size of a body that will produce silicate melt and differentiate; (iii) the migration rate of molten material within the interior; and (iv) the thermal consequences of the transport of Al-26 in partial melt. Our models incorporate results from previous studies of planetary differentiation and are constrained by petrologic (i.e. grain size distributions), isotopic (e.g. Pb-Pb and Hf-W ages) and mineralogical properties of differentiated achondrites. We show that formation of a basaltic crust via melt percolation was limited by the formation time of the body, matrix grain size and viscosity of the melt. We show that low viscosity (100 km in size. Differentiation would be mos t likely for planetesimals larger than 20 km in diameter that accreted within ~2.7 Myr of CAI formation.

  10. Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk

    CERN Document Server

    Tang, Haolan; 10.1016/j.epsl.2012.10.011


    Meteorites contain relict decay products of short-lived radionuclides that were present in the protoplanetary disk when asteroids and planets formed. Several studies reported a high abundance of 60Fe (t1/2=2.62+/-0.04 Myr) in chondrites (60Fe/56Fe~6*10-7), suggesting that planetary materials incorporated fresh products of stellar nucleosynthesis ejected by one or several massive stars that exploded in the vicinity of the newborn Sun. We measured 58Fe/54Fe and 60Ni/58Ni isotope ratios in whole rocks and constituents of differentiated achondrites (ureilites, aubrites, HEDs, and angrites), unequilibrated ordinary chondrites Semarkona (LL3.0) and NWA 5717 (ungrouped petrologic type 3.05), metal-rich carbonaceous chondrite Gujba (CBa), and several other meteorites (CV, EL H, LL chondrites; IIIAB, IVA, IVB iron meteorites). We derive from these measurements a much lower initial 60Fe/56Fe ratio of (11.5+/-2.6)*10-9 and conclude that 60Fe was homogeneously distributed among planetary bodies. This low ratio is consist...

  11. Composition and evolution of the eucrite parent body - Evidence from rare earth elements. [extraterrestrial basaltic melts (United States)

    Consolmagno, G. J.; Drake, M. J.


    Quantitative modeling of the evolution of rare earth element (REE) abundances in the eucrites, which are plagioclase-pigeonite basalt achondrites, indicates that the main group of eucrites (e.g., Juvinas) might have been produced by approximately 10% equilibrium partial melting of a single type of source region with initial REE abundances which were chondritic relative and absolute. Since the age of the eucrites is about equal to that of the solar system, extensive chemical differentiation of the eucrite parent body prior to the formation of eucrites seems unlikely. If homogeneous accretion is assumed, the bulk composition of the eucrite parent body can be estimated; two estimates are provided, representing different hypotheses as to the ratio of metal to olivine in the parent body. Since a large number of differentiated olivine meteorites, which would represent material from the interior of the parent body, have not been detected, the eucrite parent body is thought to be intact. It is suggested that the asteroid 4 Vesta is the eucrite parent body.

  12. Extraterrestrial Amino Acids in Ureilites Including Almahata Sitta (United States)

    Burton, A. S.; Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.


    Ureilites are a class of meteorites that lack chondrules (achondrites) but have relatively high carbon abundances, averaging approx.3 wt %. Using highly sensitive liquid chromatography coupled with UV fluorescence and time-of-flight mass spectrometry (LC-FD/ToF-MS), it was recently determined that there are amino acids in. fragment 94 of the Almahata Sitta ureilite[l]. Based on the presence of amino acids that are rare in the Earth's biosphere, as well as the near-racemic enantiomeric ratios of marry of the more common amino acids, it was concluded that most of the detected amino acids were indigenous to the meteorite. Although the composition of the Almahata Sitta ureilite appears to be unlike other recovered ureilites, the discovery of amino acids in this meteorite raises the question of whether other ureilites rnav also contain amino acids. Herein we present the results of LC-FDlTo.F-MS analyses of: a sand sample from the Almahata Sitta strewn held, Almahata Sitta fragments 425 (an ordinary H5 chondrite) and 427 (ureilite), as well as an Antarctic ureilite (Allan lulls, ALHA 77257).

  13. Thulium anomalies and rare earth element patterns in meteorites and Earth: Nebular fractionation and the nugget effect

    CERN Document Server

    Dauphas, N


    This study reports the bulk rare earth element (REEs, La-Lu) compositions of 41 chondrites, including 32 falls and 9 finds from carbonaceous (CI, CM, CO and CV), enstatite (EH and EL) and ordinary (H, L and LL) groups, as well as 2 enstatite achondrites (aubrite). The CI-chondrite-normalized REE patterns and Eu anomalies in ordinary and enstatite chondrites show more scatter in more metamorphosed than in unequilibrated chondrites. This is due to parent-body redistribution of the REEs in various carrier phases during metamorphism. The dispersion in REE patterns of equilibrated ordinary chondrites is explained by the nugget effect associated with concentration of REEs in minor phosphate grains. Terrestrial rocks and samples from ordinary and enstatite chondrites display negative Tm anomalies of ~-4.5 % relative to ca chondrites. In contrast, CM, CO and CV (except Allende) show no significant Tm anomalies. Allende CV chondrite shows large excess Tm (~+10 %). These anomalies are similar to those found in group II...

  14. Nuclear chemistry

    International Nuclear Information System (INIS)

    Topics covered include: mass asymmetry and total kinetic energy release in the spontaneous fission of 262105; calculation of spontaneous fission properties of very heavy nuclei - 98 less than or equal to Z less than or equal to 106 and 150 less than or equal to N less than or equal to 164; energy losses for 84Kr ions in nickel, aluminium and titanium; differences in compound nuclei formed with 40Ar and 84Kr projectiles; measurement of the energy division vs. mass in highly damped reactions; ambiguities in the inference of precompound emission from excitation function analysis; selective laser one-atom detection of neutral prompt fission fragments; laser induced nuclear polarization - application to the study of spontaneous fission isomers; quadrupole and hexadecapole deformations in the actinide nuclei; high-spin states in 164Yb; contrasting behavior of h/sub 9/2/ and i/sub 13/2/ bands in 185Au; multiple band crossings in 164Er; recoil-distance measurement of lifetimes of rotational states in 164Dy, lifetimes of ground-band states in 192Pt and 194Pt and application of the rotation-alignment model; coulomb excitation of vibrational nuclei with heavy ions; surface structure of deformed nuclei; valency contribution to neutron capture in 32S; neutron capture cross section of manganese; search for superheavy elements in natural samples by neutron multiplicity counting; and gamma-ray studies on the geochemistry of achondritic meteorites


    International Nuclear Information System (INIS)

    Asteroid 4 Vesta has long been postulated as the source for the howardite-eucrite-diogenite (HED) achondrite meteorites. Here we show that Al-free diogenite meteorites record variability in the mass-independent abundance of 26Mg (26Mg*) that is correlated with their mineral chemistry. This suggests that these meteorites captured the Mg-isotopic evolution of a large-scale differentiating magma body with increasing 27Al/24Mg during the lifespan of the short-lived 26Al nuclide (t 1/2 ∼ 730,000 yr). Thus, diogenites and eucrites represent crystallization products of a large-scale magma ocean associated with the differentiation and magmatic evolution of the HED parent body. The 26Mg* composition of the most primitive diogenites requires onset of the magma ocean crystallization within 0.6-0.4+0.5 Myr of solar system formation. Moreover, 26Mg* variations among diogenites and eucrites imply that near complete solidification of the HED parent body occurred within the following 2-3 Myr. Thermal models predict that such rapid cooling and magma ocean crystallization could only occur on small asteroids (<100 km), implying that 4 Vesta is not the source of the HED meteorites.

  16. Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk

    DEFF Research Database (Denmark)

    Larsen, Kirsten Kolbjørn; Schiller, Martin; Bizzarro, Martin


    The decay of radioactive 26Al to 26Mg (half-life of 730,000years) is postulated to have been the main energy source promoting asteroidal melting and differentiation in the nascent solar system. High-resolution chronological information provided by the 26Al-26Mg decay system is, therefore...... suite of olivine-rich [Al/Mg~0] achondritic meteorites, as well as a few chondrites. Main Group, pyroxene and the Zinder pallasites as well as the lodranite all record deficits in the mass-independent component of μ26Mg (μ26Mg*) relative to chondrites and Earth. This isotope signal is expected for the...... source rock. We propose that their parent planetesimals started forming within ~250,000years of solar system formation from a hot (>~500K) inner protoplanetary disk region characterized by a reduced initial (26Al/27Al)0 abundance (~1-2×10-5) relative to the (26Al/27Al)0 value in CAIs of 5.25×10-5. This...

  17. Potassium-bearing Iron-Nickel Sulfides in Nature and High-Pressure Experiments: Geochemical Consequences of Potassium in the Earth's Core (United States)

    Keshav, S.; Corgne, A.; McDonough, W. F.; Fei, Y.


    Introduction: Potassium (K) as a large ion lithophile element has dominantly been concentrated in the Earth s crust and the mantle through differentiation, and in the form of K-40 contributes to the planet s heat budget. However, whether or not K also enters core-forming phases, has been debated for over three decades. Arguments favoring entry of K in the core are based on: (1) K-sulfide (with Fe, Ni, Cu, Na, and Cl; djerfisherite) found in highly reduced enstatite chondrites (or aubrites, enstatite achondrites); (2) demonstration that K, owing to an s-d electronic switch at high-pressure, exhibits transition- element like character, (3) solubility of measurable K in Fe-Ni-S liquids at high pressure, temperature conditions, and (4) models of cooling of the core that seem to require, besides convection, some form of radioactivity, and thus lending support to the experimental work. In this contribution, we assess the effect of sequestering K in the core, as it is perhaps an element that is a key to reconciling geochemistry, paleomagnetism, accretion, and thermal evolution models for the planet.

  18. The lunar interior (United States)

    Anderson, D. L.; Kovach, R. L.


    The compressional velocities are estimated for materials in the lunar interior and compared with lunar seismic results. The lower crust has velocities appropriate for basalts or anorthosites. The high velocities associated with the uppermost mantle imply high densities and a change in composition to a lighter assemblage at depths of the order of 120 km. Calcium and aluminum are probably important components of the upper mantle and are deficient in the lower mantle. Much of the moon may have accreted from material similar in composition to eucrites. The important mineral of the upper mantle is garnet; possible accessory minerals are kyanite, spinel, and rutile. If the seismic results stand up, the high velocity layer in the moon is more likely to be a high pressure form of anorthosite than eclogite, pyroxenite, or dunite. The thickness of the layer is of the order of 50 km. Cosmic abundances can be maintained if the lower mantle is ferromagnesium silicate with minimal amounts of calcium and aluminum. Achondrites such as eucrites and howardites have more of the required characteristics of the lunar interior than carbonaceous chondrites. A density inversion in the moon is a strong possibility.

  19. Hibonite, Ca2/Al, Ti/24O38, from the Leoville and Allende chondritic meteorites. (United States)

    Keil, K.; Fuchs, L. H.


    Hibonite was discovered in light-colored, Ca-Al-Ti-rich and Si-Fe-poor, achondritic inclusions of the Leoville and Allende HL-group chondrites. Two varieties of hibonite occur: one emits a bright red-orange luminescence under electron bombardment and has high amounts of Al2O3 (87.7; 87.9) and low amounts of MgO (0.65; 0.8) and TiO2 (0.68; 0.8). The other emits a bright blue luminescence and is low in Al2O3 (78.7; 79.2) and high in MgO (3.3; 3.7) and TiO2 (6.5; 7.9) (in wt. %). The oxide CaO is about the same in both varieties. It is suggested that the change in the color of the visible luminescence results from changes in composition. The origin of hibonite which occurs in complex mineral assemblages together with anorthite, gelhenite, wollastonite, aluminous diopside, andradite, Ca-pyroxene, perovskite, spinel, taenite, chromite, and pentlandite, and in close proximity to nodules containing calcite, whewellite, forsterite and many of the aforementioned phases, is discussed. The proposition that hibonite and associated phases originated by contact metamorphism and metasomatism of calcite-dolomite bearing assemblages cannot, at this time, be completely ruled out.

  20. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body (United States)

    Carporzen, Laurent; Weiss, Benjamin P.; Elkins-Tanton, Linda T.; Shuster, David L.; Ebel, Denton; Gattacceca, Jérôme


    The textures of chondritic meteorites demonstrate that they are not the products of planetary melting processes. This has long been interpreted as evidence that chondrite parent bodies never experienced large-scale melting. As a result, the paleomagnetism of the CV carbonaceous chondrite Allende, most of which was acquired after accretion of the parent body, has been a long-standing mystery. The possibility of a core dynamo like that known for achondrite parent bodies has been discounted because chondrite parent bodies are assumed to be undifferentiated. Resolution of this conundrum requires a determination of the age and timescale over which Allende acquired its magnetization. Here, we report that Allende’s magnetization was acquired over several million years (Ma) during metasomatism on the parent planetesimal in a >  ∼ 20 μT field up to approximately 9—10 Ma after solar system formation. This field was present too recently and directionally stable for too long to have been generated by the protoplanetary disk or young Sun. The field intensity is in the range expected for planetesimal core dynamos, suggesting that CV chondrites are derived from the outer, unmelted layer of a partially differentiated body with a convecting metallic core.

  1. Paleomagnetism of the moon and meteorites (United States)

    Hood, L. L.; Cisowski, S. M.


    Paleomagnetic investigations (1979-1982) of the nature of the magnetization process and the magnetizing fields which produced magnetization in lunar and meteoritic materials are surveyed. Natural remanence magnetization (NRM), as well as thermoremanence magnetization (TRM), have been measured in carbonaceous chondrites and and L-chondrites to characterize the formation processes occurring when the magnetization was induced. Chemical remanence magnetism, together with the NRM, has been examined in noncarbonaceous chondrites, and NRM intensity and locations have been probed in achondrites. The magnetism has been concluded to arise either from solar magnetic fields, solar nebula magnetic fields, dynamo magnetic fields in the meteorite parent bodies, or locally generated fields caused by processes such as impacts. Lunar samples with NRM have been dated to origins less than 3.6 b.y., and could have been caused by shocks, such as from impacts less than 3 m.y. ago. Discussions of TRM, dynamo, and possible transient magnetic fields from hypervelocity meteoroid impacts as origins of magnetism on the surface and in a lunar magnetic core are presented.

  2. Lunar and Planetary Science Conference, 20th, Houston, TX, Mar. 13-17, 1989, Proceedings

    International Nuclear Information System (INIS)

    Topics discussed include the petrology and geochemistry of the moon, the geology of the moon, lunar regolith processes and resources, the petrology and geochemistry of achondrites, comets and interplanetary dust, shock and terrestrial cratering, the geology of Mars, and the geology of Venus. Papers are presented on silicate liquid immiscibility in isothermal crystallization experiments; highly evolved and ultramafic lithologies from Apollo 14 soils; the relationship between orbital, earth-based, and sample data for lunar landing sites; and the volcanotectonic evolution of Mare Frigoris. Attention is also given to glass variants and multiple HASP trends in Apollo 14 regolith breccias, the characterization of lunar ilmenite resources, the U-Th-Pb systematics of the Estherville mesosiderite, and the extraterrestrial halogen and sulfur contents of the stratosphere. Other papers are on argon-40/argon-39 dating of impact craters; the outliers of dust along the southern margin of the Tharsis region, Mars; and the geology of southern Guinevere Planitia, Venus, based on analyses of Goldstone radar data

  3. Lunar and Meteorite Sample Disk for Educators (United States)

    Foxworth, Suzanne; Luckey, M.; McInturff, B.; Allen, J.; Kascak, A.


    NASA Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation and distribution of samples for research, education and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core and regolith samples, from the lunar surface. JSC also curates meteorites collected from a US cooperative effort among NASA, the National Science Foundation (NSF) and the Smithsonian Institution that funds expeditions to Antarctica. The meteorites that are collected include rocks from Moon, Mars, and many asteroids including Vesta. The sample disks for educational use include these different samples. Active relevant learning has always been important to teachers and the Lunar and Meteorite Sample Disk Program provides this active style of learning for students and the general public. The Lunar and Meteorite Sample Disks permit students to conduct investigations comparable to actual scientists. The Lunar Sample Disk contains 6 samples; Basalt, Breccia, Highland Regolith, Anorthosite, Mare Regolith and Orange Soil. The Meteorite Sample Disk contains 6 samples; Chondrite L3, Chondrite H5, Carbonaceous Chondrite, Basaltic Achondrite, Iron and Stony-Iron. Teachers are given different activities that adhere to their standards with the disks. During a Sample Disk Certification Workshop, teachers participate in the activities as students gain insight into the history, formation and geologic processes of the moon, asteroids and meteorites.

  4. Indigenous abundances of siderophile elements in the lunar highlands: implications for the origin of the Moon

    International Nuclear Information System (INIS)

    Substantial indigeneous abundances of siderophile elements have been found to be present in the lunar highlands. The abundances of 13 siderophile elements in the parental magma were estimated by using a simple model. It is shown that metal/silicate fractionation within the Moon cannot have been the cause of the siderophile element abundances in the parental highlands magma and primitive, low-Ti mare basalts. The relative abundances of the indigenous siderophile elements in highlands and mare samples seem, instead, to be the result of complex processes which operated prior to the Moon's accretion. The abundances of the relatively involatile, siderophile elements in the parental highlands magma are strikingly similar to the abundances observed in terrestrial oceanic tholeiites. Furthermore, the abundances of the relatively volatile, siderophile elements in the parental highlands magma are also systematically related to the corresponding abundances in terrestrial oceanic tholeiites. In fact, the parental magma of the lunar highlands can be essentially regarded as having been a volatile-depleted terrestrial oceanic tholeite. The origin of the moon is discussed in the context of the results. The probability that depletion of siderophile elements occurred in an earlier generation of differentiated planetesimals similar to those which formed the basaltic achondrites, stony-irons, and irons is examined but can be dismissed on several grounds. It seems that the uniquely terrestrial 'siderophile signature' within the Moon can be explained only if the Moon was derived from the Earth's mantle subsequent to core-formation. (Auth.)

  5. Studies on Al Kidirate and Kapoeta meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Gismelseed, A.M. [Sudan Atomic Energy Commission, Khartoum (Sudan); Khangi, F. [Sudan Atomic Energy Commission, Khartoum (Sudan); Ibrahim, A. [Sudan Atomic Energy Commission, Khartoum (Sudan); Yousif, A.A. [Coll. of Science, Sultan Qaboos Univ., Alkhoud (Oman); Worthing, M.A. [Coll. of Science, Sultan Qaboos Univ., Alkhoud (Oman); Rais, A. [Coll. of Science, Sultan Qaboos Univ., Alkhoud (Oman); Elzain, M.E. [Coll. of Science, Sultan Qaboos Univ., Alkhoud (Oman); Brooks, C.K. [Coll. of Science, Sultan Qaboos Univ., Alkhoud (Oman); Sutherland, H.H. [Coll. of Science, Sultan Qaboos Univ., Alkhoud (Oman)


    Moessbauer spectroscopy (20-300 K), magnetic susceptibility measurements (77-350 K), scanning electron microscopy and X-ray diffraction experiments have been performed on two meteorite samples: one from an old fall (Kapoeta) and another from a very recent fall (Al Kidirate). The two specimens differ in their mineralogy. Chondrules appear to be absent in Kapoeta and it is probably a pyroxene-plagioclase achondrite with ferrohypersthene as the most abundant mineral. On the other hand, the Al Kidirate meteorite is an ordinary chondrite and the specimen consists of olivine, orthopyroxene, troilite and kamacite. The Moessbauer measurements confirm the above characterization, showing a paramagnetic doublet for the Kapoeta sample and at least two paramagnetic doublets and magnetic sextets for the Al Kidirate specimens. The former were assigned to Fe in pyroxene sites, while the latter was assigned to Fe in pyroxene, olivine, Fe-S and Fe-Ni alloys. The difference in the mineralogy of the two meteorites has also been reflected in the temperature-dependent magnetic susceptibility. The magnetization and the hyperfine interaction parameters will be discussed in relation to the mineralogy. (orig.)

  6. Hungaria Asteroid Family as the Source of Aubrite Meteorites

    CERN Document Server

    Ćuk, Matija; Nesvorný, David


    The Hungaria asteroids are interior to the main asteroid belt, with semimajor axes between 1.8 and 2 AU, low eccentricities and inclinations of 16-35 degrees. Small asteroids in the Hungaria region are dominated by a collisional family associated with (434) Hungaria. The dominant spectral type of the Hungaria group is the E or X-type (Warner et al, 2009), mostly due to the E-type composition of Hungaria and its genetic family. It is widely believed the E-type asteroids are related to the aubrite meteorites, also known as enstatite achondrites (Gaffey et al, 1992). Here we explore the hypothesis that aubrites originate in the Hungaria family. In order to test this connection, we compare model Cosmic Ray Exposure ages from orbital integrations of model meteoroids with those of aubrites. We show that long CRE ages of aubrites (longest among stony meteorite groups) reflect the delivery route of meteoroids from Hungarias to Earth being different than those from main-belt asteroids. We find that the meteoroids from...

  7. On the puzzle of space weathering alteration of basaltic asteroids

    CERN Document Server

    Marchi, S; Lazzarin, M; Magrin, S


    The majority of basaltic asteroids are found in the inner main belt, although a few have also been observed in the outer main belt and near-Earth space. These asteroids -referred to as V-types- have surface compositions that resemble that of the 530km sized asteroid Vesta. Besides the compositional similarity, dynamical evidence also links many V-type asteroids to Vesta. Moreover, Vesta is one of the few asteroids to have been identified as source of specific classes of meteorites, the howardite, eucrite, diogenite achondrites (HEDs). Despite the general consensus on the outlined scenario, several questions remain unresolved. In particular, it is not clear if the observed spectral diversity among Vesta, V-types and HEDs is due to space weathering, as is thought to be the case for S-type asteroids. In this paper, SDSS photometry is used to address the question of whether the spectral diversity among candidate V-types and HEDs can be explained by space weathering. We show that visible spectral slopes of V-types...


    International Nuclear Information System (INIS)

    Preliminary analysis of the oxygen isotopic composition of the solar wind recorded by the Genesis spacecraft suggests that the Sun is 16O-rich compared to most chondrules, fine-grained chondrite matrices, and bulk compositions of chondrites, achondrites, and terrestrial planets (Δ17O = -26.5 per mille ± 5.6 per mille and -33 per mille ± 8 per mille (2σ) versus Δ17O ∼ ±5 per mille ). The inferred 16O-rich composition of the Sun is similar or slightly lighter than the 16O-rich compositions of amoeboid olivine aggregates and typical calcium-aluminum-rich inclusions (CAIs) from primitive (unmetamorphosed) chondrites (Δ17O = -24 per mille ± 2 per mille ), which are believed to have condensed from and been melted in a gas of approximately solar composition (dust/gas ratio ∼ 0.01 by weight) within the first 0.1 Myr of the solar system formation. Based on solar system abundances, 26% of the solar system oxygen must be initially contained in dust and 74% in gas. Because solar oxygen is dominated by the gas component, these observations suggest that oxygen isotopic composition of the solar nebula gas was initially 16O-rich. Due to significant thermal processing of the protosolar molecular cloud silicate dust (primordial dust) in the solar nebula and its possible isotope exchange with the isotopically evolved solar nebula gas, the mean oxygen isotopic composition of the primordial dust is not known. In CO self-shielding models, it is assumed that primordial dust and solar nebula gas had initially identical, 16O-rich compositions, similar to that of the Sun (Δ17O ∼ -25 per mille or -35 per mille ), and solids subsequently evolved toward the terrestrial value (Δ17O = 0). However, there is no clear evidence that the oxygen isotopic compositions of the solar system solids evolved in the direction of increasing Δ17O with time and no 16O-rich primordial dust have yet been discovered. Here we argue that the assumption of the CO self-shielding models that primordial

  9. Disk-resolved photometry of Vesta and Lutetia and comparison with other asteroids (United States)

    Longobardo, Andrea; Palomba, Ernesto; Ciarniello, Mauro; Tosi, Federico; De Sanctis, Maria Cristina; Capaccioni, Fabrizio; Zambon, Francesca; Ammannito, Eleonora; Filacchione, Gianrico; Raymond, Carol A.


    . The phase functions found in bright material units on Vesta are similar to those found for Steins (E-type in the Tholen taxonomy, Xe-type in the Bus one), suggesting a photometric analogy between achondritic surfaces. The latter are brighter and with a flatter phase function with respect to chondritic surfaces: we argued that this behavior is driven by optical properties of asteroid surfaces (e.g. albedo, role of multiple scattering) rather than by physical ones (e.g. grain size, roughness). Dark material units on Vesta show an intermediate behavior between achondrites and the C-type Mathilde, confirming once again that these regions are characterized by mixtures of HED and carbonaceous chondrites. While a clear anti-correlation is observed between reflectance and steepness of phase function for V, S and C asteroids, Lutetia shows an anomalous photometric behavior, presenting both a low reflectance and a flat phase curve, and hence cannot be grouped with other spectral classes here considered. This behavior is similar to some X-type asteroids ground-observed at low phase angles and is consistent with a chondritic composition of its surface.

  10. A Thermal Infrared Emission Spectra Library for Unpowdered Meteorites (United States)

    Ashley, J. W.; Christensen, P. R.


    Mid-infrared thermal emission spectra have been obtained for whole-rock (unpowdered) samples of the following 25 meteorites: Abee, Admire, Allende, Bondoc, Brahin, Bruderheim, Canyon Diablo, Carichic, Clover Springs, Dhofar 007, Estherville, Holbrook, Juancheng, Kapoeta, Long Island, Marion, Modoc, ALH77225, ALH77233, ALH84082, LEW85322, ALH85025, ALH79029, ALH77004, and LEW86015. Meteorites were provided through the Center for Meteorite Studies at ASU, Johnson Space Center and the NASA Antarctic Meteorite Working Group, and from private collections. The database was prepared to aid in the on-going detection and interpretation of meteorites on Mars using the Miniature Thermal Emission Spectrometer (Mini-TES) instruments on both Mars Exploration Rovers. It therefore includes several specimens of low, moderate, and high weathering intensities, reflecting different levels of water exposure in desert and non-desert environments. Unweathered falls are also considered. Samples represent all three chondrite classes, stony irons (mesosiderites and pallasites), and select achondrites. Special consideration is given to dust-covered iron-nickel meteorites as part of a separate study designed to evaluate the Mini-TES spectra of iron-nickel meteorites on Mars. All samples were analyzed at or near a temperature of 80° C using a modified Nicolet Nexus 670 FT-IR spectrometer at the Mars Space Flight Facility at Arizona State University. Data were collected within the 2000 to 200 wavenumber (5 to 50 microns) mid-infrared range. The results show that many meteorite types display moderate to wide variability in the depth and position of prominent absorption features, making them easily distinguishable from each other. Most previous meteorite spectroscopy studies have either focused on near-infrared reflectance spectra [e.g. 1], and/or involved powdered samples to represent asteroid regoliths in the mid-infrared [e.g. 2 & 3]. Particle size- related issues are often at the heart of

  11. Lunar and Planetary Science XXXVI, Part 19 (United States)


    The topics include: 1) The abundances of Iron-60 in Pyroxene Chondrules from Unequilibrated Ordinary Chondrites; 2) LL-Ordinary Chondrite Impact on the Moon: Results from the 3.9 Ga Impact Melt at the Landing Site of Appolo 17; 3) Evaluation of Chemical Methods for Projectile Identification in Terrestrial and Lunar Impactites; 4) Impact Cratering Experiments in Microgravity Environment; 5) New Achondrites with High-Calcium Pyroxene and Its implication for Igneous Differentiation of Asteroids; 6) Climate History of the Polar Regions of Mars Deduced form Geologic Mapping Results; 7) The crater Production Function for Mars: A-2 Cumulative Power-Law Slope for Pristine Craters Greater than 5 km in Diameter Based on Crater Distribution for Northern Plains Materials; 8) High Resolution Al-26 Chronology: Resolved Time Interval Between Rim and Interior of a Highly Fractionated Compact Type a CAI from Efremovka; 9) Assessing Aqueous Alteration on Mars Using Global Distributions of K and Th; 10) FeNi Metal Grains in LaPaz Mare Basalt Meteorites and Appolo 12 Basalts; 11) Unique Properties of Lunar Soil for In Situ Resource Utilization on the Moon; 12) U-Pb Systematics of Phosphates in Nakhlites; 13) Measurements of Sound Speed in Granular Materials Simulated Regolith; 14) The Effects of Oxygen, Sulphur and Silicon on the Dihedral Angles Between Fe-rich Liquid Metal and Olivine, Ringwoodite and Silicate Perovskite: Implications for Planetary Core Formation; 15) Seismic Shaking Removal of Craters 0.2-0.5 km in Diameter on Asteroid 433 Eros; 16) Focused Ion Beam Microscoopy of ALH84001 Carbonate Disks; 17) Simulating Micro-Gravity in the Laboratory; 18) Mars Atmospheric Sample Return Instrument Development; 19) Combined Remote LIBS and Raman Spectroscopy Measurements; 20) Unusual Radar Backscatter Properties Along the Northern Rim of Imbrium Basin; 21) The Mars Express/NASAS Project at JPL; 22) The Geology of the Viking 2 Lander Site Revisited; 23) An Impact Genesis for Loki

  12. Natural thermoluminescence of Antarctic meteorites and related studies (United States)

    Benoit, Paul H.; Sears, Derek W. G.


    The natural thermoluminescence (TL) laboratory's primary purpose is to provide data on newly recovered Antarctic meteorites that can be included in discovery announcements and to investigate the scientific implications of the data. Natural TL levels of meteorites are indicators of recent thermal history and terrestrial history, and the data can be used to study the orbital/radiation history of groups of meteorites (e.g., H chondrites) or to study the processes leading to the concentration of meteorites at certain sites in Antarctica. An important application of these data is the identification of fragments, or "pairs" of meteorites produced during atmospheric passage or during terrestrial weathering. Thermoluminescence data are particularly useful for pairing within the most common meteorite classes, which typically exhibit very limited petrographic and chemical diversity. Although not originally part of the laboratory's objectives, TL data are also useful in the identification and classification of petrographically or mineralogically unusual meteorites, including unequilibrated ordinary chondrites and some basaltic achondrites. In support of its primary mission, the laboratory also engages in TL studies of modern falls, finds from hot deserts, and terrestrial analogs and conducts detailed studies of the TL properties of certain classes of meteorites. These studies include the measurement of TL profiles in meteorites, the determination of TL levels of finds from the Sahara and the Nullarbor region of Australia, and comparison of TL data to other indicators of irradiation or terrestrial history, such as cosmogenic noble gas and radionuclide abundances. Our current work can be divided into five subcategories, (a) TL survey of Antarctic meteorites, (b) pairing and field relations of Antarctic meteorites, (c) characterization of TL systematics of meteorites, (d) comparison of natural TL and other terrestrial age indicators for Antarctic meteorites, and for meteorites

  13. Eucrite Impact Melt NWA 5218 - Evidence for a Large Crater on Vesta (United States)

    Wittmann, Axel; Hiroi, Takahiro; Ross, Daniel K.; Herrin, Jason S.; Rumble, Douglas, III; Kring, David A.


    Northwest Africa (NWA) 5218 is a 76 g achondrite that is classified as a eucrite [1]. However, an initial classification [2] describes it as a "eucrite shock-melt breccia...(in which) large, partially melted cumulate basalt clasts are set in a shock melt flow...". We explore the petrology of this clast-bearing impact melt rock (Fig. 1), which could be a characteristic lithology at large impact craters on asteroid Vesta [3]. Methods: Optical microscopy, scanning electronmicroscopy, and Raman spectroscopy were used on a thin section (Fig. 1) for petrographic characterization. The impact melt composition was determined by 20 m diameter defocused-beam analyses with a Cameca SX-100 electron microprobe. The data from 97 spots were corrected for mineral density effects [4]. Constituent mineral phases were analyzed with a focusedbeam. Bidirectonal visible and near-infrared (VNIR) and biconical FT-IR reflectance spectra were measured on the surface of a sample slab on its central melt area and on an eucrite clast, and from 125-500 m and rock. The thin section captures a central, subophitic-textured melt that contains 1 cm to tens of m-size subangular to rounded, variably-shocked eucrite clasts. Clasts >100 m are coarse-grained with equigranular 1 mm size plagioclase, quartz, and clinopyroxene (Fig. 1). Single crystals of chromite, ilmenite, zircon, Ca-Mg phosphate, Fe-metal, and troilite are embedded in the melt. Polymineralic clasts are mostly compositionally similar to the above mentioned larger clasts but scarce granulitic fragments are observed as well.

  14. Stable chromium isotopic composition of meteorites and metal-silicate experiments: Implications for fractionation during core formation (United States)

    Bonnand, P.; Williams, H. M.; Parkinson, I. J.; Wood, B. J.; Halliday, A. N.


    We present new mass independent and mass dependent Cr isotope compositions for meteorites measured by double spike thermal ionisation mass spectrometry. Small differences in both mass independent 53Cr and 54Cr relative to the Bulk Silicate Earth are reported and are very similar to previously published values. Carbonaceous chondrites are characterised by an excess in 54Cr compared to ordinary and enstatite chondrites which make mass independent Cr isotopes a useful tool for distinguishing between meteoritic groups. Mass dependent stable Cr isotope compositions for the same samples are also reported. Carbonaceous and ordinary chondrites are identical within uncertainty with average δ53 Cr values of - 0.118 ± 0.040 ‰ and - 0.143 ± 0.074 ‰ respectively. The heaviest isotope compositions are recorded by an enstatite chondrite and a CO carbonaceous chondrite, both of which have relatively reduced chemical compositions implying some stable Cr isotope fractionation related to redox processes in the circumstellar disk. The average δ53 Cr values for chondrites are within error of the estimate for the Bulk Silicate Earth (BSE) also determined by double spiking. The lack of isotopic difference between chondritic material and the BSE provides evidence that Cr isotopes were not fractionated during core formation on Earth. A series of high-pressure experiments was also carried out to investigate stable Cr isotope fractionation between metal and silicate and no demonstrable fractionation was observed, consistent with our meteorites data. Mass dependent Cr isotope data for achondrites suggest that Cr isotopes are fractionated during magmatic differentiation and therefore further work is required to constrain the Cr isotopic compositions of the mantles of Vesta and Mars.

  15. Argon 40-argon 39 chronology of lithic clasts from the Kapoeta howardite

    International Nuclear Information System (INIS)

    40Ar-39Ar age spectra has been measured on plagioclase separates from three basaltic clasts (A, B, C), a pyroxene separate from clast B, and a total sample of a fourth basaltic clast (rho) from the Kapoeta achondritic meteorite. The Ar data show that three of the four clasts crystallized >= 4.5 AE ago. Xe measurements indicate all four formed within a 0.1 AE period. Three clasts have suffered various degrees of 40Ar loss since that time. The times of 40Ar degassing do not cluster about a single time analogous to the lunar cataclysm. The survival of >= 4.5 AE ages contrasts with the general absence of ages >= 4.0 AE on the moon. The Ar retention age of clast B of >= 4.57 AE is atypically older than the RB-Sr age of 3.6 AE. The 3.5 AE Ar age of clast A is distinctly younger than the Rb-Sr age of 3.9 AE. The K-Ar and Rb-Sr systems are clearly not equivalent dating techniques in these instances. The combined evidence of Ar, Xe and Rb-Sr studies suggests the period of volcanism on the Kapoeta parent planet was restricted to the first approximately 0.2 AE of solar system history. The subsequent thermal metamorphic histories recorded in each of the four clasts after formation are distinctly different. The clasts must have existed as independent fragments at least as recently as 3.5 AE ago. The cosmic ray exposure ages of all the four clasts are similar (approximately 3 Myr), and are not significantly different from that of the bulk meteorite. The clasts spent essentially all of the time prior to the formation of Kapoeta at depths greater than a few meters. (author)

  16. On the Nature of the Impactor That Formed the Shackleton Crater on the Moon (United States)

    Pugacheva, Svetlana G.; Feoktistova, Ekaterina A.; Shevchenko, Vladislav V.


    The present paper attempts to assess the characteristics of the impactor that formed the Shackleton crater, located at the south pole of the Moon. The crater's morphometric parameters were analyzed based on the data of the Lunar Orbiter Laser Altimeter aboard the Lunar Reconnaissance Orbiter. Conclusions were drawn regarding the possible range of the impact angle and the parameters of the transient crater, such as depth and volume. The thickness of ejecta deposits on the transient crater rim and the volume of these deposits at a certain distance from the crater rim were assessed. These assessments enabled determining the type and characteristics of impactors (velocity, density, size, and impact angle) that could have formed the Shackleton crater. It was shown that the Shackleton crater could have been formed by an impact of a low-velocity (3 km/s) comets with diameter 4-4.5 km, chondrite or achondrite with a diameter of 2 km at a 45°-50° angle, whose velocity did not exceed 6 km/s, as well as stony-iron or iron-nickel impactors with a 1-2 km diameter for stony-iron asteroids and 1-1.5 km for iron-nickel asteroids. The impact velocity of stony-iron impactors, according to the authors' calculations, can reach 12 km/s. The impact velocities of iron-nickel asteroids range from 6 to 9 km/s. The impactor's substance mass that could have remained in the crater after it was formed was assessed.

  17. Ultraviolet Spectroscopy of Asteroid(4) Vesta (United States)

    Li, Jian-Yang; Bodewits, Dennis; Feaga, Lori M.; Landsman, Wayne; A'Hearn, Michael F.; Mutchler, Max J.; Russell, Christopher T.; McFadden, Lucy A.; Raymond, Carol A.


    We report a comprehensive review of the UV-visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm arc derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope in the ultraviolet displays a sharp minimum ncar sub-Earth longitude of 20deg, and maximum in the eastern hemisphere. This is completely consistent with the distribution of the spectral slope in the visible wavelength. The uncertainty of the measurement in the ultraviolet is approx.20%, and in the visible wavelengths better than 10%. The amplitude of Vesta's rotational lightcurves is approx.10% throughout the range of wavelengths we observed, but is smaller at 950 nm (approx.6%) ncar the 1-micron mafic band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/ncar-infrared lightcurves with respect to sub-Earth longitude. Vesta's average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible. and ncar-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies lack of global space weathering on Vesta. Keyword,: Asteroid Vesta; Spectrophotometry; Spectroscopy; Ultraviolet observations; Hubble Space Telescope observations

  18. Experimental Constraints on a Vesta Magma Ocean (United States)

    Hoff, C.; Jones, J. H.; Le, L.


    A magma ocean model was devised to relate eucrites (basalts) and diogenites (orthopyroxenites), which are found mixed together as clasts in a suite of polymict breccias known as howardites. The intimate association of eucritic and diogenitic clasts in howardites argues strongly that these three classes of achondritic meteorites all originated from the same planetoid. Reflectance spectral evidence (including that from the DAWN mission) has long suggested that Vesta is indeed the Eucrite Parent Body. Specifically, the magma ocean model was generated as follows: (i) the bulk Vesta composition was taken to be 0.3 CV chondrite + 0.7 L chondrite but using only 10% of the Na2O from this mixture; (ii) this composition is allowed to crystallize at 500 bar until approx. 80% of the system is solid olivine + low-Ca pyroxene; (iii) the remaining 20% liquid crystallizes at one bar from 1250C to 1110C, a temperature slightly above the eucrite solidus. All crystallization calculations were performed using MELTS. In this model, diogenites are produced by cocrystallization of olivine and pyroxene in the >1250C temperature regime, with Main Group eucrite liquids being generated in the 1300-1250C temperature interval. Low-Ca pyroxene reappears at 1210C in the one-bar calculations and fractionates the residual liquid to produce evolved eucrite compositions (Stannern Trend). We have attempted to experimentally reproduce the ocean. In the MELTS calculation, the change from 500 bar to one bar results in a shift of the olivine:low-Ca pyroxene boundary so that the 1250C liquid is now in the olivine field and, consequently, olivine should be the first-crystallizing phase, followed by low-Ca pyroxene at 1210C, and plagioclase at 1170C. Because at one bar the olivine:low-Ca pyroxene boundary is a peritectic, fractional crystallization of the 1210C liquid proceeds with only pyroxene crystallization until plagioclase appears. Thus, the predictions of the MELTS calculation are clear and

  19. Probing Core Processes in the Earth and Small Bodies Using Paleomagnetism (United States)

    Fu, R. R.; Weiss, B. P.; Lima, E. A.; Glenn, D. R.; Kehayias, P.; Walsworth, R. L.


    Convective motion in the cores of differentiated metal-silicate bodies may sustain a global dynamo magnetic field. Progressive crystallization in a dynamo-generating core is expected to play a central role in determining the observable properties of the hosted magnetic field. Importantly, the release of light elements and latent heat during core crystallization is a key source of entropy for sustaining core convection. Therefore, the persistence and intensity of a dynamo magnetic field depend directly on the extent and style of core crystallization. We present and discuss paleomagnetic data from the Earth and asteroid-sized bodies to characterize internally generated magnetic fields during the early histories of these objects. In the case of the Earth, recent and ongoing paleomagnetic experiments of zircons from the Jack Hills of Australia can potentially constrain the existence and intensity of the geodynamo before 3.5 Ga. If robust, such measurements hold strong implications for the energy budget of the Earth's early core and the dynamics of the early mantle. We will discuss both recently published and preliminary results and assess carefully the challenges and uncertainties of paleomagnetic experimentation on ancient zircon samples. In the case of small bodies, several classes of meteorites record ancient magnetic fields likely produced by core dynamos on their parent bodies. Data from the CV carbonaceous chondrites and pallasites indicate that dynamos in planetesimal-sized bodies persisted for a broad range of timescales between ~10 My and >100 My. Meanwhile, measurements of the angrite group of achondrites show that their earliest-forming members crystallized in an almost non-magnetic environment, suggesting a delayed onset of the planetesimal dynamo until several My after initial differentiation. We will discuss the possible causes for this observed diversity of small body dynamo properties, including the role of core crystallization and the distribution of

  20. Chemical and isotopic study of extraterrestrial particles from the ocean floor

    International Nuclear Information System (INIS)

    We report chemical, mineralogic and Rb-Sr data on deep-sea spherules and on particles from an Antarctic Ocean core in which an excess Ir content has been identified. 87Sr/86Sr compositions in the deep-sea spherules are determined to 1-2% and are in the range 0.730-0.757. The 87Sr/86Sr compositions and the Sr concentrations are in the range observed for the majority of chondritic meteorites. 84Sr/88Sr ratios are normal to within 1%. Extreme depletion of Rb relative to the chondritic abundance is found in the deep-sea spherules. These data support the inference based on chemical composition and mineralogy that the deep-sea spherules are produced by the ablation or heating of meteroroids in the Earth's atmosphere with substantial loss of Rb by volatilization. Most terrestrial sources for the deep-sea spherules can be excluded, based on the chemical composition and on the Sr isotopic composition. The results on vesicular, Ir-rich particles from the Antarctic Ocean core give 87Sr/86Sr in the range 0.703-0.705 and within the range observed for ocean island basalts but significantly above mid-ocean ridge basalts (MORB). A crystalline basaltic particle from this core shows non-radiogenic 87Sr/86Sr=0.701 +- 0.001, in the range observed for MORB and basaltic achondrites. The Sr data on the vesicular particles do not provide positive support for an extraterrestrial provenance for these materials. The basaltic particles cannot be reasonably be the primary source of high Ir concentration and some other lithic component remains to be identified. (orig.)

  1. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs (United States)

    Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar


    The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate

  2. 40 Years of Processing Pieces of Space (United States)

    Satterwhite, C. E.; Funk, R. C.; Righter, K.; Harrington, R. H.


    This year marks the 40th year anniversary for the Antarctic Search for Meteorite (ANSMET) program. In 1976, the ANSMET program led the first expedition to Antarctica. The ANSMET program is a US-led field-based science project that recovers meteorite samples from Antarctica. Once a year from late November to late January, a field team consisting of 8 to 12 people, spends 6-8 weeks camping on the ice and collecting meteorites. Since 1976, more than 22,000 meteorite samples have been recovered. These meteorites come from asteroids, planets and other bodies of the solar system. Once collected, the Antarctic meteorites are shipped to NASA/Johnson Space Center (JSC) Houston, TX. in a refrigerated truck and are kept frozen to minimize oxidation until they are ready for initial processing. In Antarctica each meteorite is given a field tag which consists of numbers, once in the lab, this is replaced by an official tag, consisting of the Antarctic field location and year collected. The types and numbers of meteorites that have been classified include 849 carbonaceous chondrites, 135 enstatites, 512 achondrites, 64 stony, 115 irons, 48 others (27 R chondrites, 7 ungrouped), 6,161 H chondrites, 7,668 L chondrites, and 4,589 LL chondrites. Although 80-85 percent of the collected meteorites fall in the ordinary chondrite group, the other approximately 15 percent represent rare types of achondrites and carbonaceous chondrites. These rare meteorites include 25 lunar meteorites, 15 Martian meteorites, scores of various types of carbonaceous chondrites, and unique achondrites. The Antarctic meteorites that have been collected are processed in the Meteorite Processing Lab at JSC in Houston, TX. Initial processing of the meteorites begins with thawing/drying the meteorites in a nitrogen glove box for 24 to 48 hours. The meteorites are then photographed, measured, weighed and a description of the interior and exterior of each meteorite is written. The meteorite is broken and a

  3. Internal state of Lutetia as a function of the macroporosity (United States)

    Neumann, W.; Breuer, D.; Spohn, T.


    like Lutetia can be a parent body of undifferentiated (chondritic), partially differentiated (primitive achondritic), and differentiated (achondritic) meteorites. Thus, enstatite chondritic, iron, and primitive achondritic meteorites can, in principle, originate from Lutetia, because it may be partially differentiated and was clearly disturbed by several major impacts. Furthermore, the timing of the occurrence of thermal convection in the metallic core suggests the possibility of an internal dynamo on Lutetia. This could explain the remanent magnetization found in undifferentiated chondritic meteorites.

  4. Chondrites, S asteroids, and space weathering: Thumping noises from the coffin? (United States)

    Fanale, F. P.; Clark, B. E.


    they were not subjected to melting during the phase of the electromagnetic induction heating event but only to various degrees of pervasive metamorphism. Furthermore, these objects would then have been too small to be observed and systematically included in the library of asteroidal spectra. It was also suggested that the parametric distribution of S-asteroid spectra could be reproduced by mixing various proportions of NiFe meteorite and achondritic materials. This has also been demonstrated in the laboratory.

  5. The Acapulco Parent Planetesimal: An Early Collisional History in the Solar System (United States)

    Marti, K.; Kim, Y.


    The Acapulco, Mexico, meteorite was recovered in 1976 from a crater of approx. 30 cm diameter. An old crystallization age of 4.60 (error 0.03) Ga (Prinzhofer et al., 1992) establishes that its parent object is one of the oldest known planetesimals in the solar system, although not in a pristine form. Other dating systems indicated somewhat younger ages and isotopic variabilities in several elements documented a complex early history. The younger ages date the closure times in secondary minerals. The initial parent object was in a partially molten state when isotopically distinct foreign matter invaded the chondritic parent and some of the isotopic signatures survived. Nitrogen in the primitive achondrite Acapulco was found to have distinct isotopic signatures for the metal and silicate phases and also in different morphologies of graphites (El Goresy, 1995, 2005). The delayed collisional event probably disrupted the parent object, as Acapulco cooled very rapidly. Nitrogen in the injected metal and graphite did not isotopically exchange with the host silicates. We observed nitrogen isotopic signatures of several separated mineral phases which cover a range of delta 15N values from -150 permil to +13 permil. The lightest nitrogen signatures observed in metal separates are comparable to those in some morphologies of Acapulco graphites. The heavy N signatures observed in several silicate minerals are consistent with each other, while nitrogen in chromite is distinctly light (delta 15N of -80 permil), intermediate between those of metal and silicates. The incipient rapid cooling history is well documented down to approx. 120° C, as recorded by U/Th-4He ages in phosphates (Min et al., 2003). The history of the Acapulco parent object was uneventful after its early evolution in an environment where no perturbation by collisions occurred, until the meteorite's recent (6.0 Ma ago) injection into an earth-crossing orbit. References: El Goresy, A., Zinner, E., and Marti, K

  6. Vesta and Ceres by the light of Dawn (United States)

    Russell, Christopher T.


    Ceres and Vesta are the most massive bodies in the main asteroid belt. They both appear to be intact protoplanets whose growth may have been drastically altered by the concomitant formation of Jupiter.. These two bodies have witnessed 4.6 Ga of solar system history, much, but not all, of which has been recorded in their surfaces. Dawn’s objective is to interview these two witnesses to learn as much as possible about the early epoch. These bodies are protoplanets, our best archetypes of the early building blocks of the terrestrial planets. In particular, siderophile elements in the Earth’s core were probably first segregated in Vesta-like bodies, and its water was likely first condensed in Ceres-like bodies.Many of the basaltic achondrites originated from a common parent body. Dawn verified that Vesta was consistent with that parent body. hence strengthening geochemical inferences from these samples on the formation and evolution of the solar system and supporting hypotheses for their delivery from Vesta to Earth. Ceres has not revealed itself with a meteoritic record. While the surface is scarred with craters, it is probable that the ejecta from the crater-forming event created little competent material from the icy crust and any such ejected projectiles that reached Earth might have disintegrated upon entry into the Earth’s atmosphere.Ceres’ surface differs greatly from Vesta’s. Plastic or fluidized mass wasting is apparent, as are many irregularly shaped craters, including many polygonal crater forms. There are many central-pit craters possibly caused by volatilization of the crust in the center of the impact. There are also many central-peak craters, which were made by rebound or pingo-like formation processes. Bright deposits dot the landscape, which are possibly salt-rich, suggesting fluvial activity beneath the crust. Observations of the brightest spots on Ceres could suggest sublimation from the surface of the bright area, which may be water vapor

  7. Variable microstructural response of baddeleyite to shock metamorphism in young basaltic shergottite NWA 5298 and improved U-Pb dating of Solar System events (United States)

    Darling, James R.; Moser, Desmond E.; Barker, Ivan R.; Tait, Kim T.; Chamberlain, Kevin R.; Schmitt, Axel K.; Hyde, Brendt C.


    The accurate dating of igneous and impact events is vital for the understanding of Solar System evolution, but has been hampered by limited knowledge of how shock metamorphism affects mineral and whole-rock isotopic systems used for geochronology. Baddeleyite (monoclinic ZrO2) is a refractory mineral chronometer of great potential to date these processes due to its widespread occurrence in achondrites and robust U-Pb isotopic systematics, but there is little understanding of shock-effects on this phase. Here we present new nano-structural measurements of baddeleyite grains in a thin-section of the highly-shocked basaltic shergottite Northwest Africa (NWA) 5298, using high-resolution electron backscattered diffraction (EBSD) and scanning transmission electron microscopy (STEM) techniques, to investigate shock-effects and their linkage with U-Pb isotopic disturbance that has previously been documented by in-situ U-Pb isotopic analyses. The shock-altered state of originally igneous baddeleyite grains is highly variable across the thin-section and often within single grains. Analyzed grains range from those that preserve primary (magmatic) twinning and trace-element zonation (baddeleyite shock Group 1), to quasi-amorphous ZrO2 (Group 2) and to recrystallized micro-granular domains of baddeleyite (Group 3). These groups correlate closely with measured U-Pb isotope compositions. Primary igneous features in Group 1 baddeleyites (n = 5) are retained in high shock impedance grain environments, and an average of these grains yields a revised late-Amazonian magmatic crystallization age of 175 ± 30 Ma for this shergottite. The youngest U-Pb dates occur from Group 3 recrystallized nano- to micro-granular baddeleyite grains, indicating that it is post-shock heating and new mineral growth that drives much of the isotopic disturbance, rather than just shock deformation and phase transitions. Our data demonstrate that a systematic multi-stage microstructural evolution in

  8. Unraveling the chemical space of terrestrial and meteoritic organic matter (United States)

    Schmitt-Kopplin, Philippe; Harir, Mourad; Hertkorn, Norbert; Kanawati, Basem; Ruf, Alexander; Quirico, Eric; Bonal, Lydie; Beck, Pierre; Gabelica, Zelimir


    )High resolution analytical approaches will be presented in their application to unravel the chemical nature and organic signatures in bio-geosystems and especially in selected chondritic (organic and ordinary) and achondritic meteorites. We will focus on thermal effects in CM types of materials and describe the effect of shock events on the changes in chemodiversity and the formation of unique novel organic compounds using high magnetic field ultrahigh resolution mass spectrometry (12 Tesla ion cyclotron resonance Fourier transform mass spectrometry - ICR-FT/MS) and nuclear magnetic resonance spectroscopy (Cryo 800MHz NMR).

  9. Oxygen and Magnesium Isotopic Compositions of Asteroidal Materials Returned from Itokawa by the Hayabusa Mission (United States)

    Yurimoto, H; Abe, M.; Ebihara, M.; Fujimura, A.; Hashizume, K.; Ireland, T. R.; Itoh, S.; Kawaguchi, K.; Kitajima, F.; Mukai, T.; Nagao, K.; Nakamura, T.; Naraoka, H.; Noguchi, T.; Okazaki, R.; Sakamoto, N.; Seto, Y.; Tsuchiyama, A.; Uesugi, M.; Yada, T.; Yoshikawa, M.; Zolensky, M.


    The Hayabusa spacecraft made two touchdowns on the surface of Asteroid 25143 Itokawa on November 20th and 26th, 2005. The Asteroid 25143 Itokawa is classified as an S-type asteroid and inferred to consist of materials similar to ordinary chondrites or primitive achondrites [1]. Near-infrared spectroscopy by the Hayabusa spacecraft proposed that the surface of this body has an olivine-rich mineral assemblage potentially similar to that of LL5 or LL6 chondrites with different degrees of space weathering [2]. The spacecraft made the reentry into the Earth s atmosphere on June 12th, 2010 and the sample capsule was successfully recovered in Australia on June 13th, 2010. Although the sample collection processes on the Itokawa surface had not been made by the designed operations, more than 1,500 grains were identified as rocky particles in the sample curation facility of JAXA, and most of them were judged to be of extraterrestrial origin, and definitely from Asteroid Itokawa on November 17th, 2010 [3]. Although their sizes are mostly less than 10 microns, some larger grains of about 100 microns or larger were also included. The mineral assembly is olivine, pyroxene, plagioclase, iron sulfide and iron metal. The mean mineral compositions are consistent with the results of near-infrared spectroscopy from Hayabusa spacecraft [2], but the variations suggest that the petrologic type may be smaller than the spectroscopic results. Several tens of grains of relatively large sizes among the 1,500 grains will be selected by the Hayabusa sample curation team for preliminary examination [4]. Each grain will be subjected to one set of preliminary examinations, i.e., micro-tomography, XRD, XRF, TEM, SEM, EPMA and SIMS in this sequence. The preliminary examination will start from the last week of January 2011. Therefore, samples for isotope analyses in this study will start from the last week of February 2011. By the time of the LPSC meeting we will have measured the oxygen and

  10. Curie's hypotheses concerning radioactivity and the origin of the elements

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, P.K.


    Pierre Curie gave two hypotheses at first; (1) It can be supposed that the radioactive substances borrow the energy, which they release, from an external radiation, and their radiation would then be a secondary radiation, (2) It can be supposed that the radioactive substances draw from themselves the energy which they release. The second hypothesis has shown the more fertile in explaining the properties of the radioactive substances. Consequently, the first hypothesis became more or less forgotten. It appears, however, the first hypothesis should play an important role in explaining the phenomena concerning the origin of the elements. The Oklo Phenomenon has demonstrated that a nuclear fire had once existed on our planet earth and formation of heavy elements was occurring in nature. The author pointed out that the difference in the isotopic compositions of xenon found in meteorites, lunar samples and in the earth's atmosphere can only be explained as due to the alterations of the isotropic compositions of xenon by combined effect of (a) mass-fractionation, (b) spallation, and (c) stellar temperature neutron-capture reactions. The strange xenon components are not isotopically pure substance. Instead, xenon-HL is a mixture of the {sup 244}Pu fission xenon and the xenon whose isotopic compositions is severely altered by a combined effect of the processes (a), (b) and (c) mentioned above. These results also indicate that C1 carbonaceous chondrites, which is generally as the most primitive sample of the solar system material, began to retain its xenon 5.1 billion years ago, when the plutonium to uranium ratio in the solar system was as high as almost 0.6 (atom/atom), while the C2 carbonaceous chondrite began to retain their xenon about 150 million years later and the ordinary chondrites and achondrite about 500 to 600 million years later. This means that the birth of the solar system began soon after the last supernova exploded about 5.1 billion years ago, and the

  11. Curie's hypotheses concerning radioactivity and the origin of the elements

    International Nuclear Information System (INIS)

    Pierre Curie gave two hypotheses at first; (1) It can be supposed that the radioactive substances borrow the energy, which they release, from an external radiation, and their radiation would then be a secondary radiation, (2) It can be supposed that the radioactive substances draw from themselves the energy which they release. The second hypothesis has shown the more fertile in explaining the properties of the radioactive substances. Consequently, the first hypothesis became more or less forgotten. It appears, however, the first hypothesis should play an important role in explaining the phenomena concerning the origin of the elements. The Oklo Phenomenon has demonstrated that a nuclear fire had once existed on our planet earth and formation of heavy elements was occurring in nature. The author pointed out that the difference in the isotopic compositions of xenon found in meteorites, lunar samples and in the earth's atmosphere can only be explained as due to the alterations of the isotropic compositions of xenon by combined effect of (a) mass-fractionation, (b) spallation, and (c) stellar temperature neutron-capture reactions. The strange xenon components are not isotopically pure substance. Instead, xenon-HL is a mixture of the 244Pu fission xenon and the xenon whose isotopic compositions is severely altered by a combined effect of the processes (a), (b) and (c) mentioned above. These results also indicate that C1 carbonaceous chondrites, which is generally as the most primitive sample of the solar system material, began to retain its xenon 5.1 billion years ago, when the plutonium to uranium ratio in the solar system was as high as almost 0.6 (atom/atom), while the C2 carbonaceous chondrite began to retain their xenon about 150 million years later and the ordinary chondrites and achondrite about 500 to 600 million years later. This means that the birth of the solar system began soon after the last supernova exploded about 5.1 billion years ago, and the generally

  12. Curie's hypotheses concerning radioactivity and the origin of the elements

    International Nuclear Information System (INIS)

    Pierre Curie gave two hypotheses at first; (1) It can be supposed that the radioactive substances borrow the energy, which they release, from an external radiation, and their radiation would then be a secondary radiation, (2) It can be supposed that the radioactive substances draw from themselves the energy which they release. The second hypothesis has shown the more fertile in explaining the properties of the radioactive substances. Consequently, the first hypothesis became more or less forgotten. It appears, however, the first hypothesis should play an important role in explaining the phenomena concerning the origin of the elements. The Oklo Phenomenon has demonstrated that a nuclear fire had once existed on our planet earth and formation of heavy elements was occurring in nature. The author pointed out that the difference in the isotopic compositions of xenon found in meteorites, lunar samples and in the earth's atmosphere can only be explained as due to the alterations of the isotropic compositions of xenon by combined effect of (a) mass-fractionation, (b) spallation, and (c) stellar temperature neutron-capture reactions. The strange xenon components are not isotopically pure substance. Instead, xenon-HL is a mixture of the 244Pu fission xenon and the xenon whose isotopic compositions is severely altered by a combined effect of the processes (a), (b) and (c) mentioned above. These results also indicate that C1 carbonaceous chondrites, which is generally as the most primitive sample of the solar system material, began to retain its xenon 5.1 billion years ago, when the plutonium to uranium ratio in the solar system was as high as almost 0.6 (atom/atom), while the C2 carbonaceous chondrite began to retain their xenon about 150 million years later and the ordinary chondrites and achondrite about 500 to 600 million years later. This means that the birth of the solar system began soon after the last supernova exploded about 5.1 billion years ago, and the generally

  13. Meteorite source regions as revealed by the near-Earth object population (United States)

    Binzel, R.; DeMeo, F.; Burt, B.; Polishook, D.; Burbine, T.; Bus, S.; Tokunaga, A.; Birlan, M.


    Spectroscopic and taxonomic information is now available for 1000 near-Earth objects, having been obtained through both targeted surveys (e.g. [1--3]) or resulting from all-sky surveys (e.g. [4]). We first evaluate these results within the framework of taxonomic types in the Bus-DeMeo system [5,6] and subsequently examine meteorite correlations based on spectral and mineralogical analysis (e.g. [7,8]). We correlate our spectral findings with the source region probabilities calculated using the methods of Bottke et al. [9]. The source regions evaluated are Mars Crossers, ν_6 resonance, 3:1 resonance, the Outer Belt, and Jupiter Family Comets. In terms of taxonomy, very clear sources are indicated: Q-, Sq-, and S-types most strongly associated with ordinary chondrite meteorites show clear source signatures through the innermost main-belt regions. V-types are relatively equally balanced between ν_6 and 3:1 resonance sources, consistent with the orbital dispersion of the Vesta family. Asteroid taxonomy classes interpreted as analogous to meteorites with primitive compositions, B- and C-types, show distinct source region preferences for the outer belt and for Jupiter family comets. Most strongly indicated is a Jupiter family comet source for the D-type near-Earth objects, implying a pronounced likelihood that these ''asteroidal'' bodies are extinct or dormant comets [10]. Similarly, near-Earth objects falling in the spectrally featureless ''X-type'' category also show a strong outer belt and Jupiter family comet source region preference; even though they lack albedo measurements, they may be interpreted as originating from among ''P-type'' primitive objects common in the outer belt. Finally the Xe-class of near-Earth objects, which most closely match the spectral properties of enstatite achondrite (aubrite) meteorites, show a source region preference consistent with a Hungaria origin (confirming [11]) by entering near-Earth space through the Mars crossing and ν_6

  14. Modelling the thermal evolution and differentiation of the parent body of acapulcoites and lodranites (United States)

    Neumann, Wladimir; Breuer, Doris; Spohn, Tilman; Henke, Stephan; Gail, Hans-Peter; Schwarz, Winfried; Trieloff, Mario; Hopp, Jens


    The acapulcoites and lodranites are rare groups of achondritic meteorites. Several characteristics such as unique oxygen isotope composition and similar cosmic ray exposure ages indicate that these meteorites originate from a common parent body (Weigel et al. 1999). By contrast to both undifferentiated and differentiated meteorites, acapulcoites and lodranites are especially interesting because they experienced melting that was, however, not complete (McCoy et al. 2006). Thus, unravelling their origin contributes directly to the understanding of the initial differentiation stage of planetary objects in the Solar system. The information preserved in the structure and composition of meteorites can be recovered by modelling the evolution of their parent bodies and comparing the results with the laboratory investigations. Model calculations for the thermal evolution of the parent body of the Acapulco and Lodran-like meteorite clan were performed using two numerical models. Both models (from [3] and [4], termed (a) and (b), respectively) solve a 1D heat conduction equation in spherical symmetry considering heating by short- and long-lived radioactive isotopes, temperature- and porosity-dependent parameters, compaction of initially porous material, and melting. The calculations with (a) were compared to the maximum metamorphic temperatures and thermo-chronological data available for acapulcoites and lodranites. Applying a genetic algorithm, an optimised set of parameters of a common parent body was determined, which fits to the data for the cooling histories of these meteorites. The optimum fit corresponds to a body with the radius of 270 km and a formation time of 1.66 Ma after the CAIs. Using the model by (b) that considers differentiation by porous flow and magmatic heat transport, the differentiation of the optimum fit body was calculated. The resulting structure consists of a metallic core, a silicate mantle, a partially differentiated layer, an undifferentiated

  15. Cometary Refractory Grains: Interstellar and Nebular Sources (United States)

    Wooden, D. H.


    with asteroids, the Stardust Fe-bearing and Fe-rich crystalline silicates suggests partial aqueous alteration in comet nuclei. However, aqueous alteration transforms Fe-rich olivine to phyllosilicates before Mg-rich olivine, and Stardust has Mg-rich and Fe-rich olivine and no phyllosilicates. Hence, we look to a nebular source for the moderately Fe-rich to nearly pure-Fe crystalline silicates. Primitive matrices have Mg-Fe silicates but no phyllosilicates, supporting the idea that Mg-Fe silicates but not phyllosilicates are products of water-rich shocks. Chondrule-formation is a late stage process in our protoplanetary disk. Stardust samples show comet 81P/Wild 2 formed at least as late to incorporate a few chondrules, requiring radial transport of chondrules out to perhaps >20 AU. By similar radial transport mechanisms, collisional fragments of aqueously altered asteroids, in particular achondrites that formed earlier than chondrules, might reach the comet-forming zones. However, Stardust samples do not have phyllosilicates and chondrules are rare. Hence, the nebular refractory grains in comet 81P/Wild 2, as well as other comets, appear to be pre-accretionary with respect to asteroid parent bodies. By discussing nebular pathways for the formation of Fe-rich crystalline silicates, and also phyllosilicates and carbonates, we put forth the view that comets contain both the interstellar ingredients for and the products of nebular transmutation.

  16. Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk (United States)

    Larsen, K. K.; Schiller, M.; Bizzarro, M.


    The decay of radioactive 26Al to 26Mg (half-life of 730,000 years) is postulated to have been the main energy source promoting asteroidal melting and differentiation in the nascent solar system. High-resolution chronological information provided by the 26Al-26Mg decay system is, therefore, intrinsically linked to the thermal evolution of early-formed planetesimals. In this paper, we explore the timing and style of asteroidal differentiation by combining high-precision Mg isotope measurements of meteorites with thermal evolution models for planetesimals. In detail, we report Mg isotope data for a suite of olivine-rich [Al/Mg ∼ 0] achondritic meteorites, as well as a few chondrites. Main Group, pyroxene and the Zinder pallasites as well as the lodranite all record deficits in the mass-independent component of μ26Mg (μ26Mg∗) relative to chondrites and Earth. This isotope signal is expected for the retarded ingrowth of radiogenic 26Mg∗ in olivine-rich residues produced through partial silicate melting during 26Al decay and consistent with their marginally heavy Mg isotope composition relative to ordinary chondrites, which may reflect the early extraction of isotopically light partial melts from the source rock. We propose that their parent planetesimals started forming within ∼250,000 years of solar system formation from a hot (>∼500 K) inner protoplanetary disk region characterized by a reduced initial (26Al/27Al)0 abundance (∼1-2 × 10-5) relative to the (26Al/27Al)0 value in CAIs of 5.25 × 10-5. This effectively reduced the total heat production and allowed for the preservation of solid residues produced through progressive silicate melting with depth within the planetesimals. These 'non-carbonaceous' planetesimals acquired their mass throughout an extended period (>3 Myr) of continuous accretion, thereby generating onion-shell structures of incompletely differentiated zones, consisting of olivine-rich residues, overlaid by metachondrites and

  17. Chondrites as samples of differentiated planetesimals (United States)

    Elkins-Tanton, Linda; Weiss, Benjamin P.; Zuber, Maria T.


    talc and the absence of serpentine indicate peak temperatures of ~300-350°C. Subsequent to the analysis of natural remanent magnetization in angrites, Carporzen et al. (2009, submitted, and this conference) have described how unidirectional magnetization in Allende is consistent with a long-lived internally generated field. The metamorphic, magnetic, and exposure age data collectively indicate a new model for the CV chondrite parent body in which interior melting is incomplete and the magma ocean remains capped by an undifferentiated chondritic shell. This conductive lid insulates the internal magma ocean, slowing its cooling and solidification by orders of magnitude while still allowing sufficient heat flux out of the core to produce a dynamo with intensities consistent with magnetization in Allende. Materials in the undifferentiated lid experienced varying metamorphic conditions. Bodies that are internally differentiated in the manner described here may well exist undetected in the asteroid belt. The shapes and masses of the two largest asteroids, 1 Ceres and 2 Pallas, can be consistent with differentiated interiors, conceivably with small iron cores with hydrated silicate or ice-silicate mantles. Other asteroids may have lost their hydrostatic shapes through later impacts, and their surfaces may never have been covered with erupted basalt; surfaces of these bodies may have remained chondritic throughout this process. Such surfaces will therefore be irregular, space-weathered primitive material, perhaps with highly altered or even differentiated material at the bottoms of the largest craters and in crater ejecta. This scenario can explain the mismatch between the enormous diversity (> 130) of parent bodies represented by achondrites and the paucity (< 10) of basaltic asteroids.

  18. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries (United States)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.


    violent impact history of the Moon. The disks also include two regolith soils and orange glass from a pyroclastic deposit. Each Meteorite Disk contains two ordinary chondrites, one carbonaceous chondrite, one iron, one stony iron, and one achondrite. These samples will help educators share the early history of the solar system with students and the public. Educators may borrow either lunar or meteorite disks and the accompanying education materials through the Johnson Space Center Curatorial Office. In trainings provided by the NASA Aerospace Education Services Program specialists, educators certified to borrow the disk learn about education resources, the proper use of the samples, and the special security for care and shipping of the disks. The Lunar and Meteorite Sample Education Disk Program will take NASA exploration to more people. Getting Space Rocks out to the public and inspiring the public about new space exploration is the focus of the NASA disk loan program.

  19. Effect of parent body evolution on equilibrium and kinetic isotope fractionation: a combined Ni and Fe isotope study of iron and stony-iron meteorites (United States)

    Chernonozhkin, Stepan M.; Goderis, Steven; Costas-Rodríguez, Marta; Claeys, Philippe; Vanhaecke, Frank


    Various iron and stony-iron meteorites have been characterized for their Ni and Fe isotopic compositions using multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) after sample digestion and chromatographic separation of the target elements in an attempt to further constrain the planetary differentiation processes that shifted these isotope ratios and to shed light on the formational history and evolution of selected achondrite parent body asteroids. Emphasis was placed on spatially resolved isotopic analysis of iron meteorites, known to be inhomogeneous at the μm to mm scale, and on the isotopic characterization of adjacent metal and silicate phases in main group pallasites (PMG), mesosiderites, and the IIE and IAB complex silicate-bearing iron meteorites. In a 3-isotope plot of 60/58Ni versus62/58Ni, the slope of the best-fitting straight line through the laterally resolved Ni isotope ratio data for iron meteorites reveals kinetically controlled isotope fractionation (βexper = 1.981 ± 0.039, 1 SD), predominantly resulting from sub-solidus diffusion (with the fractionation exponent β connecting the isotope fractionation factors, as α62/58 =α60/58β). The observed relation between δ56/54Fe and Ir concentration in the metal fractions of PMGs and in IIIAB iron meteorites indicates a dependence of the bulk Fe isotopic composition on the fractional crystallization of an asteroidal metal core. No such fractional crystallization trends were found for the corresponding Ni isotope ratios or for other iron meteorite groups, such as the IIABs. In the case of the IIE and IAB silicate-bearing iron meteorites, the Fe and Ni isotopic signatures potentially reflect the influence of impact processes, as the degree of diffusion-controlled Ni isotope fractionation is closer to that of Fe compared to what is observed for magmatic iron meteorite types. Between the metal and olivine counterparts of pallasites, the Fe and Ni isotopic compositions show clearly

  20. A Single Lodranite/Acapulcoite Parent Body: Noble Gases in Lodranite QUE 93148 and Acapulcoite ALH 81261 (United States)

    Weigel, A.; Eugster, O.; Marti, K.; Michel, R.


    We continue our comprehensive studies of the cosmic ray exposure history of lodranites [1] to include new noble gas measurements in the QUE 93148 lodranite and the ALH 81261 acapulcoite. In addition, we model the production rates of cosmogenic nuclides in lodranites and acapulcoites using the HERMES high energy transport code [2], in order to test whether conventional production rates can be extrapolated to this group of small meteoroids which reveal very large values of the shielding parameter 22Ne/21Ne (Table 1). The model calculations are based on the same excitation functions of p- and n-induced reactions as used in recent calculations [3,4]. We extended our studies to acapulcoites, since petrologic, mineralogic, and O-isotopic investigations [5] as well as chemical investigations [6] suggest that lodranites and acapulcoites are residues of varying degree of partial melting, consistent with an origin on a common parent body. Whether a collisional event on the common parent body ejected both types of meteorites can be investigated by an analysis of the transfer times to Earth, specifically their cosmic-ray exposure ages. Because the contents of trapped He, Ne, and Ar in lodranites and acapulcoites are very low we can derive reliable cosmogenic noble gas contents. Using the composition-adjusted production rates for cosmogenic noble gases in achondrites [7], and adopting the shielding-parameter dependence for H-chondrites the exposure ages of [1] are obtained. For lodranites these exposure ages overlap those calculated [8] from 26Al and 10Be measurements. For the acapulcoites our exposure ages agree with those [5] calculated with the Graf-model [9], as well as with the shielding-independent exposure age for Acapulco that is based on the 36Cl-36Ar method[10]. The large spread in the exposure ages can be attributed to the highly variable target element abundances, as multiple measurements on several aliquots show unusually large variations. The fact that the average

  1. Can Halogen Enrichment in Reduced Enstatite Chondrites Provide Clues to Volatile Accretion in the Early Earth? (United States)

    Clay, P. L.; Burgess, R.; Busemann, H.; Ruzié, L.; Joachim, B.; Ballentine, C.


    chondrites measured and have high molar I/Cl (~10-3) and Br/Cl (~10-3) ratios. For comparison, the ordinary chondrites have highly variable halogen concentrations and very low molar I/Cl (~10-6) and Br/Cl (~10-4) ratios. Halogen concentrations in the ECs are up to ~ 8 times higher for Cl, up to ~ 40 times higher for Br and up to ~ 50 times higher for I, when compared to estimates of halogen concentrations in the primitive mantle [2]. Potential halogen carrier phases in the ECs include Cl-rich feldspathic glass in chondrules, enstatite and/or the halogen-bearing sulfide djerfisherite. Accretion of halogen-rich, reduced material such as that observed here with the ECs could support models for heterogeneous accretion. Ongoing analyses of the primitive enstatite achondrites will shed additional light on these issues. [1] Wänke, H. Dreibus, G., Jagoutz E., Archaean Geochemistry, A. Kröner, G. N. Hanson, A. M. Goodwin, Eds. (Springer, Berlin, 1984), pp. 1-24. [2] Newsom, H.E., 1995. Global Earth Physics, A Handbook of Physical Constants, AGU Reference Shelf, vol. 1. American Geophysical Union, Washington.

  2. Noble Gases in the LEW 88663 L7 Chondrite (United States)

    Miura, Y. N.; Sugiura, N.; Nagao, K.


    LEW88663 and some meteorites (e.g. Shaw) are the most highly metamorphosed meteorites among L group chondrites. Although the abundances of lithophile elements and oxygen isotopic compositions of the L7 chondrite LEW88663 (total recovered mass: 14.5g) are close to those of the range for L chondrites [1,2], metallic iron is absent and concentrations of siderophile elements are about half of typical values for L chondrites [3,4]. Petrographical and geochemical observation suggested that this meteorite has experienced partial melting [5]. As a part of our study on differentiated meteorites, we also investigated noble gases in this meteorite. We present here noble gas compositions of LEW88663 and discuss history of this meteorite. In addition, we will consider whether there is any evidence for bridging between chondrites and achondrites. Noble gases were extracted from a whole rock sample weighing 66.31 mg by total fusion, and all stable noble gas isotopes as well as cosmogenic radioactive 81Kr were analyzed using a mass spectrometer at ISEI, Okayama University. The results are summarized in the table. The concentrations of cosmogenic ^3He, ^21Ne, and ^38Ar are 7.3, 1.6 and 3.1x10^-8 cm^3STP/g, respectively. The cosmic-ray exposure ages based on them are calculated to be 4.7, 6.9 and 8.8 m.y., respectively, using the production rates proposed by [6, 7] and mean chemical compositions of L chondrites. The shorter cosmic-ray exposure ages T(sub)3 and T(sub)21 than T(sub)38 would be due to diffusive loss of lighter noble gases from the meteorite. The concentrations of trapped Kr and Xe in LEW88663 are lower than those for L6 chondrites [8], supporting thermal metamorphism for the meteorite higher than that for L6 chondrites. The Kr and Xe are isotopically close to those of the terrestrial atmospheric Kr and Xe, and elemental abundance ratios for Ar, Kr and Xe suggest adsorbed noble gas patterns of the terrestrial atmosphere. The terrestrial atmospheric Ar, Kr and Xe (most

  3. Chromium valences in ureilite olivine and implications for ureilite petrogenesis (United States)

    Goodrich, C. A.; Sutton, S. R.; Wirick, S.; Jercinovic, M. J.


    Ureilites are a group of ultramafic achondrites commonly thought to be residues of partial melting on a carbon-rich asteroid. They show a large variation in FeO content (olivine Fo values ranging from ∼74 to 95) that cannot be due to igneous fractionation and suggests instead variation in oxidation state. The presence of chromite in only a few of the most ferroan (Fo 75-76) samples appears to support such a model. MicroXANES analyses were used in this study to determine the valence states of Cr (previously unknown) in olivine cores of 11 main group ureilites. The goal of this work was to use a method that is independent of Fo to determine the oxidation conditions under which ureilites formed, in order to evaluate whether the ureilite FeO-variation is correlated with oxidation state, and whether it is nebular or planetary in origin. Two of the analyzed samples, LEW 88774 (Fo 74.2) and NWA 766 (Fo 76.7) contain primary chromite; two others, LAP 03587 (Fo 74.4) and CMS 04048 (Fo 76.2) contain sub-micrometer-sized exsolutions of chromite + Ca-rich pyroxene in olivine; and one, EET 96328 (Fo 85.2) contains an unusual chromite grain of uncertain origin. No chromite has been observed in the remaining six samples (Fo 77.4-92.3). Chromium in olivine in all eleven samples was found to be dominated by the divalent species, with valences ranging from 2.10 ± 0.02 (1σ) to 2.46 ± 0.04. The non-chromite-bearing ureilites have the most reduced Cr, with a weighted mean valence of 2.12 ± 0.01, i.e., Cr2+/Cr3+ = 7.33. All low-Fo chromite-bearing ureilites have more oxidized Cr, with valences ranging from 2.22 ± 0.03 to 2.46 ± 0.04. EET 96328, whose chromite grain we interpret as a late-crystallizing phase, yielded a reduced Cr valence of 2.15 ± 0.07, similar to the non-chromite-bearing samples. Based on the measured Cr valences, magmatic (1200-1300 °C) oxygen fugacities (fO2) of the non-chromite-bearing samples were estimated to be in the range IW-1.9 to IW-2.8 (assuming