Sample records for achiral

  1. Phonon and thermal properties of achiral single wall carbon ...

    Indian Academy of Sciences (India)

    A detailed theoretical study of the phonon and thermal properties of achiral single wall carbon nanotubes has been carried out using force constant model considering up to third nearest-neighbor interactions. We have calculated the phonon dispersions, density of states, radial breathing modes (RBM) and the specific heats ...

  2. The Asymmetry is Derived from Mechanical Interlocking of Achiral Axle and Achiral Ring Components –Syntheses and Properties of Optically Pure [2]Rotaxanes–

    Directory of Open Access Journals (Sweden)

    Keiji Hirose


    Full Text Available Rotaxanes consisting of achiral axle and achiral ring components can possess supramolecular chirality due to their unique geometrical architectures. To synthesize such chiral rotaxanes, we adapted a prerotaxane method based on aminolysis of a metacyclophane type prerotaxane that had planar chirality, which is composed of an achiral stopper unit and a crown ether type ring component. The prerotaxanes were well resolved using chiral HPLC into a pair of enantiomerically pure prerotaxanes, which were transferred into corresponding chiral rotaxanes, respectively. Obtained chiral rotaxanes were revealed to have considerable enantioselectivity.

  3. Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals

    Directory of Open Access Journals (Sweden)

    Ayman L. Hemasa


    Full Text Available Carbon nanotubes (CNTs possess unique mechanical, physical, electrical and absorbability properties coupled with their nanometer dimensional scale that renders them extremely valuable for applications in many fields including nanotechnology and chromatographic separation. The aim of this review is to provide an updated overview about the applications of CNTs in chiral and achiral separations of pharmaceuticals, biologics and chemicals. Chiral single-walled carbon nanotubes (SWCNTs and multi-walled carbon nanotubes (MWCNTs have been directly applied for the enantioseparation of pharmaceuticals and biologicals by using them as stationary or pseudostationary phases in chromatographic separation techniques such as high-performance liquid chromatography (HPLC, capillary electrophoresis (CE and gas chromatography (GC. Achiral MWCNTs have been used for achiral separations as efficient sorbent objects in solid-phase extraction techniques of biochemicals and drugs. Achiral SWCNTs have been applied in achiral separation of biological samples. Achiral SWCNTs and MWCNTs have been also successfully used to separate achiral mixtures of pharmaceuticals and chemicals. Collectively, functionalized CNTs have been indirectly applied in separation science by enhancing the enantioseparation of different chiral selectors whereas non-functionalized CNTs have shown efficient capabilities for chiral separations by using techniques such as encapsulation or immobilization in polymer monolithic columns.

  4. Nanotrumpets and circularly polarized luminescent nanotwists hierarchically self-assembled from an achiral C3-symmetric ester. (United States)

    Sang, Yutao; Duan, Pengfei; Liu, Minghua


    An achiral C3-symmetric molecule was found to self-assemble into various hierarchical nanostructures such as nanotwists, nanotrumpets and nanobelts, in which the twisted fibers showed supramolecular chirality as well as circularly polarized luminescence although the compound is achiral.

  5. A new achiral reagent for the incorporation of multiple amino groups into oligonucleotides

    DEFF Research Database (Denmark)

    Behrens, Carsten; Petersen, Kenneth H.; Egholm, Michael


    The synthesis of a new functionalized achiral linker reagent (10) for the incorporation of multiple primary amino groups into oligonucleotides is described. The linker reagent is compatible with conventional DNA-synthesis following the phosphoramidite methodology, and the linker can be incorporated...

  6. Chiral supramolecular organization from a sheet-like achiral gel: a study of chiral photoinduction. (United States)

    Royes, Jorge; Polo, Víctor; Uriel, Santiago; Oriol, Luis; Piñol, Milagros; Tejedor, Rosa M


    Chiral photoinduction in a photoresponsive gel based on an achiral 2D architecture with high geometric anisotropy and low roughness has been investigated. Circularly polarized light (CPL) was used as a chiral source and an azobenzene chromophore was employed as a chiral trigger. The chiral photoinduction was studied by evaluating the preferential excitation of enantiomeric conformers of the azobenzene units. Crystallographic data and density functional theory (DFT) calculations show how chirality is transferred to the achiral azomaterials as a result of the combination of chiral photochemistry and supramolecular interactions. This procedure could be applied to predict and estimate chirality transfer from a chiral physical source to a supramolecular organization using different light-responsive units.

  7. A New Achiral Linker Reagent for the Incorporation of Multiple Amino Groups Into Oligonucleotides

    DEFF Research Database (Denmark)


    The present invention relates to a new functionalized achiral linker reagent for incorporating multiple primary amino groups or reporter groups into oligonucleotides following the phosphoramidite methodology. It is possible to substitute any ribodeoxynucleotide, deoxynucleotide, or nucleotide......-oxyl-2,2,5,5-tetramethylpyrrolidine), TEMPO (N-oxyl-2,2,6,6-tetramethylpiperidine), dinitrophenyl, texas red, tetramethyl rhodamine, 7-nitrobenzo-2-oxa-1-diazole (NBD), or pyrene. The present invention also relates to a solid phase support, e.g. a Controlled Pore Glass (CPG), immobilized linker reagent...

  8. Proton triggered circularly polarized luminescence in orthogonal- and co-assemblies of chiral gelators with achiral perylene bisimide. (United States)

    Han, Dongxue; Han, Jianlei; Huo, Shengwei; Qu, Zuoming; Jiao, Tifeng; Liu, Minghua; Duan, Pengfei


    The orthogonal- or co-assembly of achiral perylene bisimide (PBI) with chiral gelators can be regulated by solvents. While the coassembly leads to the formation of chiroptical nanofibers through chirality transfer, the orthogonal assemblies could not. Moreover, protonation on the coassembled nanofibers could light up the circularly polarized luminescence (CPL).

  9. Role of Achiral Nucleobases in Multicomponent Chiral Self-Assembly: Purine-Triggered Helix and Chirality Transfer. (United States)

    Deng, Ming; Zhang, Li; Jiang, Yuqian; Liu, Minghua


    Chiral self-assembly is a basic process in biological systems, where many chiral biomolecules such as amino acids and sugars play important roles. Achiral nucleobases usually covalently bond to saccharides and play a significant role in the formation of the double helix structure. However, it remains unclear how the achiral nucleobases can function in chiral self-assembly without the sugar modification. Herein, we have clarified that purine nucleobases could trigger N-(9-fluorenylmethox-ycarbonyl) (Fmoc)-protected glutamic acid to self-assemble into helical nanostructures. Moreover, the helical nanostructure could serve as a matrix and transfer the chirality to an achiral fluorescence probe, thioflavin T (ThT). Upon chirality transfer, the ThT showed not only supramolecular chirality but also circular polarized fluorescence (CPL). Without the nucleobase, the self-assembly processes cannot happen, thus providing an example where achiral molecules played an essential role in the expression and transfer of the chirality. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Separation selectivity patterns of fully charged achiral compounds in capillary electrophoresis with a neutral cyclodextrin. (United States)

    Soonthorntantikul, Wasura; Srisa-art, Monpichar; Leepipatpiboon, Natchanun; Nhujak, Thumnoon


    Based on the separation selectivity equation, related to the dimensionless parameters for fully charged achiral analytes using a neutral CD, the separation selectivity can be classified into seven patterns. With respect to CZE without CD, the presence of CD in the buffer may improve, or reduce, the separation selectivity with this effect being accompanied by the same or reversed electrophoretic mobility order for charged analytes. This can depend on the separation selectivity of the two analytes in free solution, the binding selectivity, the separation selectivity of analyte-CD complexes and the ratio of electrophoretic mobility of the analytes in free, and complexed forms. Using positional isomers of benzoic acids and phenoxy acids as test analytes and α-CD as a selector, the observed separation selectivity shapes were found to be in excellent agreement with the predicted separation selectivities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Design, synthesis, and biological evaluation of achiral analogs of duocarmycin SA. (United States)

    Daniell, Kristen; Stewart, Michelle; Madsen, Erik; Le, Minh; Handl, Heather; Brooks, Natalie; Kiakos, Konstantinos; Hartley, John A; Lee, Moses


    The design, synthesis, as well as biochemical and biological evaluation of two novel achiral analogs of duocarmycin SA (DUMSA), 1 and 2, are described. Like CC-1065 and adozelesin, compounds 1 and 2 covalently reacted with adenine-N3 in AT-rich sequences and led to the formation of DNA strand breaks upon heating. The cytotoxicity of compounds 1 and 2 against human cancer cells (K562, LS174T) was determined using a MTT assay giving IC(50) values in the low nanomolar. Further cytotoxicity screening of compound 2 conducted by the NCI against a panel of 60 different human cancer cell lines indicated that it was particularly active against several solid tumor cells lines derived from the lung, colon, CNS, skin, and breast.

  12. Tight binding electronic band structure calculation of achiral boron nitride single wall nanotubes

    International Nuclear Information System (INIS)

    Saxena, Prapti; Sanyal, Sankar P


    In this paper we report the Tight-Binding method, for the electronic structure calculations of achiral single wall Boron Nitride nanotubes. We have used the contribution of π electron only to define the electronic band structure for the solid. The Zone-folding method is used for the Brillouin Zone definition. Calculation of tight binding model parameters is done by fitting them to available experimental results of two-dimensional hexagonal monolayers of Boron Nitride. It has been found that all the boron nitride nanotubes (both zigzag and armchair) are constant gap semiconductors with a band gap of 5.27eV. All zigzag BNNTs are found to be direct gap semiconductors while all armchair nanotubes are indirect gap semiconductors. (author)

  13. Generation of Supramolecular Chirality around Twofold Rotational or Helical Axes in Crystalline Assemblies of Achiral Components

    Directory of Open Access Journals (Sweden)

    Mikiji Miyata


    Full Text Available A multi-point approximation method clarifies supramolecular chirality of twofold rotational or helical assemblies as well as bundles of the one-dimensional (1D assemblies. While one-point approximation of materials claims no chirality generation of such assemblies, multi-point approximations do claim possible generation in the 1D assemblies of bars and plates. Such chirality derives from deformations toward three-axial directions around the helical axes. The chiral columns are bundled in chiral ways through symmetry operations. The preferable right- or left-handed columns are bundled together to yield chiral crystals with right- or left-handedness, respectively, indicating that twofold helix symmetry operations cause chiral crystals composed of achiral components via a three-stepwise and three-directional process.

  14. Sequential rhodium/palladium catalysis: enantioselective formation of dihydroquinolinones in the presence of achiral and chiral ligands. (United States)

    Zhang, Lei; Qureshi, Zafar; Sonaglia, Lorenzo; Lautens, Mark


    Compatible combinations of achiral and chiral ligands can be used in rhodium/palladium catalysis to achieve highly enantioselective domino reactions. The difference in rates of catalysis and minimal effects of ligand interference confer control in the domino sequence. The "all-in-one" 1,4-conjugate arylation and C-N cross-coupling through sequential Rh/Pd catalysis provides access to enantioenriched dihydroquinolinone building blocks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Simultaneous achiral-chiral analysis of pharmaceutical compounds using two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography. (United States)

    Venkatramani, C J; Al-Sayah, Mohammad; Li, Guannan; Goel, Meenakshi; Girotti, James; Zang, Lisa; Wigman, Larry; Yehl, Peter; Chetwyn, Nik


    A new interface was designed to enable the coupling of reversed phase liquid chromatography (RPLC) and supercritical fluid chromatography (SFC). This online two-dimensional chromatographic system utilizing RPLC in the first dimension and SFC in the second was developed to achieve simultaneous achiral and chiral analysis of pharmaceutical compounds. The interface consists of an eight-port, dual-position switching valve with small volume C-18 trapping columns. The peaks of interest eluting from the first RPLC dimension column were effectively focused as sharp concentration pulses on small volume C-18 trapping column/s and then injected onto the second dimension SFC column. The first dimension RPLC separation provides the achiral purity result, and the second dimension SFC separation provides the chiral purity result (enantiomeric excess). The results are quantitative enabling simultaneous achiral, chiral analysis of compounds. The interface design and proof of concept demonstration are presented. Additionally, comparative studies to conventional SFC and case studies of the applications of 2D LC-SFC in pharmaceutical analysis is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ferroelectric Nematic and Ferrielectric Smectic Mesophases in an Achiral Bent-Core Azo Compound. (United States)

    Kumar, Jitendra; Prasad, Veena


    Here, we report the observation of ferroelectric nematic and ferrielectric smectic mesophases in an achiral bent-core azo compound consisting of nonsymmetrical molecules with a lateral fluoro substitution on one of the wings. These mesophases are enantiotropic in nature with fairly low transition temperatures and wide mesophase ranges. The liquid crystalline properties of this compound are investigated using polarizing optical microscope, differential scanning calorimeter, X-ray diffraction, and electro-optical studies. As revealed by X-ray diffraction measurements, the nematic mesophase is composed of skewed cybotactic clusters and, in the smectic mesophase, the molecules are tilted with respect to the layer normal. The polar order in these mesophases was confirmed by the electro-optical switching and dielectric spectroscopy measurements. The dielectric study in the nematic mesophase shows a single relaxation process at low frequency ( f interest is the fact that the smectic phase exhibits a field induced ferrielectric state, which can be exploited for designing of the potential optical devices due to multistate switching.

  17. Use and practice of achiral and chiral supercritical fluid chromatography in pharmaceutical analysis and purification. (United States)

    Lemasson, Elise; Bertin, Sophie; West, Caroline


    The interest of pharmaceutical companies for complementary high-performance chromatographic tools to assess a product's purity or enhance this purity is on the rise. The high-throughput capability and economic benefits of supercritical fluid chromatography, but also the "green" aspect of CO2 as the principal solvent, render supercritical fluid chromatography very attractive for a wide range of pharmaceutical applications. The recent reintroduction of new robust instruments dedicated to supercritical fluid chromatography and the progress in stationary phase technology have also greatly benefited supercritical fluid chromatography. Additionally, it was shown several times that supercritical fluid chromatography could be orthogonal to reversed-phase high-performance liquid chromatography and could efficiently compete with it. Supercritical fluid chromatography is an adequate tool for small molecules of pharmaceutical interest: synthetic intermediates, active pharmaceutical ingredients, impurities, or degradation products. In this review, we first discuss about general chromatographic conditions for supercritical fluid chromatography analysis to better suit compounds of pharmaceutical interest. We also discuss about the use of achiral and chiral supercritical fluid chromatography for analytical purposes and the recent applications in these areas. The use of preparative supercritical fluid chromatography by pharmaceutical companies is also covered. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Conformation of dehydropentapeptides containing four achiral amino acid residues – controlling the role of L-valine

    Directory of Open Access Journals (Sweden)

    Michał Jewgiński


    Full Text Available Structural studies of pentapeptides containing an achiral block, built from two dehydroamino acid residues (ΔZPhe and ΔAla and two glycines, as well as one chiral L-Val residue were performed using NMR spectroscopy. The key role of the L-Val residue in the generation of the secondary structure of peptides is discussed. The obtained results suggest that the strongest influence on the conformation of peptides arises from a valine residue inserted at the C-terminal position. The most ordered conformation was found for peptide Boc-Gly-ΔAla-Gly-ΔZPhe-Val-OMe (3, which adopts a right-handed helical conformation.

  19. Achiral Mannich-Base Curcumin Analogs Induce Unfolded Protein Response and Mitochondrial Membrane Depolarization in PANC-1 Cells

    Directory of Open Access Journals (Sweden)

    Gábor J. Szebeni


    Full Text Available Achiral Mannich-type curcumin analogs have been synthetized and assayed for their cytotoxic activity. The anti-proliferative and cytotoxic activity of curcuminoids has been tested on human non-small-cell lung carcinoma (A549, hepatocellular carcinoma (HepG2 and pancreatic cancer cell line (PANC-1. Based on the highest anti-proliferative activity nine drug candidates were further tested and proved to cause phosphatidylserine exposure as an early sign of apoptosis. Curcumin analogs with the highest apoptotic activity were selected for mechanistic studies in the most sensitive PANC-1 cells. Cytotoxic activity was accompanied by cytostatic effect since curcumin and analogs treatment led to G0/G1 cell cycle arrest. Moreover, cytotoxic effect could be also detected via the accumulation of curcuminoids in the endoplasmic reticulum (ER and the up-regulation of ER stress-related unfolded protein response (UPR genes: HSPA5, ATF4, XBP1, and DDIT3. The activated UPR induced mitochondrial membrane depolarization, caspase-3 activation and subsequent DNA breakdown in PANC-1 cells. Achiral curcumin analogs, C509, C521 and C524 possessed superior, 40-times more potent cytotoxic activity compared to natural dihydroxy-dimetoxycurcumin in PANC-1 cells.

  20. Achiral Mannich-Base Curcumin Analogs Induce Unfolded Protein Response and Mitochondrial Membrane Depolarization in PANC-1 Cells. (United States)

    Szebeni, Gábor J; Balázs, Árpád; Madarász, Ildikó; Pócz, Gábor; Ayaydin, Ferhan; Kanizsai, Iván; Fajka-Boja, Roberta; Alföldi, Róbert; Hackler, László; Puskás, László G


    Achiral Mannich-type curcumin analogs have been synthetized and assayed for their cytotoxic activity. The anti-proliferative and cytotoxic activity of curcuminoids has been tested on human non-small-cell lung carcinoma (A549), hepatocellular carcinoma (HepG2) and pancreatic cancer cell line (PANC-1). Based on the highest anti-proliferative activity nine drug candidates were further tested and proved to cause phosphatidylserine exposure as an early sign of apoptosis. Curcumin analogs with the highest apoptotic activity were selected for mechanistic studies in the most sensitive PANC-1 cells. Cytotoxic activity was accompanied by cytostatic effect since curcumin and analogs treatment led to G₀/G₁ cell cycle arrest. Moreover, cytotoxic effect could be also detected via the accumulation of curcuminoids in the endoplasmic reticulum (ER) and the up-regulation of ER stress-related unfolded protein response (UPR) genes: HSPA5 , ATF4, XBP1 , and DDIT3 . The activated UPR induced mitochondrial membrane depolarization, caspase-3 activation and subsequent DNA breakdown in PANC-1 cells. Achiral curcumin analogs, C509, C521 and C524 possessed superior, 40-times more potent cytotoxic activity compared to natural dihydroxy-dimetoxycurcumin in PANC-1 cells.

  1. The role of achiral pyrazolidinone templates in enantioselective Diels-Alder reactions: scope, limitations, and conformational insights. (United States)

    Sibi, Mukund P; Stanley, Levi M; Nie, Xiaoping; Venkatraman, Lakshmanan; Liu, Mei; Jasperse, Craig P


    We have evaluated the role of achiral pyrazolidinone templates in conjunction with chiral Lewis acids in room temperature, enantioselective Diels-Alder cycloadditions. The role of the fluxional N(1) substituent was examined, with the bulky 1-naphthylmethyl group providing enantioselectivities up to 99% ee, while templates with smaller fluxional groups gave lower selectivities. High selectivities were also observed in reactions of 7d with chiral Lewis acids derived from relatively small chiral ligands, suggesting the pyrazolidinone templates are capable of relaying stereochemical information from the ligand to the reaction center. Lewis acids capable of adapting square planar geometries, such as Cu(OTf)2, Cu(ClO4)2, and Pd(ClO4)2, were found to be particularly effective at providing high selectivities. Additionally, substitution at the C-5 position of the pyrazolidinone templates has been shown to be critical for optimal selectivity. Reactions of the optimal pyrazolidinone appended with a number of common dienophiles and various dienes demonstrate the utility of this achiral template. Furthermore, catalytic loadings could be lowered to 2.5 mol % with essentially no loss in selectivity. Pi-Pi interactions were evaluated as a means to explain the unusually high selectivity observed at room temperature. Finally, non-C2-symmetric ligands were employed as a test to determine if chiral relay was operative.

  2. Fabrication of Supramolecular Chirality from Achiral Molecules at the Liquid/Liquid Interface Studied by Second Harmonic Generation. (United States)

    Lin, Lu; Zhang, Zhen; Guo, Yuan; Liu, Minghua


    We present the investigation into the supramolecular chirality of 5-octadecyloxy-2-(2-pyridylazo)phenol (PARC18) at water/1,2-dichloroethane interface by second harmonic generation (SHG). We observe that PARC18 molecules form supramolecular chirality through self-assembly at the liquid/liquid interface although they are achiral molecules. The bulk concentration of PARC18 in the organic phase has profound effects on the supramolecular chirality. By increasing bulk concentration, the enantiomeric excess at the interface first grows and then decreases until it eventually vanishes. Further analysis reveals that the enantiomeric excess is determined by the twist angle of PARC18 molecules at the interface rather than their orientational angle. At lower and higher bulk concentrations, the average twist angle of PARC18 molecules approaches zero, and the assemblies are achiral; whereas at medium bulk concentrations, the average twist angle is nonzero, so that the assemblies show supramolecular chirality. We also estimate the coverage of PARC18 molecules at the interface versus the bulk concentration and fit it to Langmuir adsorption model. The result indicates that PARC18 assemblies show strongest supramolecular chirality in a half-full monolayer. These findings highlight the opportunities for precise control of supramolecular chirality at liquid/liquid interfaces by manipulating the bulk concentration.

  3. From atactic to isotactic CO/p-methylstyrene copolymer by proper modification of Pd(II) catalysts bearing achiral alpha-diimines. (United States)

    Binotti, Barbara; Carfagna, Carla; Zuccaccia, Cristiano; Macchioni, Alceo


    Cationic Pd(II) complexes modified with achiral C(2v)-symmetric alpha-diimine ligands allow preparation of atactic or isotactic stereoblock CO/p-methylstyrene copolymers; both catalyst activity and polyketone microstructure depend on the choice of alpha-diimine substituents and counterion.

  4. Synthesis of .alpha.-Amino Acids via Asymmetric Phase Transfer-Catalyzed Alkylation of Achiral Niclkel(II) Complexes of Glycine-Derived Schiff bases

    Czech Academy of Sciences Publication Activity Database

    Belokon, Y. N.; Bespalova, N. B.; Churkina, T. D.; Císařová, I.; Ezernitskaya, M. G.; Harutyunyan, S. R.; Hrdina, R.; Kagan, H. B.; Kočovský, P.; Kochetkov, K. A.; Larionov, O. G.; Lysenko, K. A.; North, M.; Polášek, Miroslav; Peregudov, A. S.; Prisyazhnyuk, V. V.; Vyskočil, Š.


    Roč. 125, - (2003), s. 12860-12870 ISSN 0002-7863 R&D Projects: GA ČR GP203/01/D051 Institutional research plan: CEZ:AV0Z4040901 Keywords : .alpha.amino acids * achiral nickel(II) * glycine-derived schiff bases Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.516, year: 2003

  5. Synthesis of α-Amino Acids via Asymmetric Phase Transfer-Catalyzed Alkylation of Achiral Nickel(II) Complexes of Glycine-Derived Schiff Bases

    NARCIS (Netherlands)

    Belokon, Yuri N.; Bespalova, Natalia B.; Churkina, Tatiana D.; Císařová, Ivana; Ezernitskaya, Marina G.; Harutyunyan, Syuzanna R.; Hrdina, Radim; Kagan, Henri B.; Kočovský, Pavel; Kochetkov, Konstantin A.; Larionov, Oleg V.; Lyssenko, Konstantin A.; North, Michael; Polášek, Miroslav; Peregudov, Alexander S.; Prisyazhnyuk, Vladimir V.; Vyskočil, Štěpán


    Achiral, diamagnetic Ni(II) complexes 1 and 3 have been synthesized from Ni(II) salts and the Schiff bases, generated from glycine and PBP and PBA, respectively, in MeONa/MeOH solutions. The requisite carbonyl-derivatizing agents pyridine-2-carboxylic acid(2-benzoyl-phenyl)-amide (PBP) and

  6. Chiral domain formation from the mixture of achiral rod-like liquid crystal and tri boomerang-shaped molecule (United States)

    Lee, Ji-Hoon; Yoon, Tae-Hoon


    Spontaneous formation of chiral domains such as a helical filament and a bent-broom texture was observed from the mixture of a rod-like liquid crystal octylcyano-biphenyl (8CB) and a tri boomerang-shaped 2,4,6-triphenoxy-1,3,5-triazine (triphenoxy) molecule. Although the constituent molecules were achiral, their mixture showed the chiral domains with the equal fraction of the opposite handedness. No tilt of 8CB molecules in the smectic layer was observed, implying the chirality is not due to the polar packing and tilt of the molecules. In addition, the splay and bend elastic constant of 8CB was decreased after doping triphenoxy. A structural conformation of triphenoxy and an orientational coupling between 8CB and triphenoxy are considered to be related to the chiral domain formation.

  7. Colloidal chirality in wormlike micellar systems exclusively originated from achiral species: Role of secondary assembly and stimulus responsivity. (United States)

    Zhao, Wenrong; Hao, Jingcheng


    Colloidal chirality in wormlike micellar systems exclusively originated from achiral species and discussion of the role of secondary assembly of fiber-like aggregates in chirality generation were presented in this paper. Herein, formation of colloidal wormlike micelles for the first time incorporated chirality and redox-responsiveness into one design via noncovalent interaction. A dual-stimuli-responsive gel of wormlike micelles which were designed by employing a dual-responsive cationic surfactant (FTMA) and a strong gelator (AzoNa4) and regulated by redox reaction and host-guest inclusion is presented. Both the redox and host-guest interaction play an important role in regulating the viscosity and supramolecular chirality of gels of the wormlike micelles. The supramolecular chirality and viscosity of the wormlike micelle gels were switched reversibly by exerting chemical redox onto the ferrocenyl groups. For the amphiphile FTMA containing redox-active ferrocenyl group, reversible control of the oxidation state of ferrocenyl groups leads to the charge and hydrophobicity changes of FTMA, therefore change its self-assembly behavior. Of equal interest, β-CD successfully detached the wormlike micelles via the recognition-inclusion behavior with FTMA and invalidate the H-bond and hydrophobic interaction between FTMA and AzoH4. This designed system provides a new strategy to tune the supramolecular chirality of colloidal aggregates and explore the specific packing mode detail within the micelles or the secondary assembly of the inter-micelles. We anticipate this dual-responsive H-bond-directed chiral gel switch could propose a new strategy when researchers designing new, multi-responsive functional gel materials. Copyright © 2016 Elsevier Inc. All rights reserved.


    International Nuclear Information System (INIS)

    De Marcellus, Pierre; Nuevo, Michel; Danger, Gregoire; Deboffle, Dominique; Le Sergeant d'Hendecourt, Louis; Meinert, Cornelia; Filippi, Jean-Jacques; Meierhenrich, Uwe J.; Nahon, Laurent


    The delivery of organic matter to the primitive Earth via comets and meteorites has long been hypothesized to be an important source for prebiotic compounds such as amino acids or their chemical precursors that contributed to the development of prebiotic chemistry leading, on Earth, to the emergence of life. Photochemistry of inter/circumstellar ices around protostellar objects is a potential process leading to complex organic species, although difficult to establish from limited infrared observations only. Here we report the first abiotic cosmic ice simulation experiments that produce species with enantiomeric excesses (e.e.'s). Circularly polarized ultraviolet light (UV-CPL) from a synchrotron source induces asymmetric photochemistry on initially achiral inter/circumstellar ice analogs. Enantioselective multidimensional gas chromatography measurements show significant e.e.'s of up to 1.34% for ( 13 C)-alanine, for which the signs and absolute values are related to the helicity and number of CPL photons per deposited molecule. This result, directly comparable with some L excesses measured in meteorites, supports a scenario in which exogenous delivery of organics displaying a slight L excess, produced in an extraterrestrial environment by an asymmetric astrophysical process, is at the origin of biomolecular asymmetry on Earth. As a consequence, a fraction of the meteoritic organic material consisting of non-racemic compounds may well have been formed outside the solar system. Finally, following this hypothesis, we support the idea that the protosolar nebula has indeed been formed in a region of massive star formation, regions where UV-CPL of the same helicity is actually observed over large spatial areas.

  9. Ferroelectric response in an achiral non-symmetric bent liquid crystal:C{sub 12}C{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyam, S.V.; Chalapathi, P.V. [Department of Physics, University College of Engineering, Jawaharlal Nehru Technological University Kakinada, Kakinada 533003 (India); Mahabaleshwara, S.; Srinivasulu, M. [Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576104 (India); George, A.K. [Department of Physics, College of Sciences, Sultan Qaboos University, PO Box-36, PC-123, Muscat (Oman); Potukuchi, D.M., E-mail: [Department of Physics, University College of Engineering, Jawaharlal Nehru Technological University Kakinada, Kakinada 533003 (India)


    An achiral Non-Symmetric Bent Liquid Crystal (BLC) with a Oxadiazole based hetero cyclic central moiety, abbreviated as C{sub 12}C{sub 10} viz., dodecyl[4-{5-(4′-decyloxy)biphenyl-4-yl}-1,2,4-oxadiazol-3-yl]benzoate, exhibiting FerroElectric (FE) response is reported. Product is confirmed by {sup 1}H NMR, {sup 13}C NMR and elemental analysis. Characterization of BLC phases is carried out by Polarized Optical Microscopy (POM), Differential Scanning Calorimetry (DSC), Spontaneous Polarization (P{sub S}) and Low Frequency (10 Hz–10 MHz) Dielectric Relaxation studies. C{sub 12}C{sub 10} exhibits enantiotropic LC SmA, FE B{sub 2}, SmG, SmE phase variance. I–SmA, B{sub 2}–SmG and SmG–SmE transitions are of first order nature. FE B{sub 2} phases exhibits a moderate P{sub S} of ∼80 nC cm{sup −2}. B{sub 2} phase exhibits Curie–Weiss behavior to confirm FE nature. Off-centered low frequency (KHz) dispersion infers a scissor mode and a high frequency (MHz) mode to reflect the distinct time-scale response. Dielectric Dispersion is relatively susceptible in lower frequency KHz region. Arrhenius shift in Relaxation Frequency (f{sub R}) infers higher activation energy (E{sub a}) in non-FE phases for HF mode and lower value for KHz mode. Trends of f{sub R}, dielectric strength Δε, α-parameter and E{sub a} are discussed in view of the data reported in other LC compounds.

  10. Ammonia as a preferred additive in chiral and achiral applications of supercritical fluid chromatography for small, drug-like molecules. (United States)

    Ventura, Manuel; Murphy, Brent; Goetzinger, Wolfgang


    Supercritical fluid chromatography is routinely utilized by analytical separations groups in the pharmaceutical industry to efficiently handle separations for discovery medicinal chemistry purposes. Purifications are performed on samples ranging from a few milligrams up to hundreds of grams. Basic additives dissolved into the liquid component of the SFC mobile phase are commonly used to improve peak shape and efficiency in achiral and chiral separations. While for purposes of analysis there is minimal consequence to additive introduction in the mobile phase, for preparative separations one needs to consider the potential effect of an additive's presence when concentrated with the desired compound. Following an SFC purification using an additive-containing modifier, the resulting fractions will contain an easily evaporated modifier, and after its evaporation perhaps still significant levels of the less volatile additive. Depending on the aqueous solubility and basicity of the final product, the process of removing basic amine additives can be time-consuming and can result in reduced yields. NMR analysis following preparative isolation and evaporation often reveals the fact of insufficient removal of the chromatographic additive even after aqueous work up steps. In this study, ammonia is evaluated as an alternative additive to strong bases such as diethylamine (DEA) in SFC purification and analysis and to the authors' knowledge no previous publication has been written describing the application of methanolic ammonia as an additive for SFC separations. Dimethylethylamine (DMEA), a more volatile additive than DEA, is also evaluated relative to ammonia for its potential to simplify the isolation process after purification and in terms of chromatographic performance. The loss in concentration of ammonia in methanol modifier over time due to evaporation and effects of that loss are also described. Furthermore, for ammonia the analytical benefit is shown to extend to on

  11. Development of achiral and chiral 2D HPLC methods for analysis of albendazole metabolites in microsomal fractions using multivariate analysis for the in vitro metabolism. (United States)

    Belaz, Kátia Roberta A; Pereira-Filho, Edenir Rodrigues; Oliveira, Regina V


    In this work, the development of two multidimensional liquid chromatography methods coupled to a fluorescence detector is described for direct analysis of microsomal fractions obtained from rat livers. The chiral multidimensional method was then applied for the optimization of the in vitro metabolism of albendazole by experimental design. Albendazole was selected as a model drug because of its anthelmintics properties and recent potential for cancer treatment. The development of two fully automated achiral-chiral and chiral-chiral high performance liquid chromatography (HPLC) methods for the determination of albendazole (ABZ) and its metabolites albendazole sulphoxide (ABZ-SO), albendazole sulphone (ABZ-SO2) and albendazole 2-aminosulphone (ABZ-SO2NH2) in microsomal fractions are described. These methods involve the use of a phenyl (RAM-phenyl-BSA) or octyl (RAM-C8-BSA) restricted access media bovine serum albumin column for the sample clean-up, followed by an achiral phenyl column (15.0×0.46cmI.D.) or a chiral amylose tris(3,5-dimethylphenylcarbamate) column (15.0×0.46cmI.D.). The chiral 2D HPLC method was applied to the development of a compromise condition for the in vitro metabolism of ABZ by means of experimental design involving multivariate analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The role of the achiral template in enantioselective transformations. Radical conjugate additions to alpha-methacrylates followed by hydrogen atom transfer. (United States)

    Sibi, Mukund P; Sausker, Justin B


    We have evaluated various achiral templates (1a-g, 10, and 16) in conjunction with chiral Lewis acids in the conjugate addition of nucleophilic radicals to alpha-methacrylates followed by enantioselective H-atom transfer. Of these, a novel naphthosultam template (10) gave high enantioselectivity in the H-atom-transfer reactions with ee's up to 90%. A chiral Lewis acid derived from MgBr(2) and bisoxazoline (2) gave the highest selectivity in the enantioselective hydrogen-atom-transfer reactions. Non-C(2) symmetric oxazolines (20-25) have also been examined as ligands, and of these, compound 25 gave optimal results (87% yield and 80% ee). Insights into rotamer control in alpha-substituted acrylates and the critical role of the tetrahedral sulfone moiety in realizing high selectivity are discussed.

  13. Remarkable magnitude of the self-disproportionation of enantiomers (SDE) via achiral chromatography: application to the practical-scale enantiopurification of β-amino acid esters. (United States)

    Wzorek, Alicja; Sato, Azusa; Drabowicz, Józef; Soloshonok, Vadim A; Klika, Karel D


    We report the best performance yet for the self-disproportionation of enantiomers (SDE) via achiral chromatography as typically used in laboratories for the isolated yield of the excess enantiomer using N-acetyl β-amino acid ethyl esters. The results are the most convincing ever demonstration of the capability of the SDE for practical-scale enantiopurification as comparable, or even superior for some systems, to that of recrystallization. For example, from a sample of 94.4 % ee, a yield of 71 % of enantiopure material was isolated in a single chromatographic run. Moreover, the lack of an esoteric structural entity, e.g. strongly polarizing groups, such as, for instance CF3, highlights the fact that the phenomenon is not dependent on the presence of such and thus the process is relevant to any usual-type structure. In contrast to recrystallization, the procedure is predictable, general, and dependable, boding well for its widespread application in routine laboratory settings.

  14. "Heart-cut" bidimensional achiral-chiral liquid chromatography applied to the evaluation of stereoselective metabolism, in vivo biological activity and brain response to chiral drug candidates targeting the central nervous system. (United States)

    Battisti, Umberto M; Citti, Cinzia; Larini, Martina; Ciccarella, Giuseppe; Stasiak, Natalia; Troisi, Luigino; Braghiroli, Daniela; Parenti, Carlo; Zoli, Michele; Cannazza, Giuseppe


    A "heart-cut" two-dimensional achiral-chiral liquid chromatography triple-quadrupole mass spectrometry method (LC-LC-MS/MS) was developed and coupled to in vivo cerebral microdialysis to evaluate the brain response to the chiral compound (±)-7-chloro-5-(3-furanyl)-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide ((±)-1), a potent positive allosteric modulator (PAM) of AMPA receptor. The method was successfully employed to evaluate also its stereoselective metabolism and in vitro biological activity. In particular, the LC achiral method developed, employs a pentafluorinated silica based column (Discovery HS-F5) to separate dopamine, acetylcholine, serotonin, (±)-1 and its two hepatic metabolites. In the "heart-cut" two-dimension achiral-chiral configuration, (±)-1 and (±)-1-d4 eluted from the achiral column (1st dimension), were transferred to a polysaccharide-based chiral column (2nd dimension, Chiralcel OD-RH) by using an automatic six-port valve. Single enantiomers of (±)-1 were separated and detected using electrospray positive ionization mode and quantified in selected reaction monitoring mode. The method was validated and showed good performance in terms of linearity, accuracy and precision. The new method employed showed several possible applications in the evaluation of: (a) brain response to neuroactive compounds by measuring variations in the brain extracellular levels of selected neurotransmitters and other biomarkers; (b) blood brain barrier penetration of drug candidates by measuring the free concentration of the drug in selected brain areas; (c) the presence of drug metabolites in the brain extracellular fluid that could prove very useful during drug discovery; (d) a possible stereoselective metabolization or blood brain barrier stereoselective crossing of chiral drugs. Finally, compared to the methods reported in the literature, this technique avoids the necessity of euthanizing an animal at each time point to measure drug

  15. A parallel chiral-achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome


    Moaddel, Ruin; Venkata, Swarajya Lakshmi Vattem; Tanga, Mary J.; Bupp, James E.; Green, Carol E.; Iyer, Lalitha; Furimsky, Anna; Goldberg, Michael E.; Torjman, Marc C.; Wainer, Irving W.


    A parallel chiral/achiral LC-MS/MS assay has been developed and validated to measure the plasma and urine concentrations of the enantiomers of ketamine, (R)- and (S)-Ket, in Complex Regional Pain Syndrome (CRPS) patients receiving a 5-day continuous infusion of a sub-anesthetic dose of (R,S)-Ket. The method was also validated for the determination of the enantiomers of the Ket metabolites norketamine, (R)-and (S)-norKet and dehydronorketamine, (R)- and (S)-DHNK, as well as the diastereomeric ...

  16. Mirror-symmetry-breaking in poly[(9,9-di-n-octylfluorenyl- 2,7-diyl)-alt-biphenyl] (PF8P2) is susceptible to terpene chirality, achiral solvents, and mechanical stirring. (United States)

    Fujiki, Michiya; Kawagoe, Yoshifumi; Nakano, Yoko; Nakao, Ayako


    Solvent chirality transfer of (S)-/(R)-limonenes allows the instant generation of optically active PF8P2 aggregates with distinct circular dichroism (CD)/circularly polarized luminescence (CPL) amplitudes with a high quantum yield of 16-20%. The present paper also reports subtle mirror-symmetry-breaking effects in CD-/CPL-amplitude and sign, CD/UV-vis spectral wavelengths, and photodynamics of the aggregates, though the reasons for the anomaly are unsolved. However, these photophysical properties depend on (i) the chemical natures of chiral and achiral molecules when used in solvent quantity, (ii) clockwise and counterclockwise stirring operations, and (iii) the order of addition of limonene and methanol to the chloroform solution.

  17. Mirror-Symmetry-Breaking in Poly[(9,9-di-n-octylfluorenyl-2,7-diyl-alt-biphenyl] (PF8P2 is Susceptible to Terpene Chirality, Achiral Solvents, and Mechanical Stirring

    Directory of Open Access Journals (Sweden)

    Ayako Nakao


    Full Text Available Solvent chirality transfer of (S-/(R-limonenes allows the instant generation of optically active PF8P2 aggregates with distinct circular dichroism (CD/circularly polarized luminescence (CPL amplitudes with a high quantum yield of 16–20%. The present paper also reports subtle mirror-symmetry-breaking effects in CD-/CPL-amplitude and sign, CD/UV-vis spectral wavelengths, and photodynamics of the aggregates, though the reasons for the anomaly are unsolved. However, these photophysical properties depend on (i the chemical natures of chiral and achiral molecules when used in solvent quantity, (ii clockwise and counterclockwise stirring operations, and (iii the order of addition of limonene and methanol to the chloroform solution.

  18. Synthesis, structure, and properties of a series of chiral tweezer-diamine complexes consisting of an achiral zinc(II) bisporphyrin host and chiral diamine guest: induction and rationalization of supramolecular chirality. (United States)

    Brahma, Sanfaori; Ikbal, Sk Asif; Rath, Sankar Prasad


    We report here the synthesis, structure, and spectroscopic properties of a series of supramolecular chiral 1:1 tweezer-diamine complexes consisting of an achiral Zn(II) bisporphyrin (Zn2DPO) host and five different chiral diamine guests, namely, (R)-diaminopropane (DAP), (1S,2S)-diaminocyclohexane (CHDA), (S)-phenylpropane diamine (PPDA), (S)-phenyl ethylenediamine (PEDA), and (1R,2R)-diphenylethylene diamine (DPEA). The solid-state structures are preserved in solution, as reflected in their (1)H NMR spectra, which also revealed the remarkably large upfield shifts of the NH2 guest protons with the order Zn2DPO·DAP > Zn2DPO·CHDA > Zn2DPO·PPDA> Zn2DPO·PEDA ≫ Zn2DPO·DPEA, which happens to be the order of binding constants of the respective diamines with Zn2DPO. As the bulk of the substituent at the chiral center of the guest ligand increases, the Zn-Nax distance of the tweezer-diamine complex also increases, which eventually lowers the binding of the guest ligand toward the host. Also, the angle between the two porphyrin rings gradually increases with increasing bulk of the guest in order to accommodate the guest within the bisporphyrin cavity with minimal steric clash. The notably high amplitude bisignate CD signal response by Zn2DPO·DAP, Zn2DPO·CHDA, and Zn2DPO·PPDA can be ascribed to the complex's high stability and the formation of a unidirectional screw as observed in the X-ray structures of the complexes. A relatively lower value of CD amplitude shown by Zn2DPO·PEDA is due to the lower stability of the complex. The projection of the diamine binding sites of the chiral guest would make the two porphyrin macrocycles oriented in either a clockwise or anticlockwise direction in order to minimize host-guest steric clash. In sharp contrast, Zn2DPO·DPEA shows a very low amplitude bisignate CD signal due to the presence of both left- (dictated by the pre-existing chirality of (1R,2R)-DPEA) and right-handed screws (dictated by the steric differentiation at

  19. A parallel chiral-achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome. (United States)

    Moaddel, Ruin; Venkata, Swarajya Lakshmi Vattem; Tanga, Mary J; Bupp, James E; Green, Carol E; Iyer, Lalitha; Furimsky, Anna; Goldberg, Michael E; Torjman, Marc C; Wainer, Irving W


    A parallel chiral/achiral LC-MS/MS assay has been developed and validated to measure the plasma and urine concentrations of the enantiomers of ketamine, (R)- and (S)-Ket, in complex regional pain syndrome (CRPS) patients receiving a 5-day continuous infusion of a sub-anesthetic dose of (R,S)-Ket. The method was also validated for the determination of the enantiomers of the Ket metabolites norketamine, (R)- and (S)-norKet and dehydronorketamine, (R)- and (S)-DHNK, as well as the diastereomeric metabolites hydroxynorketamine, (2S,6S)-/(2R,6R)-HNK and two hydroxyketamines, (2S,6S)-HKet and (2S,6R)-Hket. In this method, (R,S)-Ket, (R,S)-norKet and (R,S)-DHNK and the diastereomeric hydroxyl-metabolites were separated and quantified using a C(18) stationary phase and the relative enantiomeric concentrations of (R,S)-Ket, (R,S)-norKet and (R,S)-DHNK were determined using an AGP-CSP. The analysis of the results of microsomal incubations of (R)- and (S)-Ket and a plasma and urine sample from a CRPS patient indicated the presence of 10 additional compounds and glucuronides. The data from the analysis of the patient sample also demonstrated that a series of HNK metabolites were the primary metabolites in plasma and (R)- and (S)-DHNK were the major metabolites found in urine. The results suggest that norKet is the initial, but not the primary metabolite and that downstream norKet metabolites play a role in (R,S)-Ket-related pain relief in CRPS patients. Published by Elsevier B.V.

  20. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part II. Selection of an orthogonal set of stationary phases. (United States)

    Lemasson, Elise; Bertin, Sophie; Hennig, Philippe; Boiteux, Hélène; Lesellier, Eric; West, Caroline


    Impurity profiling of organic products that are synthesized as possible drug candidates requires complementary analytical methods to ensure that all impurities are identified. Supercritical fluid chromatography (SFC) is a very useful tool to achieve this objective, as an adequate selection of stationary phases can provide orthogonal separations so as to maximize the chances to see all impurities. In this series of papers, we have developed a method for achiral SFC-MS profiling of drug candidates, based on a selection of 160 analytes issued from Servier Research Laboratories. In the first part of this study, focusing on mobile phase selection, a gradient elution with carbon dioxide and methanol comprising 2% water and 20mM ammonium acetate proved to be the best in terms of chromatographic performance, while also providing good MS response [1]. The objective of this second part was the selection of an orthogonal set of ultra-high performance stationary phases, that was carried out in two steps. Firstly, a reduced set of analytes (20) was used to screen 23 columns. The columns selected were all 1.7-2.5μm fully porous or 2.6-2.7μm superficially porous particles, with a variety of stationary phase chemistries. Derringer desirability functions were used to rank the columns according to retention window, column efficiency evaluated with peak width of selected analytes, and the proportion of analytes successfully eluted with good peak shapes. The columns providing the worst performances were thus eliminated and a shorter selection of columns (11) was obtained. Secondly, based on 160 tested analytes, the 11 columns were ranked again. The retention data obtained on these columns were then compared to define a reduced set of the best columns providing the greatest orthogonality, to maximize the chances to see all impurities within a limited number of runs. Two high-performance columns were thus selected: ACQUITY UPC(2) HSS C18 SB and Nucleoshell HILIC. Copyright © 2015

  1. 3-Isoxazolidinone: A New Achiral Template for Enantioselective Transformations

    International Nuclear Information System (INIS)

    Sibi, Mukund P.; Gustafson, Brandon; Coulomb, Julien


    Cycloadditions with the α-methylacrylate 3 were investigated next in an effort to evaluate if rotamer control installed in the template plays a role in the efficiency of the reaction (eqn 2). These results are shown in Table 2. Cycloaddition using magnesium triflimide/9 gave the cycloadduct as a nearly 1:1 mixture in low yield with no selectivity (entry 1). Zinc triflimide as a Lewis acid was also ineffective (entry 2). Iron triflimide/9 gave the endo/exo adducts in high yield and modest selectivity (entry 3). Reaction with copper triflate/9 was less effective and gave the adducts in modest selectivity (entry 4). Interestingly, the products were enantiomeric to that obtained with iron and zinc Lewis acids. Cooling the reaction temperature to 0 or .20 .deg. C led to substantial improvement in selectivity (entries 5 and 6). However, the chemical yields were very low. Doubling the catalyst loading to 30 mol % led to improvement in chemical yield but the selectivities remained the same

  2. 3-Isoxazolidinone: A New Achiral Template for Enantioselective Transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sibi, Mukund P.; Gustafson, Brandon; Coulomb, Julien [North Dakota State Univ., Fargo (United States)


    Cycloadditions with the α-methylacrylate 3 were investigated next in an effort to evaluate if rotamer control installed in the template plays a role in the efficiency of the reaction (eqn 2). These results are shown in Table 2. Cycloaddition using magnesium triflimide/9 gave the cycloadduct as a nearly 1:1 mixture in low yield with no selectivity (entry 1). Zinc triflimide as a Lewis acid was also ineffective (entry 2). Iron triflimide/9 gave the endo/exo adducts in high yield and modest selectivity (entry 3). Reaction with copper triflate/9 was less effective and gave the adducts in modest selectivity (entry 4). Interestingly, the products were enantiomeric to that obtained with iron and zinc Lewis acids. Cooling the reaction temperature to 0 or .20 .deg. C led to substantial improvement in selectivity (entries 5 and 6). However, the chemical yields were very low. Doubling the catalyst loading to 30 mol % led to improvement in chemical yield but the selectivities remained the same.

  3. Chiral and achiral helical coordination polymers of zinc and ...

    Indian Academy of Sciences (India)

    rality depends on formation of cis coordination geom- etry around the ..... lographic Data Centre via .... 324; (b) Han L and Hong M 2005 Inorg. Chem. Com ... Kang Y, Chen S, Wang F, Zhang J and Bu X 2011 Chem.

  4. Large-scale fabrication of achiral plasmonic metamaterials with giant chiroptical response

    Directory of Open Access Journals (Sweden)

    Morten Slyngborg


    Full Text Available A variety of extrinsic chiral metamaterials were fabricated by a combination of self-ordering anodic oxidation of aluminum foil, nanoimprint lithography and glancing angle deposition. All of these techniques are scalable and pose a significant improvement to standard metamaterial fabrication techniques. Different interpore distances and glancing angle depositions enable the plasmonic resonance wavelength to be tunable in the range from UVA to IR. These extrinsic chiral metamaterials only exhibit significant chiroptical response at non-normal angles of incidence. This intrinsic property enables the probing of both enantoimeric structures on the same sample, by inverting the tilt of the sample relative to the normal angle. In biosensor applications this allows for more precise, cheap and commercialized devices. As a proof of concept two different molecules were used to probe the sensitivity of the metamaterials. These proved the applicability to sense proteins through non-specific adsorption on the metamaterial surface or through functionalized surfaces to increase the sensing sensitivity. Besides increasing the sensing sensitivity, these metamaterials may also be commercialized and find applications in surface-enhanced IR spectroscopy, terahertz generation and terahertz circular dichroism spectroscopy.

  5. Evaluation of achiral templates with fluxional Brønsted basic substituents in enantioselective conjugate additions. (United States)

    Adachi, Shinya; Takeda, Norihiko; Sibi, Mukund P


    Enantioselective conjugate addition of malononitrile to pyrazolidinone-derived enoates proceeds in excellent yields and high enantioselectivities. A comparison of fluxional substituents with and without a Brønsted basic site and their impact on selectivity is detailed. Molecular sieves as an additive were found to be essential to achieve high enantioselectivity.

  6. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules. (United States)

    Tschierske, Carsten; Ungar, Goran


    Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Chiral Pesticides in Chiral Biological Enciroments: Do We Need to Move Beyond our Achiral Perspective. (United States)

    When a chemical stressor crosses the body barrier it becomes an internal dose. In the context of risk assessment, this internal dose provides a critical linkage between exposure and effects. Pharmacokinetic processes (i.e., what the body does to the chemical) such as absorption, ...

  8. Deep-Subwavelength Resolving and Manipulating of Hidden Chirality in Achiral Nanostructures. (United States)

    Zu, Shuai; Han, Tianyang; Jiang, Meiling; Lin, Feng; Zhu, Xing; Fang, Zheyu


    The chiral state of light plays a vital role in light-matter interactions and the consequent revolution of nanophotonic devices and advanced modern chiroptics. As the light-matter interaction goes into the nano- and quantum world, numerous chiroptical technologies and quantum devices require precise knowledge of chiral electromagnetic modes and chiral radiative local density of states (LDOS) distributions in detail, which directly determine the chiral light-matter interaction for applications such as chiral light detection and emission. With classical optical techniques failing to directly measure the chiral radiative LDOS, deep-subwavelength imaging and control of circular polarization (CP) light associated phenomena are introduced into the agenda. Here, we simultaneously reveal the hidden chiral electromagnetic mode and acquire its chiral radiative LDOS distribution of a single symmetric nanostructure at the deep-subwavelength scale by using CP-resolved cathodoluminescence (CL) microscopy. The chirality of the symmetric nanostructure under normally incident light excitation, resulting from the interference between the symmetric and antisymmetric modes of the V-shaped nanoantenna, is hidden in the near field with a giant chiral distribution (∼99%) at the arm-ends, which enables the circularly polarized CL emission from the radiative LDOS hot-spot and the following active helicity control at the deep-subwavelength scale. The proposed V-shaped nanostructure as a functional unit is further applied to the helicity-dependent binary encoding and the two-dimensional display applications. The proposed physical principle and experimental configuration can promote the future chiral characterization and manipulation at the deep-subwavelength scale and provide direct guidelines for the optimization of chiral light-matter interactions for future quantum studies.

  9. Chirální a achirální chromatografie ve farmakologii a toxikologii


    Chytil, Lukáš


    Development and validation of methods for analysis of several drugs or their metabolites are decribed in this thesis. The document is presented as a commentary to the original papers, which were published in peer reviewed journals. Discussion on the optimization of each method is presented and covers also method development and influence of preanalytical aspects. Additionally, examples of the application of the developed methods in clinical pharmacology and toxicology are shown. This disserta...

  10. Dexamethasone decreases plasma levels of the prochiral fenbendazole and its chiral and achiral metabolites in sheep. (United States)

    Sánchez, S; Small, J; Jones, D G; McKellar, Q A


    1. The effect of co-administration of either short- or long-acting formulations of DXM on hepatic function and the plasma pharmacokinetic behaviour of prochiral fenbendazole (FBZ) and its metabolites was evaluated in sheep. 2. Neither DXM treatment markedly affected any of the biochemical markers of hepatic function tested. In contrast, both formulations significantly modified the plasma pharmacokinetic behaviour of FBZ and its metabolites. 3. Plasma FBZ concentrations and the associated area under the time-concentration curves were significantly lower, although the plasma detection period was longer (72 versus 48 h) in the DXM pretreated animals compared with those given FBZ alone. 4. DXM also appeared to alter the pattern of FBZ absorption, possibly through effects on abomasal pH. The shape of the plasma concentration-time curves for oxfendazole (OFZ) and fenbendazole sulphone (FBZSO(2)) were similar to FBZ, raising the possibility that DXM treatment may have altered the liver biotransformation of the parent drug. 5. The concentrations of the (+) chiral metabolite of OFZ were significantly lower in DXM pretreated animals compared with those given FBZ alone. The trend was similar for the (-) antipode, although the differences between DXM pretreated and non-pretreated animals were not statistically significant.

  11. Quantitative determination of salbutamol sulfate impurities using achiral supercritical fluid chromatography. (United States)

    Dispas, Amandine; Desfontaine, Vincent; Andri, Bertyl; Lebrun, Pierre; Kotoni, Dorina; Clarke, Adrian; Guillarme, Davy; Hubert, Philippe


    In the last years, supercritical fluid chromatography has largely been acknowledged as a singular and performing technique in the field of separation sciences. Recent studies highlighted the interest of SFC for the quality control of pharmaceuticals, especially in the case of the determination of the active pharmaceutical ingredient (API). Nevertheless, quality control requires also the determination of impurities. The objectives of the present work were to (i) demonstrate the interest of SFC as a reference technique for the determination of impurities in salbutamol sulfate API and (ii) to propose an alternative to a reference HPLC method from the European Pharmacopeia (EP) involving ion-pairing reagent. Firstly, a screening was carried out to select the most adequate and selective stationary phase. Secondly, in the context of robust optimization strategy, the method was developed using design space methodology. The separation of salbutamol sulfate and related impurities was achieved in 7min, which is seven times faster than the LC-UV method proposed by European Pharmacopeia (total run time of 50min). Finally, full validation using accuracy profile approach was successfully achieved for the determination of impurities B, D, F and G in salbutamol sulfate raw material. The validated dosing range covered 50 to 150% of the targeted concentration (corresponding to 0.3% concentration level), LODs close to 0.5μg/mL were estimated. The SFC method proposed in this study could be presented as a suitable fast alternative to EP LC method for the quantitative determination of salbutamol impurities. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Poly(butylene terephthalate) based novel achiral stationary phase investigated under supercritical fluid chromatography conditions. (United States)

    Nagai, Kanji; Shibata, Tohru; Shinkura, Satoshi; Ohnishi, Atsushi


    Poly(butylene terephthalate) based novel stationary phase (SP), composed of planar aromatic phenyl group together with ester group monomer units, was designed for supercritical fluid chromatography (SFC) use. As expected from its structure, this phase shows planarity recognition of isomeric aromatics and closely similar compounds. Interestingly, for most analytes, the retention behavior of this SP is significantly distinct from that of the 2-ethylpyridine based SPs which is among the most well-known SFC dedicated phases. Although the poly(butylene terephthalate) is coated on silica gel, the performance of the column did not change by using extended range modifiers such as THF, dichloromethane or ethyl acetate and column robustness was confirmed by cycle durability testing. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Alternating twist structures formed by electroconvection in the nematic phase of an achiral bent-core molecule. (United States)

    Tanaka, Shingo; Dhara, Surajit; Sadashiva, B K; Shimbo, Yoshio; Takanishi, Yoichi; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo


    We report an unusual electroconvection in the nematic phase of a bent-core liquid crystal. In a voltage-frequency diagram, two frequency regions exhibiting prewavy stripe patterns were found, as reported by Wiant We found that these stripes never show extinction dark when cells were rotated under crossed polarizers. Based on the color interchange in between neighboring stripes by the rotation of the cells or an analyzer, twisted molecular orientation is suggested; i.e., the directors are alternately twisted from the top to the bottom surfaces with a pretilt angle in adjacent stripes, which is an analogue of the twisted (splayed) structure observed in surface-stabilized ferroelectric liquid crystal cells. The transmittance spectra calculated using the 4x4 matrix method from the model structure are consistent with the experimental observation.

  14. The potential of achiral sponge-derived and synthetic bromoindoles as selective cytotoxins against PANC-1 tumor cells. (United States)

    Lorig-Roach, Nicholas; Hamkins-Indik, Frances; Johnson, Tyler A; Tenney, Karen; Valeriote, Frederick A; Crews, Phillip


    Our quest to isolate and characterize natural products with in vitro solid tumor selectivity is driven by access to repositories of Indo-Pacific sponge extracts. In this project an extract of a species of Haplosclerida sponge obtained from the US NCI Natural Products Repository displayed, by in vitro disk diffusion assay (DDA) and IC 50 determinations, selective cytotoxicity with modest potency to a human pancreatic cancer cell line (PANC-1) relative to the human lymphoblast leukemia cell line (CCRF-CEM). Two brominated indoles, the known 6-bromo conicamin ( 1 ) and the new derivative, 6-Br-8-keto-conicamin A ( 2 ), were identified and 2 (IC 50 1.5 μM for the natural product vs 4.1 μM for the synthetic material) was determined to be responsible for the cytotoxic activity of the extract against the PANC-1 tumor cell line. The new natural product and ten additional analogs were prepared for further SAR testing.

  15. Optimisation methodology in the chiral and achiral separation in electrokinetic chromatography in the case of a multicomponent sample of dansyl amino acids. (United States)

    Giuffrida, Alessandro; Messina, Marianna; Contino, Annalinda; Cucinotta, Vincenzo


    Two different chiral selectors synthesised in our laboratory were used to test the possibility of separation for a sample consisting of ten different enantiomeric pairs of dansyl-derivatives of α-amino acids in electrokinetic chromatography. It was possible to observe all the peaks, though only partly resolved, due to the twenty analytes through an accurate strategy of choice of the experimental conditions. As a part of this strategy, a procedure of identification of the single peaks in the electropherograms called LACI (lastly added component identification) has been developed. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Reproductive Isolation of Ips nitidus and I. shangrila in Mountain Forests of Western China: Responses to Chiral and Achiral Candidate Pheromone Components

    Czech Academy of Sciences Publication Activity Database

    Schlyter, F.; Jakuš, R.; Han, F. Z.; Ma, J. H.; Kalinová, Blanka; Mezei, P.; Sun, J. H.; Ujhelyiová, L.; Zhang, Q. H.


    Roč. 41, č. 7 (2015), s. 678-688 ISSN 0098-0331 Institutional support: RVO:61388963 Keywords : species separation * atractiveness * Picea crassifolia Subject RIV: EH - Ecology, Behaviour Impact factor: 3.151, year: 2015

  17. (α,α-dimethyl)glycyl (dmg) PNAs: achiral PNA analogs that form stronger hybrids with cDNA relative to isosequential RNA. (United States)

    Gourishankar, Aland; Ganesh, Krishna N


    The design and facile synthesis of sterically constrained new analogs of PNA having gem-dimethyl substitutions on glycine (dmg-PNA-T) is presented. The PNA oligomers [aminoethyl dimethylglycyl (aedmg) and aminopropyl dimethylglycyl (apdmg)] synthesized from the monomers 6 and 12) effected remarkable stabilization of homothyminePNA(2):homoadenine DNA/RNA triplexes and mixed base sequence duplexes with target cDNA or RNA. They show a higher binding to DNA relative to that with isosequential RNA. This may be a structural consequence of the sterically rigid gem-dimethyl group, imposing a pre-organized conformation favorable for complex formation with cDNA. The results complement our previous work that had demonstrated that cyclohexanyl-PNAs favor binding with cRNA compared with cDNA and imply that the biophysical and structural properties of PNAs can be directed by introduction of the right rigidity in PNA backbone devoid of chirality. This approach of tweaking selectivity in binding of PNA constructs by installing gem-dimethyl substitution in PNA backbone can be extended to further fine-tuning by similar substitution in the aminoethyl segment as well either individually or in conjunction with present substitution.

  18. Synthesis and self-assembly of 9,9'-spirobifluorene-2,2',7,7'-tetracarboxylic acid and its tetraamide. Non-catenated formation of achiral grid layers with large chiral pores

    Czech Academy of Sciences Publication Activity Database

    Holý, Petr; Havlík, M.; Tichý, Miloš; Závada, Jiří; Císařová, I.


    Roč. 71, č. 2 (2006), s. 139-154 ISSN 0010-0765 R&D Projects: GA ČR(CZ) GA203/03/0087; GA ČR(CZ) GA203/99/M037 Institutional research plan: CEZ:AV0Z40550506 Keywords : carboxylic acids * spiro compounds * X-ray diffraction Subject RIV: CC - Organic Chemistry Impact factor: 0.881, year: 2006

  19. Association of two single-isomer anionic CD in NACE for the chiral and achiral separation of fenbendazole, its sulphoxide and sulphone metabolites: application to their determination after in vitro metabolism. (United States)

    Rousseau, Anne; Gillotin, Florian; Chiap, Patrice; Crommen, Jacques; Fillet, Marianne; Servais, Anne-Catherine


    A NACE method was developed for the separation of fenbendazole (FBZ), a prochiral drug giving rise to chiral (oxfendazole or OFZ) and nonchiral (FBZ sulphone or FBZSO(2)) metabolites. First, the effect of the nature and the concentration of CD as well as that of the acidic BGE on the enantiomeric separation of OFZ were studied. OFZ enantiomers were completely resolved using a BGE made up of 10 mM ammonium formate and 0.5 M TFA in methanol containing 10 mM heptakis(2,3-di-O-acetyl-6-O-sulfo)-beta-CD and 10 mM heptakis(2,3-di-O-methyl-6-O-sulfo)-beta-CD. Moreover, the NACE method was found to be particularly well suited to the simultaneous determination of FBZ, OFZ enantiomers, and FBZSO(2). Thiabendazole was selected as an internal standard. The CD-NACE potential was then evaluated for in vitro metabolism studies using FBZ as a model case. The OFZ enantiomers and FBZSO(2) could be detected after incubation of FBZ in the phenobarbital-induced male rat liver microsomes systems.

  20. Interplay of metalloligand and organic ligand to tune micropores within isostructural mixed-metal organic frameworks (M'MOFs) for their highly selective separation of chiral and achiral small molecules

    NARCIS (Netherlands)

    Das, M. C.; Guo, Q.; He, Y.; Kim, J.; Zhao, C.-G.; Hong, K.; Xiang, S.; Zhang, Z.; Thomas, K. M.; Krishna, R.; Chen, B.


    Four porous isostructural mixed-metal-organic frameworks (M′MOFs) have been synthesized and structurally characterized. The pores within these M′MOFs are systematically tuned by the interplay of both the metalloligands and organic ligands which have enabled us not only to direct their highly

  1. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.


    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  2. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.; Ustbas, Burcin; Harkness, Kellen M.; Coskun, Hikmet; Joshi, Chakra Prasad; Besong, Tabot M.D.; Stellacci, Francesco; Bakr, Osman; Akbulut, Ozge


    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  3. Asymmetric noncovalent synthesis of self-assembled one-dimensional stacks by a chiral supramolecular auxiliary approach

    NARCIS (Netherlands)

    George, S.J.; Tomovic, Z.; Averbeke, Van B.; Beljonne, D.; Lazzaroni, R.; Schenning, A.P.H.J.; Meijer, E.W.


    Stereoselective noncovalent synthesis of one-dimensional helical self-assembled stacks of achiral oligo(p-phenylenevinylene) ureidotriazine (AOPV3) monomers is obtained by a chiral supramolecular auxiliary approach. The racemic mixture of helical stacks of achiral AOPV3 molecules is converted into

  4. Device-Compatible Chiroptical Surfaces through Self-Assembly of Enantiopure Allenes

    NARCIS (Netherlands)

    Ozcelik, A; Pereira-Cameselle, R; von Weber, A; Paszkiewicz, M; Carlotti, M; Paintner, T; Zhang, L; Lin, T; Zhang, Y-Q; Barth, J V; van den Nobelen, T; Chiechi, R C; Jakob, M; Heiz, U; Chiussi, S; Kartouzian, A; Klappenberger, F; Alonso-Gómez, J L


    Chiroptical methods have been proven to be superior compared to their achiral counterparts for the structural elucidation of many compounds. To expand the use of chiroptical systems to everyday applications, the development of functional materials exhibiting intense chiroptical responses is

  5. Insight into the chiral induction in supramolecular stacks through preferential chiral salvation

    NARCIS (Netherlands)

    George, S.J.; Tomovic, Z.; Schenning, A.P.H.J.; Meijer, E.W.


    Preferred handedness in the supramolecular chirality of self-assembled achiral oligo(p-phenylenevinylene) (OPV) derivatives is induced by chiral solvents and spectroscopic probing provides insight into the mechanistic aspects of this chiral induction through chiral solvation

  6. Multicomponent synthesis of unsymmetrical unsaturated N-heterocyclic carbene precursors and their related transition-metal complexes

    KAUST Repository

    Queval, Pierre; Jahier, Claire; Rouen, Mathieu; Artur, Isabelle; Legeay, Jean Christophe; Falivene, Laura; Toupet, Loï c J.; Cré visy, Christophe; Cavallo, Luigi; Baslé , Olivier; Mauduit, Marc


    A low-cost, modular, and easily scalable multicomponent procedure affording access in good yields and excellent selectivity (up to 93 %) to a wide range of (a)chiral unsymmetrical 1-aryl-3-cycloalkyl-imidazolium salts is disclosed. Electronic

  7. (+)- 10-camphorsulfonic acid and enrichment of enantiomeric

    Indian Academy of Sciences (India)


    . The partially resolved enriched sample of (S,S)-(–)-2,3-diphenylpiperazine with 73% ee was purified to obtain samples of 97% ee using different achiral acids via the preparation of either homochiral or heterochiral hydrogen bonded.

  8. Three-dimensional hybrid networks based on aspartic acid

    Indian Academy of Sciences (India)


    Keywords. Aspartic acid; hybrid compounds; nickel aspartate; lead aspartate; achiral frameworks. ..... and coordinated to water molecules as well as car- .... (b) Dan M 2004 J. Mol. Struct. ... Sheldrick G M 1994 SADABS: Siemens area detector.

  9. A General Approach to the Basiliolide/Transtaganolide Natural Products: Total Syntheses of Basiliolide B, epi-8-Basiliolide B, Transtaganolide C, and Transtaganolide D

    KAUST Repository

    Nelson, Hosea M.; Murakami, Kei; Virgil, Scott C.; Stoltz, Brian M.


    (Figure Presented) In a flash: The total synthesis of transtaganolide and basiliolide natural products is achieved in three steps from achiral, monocyclic esters (see scheme). Featured in the syntheses are an Ireland-Claisen/Diels- Alder cascade

  10. Geochemistry of dark coastal heavy-mineral beaches sand (Annaba ...

    African Journals Online (AJOL)


    3 Institute of Earth and Environmental Science, University of Potsdam, ... Some beaches are characterized by a red-brownish sand colour, the Ain Achir and the ... The occurrence of clays has been determined using the methyl-blue method.

  11. Saddle-splay screening and chiral symmetry breaking in toroidal nematics


    Koning, Vinzenz; van Zuiden, Benjamin C.; Kamien, Randall D.; Vitelli, Vincenzo


    We present a theoretical study of director fields in toroidal geometries with degenerate planar boundary conditions. We find spontaneous chirality: despite the achiral nature of nematics the director configuration show a handedness if the toroid is thick enough. In the chiral state the director field displays a double twist, whereas in the achiral state there is only bend deformation. The critical thickness increases as the difference between the twist and saddle-splay moduli grows. A positiv...

  12. Transfer and Dynamic Inversion of Coassembled Supramolecular Chirality through 2D-Sheet to Rolled-Up Tubular Structure. (United States)

    Choi, Heekyoung; Cho, Kang Jin; Seo, Hyowon; Ahn, Junho; Liu, Jinying; Lee, Shim Sung; Kim, Hyungjun; Feng, Chuanliang; Jung, Jong Hwa


    Transfer and inversion of supramolecular chirality from chiral calix[4]arene analogs (3D and 3L) with an alanine moiety to an achiral bipyridine derivative (1) with glycine moieties in a coassembled hydrogel are demonstrated. Molecular chirality of 3D and 3L could transfer supramolecular chirality to an achiral bipyridine derivative 1. Moreover, addition of 0.6 equiv of 3D or 3L to 1 induced supramolecular chirality inversion of 1. More interestingly, the 2D-sheet structure of the coassembled hydrogels formed with 0.2 equiv of 3D or 3L changed to a rolled-up tubular structure in the presence of 0.6 equiv of 3D or 3L. The chirality inversion and morphology change are mainly mediated by intermolecular hydrogen-bonding interactions between the achiral and chiral molecules, which might be induced by reorientations of the assembled molecules, confirmed by density functional theory calculations.

  13. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix (United States)

    Yang, Dong; Duan, Pengfei; Zhang, Li; Liu, Minghua


    Transfer of both chirality and energy information plays an important role in biological systems. Here we show a chiral donor π-gelator and assembled it with an achiral π-acceptor to see how chirality and energy can be transferred in a composite donor–acceptor system. It is found that the individual chiral gelator can self-assemble into nanohelix. In the presence of the achiral acceptor, the self-assembly can also proceed and lead to the formation of the composite nanohelix. In the composite nanohelix, an energy transfer is realized. Interestingly, in the composite nanohelix, the achiral acceptor can both capture the supramolecular chirality and collect the circularly polarized energy from the chiral donor, showing both supramolecular chirality and energy transfer amplified circularly polarized luminescence (ETACPL). PMID:28585538

  14. Exo selective enantioselective nitrone cycloadditions. (United States)

    Sibi, Mukund P; Ma, Zhihua; Jasperse, Craig P


    We have developed a novel method for accessing exo adducts with high enantioselectivity in nitrone cycloadditions to enoates. Pyrazolidinones proved to be effective achiral templates in the cycloadditions, providing exo adducts typically in >15:1 selectivity and 90-98% ee. The use of Lewis acids that form square planar complexes, such as copper triflate, was important for obtaining high exo selectivity.

  15. Lanthanide Lewis acid-mediated enantioselective conjugate radical additions. (United States)

    Sibi, Mukund P; Manyem, Shankar


    [reaction: see text] Lanthanide triflates along with proline-derived ligands have been found to be efficient catalysts for enantioselective conjugate addition of nucleophilic radicals to enoates. N-Acyl oxazolidinones, when used as achiral additives, gave meaningful enhancements in the ees for the product.

  16. Chiral Induction and amplification in supramolecular systems at the liquid-solid interface

    NARCIS (Netherlands)

    Xu, Hong; Ghijsens, E.; George, S.J.; Wolffs, M.; Tomovic, Z.; Schenning, A.P.H.J.; Feyter, de S.


    Chiral induction and amplification in surface-confined supramolecular monolayers are investigated at the liquid–solid interface. Scanning tunneling microscopy (STM) proves that achiral molecules can self-assemble into globally chiral patterns through a variety of approaches, including induction by

  17. Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates

    NARCIS (Netherlands)

    Helmich, F.A.; Lee, C.C.; Schenning, A.P.H.J.; Meijer, E.W.


    Chiral memory at the supramolecular level is obtained via a new approach using chiral Zn porphrins and achiral Cu porphyrins. In a "sergeant-and-soldiers" experiment, the Zn "sergeant" transfers its own chirality to Cu "soldiers" and, after chiral amplification, the "sergeant" is removed from the

  18. Transfer and control of molecular chirality in the 1 : 2 host-guest supramolecular complex consisting of Mg(II)bisporphyrin and chiral diols: the effect of H-bonding on the rationalization of chirality. (United States)

    Ikbal, Sk Asif; Brahma, Sanfaori; Rath, Sankar Prasad


    A clear rationalization of the origin of chirality transfer from an optically active diol guest to an achiral Mg(ii)bisporphyrin host in a series of 1 : 2 host-guest supramolecular complexes has been reported here that has so far remained the most outstanding issue for the chirogenic process.

  19. A General Approach to the Basiliolide/Transtaganolide Natural Products: Total Syntheses of Basiliolide B, epi-8-Basiliolide B, Transtaganolide C, and Transtaganolide D

    KAUST Repository

    Nelson, Hosea M.


    (Figure Presented) In a flash: The total synthesis of transtaganolide and basiliolide natural products is achieved in three steps from achiral, monocyclic esters (see scheme). Featured in the syntheses are an Ireland-Claisen/Diels- Alder cascade and a novel methoxyacetylide coupling/cyclization sequence. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Phosphoric acids as amplifiers of molecular chirality in liquid crystalline media

    NARCIS (Netherlands)

    Eelkema, R; Feringa, BL


    A new system for the double amplification of the molecular chirality of simple chiral amines in achiral liquid crystalline media is described. It involves a conformationally flexible phosphoric acid based receptor that by binding to chiral amines induces chirality in the liquid crystalline matrix.

  1. A Mixed Ligand Approach for the Asymmetric Hydrogenation of 2-Substituted Pyridinium Salts

    NARCIS (Netherlands)

    Renom-Carrasco, Marc; Gajewski, Piotr; Pignataro, Luca; de Vries, Johannes G.; Piarulli, Umberto; Gennari, Cesare; Lefort, Laurent


    Herein we describe a new methodology for the asymmetric hydrogenation (AH) of 2-substituted pyridinium salts. An iridium catalyst based on a mixture of a chiral monodentate phosphoramidite and an achiral phosphine was shown to hydrogenate N-benzyl-2-arylpyiridinium bromides to the corresponding

  2. L-Selectride-Mediated Highly Diastereoselective Asymmetric Reductive Aldol Reaction: Access to an Important Subunit for Bioactive Molecules


    Ghosh, Arun K.; Kass, Jorden; Anderson, David D.; Xu, Xiaoming; Marian, Christine


    L-Selectride reduction of a chiral or achiral enone followed by reaction of the resulting enolate with optically active α-alkoxy aldehydes proceeded with excellent diastereoselectivity. The resulting α,α-dimethyl-β-hydroxy ketones are inherent to a variety of biologically active natural products.

  3. L-selectride-mediated highly diastereoselective asymmetric reductive aldol reaction: access to an important subunit for bioactive molecules. (United States)

    Ghosh, Arun K; Kass, Jorden; Anderson, David D; Xu, Xiaoming; Marian, Christine


    L-selectride reduction of a chiral or achiral enone followed by reaction of the resulting enolate with optically active alpha-alkoxy aldehydes proceeded with excellent diastereoselectivity. The resulting alpha,alpha-dimethyl-beta-hydroxy ketones are inherent to a variety of biologically active natural products.

  4. Postmortem Femoral Blood Concentrations of Risperidone

    DEFF Research Database (Denmark)

    Linnet, Kristian; Johansen, Sys Stybe


    Postmortem femoral blood concentrations of the antipsychotic drug risperidone and the active metabolite 9-hydroxyrisperidone were determined by an achiral LC-MS/MS method in 38 cases. The cause of death was classified as unrelated to risperidone in 30 cases, in which the sum of the concentration ...

  5. Synthesis and complexation characteristics of phenanthroline and bipyridine diols

    NARCIS (Netherlands)

    Koning, B.; Boer, J.W. de; Meetsma, A.; Kellogg, R.M.


    Neocuproine (2,9-dimethyl-1,10-phenanthroline) 1 was converted to achiral and chiral tetradentate phenanthroline diols 3a-c by addition to benzophenone, adamantanone and camphor, respectively. Analogously 6,6'-dimethyl-2,2'-bipyridine 2 was converted to diol 7a on base-induced addition to

  6. Larger spontaneous polarization ferroelectric inorganic-organic hybrids: [PbI3](infinity) chains directed organic cations aggregation to Kagomé-shaped tubular architecture. (United States)

    Zhao, Hai-Rong; Li, Dong-Ping; Ren, Xiao-Ming; Song, You; Jin, Wan-Qin


    Four isostructural inorganic-organic hybrid ferroelectric compounds, assembled from achiral 3-R-benzylidene-1-aminopyridiniums (R = NO(2), Br, Cl, or F for 1-4, respectively) and [PbI(3)](-) anions with the chiral Kagomé-shaped tubular aggregating architecture, show larger spontaneous polarizations.

  7. Case report

    African Journals Online (AJOL)


    22 août 2012 ... Abdellah Achir1, Abdellatif Benosman1. 1Service de chirurgie thoracique, Hôpital Avicenne, CHU Rabat, Maroc, 2Service d'anatomie pathologique, Hôpital Avicenne, CHU Rabat, Maroc. &Corresponding author: Fayçal Eloueriachi, Service de chirurgie thoracique, Hôpital Avicenne, CHU Rabat, Maroc.

  8. Enantioselective Evans-Tishchenko Reduction of b-Hydroxyketone Catalyzed by Lithium Binaphtholate

    Directory of Open Access Journals (Sweden)

    Makoto Nakajima


    Full Text Available Lithium diphenylbinaphtholate catalyzed the enantioselective Evans-Tishchenko reduction of achiral b-hydroxyketones to afford monoacyl-protected 1,3-diols with high stereoselectivities. In the reaction of racemic b-hydroxyketones, kinetic optical resolution occurred in a highly stereoselective manner.

  9. One-Dimensional Chirality: Strong Optical Activity in Epsilon-Near-Zero Metamaterials. (United States)

    Rizza, Carlo; Di Falco, Andrea; Scalora, Michael; Ciattoni, Alessandro


    We suggest that electromagnetic chirality, generally displayed by 3D or 2D complex chiral structures, can occur in 1D patterned composites whose components are achiral. This feature is highly unexpected in a 1D system which is geometrically achiral since its mirror image can always be superposed onto it by a 180 deg rotation. We analytically evaluate from first principles the bianisotropic response of multilayered metamaterials and we show that the chiral tensor is not vanishing if the system is geometrically one-dimensional chiral; i.e., its mirror image cannot be superposed onto it by using translations without resorting to rotations. As a signature of 1D chirality, we show that 1D chiral metamaterials support optical activity and we prove that this phenomenon undergoes a dramatic nonresonant enhancement in the epsilon-near-zero regime where the magnetoelectric coupling can become dominant in the constitutive relations.

  10. Hierarchical self-assembly of a striped gyroid formed by threaded chiral mesoscale networks

    DEFF Research Database (Denmark)

    Kirkensgaard, Jacob Judas Kain; Evans, Myfanwy; de Campo, Lilliana


    Numerical simulations reveal a family of hierarchical and chiral multicontinuous network structures self-assembled from a melt blend of Y-shaped ABC and ABD three-miktoarm star terpolymers, constrained to have equal-sized A/B and C/D chains, respectively. The C and D majority domains within...... components also forming labyrinthine domains whose geometry and topology changes systematically as a function of composition. These smaller labyrinths are well described by a family of patterns that tile the hyperbolic plane by regular degree-three trees mapped onto the gyroid. The labyrinths within......-ridden achiral patterns, containing domains of either hand, due to the achiral terpolymeric starting molecules. These mesostructures are among the most topologically complex morphologies identified to date and represent an example of hierarchical ordering within a hyperbolic pattern, a unique mode of soft...

  11. Chiral relay: a novel strategy for the control and amplification of enantioselectivity in chiral Lewis acid promoted reactions. (United States)

    Corminboeuf, Olivier; Quaranta, Laura; Renaud, Philippe; Liu, Mei; Jasperse, Craig P; Sibi, Mukund P


    Chiral Lewis acid catalysis has emerged as one of the premiere method to control stereochemistry. Much effort has gone into the design of superior ligands with increasing steric extension to shield distant reactive sites. We report here an alternative and complementary approach based on a "chiral relay". This strategy focuses on the improved design of achiral templates which may relay and amplify the stereochemistry from ligands. The essence of this strategy is that the chiral Lewis acid would effectively convert an achiral template into a chiral non-racemic template. This approach combines the advantages of enantioselective catalysis (substoichiometric amount of the chiral inducer) with the ones of chiral auxiliary control (efficient and predictable stereocontrol).

  12. A web site for calculating the degree of chirality. (United States)

    Zayit, Amir; Pinsky, Mark; Elgavi, Hadassah; Dryzun, Chaim; Avnir, David


    The web site,, uses the Continuous Chirality Measure to evaluate quantitatively the degree of chirality of a molecule, a structure, a fragment. The value of this measure ranges from zero, the molecule is achiral, to higher values (the upper limit is 100); the higher the chirality value, the more chiral the molecule is. The measure is based on the distance between the chiral molecule and the nearest structure that is achiral. Questions such as the following can be addressed: by how much is one molecule more chiral than the other? how does chirality change along conformational motions? is there a correlation between chirality and enantioselectivity in a series of molecules? Both elementary and advanced features are offered. Related calculation options are the symmetry measures and shape measures. Copyright © 2009 Wiley-Liss, Inc.

  13. Macroscopic chirality of a liquid crystal from nonchiral molecules

    International Nuclear Information System (INIS)

    Jakli, A.; Nair, G. G.; Lee, C. K.; Sun, R.; Chien, L. C.


    The transfer of chirality from nonchiral polymer networks to the racemic B2 phase of nonchiral banana-shaped molecules is demonstrated. This corresponds to the transfer of chirality from an achiral material to another achiral material. There are two levels of chirality transfers. (a) On a microscopic level the presence of a polymer network (chiral or nonchiral) favors a chiral state over a thermodynamically stable racemic state due to the inversion symmetry breaking at the polymer-liquid crystal interfaces. (b) A macroscopically chiral (enantimerically enriched) sample can be produced if the polymer network has a helical structure, and/or contains chemically chiral groups. The chirality transfer can be locally suppressed by exposing the liquid crystal to a strong electric field treatment

  14. Multicomponent synthesis of unsymmetrical unsaturated N-heterocyclic carbene precursors and their related transition-metal complexes

    KAUST Repository

    Queval, Pierre


    A low-cost, modular, and easily scalable multicomponent procedure affording access in good yields and excellent selectivity (up to 93 %) to a wide range of (a)chiral unsymmetrical 1-aryl-3-cycloalkyl-imidazolium salts is disclosed. Electronic and steric properties of the corresponding unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands were evaluated and evidenced strong electron donor ability, high steric discrimination, and modular steric demand. A low-cost, modular, and easily scalable multicomponent procedure, affording access to a wide range of (a)chiral unsymmetrical 1-aryl-3-cycloalkyl- imidazolium salts in good yields and excellent selectivities, is disclosed. Electronic and steric properties of the corresponding unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands were evaluated and evidenced strong electron-donor ability, high steric discrimination, and modular steric demand. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis of Spiroisoxazolines by 1,3-Dipolar Cycloaddition

    Directory of Open Access Journals (Sweden)

    Peter Ertl


    Full Text Available The cycloaddition of the chiral nitrile oxide 1 to 1-R-substituted 3,3-methylene-5,5-dimethyl-2-pyrrolidinones 2 (where R is H, n-butyl-, 1,1-dimethylethoxycarbonyl-, 1-methylethenyl- and acetyl- proceeds regioselectively under the formation of spiroisoxazolines, namely 7-R-substituted-6-oxo-8,8-dimethyl-1-oxa-2,7-diazaspiro[4,4]non-2-enes 5 and 6. The asymmetric induction expected by the a-chiral centre of the nitrile oxide 1 was not very effective, diastereoisomers 5 and 6 were formed in an approximate 50:50 ratio. The stereoselectivity of the 1,3-dipolar cycloaddition of the arylnitrile oxide 7 with the chiral lactam 3 and the achiral lactone 4 are investigated. The attack of the 1,3-dipole occurred from the less hindered face of the dipolarophile 3 and 4, giving the major isomer 8 and 10, respectively.

  16. Steric and Stereochemical Modulation in Pyridyl- and Quinolyl-Containing Ligands

    Directory of Open Access Journals (Sweden)

    Zhaohua Dai


    Full Text Available Nitrogen-containing pyridine and quinoline are outstanding platforms on which excellent ionophores and sensors for metal ions can be built. Steric and stereochemical effects can be used to modulate the affinity and selectivity of such ligands toward different metal ions on the coordination chemistry front. On the signal transduction front, such effects can also be used to modulate optical responses of these ligands in metal sensing systems. In this review, steric modulation of achiral ligands and stereochemical modulation in chiral ligands, especially ionophores and sensors for zinc, copper, silver, and mercury, are examined using published structural and spectral data. Although it might be more challenging to construct chiral ligands than achiral ones, isotropic and anisotropic absorption signals from a single chiroptical fluorescent sensor provide not only detection but also differentiation of multiple analytes with high selectivity.

  17. Rapid purification of diastereoisomers from Piper kadsura using supercritical fluid chromatography with chiral stationary phases. (United States)

    Xin, Huaxia; Dai, Zhuoshun; Cai, Jianfeng; Ke, Yanxiong; Shi, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao


    Supercritical fluid chromatography (SFC) with chiral stationary phases (CSPs) is an advanced solution for the separation of achiral compounds in Piper kadsura. Analogues and stereoisomers are abundant in natural products, but there are obstacles in separation using conventional method. In this paper, four lignan diastereoisomers, (-)-Galbelgin, (-)-Ganschisandrin, Galgravin and (-)-Veraguensin, from Piper kadsura were separated and purified by chiral SFC. Purification strategy was designed, considering of the compound enrichment, sample purity and purification throughput. Two-step achiral purification method on chiral preparative columns with stacked automated injections was developed. Unconventional mobile phase modifier dichloromethane (DCM) was applied to improve the sample solubility. Four diastereoisomers was prepared at the respective weight of 103.1mg, 10.0mg, 152.3mg and 178.6mg from 710mg extract with the purity of greater than 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Base catalyzed synthesis of bicyclo[3.2.1]octane scaffolds. (United States)

    Boehringer, Régis; Geoffroy, Philippe; Miesch, Michel


    The base-catalyzed reaction of achiral 1,3-cyclopentanediones tethered to activated olefins afforded in high yields bicyclo[3.2.1]octane-6,8-dione or bicyclo[3.2.1]octane-6-carboxylate derivatives bearing respectively three or five stereogenic centers. The course of the reaction is closely related to the reaction time and to the base involved in the reaction.

  19. Boehringer Ingleheim's selective glucocorticoid receptor agonist development candidate: evaluation of WO2010141331, WO2010141332 and WO2010141333. (United States)

    Norman, Peter


    Three applications from Boehringer Ingelheim all relate to the preparation of non-steroidal glucocorticoid receptor agonists useful in the treatment of inflammatory respiratory diseases. The first two applications claim chiral processes for the preparation of these compounds or intermediates useful therein. These provide two alternative routes, respectively, using achiral and chiral reagents. The third application relates to the preparation of a crystalline salt of the preferred compound on a multi-kilogram scale in micronised form.

  20. Chiral lewis Acid catalysis in nitrile oxide cycloadditions. (United States)

    Sibi, Mukund P; Itoh, Kennosuke; Jasperse, Craig P


    We describe examples of highly regio- and enantioselective nitrile oxide cycloadditions to unsaturated alkenes using substoichiometric amounts of a chiral Lewis acid. Pyrazolidinones proved to be effective achiral templates in the cycloadditions providing C-adducts typically in >30:1 selectivity and 80-99% ee. To avoid potential problems involving coordination of the Lewis acid by amine bases, we have devised a novel method for the generation of unstable nitrile oxides from hydroximinoyl chlorides using Amberlyst 21 as the base.

  1. Single organic microtwist with tunable pitch. (United States)

    Chen, Hai-Bo; Zhou, Yan; Yin, Jie; Yan, Jing; Ma, Yuguo; Wang, Lei; Cao, Yong; Wang, Jian; Pei, Jian


    A facile synthesis of previously unknown, well-separated, uniform chiral microstructures from achiral pi-conjugated organic molecules was developed by simple solution process. Detailed characterization and formation mechanism were presented. By simple structure modification or temperature change, the pitch of the chiral structure can be fine tuned. Our result opens new possibilities for novel materials in which structure chirality is coupled to device performance.

  2. Geometrical approach to central molecular chirality: a chirality selection rule


    Capozziello, S.; Lattanzi, A.


    Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...

  3. Spectroscopy of the odd-odd chiral candidate nucleus 102Rh

    Directory of Open Access Journals (Sweden)

    Yavahchova M.S.


    Full Text Available Excited states in 102Rh were populated in the fusion-evaporation reaction 94Zr(11B, 3n102Rh at a beam energy of 36 MeV, using the INGA spectrometer at IUAC, New Delhi. The angular correlations and the electromagnetic character of some of the 03B3-ray transitions observed in 102Rh were investigated in detail. A new candidate for achiral twin band was identified in 102Rh for the first time.

  4. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality. (United States)

    Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun


    Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction-mediated chirality induction and the intrinsic stereogenic center-controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, ( S )-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction-mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.

  5. Impact of Chiral Bioanalytical Methods on the Bioequivalence of Ibuprofen Products Containing Ibuprofen Lysinate and Ibuprofen Base. (United States)

    García-Arieta, Alfredo; Ferrero-Cafiero, Juan Manuel; Puntes, Montse; Gich, Ignasi; Morales-Alcelay, Susana; Tarré, Maite; Font, Xavier; Antonijoan, Rosa Maria


    The purpose was to assess the impact of the use of a chiral bioanalytical method on the conclusions of a bioequivalence study that compared two ibuprofen suspensions with different rates of absorption. A comparison of the conclusion of bioequivalence between a chiral method and an achiral approach was made. Plasma concentrations of R-ibuprofen and S-ibuprofen were determined using a chiral bioanalytical method; bioequivalence was tested for R-ibuprofen and for S-ibuprofen separately and for the sum of both enantiomers as an approach for an achiral bioanalytical method. The 90% confidence interval (90% CI) that would have been obtained with an achiral bioanalytical method (90% CI: Cmax: 117.69-134.46; AUC0 (t) : 104.75-114.45) would have precluded the conclusion of bioequivalence. This conclusion cannot be generalized to the active enantiomer (90% CI: Cmax : 103.36-118.38; AUC0 (t) : 96.52-103.12), for which bioequivalence can be concluded, and/or the distomer (90% CI: Cmax : 132.97-151.33; AUC0 (t) : 115.91-135.77) for which a larger difference was observed. Chiral bioanalytical methods should be required when 1) the enantiomers exhibit different pharmacodynamics and 2) the exposure (AUC or Cmax ) ratio of enantiomers is modified by a difference in the rate of absorption. Furthermore, the bioequivalence conclusion should be based on all enantiomers, since the distomer(s) might not be completely inert, in contrast to what is required in the current regulatory guidelines. In those cases where it is unknown if the ratio between enantiomers is modified by changing the rate of absorption, chiral bioanalytical methods should be employed unless enantiomers exhibit the same pharmacodynamics. Chirality 28:429-433, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Flexoelectricity and piezoelectricity: the reason for the rich variety of phases in antiferroelectric smectic liquid crystals. (United States)

    Cepic, M; Zeks, B


    The free energy of antiferroelectric smectic liquid crystals which takes into account polar order explicitly is presented. Steric, van der Waals, piezoelectric, and flexoelectric interactions to the nearest layers, and dipolar electrostatic interactions to the nearest and to the next-nearest layers, induce indirect tilt interactions with chiral and achiral properties, which extend to the third- and to the fourth-nearest layers. Although the strength of microscopic interactions changes monotonically with decreasing temperature, the effective interlayer interactions change nonmonotonically and give rise to a nonmonotonic change of the modulation period through various phases. Increased chirality changes the phase sequence.

  7. Forging Fluorine-Containing Quaternary Stereocenters by a Light-Driven Organocatalytic Aldol Desymmetrization Process. (United States)

    Cuadros, Sara; Dell'Amico, Luca; Melchiorre, Paolo


    Reported herein is a light-triggered organocatalytic strategy for the desymmetrization of achiral 2-fluoro-substituted cyclopentane-1,3-diketones. The chemistry is based on an intermolecular aldol reaction of photochemically generated hydroxy-o-quinodimethanes and simultaneously forges two adjacent fully substituted carbon stereocenters, with one bearing a stereogenic carbon-fluorine unit. The method uses readily available substrates, a simple chiral organocatalyst, and mild reaction conditions to afford an array of highly functionalized chiral 2-fluoro-3-hydroxycyclopentanones. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Forging Fluorine‐Containing Quaternary Stereocenters by a Light‐Driven Organocatalytic Aldol Desymmetrization Process (United States)

    Cuadros, Sara; Dell'Amico, Luca


    Abstract Reported herein is a light‐triggered organocatalytic strategy for the desymmetrization of achiral 2‐fluoro‐substituted cyclopentane‐1,3‐diketones. The chemistry is based on an intermolecular aldol reaction of photochemically generated hydroxy‐o‐quinodimethanes and simultaneously forges two adjacent fully substituted carbon stereocenters, with one bearing a stereogenic carbon–fluorine unit. The method uses readily available substrates, a simple chiral organocatalyst, and mild reaction conditions to afford an array of highly functionalized chiral 2‐fluoro‐3‐hydroxycyclopentanones. PMID:28746742

  9. Magnetoelectronic properties of chiral carbon nanotubes and tori

    International Nuclear Information System (INIS)

    Shyu, F L; Tsai, C C; Lee, C H; Lin, M F


    Magnetoelectronic properties of chiral carbon nanotubes and toroids are studied for any magnetic field. They are sensitive to the changes in the magnitude and the direction of the magnetic field, as well as the chirality. The important differences between chiral and achiral carbon nanotubes include band symmetry, band curvature, band crossing, band-edge state, state degeneracy, band spacing, energy gap, and semiconductor-metal transition. Carbon tori also exhibit the strong chirality dependence on the field modulation of discrete states. Chiral carbon tori might differ from chiral carbon nanotubes in energy-gap modulation, density of states, and state degeneracy

  10. Déchets solides encombrants les plages d'Annaba Rabah Chaouch ...

    African Journals Online (AJOL)

    Rachid, Rizi amor, la caroube, Réfés zahouan, Belvédère et Ain Achir. Après avoir photographié les sites à l'aide d'un appareil à photographier numérique ..... 3. la mise en œuvre d'une stratégie qui développe les activités de recyclage - valorisation par un système de reprise, de recyclage et de valorisation des déchets et.

  11. Enantioselective biocatalytic hydrolysis of ß-aminonitriles to ß-amino-amides using Rhodococcus rhodochrous ATCC BAA-870

    CSIR Research Space (South Africa)

    Chhiba, V


    Full Text Available . ?Current address: School of Chemistry, University of the Witwatersrand, PO Wits 2050, South Africa. *Corresponding author. CSIR Biosciences, Private bag X2, Modderfontein, 1645, South Africa. Tel +27-82-467- 6209. E-mail address: dbrady... of the achiral ?-alanine from the respective nitrile, and found that conversion proceeded better at pH 7.5 than pH 6.0, although higher a pH was not tested. The aryl methyl substituted nitrile had a maximum enantiomeric ratio (E) of 7.7 and the amide of 4...

  12. Déchets solides encombrants les plages d'Annaba | Chaouch ...

    African Journals Online (AJOL)

    Nos résultats montrent que les verres et les métaux viennent en 1ère position avec respectivement 32,84% et 32,53 % puis on a les plastiques avec 14,17%, les bois et dérivés 13,88 %, les diverses structures en papier avec 3,32% et enfin les textiles avec 3,26%. La plage Ain-Achir est la plus polluée avec 10,59 Kg/m2 de ...

  13. Determination of molar heats of absorption of enantiomers into thin chiral coatings by combined IC-calorimetric and microgravimetric (QMB) measurements

    International Nuclear Information System (INIS)

    Lerchner, J.; Kirchner, R.; Seidel, J.; Waehlisch, D.; Wolf, G.; Koenig, W.A.; Lucklum, R.


    A combination of microgravimetric and microcalorimetric measurements was developed for the investigation of enantioselective gas-surface interaction. The sorption behaviour of the two enantiomers of methyl-2-chloropropionate was investigated at polydimethylsiloxane (PDMS) as an achiral receptor and octakis (3-O-butanoyl-2,6-di-O-n-pentyl)-γ-cyclodextrin (Lipodex E[reg]) as a chiral receptor. The microgravimetric and microcalorimetric results are described by a suitable thermodynamic model providing the thermodynamic data of the absorption process. These data are discussed in terms of the mechanism of chiral recognition and compared to literature data derived from gas chromatographic results by the van't Hoff method

  14. Super/subcritical fluid chromatography with packed columns: state of the art and applications

    Directory of Open Access Journals (Sweden)

    Carla Grazieli Azevedo da Silva


    Full Text Available Separations using supercritical fluid chromatography (SFC with packed columns have been re-discovered and explored in recent years. SFC enables fast and efficient separations and, in some cases, gives better results than high performance liquid chromatography (HPLC. This paper provides an overview of recent advances in SFC separations using packed columns for both achiral and chiral separations. The most important types of stationary phases used in SFC are discussed as well as the most critical parameters involved in the separations and some recent applications.

  15. Electro-optic studies of the flexoelectric effect in chiral nematic liquid crystals

    International Nuclear Information System (INIS)

    Musgrave, B.


    With the advent of global telecommunications networks and the Internet, the development of portable display technology has gained a new impetus. Liquid crystal devices have played a major role in this area, most conspicuously as displays in laptop computers. To date, these liquid crystalline devices have been generally based on the rather slow (∼ 30 ms) dielectric response of the achiral nematic liquid crystal phase, although more expensive devices based on the faster ( -1 m -1 , and are the highest measured to date: the highest value previously published is 0.12 C N -1 m -1 , measured for the commercial mixture TM216. In order to interpret the effect of the bimesogens' molecular structure, achiral nematic monomesogens and bimesogens have been doped with chiral additives and the resultant mixtures' flexoelectro-optic properties have been analysed. From this work it has been possible to determine that the polar cyanobiphenyl group is the key to the strong response in the estradiol-cyanobiphenyl materials. In conclusion, a recommendation is made, for the first time, for a general molecular structure likely to exhibit a strong flexoelectro-optic response: namely, bimesogenic materials composed of highly polar end groups separated by a flexible spacer. (author)

  16. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations. (United States)

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A


    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  17. Polar order in nanostructured organic materials (United States)

    Sayar, M.; Olvera de la Cruz, M.; Stupp, S. I.


    Achiral multi-block liquid crystals are not expected to form polar domains. Recently, however, films of nanoaggregates formed by multi-block rodcoil molecules were identified as the first example of achiral single-component materials with macroscopic polar properties. By solving an Ising-like model with dipolar and asymmetric short-range interactions, we show here that polar domains are stable in films composed of aggregates as opposed to isolated molecules. Unlike classical molecular systems, these nanoaggregates have large intralayer spacings (a approx 8 nm), leading to a reduction in the repulsive dipolar interactions which oppose polar order within layers. In finite-thickness films of nanostructures, this effect enables the formation of polar domains. We compute exactly the energies of the possible structures consistent with the experiments as a function of film thickness at zero temperature (T). We also provide Monte Carlo simulations at non-zero T for a disordered hexagonal lattice that resembles the smectic-like packing in these nanofilms.


    Directory of Open Access Journals (Sweden)

    M. V. Mukhina


    Full Text Available Here, we report the investigation of mechanism of chiral molecular recognition of cysteine biomolecules by chiral CdSe and CdS semiconductor nanocrystals. To observe chiral recognition process, we prepared enantioenriched ensembles of the nanocrystals capped with achiral ligand. The enantioenriched samples of intrinsically chiral CdSe quantum dots were prepared by separation of initial racemic mixture of the nanocrystals using chiral phase transfer from chloroform to water driven by L- and D-cysteine. Chiral molecules of cysteine and penicillamine were substituted for achiral molecules of dodecanethiol on the surfaces of CdSe and CdS samples, respectively, via reverse phase transfer from water to chloroform. We estimated an efficiency of the hetero- (d-L or l-D and homocomplexes (l-L formation by comparing the extents of corresponding complexing reactions. Using circular dichroism spectroscopy data we show an ability of nanocrystals enantiomers to discriminate between left-handed and right-handed enantiomers of biomolecules via preferential formation of heterocomplexes. Development of approaches for obtaining chiral nanocrystals via chiral phase transfer offers opportunities for investigation of molecular recognition at the nano/bio interfaces.

  19. Synthesis of novel room temperature chiral ionic liquids: application as reaction media for the heck arylation of aza-endocyclic acrylates

    Energy Technology Data Exchange (ETDEWEB)

    Pastre, Julio C.; Correia, Carlos R.D., E-mail:, E-mail: roque@iqm.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica; Genisson, Yves [Universite Paul Sabatier, Toulouse (France). Lab. de Synthese et Physicochimie des Molecules d' Interet Biologique; Saffon, Nathalie [Universite Paul Sabatier, Toulouse (France). Structure federative toulousaine en chimie moleculaire (SFTCM); Dandurand, Jany [Universite Paul Sabatier, Toulouse (France). Lab. de Physique des Polymeres


    New achiral and chiral RTILs were prepared using novel and/or optimized synthetic routes. These new series of imidazolinium, imidazolium, pyridinium and nicotine-derived ionic liquids were fully characterized including differential scanning calorimetry (DSC) analysis. The performance of these achiral and chiral room temperature ionic liquids (RTILs) was demonstrated by means of the Heck arylation of endocyclic acrylates employing arenediazonium salts and aryl iodides. The Heck arylations performed in the presence of these ionic entities, either as a solvent or as an additive, were effective leading to complete conversion of the substrate and good to excellent yield of the Heck adduct. In spite of the good performances, no asymmetric induction was observed in any of the cases studied. Two new diastereoisomeric NHC-palladium complexes were prepared in good yields from a chiral imidazolium salt and their structure characterized by X-ray diffraction. Overall, the Heck arylations employing arenediazonium tetrafluoroborates in RTILs were more effective than the traditional protocols employing aryl iodides in terms of reactivity and yields. (author)

  20. Universal spin-momentum locked optical forces

    Energy Technology Data Exchange (ETDEWEB)

    Kalhor, Farid [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Thundat, Thomas [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Jacob, Zubin, E-mail: [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Birck Nanotechnology Center, Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)


    Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE{sub 11} mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.

  1. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    International Nuclear Information System (INIS)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui; Du Yu


    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  2. A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding. (United States)

    Lv, Kai; Qin, Long; Wang, Xiufeng; Zhang, Li; Liu, Minghua


    Chirality transfer is an interesting phenomenon in Nature, which represents an important step to understand the evolution of chiral bias and the amplification of the chirality. In this paper, we report the chirality transfer via the entanglement of the alkyl chains between chiral gelator molecules and achiral amphiphilic Schiff base. We have found that although an achiral Schiff base amphiphile could not form organogels in any kind of organic solvents, it formed co-organogels when mixed with a chiral gelator molecule. Interestingly, the chirality of the gelator molecules was transferred to the Schiff base chromophore in the mixed co-gels and there was a maximum mixing ratio for the chirality transfer. Furthermore, the supramolecular chirality was also produced based on a dynamic covalent chemistry of an imine formed by the reaction between an aldehyde and an amine. Such a covalent bond of imine was formed reversibly depending on the pH variation. When the covalent bond was formed the chirality transfer occurred, when it was destroyed, the transfer stopped. Thus, a supramolecular chiroptical switch is obtained based on supramolecular chirality transfer and dynamic covalent chemistry.

  3. Circularly Polarized Light with Sense and Wavelengths To Regulate Azobenzene Supramolecular Chirality in Optofluidic Medium. (United States)

    Wang, Laibing; Yin, Lu; Zhang, Wei; Zhu, Xiulin; Fujiki, Michiya


    Circularly polarized light (CPL) as a massless physical force causes absolute asymmetric photosynthesis, photodestruction, and photoresolution. CPL handedness has long been believed to be the determining factor in the resulting product's chirality. However, product chirality as a function of the CPL handedness, irradiation wavelength, and irradiation time has not yet been studied systematically. Herein, we investigate this topic using achiral polymethacrylate carrying achiral azobenzene as micrometer-size aggregates in an optofluidic medium with a tuned refractive index. Azobenzene chirality with a high degree of dissymmetry ratio (±1.3 × 10 -2 at 313 nm) was generated, inverted, and switched in multiple cycles by irradiation with monochromatic incoherent CPL (313, 365, 405, and 436 nm) for 20 s using a weak incoherent light source (≈ 30 μW·cm -2 ). Moreover, the optical activity was retained for over 1 week in the dark. Photoinduced chirality was swapped by the irradiating wavelength, regardless of whether the CPL sense was the same. This scenario is similar to the so-called Cotton effect, which was first described in 1895. The tandem choice of both CPL sense and its wavelength was crucial for azobenzene chirality. Our experimental proof and theoretical simulation should provide new insight into the chirality of CPL-controlled molecules, supramolecules, and polymers.

  4. On chirality transfer in electron donor-acceptor complexes. A prediction for the sulfinimine···BF3 system. (United States)

    Rode, Joanna E; Dobrowolski, Jan Cz


    Stabilization energies of the electron donor-acceptor sulfinimine···BF(3) complexes calculated at either the B3LYP/aug-cc-pVTZ or the MP2/aug-cc-pVTZ level do not allow to judge, whether the N- or O-atom in sulfinimine is stronger electron-donor to BF(3) . The problem seems to be solvable because chirality transfer phenomenon between chiral sulfinimine and achiral BF(3) is expected to be vibrational circular dichroism (VCD) active. Moreover, the bands associated with the achiral BF(3) molecule are predicted to be the most intense in the entire spectrum. However, the VCD band robustness analyses show that most of the chirality transfer modes of BF(3) are unreliable. Conversely, variation of VCD intensity with change of intermolecular distance, angle, and selected dihedrals between the complex partners shows that to establish the robustness of chirality transfer mode. It is also necessary to determine the influence of the potential energy surface (PES) shape on the VCD intensity. At the moment, there is still no universal criterion for the chirality transfer mode robustness and the conclusions formulated based on one system cannot be directly transferred even to a quite similar one. However, it is certain that more attention should be focused on relation of PES shape and the VCD mode robustness problem. Copyright © 2011 Wiley Periodicals, Inc.

  5. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail:, E-mail: [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)


    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  6. Globally homochiral assembly of two-dimensional molecular networks triggered by co-absorbers. (United States)

    Chen, Ting; Yang, Wen-Hong; Wang, Dong; Wan, Li-Jun


    Understanding the chirality induction and amplification processes, and the construction of globally homochiral surfaces, represent essential challenges in surface chirality studies. Here we report the induction of global homochirality in two-dimensional enantiomorphous networks of achiral molecules via co-assembly with chiral co-absorbers. The scanning tunnelling microscopy investigations and molecular mechanics simulations demonstrate that the point chirality of the co-absorbers transfers to organizational chirality of the assembly units via enantioselective supramolecular interactions, and is then hierarchically amplified to the global homochirality of two-dimensional networks. The global homochirality of the network assembly shows nonlinear dependence on the enantiomeric excess of chiral co-absorber in the solution phase, demonstrating, for the first time, the validation of the 'majority rules' for the homochirality control of achiral molecules at the liquid/solid interface. Such an induction and nonlinear chirality amplification effect promises a new approach towards two-dimensional homochirality control and may reveal important insights into asymmetric heterogeneous catalysis, chiral separation and chiral crystallization.

  7. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Scherrer, Arne [Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, von-Danckelmann-Platz 4, 06120 Halle (Germany); Département de Chimie, École Normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, PASTEUR, 24 rue Lhomond, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris (France); Vuilleumier, Rodolphe, E-mail: [Département de Chimie, École Normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, PASTEUR, 24 rue Lhomond, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris (France); Sebastiani, Daniel, E-mail: [Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, von-Danckelmann-Platz 4, 06120 Halle (Germany)


    We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d{sub 2}-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent.

  8. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    International Nuclear Information System (INIS)

    Wei, Feng; Xu, Yanyan; Guo, Yuan; Liu, Shi-lin; Wang, Hongfei


    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG-VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm -1 spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and (25.4±1.3)%, respectively.

  9. Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene Interfaces: Spectral Signatures with Interference Chiral Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Li; Zhang, Yun; Wei, Zhehao; Wang, Hongfei


    We report in this work detailed measurements on the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050cm-1) of the air/liquid interfaces of R-limonene and S-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the equal amount (50/50) racemic mixture show that the enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit spectral signature from chiral response of the Cα-H stretching mode, and spectral signature from prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-limonene to S-limonene, and disappears for the 50/50 racemic mixture. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-limonene and S-limonene, and also surprisingly remains the same for the 50/50 racemic mixture. These results provided detail information in understanding the structure and chirality of molecular interfaces, and demonstrated the sensitivity and potential of SFG-VS as unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface.

  10. Molecular self assembly and chiral recognition of copper octacyanophthalocyanine on Au(111): Interplay of intermolecular and molecule-substrate interactions. (United States)

    Sk, Rejaul; Dhara, Barun; Miller, Joel; Deshpande, Aparna

    Submolecular resolution scanning tunneling microscopy (STM) of copper octacyanophthalocyanine, CuPc(CN)8, at 77 K demonstrates that these achiral molecules form a two dimensional (2D) tetramer-based self-assembly upon evaporation onto an atomically flat Au(111) substrate. They assemble in two different structurally chiral configurations upon adsorption on Au(111). Scanning tunneling spectroscopy (STS),acquired at 77 K, unveils the HOMO and LUMO energy levels of this self-assembly. Voltage dependent STM images show that each molecule in both the structurally chiral configurations individually becomes chiral by breaking the mirror symmetry due to the enhanced intermolecular dipolar coupling interaction at the LUMO energy while the individual molecules remain achiral at the HOMO energy and within the HOMO-LUMO gap. At the LUMO energy, the handedness of the each chiral molecule is decided by the direction of the dipolar coupling interaction in the tetramer unit cell. This preference for LUMO energy indicates that this chirality is purely electronic in nature and it manifests on top of the organizational chirality that is present in the self-assembly independent of the orbital energy. Supported by IISER Pune and DAE-BRNS, India (Project No. 2011/20/37C/17/BRNS).

  11. Molecular dynamics studies and quantification of the effect of chirality on the formation of liquid crystal mesophases

    International Nuclear Information System (INIS)

    Solymosi, Miklos


    Results are presented from theoretical studies and from a series of molecular dynamics simulations undertaken to quantify the effect of chirality on the formation of liquid crystal mesophases. In the theoretical studies we have proposed a scaled chiral index with a formulation which allows comparison to be made between molecules comprising different numbers of atoms. We have undertaken chirality calculations utilizing the proposed scaled chiral index, G 0S , for one optimized static molecular geometry for a range of liquid crystal chiral dopants and ferroelectric liquid crystal molecules. The scaled chiral index, G 0S , allows a rapid calculation to be made of a pseudoscalar quantity which shows a good correlation with the helical twisting power of liquid crystal chiral dopants in a nematic liquid crystal solvent. This could prove a powerful aid in the design of novel dopant molecules where the dopant is rigid and the helical twisting is predominantly a steric effect. The same scaled chirality index, G 0S , calculation for ferroelectric liquid crystal molecules hints at an inverse correlation with spontaneous polarization agreeing with some experimental results. The scaled chiral index is a chemically useful index that can also be decomposed into atomic or functional group contributions, thereby creating a new measure of the asymmetric potential of functional groups and their different possible substitution positions. In the molecular dynamics simulation studies we have investigated two three-site Gay-Berne models, one chiral and the other achiral, each with a rotated central site forming a zigzag shape. In the chiral model one of the end site was additionally rotated out of the plane of the other two sites by a chiral angle θ c . Results from the achiral phase simulations support the theory that steric molecular shape can be associated with a driving force that leads to the smectic A - smectic C phase transition since such a transition was observed in the achiral

  12. Final Technical Report for DOE Grant DE-FG02-03ER15473 ''Molecular Level Design of Heterogeneous Chiral Catalysis''

    International Nuclear Information System (INIS)

    David Sholl; Andrew Gellman


    The production of enantiomerically pure chiral compounds is of great importance in the pharmaceutical industry. Although processes involving chiral catalysis and separations involving solid surfaces are known, the molecular-scale details of these processes are not well understood. This lack of understanding strongly limits the development of new chiral processes. Our collaborative research effort examines several intertwined aspects of chirality and enantioselectivity at catalytically active metal surfaces. At Carnegie Mellon, our efforts focus on the development of chirally imprinted metal powders as materials for chiral columns and the experimental and theoretical study of small chiral molecules adsorbed on well-characterized metal surfaces, both achiral and chiral. These efforts are being performed in close collaboration with our team members at the University of California Riverside and the University of Wisconsin Milwaukee

  13. Template-directed nucleation and growth of CdS nanocrystal: the role of helical and nonhelical nanofibers on their shape and size

    International Nuclear Information System (INIS)

    Bose, Partha Pratim; Banerjee, Arindam


    This study describes the use of chiral nature of synthetic self-assembled nanofibers for nucleation and growth of Cadmium sulfide (CdS) nanocrystals with different sizes and shapes in room temperature. The templates are built by immobilizing a peptide capping agent on the surface of synthetic self-assembled helical or nonhelical nanofibers and CdS nanocrystals were allowed to grow on them. It is observed that there are differences in shapes and sizes of the nanocrystals depending on the chiral nature of the nanofibers on which they were growing. Even the CdS nanocrystals grown on different chiral and achiral nanofibers differ markedly in their photoluminescence properties. Thus, here we introduce a new way of using chirality of nanofibers to nucleate and grow CdS nanocrystals of different shape, size, and optical property.

  14. High frequency conductivity of hot electrons in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Amekpewu, M., E-mail: [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, S.Y. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Musah, R. [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, N.G. [Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Abukari, S.S.; Dompreh, K.A. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana)


    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac–dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons’ source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  15. Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy

    Directory of Open Access Journals (Sweden)

    Jérémy R. Rouxel


    Full Text Available Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. We present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O provide different local windows onto the parity breaking geometry change thus revealing the enantiomer asymmetry.

  16. The stereochemistry of the addition of chlorotitanium enolates of N-acyl oxazolidin-2-ones to 5- and 6- membered N-acyliminium ions

    Directory of Open Access Journals (Sweden)

    Pilli Ronaldo A.


    Full Text Available The stereoselective addition of chiral and achiral titanium enolates derived from the corresponding N-acyl oxazolidin-2-ones to 5- and 6- membered N-acyliminium ions afforded 2-substituted pyrrolidines in moderate to good diastereoisomeric ratio (5:1 to 14:1 while lower diastereoselection was generally observed in the formation of the corresponding 2-substituted piperidines. The stereochemical outcome was found to be modulated by the nature of the cyclic N-acyliminium ion (5- or 6-membered and of its carbamate and by the N-acyl group in the enolate precursor. The preferential lk approach seems to be dictated mainly by the minimization of non-bonding interactions between the N-acyl group in the chlorotitanium (IV enolate and the carbamate and methylene groups in the cyclic N-acyliminium ion.

  17. Acyclic diastereoselection in prochiral radical addition to prochiral olefins. (United States)

    Sibi, Mukund P; Rheault, Tara R; Chandramouli, Sithamalli V; Jasperse, Craig P


    The stereochemical preference (syn or anti) when prochiral radicals add to prochiral acceptors is of fundamental interest. The primary focus of this research was to determine which factors influence the relative stereochemistry between the beta and gamma chiral centers when these are formed concurrently. While moderate diastereoselectivity was found for addition of alkyl (6a-d) and alpha-alkoxy radicals (16a-c) (15:1 anti). Steric influence in alkyl radical additions was difficult to evaluate due to decreased reactivity when using bulky reaction partners; however, more reactive alpha-alkoxy radicals, it was found that increasing steric bulk leads to moderate increases in selectivity. In addition, higher selectivity was observed when employing lanthanide Lewis acids whose environment (reactivity) was modified using achiral additives, suggesting a potentially simple means for selectivity enhancements in radical reactions. Overall these results indicate that significant stereoelectronic effects are necessary to achieve high levels of selectivity in prochiral radical additions to prochiral acceptors.

  18. Solid-Phase Synthesis of RNA Analogs Containing Phosphorodithioate Linkages. (United States)

    Yang, Xianbin


    The oligoribonucleotide phosphorodithioate (PS2-RNA) modification uses two sulfur atoms to replace two non-bridging oxygen atoms at an internucleotide phosphorodiester backbone linkage. Like a natural phosphodiester RNA backbone linkage, a PS2-modified backbone linkage is achiral at phosphorus. PS2-RNAs are highly stable to nucleases and several in vitro assays have demonstrated their biological activity. For example, PS2-RNAs silenced mRNA in vitro and bound to protein targets in the form of PS2-aptamers (thioaptamers). Thus, the interest in and promise of PS2-RNAs has drawn attention to synthesizing, isolating, and characterizing these compounds. RNA-thiophosphoramidite monomers are commercially available from AM Biotechnologies and this unit describes an effective methodology for solid-phase synthesis, deprotection, and purification of RNAs having PS2 internucleotide linkages. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  19. A stereoselective, catalytic strategy for the in-flow synthesis of advanced precursors of rasagiline and tamsulosin. (United States)

    Brenna, Davide; Pirola, Margherita; Raimondi, Laura; Burke, Anthony J; Benaglia, Maurizio


    The diastereoselective, trichlorosilane-mediate reduction of imines, bearing different and removable chiral auxiliaries, in combination either with achiral bases or catalytic amounts of chiral Lewis bases, was investigated to afford immediate precursors of chiral APIs (Active Pharmaceutical Ingredients). The carbon-nitrogen double bond reduction was successfully performed in batch and in flow mode, in high yields and almost complete stereocontrol. By this metal-free approach, the formal synthesis of rasagiline and tamsulosin was successfully accomplished in micro(meso) flow reactors, under continuous flow conditions. The results of these explorative studies represent a new, important step towards the development of automated processes for the preparation of enantiopure biologically active compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Gelation induced supramolecular chirality: chirality transfer, amplification and application. (United States)

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua


    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  1. Chiral Recognition and Separation by Chirality-Enriched Metal-Organic Frameworks. (United States)

    Das, Saikat; Xu, Shixian; Ben, Teng; Qiu, Shilun


    Endowed with chiral channels and pores, chiral metal-organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality-enriched MOFs with accessible pores. The ability of the materials to form host-guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed-matrix membranes (MMMs) composed of chirality-enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Carbon Dioxide Bubble-Induced Vortex Triggers Co-Assembly of Nanotubes with Controlled Chirality. (United States)

    Zhang, Ling; Zhou, Laicheng; Xu, Na; Ouyang, Zhenjie


    It is challenging to prepare co-organized nanotube systems with controlled nanoscale chirality in an aqueous liquid flow field. Such systems are responsive to a bubbled external gas. A liquid vortex induced by bubbling carbon dioxide (CO 2 ) gas was used to stimulate the formation of nanotubes with controlled chirality; two kinds of achiral cationic building blocks were co-assembled in aqueous solution. CO 2 -triggered nanotube formation occurs by formation of metastable intermediate structures (short helical ribbons and short tubules) and by transition from short tubules to long tubules in response to chirality matching self-assembly. Interestingly, the chirality sign of these assemblies can be selected for by the circulation direction of the CO 2 bubble-induced vortex during the co-assembly process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Analytic Optimization of Near-Field Optical Chirality Enhancement (United States)


    We present an analytic derivation for the enhancement of local optical chirality in the near field of plasmonic nanostructures by tuning the far-field polarization of external light. We illustrate the results by means of simulations with an achiral and a chiral nanostructure assembly and demonstrate that local optical chirality is significantly enhanced with respect to circular polarization in free space. The optimal external far-field polarizations are different from both circular and linear. Symmetry properties of the nanostructure can be exploited to determine whether the optimal far-field polarization is circular. Furthermore, the optimal far-field polarization depends on the frequency, which results in complex-shaped laser pulses for broadband optimization. PMID:28239617

  4. Transfer of chirality from light to a Disperse Red 1 molecular glass surface. (United States)

    Mazaheri, Leila; Lebel, Olivier; Nunzi, Jean-Michel


    Chiral structures and materials interact with light in well-documented ways, but light can also interact with achiral materials to generate chirality by inscribing its asymmetric configuration on photoresponsive materials, such as azobenzene derivatives. While it is thus possible to generate both two-dimensional (2D) and three-dimensional (3D) chirality, 2D chirality is especially attractive because of its non-reciprocity. Herein, 2D chirality is induced on the surface of a glass-forming Disperse Red 1 derivative by irradiation with a single laser beam, yielding crossed spontaneous surface relief gratings with different pitches. Azimuth rotations up to 10° have been observed, and the absence of 3D chirality has been confirmed. This method thus allows generating non-reciprocal planar chiral objects by a simple, single irradiation process on a thin film of a material that can easily be processed over large areas or onto small objects.

  5. Transfer of chirality from adsorbed chiral molecules to the substrates highlighted by circular dichroism in angle-resolved valence photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Contini, G.; Turchini, S.; Sanna, Simone


    Studies of self-assembled chiral molecules on achiral metallic surfaces have mostly focused on the determination of the geometry of adsorbates and their electronic structure. The aim of this paper is to provide direct information on the chirality character of the system and on the chirality...... transfer from molecules to substrate by means of circular dichroism in the angular distribution of valence photoelectrons for the extended domain of the chiral self-assembled molecular structure, formed by alaninol adsorbed on Cu(100). We show, by the dichroic behavior of a mixed molecule–copper valence...... state, that the presence of molecular chiral domains induces asymmetry in the interaction with the substrate and locally transfers the chiral character to the underlying metal atoms participating in the adsorption process; combined information related to the asymmetry of the initial electronic state...

  6. Stoichiometry-Controlled Inversion of Supramolecular Chirality in Nanostructures Co-assembled with Bipyridines. (United States)

    Wang, Fang; Feng, Chuan-Liang


    To control supramolecular chirality of the co-assembled nanostructures, one of the remaining issues is how stoichiometry of the different molecules involved in co-assembly influence chiral transformation. Through co-assembly of achiral 1,4-bis(pyrid-4-yl)benzene and chiral phenylalanine-glycine derivative hydrogelators, stoichiometry is found to be an effective tool for controlling supramolecular chirality inversion processes. This inversion is mainly mediated by a delicate balance between intermolecular hydrogen bonding interactions and π-π stacking of the two components, which may subtly change the stacking of the molecules, in turn, the self-assembled nanostructures. This study exemplifies a simplistic way to invert the handedness of chiral nanostructures and provide fundamental understanding of the inherent principles of supramolecular chirality. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Meso-Helical Ag(I) Coordination Polymer Based on a Pyridylimidazole Ligand

    International Nuclear Information System (INIS)

    Kang, Youngjin; Kim, Jinho; Lee, Eunji; Park, Ki-Min; Moon, Suk-Hee


    In the fields of material science and metallosupramolecular chemistry, coordination polymers with various helical types have been extensively explored because of their charming structures, and their potential applications in material chemistry. Among them, meso-helical coordination polymers consisting of achiral 1D strands, which are generally constructed by a crystallographic inversion symmetry, are relatively rare. The coordination polymer 1 exhibits a rare one-dimensional meso-helical chain topology constructed by its internal inversion symmetry. The skeleton of this meso-helical chain is preserved up to 300°C. The complexation of silver(I) ion to the free pyim ligand give rise to the enhanced photoluminescence intensity and slightly blue-shifted emission maximum, originated from intraligand (IL) π[BOND]π* transition and rigidochromic effect. Further exploration of complexation of this ligand with other transition metal ions is currently in progress

  8. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart


    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  9. A Submarine Journey: The Pyrrole-Imidazole Alkaloids

    Directory of Open Access Journals (Sweden)

    Alessandra Scolaro


    Full Text Available In his most celebrated tale “The Picture of Dorian Gray”, Oscar Wilde stated that “those who go beneath the surface do so at their peril”. This sentence could be a prophetical warning for the practitioner who voluntarily challenges himself with trying to synthesize marine sponge-deriving pyrrole-imidazole alkaloids. This now nearly triple-digit membered community has been growing exponentially in the last 20 years, both in terms of new representatives and topological complexity − from simple, achiral oroidin to the breathtaking 12-ring stylissadines A and B, each possessing 16 stereocenters. While the biosynthesis and the role in the sponge economy of most of these alkaloids still lies in the realm of speculations, significant biological activities for some of them have clearly emerged. This review will account for the progress in achieving the total synthesis of the more biologically enticing members of this class of natural products.

  10. Reconstruction of mono-vacancies in carbon nanotubes: Atomic relaxation vs. spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Berber, S. [Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571 (Japan)]. E-mail:; Oshiyama, A. [Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571 (Japan)


    We have investigated the reconstruction of mono-vacancies in carbon nanotubes using density functional theory (DFT) geometry optimization and electronic structure calculations, employing a numerical basis set. We considered mono-vacancies in achiral nanotubes with diameter range {approx}4-9A. Contrary to previous tight-binding calculations, our results indicate that mono-vacancies could have several metastable geometries, confirming the previous plane-wave DFT results. Formation energy of mono-vacancies is 4.5-5.5eV, increasing with increasing tube diameter. Net magnetic moment decreases from ideal mono-vacancy value after reconstruction, reflecting the reduction of the number of dangling bonds. In spite of the existence of a dangling bond, ground state of mono-vacancies in semiconducting tubes have no spin polarization. Metallic carbon nanotubes show net magnetic moment for most stable structure of mono-vacancy, except for very small diameter tubes.

  11. Reconstruction of mono-vacancies in carbon nanotubes: Atomic relaxation vs. spin polarization

    International Nuclear Information System (INIS)

    Berber, S.; Oshiyama, A.


    We have investigated the reconstruction of mono-vacancies in carbon nanotubes using density functional theory (DFT) geometry optimization and electronic structure calculations, employing a numerical basis set. We considered mono-vacancies in achiral nanotubes with diameter range ∼4-9A. Contrary to previous tight-binding calculations, our results indicate that mono-vacancies could have several metastable geometries, confirming the previous plane-wave DFT results. Formation energy of mono-vacancies is 4.5-5.5eV, increasing with increasing tube diameter. Net magnetic moment decreases from ideal mono-vacancy value after reconstruction, reflecting the reduction of the number of dangling bonds. In spite of the existence of a dangling bond, ground state of mono-vacancies in semiconducting tubes have no spin polarization. Metallic carbon nanotubes show net magnetic moment for most stable structure of mono-vacancy, except for very small diameter tubes

  12. Off-Center Rotation of CuPc Molecular Rotor on a Bi(111) Surface and the Chiral Feature. (United States)

    Sun, Kai; Tao, Min-Long; Tu, Yu-Bing; Wang, Jun-Zhong


    Molecular rotors with an off-center axis and the chiral feature of achiral CuPc molecules on a semi-metallic Bi(111) surface have been investigated by means of a scanning tunneling microscopy (STM) at liquid nitrogen (LN₂) temperature. The rotation axis of each CuPc molecular rotor is located at the end of a phthalocyanine group. As molecular coverage increases, the CuPc molecules are self-assembled into various nanoclusters and finally into two-dimensional (2D) domains, in which each CuPc molecule exhibits an apparent chiral feature. Such chiral features of the CuPc molecules can be attributed to the combined effect of asymmetric charge transfer between the CuPc and Bi(111) substrate, and the intermolecular van der Waals interactions.

  13. Methodology in structural determination and synthesis of insect pheromone

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Lin


    Full Text Available By means of ethereal washing of insect pheromone glands of female moths, GC-MS detection along with microchemical reactions and electroantennogram (EAG survey, six economically important insect species were targeted for pheromone identification. The discovery of a natural pheromone inhibitor, chemo-selectivity and species isolation by pheromone will be described. The modified triple bond migration and triethylamine liganded vinyl cuprate were applied for achiral pheromone synthesis in double bond formation. Some optically active pheromones and their stereoisomers were synthesized through chiral pool or asymmetric synthesis. Some examples of chiral recognition of insects towards their chiral pheromones will be discussed. A CaH2 and silica gel catalyzed Sharpless Expoxidation Reaction was found in shortening the reaction time.

  14. Controlling the stereochemistry and regularity of butanethiol self-assembled monolayers on Au(111)

    DEFF Research Database (Denmark)

    Yan, Jiawei; Ouyang, Runhai; Jensen, Palle Skovhus


    The rich stereochemistry of the self-assembled monolayers (SAMs) of four butanethiols on Au(111) is described, the SAMs containing up to 12 individual C, S, or Au chiral centers per surface unit cell. This is facilitated by synthesis of enantiomerically pure 2-butanethiol (the smallest unsubstitu......The rich stereochemistry of the self-assembled monolayers (SAMs) of four butanethiols on Au(111) is described, the SAMs containing up to 12 individual C, S, or Au chiral centers per surface unit cell. This is facilitated by synthesis of enantiomerically pure 2-butanethiol (the smallest...... when R is achiral, while adatom binding leads to rectangular plane groups that suppress long-range expression of chirality. Binding as RS• also inhibits the pitting intrinsically associated with adatom binding, desirably producing more regularly structured SAMs....

  15. Stereocontrolled dopamine receptor binding and subtype selectivity of clebopride analogues synthesized from aspartic acid. (United States)

    Einsiedel, Jürgen; Weber, Klaus; Thomas, Christoph; Lehmann, Thomas; Hübner, Harald; Gmeiner, Peter


    Employing the achiral 4-aminopiperidine derivative clebopride as a lead compound, chiral analogues were developed displaying dopamine receptor binding profiles that proved to be strongly dependent on the stereochemistry. Compared to the D1 receptor, the test compounds showed high selectivity for the D2-like subtypes including D2(long), D2(short), D3 and D4. The highest D4 and D3 affinities were observed for the cis-3-amino-4-methylpyrrolidines 3e and the enantiomer ent3e resulting in K(i) values of 0.23 and 1.8 nM, respectively. The benzamides of type 3 and 5 were synthesized in enantiopure form starting from (S)-aspartic acid and its unnatural optical antipode.

  16. Kaempferol-human serum albumin interaction: Characterization of the induced chirality upon binding by experimental circular dichroism and TDDFT calculations (United States)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela


    The experimental induced circular dichroism (ICD) and absorption spectra of the achiral flavonoid kaempferol upon binding to human serum albumin (HSA) were correlated to electronic CD and UV-vis spectra theoretically predicted by time-dependent density functional theory (TDDFT). The neutral and four anionic species of kaempferol in various conformations were considered in the calculations. The appearance of the experimental ICD signal was rationalized in terms of kaempferol binding to HSA in a distorted, chiral, rigid conformation. The comparison between the experimental and simulated spectra allowed for the identification of the kaempferol species that binds to HSA, namely the anion generated by deprotonation of the hydroxyl group in position 7. This approach constitutes a convenient method for evidencing the binding species and for determining its conformation in the binding pocket of the protein. Its main advantage over the UV-vis absorption method lays in the fact that only the bound ligand species gives an ICD signal.

  17. Chiral pyrrolidinium salts derived from menthol as precursor – synthesis and properties

    Directory of Open Access Journals (Sweden)

    Janus Ewa


    Full Text Available Six new chiral pyrolidinium salts with chiral substituent at quaternary nitrogen atom were synthesized with high overall yields from (--menthol as cheap chiral precursor and were identified by NMR and HRMS spectroscopy. It was shown that anion type had the effect on chemical shift of protons adjacent to quaternary nitrogen atom and physical properties of these salts. Salts with NTf2 or NPf2 were in a liquid state at room temperature and characterized with the highest thermal stability among others. Furthermore, chiral ionic liquid with NTf2 anion was used as solvent in Diels-Alder reaction and gave higher yield and stereoselectivity than in ionic liquids with achiral cations. Synthesized chiral salts have the potential as chiral solvents in synthesis and auxiliaries in analytical methods to improve chiral recognition.

  18. Synthesis of the Sugar Moieties (United States)

    Grynkiewicz, Grzegorz; Szeja, Wieslaw

    Biological activity of the anthracycline antibiotics, which have found wide application in clinical oncology, is strongly related to their glycosidic structure. Modification or switch of the saccharide moiety became an important line of new drug discovery and study of their mechanism of action. Natural glycons (sugar moieties) of the anthracycline antibiotics belong to the 2,6-dideoxypyranose family and their principal representative, daunosamine, is 3-amino-2,3,6-trideoxy- l-lyxo-pyranose. Some newer chemical syntheses of this sugar, from a chiral pool as well as from achiral starting materials, are presented and their capability for scale-up and process development are commented upon. Rational sugar structural modifications, which are either useful for synthetic purposes or offer advantages in experimental therapy of cancer, are discussed from the chemical point of view.

  19. Asymmetric aminolytic kinetic resolution of racemic epoxides using recyclable chiral polymeric Co(III)-salen complexes: a protocol for total utilization of racemic epoxide in the synthesis of (R)-Naftopidil and (S)-Propranolol. (United States)

    Kumar, Manish; Kureshy, Rukhsana I; Shah, Arpan K; Das, Anjan; Khan, Noor-ul H; Abdi, Sayed H R; Bajaj, Hari C


    Chiral polymeric Co(III) salen complexes with chiral ((R)/(S)-BINOL, diethyl tartrate) and achiral (piperazine and trigol) linkers with varying stereogenic centers were synthesized for the first time and used as catalysts for aminolytic kinetic resolution (AKR) of a variety of terminal epoxides and glycidyl ethers to get enantio-pure epoxides (ee, 99%) and N-protected β-amino alcohols (ee, 99%) with quantitative yield in 16 h at RT under optimized reaction conditions. This protocol was also used for the synthesis of two enantiomerically pure drug molecules (R)-Naftopidil (α1-blocker) and (S)-Propranolol (β-blocker) as a key step via AKR of single racemic naphthylglycidyl ether with Boc-protected isoproylamine with 100% epoxide utilization at 1 g level. The catalyst 1 was successfully recycled for a number of times.

  20. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine. (United States)

    Moozeh, Kimia; So, Soon Mog; Chin, Jik


    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Stirring competes with chemical induction in chiral selection of Langmuir monolayer domains

    Directory of Open Access Journals (Sweden)

    Petit-Garrido Nuria


    Full Text Available Chirality, the absence of mirror symmetry, can be equally invoked in relation to physical forces and chemical induction processes, yet a competition between these two types of influences is rarely reported. Here, we employ Langmuir monolayers of azobenzene surfactants as a prototypical self-assembled two-dimensional system in which chiral selection is controlled by the combined independent action of a chiral dopant and vortical stirring. The two effects can be arbitrarily coupled, either constructively or destructively, leading to a situation of perfect compensation. The induced enantiomorphic excess is measured in terms of the statistical imbalance of an ensemble of sub-millimeter monolayer domains, where achiral molecules self-assemble with a well-defined orientational chirality, which is unambiguously resolved using Brewster angle microscopy.

  2. Carbene Transfer Reactions Catalysed by Dyes of the Metalloporphyrin Group

    Directory of Open Access Journals (Sweden)

    Mário M. Q. Simões


    Full Text Available Carbene transfer reactions are very important transformations in organic synthesis, allowing the generation of structurally challenging products by catalysed cyclopropanation, cyclopropenation, carbene C-H, N-H, O-H, S-H, and Si-H insertion, and olefination of carbonyl compounds. In particular, chiral and achiral metalloporphyrins have been successfully explored as biomimetic catalysts for these carbene transfer reactions under both homogeneous and heterogeneous conditions. In this work the use of synthetic metalloporphyrins (MPorph, M = Fe, Ru, Os, Co, Rh, Ir, Sn as homogeneous or heterogeneous catalysts for carbene transfer reactions in the last years is reviewed, almost exclusively focused on the literature since the year 2010, except when reference to older publications was deemed to be crucial.

  3. 1,5-Asymmetric induction in the boron-mediated aldol reaction of β-oxygenated methyl ketones

    International Nuclear Information System (INIS)

    Dias, Luiz C.


    High levels of substrate-based 1,5-stereo induction are obtained in the boron-mediated aldol reactions of β-oxygenated methyl ketones with achiral and chiral aldehydes. Remote induction from the boron enolates gives the 1,5-anti adducts, with the enolate pi-facial selectivity critically dependent upon the nature of the beta-alkoxy protecting group. This 1,5-anti aldol methodology has been strategically employed in the total synthesis of several natural products. At present, the origin of the high level of 1,5-anti induction obtained with the boron enolates is unclear, although a model based on a hydrogen bonding between the alkoxy oxygen and the formyl hydrogen has been recently proposed. (author)

  4. Intrinsic chirality and prochirality at Air/R-(+)- and S-(-)-limonene interfaces: spectral signatures with interference chiral sum-frequency generation vibrational spectroscopy. (United States)

    Fu, Li; Zhang, Yun; Wei, Zhe-Hao; Wang, Hong-Fei


    We report in this work detailed measurements of the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050 cm(-1)) of the air/liquid interfaces of R-(+)-limonene and S-(-)-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the RS racemic mixture (50/50 equal amount mixture), show that the corresponding molecular groups of the R and S enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit a spectral signature from the chiral response of the Cα-H stretching mode, and a spectral signature from the prochiral response of the CH(2) asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-(+)-limonene to S-(-)-limonene surfaces, and disappears for the RS racemic mixture surface. While the prochiral spectral feature of the CH(2) asymmetric stretching mode is the same for R-(+)-limonene and S-(-)-limonene surfaces, and also surprisingly remains the same for the RS racemic mixture surface. Therefore, the structures of the R-(+)-limonene and the S-(-)-limonene at the liquid interfaces are nevertheless not mirror images to each other, even though the corresponding groups have the same tilt angle from the interfacial normal, i.e., the R-(+)-limonene and the S-(-)-limonene at the surface are diastereomeric instead of enantiomeric. These results provide detailed information in understanding the structure and chirality of molecular interfaces and demonstrate the sensitivity and potential of SFG-VS as a unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface. © 2014 Wiley Periodicals, Inc.

  5. Synthesis of Stable and Soluble One-Handed Helical Homopoly(substituted acetylenes without the Coexistence of Any Other Chiral Moieties via Two-Step Polymer Reactions in Membrane State: Molecular Design of the Starting Monomer

    Directory of Open Access Journals (Sweden)

    Takashi Kaneko


    Full Text Available A soluble and stable one-handed helical poly(substituted phenylacetylene without the coexistence of any other chiral moieties was successfully synthesized by asymmetric-induced polymerization of a chiral monomer followed by two-step polymer reactions in membrane state: (1 removing the chiral groups (desubstitution; and (2 introduction of achiral long alkyl groups at the same position as the desubstitution to enhance the solubility of the resulting one-handed helical polymer (resubstitution. The starting chiral monomer should have four characteristic substituents: (i a chiral group bonded to an easily hydrolyzed spacer group; (ii two hydroxyl groups; (iii a long rigid hydrophobic spacer between the chiral group and the polymerizing group; (iv a long achiral group near the chiral group. As spacer group a carbonate ester was selected. The two hydroxyl groups formed intramolecular hydrogen bonds stabilizing a one-handed helical structure in solution before and after the two-step polymer reactions in membrane state. The rigid long hydrophobic spacer, a phenylethynylphenyl group, enhanced the solubility of the starting polymer, and realized effective chiral induction from the chiral side groups to the main chain in the asymmetric-induced polymerization. The long alkyl group near the chiral group avoided shrinkage of the membrane and kept the reactivity of resubstitution in membrane state after removing the chiral groups. The g value (g = ([θ]/3,300/ε for the CD signal assigned to the main chain in the obtained final polymer was almost the same as that of the starting polymer in spite of the absence of any other chiral moieties. Moreover, since the one-handed helical structure was maintained by the intramolecular hydrogen bonds in a solution, direct observation of the one-handed helicity of the final homopolymer has been realized in CD for the solution for the first time.

  6. Two-chiral component microemulsion EKC - chiral surfactant and chiral oil. Part 2: diethyl tartrate. (United States)

    Kahle, Kimberly A; Foley, Joe P


    In this second study on dual-chirality microemulsions containing a chiral surfactant and a chiral oil, a less hydrophobic and lower interfacial tension chiral oil, diethyl tartrate, is employed (Part 1, Foley, J. P. et al.., Electrophoresis, DOI: 10.1002/elps.200600551). Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and diethyl tartrate (D, L, or racemic, 0.88% v/v) were examined as pseudostationary phases (PSPs) for the enantioseparation of six chiral pharmaceutical compounds: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Average efficiencies increased with the addition of a chiral oil to R-DDCV PSP formulations. Modest improvements in resolution and enantioselectivity (alpha(enant)) were achieved with two-chiral-component systems over the one-chiral-component microemulsion. Slight enantioselective synergies were confirmed using a thermodynamic model. Results obtained in this study are compared to those obtained in Part 1 as well as those obtained with chiral MEEKC using an achiral, low-interfacial-tension oil (ethyl acetate). Dual-chirality microemulsions with the more hydrophobic oil dibutyl tartrate yielded, relative to diethyl tartrate, higher efficiencies (100,000-134,000 vs. 80,800-94,300), but lower resolution (1.64-1.91 vs. 2.08-2.21) due to lower enantioselectivities (1.060-1.067 vs. 1.078-1.081). Atenolol enantiomers could not be separated with the dibutyl tartrate-based microemulsions but were partially resolved using diethyl tartrate microemulsions. A comparable single-chirality microemulsion based on the achiral oil ethyl acetate yielded, relative to diethyl tartrate, lower efficiency (78 300 vs. 91 600), higher resolution (1.99 vs. 1.83), and similar enantioselectivities.

  7. Diastereo- and enantioseparation of a Nα-Boc amino acid with a zwitterionic quinine-based stationary phase: Focus on the stereorecognition mechanism

    International Nuclear Information System (INIS)

    Ianni, Federica; Carotti, Andrea; Marinozzi, Maura; Marcelli, Gloria; Di Michele, Alessandro; Sardella, Roccaldo; Lindner, Wolfgang; Natalini, Benedetto


    Highlights: • The ZWIX(+) column allowed getting the Boc-Aph(Hor)-OH (1) isomeric peaks resolved. • ECD studies and molecular dynamic simulations allowed to assign the elution order. • Molecular descriptors revealed the active role of achiral elements of the CSP. - Abstract: A chiral chromatography method enabling the simultaneous diastereo- and enantioseparation of N α -Boc-N 4 -(hydroorotyl)-4-aminophenylalanine [Boc-Aph(Hor)-OH, 1] was optimized with a quinine-based zwitterionic stationary phase. The polar-ionic eluent system consisting of ACN:MeOH:water—49.7:49.7:0.6 (v/v/v) with formic acid (4.0 mM) and diethylamine (2.5 mM), allowed the successful separation of the four acid stereoisomers: α D,D-/D,L-1 = 1.08; α D,L-/L,D-1 = 1.08; α L,D-/L,L-1 = 1.40. According to the in-house developed synthetic procedure and the recorded electronic circular dichroism spectra, the following stereoisomeric elution order was readily established in the optimal chromatographic conditions: D,D-1 < D,L-1 < L,D-1 < L,L-1. With the aim of better understanding the molecular basis of the retention behaviour of the four stereoisomers in the employed chromatographic system and conditions, a computational protocol consisting in molecular dynamics simulations was applied. The use of the three descriptors INTER (in kcal mol −1 , encoding for the interaction energy between the selector SO unit and the whole system), INTER-SA (in kcal mol −1 , encoding for the interaction energy between SO and the sole selectand SA), and SELF (in kcal mol −1 , encoding for the conformational energy of SA relative to its minimum energy registered by the collected snapshots) revealed the active role of achiral sub-structural elements of the chiral stationary phase and eluent components in the overall stereorecognition mechanism

  8. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases. (United States)

    Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline


    Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Revisiting polarimetry near the isotropic point of an optically active, non-enantiomorphous, molecular crystal. (United States)

    Martin, Alexander T; Tan, Melissa; Nichols, Shane M; Timothy, Emily; Kahr, Bart


    Accurate polarimetric measurements of the optical activity of crystals along low symmetry directions are facilitated by isotropic points, frequencies where dispersion curves of eigenrays cross and the linear birefringence disappears. We report here the optical properties and structure of achiral, uniaxial (point group D 2d ) potassium trihydrogen di-(cis-4-cyclohexene-1,2-dicarboxylate) dihydrate, whose isotropic point was previously detected (S. A. Kim, C. Grieswatch, H. Küppers, Zeit. Krist. 1993; 208:219-222) and exploited for a singular measurement of optical activity normal to the optic axis. The crystal structure associated with the aforementioned study was never published. We report it here, confirming the space group assignment I 4¯c2, along with the frequency dependence of the fundamental optical properties and the constitutive tensors by fitting optical dispersion relations to measured Mueller matrix spectra. k-Space maps of circular birefringence and of the Mueller matrix near the isotropic wavelength are measured and simulated. The signs of optical rotation are correlated with the absolute crystallographic directions. © 2018 Wiley Periodicals, Inc.

  10. Phonon spectra, electronic, and thermodynamic properties of WS2 nanotubes. (United States)

    Evarestov, Robert A; Bandura, Andrei V; Porsev, Vitaly V; Kovalenko, Alexey V


    Hybrid density functional theory calculations are performed for the first time on the phonon dispersion and thermodynamic properties of WS 2 -based single-wall nanotubes. Symmetry analysis is presented for phonon modes in nanotubes using the standard (crystallographic) factorization for line groups. Symmetry and the number of infra-red and Raman active modes in achiral WS 2 nanotubes are given for armchair and zigzag chiralities. It is demonstrated that a number of infrared and Raman active modes is independent on the nanotube diameter. The zone-folding approach is applied to find out an impact of curvature on electron and phonon band structure of nanotubes rolled up from the monolayer. Phonon frequencies obtained both for layers and nanotubes are used to compute the thermal contributions to their thermodynamic functions. The temperature dependences of energy, entropy, and heat capacity of nanotubes are estimated with respect to those of the monolayer. The role of phonons in the stability estimation of nanotubes is discussed based on Helmholtz free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Self-Assembly, Interfacial Nanostructure, and Supramolecular Chirality of the Langmuir-Blodgett Films of Some Schiff Base Derivatives without Alkyl Chain

    Directory of Open Access Journals (Sweden)

    Tifeng Jiao


    Full Text Available A special naphthyl-containing Schiff base derivative, N,N′-bis(2-hydroxy-1-naphthylidene-1,2-phenylenediamine, was synthesized, and its coordination with various metal ions in situ at the air/water interface has been investigated. Although the ligand contains no alkyl chain, it can be spread on water surface. When metal ions existed in the subphase, an interfacial coordination between the ligand and different metal ions occurred in the spreading film, while different Nanostructures were fabricated in the monolayers. Interestingly to note that among various metal ions, only the in situ coordination-induced Cu(II-complex film showed supramolecular chirality, although the multilayer films from the ligand or preformed complex are achiral. The chirality of the in situ Cu(II-coordinated Langmuir film was developed due to the special distorted coordination reaction and the spatial limitation at the air/water interface. A possible organization mechanism at the air/water interface was suggested.

  12. Supramolecular ribbons from amphiphilic trisamides self-assembly. (United States)

    García, Fátima; Buendía, Julia; Sánchez, Luis


    Two amphiphilic C(3)-symmetric OPE-based trisamides have been synthesized and their self-assembling features investigated in solution and on surface. Variable-temperature UV-vis experiments demonstrate the cooperative supramolecular polymerization of these trisamides that self-assemble by the operation of triple C═O···H-N H-bonding arrays between the amide functional groups and π-π stacking between the aromatic units. The helical organization of the aggregates has been demonstrated by circular dichroism at a concentration as low as 1 × 10(-4) M in acetonitrile. In the reported trisamides, the large hydrophobic aromatic core acts as a solvophobic module impeding the interaction between the polar TEG chains and the amide H-bonds. This strategy makes unnecessary the separation of the amide functional groups to the polar tri(ethylene glycol) chains by paraffinic fragments. Achiral trisamide 1 self-assembles into flat ribbon-like structures that experience an amplification of chirality by the addition of a small amount of chiral 2 that generates twisted stripes.

  13. The first N-terminal unprotected (Gly-Aib)n peptide: H-Gly-Aib-Gly-Aib-OtBu. (United States)

    Gessmann, Renate; Brückner, Hans; Petratos, Kyriacos


    Glycine (Gly) is incorporated in roughly half of all known peptaibiotic (nonribosomally biosynthesized antibiotic peptides of fungal origin) sequences and is the residue with the greatest conformational flexibility. The conformational space of Aib (α-aminoisobutyric acid) is severely restricted by the second methyl group attached to the Cα atom. Most of the crystal structures containing Aib are N-terminal protected. Deprotection of the N- or C-terminus of peptides may alter the hydrogen-bonding scheme and/or the structure and may facilitate crystallization. The structure reported here for glycyl-α-aminoisobutyrylglycyl-α-aminoisobutyric acid tert-butyl ester, C16H30N4O5, describes the first N-terminal-unprotected (Gly-Aib)n peptide. The achiral peptide could form an intramolecular hydrogen bond between the C=O group of Gly1 and the N-H group of Aib4. This hydrogen bond is found in all tetrapeptides and N-terminal-protected tripeptides containing Aib, apart from one exception. In the present work, this hydrogen bond is not observed (N...O = 5.88 Å). Instead, every molecule is hydrogen bonded to six other symmetry-related molecules with a total of eight hydrogen bonds per molecule. The backbone conformation starts in the right-handed helical region (and the left-handed helical region for the inverted molecule) and reverses the screw sense in the last two residues.

  14. Mirror Symmetry Breaking in Helical Polysilanes: Preference between Left and Right of Chemical and Physical Origin

    Directory of Open Access Journals (Sweden)

    Michiya Fujiki


    Full Text Available From elemental particles to human beings, matter is dissymmetric with respect to mirror symmetry. In 1860, Pasteur conjectured that biomolecular handedness— homochirality—may originate from certain inherent dissymmetric forces existing in the universe. Kipping, a pioneer of organosilicon chemistry, was interested in the handedness of sodium chlorate during his early research life. Since Kipping first synthesized several Si-Si bonded oligomers bearing phenyl groups, Si-Si bonded high polymers carrying various organic groups—polysilanes—can be prepared by sodium-mediated condensation of the corresponding organodichlorosilanes. Among these polysilanes, optically active helical polysilanes with enantiomeric pairs of organic side groups may be used for testing the mirror symmetry-breaking hypothesis by weak neutral current (WNC origin in the realm of chemistry and material science. Several theoretical studies have predicted that WNC-existing chiral molecules with stereogenic centers and/or stereogenic bonds allow for distinguishing between image and mirror image molecules. Based on several amplification mechanisms, theorists claimed that minute differences, though still very subtle, may be detectable by precise spectroscopic and physicochemical measurements if proper chiral molecular pairs were employed. The present paper reports comprehensively an inequality between six pairs of helical polysilane high polymers, presumably, detectable by (chiroptical and achiral 29Si-/13C- NMR spectra, and viscometric measurements.

  15. Total Syntheses of (-)-Mersicarpine, (-)-Scholarisine G, (+)-Melodinine E, (-)-Leuconoxine, (-)-Leuconolam, (-)-Leuconodine A, (+)-Leuconodine F, and (-)-Leuconodine C: Self-Induced Diastereomeric Anisochronism (SIDA) Phenomenon for Scholarisine G and Leuconodines A and C. (United States)

    Xu, Zhengren; Wang, Qian; Zhu, Jieping


    Enantioselective total syntheses of title natural products from a common cyclohexenone derivative (S)-18 were reported. Ozonolysis of (S)-18 afforded a stable diketo ester (R)-17 that was subsequently converted to two skeletally different natural products, i.e., (-)-mersicarpine (8) with a [] fused tetracyclic ring system and (-)-scholarisine G (9) with a [] fused pentacyclic skeleton, respectively. The postcyclization diversification was realized by taking advantage of the facile conversion of (+)-melodinine E (6) to N-acyliminium ion 7, from which a hydroxy group was selectively introduced to the C6, C7, C10 and the central C21 position of diazafenestrane system, leading to (-)-leuconodine A (11), (+)-leuconodine F (12), (-)-scholarisine G (9), (-)-leuconodine C (13), and skeletally different (-)-leuconolam (5). Furthermore, an unprecedented non-natural oxabridged oxadiazafenestrane 68 was formed by oxidation of (+)-melodinine E (6). During the course of this study, a strong self-induced diastereomeric anisochronism (SIDA) phenomenon was observed for scholarisine G (9), leuconodines A (11) and C (13). X-ray structures of both the racemic and the enantiopure natural products 9, 11, and 13 were obtained. The different crystal packing of these two forms nicely explained the chemical shift differences observed in the (1)H NMR spectra of the racemic and the enantio-enriched compounds in an achiral environment.

  16. Chiroptical methods in a wide wavelength range for obtaining Ln3+ complexes with circularly polarized luminescence of practical interest. (United States)

    Górecki, Marcin; Carpita, Luca; Arrico, Lorenzo; Zinna, Francesco; Di Bari, Lorenzo


    We studied enantiopure chiral trivalent lanthanide (Ln3+ = La3+, Sm3+, Eu3+, Gd3+, Tm3+, and Yb3+) complexes with two fluorinated achiral tris(β-diketonate) ligands (HFA = hexafluoroacetylacetonate and TTA = 2-thenoyltrifluoroacetonate), incorporating a chiral bis(oxazolinyl)pyridine (PyBox) unit as a neutral ancillary ligand, by the combined use of optical and chiroptical methods, ranging from UV to IR both in absorption and circular dichroism (CD), and including circularly polarized luminescence (CPL). Ultimately, all the spectroscopic information is integrated into a total and a chiroptical super-spectrum, which allows one to characterize a multidimensional chemical space, spanned by the different Ln3+ ions, the acidity and steric demand of the diketone and the chirality of the PyBox ligand. In all cases, the Ln3+ ions endow the systems with peculiar chiroptical properties, either allied to f-f transitions or induced by the metal onto the ligand. In more detail, we found that Sm3+ complexes display interesting CPL features, which partly superimpose and partly integrate the more common Eu3+ properties. Especially, in the context of security tags, the pair Sm/Eu may be a winning choice for chiroptical barcoding.

  17. Chiral Molecule-Enhanced Extinction Ratios of Quantum Dots Coupled to Random Plasmonic Structures. (United States)

    Bezen, Lior; Yochelis, Shira; Jayarathna, Dilhara; Bhunia, Dinesh; Achim, Catalina; Paltiel, Yossi


    Devices based on self-assembled hybrid colloidal quantum dots (CQDs) coupled with specific organic linker molecules are a promising way to simply realize room-temperature, spectrally tunable light detectors. Nevertheless, this type of devices usually has low quantum efficiency. Plasmonics has been shown as an efficient tool in guiding and confining light at nanoscale dimensions. As plasmonic modes exhibit highly confined fields, they locally increase light-matter interactions and consequently enhance the performance of CQD-based photodetectors. Recent publications presented experimental results of large extinction enhancement from a monolayer of CQDs coupled to random gold nanoislands using a monolayer of organic alkyl linkers. We report here that a twofold larger extinction enhancement in the visible spectrum is observed when a monolayer of helical chiral molecules connects the CQDs to the gold structure instead of a monolayer of achiral linkers. We also show that this effect provides insight into the chirality of the molecules within the monolayer. In future work, we plan to evaluate the potential of these results to be used in the construction of a more efficient and sensitive photon detector based on surface QDs, as well as to supply a simple way to map the chirality of a single chiral monolayer.

  18. Photoinduced electro-optics measurements of biosilica transformation to cristobalite

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Ido [Department of Chemistry and the Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel); Aluma, Yaniv; Ilan, Micha [Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Kityk, Iwan [Institute of Electronic Systems, Faculty of Electrical Engineering, Czestochowa University, Czestochowa 42-201 (Poland); Mastai, Yitzhak, E-mail: [Department of Chemistry and the Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel)


    In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown that natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica. - Graphical abstract: The phase transformation of biosilica from marine sponges to Cristobalite under thermal treatment was investigated using photoinduced electro optics measurements. The figure shows the changes of the electro-optic coefficient of cristobalite and biosilica. - Highlights: • We examine phase transformation of biosilica. • We report transition from amorphous biosilica to crystalline Cristobalite. • Biosilica transformation to Cristobalite at temperature of 850 °C. • Biosilica transformation is studied with photoinduced measurements. • We examine changes in the photoinduced linear electro optics properties.

  19. Evaluation of the chiral recognition properties and the column performances of three chiral stationary phases based on cellulose for the enantioseparation of six dihydropyridines by high-performance liquid chromatography. (United States)

    Yu, Jia; Tang, Jing; Yuan, Xiaowei; Guo, Xingjie; Zhao, Longshan


    Separations of six dihydropyridine enantiomers on three commercially available cellulose-based chiral stationary phases (Chiralcel OD-RH, Chiralpak IB, and Chiralpak IC) were evaluated with high-performance liquid chromatography (HPLC). The best enantioseparation of the six chiral drugs was obtained with a Chiralpak IC (250 × 4.6 mm i.d., 5 μm) column. Then the influence of the mobile phase including an alcohol-modifying agent and alkaline additive on the enantioseparation were investigated and optimized. The optimal mobile phase conditions and maximum resolution for every analyte were as follows respectively: n-hexane/isopropanol (85:15, v/v) for nimodipine (R = 5.80) and cinildilpine (R = 5.65); n-hexane/isopropanol (92:8, v/v) for nicardipine (R = 1.76) and nisoldipine (R = 1.92); and n-hexane/isopropanol/ethanol (97:2:1, v/v/v) for felodipine (R = 1.84) and lercanidipine (R = 1.47). Relative separation mechanisms are discussed based on the separation results, and indicate that the achiral parts in the analytes' structure showed an important influence on the separation of the chiral column. © 2017 Wiley Periodicals, Inc.

  20. Stereospecificity of oligonucleotide interactions revisited: no evidence for heterochiral hybridization and ribozyme/DNAzyme activity.

    Directory of Open Access Journals (Sweden)

    Kai Hoehlig

    Full Text Available A major challenge for the application of RNA- or DNA-oligonucleotides in biotechnology and molecular medicine is their susceptibility to abundant nucleases. One intriguing possibility to tackle this problem is the use of mirror-image (l-oligonucleotides. For aptamers, this concept has successfully been applied to even develop therapeutic agents, so-called Spiegelmers. However, for technologies depending on RNA/RNA or RNA/DNA hybridization, like antisense or RNA interference, it has not been possible to use mirror-image oligonucleotides because Watson-Crick base pairing of complementary strands is (thought to be stereospecific. Many scientists consider this a general principle if not a dogma. A recent publication proposing heterochiral Watson-Crick base pairing and sequence-specific hydrolysis of natural RNA by mirror-image ribozymes or DNAzymes (and vice versa prompted us to systematically revisit the stereospecificity of oligonucleotides hybridization and catalytic activity. Using hyperchromicity measurements we demonstrate that hybridization only occurs among homochiral anti-parallel complementary oligonucleotide strands. As expected, achiral PNA hybridizes to RNA and DNA irrespective of their chirality. In functional assays we could not confirm an alleged heterochiral hydrolytic activity of ribozymes or DNAzymes. Our results confirm a strict stereospecificity of oligonucleotide hybridization and clearly argue against the possibility to use mirror-image oligonucleotides for gene silencing or antisense applications.

  1. Predicting the switchable screw sense in fluorene-based polymers. (United States)

    Pietropaolo, Adriana; Wang, Yue; Nakano, Tamaki


    A chirality-switching free-energy landscape was reconstructed on a 43-mer of poly(9,9-dioctylfluoren-2,7-diyl) (PDOF). The simulations were conducted on amorphous silica surface as well as in the vacuum phase for a single chain or for a group of sixteen chains. The achiral-to-chiral transition occurs only on amorphous silica (activation free-energy 35 kcal mol(-1) ), where the enantiomeric (homochiral) basins are detected. This was supported by the experiments where effective chirality induction to PDOF using circularly polarized light (CPL) was attained only for a film deposited on a quartz glass and not for a solution or a suspension. These results indicate that interactions of PDOF with amorphous silica play a crucial role in chirality switching. Importance of chain assembling was also indicated. Theoretical ECD spectra of the enantiomeric basins containing a 51 helix reproduce the experimental spectra. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Deracemization of Racemic Amino Acids Using (R)- and (S)-Alanine Racemase Chiral Analogues as Chiral Converters

    International Nuclear Information System (INIS)

    Paik, Manjeong; Jeon, So Hee; Lee, Wonjae; Kang, Jong Seong; Kim, Kwan Mook


    Our findings show that both (R)- and (S)-ARCA can be practical chiral converters for L- and D-amino acids, respectively, in the deracemization of racemic amino acids. The overall stereoselectivities of both chiral converters are generally greater than 90%. In addition, we developed chiral and achiral HPLC methods for the analysis of stereoselectivity determination. This chromatographic method proved much more accurate and convenient at determining both enantiomer and diastereomer purity than did those previously reported. Deracemization is the stereoselective process of converting a racemate into either a pure enantiomer or a mixture in which one enantiomer is present in excess.1 Previous studies have shown that (S)-alanine racemase chiral analogue (ARCA) [(S)-2-hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde], developed as a chiral convertor compound that imitates the function of alanine racemase, plays an essential role in the stereoselective conversion of amino acid. Since (S)-ARCA showed a higher stability with D-amino acids than with L-amino acids, several L-amino acids were preferentially converted to D-amino acids via (S)-ARCA/D-amino acid imine diastereomer formation. For the deracemization process undertaken in this study, we utilized both (R)-ARCA and (S)-ARCA as chiral converters, which were expected to generate L- and D-amino acids, respectively, from the starting racemic mixtures

  3. Heterobimetallic transition metal/rare earth metal bifunctional catalysis: a Cu/Sm/Schiff base complex for syn-selective catalytic asymmetric nitro-Mannich reaction. (United States)

    Handa, Shinya; Gnanadesikan, Vijay; Matsunaga, Shigeki; Shibasaki, Masakatsu


    The full details of a catalytic asymmetric syn-selective nitro-Mannich reaction promoted by heterobimetallic Cu/Sm/dinucleating Schiff base complexes are described, demonstrating the effectiveness of the heterobimetallic transition metal/rare earth metal bifunctional catalysis. The first-generation system prepared from Cu(OAc)(2)/Sm(O-iPr)(3)/Schiff base 1a = 1:1:1 with an achiral phenol additive was partially successful for achieving the syn-selective catalytic asymmetric nitro-Mannich reaction. The substrate scope and limitations of the first-generation system remained problematic. After mechanistic studies on the catalyst prepared from Sm(O-iPr)(3), we reoptimized the catalyst preparation method, and a catalyst derived from Sm(5)O(O-iPr)(13) showed broader substrate generality as well as higher reactivity and stereoselectivity compared to Sm(O-iPr)(3). The optimal system with Sm(5)O(O-iPr)(13) was applicable to various aromatic, heteroaromatic, and isomerizable aliphatic N-Boc imines, giving products in 66-99% ee and syn/anti = >20:1-13:1. Catalytic asymmetric synthesis of nemonapride is also demonstrated using the catalyst derived from Sm(5)O(O-iPr)(13).

  4. Energetic selection of topology in ferredoxins.

    Directory of Open Access Journals (Sweden)

    J Dongun Kim

    Full Text Available Models of early protein evolution posit the existence of short peptides that bound metals and ions and served as transporters, membranes or catalysts. The Cys-X-X-Cys-X-X-Cys heptapeptide located within bacterial ferredoxins, enclosing an Fe₄S₄ metal center, is an attractive candidate for such an early peptide. Ferredoxins are ancient proteins and the simple α+β fold is found alone or as a domain in larger proteins throughout all three kingdoms of life. Previous analyses of the heptapeptide conformation in experimentally determined ferredoxin structures revealed a pervasive right-handed topology, despite the fact that the Fe₄S₄ cluster is achiral. Conformational enumeration of a model CGGCGGC heptapeptide bound to a cubane iron-sulfur cluster indicates both left-handed and right-handed folds could exist and have comparable stabilities. However, only the natural ferredoxin topology provides a significant network of backbone-to-cluster hydrogen bonds that would stabilize the metal-peptide complex. The optimal peptide configuration (alternating α(L,α(R is that of an α-sheet, providing an additional mechanism where oligomerization could stabilize the peptide and facilitate iron-sulfur cluster binding.

  5. Creation of Optically Pure Crystals from a Meso-Type Gold(I) Metalloligand with d- and l-Amino Acids: A Coordination Trick. (United States)

    Itai, Takuma; Kojima, Tatsuhiro; Kuwamura, Naoto; Konno, Takumi


    A unique example of a coordination system that creates optically pure crystals from a meso compound with d- and l-amino acids is reported. The 1:1 reaction of a newly prepared meso digold(I) complex, [Au 2 (dcpe)(d-Hpen)(l-Hpen)] ([H 2 1]), with Co(OAc) 2 under aerobic conditions yielded a cationic Au I 2 Co III trinuclear complex, [Au 2 Co(dcpe)(d-pen)(l-pen)] + [2] + , in which [1] 2- acts as a hexadentate-N 2 ,O 2 ,S 2 metalloligand to a Co III center. Similar reactions with M(OAc) 2 (M=Ni and Zn) produced analogous but neutral Au I 2 M II complexes, [Au 2 M(dcpe)(d-pen)(l-pen)] ([3 M ]). Complexes [2] + and [3 M ] are chiral (C vs. A) at the octahedral Co III and M II centers due to the arrangement of the N 2 ,O 2 ,S 2 donor set. In addition, through spontaneous resolution, [3 M ] gave optically pure C-[3 M ] and A-[3 M ] crystals, showing the creation of homochirality from meso-[1] 2- and achiral M 2+ through crystallization. Such a phenomenon was not observed for [2] + , which gave a racemic compound containing both C-[2] + and A-[2] + . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Supramolecular Chirality: Solvent Chirality Transfer in Molecular Chemistry and Polymer Chemistry

    Directory of Open Access Journals (Sweden)

    Michiya Fujiki


    Full Text Available Controlled mirror symmetry breaking arising from chemical and physical origin is currently one of the hottest issues in the field of supramolecular chirality. The dynamic twisting abilities of solvent molecules are often ignored and unknown, although the targeted molecules and polymers in a fluid solution are surrounded by solvent molecules. We should pay more attention to the facts that mostly all of the chemical and physical properties of these molecules and polymers in the ground and photoexcited states are significantly influenced by the surrounding solvent molecules with much conformational freedom through non-covalent supramolecular interactions between these substances and solvent molecules. This review highlights a series of studies that include: (i historical background, covering chiral NaClO3 crystallization in the presence of d-sugars in the late 19th century; (ii early solvent chirality effects for optically inactive chromophores/fluorophores in the 1960s–1980s; and (iii the recent development of mirror symmetry breaking from the corresponding achiral or optically inactive molecules and polymers with the help of molecular chirality as the solvent use quantity.

  7. Equatorenes: synthesis and properties of chiral naphthalene, phenanthrene, chrysene, and pyrene possessing bis(1-adamantyl) groups at the peri-position. (United States)

    Yamamoto, Koji; Oyamada, Naohiro; Xia, Sheng; Kobayashi, Yuta; Yamaguchi, Masahiko; Maeda, Hiroaki; Nishihara, Hiroshi; Uchimaru, Tadafumi; Kwon, Eunsang


    Chiral polycyclic aromatic hydrocarbons containing bis(1-adamantyl) groups at the peri-positions, named equatorenes, were synthesized in optically pure form starting from optically pure 4,5-bis(1-adamantyl)-8-methoxy-1-naphthol. A sequential Diels-Alder reaction of furan and arynes generated from 1,2-bromotriflates provided tricyclic and tetracyclic epoxides, and acid-catalyzed aromatization gave phenanthrol and chrysenol. Deoxygenation reactions involving the hydrogenolysis of triflates gave 1,8-bis(1-adamantyl)naphthalene, 1,10-bis(1-adamantyl)phenanthrene, and 1,12-bis(1-adamantyl)chrysene. 3,4-Bis(1-adamantyl)pyrene was synthesized from phenanthrol by Sonogashira coupling and Pt-catalyzed cyclization. Essentially no racemization occurred during the synthesis. X-ray analysis indicated the distorted naphthalene moiety possessing the peri-diadamantyl groups and the flat structure of the other benzene rings. UV-vis analysis of the equatorenes showed considerable redshifts compared with that of the corresponding achiral arenes. Electrochemical analysis of the naphthalene and pyrene indicated that the distortion decreased the highest occupied molecular orbital stability with no marked effect on the lowest unoccupied molecular orbital energy level, and the origin was discussed on the basis of calculation results.

  8. Stereochemical diversity in lignan biosynthesis of Arctium lappa L. (United States)

    Suzuki, Shiro; Umezawa, Toshiaki; Shimada, Mikio


    The stereochemistry of lignan biosynthesis in Arctium lappa L. is regulated organ-specifically. (+)-Secoisolariciresinol [81% enantiomeric excess (e.e.)] was isolated from A. lappa petioles. In sharp contrast, lignans whose predominant enantiomers have the opposite absolute configuration to that of (+)-secoisolariciresinol [i.e., (-)-matairesinol (>99% e.e.), (-)-arctigenin (>99% e.e.), and (-)-secoisolariciresinol (65% e.e.)] were isolated from seeds of the species. The stereochemical diversity of secoisolariciresinol was demonstrated with enzyme preparations from A. lappa petioles and seeds. Thus, a petiole enzyme preparation catalyzed the formation of (+)-pinoresinol (33% e.e.), (+)-lariciresinol (30% e.e.), and (+)-secoisolariciresinol (20% e.e.) from achiral coniferyl alcohol in the presence of NADPH and H202, whereas that from ripening seeds catalyzed the formation of (-)-pinoresinol (22% e.e.), (-)-lariciresinol (>99% e.e.), and (-)-secoisolariciresinol (38% e.e.) under the same conditions. In addition, the ripening seed enzyme preparation mediated the selective formation of the optically pure (>99% e.e.) (-)-enantiomer of matairesinol from racemic (+/-)-secoisolariciresinols in the presence of NADP. These results indicate that the stereochemical mechanism for lignan biosynthesis in A. lappa varies with organs, suggesting that multiple lignan-synthesizing isozymes are involved in the stereochemical control of lignan formation in A. lappa.

  9. Mirror symmetry breaking of silicon polymers--from weak bosons to artificial helix. (United States)

    Fujiki, Michiya


    From elemental particles to human beings, matter and living worlds in our universe are dissymmetric with respect to mirror symmetry. Since the early 19th century, the origin of biomolecular handedness has been puzzling scientists. Nature's elegant bottom-up preference, however, sheds light on new concepts of generating, amplifying, and switching artificial polymers, supramolecules, liquid crystals, and organic crystals that can exhibit ambidextrous circular dichroism in the UV/Visible region with efficiency in production under milder ambient conditions. In the 1920s, Kipping, who first synthesized polysilanes with phenyl groups, had much interest in the handedness of inorganic and organic substances from 1898 to 1909 in his early research life. Polysilanes--which are soluble Si-Si bonded chain-like near-UV chromophores that carry a rich variety of organic groups--may become a bridge between animate and inanimate polymer systems. The present account focuses on several mirror symmetry breaking phenomena exemplified in polysilanes carrying chiral and/or achiral side groups, which are in isotropic dilute solution, as polymer particles dispersed in solution, and in a double layer film immobilized at the solid surface, and subtle differences in the helix, by dictating ultimately ultraweak chiral forces at subatomic, atomic, and molecular levels. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  10. Preparative and mechanistic studies toward the rational development of catalytic, enantioselective selenoetherification reactions. (United States)

    Denmark, Scott E; Kalyani, Dipannita; Collins, William R


    A systematic investigation into the Lewis base catalyzed, asymmetric, intramolecular selenoetherification of olefins is described. A critical challenge for the development of this process was the identification and suppression of racemization pathways available to arylseleniranium ion intermediates. This report details a thorough study of the influences of the steric and electronic modulation of the arylselenenyl group on the configurational stability of enantioenriched seleniranium ions. These studies show that the 2-nitrophenyl group attached to the selenium atom significantly attenuates the racemization of seleniranium ions. A variety of achiral Lewis bases catalyze the intramolecular selenoetherification of alkenes using N-(2-nitrophenylselenenyl)succinimide as the electrophile along with a Brønsted acid. Preliminary mechanistic studies suggest the intermediacy of ionic Lewis base-selenium(II) adducts. Most importantly, a broad survey of chiral Lewis bases revealed that 1,1'-binaphthalene-2,2'-diamine (BINAM)-derived thiophosphoramides catalyze the cyclization of unsaturated alcohols in the presence of N-(2-nitrophenylselenenyl)succinimide and methanesulfonic acid. A variety of cyclic seleno ethers were produced in good chemical yields and in moderate to good enantioselectivities, which constitutes the first catalytic, enantioselective selenofunctionalization of unactivated olefins.

  11. Determination of the Absolute Enantiomeric Excess of the Carbon Nanotube Ensemble by Symmetry Breaking Using the Optical Titration Method. (United States)

    Sim, Jinsook; Kim, Somin; Jang, Myungsu; Park, Minsuk; Oh, Hyunkyu; Ju, Sang-Yong


    Symmetry breaking of single-walled carbon nanotubes (SWNTs) has profound effects on their optoelectronic properties that are essential for fundamental study and applications. Here, we show that isomeric SWNTs that exhibit identical photoluminescence (PL) undergo symmetry breaking by flavin mononucleotide (FMN) and exhibit dual PLs and different binding affinities (K a ). Increasing the FMN concentration leads to systematic PL shifts of SWNTs according to structural modality and handedness due to symmetry breaking. Density gradient ultracentrifugation using a FMN-SWNT dispersion displays PL shifts and different densities according to SWNT handedness. Using the optical titration method to determine the PL-based K a of SWNTs against an achiral surfactant as a titrant, left- and right-handed SWNTs display two-step PL inflection corresponding to respective K a values with FMN, which leads to the determination of the enantiomeric excess (ee) of the SWNT ensemble that was confirmed by circular dichroism measurement. Decreasing the FMN concentration for the SWNT dispersion leads to enantiomeric selection of SWNTs. The titration-based ee determination of the widely used sodium cholate-based SWNT dispersion was also demonstrated by using FMN as a cosurfactant.

  12. Bulky melamine-based Zn-porphyrin tweezer as a CD probe of molecular chirality. (United States)

    Petrovic, Ana G; Vantomme, Ghislaine; Negrón-Abril, Yashira L; Lubian, Elisa; Saielli, Giacomo; Menegazzo, Ileana; Cordero, Roselynn; Proni, Gloria; Nakanishi, Koji; Carofiglio, Tommaso; Berova, Nina


    The transfer of chirality from a guest molecule to an achiral host is the subject of significant interest especially when, upon chiral induction, the chiroptical response of the host/guest complex can effectively report the absolute configuration (AC) of the guest. For more than a decade, dimeric metalloporphyrin hosts (tweezers) have been successfully applied as chirality probes for determination of the AC for a wide variety of chiral synthetic compounds and natural products. The objective of this study is to investigate the utility of a new class of melamine-bridged Zn-porphyrin tweezers as sensitive AC reporters. A combined approach based on an experimental CD analysis and a theoretical prediction of the prevailing interporphyrin helicity demonstrates that these tweezers display favorable properties for chiral recognition. Herein, we discuss the application of the melamine-bridged tweezer to the chiral recognition of a diverse set of chiral guests, such as 1,2-diamines, α-amino-esters and amides, secondary alcohols, and 1,2-amino-alcohols. The bulky periphery and the presence of a rigid porphyrin linkage lead, in some cases, to a more enhanced CD sensitivity than that reported earlier with other tweezers. Copyright © 2011 Wiley-Liss, Inc.

  13. Tailoring the chirality of light emission with spherical Si-based antennas. (United States)

    Zambrana-Puyalto, Xavier; Bonod, Nicolas


    Chirality of light is of fundamental importance in several enabling technologies with growing applications in life sciences, chemistry and photodetection. Recently, some attention has been focused on chiral quantum emitters. Consequently, optical antennas which are able to tailor the chirality of light emission are needed. Spherical nanoresonators such as colloids are of particular interest to design optical antennas since they can be synthesized at a large scale and they exhibit good optical properties. Here, we show that these colloids can be used to tailor the chirality of a chiral emitter. To this purpose, we derive an analytic formalism to model the interaction between a chiral emitter and a spherical resonator. We then compare the performances of metallic and dielectric spherical antennas to tailor the chirality of light emission. It is seen that, due to their strong electric dipolar response, metallic spherical nanoparticles spoil the chirality of light emission by yielding achiral fields. In contrast, thanks to the combined excitation of electric and magnetic modes, dielectric Si-based particles feature the ability to inhibit or to boost the chirality of light emission. Finally, it is shown that dual modes in dielectric antennas preserve the chirality of light emission.

  14. Synthesis of Dense and Chiral Dendritic Polyols Using Glyconanosynthon Scaffolds

    Directory of Open Access Journals (Sweden)

    Tze Chieh Shiao


    Full Text Available Most classical dendrimers are frequently built-up from identical repeating units of low valency (usually AB2 monomers. This strategy necessitates several generations to achieve a large number of surface functionalities. In addition, these typical monomers are achiral. We propose herein the use of sugar derivatives consisting of several and varied functionalities with their own individual intrinsic chirality as both scaffolds/core as well as repeating units. This approach allows the construction of chiral, dense dendrimers with a large number of surface groups at low dendrimer generations. Perpropargylated β-D-glucopyranoside, serving as an A5 core, together with various derivatives, such as 2-azidoethyl tetra-O-allyl-β-D-glucopyranoside, serving as an AB4 repeating moiety, were utilized to construct chiral dendrimers using “click chemistry” (CuAAC reaction. These were further modified by thiol-ene and thiol-yne click reactions with alcohols to provide dendritic polyols. Molecular dynamic simulation supported the assumption that the resulting polyols have a dense structure.

  15. catena-Poly[zinc-tris(μ-dimethylcarbamato-κ2O:O′-zinc-μ-(2-phenylbenzimidazolido-κ2N:N′

    Directory of Open Access Journals (Sweden)

    Mark A. Rodriguez


    Full Text Available The crystal structure of the title compound, [Zn2(C13H9N2(C3H6NO23]n, displays a long chiral chain. This is composed of zinc-dimer clusters capped by dimethylcarbamate ligands, which lie on crystallographic twofold rotation axes and are polymerically linked in one dimension by 2-phenylbenzimidadole (2–PBImi organic ligands. The two Zn2+ ions defining the dimetal cluster are crystallographically independent, but display very similar coordination modes and tetrahedral geometry. As such, each Zn2+ ion is coordinated on one side by the N-donor imidazole linker, while the other three available coordination sites are fully occupied by the O atoms from the capping dimethylcarbamates. The chirality of the chain extends along the c axis, generating a rather long 52.470 (11 Å cell axis. Interestingly, the chiral material crystallizes from completely achiral precursors. A twofold axis and 31 screw axis serve to generate the long asymmetric unit.

  16. Suppression of Magnetic Quantum Tunneling in a Chiral Single-Molecule Magnet by Ferromagnetic Interactions. (United States)

    Lippert, Kai-Alexander; Mukherjee, Chandan; Broschinski, Jan-Philipp; Lippert, Yvonne; Walleck, Stephan; Stammler, Anja; Bögge, Hartmut; Schnack, Jürgen; Glaser, Thorsten


    Single-molecule magnets (SMMs) retain a magnetization without applied magnetic field for a decent time due to an energy barrier U for spin-reversal. Despite the success to increase U, the difficult to control magnetic quantum tunneling often leads to a decreased effective barrier U eff and a fast relaxation. Here, we demonstrate the influence of the exchange coupling on the tunneling probability in two heptanuclear SMMs hosting the same spin-system with the same high spin ground state S t = 21/2. A chirality-induced symmetry reduction leads to a switch of the Mn III -Mn III exchange from antiferromagnetic in the achiral SMM [Mn III 6 Cr III ] 3+ to ferromagnetic in the new chiral SMM RR [Mn III 6 Cr III ] 3+ . Multispin Hamiltonian analysis by full-matrix diagonalization demonstrates that the ferromagnetic interactions in RR [Mn III 6 Cr III ] 3+ enforce a well-defined S t = 21/2 ground state with substantially less mixing of M S substates in contrast to [Mn III 6 Cr III ] 3+ and no tunneling pathways below the top of the energy barrier. This is experimentally verified as U eff is smaller than the calculated energy barrier U in [Mn III 6 Cr III ] 3+ due to tunneling pathways, whereas U eff equals U in RR [Mn III 6 Cr III ] 3+ demonstrating the absence of quantum tunneling.

  17. 11th GCC Closed Forum: cumulative stability; matrix stability; immunogenicity assays; laboratory manuals; biosimilars; chiral methods; hybrid LBA/LCMS assays; fit-for-purpose validation; China Food and Drug Administration bioanalytical method validation. (United States)

    Islam, Rafiq; Briscoe, Chad; Bower, Joseph; Cape, Stephanie; Arnold, Mark; Hayes, Roger; Warren, Mark; Karnik, Shane; Stouffer, Bruce; Xiao, Yi Qun; van der Strate, Barry; Sikkema, Daniel; Fang, Xinping; Tudoroniu, Ariana; Tayyem, Rabab; Brant, Ashley; Spriggs, Franklin; Barry, Colin; Khan, Masood; Keyhani, Anahita; Zimmer, Jennifer; Caturla, Maria Cruz; Couerbe, Philippe; Khadang, Ardeshir; Bourdage, James; Datin, Jim; Zemo, Jennifer; Hughes, Nicola; Fatmi, Saadya; Sheldon, Curtis; Fountain, Scott; Satterwhite, Christina; Colletti, Kelly; Vija, Jenifer; Yu, Mathilde; Stamatopoulos, John; Lin, Jenny; Wilfahrt, Jim; Dinan, Andrew; Ohorodnik, Susan; Hulse, James; Patel, Vimal; Garofolo, Wei; Savoie, Natasha; Brown, Michael; Papac, Damon; Buonarati, Mike; Hristopoulos, George; Beaver, Chris; Boudreau, Nadine; Williard, Clark; Liu, Yansheng; Ray, Gene; Warrino, Dominic; Xu, Allan; Green, Rachel; Hayward-Sewell, Joanne; Marcelletti, John; Sanchez, Christina; Kennedy, Michael; Charles, Jessica St; Bouhajib, Mohammed; Nehls, Corey; Tabler, Edward; Tu, Jing; Joyce, Philip; Iordachescu, Adriana; DuBey, Ira; Lindsay, John; Yamashita, Jim; Wells, Edward


    The 11th Global CRO Council Closed Forum was held in Universal City, CA, USA on 3 April 2017. Representatives from international CRO members offering bioanalytical services were in attendance in order to discuss scientific and regulatory issues specific to bioanalysis. The second CRO-Pharma Scientific Interchange Meeting was held on 7 April 2017, which included Pharma representatives' sharing perspectives on the topics discussed earlier in the week with the CRO members. The issues discussed at the meetings included cumulative stability evaluations, matrix stability evaluations, the 2016 US FDA Immunogenicity Guidance and recent and unexpected FDA Form 483s on immunogenicity assays, the bioanalytical laboratory's role in writing PK sample collection instructions, biosimilars, CRO perspectives on the use of chiral versus achiral methods, hybrid LBA/LCMS assays, applications of fit-for-purpose validation and, at the Global CRO Council Closed Forum only, the status and trend of current regulated bioanalytical practice in China under CFDA's new BMV policy. Conclusions from discussions of these topics at both meetings are included in this report.

  18. Characterization of pharmaceutically active compounds in Dongting Lake, China: Occurrence, chiral profiling and environmental risk. (United States)

    Ma, Ruixue; Wang, Bin; Lu, Shaoyong; Zhang, Yizhe; Yin, Lina; Huang, Jun; Deng, Shubo; Wang, Yujue; Yu, Gang


    Twenty commonly used pharmaceuticals including eight chiral drugs were investigated in Dongting Lake, China. The contamination level was relatively low on a global scale. Twelve pharmaceuticals were identified. The most abundant compound was caffeine followed by diclofenac, DEET, mefenamic acid, fluoxetine, ibuprofen and carbamazepine with mean concentrations from 2.0 to 80.8ngL(-1). Concentrations between East and West Dongting Lake showed spatial difference, with the West Dongting Lake less polluted. The relatively high ratio of caffeine versus carbamazepine (over 50) may indicate there was possible direct discharge of domestic wastewater into the lake. This is the first study presenting a survey allowing for comprehensive analysis of multiclass achiral and chiral pharmaceuticals including beta-blockers, antidepressants and anti-inflammatory drugs in freshwater lake. The enantiomeric compositions presented racemic to weakly enantioselective, with the highest enantiomeric fraction (EF) of 0.63 for fluoxetine. Meanwhile, venlafaxine was identified and evaluated the environment risk in surface water in China for the first time. The results of risk assessment suggested that fluoxetine, venlafaxine and diclofenac acid might pose a significant risk to aquatic organisms in Dongting Lake. The resulting data will be useful to enrich the research of emerging pollutants in freshwater lake and stereochemistry for environment investigations. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality (United States)

    Ciattoni, Alessandro; Rizza, Carlo


    We develop, from first principles, a general and compact formalism for predicting the electromagnetic response of a metamaterial with nonmagnetic inclusions in the long-wavelength limit, including spatial dispersion up to the second order. Specifically, by resorting to a suitable multiscale technique, we show that the effective medium permittivity tensor and the first- and second-order tensors describing spatial dispersion can be evaluated by averaging suitable spatially rapidly varying fields, each satisfying electrostatic-like equations within the metamaterial unit cell. For metamaterials with negligible second-order spatial dispersion, we exploit the equivalence of first-order spatial dispersion and reciprocal bianisotropic electromagnetic response to deduce a simple expression for the metamaterial chirality tensor. Such an expression allows us to systematically analyze the effect of the composite spatial symmetry properties on electromagnetic chirality. We find that even if a metamaterial is geometrically achiral, i.e., it is indistinguishable from its mirror image, it shows pseudo-chiral-omega electromagnetic chirality if the rotation needed to restore the dielectric profile after the reflection is either a 0∘ or 90∘ rotation around an axis orthogonal to the reflection plane. These two symmetric situations encompass two-dimensional and one-dimensional metamaterials with chiral response. As an example admitting full analytical description, we discuss one-dimensional metamaterials whose single chirality parameter is shown to be directly related to the metamaterial dielectric profile by quadratures.

  20. Molecular cloning of isoflavone reductase from pea (Pisum sativum L.): evidence for a 3R-isoflavanone intermediate in (+)-pisatin biosynthesis. (United States)

    Paiva, N L; Sun, Y; Dixon, R A; VanEtten, H D; Hrazdina, G


    Isoflavone reductase (IFR) reduces achiral isoflavones to chiral isoflavanones during the biosynthesis of chiral pterocarpan phytoalexins. A cDNA clone for IFR from pea (Pisum sativum) was isolated using the polymerase chain reaction and expressed in Escherichia coli. Analysis of circular dichroism (CD) spectra of the reduction product sophorol obtained using the recombinant enzyme indicated that the isoflavanone possessed the 3R stereochemistry, in contrast to previous reports indicating a 3S-isoflavanone as the product of the pea IFR. Analysis of CD spectra of sophorol produced using enzyme extracts of CuCl2-treated pea seedlings confirmed the 3R stereochemistry. Thus, the stereochemistry of the isoflavanone intermediate in (+)-pisatin biosynthesis in pea is the same as that in (-)-medicarpin biosynthesis in alfalfa, although the final pterocarpans have the opposite stereochemistry. At the amino acid level the pea IFR cDNA was 91.8 and 85.2% identical to the IFRs from alfalfa and chickpea, respectively. IFR appears to be encoded by a single gene in pea. Its transcripts are highly induced in CuCl2-treated seedlings, consistent with the appearance of IFR enzyme activity and pisatin accumulation.

  1. Exerting control over the helical chirality in the main chain of sergeants-and-soldiers-type poly(quinoxaline-2,3-diyl)s by changing from random to block copolymerization protocols. (United States)

    Nagata, Yuuya; Nishikawa, Tsuyoshi; Suginome, Michinori


    Chiral random poly(quinoxaline-2,3-diyl) polymers of the sergeants-and-soldiers-type (sergeant units bearing (S)-3-octyloxymethyl groups) adopt an M- or P-helical conformation in the presence of achiral units bearing propoxymethyl or butoxy groups (soldier units), respectively. Unusual bidirectional induction of the helical sense can be observed for a copolymer with butoxy soldier units upon changing the mole fraction of the sergeant units. In the presence of 16-20% of sergeant units, the selective induction of a P-helix was observed, while the selective induction of an M-helix was observed for a mole fraction of sergeant units of more than 60%. This phenomenon could be successfully employed to control the helical chirality of copolymers by applying either random or block copolymerization protocols. Random or block copolymerization of sergeant and soldier monomers in a 18:82 ratio resulted in the formation of 250mers with almost absolute P- or M-helical conformation, respectively (>99% ee). Incorporation of a small amount of coordination sites into the random and block copolymers resulted in chiral macromolecular ligands, which allowed the enantioselective synthesis of both enantiomers in the Pd-catalyzed asymmetric hydrosilylation of β-methylstyrene.

  2. Synthesis, characterization and electro-optic properties of novel siloxane liquid crystalline with a large tilt angle

    International Nuclear Information System (INIS)

    Liao, Chien-Tung; Lee, Jiunn-Yih; Lai, Chiu-Chun


    Research highlights: → In this study we report the synthesis and characterization of new ferroelectric liquid crystal material. → We examined the influence of the addition of a trisiloxane end-group on one side-chain of an achiral alkyl chain on the phase transition. → Finally, the properties of the chiral smectic C (SmC*) phase were measured for target compounds. - Abstract: This paper presents a study of the ferroelectric behavior in low molar mass organosiloxane liquid crystal materials. A few novel series of compounds with a large tilt angle were synthesized, and the mesophases exhibited were compared. The mesophases under discussion were investigated by means of polarizing microscopy (POM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and electro-optical experiments. The influence of the molecular structure on the occurrence of the chiral smectic C (SmC*) phase was investigated. Finally, the electro-optical properties of the SmC* phase, such as tilt angle, dielectric permittivity and switching behavior were also measured. As a consequence, the correlation between the electro-optical properties and chemical structures of these compounds was investigated.

  3. CFA-1: the first chiral metal-organic framework containing Kuratowski-type secondary building units. (United States)

    Schmieder, Phillip; Denysenko, Dmytro; Grzywa, Maciej; Baumgärtner, Benjamin; Senkovska, Irena; Kaskel, Stefan; Sastre, German; van Wüllen, Leo; Volkmer, Dirk


    The novel homochiral metal-organic framework CFA-1 (Coordination Framework Augsburg-1), [Zn5(OAc)4(bibta)3], containing the achiral linker {H2-bibta = 1H,1'H-5,5'-bibenzo[d][1,2,3]triazole}, has been synthesised. The reaction of H2-bibta and Zn(OAc)2·2H2O in N-methylformamide (NMF) (90 °C, 3 d) yields CFA-1 as trigonal prismatic single crystals. CFA-1 serves as a convenient precursor for the synthesis of isostructural frameworks with redox-active metal centres, which is demonstrated by the postsynthetic exchange of Zn(2+) by Co(2+) ions. The framework is robust to solvent removal and has been structurally characterized by synchrotron single-crystal X-ray diffraction and solid state NMR measurements ((13)C MAS- and (1)H MAS-NMR at 10 kHz). Results from MAS-NMR and IR spectroscopy studies are corroborated by cluster and periodic DFT calculations performed on CFA-1 cluster fragments.

  4. Mechanisms for the inversion of chirality: Global reaction route mapping of stereochemical pathways in a probable chiral extraterrestrial molecule, 2-aminopropionitrile

    International Nuclear Information System (INIS)

    Kaur, Ramanpreet; Vikas


    2-Aminopropionitrile (APN), a probable candidate as a chiral astrophysical molecule, is a precursor to amino-acid alanine. Stereochemical pathways in 2-APN are explored using Global Reaction Route Mapping (GRRM) method employing high-level quantum-mechanical computations. Besides predicting the conventional mechanism for chiral inversion that proceeds through an achiral intermediate, a counterintuitive flipping mechanism is revealed for 2-APN through chiral intermediates explored using the GRRM. The feasibility of the proposed stereochemical pathways, in terms of the Gibbs free-energy change, is analyzed at the temperature conditions akin to the interstellar medium. Notably, the stereoinversion in 2-APN is observed to be more feasible than the dissociation of 2-APN and intermediates involved along the stereochemical pathways, and the flipping barrier is observed to be as low as 3.68 kJ/mol along one of the pathways. The pathways proposed for the inversion of chirality in 2-APN may provide significant insight into the extraterrestrial origin of life

  5. Development of simulation approach for two-dimensional chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface (United States)

    Qin, Yuan; Yao, Man; Hao, Ce; Wan, Lijun; Wang, Yunhe; Chen, Ting; Wang, Dong; Wang, Xudong; Chen, Yonggang


    Two-dimensional (2D) chiral self-assembly system of 5-(benzyloxy)-isophthalic acid derivative/(S)-(+)-2-octanol/highly oriented pyrolytic graphite was studied. A combined density functional theory/molecular mechanics/molecular dynamics (DFT/MM/MD) approach for system of 2D chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface was thus proposed. Structural models of the chiral assembly were built on the basis of scanning tunneling microscopy (STM) images and simplified for DFT geometry optimization. Merck Molecular Force Field (MMFF) was singled out as the suitable force field by comparing the optimized configurations of MM and DFT. MM and MD simulations for hexagonal unit model which better represented the 2D assemble network were then preformed with MMFF. The adhesion energy, evolution of self-assembly process and characteristic parameters of hydrogen bond were obtained and analyzed. According to the above simulation, the stabilities of the clockwise and counterclockwise enantiomorphous networks were evaluated. The calculational results were supported by STM observations and the feasibility of the simulation method was confirmed by two other systems in the presence of chiral co-absorbers (R)-(-)-2-octanol and achiral co-absorbers 1-octanol. This theoretical simulation method assesses the stability trend of 2D enantiomorphous assemblies with atomic scale and can be applied to the similar hydrogen bond driven 2D chirality of molecular self-assembly system.

  6. Gas-chromatographic resolution of enantiomeric secondary alcohols. Stereoselective reductive metabolism of ketones in rabbit-liver cytosol. (United States)

    Gal, J; DeVito, D; Harper, T W


    Chiral secondary alcohols were treated with (S)-(-)-1-phenylethyl isocyanate. For each racemic alcohol, the resulting diastereomeric urethane derivatives were resolved on flexible fused-silica capillary GLC columns with retention times of 15 min or less. Derivatization of individual enantiomers showed that the urethane derivatives of (R)-(-)-2-octanol, (R)-(+)-1-phenylethyl alcohol, and (S)-(+)-2,2,2-trifluoro-1-phenylethanol are eluted before the corresponding diastereomers. The procedure is simple and rapid, and is suitable for the determination of the enantiomeric composition of chiral alcohols extracted from biological media. A series of aliphatic alcohols, aryl alkyl carbinols, and arylalkyl alkyl carbinols were resolved with the procedure, and the degree of resolution varied from good to excellent. Eight achiral ketones were incubated, individually, with rabbit-liver 90,000 g supernatant fractions, and the enantiomeric composition of the alcohol metabolites was determined with the GLC procedure. The reductions proceeded with high stereoselectivity to give alcohol products of 90% or greater enantiomeric purity. The reduction of 2-octanone and acetophenone gave predominant alcohols of (S)-configuration, in agreement with the Baumann-Prelog rule. The configuration of the predominant alcohols arising in the reduction of the remainder of the ketones could not be firmly established, but the evidence suggests that they are also of the (S)-configuration. Fluorine or methyl substitution in the ortho position of acetophenone produced an increase in the stereoselectivity, and the alcohol produced from ortho-methylacetophenone was enantiomerically greater than 99% pure.

  7. Photoinduced electro-optics measurements of biosilica transformation to cristobalite

    International Nuclear Information System (INIS)

    Fuchs, Ido; Aluma, Yaniv; Ilan, Micha; Kityk, Iwan; Mastai, Yitzhak


    In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown that natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica. - Graphical abstract: The phase transformation of biosilica from marine sponges to Cristobalite under thermal treatment was investigated using photoinduced electro optics measurements. The figure shows the changes of the electro-optic coefficient of cristobalite and biosilica. - Highlights: • We examine phase transformation of biosilica. • We report transition from amorphous biosilica to crystalline Cristobalite. • Biosilica transformation to Cristobalite at temperature of 850 °C. • Biosilica transformation is studied with photoinduced measurements. • We examine changes in the photoinduced linear electro optics properties

  8. Molecular insight into the inclusion of the dietary plant flavonol fisetin and its chromophore within a chemically modified γ-cyclodextrin: Multi-spectroscopic, molecular docking and solubility studies. (United States)

    Pahari, Biswapathik; Chakraborty, Sandipan; Sengupta, Pradeep K


    We explored the encapsulation of dietary plant flavonols fisetin and its chromophore 3-hydroxyflavone, within 2-hydroxypropyl-γ-cyclodextrin (HPγ-CDx) nano-cavity in aqueous solution using multi-spectroscopic approaches and molecular docking. Upon addition of HPγ-CDx, dramatic changes occur in the intrinsic 'two color' fluorescence behavior of the fluorophores. This is manifested by significant increase in the steady state fluorescence intensities, anisotropies, average fluorescence lifetimes and rotational correlation times. Furthermore, in the CDx environment, intrinsically achiral flavonols exhibit prominent induced circular dichroism bands. These findings indicate that the flavonol molecules spontaneously enter the relatively hydrophobic, chiral environment of the HPγ-CDx nano-cavities. Molecular docking computations corroborate the spectroscopic findings, and predict selectivity in orientation of the encapsulated flavonols. HPγ-CDx inclusion increases the aqueous solubility of individual flavonols ∼100-1000 times. The present study demonstrates that the hydroxypropyl substituent in γ-CDx controls the inclusion mode of the flavonols, leading to their enhanced solubilization and altered spectral signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Application of cyanuric chloride-based six new chiral derivatizing reagents having amino acids and amino acid amides as chiral auxiliaries for enantioresolution of proteinogenic amino acids by reversed-phase high-performance liquid chromatography. (United States)

    Bhushan, Ravi; Dixit, Shuchi


    Six dichloro-s-triazine (DCT) reagents having L-Leu, D-Phg, L-Val, L-Met, L-Ala and L-Met-NH(2) as chiral auxiliaries in cyanuric chloride were introduced for enantioseparation of 13 proteinogenic amino acids. Four other DCTs and six monochloro-s-triazine (MCT) reagents having amino acid amides as chiral auxiliaries were also synthesized. These 16 chiral derivatizing reagents (CDRs) were used for synthesis of diastereomers of all the 13 analytes using microwave irradiation, which were resolved by reversed-phase high-performance liquid chromatography (RP-HPLC) using C18 column and gradient eluting mixture of aqueous TFA and acetonitrile with UV detection at 230 nm. It required only 60-90 s for derivatization using microwave irradiation. Better resolution and lower retention times were observed for the diastereomers prepared with CDRs having amino acids as chiral auxiliaries as compared to counterparts prepared with reagents having amino acid amides as chiral auxiliaries. As the best resolution of all the 13 analytes was observed for their diastereomers prepared using the DCT reagent having L-Leu as chiral auxiliary, this CDR was further employed for derivatization of Lys, Tyr, His and Arg followed by RP-HPLC analysis of resulting diastereomers. The results are discussed in light of acid and amide groups of chiral auxiliaries constituting CDRs, electronegativities of the atoms of achiral moieties constituting CDRs and hydrophobicities of side chains of amino acids constituting CDRs and analytes.

  10. Lithiation of prochiral 2,2'-dichloro-5,5'-dibromo-4,4'-bipyridine as a tool for the synthesis of chiral polyhalogenated 4,4'-bipyridines. (United States)

    Mamane, Victor; Aubert, Emmanuel; Peluso, Paola; Cossu, Sergio


    Lithiation of the achiral tetrahalogenated 4,4'-bipyridine 1 with alkyllithiums was investigated. n-BuLi was found to induce either the chlorine-directed deprotolithiation reaction alone or with a concomitant halogen-lithium exchange furnishing after iodine trapping chiral 4,4'-bipyridines 2 and 6, respectively. The role of n-BuLi in the deprotolithiation process of 1 was elucidated on the basis of isolated secondary derivatives. After deprotolithiation, the lithiated species could be trapped by different electrophiles such as MeI, TMSCl, MeSSMe, R3SnCl (R = Me or n-Bu), and PPh2Cl. Moreover, 4,4'-bipyridine 2 was submitted to cross-coupling reactions (Suzuki and Sonogashira) which occurred selectively at the carbon-iodine bond. All compounds of this new family of atropisomeric 4,4'-bipyridines were separated by chiral HPLC (high-performance liquid chromatography), and the absolute configurations of obtained enantiomers were mainly assigned by XRD (X-ray diffraction) using anomalous dispersion.

  11. Supercritical fluid chromatographic resolution of water soluble isomeric carboxyl/amine terminated peptides facilitated via mobile phase water and ion pair formation. (United States)

    Patel, M A; Riley, F; Ashraf-Khorassani, M; Taylor, L T


    Both analytical scale and preparative scale packed column supercritical fluid chromatography (SFC) have found widespread applicability for chiral separations of multiple polar pharmaceutical candidates. However, SFC is rapidly becoming an achiral technique. More specifically, ion pair SFC is finding greater utility for separation of ionic analytes such as amine salts and organic sulfonates. The key to this success is, in part, the incorporation of additives such as trifluoroacetic acid and ammonium acetate into the mobile phase in association with a wide variety of both bonded silica stationary phases and high purity bare silica. Ion pairing SFC coupled with evaporative light scattering detection and mass spectrometric detection is presented here for the separation of water soluble, uncapped, isomeric peptide pairs that differ in amino acid arrangement. The separation is best achieved on either diol-bonded silica or bare silica with 1-5% (w/w) water as a significant ingredient in the mobile phase. Nitrogenous stationary phases such as 2-ethylpyridine, which had been very successful for the separation of capped peptides failed to yield the desired separation regardless of the mobile phase composition. A HILIC type retention mechanism is postulated for the separation of both isomeric uncapped peptide pairs. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Unexpected magnetism in low dimensional systems: the role of symmetry

    International Nuclear Information System (INIS)

    Munoz, MC; Chico, L; Lopez-Sancho, MP; Beltran, JI; Gallego, S; Cerda, J


    The symmetry underlying the geometric structure of materials determines most of their physical properties. In low dimensional systems the role of symmetry is enhanced and can give rise to new phenomena. Here, we report on unexpected magnetism in carbon nanotubes and O-rich surfaces of ionic oxides, to show how its existence is closely related to the symmetry conditions. First, based on tight-binding models, we demonstrate that chiral carbon nanotubes present spin splitting at the Fermi level in the absence of a magneticfield, whereas achiral tubes preserve spin degeneracy. These remarkably different behaviors of chiral and non-chiral nanotubes are due to the intrinsic symmetry dependence of the spin-orbit interaction. Second, the occurrence of spin-polarization at ZrO 2 , Al 2 O 3 and MgO surfaces is proved by means of abinitio calculations within the density functional theory. Large spin moments develop at O-ended polar terminations, transforming the non-magnetic insulator into a half-metal. The magnetic moments mainly reside in the surface oxygen atoms, and their origin is related to the existence of 2p holes of well-defined spin polarization at the valence band of the ionic oxide. The direct relation between magnetization and local loss of donor charge shows that at the origin of these phenomena is the reduced surface symmetry

  13. High-resolution polypeptide structure and dynamics in anisotropic environments: The gramicidin channel

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S. [Florida State Univ., Tallahassee, FL (United States)


    To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.

  14. Racemic crystallography of synthetic protein enantiomers used to determine the X-ray structure of plectasin by direct methods (United States)

    Mandal, Kalyaneswar; Pentelute, Brad L; Tereshko, Valentina; Thammavongsa, Vilasak; Schneewind, Olaf; Kossiakoff, Anthony A; Kent, Stephen B H


    We describe the use of racemic crystallography to determine the X-ray structure of the natural product plectasin, a potent antimicrobial protein recently isolated from fungus. The protein enantiomers l-plectasin and d-plectasin were prepared by total chemical synthesis; interestingly, l-plectasin showed the expected antimicrobial activity, while d-plectasin was devoid of such activity. The mirror image proteins were then used for racemic crystallization. Synchrotron X-ray diffraction data were collected to atomic resolution from a racemic plectasin crystal; the racemate crystallized in the achiral centrosymmetric space group with one l-plectasin molecule and one d-plectasin molecule forming the unit cell. Dimer-like intermolecular interactions between the protein enantiomers were observed, which may account for the observed extremely low solvent content (13%–15%) and more highly ordered nature of the racemic crystals. The structure of the plectasin molecule was well defined for all 40 amino acids and was generally similar to the previously determined NMR structure, suggesting minimal impact of the crystal packing on the plectasin conformation. PMID:19472324

  15. In Situ and Real-Time SFG Measurements Revealing Organization and Transport of Cholesterol Analogue 6-Ketocholestanol in a Cell Membrane. (United States)

    Ma, Sulan; Li, Hongchun; Tian, Kangzhen; Ye, Shuji; Luo, Yi


    Cholesterol organization and transport within a cell membrane are essential for human health and many cellular functions yet remain elusive so far. Using cholesterol analogue 6-ketocholestanol (6-KC) as a model, we have successfully exploited sum frequency generation vibrational spectroscopy (SFG-VS) to track the organization and transport of cholesterol in a membrane by combining achiral-sensitive ssp (ppp) and chiral-sensitive psp polarization measurements. It is found that 6-KC molecules are aligned at the outer leaflet of the DMPC lipid bilayer with a tilt angle of about 10°. 6-KC organizes itself by forming an α-β structure at low 6-KC concentration and most likely a β-β structure at high 6-KC concentration. Among all proposed models, our results favor the so-called umbrella model with formation of a 6-KC cluster. Moreover, we have found that the long anticipated flip-flop motion of 6-KC in the membrane takes time to occur, at least much longer than previously thought. All of these interesting findings indicate that it is critical to explore in situ, real-time, and label-free methodologies to obtain a precise molecular description of cholesterol's behavior in membranes. This study represents the first application of SFG to reveal the cholesterol-lipid interaction mechanism at the molecular level.

  16. Rhodium-catalysed syn-carboamination of alkenes via a transient directing group. (United States)

    Piou, Tiffany; Rovis, Tomislav


    Alkenes are the most ubiquitous prochiral functional groups--those that can be converted from achiral to chiral in a single step--that are accessible to synthetic chemists. For this reason, difunctionalization reactions of alkenes (whereby two functional groups are added to the same double bond) are particularly important, as they can be used to produce highly complex molecular architectures. Stereoselective oxidation reactions, including dihydroxylation, aminohydroxylation and halogenation, are well established methods for functionalizing alkenes. However, the intermolecular incorporation of both carbon- and nitrogen-based functionalities stereoselectively across an alkene has not been reported. Here we describe the rhodium-catalysed carboamination of alkenes at the same (syn) face of a double bond, initiated by a carbon-hydrogen activation event that uses enoxyphthalimides as the source of both the carbon and the nitrogen functionalities. The reaction methodology allows for the intermolecular, stereospecific formation of one carbon-carbon and one carbon-nitrogen bond across an alkene, which is, to our knowledge, unprecedented. The reaction design involves the in situ generation of a bidentate directing group and the use of a new cyclopentadienyl ligand to control the reactivity of rhodium. The results provide a new way of synthesizing functionalized alkenes, and should lead to the convergent and stereoselective assembly of amine-containing acyclic molecules.

  17. UHMW Ziegler–Natta polyethylene: Synthesis, crystallization, and melt behavior

    KAUST Repository

    Atiqullah, Muhammad


    The fabrication of normal and UHMW PE end-products involves melting and crystallization of the polymer. Therefore, the melt behavior and crystallization of as-synthesized UHMW PE, and NMW PE and E-1-hexene copolymer have been studied using a new nonisothermal crystallization model, Flory\\'s equilibrium theory and ethylene sequence length distribution concept (SLD), Gibbs–Thompson equation, and DSC experiments. By using this approach, the effects of MW, 1-hexene incorporation, ethylene SLD, the level of undercooling θ, and crystal surface free energy D on crystallite stability, relative crystallinity α, instantaneous crystallinity χ, the crystallization kinetic triplet, crystallization entropy, and lamellar thickness distribution (LTD) have been evaluated. Consequently, this study reports insightful new results, interpretations, and explanations regarding the melting and crystallization of the aforementioned polymers. The UHMW PE results significantly differ from the NMW PE and E-1-hexene copolymer ones. Ethylene sequences shorter than the so called minimum crystallizable ethylene sequence length, irrespective of E-1-hexene copolymer MW, can also crystallize. Additionally, the polymer preparation shows that the catalyst coordination environment and symmetry, as well as achiral ethylene versus prochiral α-olefin steric encumbrance and competitive diffusion affect the synthesis of UHMW PE, particularly the corresponding UHMW copolymers.

  18. Metal-Free Catalytic Enantioselective C–B Bond Formation: (Pinacolato)boron Conjugate Additions to α,β-Unsaturated Ketones, Esters, Weinreb Amides and Aldehydes Promoted by Chiral N-Heterocyclic Carbenes (United States)

    Wu, Hao; Radomkit, Suttipol; O’Brien, Jeannette M.; Hoveyda, Amir H.


    The first broadly applicable metal-free enantioselective method for boron conjugate addition (BCA) to α,β-unsaturated carbonyls is presented. The C–B bond forming reactions are promoted in the presence of 2.5–7.5 mol % of a readily accessible C1-symmetric chiral imidazolinium salt, which is converted, in situ, to the catalytically active diastereo- and enantiomerically pure N-heterocyclic carbene (NHC) by the common organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (dbu). In addition to the commercially available bis(pinacolato)diboron [B2(pin)2], and in contrast to reactions with the less sterically demanding achiral NHCs, the presence of MeOH is required for high efficiency. Acyclic and cyclic α,β-unsaturated ketones, as well as acyclic esters, Weinreb amides and aldehydes can serve as suitable substrates; the desired β-boryl carbonyls are isolated in up to 94% yield and >98:2 enantiomer ratio (er). Transformations are often carried out at ambient temperature. In certain cases, such as when the relatively less reactive unsaturated amides are used, elevated temperatures are required (50–66 °C); nonetheless, reactions remain highly enantioselective. The utility of the NHC-catalyzed method is demonstrated through comparison with the alternative Cu-catalyzed protocols; in cases involving a polyfunctional substrate, unique profiles in chemoselectivity are exhibited by the metal-free approach (e.g., conjugate addition vs reaction with an alkyne, allene or aldehyde). PMID:22559866

  19. High-efficiency broadband polarization converter based on Ω-shaped metasurface (United States)

    Zhang, Tianyao; Huang, Lingling; Li, Xiaowei; Liu, Juan; Wang, Yongtian


    The polarization state, which cannot be directly detected by human eyes, forms an important characteristic of electromagnetic waves. Control of polarization states has long been pursued for various applications. Conventional polarization converters can hardly meet the requirements in lab-on-chip systems, due to the involvement of bulk materials. Here, we propose the design and realization of a linear to circular polarization converter based on metasurfaces. The metasurface is deliberately designed using achiral two-fold mirror symmetry Ω-shaped antennas. The converter integrates a ground metal plane, a spacer dielectric layer and an antenna array, leading to a high conversion efficiency and broad operating bandwidth in the near infrared regime. The calculated Stokes parameters indicate an excellent conversion of linear to circular polarization for the reflected light. The tunability of the bandwidth by oblique incidence and by modulating the thickness of the dielectric layer is also introduced and demonstrated, which shows great flexibilities for such metasurface converters. The proposed metasurface may open up intriguing possibilities towards the realization of ultrathin nanophotonic devices for polarization manipulation and wavefront engineering.

  20. Immobilization of flavin adenine dinucleotide (FAD) onto carbon cloth and its application as working electrode in an electroenzymatic bioreactor. (United States)

    Jayabalan, R; Sathishkumar, M; Jeong, E S; Mun, S P; Yun, S E


    A high porosity carbon cloth with immobilized FAD was employed as working electrode in electrochemical NADH-regeneration procedure. Carbon cloth was oxidized with hot acids to create surface carboxyl group and then coupled by adenine amino group of FAD with carbodiimide in the presence of N-hydroxysulfosuccinimide. The bioelectrocatalytic NADH-regeneration was coupled to the conversion of achiral substrate pyruvate into chiral product l-lactate by l-lactate dehydrogenase (l-LDH) within the same reactor. The conversion was completed at 96h in bioreactor with FAD-modified carbon cloth, resulting in about 6mM of l-lactate from 10mM of pyruvate. While with bare carbon cloth, the yield at 120h was around 5mM. Immobilized FAD on the surface of carbon cloth electrode facilitated it to carry electrons from electrode to electron transfer enzymes; thereby NADH-regeneration was accelerated to drive the enzymatic reaction efficiently. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC. (United States)

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang


    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  2. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    Directory of Open Access Journals (Sweden)

    Hironori Izawa


    Full Text Available Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  3. Supercritical Fluid Chromatography- A Hybrid of GC and LC

    Directory of Open Access Journals (Sweden)

    Kaushal K Chandrul


    Full Text Available

    High performance specifications and unique functionality of chromatographic techniques is a demand of pharmaceutical industry and research. This leads to the origin of Supercritical Fluid Chromatography (SFC. It is a rapidly expanding analytical technique. The main feature that differentiates SFC from other chromatographic techniques is the replacement of either the liquid or gas mobile phase with a supercritical fluid mobile phase. It is considered a hybrid of GC and LC technique. High diffusion coefficient and low viscosity of supercritical fluids is responsible for high speed analysis, high efficiency and high sensitivity. Low mobile-phase flow rate, density programming and compatability with GC and LC detectors make SFC a versatile chromatographic technique in analytical research and development. It has a unique characteristic of analyzing thermo labile or non-volatile substances. This review highlights the role of supercritical fluid chromatography in the separation of polymers, thermally labile pesticides, fatty acids, metal chelates and organometallic compounds, chiral and achiral molecules, identification and analysis of polar samples, explosives, drugs of abuse and application of SFC in forensic science (fingerprinting. 

  4. Supercritical fluid chromatography-A Hybrid of GC and LC

    Directory of Open Access Journals (Sweden)

    Neha Sethi


    Full Text Available High performance specifications and unique functionality of chromatographic techniques is a demand of pharmaceutical industry and research. This leads to the origin of Supercritical Fluid Chromatography (SFC. It is a rapidly expanding analytical technique. The main feature that differentiates SFC from other chromatographic techniques is the replacement of either the liquid or gas mobile phase with a supercritical fluid mobile phase. It is considered a hybrid of GC and LC technique. High diffusion coefficient and low viscosity of supercritical fluids is responsible for high speed analysis, high efficiency and high sensitivity. Low mobile-phase flow rate, density programming and compatability with GC and LC detectors make SFC a versatile chromatographic technique in analytical re-search and development. It has a unique characteristic of analyzing thermo labile or non-volatile substances. This review highlights the role of supercritical fluid chromatography in the separation of polymers, thermally labile pesticides, fatty acids, metal chelates and organometallic compounds, chiral and achiral molecules, identification and analysis of polar samples, explosives, drugs of abuse and application of SFC in forensic science (fingerprint-ing.

  5. Small scale separation of isoxazole structurally related analogues by chiral supercritical fluid chromatography. (United States)

    Zehani, Yasmine; Lemaire, Lucas; Millet, Regis; Lipka, Emmanuelle


    Chromatographic preparative enantioseparation is now the preferred method to obtain milligram amounts of pure enantiomers in the first step of the development of a therapeutic molecule. Supercritical fluid chromatography has many advantages over liquid chromatography and was therefore chosen for the small scale enantioseparation of four original 3-carboxamido-5-aryl isoxazole molecules, ligands of the CB2 cannabinoid receptors. The preparation of about 10mg of each of the eight enantiomers was achieved successfully on a Chiralpak ® AD-H (tris-3,5-dimethylphenylcarbamate of amylose) polysaccharide based stationary phase with various percentages of ethanol as a co-solvent, through mixed-stream injections and touching-band approach. For the all compounds, no peak distortion is observed during the volume overloading, in spite of the injection mode. Production rate (mgmin -1 ), productivity (kilogram of racemate separated per kilogram of CSP per day (kkd)) and solvent usage were found higher and environmental factors (E Factor) were found lower for compounds 1 and 3. The yields of each purified enantiomer were comprised between 60 and 94%. In order to improve the limit of detection calculated with the diode array detector, the hyphenation with an evaporating light scattering detector was explored and a factor of ten was won. Lastely, the enantiomeric excess and achiral purity of each of the eight individual enantiomer generated was determined and found higher than 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Filamentous phages as building blocks for reconfigurable and hierarchical self-assembly (United States)

    Gibaud, Thomas


    Filamentous bacteriophages such as fd-like viruses are monodisperse rod-like colloids that have well defined properties of diameter, length, rigidity, charge and chirality. Engineering these viruses leads to a library of colloidal rods, which can be used as building blocks for reconfigurable and hierarchical self-assembly. Their condensation in an aqueous solution with additive polymers, which act as depletants to induce attraction between the rods, leads to a myriad of fluid-like micronic structures ranging from isotropic/nematic droplets, colloid membranes, achiral membrane seeds, twisted ribbons, π-wall, pores, colloidal skyrmions, Möbius anchors, scallop membranes to membrane rafts. These structures, and the way that they shape-shift, not only shed light on the role of entropy, chiral frustration and topology in soft matter, but also mimic many structures encountered in different fields of science. On the one hand, filamentous phages being an experimental realization of colloidal hard rods, their condensation mediated by depletion interactions constitutes a blueprint for the self-assembly of rod-like particles and provides a fundamental foundation for bio- or material-oriented applications. On the other hand, the chiral properties of the viruses restrict the generalities of some results but vastly broaden the self-assembly possibilities.

  7. The self-disproportionation of enantiomers (SDE): a menace or an opportunity? (United States)

    Han, Jianlin; Kitagawa, Osamu; Wzorek, Alicja; Klika, Karel D; Soloshonok, Vadim A


    Herein we report on the well-documented, yet not widely known, phenomenon of the self-disproportionation of enantiomers (SDE): the spontaneous fractionation of scalemic material into enantioenriched and -depleted fractions when any physicochemical process is applied. The SDE has implications ranging from the origins of prebiotic homochirality to unconventional enantiopurification methods, though the risks of altering the enantiomeric excess (ee) unintentionally, regrettably, remain greatly unappreciated. While recrystallization is well known as an SDE process, occurrences of the SDE in other processes are much less recognized, e.g. sublimation and even distillation. But the most common process that many workers seem to be completely ignorant of is SDE via chromatography and reports have included all manner of structures, all types of interactions, and all forms of chromatography, including GC. The SDE can be either a blessing - as a means to obtain enantiopure samples from scalemates - or a curse, as unwitting alteration of the ee leads to errors in the reporting of results and/or misinterpretation of the system under study. Thus the ramifications of the SDE are relevant to any area involving chirality - natural products, asymmetric synthesis, etc. Moreover, there is grave concern regarding errors in the literature, in addition to the possible occurrence of valid results which may have been overlooked and thus remain unreported, as well as the potential for the SDE to alter the ee, particularly via chromatography, and the following concepts will be conveyed: (1) the SDE occurs under totally achiral conditions of (a) precipitation, (b) centrifugation, (c) evaporation, (d) distillation, (e) crystallization, (f) sublimation, and (g) achiral chromatography ( e.g. column, flash, MPLC, HPLC, SEC, GC, etc. ). (2) The SDE cannot be controlled simply by experimental accuracy and ignorance of the SDE unavoidably leads to mistakes in the recorded and reported stereochemical

  8. Lewis pair polymerization by classical and frustrated Lewis pairs: Acid, base and monomer scope and polymerization mechanism

    KAUST Repository

    Zhang, Yuetao


    Classical and frustrated Lewis pairs (LPs) of the strong Lewis acid (LA) Al(C 6F 5) 3 with several Lewis base (LB) classes have been found to exhibit exceptional activity in the Lewis pair polymerization (LPP) of conjugated polar alkenes such as methyl methacrylate (MMA) as well as renewable α-methylene-γ-butyrolactone (MBL) and γ-methyl- α-methylene-γ-butyrolactone (γ-MMBL), leading to high molecular weight polymers, often with narrow molecular weight distributions. This study has investigated a large number of LPs, consisting of 11 LAs as well as 10 achiral and 4 chiral LBs, for LPP of 12 monomers of several different types. Although some more common LAs can also be utilized for LPP, Al(C 6F 5) 3-based LPs are far more active and effective than other LA-based LPs. On the other hand, several classes of LBs, when paired with Al(C 6F 5) 3, can render highly active and effective LPP of MMA and γ-MMBL; such LBs include phosphines (e.g., P tBu 3), chiral chelating diphosphines, N-heterocyclic carbenes (NHCs), and phosphazene superbases (e.g., P 4- tBu). The P 4- tBu/Al(C 6F 5) 3 pair exhibits the highest activity of the LP series, with a remarkably high turn-over frequency of 9.6 × 10 4 h -1 (0.125 mol% catalyst, 100% MMA conversion in 30 s, M n = 2.12 × 10 5 g mol -1, PDI = 1.34). The polymers produced by LPs at RT are typically atactic (P γMMBL with ∼47% mr) or syndio-rich (PMMA with ∼70-75% rr), but highly syndiotactic PMMA with rr ∼91% can be produced by chiral or achiral LPs at -78 °C. Mechanistic studies have identified and structurally characterized zwitterionic phosphonium and imidazolium enolaluminates as the active species of the current LPP system, which are formed by the reaction of the monomer·Al(C 6F 5) 3 adduct with P tBu 3 and NHC bases, respectively. Kinetic studies have revealed that the MMA polymerization by the tBu 3P/ Al(C 6F 5) 3 pair is zero-order in monomer concentration after an initial induction period, and the polymerization

  9. Biosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of (+)- and (-)-linalyl pyrophosphate to (+)- and (-)-pinene and (+)- and (-)-camphene

    International Nuclear Information System (INIS)

    Croteau, R.; Satterwhite, D.M.; Cane, D.E.; Chang, C.C.


    Cyclase I from Salvia officinalis leaf catalyzes the conversion of geranyl pyrophosphate to the stereo-chemically related bicyclic monoterpenes (+)-alpha-pinene and (+)-camphene and to lesser quantities of monocyclic and acyclic olefins, whereas cyclase II from this plant tissue converts the same acyclic precursor to (-)-alpha-pinene, (-)-beta-pinene and (-)-camphene as well as to lesser amounts of monocyclics and acyclics. These antipodal cyclizations are considered to proceed by the initial isomerization of the substrate to the respective bound tertiary allylic intermediates (-)-(3R)- and (+)-(3S)-linalyl pyrophosphate. [(3R)-8,9-14C,(3RS)-1E-3H]Linalyl pyrophosphate (3H:14C = 5.14) was tested as a substrate with both cyclases to determine the configuration of the cyclizing intermediate. This substrate with cyclase I yielded alpha-pinene and camphene with 3H:14C ratios of 3.1 and 4.2, respectively, indicating preferential, but not exclusive, utilization of the (3R)-enantiomer. With cyclase II, the doubly labeled substrate gave bicyclic olefins with 3H:14C ratios of from 13 to 20, indicating preferential, but not exclusive, utilization of the (3S)-enantiomer in this case. (3R)- and (3S)-[1Z-3H]linalyl pyrophosphate were separately compared to the achiral precursors [1-3H]geranyl pyrophosphate and [1-3H]neryl pyrophosphate (cis-isomer) as substrates for the cyclizations. With cyclase I, geranyl, neryl, and (3R)-linalyl pyrophosphate gave rise exclusively to (+)-alpha-pinene and (+)-camphene, whereas (3S)-linayl pyrophosphate produced, at relatively low rates, the (-)-isomers. With cyclase II, geranyl, neryl, and (3S)-linalyl pyrophosphate yielded exclusively the (-)-isomer series, whereas (3R)-linalyl pyrophosphate afforded the (+)-isomers at low rates

  10. Three luminescent d{sup 10} metal coordination polymers assembled from a semirigid V-shaped ligand with high selective detecting of Cu{sup 2+} ion and nitrobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei-Ping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorg. Chem., College of Chemistry & Materials Science, Northwest University, Xi’an 710069 (China); Institute of Functional Materials, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Liu, Ping; Liang, Yu-Tong; Cui, Lin; Xi, Zheng-Ping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorg. Chem., College of Chemistry & Materials Science, Northwest University, Xi’an 710069 (China); Wang, Yao-Yu, E-mail: [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorg. Chem., College of Chemistry & Materials Science, Northwest University, Xi’an 710069 (China)


    Three 2D luminescent coordination polymers with helical frameworks, [ZnL{sub 2}]{sub n} (1) and ([ML{sub 2}]·(H{sub 2}O)){sub n} (M=Zn (2), Cd (3)) (HL=4-((2-methyl-1 H-imidazol-1-yl)methyl)benzoic acid), have been assembled under hydro(solvo)thermal conditions. Complex 1 is in chiral space group and displays a rare 2D→2D 2-fold parallel interpenetrated layer network with two types of chiral double helixes. Interestingly, the single crystal structure analyses indicate the coexistence of enantiomers la and 1b in one pot, while the bulk crystallization of 1 are racemic mixtures based on the CD measurement. 2 and 3 are isostructural, in the structure, there are two kinds of 2D chiral helical-layers which stack in an -ABAB- sequence leading to the overall structure are mesomer and achiral. All compounds display intense luminescence in solid state at room temperature with high chemical and thermal stability. More importantly, 1 has been successfully applied in the detection of Cu{sup 2+} ions in aqueous media and nitrobenzene and the probable detecting mechanism was also discussed. - Graphical abstract: Three luminescent d{sup 10} metal coordination polymers with helical-layer based on 4-((2-methyl-1H-imidazol-1-yl)methyl)benzoic acid have been obtained. Compound 1 shows high selective detecting for Cu{sup 2+} ion in aqueous and nitrobenzene. - Highlights: • Three coordination polymers with chiral helical-layer have been obtained. • 1 Can luminescent detect Cu{sup 2+} ion in aqueous media and nitrobenzene. • Racemic mixture or mesomer compounds can be obtained by controlling the reaction conditions.

  11. A series of intrinsically chiral gold nanocage structures. (United States)

    Liu, X J; Hamilton, I P


    We present a series of intrinsically chiral gold nanocage structures, Au 9n+6 , which are stable for n ≥ 2. These structures consist of an Au 9n tube which is capped with Au 3 units at each end. Removing the Au 3 caps, we obtain a series of intrinsically chiral gold nanotube structures, Au 9n , which are stable for n ≥ 4. The intrinsic chirality of these structures results from the helicity of the gold strands which form the tube and not because an individual Au atom is a chiral center. The symmetry of these structures is C 3 and substructures of gold hexagons with a gold atom in the middle are particularly prominent. We focus on the properties of Au 42 (C 3 ) and Au 105 (C 3 ) which are the two smallest gold nanocage structures to be completely tiled by these Au 7 "golden-eye" substructures. Our main focus is on Au 42 (C 3 ) since gold clusters in the 40-50 atom regime are currently being investigated in gas phase experiments. We show that the intrinsically chiral Au 42 cage structure is energetically comparable with previously reported achiral cage and compact Au 42 structures. Cage structures are of particular interest because species can be encapsulated (and stabilized) inside the cage and we provide strong evidence that Au 6 @Au 42 (C 3 ) is the global minimum Au 48 structure. The intrinsically chiral gold nanocage structures, which exhibit a range of size-related properties, have potential applications in chiral catalysis and as components in nanostructured devices.

  12. A Short Review on the Synthetic Strategies of Duocarmycin Analogs that are Powerful DNA Alkylating Agents. (United States)

    Patil, Pravin C; Satam, Vijay; Lee, Moses


    The duocarmycins and CC-1065 are members of a class of DNA minor groove, AT-sequence selective, and adenine-N3 alkylating agents, isolated from Streptomyces sp. that exhibit extremely potent cytotoxicity against the growth of cancer cells grown in culture. Initial synthesis and structural modification of the cyclopropa[c] pyrrolo[3,2-e]indole (CPI) DNA-alkylating motif as well as the indole non-covalent binding region in the 1980s have led to several compounds that entered clinical trials as potential anticancer drugs. However, due to significant systemic toxicity none of the analogs have passed clinical evaluation. As a result, the intensity in the design, synthesis, and development of novel analogs of the duocarmycins has continued. Accordingly, in this review, which covers a period from the 1990s through the present time, the design and synthesis of duocarmycin SA are described along with the synthesis of novel and highly cytotoxic analogs that lack the chiral center. Examples of achiral analogs of duocarmycin SA described in this review include seco-DUMSA (39 and 40), seco-amino-CBI-TMI (13, Centanamycin), and seco-hydroxy-CBI-TMI (14). In addition, another novel class of biologically active duocarmycin SA analogs that contained the seco-iso-cyclopropylfurano[2,3-e]indoline (seco-iso-CFI) and seco-cyclopropyltetrahydrofurano[2,3-f]quinoline (seco-CFQ) DNA alkylating submit was also designed and synthesized. The synthesis of seco-iso-CFI-TMI (10, Tafuramycin A) and seco-CFQ-TMI (11, Tafuramycin B) is included in this review.

  13. Comparative biochemical and computational study of the role of naturally occurring mutations at Ambler positions 104 and 170 in GES β-lactamases. (United States)

    Kotsakis, Stathis D; Miriagou, Vivi; Tzelepi, Eva; Tzouvelekis, Leonidas S


    In GES-type β-lactamases, positions 104 and 170 are occupied by Glu or Lys and by Gly, Asn, or Ser, respectively. Previous studies have indicated an important role of these amino acids in the interaction with β-lactams, although their precise role, especially that of residue 104, remains uncertain. In this study, we constructed GES-1 (Glu104, Gly170), GES-2 (Glu104, Asn170), GES-5 (Glu104, Ser170), GES-6 (Lys104, Ser170), GES-7 (Lys104, Gly170), and GES-13 (Lys104, Asn170) by site-specific mutagenesis and compared their hydrolytic properties. Isogenic comparisons of β-lactam resistance levels conferred by these GES variants were also performed. Data indicated the following patterns: (i) Lys104-containing enzymes exhibited enhanced hydrolysis of oxyimino-cephalosporins and reduced efficiency against imipenem in relation to enzymes possessing Glu104, (ii) Asn170-containing enzymes showed reduced hydrolysis rates of penicillins and older cephalosporins, (iii) Ser170 enabled GES to hydrolyze cefoxitin efficiently, and (iv) Asn170 and Ser170 increased the carbapenemase character of GES enzymes but reduced their activity against ceftazidime. Molecular dynamic simulations of GES apoenzyme models, as well as construction of GES structures complexed with cefoxitin and an achiral ceftazidime-like boronic acid, provided insights into the catalytic behavior of the studied mutants. There were indications that an increased stability of the hydrogen bonding network of Glu166-Lys73-Ser70 and an altered positioning of Trp105 correlated with the substrate spectra, especially with acylation of GES by imipenem. Furthermore, likely effects of Ser170 on GES interactions with cefoxitin and of Lys104 on interactions with oxyimino-cephalosporins were revealed. Overall, the data unveiled the importance of residues 104 and 170 in the function of GES enzymes.

  14. 1D helix, 2D brick-wall and herringbone, and 3D interpenetration d10 metal-organic framework structures assembled from pyridine-2,6-dicarboxylic acid N-oxide. (United States)

    Wen, Li-Li; Dang, Dong-Bin; Duan, Chun-Ying; Li, Yi-Zhi; Tian, Zheng-Fang; Meng, Qing-Jin


    Five novel interesting d(10) metal coordination polymers, [Zn(PDCO)(H2O)2]n (PDCO = pyridine-2,6-dicarboxylic acid N-oxide) (1), [Zn2(PDCO)2(4,4'-bpy)2(H2O)2.3H2O]n (bpy = bipyridine) (2), [Zn(PDCO)(bix)]n (bix = 1,4-bis(imidazol-1-ylmethyl)benzene) (3), [Zn(PDCO)(bbi).0.5H2O]n (bbi = 1,1'-(1,4-butanediyl)bis(imidazole)) (4), and [Cd(PDCO)(bix)(1.5).1.5H2O]n (5), have been synthesized under hydrothermal conditions and structurally characterized. Polymer 1 possesses a one-dimensional (1D) helical chainlike structure with 4(1) helices running along the c-axis with a pitch of 10.090 Angstroms. Polymer 2 has an infinite chiral two-dimensional (2D) brick-wall-like layer structure in the ac plane built from achiral components, while both 3 and 4 exhibit an infinite 2D herringbone architecture, respectively extended in the ac and ab plane. Polymer 5 features a most remarkable and unique three-dimensional (3D) porous framework with 2-fold interpenetration related by symmetry, which contains channels in the b and c directions, both distributed in a rectangular grid fashion. Compounds 1-5, with systematic variation in dimensionality from 1D to 2D to 3D, are the first examples of d(10) metal coordination polymers into which pyridinedicarboxylic acid N-oxide has been introduced. In addition, polymers 1, 4, and 5 display strong blue fluorescent emissions in the solid state. Polymer 3 exhibits a strong SHG response, estimated to be approximately 0.9 times that of urea.

  15. Biosynthesis of rare ketoses through constructing a recombination pathway in an engineered Corynebacterium glutamicum. (United States)

    Yang, Jiangang; Zhu, Yueming; Li, Jitao; Men, Yan; Sun, Yuanxia; Ma, Yanhe


    Rare sugars have various known biological functions and potential for applications in pharmaceutical, cosmetics, and food industries. Here we designed and constructed a recombination pathway in Corynebacterium glutamicum, in which dihydroxyacetone phosphate (DHAP), an intermediate of the glycolytic pathway, and a variety of aldehydes were condensed to synthesize rare ketoses sequentially by rhamnulose-1-phosphate aldolase (RhaD) and fructose-1-phosphatase (YqaB) obtained from Escherichia coli. A wild-type strain harboring this artificial pathway had the ability to produce D-sorbose and D-psicose using D-glyceraldehyde and glucose as the substrates. The tpi gene, encoding triose phosphate isomerase was further deleted, and the concentration of DHAP increased to nearly 20-fold relative to that of the wild-type. After additional optimization of expression levels from rhaD and yqaB genes and of the fermentation conditions, the engineered strain SY6(pVRTY) exhibited preferable performance for rare ketoses production. Its yield increased to 0.59 mol/mol D-glyceraldehyde from 0.33 mol/mol D-glyceraldehyde and productivity to 2.35 g/L h from 0.58 g/L h. Moreover, this strain accumulated 19.5 g/L of D-sorbose and 13.4 g/L of D-psicose using a fed-batch culture mode under the optimal conditions. In addition, it was verified that the strain SY6(pVRTY) meanwhile had the ability to synthesize C4, C5, C6, and C7 rare ketoses when a range of representative achiral and homochiral aldehydes were applied as the substrates. Therefore, the platform strain exhibited the potential for microbial production of rare ketoses and deoxysugars. © 2014 Wiley Periodicals, Inc.

  16. Peptide design using alpha,beta-dehydro amino acids: from beta-turns to helical hairpins. (United States)

    Mathur, Puniti; Ramakumar, S; Chauhan, V S


    Incorporation of alpha,beta-dehydrophenylalanine (DeltaPhe) residue in peptides induces folded conformations: beta-turns in short peptides and 3(10)-helices in larger ones. A few exceptions-namely, alpha-helix or flat beta-bend ribbon structures-have also been reported in a few cases. The most favorable conformation of DeltaPhe residues are (phi,psi) approximately (-60 degrees, -30 degrees ), (-60 degrees, 150 degrees ), (80 degrees, 0 degrees ) or their enantiomers. DeltaPhe is an achiral and planar residue. These features have been exploited in designing DeltaPhe zippers and helix-turn-helix motifs. DeltaPhe can be incorporated in both right and left-handed helices. In fact, consecutive occurrence of three or more DeltaPhe amino acids induce left-handed screw sense in peptides containing L-amino acids. Weak interactions involving the DeltaPhe residue play an important role in molecular association. The C--H.O==C hydrogen bond between the DeltaPhe side-chain and backbone carboxyl moiety, pi-pi stacking interactions between DeltaPhe side chains belonging to enantiomeric helices have shown to stabilize folding. The unusual capability of a DeltaPhe ring to form the hub of multicentered interactions namely, a donor in aromatic C--H.pi and C--H.O==C and an acceptor in a CH(3).pi interaction suggests its exploitation in introducing long-range interactions in the folding of supersecondary structures. Copyright 2004 Wiley Periodicals, Inc. Biopolymers (Pept Sci), 2004

  17. Elongation Factor Tu Prevents Misediting of Gly-tRNA(Gly Caused by the Design Behind the Chiral Proofreading Site of D-Aminoacyl-tRNA Deacylase.

    Directory of Open Access Journals (Sweden)

    Satya Brata Routh


    Full Text Available D-aminoacyl-tRNA deacylase (DTD removes D-amino acids mischarged on tRNAs and is thus implicated in enforcing homochirality in proteins. Previously, we proposed that selective capture of D-aminoacyl-tRNA by DTD's invariant, cross-subunit Gly-cisPro motif forms the mechanistic basis for its enantioselectivity. We now show, using nuclear magnetic resonance (NMR spectroscopy-based binding studies followed by biochemical assays with both bacterial and eukaryotic systems, that DTD effectively misedits Gly-tRNAGly. High-resolution crystal structure reveals that the architecture of DTD's chiral proofreading site is completely porous to achiral glycine. Hence, L-chiral rejection is the only design principle on which DTD functions, unlike other chiral-specific enzymes such as D-amino acid oxidases, which are specific for D-enantiomers. Competition assays with elongation factor thermo unstable (EF-Tu and DTD demonstrate that EF-Tu precludes Gly-tRNAGly misediting at normal cellular concentrations. However, even slightly higher DTD levels overcome this protection conferred by EF-Tu, thus resulting in significant depletion of Gly-tRNAGly. Our in vitro observations are substantiated by cell-based studies in Escherichia coli that show that overexpression of DTD causes cellular toxicity, which is largely rescued upon glycine supplementation. Furthermore, we provide direct evidence that DTD is an RNA-based catalyst, since it uses only the terminal 2'-OH of tRNA for catalysis without the involvement of protein side chains. The study therefore provides a unique paradigm of enzyme action for substrate selection/specificity by DTD, and thus explains the underlying cause of DTD's activity on Gly-tRNAGly. It also gives a molecular and functional basis for the necessity and the observed tight regulation of DTD levels, thereby preventing cellular toxicity due to misediting.

  18. Structural basis for the enzymatic formation of the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone. (United States)

    Schiefner, André; Sinz, Quirin; Neumaier, Irmgard; Schwab, Wilfried; Skerra, Arne


    The last step in the biosynthetic route to the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) is catalyzed by Fragaria x ananassa enone oxidoreductase (FaEO), earlier putatively assigned as quinone oxidoreductase (FaQR). The ripening-induced enzyme catalyzes the reduction of the exocyclic double bond of the highly reactive precursor 4-hydroxy-5-methyl-2-methylene-3(2H)-furanone (HMMF) in a NAD(P)H-dependent manner. To elucidate the molecular mechanism of this peculiar reaction, we determined the crystal structure of FaEO in six different states or complexes at resolutions of ≤1.6 Å, including those with HDMF as well as three distinct substrate analogs. Our crystallographic analysis revealed a monomeric enzyme whose active site is largely determined by the bound NAD(P)H cofactor, which is embedded in a Rossmann-fold. Considering that the quasi-symmetric enolic reaction product HDMF is prone to extensive tautomerization, whereas its precursor HMMF is chemically labile in aqueous solution, we used the asymmetric and more stable surrogate product 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone (EHMF) and the corresponding substrate (2E)-ethylidene-4-hydroxy-5-methyl-3(2H)-furanone (EDHMF) to study their enzyme complexes as well. Together with deuterium-labeling experiments of EDHMF reduction by [4R-(2)H]NADH and chiral-phase analysis of the reaction product EHMF, our data show that the 4R-hydride of NAD(P)H is transferred to the unsaturated exocyclic C6 carbon of HMMF, resulting in a cyclic achiral enolate intermediate that subsequently becomes protonated, eventually leading to HDMF. Apart from elucidating this important reaction of the plant secondary metabolism our study provides a foundation for protein engineering of enone oxidoreductases and their application in biocatalytic processes.

  19. Chiral ligand-protected gold nanoclusters: Considering the optical activity from a viewpoint of ligand dissymmetric field

    Directory of Open Access Journals (Sweden)

    Hiroshi Yao


    Full Text Available Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and characterizations of atomically precise gold nanoclusters protected by achiral thiolates, atomic level origins of their chirality have been unveiled. On the other hand, chirality or optical activity in metal nanoclusters can also be introduced via the surface chiral ligands, which should be universal for the nanosystems. This tutorial review presents some optically-active metal (gold nanoclusters protected by chiral thiolates or phosphines, and their chiroptical (or circular dichroism; CD properties are discussed mostly from a viewpoint of the ligand dissymmetric field scheme. The examples are the gold nanoclusters protected by (R-/(S-2-phenylpropane-1-thiol, (R-/(S-mercaptosuccinic acid, phenylboronate-D/L-fructose complexes, phosphine sulfonate-ephedrinium ion pairs, or glutathione. Some methodologies for versatile asymmetric transformation and chiroptical controls of the nanocluster compounds are also described. In the dissymmetric field model as the origin of optical activity, the chiroptical responses of the gold nanoclusters are strongly associated with coupled oscillator and/or CD stealing mechanisms based on the concept of induced CD (ICD derived from a perturbation theory, so on this basis, some characteristic features of the observed CD responses of chiral ligand-protected gold nanoclusters are presented in detail. We believe that various kinds of origins of chirality found in ligand-protected gold nanoclusters may provide models for understanding those of

  20. Chromatographic resolution of closely related species in pharmaceutical chemistry: dehalogenation impurities and mixtures of halogen isomers. (United States)

    Regalado, Erik L; Zhuang, Ping; Chen, Yadan; Makarov, Alexey A; Schafer, Wes A; McGachy, Neil; Welch, Christopher J


    In recent years, the use of halogen-containing molecules has proliferated in the pharmaceutical industry, where the incorporation of halogens, especially fluorine, has become vitally important for blocking metabolism and enhancing the biological activity of pharmaceuticals. The chromatographic separation of halogen-containing pharmaceuticals from associated isomers or dehalogenation impurities can sometimes be quite difficult. In an attempt to identify the best current tools available for addressing this important problem, a survey of the suitability of four chromatographic method development platforms (ultra high-performance liquid chromatography (UHPLC), core shell HPLC, achiral supercritical fluid chromatography (SFC) and chiral SFC) for separating closely related mixtures of halogen-containing pharmaceuticals and their dehalogenated isosteres is described. Of the 132 column and mobile phase combinations examined for each mixture, a small subset of conditions were found to afford the best overall performance, with a single UHPLC method (2.1 × 50 mm, 1.9 μm Hypersil Gold PFP, acetonitrile/methanol based aqueous eluents containing either phosphoric or perchloric acid with 150 mM sodium perchlorate) affording excellent separation for all samples. Similarly, a survey of several families of closely related halogen-containing small molecules representing the diversity of impurities that can sometimes be found in purchased starting materials for synthesis revealed chiral SFC (Chiralcel OJ-3 and Chiralpak IB, isopropanol or ethanol with 25 mM isobutylamine/carbon dioxide) as well as the UHPLC (2.1 × 50 mm, 1.8 μm ZORBAX RRHD Eclipse Plus C18 and the Gold PFP, acetonitrile/methanol based aqueous eluents containing phosphoric acid) as preferred methods.

  1. Four Generations of Transition State Analogues for Human Purine Nucleoside Phosphorylase

    Energy Technology Data Exchange (ETDEWEB)

    Ho, M.; Shi, W; Rinaldo-Mathis, A; Tyler, P; Evans, G; Almo, S; Schramm, V


    Inhibition of human purine nucleoside phosphorylase (PNP) stops growth of activated T-cells and the formation of 6-oxypurine bases, making it a target for leukemia, autoimmune disorders, and gout. Four generations of ribocation transition-state mimics bound to PNP are structurally characterized. Immucillin-H (K*{sub i} = 58 pM, first-generation) contains an iminoribitol cation with four asymmetric carbons. DADMe-Immucillin-H (K*{sub i} = 9 pM, second-generation), uses a methylene-bridged dihydroxypyrrolidine cation with two asymmetric centers. DATMe-Immucillin-H (K*{sub i} = 9 pM, third-generation) contains an open-chain amino alcohol cation with two asymmetric carbons. SerMe-ImmH (K*{sub i} = 5 pM, fourth-generation) uses achiral dihydroxyaminoalcohol seramide as the ribocation mimic. Crystal structures of PNPs establish features of tight binding to be; (1) ion-pair formation between bound phosphate (or its mimic) and inhibitor cation, (2) leaving-group interactions to N1, O6, and N7 of 9-deazahypoxanthine, (3) interaction between phosphate and inhibitor hydroxyl groups, and (4) His257 interacting with the 5{prime}-hydroxyl group. The first generation analogue is an imperfect fit to the catalytic site with a long ion pair distance between the iminoribitol and bound phosphate and weaker interactions to the leaving group. Increasing the ribocation to leaving-group distance in the second- to fourth-generation analogues provides powerful binding interactions and a facile synthetic route to powerful inhibitors. Despite chemical diversity in the four generations of transition-state analogues, the catalytic site geometry is almost the same for all analogues. Multiple solutions in transition-state analogue design are available to convert the energy of catalytic rate enhancement to binding energy in human PNP.

  2. Enantiomeric excesses induced in amino acids by ultraviolet circularly polarized light irradiation of extraterrestrial ice analogs: A possible source of asymmetry for prebiotic chemistry

    International Nuclear Information System (INIS)

    Modica, Paola; De Marcellus, Pierre; D'Hendecourt, Louis Le Sergeant; Meinert, Cornelia; Meierhenrich, Uwe J.; Nahon, Laurent


    The discovery of meteoritic amino acids with enantiomeric excesses of the L-form (ee L ) has suggested that extraterrestrial organic materials may have contributed to prebiotic chemistry and directed the initial occurrence of the ee L that further led to homochirality of amino acids on Earth. A proposed mechanism for the origin of ee L in meteorites involves an asymmetric photochemistry of extraterrestrial ices by UV circularly polarized light (CPL). We have performed the asymmetric synthesis of amino acids on achiral extraterrestrial ice analogs by VUV CPL, investigating the chiral asymmetry transfer at two different evolutionary stages at which the analogs were irradiated (regular ices and/or organic residues) and at two different photon energies (6.6 and 10.2 eV). We identify 16 distinct amino acids and precisely measure the L-enantiomeric excesses using the enantioselective GC × GC-TOFMS technique in five of them: α-alanine, 2,3-diaminopropionic acid, 2-aminobutyric acid, valine, and norvaline, with values ranging from ee L = –0.20% ± 0.14% to ee L = –2.54% ± 0.28%. The sign of the induced ee L depends on the helicity and the energy of CPL, but not on the evolutionary stage of the samples, and is the same for all five considered amino acids. Our results support an astrophysical scenario in which the solar system was formed in a high-mass star-forming region where icy grains were irradiated during the protoplanetary phase by an external source of CPL of a given helicity and a dominant energy, inducing a stereo-specific photochemistry.

  3. Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios (United States)

    Chan, Queenie Hoi Shan; Chikaraishi, Yoshito; Takano, Yoshinori; Ogawa, Nanako O.; Ohkouchi, Naohiko


    A novel method has been developed for compound-specific nitrogen isotope compositions with an achiral column which was previously shown to offer high precision for nitrogen isotopic analysis. We applied the method to determine the amino acid contents and stable nitrogen isotopic compositions of individual amino acids from the thermally metamorphosed (above 500 °C) Antarctic carbonaceous chondrites Ivuna-like (CI)1 (or CI-like) Yamato (Y) 980115 and Ornans-like (CO)3.5 Allan Hills (ALH) A77003 with the use of gas chromatography/combustion/isotope ratio mass spectrometry. ALHA77003 was deprived of amino acids due to its extended thermal alteration history. Amino acids were unambiguously identified in Y-980115, and the δ15N values of selected amino acids (glycine +144.8 ‰; α-alanine +121.2 ‰) are clearly extraterrestrial. Y-980115 has experienced an extended period of aqueous alteration as indicated by the presence of hydrous mineral phases. It has also been exposed to at least one post-hydration short-lived thermal metamorphism. Glycine and alanine were possibly produced shortly after the accretion event of the asteroid parent body during the course of an extensive aqueous alteration event and have abstained from the short-term post-aqueous alteration heating due to the heterogeneity of the parent body composition and porosity. These carbonaceous chondrite samples are good analogs that offer important insights into the target asteroid Ryugu of the Hayabusa-2 mission, which is a C-type asteroid likely composed of heterogeneous materials including hydrated and dehydrated minerals.

  4. Lanthanide(III) complexes of bis-semicarbazone and bis-imine-substituted phenanthroline ligands: solid-state structures, photophysical properties, and anion sensing. (United States)

    Nadella, Sandeep; Selvakumar, Paulraj M; Suresh, Eringathodi; Subramanian, Palani S; Albrecht, Markus; Giese, Michael; Fröhlich, Roland


    Phenanthroline-based hexadentate ligands L(1) and L(2) bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as La(III), Eu(III), Tb(III), Lu(III), and Y(III) metal ions, were synthesized, and the crystal structures of [ML(1)Cl(3)] (M=La(III), Eu(III), Tb(III), Lu(III), or Y(III)) complexes were determined. Solvent or water molecules act as coligands for the rare-earth metals in addition to halide anions. The big Ln(III) ion exhibits a coordination number (CN) of 10, whereas the corresponding Eu(III), Tb(III), Lu(III), and Y(III) centers with smaller ionic radii show CN=9. Complexes of L(2), namely [ML(2)Cl(3)] (M=Eu(III), Tb(III), Lu(III), or Y(III)) ions could also be prepared. Only the complex of Eu(III) showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine-5'-triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) was found. (31)P NMR spectroscopic studies revealed the formation of a [EuL(2)(ATP)] coordination species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. δ-Peptides from RuAAC-Derived 1,5-Disubstituted Triazole Units

    KAUST Repository

    Johansson, Johan R.


    Non-natural peptides with structures and functions similar to natural peptides have emerged lately in biomedical as well as nanotechnological contexts. They are interesting for pharmaceutical applications since they can adopt structures with new targeting potentials and because they are generally not prone to degradation by proteases. We report here a new set of peptidomimetics derived from δ-peptides, consisting of n units of a 1,5-disubstituted 1,2,3-triazole amino acid (5Tzl). The monomer was prepared using ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) chemistry using [RuCl2Cp]x as the catalyst, allowing for simpler purification and resulting in excellent yields. This achiral monomer was used to prepare peptide oligomers that are water soluble independent of peptide chain length. Conformational analysis and structural investigations of the oligomers were performed by 2D NOESY NMR experiments, and by quantum chemical calculations using the ωB97X-D functional. These data indicate that several conformations may co-exist with slight energetic differences. Together with their increased hydrophilicity, this feature of homo-5Tzl may prove essential for mimicking natural peptides composed of α-amino acids, where the various secondary structures are achieved by side chain effects and not by the rigidity of the peptide backbone. The improved synthetic method allows for facile variation of the 5Tzl amino acid side chains, further increasing the versatility of these compounds. A new set of non-natural peptides composed of 1,5-disubstituted 1,2,3-triazole amino acids is presented. These peptides benefit from: a) modular synthesis of the monomers, allowing variation of the side chains; b) increased solubility of the oligomers in water, irrespective of peptide length; c) flexibility of the backbone allowing these foldamers to adopt several conformations. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Chiral crystal of a C2v-symmetric 1,3-diazaaulene derivative showing efficient optical second harmonic generation

    KAUST Repository

    Ma, Xiaohua


    Achiral nonlinear optical (NLO) chromophores 1,3-diazaazulene derivatives, 2-(4â€-aminophenyl)-6-nitro-1,3-diazaazulene (APNA) and 2-(4â€-N,N-diphenylaminophenyl)-6-nitro-1,3-diazaazulene (DPAPNA), were synthesized with high yield. Despite the moderate static first hyperpolarizabilities (β0) for both APNA [(136 ± 5) à - 10-30 esu] and DPAPNA [(263 ± 20) à - 10-30 esu], only APNA crystal shows a powder efficiency of second harmonic generation (SHG) of 23 times that of urea. It is shown that the APNA crystallization driven cooperatively by the strong H-bonding network and the dipolar electrostatic interactions falls into the noncentrosymmetric P2 12121 space group, and that the helical supramolecular assembly is solely responsible for the efficient SHG response. To the contrary, the DPAPNA crystal with centrosymmetric P-1 space group is packed with antiparalleling dimmers, and is therefore completely SHG-inactive. 1,3-Diazaazulene derivatives are suggested to be potent building blocks for SHG-active chiral crystals, which are advantageous in high thermal stability, excellent near-infrared transparency and high degree of designing flexibility. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 Optical crystals based on 1,3-diazaazulene derivatives are reported as the first example of organic nonlinear optical crystal whose second harmonic generation activity is found to originate solely from the chirality of their helical supramolecular orientation. The strong H-bond network forming between adjacent choromophores is found to act cooperatively with dipolar electrostatic interactions in driving the chiral crystallization of this material. Copyright © 2011 Wiley Periodicals, Inc.

  7. Chirality in adsorption on solid surfaces. (United States)

    Zaera, Francisco


    In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral

  8. One-Pot Catalytic Enantio- and Diastereoselective Syntheses of anti-, syn-cis-Disubstituted, and syn-Vinyl Cyclopropyl Alcohols (United States)

    Kim, Hun Young; Salvi, Luca; Carroll, Patrick J.; Walsh, Patrick J.


    Highly enantio- and diastereoselective methods for the synthesis of a variety of cyclopropyl alcohols are reported. These methods represent the first one-pot approaches to syn-vinyl cyclopropyl alcohols, syn-cis-disubstituted cyclopropyl alcohols, and anti-cyclopropyl alcohols from achiral precursors. The methods begin with enantioselective C–C bond formations promoted by a MIB-based zinc catalyst to generate allylic alkoxide intermediates. The intermediates are then subjected to in situ alkoxide-directed cyclopropanation to provide cyclopropyl alcohols. In the synthesis of vinyl cyclopropyl alcohols, hydroboration of enynes is followed by transmetalation of the resulting dienylborane to zinc to provide dienylzinc reagents. Enantioselective addition to aldehydes generates the requisite dienyl zinc alkoxides, which are then subjected to in situ cyclopropanation to furnish vinyl cyclopropyl alcohols. Cyclopropanation occurs at the double bond allylic to the alkoxide. Using this method, syn-vinylcyclopropyl alcohols are obtained in 65–85% yield, 76–93% ee, and >19:1 dr. To prepare anti-cyclopropanols, enantioselective addition of alkylzinc reagents to conjugated enals provides allylic zinc alkoxides. Because direct cyclopropanation provides syn-cyclopropyl alcohols, the intermediate allylic alkoxides were treated with TMSCl/Et3N to generate intermediate silyl ethers. In situ cyclopropanation of the allylic silyl ether resulted in cyclopropanation to form the anti-cyclopropyl silyl ether. Workup with TBAF affords the anti-cyclopropyl alcohols in one-pot in 60–82% yield, 89–99% ee, and ≥10:1 dr. For the synthesis of cis-disubstituted cyclopropyl alcohols, in situ generated (Z)-vinyl zinc reagents were employed in asymmetric addition to aldehydes to generate (Z)-allylic zinc alkoxides. In situ cyclopropanation provides syn-cis-disubstituted cyclopropyl alcohols in 42–70% yield, 88–97% ee, and >19:1 dr. These one-pot procedures enable the synthesis of a

  9. Hydrodynamic and Thermophoretic Effects on the Supramolecular Chirality of Pyrene-Derived Nanosheets. (United States)

    Micali, Norberto; Vybornyi, Mykhailo; Mineo, Placido; Khorev, Oleg; Häner, Robert; Villari, Valentina


    Chiroptical properties of two-dimensional (2D) supramolecular assemblies (nanosheets) of achiral, charged pyrene trimers (Py3 ) are rendered chiral by asymmetric physical perturbations. Chiral stimuli in a cuvette can originate either from controlled temperature gradients or by very gentle stirring. The chiroptical activity strongly depends on the degree of supramolecular order of the nanosheets, which is easily controlled by the method of preparation. The high degree of structural order ensures strong cooperative effects within the aggregates, rendering them more susceptible to external stimuli. The samples prepared by using slow thermal annealing protocols are both CD and LD active (in stagnant and stirred solutions), whereas for isothermally aged samples chiroptical activity was in all cases undetectable. In the case of temperature gradients, the optical activity of 2D assemblies could be recorded for a stagnant solution due to migration of the aggregates from the hottest to the coldest regions of the system. However, a considerably stronger exciton coupling, coinciding with the J-band of the interacting pyrenes, is developed upon subtle vortexing (0.5 Hz, 30 rpm) of the aqueous solution of the nanosheets. The sign of the exciton coupling is inverted upon switching between clockwise and counter-clockwise rotation. The supramolecular chirality is evidenced by the appearance of CD activity. To exclude artefacts from proper CD spectra, the contribution from LD to the observed CD was determined. The data suggest that the aggregates experience asymmetrical deformation and alignment effects because of the presence of chiral flows. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Supercritical fluid chromatography for separation and preparation of tautomeric 7-epimeric spiro oxindole alkaloids from Uncaria macrophylla. (United States)

    Yang, Wenzhi; Zhang, Yibei; Pan, Huiqin; Yao, Changliang; Hou, Jinjun; Yao, Shuai; Cai, Luying; Feng, Ruihong; Wu, Wanying; Guo, Dean


    Increasing challenge arising from configurational interconversion in aqueous solvent renders it rather difficult to isolate high-purity tautomeric reference standards and thus largely hinders the holistic quality control of traditional Chinese medicine (TCM). Spiro oxindole alkaloids (SOAs), as the markers for the medicinal Uncaria herbs, can easily isomerize in polar or aqueous solvent via a retro-Mannich reaction. In the present study, supercritical fluid chromatography (SFC) is utilized to separate and isolate two pairs of 7-epimeric SOAs, including rhynchophylline (R) and isorhynchophylline (IR), corynoxine (C) and corynoxine B (CB), from Uncaria macrophylla. Initially, the solvent that can stabilize SOA epimers was systematically screened, and acetonitrile was used to dissolve and as the modifier in SFC. Then, key parameters of ultra-high performance SFC (ultra-performance convergence chromatography, UPC 2 ), comprising stationary phase, additive in modifier, column temperature, ABPR pressure, and flow rate, were optimized in sequence. Two isocratic UPC 2 methods were developed on the achiral Torus 1-AA and Torus Diol columns, suitable for UV and MS detection, respectively. MCI gel column chromatography fractionated the U. macrophylla extract into two mixtures (R/IR and C/CB). Preparative SFC, using a Viridis Prep Silica 2-EP OBD column and acetonitrile-0.2% diethylamine in CO 2 as the mobile phase, was finally employed for compound purification. As a result, the purity of four SOA compounds was all higher than 95%. Different from reversed-phase HPLC, SFC, by use of water-free mobile phase (inert CO 2 and aprotic modifier), provides a solution to rapid analysis and isolation of tautomeric reference standards for quality control of TCM. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Evaluation of reversible interconversion in comprehensive two-dimensional gas chromatography using enantioselective columns in first and second dimensions. (United States)

    Kröger, Sabrina; Wong, Yong Foo; Chin, Sung-Tong; Grant, Jacob; Lupton, David; Marriott, Philip J


    (achiral (2)D column) or into the respective (R) and (S) enantiomers of the E/Z isomers when using a (2)D enantioselective column. With this arrangement, the isomers underneath the broad interconversion plateau in 1D elution profiles, including the enantiomers, could be resolved, illuminating salient features and understanding of the molecular reversible process of the interconverting molecules during the chromatographic elution. The two-dimensional patterns (contour plots), resulting from the combination of interconversion process and chiral separation, are discussed phenomenologically. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Synthesis and characterization of a series of rod-disc combined liquid crystals (United States)

    Mansdorf, Bart Allan

    result is a 3-dimensionally chiral structure from an achiral material.

  13. Infrared laser induced population transfer and parity selection in (14)NH3: A proof of principle experiment towards detecting parity violation in chiral molecules. (United States)

    Dietiker, P; Miloglyadov, E; Quack, M; Schneider, A; Seyfang, G


    We have set up an experiment for the efficient population transfer by a sequential two photon-absorption and stimulated emission-process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of (14)NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, (14)N quadrupole coupling constants for all fundamentals and some overtones of (14)NH3 are known and can be used for

  14. Physical properties of smectic C liquid crystal cells

    International Nuclear Information System (INIS)

    Dunn, P.E.


    The aim of this work was to investigate some of the fundamental physical properties of surface stabilised ferroelectric liquid crystal devices (SSFLCDs) using optical, electrical and x-ray diffraction techniques. The measured physical parameters are then related to the performance of display devices. Refractometry measurements on homeotropically aligned FLC samples are used to accurately determine the smectic cone angle and information is also gained on FLC biaxial order. Propagation of optically excited guided modes along liquid crystalline layers is then used to obtain detailed director configuration information. Wavelength dependent extinction angle spectroscopy is also used to extract smectic C director profiles, albeit with a slightly lower accuracy than the guided mode method. A triangular director profile model is found to describe the wavelength dependent extinction angle properties of achiral samples, and examination of the cell spacing dependence of the director profile enables a ratio of bulk elasticity to surface anchoring energy to be determined. Information is obtained on the behaviour of smectic C materials under high frequency electric fields using a continuum director profile model, providing a novel measurement of bend and splay elastic constants. Additionally an extension of the wavelength dependent extinction angle technique allows half splayed states to be characterised. A variety of simple electro-optic techniques are used to characterise several key material parameters. Polarisation reversal current is used to measure both the spontaneous polarisation and an effective FLC switching viscosity. Monochromatic extinction angle measurements under applied d.c. fields are used to determine the cone and layer tilt angles, whilst a comparison of d.c. and a.c. extinction angle characteristics provides an estimate of the dielectric biaxiality. An automated measurement technique is used to determine FLC response time characteristics, which are described

  15. Investigations of inorganic and hybrid inorganic-organic nanostructures (United States)

    Kam, Kinson Chihang

    significantly influenced by the nanowire-polymer ratios and chemical functionalization of the respective nanowires, up to an order of magnitude. In hybrid framework materials, nine novel phases of magnesium tartrate coordination polymers were synthesized by exploiting different analogs of tartaric acid, resulting in chiral and achiral frameworks. These phases exhibited a diverse range of structures as a result of connectivity, density, composition differences as a function of temperature. The chirality of some of these frameworks was also verified using circular dichroism.

  16. Chiral Pesticides in Soil and Water and Exchange with the Atmosphere

    Directory of Open Access Journals (Sweden)

    Terry F. Bidleman


    enantiomer fractions (EFs and mass balance in the water column. Apparent pseudo first-order rate constants in the eastern Arctic Ocean are 0.12 year-1 for (+α-HCH, 0.030 year-1 for (–α-HCH, and 0.037 year-1 for achiral Υ-HCH. These rate constants are 3–10 times greater than those for basic hydrolysis in seawater. Microbial breakdown may compete with advective outflow for long-term removal of HCHs from the Arctic Ocean. Rate constants estimated for the arctic lake are about 3–8 times greater than those in the ocean.

  17. Physical properties of smectic C liquid crystal cells

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, P E


    The aim of this work was to investigate some of the fundamental physical properties of surface stabilised ferroelectric liquid crystal devices (SSFLCDs) using optical, electrical and x-ray diffraction techniques. The measured physical parameters are then related to the performance of display devices. Refractometry measurements on homeotropically aligned FLC samples are used to accurately determine the smectic cone angle and information is also gained on FLC biaxial order. Propagation of optically excited guided modes along liquid crystalline layers is then used to obtain detailed director configuration information. Wavelength dependent extinction angle spectroscopy is also used to extract smectic C director profiles, albeit with a slightly lower accuracy than the guided mode method. A triangular director profile model is found to describe the wavelength dependent extinction angle properties of achiral samples, and examination of the cell spacing dependence of the director profile enables a ratio of bulk elasticity to surface anchoring energy to be determined. Information is obtained on the behaviour of smectic C materials under high frequency electric fields using a continuum director profile model, providing a novel measurement of bend and splay elastic constants. Additionally an extension of the wavelength dependent extinction angle technique allows half splayed states to be characterised. A variety of simple electro-optic techniques are used to characterise several key material parameters. Polarisation reversal current is used to measure both the spontaneous polarisation and an effective FLC switching viscosity. Monochromatic extinction angle measurements under applied d.c. fields are used to determine the cone and layer tilt angles, whilst a comparison of d.c. and a.c. extinction angle characteristics provides an estimate of the dielectric biaxiality. An automated measurement technique is used to determine FLC response time characteristics, which are described

  18. Origin of nucleic acids

    International Nuclear Information System (INIS)

    Prieur, B.E.


    The appearance of nucleic acids is the first event after the birth of membranes which made it possible to assure the perenniality of information. The complexity of these molecules has led some scientists to propose that they were not prebiotic but rather derived a more simple and achiral primitive ancestor. This hypothesis suggests that ribose possesses properties that allowed the formation of certain polysaccharides which evolved to RNA. The first step of the hypothesis is the selection and concentration of ribofuranose. This sugar has chelating properties and its alpha-ribofuranose is favoured in the chelating position. The density of the sugar with a heavy cation is greater than water and thus the complex can escape the UV radiation at the surface of the ocean. The particularity of ribose is to be able to form a homochiral regular array of these basic chelating structures with pyrophosphite. These arrays evolve towards the formation of polysaccharides (poly ribose phosphate) which have a very organized structure. These polysaccharides in turn evolve to RNA by binding of adenine and deoxyguanine which are HCN derivatives that can react with the polysaccharides. The primitive RNA is methylated and oxidized to form prebiotic RNA with adenosine, cytidine, 7methyl-guanosine and ribothymidine as nucleic bases. The pathway of biosynthesis of DNA form RNA will be studied. I suggest that the appearance of DNA results form the interaction between prebiotic double stranded RNA and proteins. DNA could be a product of RNA degradation by proteins. The catabolism of RNA to DNA requires a source of free radicals, protons and hydrides. RNA cannot produce free radicals, which are provided by the phenol group of the amino acid tyrosien. Protons are provided by the medium and hydrides are provided by 7-methyl-guanosine which can fix hydrides coming from hydrogen gas and donate them for the transformation of a riboside to a deoxyriboside. This pathway suggests that DNA appeared at

  19. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands. (United States)

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten


    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle

  20. Fabrication of micro- and nanometre-scale polymer structures in liquid crystal devices for next generation photonics applications (United States)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.


    , which was also found to be the case for the achiral system. The high resolution DLW technique limits structures to the focal spot size of the beam, 1 μm in diameter, such that the transmittance is expected to be significantly enhanced relative to other stabilization techniques. Moreover, both devices remain stable under electrical and thermal cycling.

  1. Molecular-Level Design of Heterogeneous Chiral Catalysis

    International Nuclear Information System (INIS)

    Zaera, Francisco


    , and the development of ways to imprint chiral centers on achiral solid surfaces. Chiral catalysis is not only a problem of great importance in its own right, but also the ultimate test of how to control selectivity in catalysis. The time is ripe for fundamental work in heterogeneous chiral catalysis to provide the U.S. with a leadership role in developing the next generation of catalytic processes for medicinal and agrochemical manufacturing. Our team provides the required expertise for a synergistic and comprehensive integration of physical and chemical experimentation with solid state and molecular reactivity theories to solve this problem.

  2. Insertion of a single-molecule magnet inside a ferromagnetic lattice based on a 3D bimetallic oxalate network: towards molecular analogues of permanent magnets. (United States)

    Clemente-León, Miguel; Coronado, Eugenio; Gómez-García, Carlos J; López-Jordà, Maurici; Camón, Agustín; Repollés, Ana; Luis, Fernando


    The insertion of the single-molecule magnet (SMM) [Mn(III)(salen)(H2O)]2(2+) (salen(2-) = N,N'-ethylenebis-(salicylideneiminate)) into a ferromagnetic bimetallic oxalate network affords the hybrid compound [Mn(III)(salen)(H2O)]2[Mn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (1). This cationic Mn2 cluster templates the growth of crystals formed by an unusual achiral 3D oxalate network. The magnetic properties of this hybrid magnet are compared with those of the analogous compounds [Mn(III)(salen)(H2O)]2[Zn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (2) and [In(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]⋅(H2O)0.25⋅(CH3OH)0.25⋅(CH3CN)0.25 (3), which are used as reference compounds. In 2 it has been shown that the magnetic isolation of the Mn2 clusters provided by their insertion into a paramagnetic oxalate network of Cr(III) affords a SMM behavior, albeit with blocking temperatures well below 500 mK even for frequencies as high as 160 kHz. In 3 the onset of ferromagnetism in the bimetallic Mn(II) Cr(III) network is observed at Tc = 5 K. Finally, in the hybrid compound 1 the interaction between the two magnetic networks leads to the antiparallel arrangement of their respective magnetizations, that is, to a ferrimagnetic phase. This coupling induces also important changes on the magnetic properties of 1 with respect to those of the reference compounds 2 and 3. In particular, compound 1 shows a large magnetization hysteresis below 1 K, which is in sharp contrast with the near-reversible magnetizations that the SMMs and the oxalate ferromagnetic lattice show under the same conditions. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Infrared laser induced population transfer and parity selection in {sup 14}NH{sub 3}: A proof of principle experiment towards detecting parity violation in chiral molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dietiker, P.; Miloglyadov, E.; Quack, M., E-mail:; Schneider, A.; Seyfang, G. [Physical Chemistry, ETH Zürich, CH-8093 Zürich (Switzerland)


    We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference Δ{sub pv}E between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν{sub 1} and ν{sub 3} fundamentals as well as the 2ν{sub 4} overtone of {sup 14}NH{sub 3}, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν{sub 1}, ν{sub 3}, and 2ν{sub 4} levels in the context of previously known data for ν{sub 2} and its overtone, as well as ν{sub 4}, and the ground state. Thus, now, {sup 14}N quadrupole coupling constants for all

  4. Kiralnost - ususret 160. obljetnici Pasteurova otkrića

    Directory of Open Access Journals (Sweden)

    Kojić-Prodić, B.


    guide our life processes. The synthesis of various dynamically chiral supramolecules from achiral molecules and preparations of conjugated homochiral polymers will offer new types of biosensors, artificial enzymes and some sophisticated materials. Theresearch of isotopic chirality by quantum-chemical methods reveals some parity-violating effects and shed more light on the physical bases of molecular chirality.

  5. Simulation of circularly polarized luminescence spectra using coupled cluster theory

    Energy Technology Data Exchange (ETDEWEB)

    McAlexander, Harley R.; Crawford, T. Daniel, E-mail: [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States)


    We report the first computations of circularly polarized luminescence (CPL) rotatory strengths at the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) level of theory. Using a test set of eight chiral ketones, we compare both dipole and rotatory strengths for absorption (electronic circular dichroism) and emission to the results from time-dependent density-functional theory (TD-DFT) and available experimental data for both valence and Rydberg transitions. For two of the compounds, we obtained optimized geometries of the lowest several excited states using both EOM-CCSD and TD-DFT and determined that structures and EOM-CCSD transition properties obtained with each structure were sufficiently similar that TD-DFT optimizations were acceptable for the remaining test cases. Agreement between EOM-CCSD and the Becke three-parameter exchange function and Lee-Yang-Parr correlation functional (B3LYP) corrected using the Coulomb attenuating method (CAM-B3LYP) is typically good for most of the transitions, though agreement with the uncorrected B3LYP functional is significantly worse for all reported properties. The choice of length vs. velocity representation of the electric dipole operator has little impact on the EOM-CCSD transition strengths for nearly all of the states we examined. For a pair of closely related β, γ-enones, (1R)-7-methylenebicyclo[2.2.1]heptan-2-one and (1S)-2-methylenebicyclo[2.2.1]heptan-7-one, we find that EOM-CCSD and CAM-B3LYP agree with the energetic ordering of the two possible excited-state conformations, resulting in good agreement with experimental rotatory strengths in both absorption and emission, whereas B3LYP yields a qualitatively incorrect result for the CPL signal of (1S)-2-methylenebicyclo[2.2.1]heptan-7-one. Finally, we predict that one of the compounds considered here, trans-bicyclo[3.3.0]octane-3,7-dione, is unique in that it exhibits an achiral ground state and a chiral first excited state, leading to a strong CPL

  6. Synthetic Methods for Ester Bond Formation and Conformational Analysis of Ester-Containing Carbohydrates (United States)

    Hackbusch, Sven

    This dissertation encompasses work related to synthetic methods for the formation of ester linkages in organic compounds, as well as the investigation of the conformational influence of the ester functional group on the flexibility of inter-saccharide linkages, specifically, and the solution phase structure of ester-containing carbohydrate derivatives, in general. Stereoselective reactions are an important part of the field of asymmetric synthesis and an understanding of their underlying mechanistic principles is essential for rational method development. Here, the exploration of a diastereoselective O-acylation reaction on a trans-2-substituted cyclohexanol scaffold is presented, along with possible reasons for the observed reversal of stereoselectivity dependent on the presence or absence of an achiral amine catalyst. In particular, this work establishes a structure-activity relationship with regard to the trans-2-substituent and its role as a chiral auxiliary in the reversal of diastereoselectivity. In the second part, the synthesis of various ester-linked carbohydrate derivatives, and their conformational analysis is presented. Using multidimensional NMR experiments and computational methods, the compounds' solution-phase structures were established and the effect of the ester functional group on the molecules' flexibility and three-dimensional (3D) structure was investigated and compared to ether or glycosidic linkages. To aid in this, a novel Karplus equation for the C(sp2)OCH angle in ester-linked carbohydrates was developed on the basis of a model ester-linked carbohydrate. This equation describes the sinusoidal relationship between the C(sp2)OCH dihedral angle and the corresponding 3JCH coupling constant that can be determined from a J-HMBC NMR experiment. The insights from this research will be useful in describing the 3D structure of naturally occurring and lab-made ester-linked derivatives of carbohydrates, as well as guiding the de novo-design of

  7. Transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates: Catalysts for asymmetric olefin hydroamination and acceptorless alcohol decarbonylation

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal [Ames Lab., Ames, IA (United States)


    The research presented and discussed in this dissertation involves the synthesis of transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates, and their application in catalytic enantioselective olefin hydroamination and acceptorless alcohol decarbonylation. Neutral oxazolinylboranes are excellent synthetic intermediates for preparing new borate ligands and also developing organometallic complexes. Achiral and optically active bis(oxazolinyl)phenylboranes are synthesized by reaction of 2-lithio-2-oxazolide and 0.50 equiv of dichlorophenylborane. These bis(oxazolinyl)phenylboranes are oligomeric species in solid state resulting from the coordination of an oxazoline to the boron center of another borane monomer. The treatment of chiral bis(oxazolinyl)phenylboranes with sodium cyclopentadienide provide optically active cyclopentadienyl-bis(oxazolinyl)borates H[PhB(C5H5)(OxR)2] [OxR = Ox4S-iPr,Me2, Ox4R-iPr,Me2, Ox4S-tBu]. These optically active proligands react with an equivalent of M(NMe2)4 (M = Ti, Zr, Hf) to afford corresponding cyclopentadienyl-bis(oxazolinyl)borato group 4 complexes {PhB(C5H4)(OxR)2}M(NMe2)2 in high yields. These group 4 compounds catalyze cyclization of aminoalkenes at room temperature or below, providing pyrrolidine, piperidine, and azepane with enantiomeric excesses up to 99%. Our mechanistic investigations suggest a non-insertive mechanism involving concerted C-N/C-H bond formation in the turnover limiting step of the catalytic cycle. Among cyclopentadienyl-bis(oxazolinyl)borato group 4 catalysts, the zirconium complex {PhB(C5H4)(Ox4S-iPr,Me2)2}Zr(NMe2)2 ({S-2}Zr(NMe2)2) displays highest activity and enantioselectivity. Interestingly, S-2

  8. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic. (United States)

    Zhou, Chao; Duan, Xiaoyang; Liu, Na


    changes on the nanoscale. Hosted by a reconfigurable DNA origami template, the plasmonic cross can be switched between a chiral locked state and an achiral relaxed state through toehold-mediated strand displacement reactions. This reconfigurable nanostructure can also be modified in response to light stimuli, leading to a noninvasive, waste-free, and all-optically controlled system. Taking one step further, we show that selective manipulations of individual structural species coexisting in one ensemble can be achieved using pH tuning of reconfigurable plasmonic nanostructures in a programmable manner. Finally, we describe an alternative to achieving dynamic plasmonic systems by driving AuNPs directly on origami. Such plasmonic walkers, inspired by the biological molecular motors in living cells, can generate dynamic CD responses when carrying out directional, progressive, and reverse nanoscale walking on DNA origami. We envision that the combination of DNA nanotechnology and plasmonics will open an avenue toward a new generation of functional plasmonic systems with tailored optical properties and useful applications, including polarization conversion devices, biomolecular sensing, surface-enhanced Raman and fluorescence spectroscopy, and diffraction-limited optics.

  9. Structural diversity of a series of terpyridyl carboxylate coordination polymers: Luminescent sensor and magnetic properties (United States)

    Yuan, Fei; Yuan, Chun-Mei; Hu, Huai-Ming; Wang, Ting-Ting; Zhou, Chun-Sheng


    Eleven new coordination polymers, [Zn2(ctpy)2(HCOO)2]n·3nH2O (1), [Zn2(ctpy)2(HCOO)2(H2O)2]n·nH2O (2), [Zn2(ctpy)2(H2O)4]n·2n(CH3COO)·nH2O (3), [Zn2(ctpy)2(CH3COO)2]n·nH2O (4), [Zn(ctpy)2]n·nH2O (5), [Zn2(ctpy)2(Hidc)(H2O)2]n(6), [Cd2(ctpy)4]n(7), [Cd2(ctpy)2(Hidc)]n(8), [Co2(ctpy)2(HCOO)2(H2O)2]n·nH2O (9), [Co(ctpy)(DMF)(ox)0.5]n(10), [Co(ctpy)(ox)0.5]n(11) and the closely related compound [Zn(ctpy)(ox)0.5]n·0.5nH2O (12) (Hctpy = 4‧-carboxy-4,2‧:6‧,4‧‧-terpyridine, H2ox = oxalic acid and H3idc = imidazole-4,5-dicarboxylic acid) have been synthesized by hydro(solvo)thermal reaction of 4‧-carboxy-4,2‧:6‧,4‧‧-terpyridine with divalent metal salts and characterized by elemental analysis, IR spectra, single crystal X-ray diffraction. Compounds 1 and 4 have similar structure which demonstrate a two-fold interpenetrating 3D framework with a 3-connected utp topological net, which contains the same number of left and right-handed 21 helical chains. Compounds 2 and 9 are isostructural 2D layer with a 3-connected hcb topological net. Similar to 2, compound 3 also displays a 3-connected 2D hcb topological net. Compounds 5 and 10 are a 2D layer with a 4-connected sql topological net. Compound 6 shows a chiral 2D layer based on a 1D left- or right-handed helical chains, which are further extended into an achiral 2D + 2D→3D supramolecular network by hydrogen bonds with alternately arrangement. Compound 7 features an unusual 2-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,5)-connected binodal topological net with the Schläfli symbol of (52·6)(53·63·73·8). Compound 8 shows a 2D→3D supramolecular structure based on (3,4)-connected 2D bilayers with the Schläfli symbol of (44·62). Compound 11 displays an unusual three-dimensional coordination network which exhibits an intriguing (3,8)-connected binodal new topological net with Schläfli symbol (42·62)2(42·623·83). Compound 12 features a two

  10. Molecular-level Design of Heterogeneous Chiral Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gellman, Andrew John [Carnegie Mellon University; Sholl, David S. [Georgia Institute of Technology; Tysoe, Wilfred T. [University of Wisconsin - Milwaukee; Zaera, Francisco [University of California at Riverside


    Understanding and controlling selectivity is one of the key challenges in heterogeneous catalysis. Among problems in catalytic selectivity enantioselectivity is perhaps the most the most challenging. The primary goal of the project on “Molecular-level Design of Heterogeneous Chiral Catalysts” is to understand the origins of enantioselectivity on chiral heterogeneous surfaces and catalysts. The efforts of the project team include preparation of chiral surfaces, characterization of chiral surfaces, experimental detection of enantioselectivity on such surfaces and computational modeling of the interactions of chiral probe molecules with chiral surfaces. Over the course of the project period the team of PI’s has made some of the most detailed and insightful studies of enantioselective chemistry on chiral surfaces. This includes the measurement of fundamental interactions and reaction mechanisms of chiral molecules on chiral surfaces and leads all the way to rationale design and synthesis of chiral surfaces and materials for enantioselective surface chemistry. The PI’s have designed and prepared new materials for enantioselective adsorption and catalysis. Naturally Chiral Surfaces • Completion of a systematic study of the enantiospecific desorption kinetics of R-3-methylcyclohexanone (R-3-MCHO) on 9 achiral and 7 enantiomeric pairs of chiral Cu surfaces with orientations that span the stereographic triangle. • Discovery of super-enantioselective tartaric acid (TA) and aspartic acid (Asp) decomposition as a result of a surface explosion mechanism on Cu(643)R&S. Systematic study of super-enantiospecific TA and Asp decomposition on five enantiomeric pairs of chiral Cu surfaces. • Initial observation of the enantiospecific desorption of R- and S-propylene oxide (PO) from Cu(100) imprinted with {3,1,17} facets by L-lysine adsorption. Templated Chiral Surfaces • Initial observation of the enantiospecific desorption of R- and S-PO from Pt(111) and Pd(111

  11. Obituary for Moshe Shapiro (United States)

    Grant, Edward R.


    induced symmetry breaking to form chiral products from achiral precursors, and showed how to use phase-coherent laser excitation to launch directional currents in semiconductors, in the absence of bias voltage. He has also contributed to important advances in laser catalysis, quantum computing and decoherence, transition state spectroscopy, potential inversion and wavefunction imaging, the theory of strong field phenomena in atoms and molecules, quantum theory of elementary exchange reactions and foundations of quantum mechanics. His most recent research focused on the control of molecular, atomic, and photonic processes with coherent light, quantum pattern recognition, coherent chiral separation and the coherent suppression of spontaneous emission, decoherence and other decay processes. At UBC, Moshe is remembered for his perceptiveness, broad vision and collegiality. 'One day he came to a group meeting with the idea of a solar-pumped living laser,' said physics colleague, Valery Milner. 'After thinking about this for two months, we designed an experiment using a random laser cavity that produced gain with milliwatts of pumping power applied to a fluorescent protein. We have now only to get lasing with the bacterium we engineered to express this protein.' Moshe studied for his PhD guided by Professor Raphael D Levine, in theoretical chemistry at the Hebrew University, focusing on photodissociation and molecular collisions. In 1970, he moved to Harvard University as a postdoctoral fellow, where he worked in reaction dynamics with Martin Karplus, a 2013 Nobel laureate in chemistry. In 1972, Moshe joined the faculty of the Department of Chemical Physics at the Weizmann Institute. There, he served as a department chair and was named the Jacques Mimran Professor of Chemical Physics. In 2002, he was appointed to a Canada Research Chair in Quantum Control in the Department of Chemistry at UBC. He won the Willis E Lamb Medal for achievements in the Physics of Quantum Electronics

  12. Organic Reactions in Aqueous Media (by Chao-Jun Li and Tak-Hang Chan) (United States)

    Rosan, Reviewed Alan M.


    the index. The text does not explicitly include a discussion of what has come to be broadly termed biphasic reaction conditions. Understandably, enzymatic reactions are beyond the scope of the presentation. This book has a decidedly applied character with an understated environmental theme, and the authors succinctly present the extraordinary effects of water on the kinetics, efficiency, and stereoselectivity of a large number of diverse reactions. In addition to their emphasis on the historically significant aqueous Diels-Alder reaction, discovered in 1980, and the literature regarding reactions of various nucleophilic organometals, the authors are to be commended for gathering together a wide and diverse body of information: it is clear that many of the examples shown are gems buried among larger bodies of work. Thus the book does an excellent job of culling and surveying a vast amount of data. There is, however, less emphasis on organizing the mechanistic bases underlying these often dramatic effects. For example, the apparent lack of generality of the effect of water on rate and selectivity in pericyclic reactions calls for some theoretical foundation. The singularly effective use of aqueous TlOH in the Suzuki reaction is cited without comment. On the other hand, the authors' concept of a mechanistic triad that incorporates to various degrees anion, radical, or covalent character in the carbon-carbon bond-forming step between various organometals and carbonyl substrates is appealing and suggests the need for future sophisticated experimental design. The most interesting sections are those dealing with synthesis and industrial applications. Unfortunately the latter is also the shortest chapter. The synthetic examples are timely and well chosen and include water-promoted Heck, Stille, Suzuki, and aldol reactions. There is an extensive, highly informative listing and survey of the use of water-soluble phosphines (both achiral and chiral) and an excellent discussion

  13. 新型靛红衍生化β-环糊精键合SBA-15液相色谱固定相的制备与表征%Preparation and Characterization of a Novel Isatin Derivative of β-Cyclodextrin-bonded SBA-15 Stationary Phase for HPLC

    Institute of Scientific and Technical Information of China (English)

    张杨; 李来生; 程彪平; 周仁丹; 聂桂珍


    for HPLC. Its chemical and physical parameters were characterized by infrared spectroscopy, mass spectroscopy, elemental analysis, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and BET specific surface area analysis. The basic chromatographic property of ISCDP was evaluated by using polar halogenated uracils and disubstituted benzene positional isomers as solute probes in reversed-phase chromatography. ISCDP was also used to enantioseparate twoβ-blocker drugs in polar organic mode and two dansyl amino acids in reversed-phase mode, respectively. The related chromatographic separation mechanism was also discussed. Above studies were expected to provide experimental basis for the practical application of ISCDP in the future. The results showed that the introduction of isatin indole ring could enhanced the reversed-phase chromatographic separation ability of ISCDP for halogenated uracils within 7 min. The new packing also exhibited high stereoselectivity for the position isomers of nitroaniline, aminophenol and benzenediol, in which the para isomers were finally eluted due to strong inclusion interaction between the isatin derivative of β-cyclodextrin ligand and the isomers. Meanwhile, the introduction of isatin indole ring could also improve the chiral separation ability of ISCDP. For example the fast enantioseparations of chiral β-adrenergic blockers and dansyl-amino acids on ISCDP were achieved within 20 min (Rs>1. 3). Obviously, besides hydrophobicity, various synergistic interactions could enhance the separation selectivities of the new stationary phase for chiral and achiral analytes, including dipole-dipole, hydrogen bonding,π-π and inclusion interactions. The ordered pore structure of SBA-15 facilitated to fast and efficient separation and analysis for drugs with good permeability and low mass transfer resistance.

  14. Exploration of the impact of stereochemistry on the identification of the novel translocator protein PET imaging agent [18F]GE-180

    International Nuclear Information System (INIS)

    Chau, Wai-Fung; Black, Andrew M.A.; Clarke, Alan; Durrant, Clare; Gausemel, Ingvil; Khan, Imtiaz; Mantzilas, Dimitrios; Oulie, Inger; Rogstad, Astri; Trigg, William; Jones, Paul A.


    Introduction: The tricyclic indole compound, [ 18 F]GE-180 has been previously identified as a promising positron emission tomography (PET) imaging agent of the translocator protein (TSPO) with the potential to aid in the diagnosis, prognosis and therapy monitoring of degenerative neuroinflammatory conditions such as multiple sclerosis. [ 18 F]GE-180 was first identified and evaluated as a racemate, but subsequent evaluations of the resolved enantiomers have shown that the S-enantiomer has a higher affinity for TSPO and an improved in vivo biodistribution performance, in terms of higher uptake in specific brain regions and good clearance (as described previously). Here we describe the additional biological evaluations carried out to confirm the improved performance of the S-enantiomer and including experiments which have demonstrated the stability of the chiral centre to chemical and biological factors. Materials and Methods: GE-180 and the corresponding radiolabelling precursor were separated into single enantiomers using semi-preparative chiral supercritical fluid chromatography (SFC). A detailed comparison of the individual enantiomers and the racemate was carried out in a number of biological studies. TSPO binding affinity was assessed using a radioligand binding assay. Incubation with rat hepatic S9 fractions was used to monitor metabolic stability. In vivo biodistribution studies up to 60 min post injection (PI) in naïve rats were carried out to monitor uptake and clearance. Achiral and chiral in vivo metabolite detection methods were developed to assess the presence of metabolite/s in plasma and brain samples, with the chiral method also determining potential racemisation at the chiral centre. Results: Evaluation of the chiral stability of the two enantiomers to metabolism by rat S9 fractions, showed no racemisation of enantiomers. There were notable differences in the biodistribution between the racemate and the R- and S-enantiomers. All compounds had